1 //
   2 // Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20 // CA 95054 USA or visit www.sun.com if you need additional information or
  21 // have any questions.
  22 //
  23 //
  24 
  25 // X86 Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 
  32 register %{
  33 //----------Architecture Description Register Definitions----------------------
  34 // General Registers
  35 // "reg_def"  name ( register save type, C convention save type,
  36 //                   ideal register type, encoding );
  37 // Register Save Types:
  38 //
  39 // NS  = No-Save:       The register allocator assumes that these registers
  40 //                      can be used without saving upon entry to the method, &
  41 //                      that they do not need to be saved at call sites.
  42 //
  43 // SOC = Save-On-Call:  The register allocator assumes that these registers
  44 //                      can be used without saving upon entry to the method,
  45 //                      but that they must be saved at call sites.
  46 //
  47 // SOE = Save-On-Entry: The register allocator assumes that these registers
  48 //                      must be saved before using them upon entry to the
  49 //                      method, but they do not need to be saved at call
  50 //                      sites.
  51 //
  52 // AS  = Always-Save:   The register allocator assumes that these registers
  53 //                      must be saved before using them upon entry to the
  54 //                      method, & that they must be saved at call sites.
  55 //
  56 // Ideal Register Type is used to determine how to save & restore a
  57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  59 //
  60 // The encoding number is the actual bit-pattern placed into the opcodes.
  61 
  62 // General Registers
  63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
  64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
  65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
  66 
  67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
  68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
  69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
  70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
  71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
  72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
  73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
  74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
  75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
  76 
  77 // Special Registers
  78 reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
  79 
  80 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
  81 // allocator, and only shows up in the encodings.
  82 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  83 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  84 // Ok so here's the trick FPR1 is really st(0) except in the midst
  85 // of emission of assembly for a machnode. During the emission the fpu stack
  86 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
  87 // the stack will not have this element so FPR1 == st(0) from the
  88 // oopMap viewpoint. This same weirdness with numbering causes
  89 // instruction encoding to have to play games with the register
  90 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
  91 // where it does flt->flt moves to see an example
  92 //
  93 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
  94 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
  95 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
  96 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
  97 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
  98 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
  99 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
 100 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
 101 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
 102 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
 103 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
 104 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
 105 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
 106 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
 107 
 108 // XMM registers.  128-bit registers or 4 words each, labeled a-d.
 109 // Word a in each register holds a Float, words ab hold a Double.
 110 // We currently do not use the SIMD capabilities, so registers cd
 111 // are unused at the moment.
 112 reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
 113 reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
 114 reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
 115 reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
 116 reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
 117 reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
 118 reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
 119 reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
 120 reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
 121 reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
 122 reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
 123 reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
 124 reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
 125 reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
 126 reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
 127 reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
 128 
 129 // Specify priority of register selection within phases of register
 130 // allocation.  Highest priority is first.  A useful heuristic is to
 131 // give registers a low priority when they are required by machine
 132 // instructions, like EAX and EDX.  Registers which are used as
 133 // pairs must fall on an even boundary (witness the FPR#L's in this list).
 134 // For the Intel integer registers, the equivalent Long pairs are
 135 // EDX:EAX, EBX:ECX, and EDI:EBP.
 136 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
 137                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
 138                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
 139                     FPR6L, FPR6H, FPR7L, FPR7H );
 140 
 141 alloc_class chunk1( XMM0a, XMM0b,
 142                     XMM1a, XMM1b,
 143                     XMM2a, XMM2b,
 144                     XMM3a, XMM3b,
 145                     XMM4a, XMM4b,
 146                     XMM5a, XMM5b,
 147                     XMM6a, XMM6b,
 148                     XMM7a, XMM7b, EFLAGS);
 149 
 150 
 151 //----------Architecture Description Register Classes--------------------------
 152 // Several register classes are automatically defined based upon information in
 153 // this architecture description.
 154 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 155 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 156 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 157 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 158 //
 159 // Class for all registers
 160 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
 161 // Class for general registers
 162 reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
 163 // Class for general registers which may be used for implicit null checks on win95
 164 // Also safe for use by tailjump. We don't want to allocate in rbp,
 165 reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
 166 // Class of "X" registers
 167 reg_class x_reg(EBX, ECX, EDX, EAX);
 168 // Class of registers that can appear in an address with no offset.
 169 // EBP and ESP require an extra instruction byte for zero offset.
 170 // Used in fast-unlock
 171 reg_class p_reg(EDX, EDI, ESI, EBX);
 172 // Class for general registers not including ECX
 173 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
 174 // Class for general registers not including EAX
 175 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
 176 // Class for general registers not including EAX or EBX.
 177 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
 178 // Class of EAX (for multiply and divide operations)
 179 reg_class eax_reg(EAX);
 180 // Class of EBX (for atomic add)
 181 reg_class ebx_reg(EBX);
 182 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
 183 reg_class ecx_reg(ECX);
 184 // Class of EDX (for multiply and divide operations)
 185 reg_class edx_reg(EDX);
 186 // Class of EDI (for synchronization)
 187 reg_class edi_reg(EDI);
 188 // Class of ESI (for synchronization)
 189 reg_class esi_reg(ESI);
 190 // Singleton class for interpreter's stack pointer
 191 reg_class ebp_reg(EBP);
 192 // Singleton class for stack pointer
 193 reg_class sp_reg(ESP);
 194 // Singleton class for instruction pointer
 195 // reg_class ip_reg(EIP);
 196 // Singleton class for condition codes
 197 reg_class int_flags(EFLAGS);
 198 // Class of integer register pairs
 199 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
 200 // Class of integer register pairs that aligns with calling convention
 201 reg_class eadx_reg( EAX,EDX );
 202 reg_class ebcx_reg( ECX,EBX );
 203 // Not AX or DX, used in divides
 204 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
 205 
 206 // Floating point registers.  Notice FPR0 is not a choice.
 207 // FPR0 is not ever allocated; we use clever encodings to fake
 208 // a 2-address instructions out of Intels FP stack.
 209 reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
 210 
 211 // make a register class for SSE registers
 212 reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
 213 
 214 // make a double register class for SSE2 registers
 215 reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
 216                   XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
 217 
 218 reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
 219                    FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
 220                    FPR7L,FPR7H );
 221 
 222 reg_class flt_reg0( FPR1L );
 223 reg_class dbl_reg0( FPR1L,FPR1H );
 224 reg_class dbl_reg1( FPR2L,FPR2H );
 225 reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
 226                        FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
 227 
 228 // XMM6 and XMM7 could be used as temporary registers for long, float and
 229 // double values for SSE2.
 230 reg_class xdb_reg6( XMM6a,XMM6b );
 231 reg_class xdb_reg7( XMM7a,XMM7b );
 232 %}
 233 
 234 
 235 //----------SOURCE BLOCK-------------------------------------------------------
 236 // This is a block of C++ code which provides values, functions, and
 237 // definitions necessary in the rest of the architecture description
 238 source %{
 239 #define   RELOC_IMM32    Assembler::imm_operand
 240 #define   RELOC_DISP32   Assembler::disp32_operand
 241 
 242 #define __ _masm.
 243 
 244 // How to find the high register of a Long pair, given the low register
 245 #define   HIGH_FROM_LOW(x) ((x)+2)
 246 
 247 // These masks are used to provide 128-bit aligned bitmasks to the XMM
 248 // instructions, to allow sign-masking or sign-bit flipping.  They allow
 249 // fast versions of NegF/NegD and AbsF/AbsD.
 250 
 251 // Note: 'double' and 'long long' have 32-bits alignment on x86.
 252 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
 253   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
 254   // of 128-bits operands for SSE instructions.
 255   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
 256   // Store the value to a 128-bits operand.
 257   operand[0] = lo;
 258   operand[1] = hi;
 259   return operand;
 260 }
 261 
 262 // Buffer for 128-bits masks used by SSE instructions.
 263 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
 264 
 265 // Static initialization during VM startup.
 266 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
 267 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
 268 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
 269 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
 270 
 271 // !!!!! Special hack to get all type of calls to specify the byte offset
 272 //       from the start of the call to the point where the return address
 273 //       will point.
 274 int MachCallStaticJavaNode::ret_addr_offset() {
 275   return 5 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0);  // 5 bytes from start of call to where return address points
 276 }
 277 
 278 int MachCallDynamicJavaNode::ret_addr_offset() {
 279   return 10 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0);  // 10 bytes from start of call to where return address points
 280 }
 281 
 282 static int sizeof_FFree_Float_Stack_All = -1;
 283 
 284 int MachCallRuntimeNode::ret_addr_offset() {
 285   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
 286   return sizeof_FFree_Float_Stack_All + 5 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0);
 287 }
 288 
 289 // Indicate if the safepoint node needs the polling page as an input.
 290 // Since x86 does have absolute addressing, it doesn't.
 291 bool SafePointNode::needs_polling_address_input() {
 292   return false;
 293 }
 294 
 295 //
 296 // Compute padding required for nodes which need alignment
 297 //
 298 
 299 // The address of the call instruction needs to be 4-byte aligned to
 300 // ensure that it does not span a cache line so that it can be patched.
 301 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
 302   if (Compile::current()->in_24_bit_fp_mode())
 303     current_offset += 6;    // skip fldcw in pre_call_FPU, if any
 304   current_offset += 1;      // skip call opcode byte
 305   return round_to(current_offset, alignment_required()) - current_offset;
 306 }
 307 
 308 // The address of the call instruction needs to be 4-byte aligned to
 309 // ensure that it does not span a cache line so that it can be patched.
 310 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
 311   if (Compile::current()->in_24_bit_fp_mode())
 312     current_offset += 6;    // skip fldcw in pre_call_FPU, if any
 313   current_offset += 5;      // skip MOV instruction
 314   current_offset += 1;      // skip call opcode byte
 315   return round_to(current_offset, alignment_required()) - current_offset;
 316 }
 317 
 318 #ifndef PRODUCT
 319 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
 320   st->print("INT3");
 321 }
 322 #endif
 323 
 324 // EMIT_RM()
 325 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
 326   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
 327   *(cbuf.code_end()) = c;
 328   cbuf.set_code_end(cbuf.code_end() + 1);
 329 }
 330 
 331 // EMIT_CC()
 332 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
 333   unsigned char c = (unsigned char)( f1 | f2 );
 334   *(cbuf.code_end()) = c;
 335   cbuf.set_code_end(cbuf.code_end() + 1);
 336 }
 337 
 338 // EMIT_OPCODE()
 339 void emit_opcode(CodeBuffer &cbuf, int code) {
 340   *(cbuf.code_end()) = (unsigned char)code;
 341   cbuf.set_code_end(cbuf.code_end() + 1);
 342 }
 343 
 344 // EMIT_OPCODE() w/ relocation information
 345 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
 346   cbuf.relocate(cbuf.inst_mark() + offset, reloc);
 347   emit_opcode(cbuf, code);
 348 }
 349 
 350 // EMIT_D8()
 351 void emit_d8(CodeBuffer &cbuf, int d8) {
 352   *(cbuf.code_end()) = (unsigned char)d8;
 353   cbuf.set_code_end(cbuf.code_end() + 1);
 354 }
 355 
 356 // EMIT_D16()
 357 void emit_d16(CodeBuffer &cbuf, int d16) {
 358   *((short *)(cbuf.code_end())) = d16;
 359   cbuf.set_code_end(cbuf.code_end() + 2);
 360 }
 361 
 362 // EMIT_D32()
 363 void emit_d32(CodeBuffer &cbuf, int d32) {
 364   *((int *)(cbuf.code_end())) = d32;
 365   cbuf.set_code_end(cbuf.code_end() + 4);
 366 }
 367 
 368 // emit 32 bit value and construct relocation entry from relocInfo::relocType
 369 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
 370         int format) {
 371   cbuf.relocate(cbuf.inst_mark(), reloc, format);
 372 
 373   *((int *)(cbuf.code_end())) = d32;
 374   cbuf.set_code_end(cbuf.code_end() + 4);
 375 }
 376 
 377 // emit 32 bit value and construct relocation entry from RelocationHolder
 378 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
 379         int format) {
 380 #ifdef ASSERT
 381   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
 382     assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
 383   }
 384 #endif
 385   cbuf.relocate(cbuf.inst_mark(), rspec, format);
 386 
 387   *((int *)(cbuf.code_end())) = d32;
 388   cbuf.set_code_end(cbuf.code_end() + 4);
 389 }
 390 
 391 // Access stack slot for load or store
 392 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
 393   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
 394   if( -128 <= disp && disp <= 127 ) {
 395     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
 396     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 397     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
 398   } else {
 399     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
 400     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 401     emit_d32(cbuf, disp);     // Displacement  // R/M byte
 402   }
 403 }
 404 
 405    // eRegI ereg, memory mem) %{    // emit_reg_mem
 406 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
 407   // There is no index & no scale, use form without SIB byte
 408   if ((index == 0x4) &&
 409       (scale == 0) && (base != ESP_enc)) {
 410     // If no displacement, mode is 0x0; unless base is [EBP]
 411     if ( (displace == 0) && (base != EBP_enc) ) {
 412       emit_rm(cbuf, 0x0, reg_encoding, base);
 413     }
 414     else {                    // If 8-bit displacement, mode 0x1
 415       if ((displace >= -128) && (displace <= 127)
 416           && !(displace_is_oop) ) {
 417         emit_rm(cbuf, 0x1, reg_encoding, base);
 418         emit_d8(cbuf, displace);
 419       }
 420       else {                  // If 32-bit displacement
 421         if (base == -1) { // Special flag for absolute address
 422           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
 423           // (manual lies; no SIB needed here)
 424           if ( displace_is_oop ) {
 425             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
 426           } else {
 427             emit_d32      (cbuf, displace);
 428           }
 429         }
 430         else {                // Normal base + offset
 431           emit_rm(cbuf, 0x2, reg_encoding, base);
 432           if ( displace_is_oop ) {
 433             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
 434           } else {
 435             emit_d32      (cbuf, displace);
 436           }
 437         }
 438       }
 439     }
 440   }
 441   else {                      // Else, encode with the SIB byte
 442     // If no displacement, mode is 0x0; unless base is [EBP]
 443     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
 444       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
 445       emit_rm(cbuf, scale, index, base);
 446     }
 447     else {                    // If 8-bit displacement, mode 0x1
 448       if ((displace >= -128) && (displace <= 127)
 449           && !(displace_is_oop) ) {
 450         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
 451         emit_rm(cbuf, scale, index, base);
 452         emit_d8(cbuf, displace);
 453       }
 454       else {                  // If 32-bit displacement
 455         if (base == 0x04 ) {
 456           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 457           emit_rm(cbuf, scale, index, 0x04);
 458         } else {
 459           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 460           emit_rm(cbuf, scale, index, base);
 461         }
 462         if ( displace_is_oop ) {
 463           emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
 464         } else {
 465           emit_d32      (cbuf, displace);
 466         }
 467       }
 468     }
 469   }
 470 }
 471 
 472 
 473 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
 474   if( dst_encoding == src_encoding ) {
 475     // reg-reg copy, use an empty encoding
 476   } else {
 477     emit_opcode( cbuf, 0x8B );
 478     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
 479   }
 480 }
 481 
 482 void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
 483   if( dst_encoding == src_encoding ) {
 484     // reg-reg copy, use an empty encoding
 485   } else {
 486     MacroAssembler _masm(&cbuf);
 487 
 488     __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
 489   }
 490 }
 491 
 492 
 493 //=============================================================================
 494 #ifndef PRODUCT
 495 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
 496   Compile* C = ra_->C;
 497   if( C->in_24_bit_fp_mode() ) {
 498     st->print("FLDCW  24 bit fpu control word");
 499     st->print_cr(""); st->print("\t");
 500   }
 501 
 502   int framesize = C->frame_slots() << LogBytesPerInt;
 503   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 504   // Remove two words for return addr and rbp,
 505   framesize -= 2*wordSize;
 506 
 507   // Calls to C2R adapters often do not accept exceptional returns.
 508   // We require that their callers must bang for them.  But be careful, because
 509   // some VM calls (such as call site linkage) can use several kilobytes of
 510   // stack.  But the stack safety zone should account for that.
 511   // See bugs 4446381, 4468289, 4497237.
 512   if (C->need_stack_bang(framesize)) {
 513     st->print_cr("# stack bang"); st->print("\t");
 514   }
 515   st->print_cr("PUSHL  EBP"); st->print("\t");
 516 
 517   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
 518     st->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
 519     st->print_cr(""); st->print("\t");
 520     framesize -= wordSize;
 521   }
 522 
 523   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
 524     if (framesize) {
 525       st->print("SUB    ESP,%d\t# Create frame",framesize);
 526     }
 527   } else {
 528     st->print("SUB    ESP,%d\t# Create frame",framesize);
 529   }
 530 }
 531 #endif
 532 
 533 
 534 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 535   Compile* C = ra_->C;
 536 
 537   if (UseSSE >= 2 && VerifyFPU) {
 538     MacroAssembler masm(&cbuf);
 539     masm.verify_FPU(0, "FPU stack must be clean on entry");
 540   }
 541 
 542   // WARNING: Initial instruction MUST be 5 bytes or longer so that
 543   // NativeJump::patch_verified_entry will be able to patch out the entry
 544   // code safely. The fldcw is ok at 6 bytes, the push to verify stack
 545   // depth is ok at 5 bytes, the frame allocation can be either 3 or
 546   // 6 bytes. So if we don't do the fldcw or the push then we must
 547   // use the 6 byte frame allocation even if we have no frame. :-(
 548   // If method sets FPU control word do it now
 549   if( C->in_24_bit_fp_mode() ) {
 550     MacroAssembler masm(&cbuf);
 551     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 552   }
 553 
 554   int framesize = C->frame_slots() << LogBytesPerInt;
 555   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 556   // Remove two words for return addr and rbp,
 557   framesize -= 2*wordSize;
 558 
 559   // Calls to C2R adapters often do not accept exceptional returns.
 560   // We require that their callers must bang for them.  But be careful, because
 561   // some VM calls (such as call site linkage) can use several kilobytes of
 562   // stack.  But the stack safety zone should account for that.
 563   // See bugs 4446381, 4468289, 4497237.
 564   if (C->need_stack_bang(framesize)) {
 565     MacroAssembler masm(&cbuf);
 566     masm.generate_stack_overflow_check(framesize);
 567   }
 568 
 569   // We always push rbp, so that on return to interpreter rbp, will be
 570   // restored correctly and we can correct the stack.
 571   emit_opcode(cbuf, 0x50 | EBP_enc);
 572 
 573   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
 574     emit_opcode(cbuf, 0x68); // push 0xbadb100d
 575     emit_d32(cbuf, 0xbadb100d);
 576     framesize -= wordSize;
 577   }
 578 
 579   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
 580     if (framesize) {
 581       emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
 582       emit_rm(cbuf, 0x3, 0x05, ESP_enc);
 583       emit_d8(cbuf, framesize);
 584     }
 585   } else {
 586     emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
 587     emit_rm(cbuf, 0x3, 0x05, ESP_enc);
 588     emit_d32(cbuf, framesize);
 589   }
 590   C->set_frame_complete(cbuf.code_end() - cbuf.code_begin());
 591 
 592 #ifdef ASSERT
 593   if (VerifyStackAtCalls) {
 594     Label L;
 595     MacroAssembler masm(&cbuf);
 596     masm.push(rax);
 597     masm.mov(rax, rsp);
 598     masm.andptr(rax, StackAlignmentInBytes-1);
 599     masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
 600     masm.pop(rax);
 601     masm.jcc(Assembler::equal, L);
 602     masm.stop("Stack is not properly aligned!");
 603     masm.bind(L);
 604   }
 605 #endif
 606 
 607 }
 608 
 609 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
 610   return MachNode::size(ra_); // too many variables; just compute it the hard way
 611 }
 612 
 613 int MachPrologNode::reloc() const {
 614   return 0; // a large enough number
 615 }
 616 
 617 //=============================================================================
 618 #ifndef PRODUCT
 619 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
 620   Compile *C = ra_->C;
 621   int framesize = C->frame_slots() << LogBytesPerInt;
 622   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 623   // Remove two words for return addr and rbp,
 624   framesize -= 2*wordSize;
 625 
 626   if( C->in_24_bit_fp_mode() ) {
 627     st->print("FLDCW  standard control word");
 628     st->cr(); st->print("\t");
 629   }
 630   if( framesize ) {
 631     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
 632     st->cr(); st->print("\t");
 633   }
 634   st->print_cr("POPL   EBP"); st->print("\t");
 635   if( do_polling() && C->is_method_compilation() ) {
 636     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
 637     st->cr(); st->print("\t");
 638   }
 639 }
 640 #endif
 641 
 642 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 643   Compile *C = ra_->C;
 644 
 645   // If method set FPU control word, restore to standard control word
 646   if( C->in_24_bit_fp_mode() ) {
 647     MacroAssembler masm(&cbuf);
 648     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 649   }
 650 
 651   int framesize = C->frame_slots() << LogBytesPerInt;
 652   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 653   // Remove two words for return addr and rbp,
 654   framesize -= 2*wordSize;
 655 
 656   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
 657 
 658   if( framesize >= 128 ) {
 659     emit_opcode(cbuf, 0x81); // add  SP, #framesize
 660     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 661     emit_d32(cbuf, framesize);
 662   }
 663   else if( framesize ) {
 664     emit_opcode(cbuf, 0x83); // add  SP, #framesize
 665     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 666     emit_d8(cbuf, framesize);
 667   }
 668 
 669   emit_opcode(cbuf, 0x58 | EBP_enc);
 670 
 671   if( do_polling() && C->is_method_compilation() ) {
 672     cbuf.relocate(cbuf.code_end(), relocInfo::poll_return_type, 0);
 673     emit_opcode(cbuf,0x85);
 674     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
 675     emit_d32(cbuf, (intptr_t)os::get_polling_page());
 676   }
 677 }
 678 
 679 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
 680   Compile *C = ra_->C;
 681   // If method set FPU control word, restore to standard control word
 682   int size = C->in_24_bit_fp_mode() ? 6 : 0;
 683   if( do_polling() && C->is_method_compilation() ) size += 6;
 684 
 685   int framesize = C->frame_slots() << LogBytesPerInt;
 686   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 687   // Remove two words for return addr and rbp,
 688   framesize -= 2*wordSize;
 689 
 690   size++; // popl rbp,
 691 
 692   if( framesize >= 128 ) {
 693     size += 6;
 694   } else {
 695     size += framesize ? 3 : 0;
 696   }
 697   return size;
 698 }
 699 
 700 int MachEpilogNode::reloc() const {
 701   return 0; // a large enough number
 702 }
 703 
 704 const Pipeline * MachEpilogNode::pipeline() const {
 705   return MachNode::pipeline_class();
 706 }
 707 
 708 int MachEpilogNode::safepoint_offset() const { return 0; }
 709 
 710 //=============================================================================
 711 
 712 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
 713 static enum RC rc_class( OptoReg::Name reg ) {
 714 
 715   if( !OptoReg::is_valid(reg)  ) return rc_bad;
 716   if (OptoReg::is_stack(reg)) return rc_stack;
 717 
 718   VMReg r = OptoReg::as_VMReg(reg);
 719   if (r->is_Register()) return rc_int;
 720   if (r->is_FloatRegister()) {
 721     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
 722     return rc_float;
 723   }
 724   assert(r->is_XMMRegister(), "must be");
 725   return rc_xmm;
 726 }
 727 
 728 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
 729                         int opcode, const char *op_str, int size, outputStream* st ) {
 730   if( cbuf ) {
 731     emit_opcode  (*cbuf, opcode );
 732     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
 733 #ifndef PRODUCT
 734   } else if( !do_size ) {
 735     if( size != 0 ) st->print("\n\t");
 736     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
 737       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
 738       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
 739     } else { // FLD, FST, PUSH, POP
 740       st->print("%s [ESP + #%d]",op_str,offset);
 741     }
 742 #endif
 743   }
 744   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 745   return size+3+offset_size;
 746 }
 747 
 748 // Helper for XMM registers.  Extra opcode bits, limited syntax.
 749 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
 750                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
 751   if( cbuf ) {
 752     if( reg_lo+1 == reg_hi ) { // double move?
 753       if( is_load && !UseXmmLoadAndClearUpper )
 754         emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
 755       else
 756         emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
 757     } else {
 758       emit_opcode(*cbuf, 0xF3 );
 759     }
 760     emit_opcode(*cbuf, 0x0F );
 761     if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
 762       emit_opcode(*cbuf, 0x12 );   // use 'movlpd' for load
 763     else
 764       emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
 765     encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
 766 #ifndef PRODUCT
 767   } else if( !do_size ) {
 768     if( size != 0 ) st->print("\n\t");
 769     if( reg_lo+1 == reg_hi ) { // double move?
 770       if( is_load ) st->print("%s %s,[ESP + #%d]",
 771                                UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
 772                                Matcher::regName[reg_lo], offset);
 773       else          st->print("MOVSD  [ESP + #%d],%s",
 774                                offset, Matcher::regName[reg_lo]);
 775     } else {
 776       if( is_load ) st->print("MOVSS  %s,[ESP + #%d]",
 777                                Matcher::regName[reg_lo], offset);
 778       else          st->print("MOVSS  [ESP + #%d],%s",
 779                                offset, Matcher::regName[reg_lo]);
 780     }
 781 #endif
 782   }
 783   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 784   return size+5+offset_size;
 785 }
 786 
 787 
 788 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 789                             int src_hi, int dst_hi, int size, outputStream* st ) {
 790   if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
 791     if( cbuf ) {
 792       if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
 793         emit_opcode(*cbuf, 0x66 );
 794       }
 795       emit_opcode(*cbuf, 0x0F );
 796       emit_opcode(*cbuf, 0x28 );
 797       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
 798 #ifndef PRODUCT
 799     } else if( !do_size ) {
 800       if( size != 0 ) st->print("\n\t");
 801       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
 802         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 803       } else {
 804         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 805       }
 806 #endif
 807     }
 808     return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
 809   } else {
 810     if( cbuf ) {
 811       emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
 812       emit_opcode(*cbuf, 0x0F );
 813       emit_opcode(*cbuf, 0x10 );
 814       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
 815 #ifndef PRODUCT
 816     } else if( !do_size ) {
 817       if( size != 0 ) st->print("\n\t");
 818       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
 819         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 820       } else {
 821         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 822       }
 823 #endif
 824     }
 825     return size+4;
 826   }
 827 }
 828 
 829 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
 830   if( cbuf ) {
 831     emit_opcode(*cbuf, 0x8B );
 832     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
 833 #ifndef PRODUCT
 834   } else if( !do_size ) {
 835     if( size != 0 ) st->print("\n\t");
 836     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
 837 #endif
 838   }
 839   return size+2;
 840 }
 841 
 842 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
 843                                  int offset, int size, outputStream* st ) {
 844   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
 845     if( cbuf ) {
 846       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
 847       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
 848 #ifndef PRODUCT
 849     } else if( !do_size ) {
 850       if( size != 0 ) st->print("\n\t");
 851       st->print("FLD    %s",Matcher::regName[src_lo]);
 852 #endif
 853     }
 854     size += 2;
 855   }
 856 
 857   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
 858   const char *op_str;
 859   int op;
 860   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
 861     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
 862     op = 0xDD;
 863   } else {                   // 32-bit store
 864     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
 865     op = 0xD9;
 866     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
 867   }
 868 
 869   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
 870 }
 871 
 872 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
 873   // Get registers to move
 874   OptoReg::Name src_second = ra_->get_reg_second(in(1));
 875   OptoReg::Name src_first = ra_->get_reg_first(in(1));
 876   OptoReg::Name dst_second = ra_->get_reg_second(this );
 877   OptoReg::Name dst_first = ra_->get_reg_first(this );
 878 
 879   enum RC src_second_rc = rc_class(src_second);
 880   enum RC src_first_rc = rc_class(src_first);
 881   enum RC dst_second_rc = rc_class(dst_second);
 882   enum RC dst_first_rc = rc_class(dst_first);
 883 
 884   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
 885 
 886   // Generate spill code!
 887   int size = 0;
 888 
 889   if( src_first == dst_first && src_second == dst_second )
 890     return size;            // Self copy, no move
 891 
 892   // --------------------------------------
 893   // Check for mem-mem move.  push/pop to move.
 894   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
 895     if( src_second == dst_first ) { // overlapping stack copy ranges
 896       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
 897       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
 898       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
 899       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
 900     }
 901     // move low bits
 902     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
 903     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
 904     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
 905       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
 906       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
 907     }
 908     return size;
 909   }
 910 
 911   // --------------------------------------
 912   // Check for integer reg-reg copy
 913   if( src_first_rc == rc_int && dst_first_rc == rc_int )
 914     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
 915 
 916   // Check for integer store
 917   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
 918     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
 919 
 920   // Check for integer load
 921   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
 922     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
 923 
 924   // --------------------------------------
 925   // Check for float reg-reg copy
 926   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
 927     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
 928             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
 929     if( cbuf ) {
 930 
 931       // Note the mucking with the register encode to compensate for the 0/1
 932       // indexing issue mentioned in a comment in the reg_def sections
 933       // for FPR registers many lines above here.
 934 
 935       if( src_first != FPR1L_num ) {
 936         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
 937         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
 938         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
 939         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
 940      } else {
 941         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
 942         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
 943      }
 944 #ifndef PRODUCT
 945     } else if( !do_size ) {
 946       if( size != 0 ) st->print("\n\t");
 947       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
 948       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
 949 #endif
 950     }
 951     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
 952   }
 953 
 954   // Check for float store
 955   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
 956     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
 957   }
 958 
 959   // Check for float load
 960   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
 961     int offset = ra_->reg2offset(src_first);
 962     const char *op_str;
 963     int op;
 964     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
 965       op_str = "FLD_D";
 966       op = 0xDD;
 967     } else {                   // 32-bit load
 968       op_str = "FLD_S";
 969       op = 0xD9;
 970       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
 971     }
 972     if( cbuf ) {
 973       emit_opcode  (*cbuf, op );
 974       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
 975       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
 976       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
 977 #ifndef PRODUCT
 978     } else if( !do_size ) {
 979       if( size != 0 ) st->print("\n\t");
 980       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
 981 #endif
 982     }
 983     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 984     return size + 3+offset_size+2;
 985   }
 986 
 987   // Check for xmm reg-reg copy
 988   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
 989     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
 990             (src_first+1 == src_second && dst_first+1 == dst_second),
 991             "no non-adjacent float-moves" );
 992     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
 993   }
 994 
 995   // Check for xmm store
 996   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
 997     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
 998   }
 999 
1000   // Check for float xmm load
1001   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
1002     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
1003   }
1004 
1005   // Copy from float reg to xmm reg
1006   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
1007     // copy to the top of stack from floating point reg
1008     // and use LEA to preserve flags
1009     if( cbuf ) {
1010       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
1011       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1012       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1013       emit_d8(*cbuf,0xF8);
1014 #ifndef PRODUCT
1015     } else if( !do_size ) {
1016       if( size != 0 ) st->print("\n\t");
1017       st->print("LEA    ESP,[ESP-8]");
1018 #endif
1019     }
1020     size += 4;
1021 
1022     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
1023 
1024     // Copy from the temp memory to the xmm reg.
1025     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
1026 
1027     if( cbuf ) {
1028       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
1029       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1030       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1031       emit_d8(*cbuf,0x08);
1032 #ifndef PRODUCT
1033     } else if( !do_size ) {
1034       if( size != 0 ) st->print("\n\t");
1035       st->print("LEA    ESP,[ESP+8]");
1036 #endif
1037     }
1038     size += 4;
1039     return size;
1040   }
1041 
1042   assert( size > 0, "missed a case" );
1043 
1044   // --------------------------------------------------------------------
1045   // Check for second bits still needing moving.
1046   if( src_second == dst_second )
1047     return size;               // Self copy; no move
1048   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1049 
1050   // Check for second word int-int move
1051   if( src_second_rc == rc_int && dst_second_rc == rc_int )
1052     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
1053 
1054   // Check for second word integer store
1055   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1056     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
1057 
1058   // Check for second word integer load
1059   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1060     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
1061 
1062 
1063   Unimplemented();
1064 }
1065 
1066 #ifndef PRODUCT
1067 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1068   implementation( NULL, ra_, false, st );
1069 }
1070 #endif
1071 
1072 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1073   implementation( &cbuf, ra_, false, NULL );
1074 }
1075 
1076 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1077   return implementation( NULL, ra_, true, NULL );
1078 }
1079 
1080 //=============================================================================
1081 #ifndef PRODUCT
1082 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
1083   st->print("NOP \t# %d bytes pad for loops and calls", _count);
1084 }
1085 #endif
1086 
1087 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1088   MacroAssembler _masm(&cbuf);
1089   __ nop(_count);
1090 }
1091 
1092 uint MachNopNode::size(PhaseRegAlloc *) const {
1093   return _count;
1094 }
1095 
1096 
1097 //=============================================================================
1098 #ifndef PRODUCT
1099 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1100   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1101   int reg = ra_->get_reg_first(this);
1102   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
1103 }
1104 #endif
1105 
1106 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1107   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1108   int reg = ra_->get_encode(this);
1109   if( offset >= 128 ) {
1110     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1111     emit_rm(cbuf, 0x2, reg, 0x04);
1112     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1113     emit_d32(cbuf, offset);
1114   }
1115   else {
1116     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1117     emit_rm(cbuf, 0x1, reg, 0x04);
1118     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1119     emit_d8(cbuf, offset);
1120   }
1121 }
1122 
1123 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1124   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1125   if( offset >= 128 ) {
1126     return 7;
1127   }
1128   else {
1129     return 4;
1130   }
1131 }
1132 
1133 //=============================================================================
1134 
1135 // emit call stub, compiled java to interpreter
1136 void emit_java_to_interp(CodeBuffer &cbuf ) {
1137   // Stub is fixed up when the corresponding call is converted from calling
1138   // compiled code to calling interpreted code.
1139   // mov rbx,0
1140   // jmp -1
1141 
1142   address mark = cbuf.inst_mark();  // get mark within main instrs section
1143 
1144   // Note that the code buffer's inst_mark is always relative to insts.
1145   // That's why we must use the macroassembler to generate a stub.
1146   MacroAssembler _masm(&cbuf);
1147 
1148   address base =
1149   __ start_a_stub(Compile::MAX_stubs_size);
1150   if (base == NULL)  return;  // CodeBuffer::expand failed
1151   // static stub relocation stores the instruction address of the call
1152   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
1153   // static stub relocation also tags the methodOop in the code-stream.
1154   __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
1155   // This is recognized as unresolved by relocs/nativeInst/ic code
1156   __ jump(RuntimeAddress(__ pc()));
1157 
1158   __ end_a_stub();
1159   // Update current stubs pointer and restore code_end.
1160 }
1161 // size of call stub, compiled java to interpretor
1162 uint size_java_to_interp() {
1163   return 10;  // movl; jmp
1164 }
1165 // relocation entries for call stub, compiled java to interpretor
1166 uint reloc_java_to_interp() {
1167   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
1168 }
1169 
1170 //=============================================================================
1171 #ifndef PRODUCT
1172 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1173   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
1174   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
1175   st->print_cr("\tNOP");
1176   st->print_cr("\tNOP");
1177   if( !OptoBreakpoint )
1178     st->print_cr("\tNOP");
1179 }
1180 #endif
1181 
1182 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1183   MacroAssembler masm(&cbuf);
1184 #ifdef ASSERT
1185   uint code_size = cbuf.code_size();
1186 #endif
1187   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
1188   masm.jump_cc(Assembler::notEqual,
1189                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1190   /* WARNING these NOPs are critical so that verified entry point is properly
1191      aligned for patching by NativeJump::patch_verified_entry() */
1192   int nops_cnt = 2;
1193   if( !OptoBreakpoint ) // Leave space for int3
1194      nops_cnt += 1;
1195   masm.nop(nops_cnt);
1196 
1197   assert(cbuf.code_size() - code_size == size(ra_), "checking code size of inline cache node");
1198 }
1199 
1200 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1201   return OptoBreakpoint ? 11 : 12;
1202 }
1203 
1204 
1205 //=============================================================================
1206 uint size_exception_handler() {
1207   // NativeCall instruction size is the same as NativeJump.
1208   // exception handler starts out as jump and can be patched to
1209   // a call be deoptimization.  (4932387)
1210   // Note that this value is also credited (in output.cpp) to
1211   // the size of the code section.
1212   return NativeJump::instruction_size;
1213 }
1214 
1215 // Emit exception handler code.  Stuff framesize into a register
1216 // and call a VM stub routine.
1217 int emit_exception_handler(CodeBuffer& cbuf) {
1218 
1219   // Note that the code buffer's inst_mark is always relative to insts.
1220   // That's why we must use the macroassembler to generate a handler.
1221   MacroAssembler _masm(&cbuf);
1222   address base =
1223   __ start_a_stub(size_exception_handler());
1224   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1225   int offset = __ offset();
1226   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin()));
1227   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1228   __ end_a_stub();
1229   return offset;
1230 }
1231 
1232 uint size_deopt_handler() {
1233   // NativeCall instruction size is the same as NativeJump.
1234   // exception handler starts out as jump and can be patched to
1235   // a call be deoptimization.  (4932387)
1236   // Note that this value is also credited (in output.cpp) to
1237   // the size of the code section.
1238   return 5 + NativeJump::instruction_size; // pushl(); jmp;
1239 }
1240 
1241 // Emit deopt handler code.
1242 int emit_deopt_handler(CodeBuffer& cbuf) {
1243 
1244   // Note that the code buffer's inst_mark is always relative to insts.
1245   // That's why we must use the macroassembler to generate a handler.
1246   MacroAssembler _masm(&cbuf);
1247   address base =
1248   __ start_a_stub(size_exception_handler());
1249   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1250   int offset = __ offset();
1251   InternalAddress here(__ pc());
1252   __ pushptr(here.addr());
1253 
1254   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
1255   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1256   __ end_a_stub();
1257   return offset;
1258 }
1259 
1260 
1261 static void emit_double_constant(CodeBuffer& cbuf, double x) {
1262   int mark = cbuf.insts()->mark_off();
1263   MacroAssembler _masm(&cbuf);
1264   address double_address = __ double_constant(x);
1265   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
1266   emit_d32_reloc(cbuf,
1267                  (int)double_address,
1268                  internal_word_Relocation::spec(double_address),
1269                  RELOC_DISP32);
1270 }
1271 
1272 static void emit_float_constant(CodeBuffer& cbuf, float x) {
1273   int mark = cbuf.insts()->mark_off();
1274   MacroAssembler _masm(&cbuf);
1275   address float_address = __ float_constant(x);
1276   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
1277   emit_d32_reloc(cbuf,
1278                  (int)float_address,
1279                  internal_word_Relocation::spec(float_address),
1280                  RELOC_DISP32);
1281 }
1282 
1283 
1284 const bool Matcher::match_rule_supported(int opcode) {
1285   if (!has_match_rule(opcode))
1286     return false;
1287 
1288   return true;  // Per default match rules are supported.
1289 }
1290 
1291 int Matcher::regnum_to_fpu_offset(int regnum) {
1292   return regnum - 32; // The FP registers are in the second chunk
1293 }
1294 
1295 bool is_positive_zero_float(jfloat f) {
1296   return jint_cast(f) == jint_cast(0.0F);
1297 }
1298 
1299 bool is_positive_one_float(jfloat f) {
1300   return jint_cast(f) == jint_cast(1.0F);
1301 }
1302 
1303 bool is_positive_zero_double(jdouble d) {
1304   return jlong_cast(d) == jlong_cast(0.0);
1305 }
1306 
1307 bool is_positive_one_double(jdouble d) {
1308   return jlong_cast(d) == jlong_cast(1.0);
1309 }
1310 
1311 // This is UltraSparc specific, true just means we have fast l2f conversion
1312 const bool Matcher::convL2FSupported(void) {
1313   return true;
1314 }
1315 
1316 // Vector width in bytes
1317 const uint Matcher::vector_width_in_bytes(void) {
1318   return UseSSE >= 2 ? 8 : 0;
1319 }
1320 
1321 // Vector ideal reg
1322 const uint Matcher::vector_ideal_reg(void) {
1323   return Op_RegD;
1324 }
1325 
1326 // Is this branch offset short enough that a short branch can be used?
1327 //
1328 // NOTE: If the platform does not provide any short branch variants, then
1329 //       this method should return false for offset 0.
1330 bool Matcher::is_short_branch_offset(int rule, int offset) {
1331   // the short version of jmpConUCF2 contains multiple branches,
1332   // making the reach slightly less
1333   if (rule == jmpConUCF2_rule)
1334     return (-126 <= offset && offset <= 125);
1335   return (-128 <= offset && offset <= 127);
1336 }
1337 
1338 const bool Matcher::isSimpleConstant64(jlong value) {
1339   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1340   return false;
1341 }
1342 
1343 // The ecx parameter to rep stos for the ClearArray node is in dwords.
1344 const bool Matcher::init_array_count_is_in_bytes = false;
1345 
1346 // Threshold size for cleararray.
1347 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1348 
1349 // Should the Matcher clone shifts on addressing modes, expecting them to
1350 // be subsumed into complex addressing expressions or compute them into
1351 // registers?  True for Intel but false for most RISCs
1352 const bool Matcher::clone_shift_expressions = true;
1353 
1354 // Is it better to copy float constants, or load them directly from memory?
1355 // Intel can load a float constant from a direct address, requiring no
1356 // extra registers.  Most RISCs will have to materialize an address into a
1357 // register first, so they would do better to copy the constant from stack.
1358 const bool Matcher::rematerialize_float_constants = true;
1359 
1360 // If CPU can load and store mis-aligned doubles directly then no fixup is
1361 // needed.  Else we split the double into 2 integer pieces and move it
1362 // piece-by-piece.  Only happens when passing doubles into C code as the
1363 // Java calling convention forces doubles to be aligned.
1364 const bool Matcher::misaligned_doubles_ok = true;
1365 
1366 
1367 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1368   // Get the memory operand from the node
1369   uint numopnds = node->num_opnds();        // Virtual call for number of operands
1370   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
1371   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
1372   uint opcnt     = 1;                 // First operand
1373   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
1374   while( idx >= skipped+num_edges ) {
1375     skipped += num_edges;
1376     opcnt++;                          // Bump operand count
1377     assert( opcnt < numopnds, "Accessing non-existent operand" );
1378     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
1379   }
1380 
1381   MachOper *memory = node->_opnds[opcnt];
1382   MachOper *new_memory = NULL;
1383   switch (memory->opcode()) {
1384   case DIRECT:
1385   case INDOFFSET32X:
1386     // No transformation necessary.
1387     return;
1388   case INDIRECT:
1389     new_memory = new (C) indirect_win95_safeOper( );
1390     break;
1391   case INDOFFSET8:
1392     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
1393     break;
1394   case INDOFFSET32:
1395     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
1396     break;
1397   case INDINDEXOFFSET:
1398     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
1399     break;
1400   case INDINDEXSCALE:
1401     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
1402     break;
1403   case INDINDEXSCALEOFFSET:
1404     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
1405     break;
1406   case LOAD_LONG_INDIRECT:
1407   case LOAD_LONG_INDOFFSET32:
1408     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
1409     return;
1410   default:
1411     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
1412     return;
1413   }
1414   node->_opnds[opcnt] = new_memory;
1415 }
1416 
1417 // Advertise here if the CPU requires explicit rounding operations
1418 // to implement the UseStrictFP mode.
1419 const bool Matcher::strict_fp_requires_explicit_rounding = true;
1420 
1421 // Do floats take an entire double register or just half?
1422 const bool Matcher::float_in_double = true;
1423 // Do ints take an entire long register or just half?
1424 const bool Matcher::int_in_long = false;
1425 
1426 // Return whether or not this register is ever used as an argument.  This
1427 // function is used on startup to build the trampoline stubs in generateOptoStub.
1428 // Registers not mentioned will be killed by the VM call in the trampoline, and
1429 // arguments in those registers not be available to the callee.
1430 bool Matcher::can_be_java_arg( int reg ) {
1431   if(  reg == ECX_num   || reg == EDX_num   ) return true;
1432   if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
1433   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
1434   return false;
1435 }
1436 
1437 bool Matcher::is_spillable_arg( int reg ) {
1438   return can_be_java_arg(reg);
1439 }
1440 
1441 // Register for DIVI projection of divmodI
1442 RegMask Matcher::divI_proj_mask() {
1443   return EAX_REG_mask;
1444 }
1445 
1446 // Register for MODI projection of divmodI
1447 RegMask Matcher::modI_proj_mask() {
1448   return EDX_REG_mask;
1449 }
1450 
1451 // Register for DIVL projection of divmodL
1452 RegMask Matcher::divL_proj_mask() {
1453   ShouldNotReachHere();
1454   return RegMask();
1455 }
1456 
1457 // Register for MODL projection of divmodL
1458 RegMask Matcher::modL_proj_mask() {
1459   ShouldNotReachHere();
1460   return RegMask();
1461 }
1462 
1463 %}
1464 
1465 //----------ENCODING BLOCK-----------------------------------------------------
1466 // This block specifies the encoding classes used by the compiler to output
1467 // byte streams.  Encoding classes generate functions which are called by
1468 // Machine Instruction Nodes in order to generate the bit encoding of the
1469 // instruction.  Operands specify their base encoding interface with the
1470 // interface keyword.  There are currently supported four interfaces,
1471 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1472 // operand to generate a function which returns its register number when
1473 // queried.   CONST_INTER causes an operand to generate a function which
1474 // returns the value of the constant when queried.  MEMORY_INTER causes an
1475 // operand to generate four functions which return the Base Register, the
1476 // Index Register, the Scale Value, and the Offset Value of the operand when
1477 // queried.  COND_INTER causes an operand to generate six functions which
1478 // return the encoding code (ie - encoding bits for the instruction)
1479 // associated with each basic boolean condition for a conditional instruction.
1480 // Instructions specify two basic values for encoding.  They use the
1481 // ins_encode keyword to specify their encoding class (which must be one of
1482 // the class names specified in the encoding block), and they use the
1483 // opcode keyword to specify, in order, their primary, secondary, and
1484 // tertiary opcode.  Only the opcode sections which a particular instruction
1485 // needs for encoding need to be specified.
1486 encode %{
1487   // Build emit functions for each basic byte or larger field in the intel
1488   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
1489   // code in the enc_class source block.  Emit functions will live in the
1490   // main source block for now.  In future, we can generalize this by
1491   // adding a syntax that specifies the sizes of fields in an order,
1492   // so that the adlc can build the emit functions automagically
1493 
1494   // Emit primary opcode
1495   enc_class OpcP %{
1496     emit_opcode(cbuf, $primary);
1497   %}
1498 
1499   // Emit secondary opcode
1500   enc_class OpcS %{
1501     emit_opcode(cbuf, $secondary);
1502   %}
1503 
1504   // Emit opcode directly
1505   enc_class Opcode(immI d8) %{
1506     emit_opcode(cbuf, $d8$$constant);
1507   %}
1508 
1509   enc_class SizePrefix %{
1510     emit_opcode(cbuf,0x66);
1511   %}
1512 
1513   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
1514     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1515   %}
1516 
1517   enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
1518     emit_opcode(cbuf,$opcode$$constant);
1519     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1520   %}
1521 
1522   enc_class mov_r32_imm0( eRegI dst ) %{
1523     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
1524     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
1525   %}
1526 
1527   enc_class cdq_enc %{
1528     // Full implementation of Java idiv and irem; checks for
1529     // special case as described in JVM spec., p.243 & p.271.
1530     //
1531     //         normal case                           special case
1532     //
1533     // input : rax,: dividend                         min_int
1534     //         reg: divisor                          -1
1535     //
1536     // output: rax,: quotient  (= rax, idiv reg)       min_int
1537     //         rdx: remainder (= rax, irem reg)       0
1538     //
1539     //  Code sequnce:
1540     //
1541     //  81 F8 00 00 00 80    cmp         rax,80000000h
1542     //  0F 85 0B 00 00 00    jne         normal_case
1543     //  33 D2                xor         rdx,edx
1544     //  83 F9 FF             cmp         rcx,0FFh
1545     //  0F 84 03 00 00 00    je          done
1546     //                  normal_case:
1547     //  99                   cdq
1548     //  F7 F9                idiv        rax,ecx
1549     //                  done:
1550     //
1551     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
1552     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
1553     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
1554     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
1555     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
1556     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
1557     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
1558     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
1559     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
1560     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
1561     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
1562     // normal_case:
1563     emit_opcode(cbuf,0x99);                                         // cdq
1564     // idiv (note: must be emitted by the user of this rule)
1565     // normal:
1566   %}
1567 
1568   // Dense encoding for older common ops
1569   enc_class Opc_plus(immI opcode, eRegI reg) %{
1570     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
1571   %}
1572 
1573 
1574   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1575   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
1576     // Check for 8-bit immediate, and set sign extend bit in opcode
1577     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1578       emit_opcode(cbuf, $primary | 0x02);
1579     }
1580     else {                          // If 32-bit immediate
1581       emit_opcode(cbuf, $primary);
1582     }
1583   %}
1584 
1585   enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
1586     // Emit primary opcode and set sign-extend bit
1587     // Check for 8-bit immediate, and set sign extend bit in opcode
1588     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1589       emit_opcode(cbuf, $primary | 0x02);    }
1590     else {                          // If 32-bit immediate
1591       emit_opcode(cbuf, $primary);
1592     }
1593     // Emit r/m byte with secondary opcode, after primary opcode.
1594     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1595   %}
1596 
1597   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
1598     // Check for 8-bit immediate, and set sign extend bit in opcode
1599     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1600       $$$emit8$imm$$constant;
1601     }
1602     else {                          // If 32-bit immediate
1603       // Output immediate
1604       $$$emit32$imm$$constant;
1605     }
1606   %}
1607 
1608   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
1609     // Emit primary opcode and set sign-extend bit
1610     // Check for 8-bit immediate, and set sign extend bit in opcode
1611     int con = (int)$imm$$constant; // Throw away top bits
1612     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1613     // Emit r/m byte with secondary opcode, after primary opcode.
1614     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1615     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1616     else                               emit_d32(cbuf,con);
1617   %}
1618 
1619   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
1620     // Emit primary opcode and set sign-extend bit
1621     // Check for 8-bit immediate, and set sign extend bit in opcode
1622     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
1623     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1624     // Emit r/m byte with tertiary opcode, after primary opcode.
1625     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
1626     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1627     else                               emit_d32(cbuf,con);
1628   %}
1629 
1630   enc_class Lbl (label labl) %{ // JMP, CALL
1631     Label *l = $labl$$label;
1632     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
1633   %}
1634 
1635   enc_class LblShort (label labl) %{ // JMP, CALL
1636     Label *l = $labl$$label;
1637     int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
1638     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
1639     emit_d8(cbuf, disp);
1640   %}
1641 
1642   enc_class OpcSReg (eRegI dst) %{    // BSWAP
1643     emit_cc(cbuf, $secondary, $dst$$reg );
1644   %}
1645 
1646   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
1647     int destlo = $dst$$reg;
1648     int desthi = HIGH_FROM_LOW(destlo);
1649     // bswap lo
1650     emit_opcode(cbuf, 0x0F);
1651     emit_cc(cbuf, 0xC8, destlo);
1652     // bswap hi
1653     emit_opcode(cbuf, 0x0F);
1654     emit_cc(cbuf, 0xC8, desthi);
1655     // xchg lo and hi
1656     emit_opcode(cbuf, 0x87);
1657     emit_rm(cbuf, 0x3, destlo, desthi);
1658   %}
1659 
1660   enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
1661     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
1662   %}
1663 
1664   enc_class Jcc (cmpOp cop, label labl) %{    // JCC
1665     Label *l = $labl$$label;
1666     $$$emit8$primary;
1667     emit_cc(cbuf, $secondary, $cop$$cmpcode);
1668     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
1669   %}
1670 
1671   enc_class JccShort (cmpOp cop, label labl) %{    // JCC
1672     Label *l = $labl$$label;
1673     emit_cc(cbuf, $primary, $cop$$cmpcode);
1674     int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
1675     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
1676     emit_d8(cbuf, disp);
1677   %}
1678 
1679   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
1680     $$$emit8$primary;
1681     emit_cc(cbuf, $secondary, $cop$$cmpcode);
1682   %}
1683 
1684   enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
1685     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
1686     emit_d8(cbuf, op >> 8 );
1687     emit_d8(cbuf, op & 255);
1688   %}
1689 
1690   // emulate a CMOV with a conditional branch around a MOV
1691   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
1692     // Invert sense of branch from sense of CMOV
1693     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
1694     emit_d8( cbuf, $brOffs$$constant );
1695   %}
1696 
1697   enc_class enc_PartialSubtypeCheck( ) %{
1698     Register Redi = as_Register(EDI_enc); // result register
1699     Register Reax = as_Register(EAX_enc); // super class
1700     Register Recx = as_Register(ECX_enc); // killed
1701     Register Resi = as_Register(ESI_enc); // sub class
1702     Label miss;
1703 
1704     MacroAssembler _masm(&cbuf);
1705     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
1706                                      NULL, &miss,
1707                                      /*set_cond_codes:*/ true);
1708     if ($primary) {
1709       __ xorptr(Redi, Redi);
1710     }
1711     __ bind(miss);
1712   %}
1713 
1714   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
1715     MacroAssembler masm(&cbuf);
1716     int start = masm.offset();
1717     if (UseSSE >= 2) {
1718       if (VerifyFPU) {
1719         masm.verify_FPU(0, "must be empty in SSE2+ mode");
1720       }
1721     } else {
1722       // External c_calling_convention expects the FPU stack to be 'clean'.
1723       // Compiled code leaves it dirty.  Do cleanup now.
1724       masm.empty_FPU_stack();
1725     }
1726     if (sizeof_FFree_Float_Stack_All == -1) {
1727       sizeof_FFree_Float_Stack_All = masm.offset() - start;
1728     } else {
1729       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
1730     }
1731   %}
1732 
1733   enc_class Verify_FPU_For_Leaf %{
1734     if( VerifyFPU ) {
1735       MacroAssembler masm(&cbuf);
1736       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
1737     }
1738   %}
1739 
1740   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
1741     // This is the instruction starting address for relocation info.
1742     cbuf.set_inst_mark();
1743     $$$emit8$primary;
1744     // CALL directly to the runtime
1745     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1746                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1747 
1748     if (UseSSE >= 2) {
1749       MacroAssembler _masm(&cbuf);
1750       BasicType rt = tf()->return_type();
1751 
1752       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
1753         // A C runtime call where the return value is unused.  In SSE2+
1754         // mode the result needs to be removed from the FPU stack.  It's
1755         // likely that this function call could be removed by the
1756         // optimizer if the C function is a pure function.
1757         __ ffree(0);
1758       } else if (rt == T_FLOAT) {
1759         __ lea(rsp, Address(rsp, -4));
1760         __ fstp_s(Address(rsp, 0));
1761         __ movflt(xmm0, Address(rsp, 0));
1762         __ lea(rsp, Address(rsp,  4));
1763       } else if (rt == T_DOUBLE) {
1764         __ lea(rsp, Address(rsp, -8));
1765         __ fstp_d(Address(rsp, 0));
1766         __ movdbl(xmm0, Address(rsp, 0));
1767         __ lea(rsp, Address(rsp,  8));
1768       }
1769     }
1770   %}
1771 
1772 
1773   enc_class pre_call_FPU %{
1774     // If method sets FPU control word restore it here
1775     if( Compile::current()->in_24_bit_fp_mode() ) {
1776       MacroAssembler masm(&cbuf);
1777       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1778     }
1779   %}
1780 
1781   enc_class post_call_FPU %{
1782     // If method sets FPU control word do it here also
1783     if( Compile::current()->in_24_bit_fp_mode() ) {
1784       MacroAssembler masm(&cbuf);
1785       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
1786     }
1787   %}
1788 
1789   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
1790     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1791     // who we intended to call.
1792     cbuf.set_inst_mark();
1793     $$$emit8$primary;
1794     if ( !_method ) {
1795       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1796                      runtime_call_Relocation::spec(), RELOC_IMM32 );
1797     } else if(_optimized_virtual) {
1798       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1799                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
1800     } else {
1801       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1802                      static_call_Relocation::spec(), RELOC_IMM32 );
1803     }
1804     if( _method ) {  // Emit stub for static call
1805       emit_java_to_interp(cbuf);
1806     }
1807   %}
1808 
1809   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
1810     // !!!!!
1811     // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
1812     // emit_call_dynamic_prologue( cbuf );
1813     cbuf.set_inst_mark();
1814     emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
1815     emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
1816     address  virtual_call_oop_addr = cbuf.inst_mark();
1817     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1818     // who we intended to call.
1819     cbuf.set_inst_mark();
1820     $$$emit8$primary;
1821     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1822                 virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
1823   %}
1824 
1825   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
1826     int disp = in_bytes(methodOopDesc::from_compiled_offset());
1827     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
1828 
1829     // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
1830     cbuf.set_inst_mark();
1831     $$$emit8$primary;
1832     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
1833     emit_d8(cbuf, disp);             // Displacement
1834 
1835   %}
1836 
1837   enc_class Xor_Reg (eRegI dst) %{
1838     emit_opcode(cbuf, 0x33);
1839     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
1840   %}
1841 
1842 //   Following encoding is no longer used, but may be restored if calling
1843 //   convention changes significantly.
1844 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
1845 //
1846 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
1847 //     // int ic_reg     = Matcher::inline_cache_reg();
1848 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
1849 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
1850 //     // int imo_encode = Matcher::_regEncode[imo_reg];
1851 //
1852 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
1853 //     // // so we load it immediately before the call
1854 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
1855 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
1856 //
1857 //     // xor rbp,ebp
1858 //     emit_opcode(cbuf, 0x33);
1859 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
1860 //
1861 //     // CALL to interpreter.
1862 //     cbuf.set_inst_mark();
1863 //     $$$emit8$primary;
1864 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.code_end()) - 4),
1865 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1866 //   %}
1867 
1868   enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
1869     $$$emit8$primary;
1870     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1871     $$$emit8$shift$$constant;
1872   %}
1873 
1874   enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
1875     // Load immediate does not have a zero or sign extended version
1876     // for 8-bit immediates
1877     emit_opcode(cbuf, 0xB8 + $dst$$reg);
1878     $$$emit32$src$$constant;
1879   %}
1880 
1881   enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
1882     // Load immediate does not have a zero or sign extended version
1883     // for 8-bit immediates
1884     emit_opcode(cbuf, $primary + $dst$$reg);
1885     $$$emit32$src$$constant;
1886   %}
1887 
1888   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
1889     // Load immediate does not have a zero or sign extended version
1890     // for 8-bit immediates
1891     int dst_enc = $dst$$reg;
1892     int src_con = $src$$constant & 0x0FFFFFFFFL;
1893     if (src_con == 0) {
1894       // xor dst, dst
1895       emit_opcode(cbuf, 0x33);
1896       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1897     } else {
1898       emit_opcode(cbuf, $primary + dst_enc);
1899       emit_d32(cbuf, src_con);
1900     }
1901   %}
1902 
1903   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
1904     // Load immediate does not have a zero or sign extended version
1905     // for 8-bit immediates
1906     int dst_enc = $dst$$reg + 2;
1907     int src_con = ((julong)($src$$constant)) >> 32;
1908     if (src_con == 0) {
1909       // xor dst, dst
1910       emit_opcode(cbuf, 0x33);
1911       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1912     } else {
1913       emit_opcode(cbuf, $primary + dst_enc);
1914       emit_d32(cbuf, src_con);
1915     }
1916   %}
1917 
1918 
1919   enc_class LdImmD (immD src) %{    // Load Immediate
1920     if( is_positive_zero_double($src$$constant)) {
1921       // FLDZ
1922       emit_opcode(cbuf,0xD9);
1923       emit_opcode(cbuf,0xEE);
1924     } else if( is_positive_one_double($src$$constant)) {
1925       // FLD1
1926       emit_opcode(cbuf,0xD9);
1927       emit_opcode(cbuf,0xE8);
1928     } else {
1929       emit_opcode(cbuf,0xDD);
1930       emit_rm(cbuf, 0x0, 0x0, 0x5);
1931       emit_double_constant(cbuf, $src$$constant);
1932     }
1933   %}
1934 
1935 
1936   enc_class LdImmF (immF src) %{    // Load Immediate
1937     if( is_positive_zero_float($src$$constant)) {
1938       emit_opcode(cbuf,0xD9);
1939       emit_opcode(cbuf,0xEE);
1940     } else if( is_positive_one_float($src$$constant)) {
1941       emit_opcode(cbuf,0xD9);
1942       emit_opcode(cbuf,0xE8);
1943     } else {
1944       $$$emit8$primary;
1945       // Load immediate does not have a zero or sign extended version
1946       // for 8-bit immediates
1947       // First load to TOS, then move to dst
1948       emit_rm(cbuf, 0x0, 0x0, 0x5);
1949       emit_float_constant(cbuf, $src$$constant);
1950     }
1951   %}
1952 
1953   enc_class LdImmX (regX dst, immXF con) %{    // Load Immediate
1954     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
1955     emit_float_constant(cbuf, $con$$constant);
1956   %}
1957 
1958   enc_class LdImmXD (regXD dst, immXD con) %{    // Load Immediate
1959     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
1960     emit_double_constant(cbuf, $con$$constant);
1961   %}
1962 
1963   enc_class load_conXD (regXD dst, immXD con) %{ // Load double constant
1964     // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
1965     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
1966     emit_opcode(cbuf, 0x0F);
1967     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
1968     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
1969     emit_double_constant(cbuf, $con$$constant);
1970   %}
1971 
1972   enc_class Opc_MemImm_F(immF src) %{
1973     cbuf.set_inst_mark();
1974     $$$emit8$primary;
1975     emit_rm(cbuf, 0x0, $secondary, 0x5);
1976     emit_float_constant(cbuf, $src$$constant);
1977   %}
1978 
1979 
1980   enc_class MovI2X_reg(regX dst, eRegI src) %{
1981     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
1982     emit_opcode(cbuf, 0x0F );
1983     emit_opcode(cbuf, 0x6E );
1984     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1985   %}
1986 
1987   enc_class MovX2I_reg(eRegI dst, regX src) %{
1988     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
1989     emit_opcode(cbuf, 0x0F );
1990     emit_opcode(cbuf, 0x7E );
1991     emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
1992   %}
1993 
1994   enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
1995     { // MOVD $dst,$src.lo
1996       emit_opcode(cbuf,0x66);
1997       emit_opcode(cbuf,0x0F);
1998       emit_opcode(cbuf,0x6E);
1999       emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2000     }
2001     { // MOVD $tmp,$src.hi
2002       emit_opcode(cbuf,0x66);
2003       emit_opcode(cbuf,0x0F);
2004       emit_opcode(cbuf,0x6E);
2005       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
2006     }
2007     { // PUNPCKLDQ $dst,$tmp
2008       emit_opcode(cbuf,0x66);
2009       emit_opcode(cbuf,0x0F);
2010       emit_opcode(cbuf,0x62);
2011       emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
2012      }
2013   %}
2014 
2015   enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
2016     { // MOVD $dst.lo,$src
2017       emit_opcode(cbuf,0x66);
2018       emit_opcode(cbuf,0x0F);
2019       emit_opcode(cbuf,0x7E);
2020       emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
2021     }
2022     { // PSHUFLW $tmp,$src,0x4E  (01001110b)
2023       emit_opcode(cbuf,0xF2);
2024       emit_opcode(cbuf,0x0F);
2025       emit_opcode(cbuf,0x70);
2026       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
2027       emit_d8(cbuf, 0x4E);
2028     }
2029     { // MOVD $dst.hi,$tmp
2030       emit_opcode(cbuf,0x66);
2031       emit_opcode(cbuf,0x0F);
2032       emit_opcode(cbuf,0x7E);
2033       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
2034     }
2035   %}
2036 
2037 
2038   // Encode a reg-reg copy.  If it is useless, then empty encoding.
2039   enc_class enc_Copy( eRegI dst, eRegI src ) %{
2040     encode_Copy( cbuf, $dst$$reg, $src$$reg );
2041   %}
2042 
2043   enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
2044     encode_Copy( cbuf, $dst$$reg, $src$$reg );
2045   %}
2046 
2047   // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
2048   enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
2049     encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
2050   %}
2051 
2052   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
2053     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2054   %}
2055 
2056   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
2057     $$$emit8$primary;
2058     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2059   %}
2060 
2061   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
2062     $$$emit8$secondary;
2063     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2064   %}
2065 
2066   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
2067     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2068   %}
2069 
2070   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
2071     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2072   %}
2073 
2074   enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
2075     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
2076   %}
2077 
2078   enc_class Con32 (immI src) %{    // Con32(storeImmI)
2079     // Output immediate
2080     $$$emit32$src$$constant;
2081   %}
2082 
2083   enc_class Con32F_as_bits(immF src) %{        // storeF_imm
2084     // Output Float immediate bits
2085     jfloat jf = $src$$constant;
2086     int    jf_as_bits = jint_cast( jf );
2087     emit_d32(cbuf, jf_as_bits);
2088   %}
2089 
2090   enc_class Con32XF_as_bits(immXF src) %{      // storeX_imm
2091     // Output Float immediate bits
2092     jfloat jf = $src$$constant;
2093     int    jf_as_bits = jint_cast( jf );
2094     emit_d32(cbuf, jf_as_bits);
2095   %}
2096 
2097   enc_class Con16 (immI src) %{    // Con16(storeImmI)
2098     // Output immediate
2099     $$$emit16$src$$constant;
2100   %}
2101 
2102   enc_class Con_d32(immI src) %{
2103     emit_d32(cbuf,$src$$constant);
2104   %}
2105 
2106   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
2107     // Output immediate memory reference
2108     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2109     emit_d32(cbuf, 0x00);
2110   %}
2111 
2112   enc_class lock_prefix( ) %{
2113     if( os::is_MP() )
2114       emit_opcode(cbuf,0xF0);         // [Lock]
2115   %}
2116 
2117   // Cmp-xchg long value.
2118   // Note: we need to swap rbx, and rcx before and after the
2119   //       cmpxchg8 instruction because the instruction uses
2120   //       rcx as the high order word of the new value to store but
2121   //       our register encoding uses rbx,.
2122   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
2123 
2124     // XCHG  rbx,ecx
2125     emit_opcode(cbuf,0x87);
2126     emit_opcode(cbuf,0xD9);
2127     // [Lock]
2128     if( os::is_MP() )
2129       emit_opcode(cbuf,0xF0);
2130     // CMPXCHG8 [Eptr]
2131     emit_opcode(cbuf,0x0F);
2132     emit_opcode(cbuf,0xC7);
2133     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2134     // XCHG  rbx,ecx
2135     emit_opcode(cbuf,0x87);
2136     emit_opcode(cbuf,0xD9);
2137   %}
2138 
2139   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
2140     // [Lock]
2141     if( os::is_MP() )
2142       emit_opcode(cbuf,0xF0);
2143 
2144     // CMPXCHG [Eptr]
2145     emit_opcode(cbuf,0x0F);
2146     emit_opcode(cbuf,0xB1);
2147     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2148   %}
2149 
2150   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
2151     int res_encoding = $res$$reg;
2152 
2153     // MOV  res,0
2154     emit_opcode( cbuf, 0xB8 + res_encoding);
2155     emit_d32( cbuf, 0 );
2156     // JNE,s  fail
2157     emit_opcode(cbuf,0x75);
2158     emit_d8(cbuf, 5 );
2159     // MOV  res,1
2160     emit_opcode( cbuf, 0xB8 + res_encoding);
2161     emit_d32( cbuf, 1 );
2162     // fail:
2163   %}
2164 
2165   enc_class set_instruction_start( ) %{
2166     cbuf.set_inst_mark();            // Mark start of opcode for reloc info in mem operand
2167   %}
2168 
2169   enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
2170     int reg_encoding = $ereg$$reg;
2171     int base  = $mem$$base;
2172     int index = $mem$$index;
2173     int scale = $mem$$scale;
2174     int displace = $mem$$disp;
2175     bool disp_is_oop = $mem->disp_is_oop();
2176     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2177   %}
2178 
2179   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
2180     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
2181     int base  = $mem$$base;
2182     int index = $mem$$index;
2183     int scale = $mem$$scale;
2184     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
2185     assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
2186     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
2187   %}
2188 
2189   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
2190     int r1, r2;
2191     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2192     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2193     emit_opcode(cbuf,0x0F);
2194     emit_opcode(cbuf,$tertiary);
2195     emit_rm(cbuf, 0x3, r1, r2);
2196     emit_d8(cbuf,$cnt$$constant);
2197     emit_d8(cbuf,$primary);
2198     emit_rm(cbuf, 0x3, $secondary, r1);
2199     emit_d8(cbuf,$cnt$$constant);
2200   %}
2201 
2202   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
2203     emit_opcode( cbuf, 0x8B ); // Move
2204     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2205     emit_d8(cbuf,$primary);
2206     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
2207     emit_d8(cbuf,$cnt$$constant-32);
2208     emit_d8(cbuf,$primary);
2209     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
2210     emit_d8(cbuf,31);
2211   %}
2212 
2213   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
2214     int r1, r2;
2215     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2216     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2217 
2218     emit_opcode( cbuf, 0x8B ); // Move r1,r2
2219     emit_rm(cbuf, 0x3, r1, r2);
2220     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2221       emit_opcode(cbuf,$primary);
2222       emit_rm(cbuf, 0x3, $secondary, r1);
2223       emit_d8(cbuf,$cnt$$constant-32);
2224     }
2225     emit_opcode(cbuf,0x33);  // XOR r2,r2
2226     emit_rm(cbuf, 0x3, r2, r2);
2227   %}
2228 
2229   // Clone of RegMem but accepts an extra parameter to access each
2230   // half of a double in memory; it never needs relocation info.
2231   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
2232     emit_opcode(cbuf,$opcode$$constant);
2233     int reg_encoding = $rm_reg$$reg;
2234     int base     = $mem$$base;
2235     int index    = $mem$$index;
2236     int scale    = $mem$$scale;
2237     int displace = $mem$$disp + $disp_for_half$$constant;
2238     bool disp_is_oop = false;
2239     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2240   %}
2241 
2242   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
2243   //
2244   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
2245   // and it never needs relocation information.
2246   // Frequently used to move data between FPU's Stack Top and memory.
2247   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
2248     int rm_byte_opcode = $rm_opcode$$constant;
2249     int base     = $mem$$base;
2250     int index    = $mem$$index;
2251     int scale    = $mem$$scale;
2252     int displace = $mem$$disp;
2253     assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
2254     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
2255   %}
2256 
2257   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
2258     int rm_byte_opcode = $rm_opcode$$constant;
2259     int base     = $mem$$base;
2260     int index    = $mem$$index;
2261     int scale    = $mem$$scale;
2262     int displace = $mem$$disp;
2263     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
2264     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
2265   %}
2266 
2267   enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
2268     int reg_encoding = $dst$$reg;
2269     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2270     int index        = 0x04;            // 0x04 indicates no index
2271     int scale        = 0x00;            // 0x00 indicates no scale
2272     int displace     = $src1$$constant; // 0x00 indicates no displacement
2273     bool disp_is_oop = false;
2274     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2275   %}
2276 
2277   enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
2278     // Compare dst,src
2279     emit_opcode(cbuf,0x3B);
2280     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2281     // jmp dst < src around move
2282     emit_opcode(cbuf,0x7C);
2283     emit_d8(cbuf,2);
2284     // move dst,src
2285     emit_opcode(cbuf,0x8B);
2286     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2287   %}
2288 
2289   enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
2290     // Compare dst,src
2291     emit_opcode(cbuf,0x3B);
2292     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2293     // jmp dst > src around move
2294     emit_opcode(cbuf,0x7F);
2295     emit_d8(cbuf,2);
2296     // move dst,src
2297     emit_opcode(cbuf,0x8B);
2298     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2299   %}
2300 
2301   enc_class enc_FP_store(memory mem, regD src) %{
2302     // If src is FPR1, we can just FST to store it.
2303     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
2304     int reg_encoding = 0x2; // Just store
2305     int base  = $mem$$base;
2306     int index = $mem$$index;
2307     int scale = $mem$$scale;
2308     int displace = $mem$$disp;
2309     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
2310     if( $src$$reg != FPR1L_enc ) {
2311       reg_encoding = 0x3;  // Store & pop
2312       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
2313       emit_d8( cbuf, 0xC0-1+$src$$reg );
2314     }
2315     cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
2316     emit_opcode(cbuf,$primary);
2317     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2318   %}
2319 
2320   enc_class neg_reg(eRegI dst) %{
2321     // NEG $dst
2322     emit_opcode(cbuf,0xF7);
2323     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
2324   %}
2325 
2326   enc_class setLT_reg(eCXRegI dst) %{
2327     // SETLT $dst
2328     emit_opcode(cbuf,0x0F);
2329     emit_opcode(cbuf,0x9C);
2330     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
2331   %}
2332 
2333   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
2334     int tmpReg = $tmp$$reg;
2335 
2336     // SUB $p,$q
2337     emit_opcode(cbuf,0x2B);
2338     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2339     // SBB $tmp,$tmp
2340     emit_opcode(cbuf,0x1B);
2341     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2342     // AND $tmp,$y
2343     emit_opcode(cbuf,0x23);
2344     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
2345     // ADD $p,$tmp
2346     emit_opcode(cbuf,0x03);
2347     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2348   %}
2349 
2350   enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
2351     int tmpReg = $tmp$$reg;
2352 
2353     // SUB $p,$q
2354     emit_opcode(cbuf,0x2B);
2355     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2356     // SBB $tmp,$tmp
2357     emit_opcode(cbuf,0x1B);
2358     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2359     // AND $tmp,$y
2360     cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
2361     emit_opcode(cbuf,0x23);
2362     int reg_encoding = tmpReg;
2363     int base  = $mem$$base;
2364     int index = $mem$$index;
2365     int scale = $mem$$scale;
2366     int displace = $mem$$disp;
2367     bool disp_is_oop = $mem->disp_is_oop();
2368     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2369     // ADD $p,$tmp
2370     emit_opcode(cbuf,0x03);
2371     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2372   %}
2373 
2374   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
2375     // TEST shift,32
2376     emit_opcode(cbuf,0xF7);
2377     emit_rm(cbuf, 0x3, 0, ECX_enc);
2378     emit_d32(cbuf,0x20);
2379     // JEQ,s small
2380     emit_opcode(cbuf, 0x74);
2381     emit_d8(cbuf, 0x04);
2382     // MOV    $dst.hi,$dst.lo
2383     emit_opcode( cbuf, 0x8B );
2384     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2385     // CLR    $dst.lo
2386     emit_opcode(cbuf, 0x33);
2387     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
2388 // small:
2389     // SHLD   $dst.hi,$dst.lo,$shift
2390     emit_opcode(cbuf,0x0F);
2391     emit_opcode(cbuf,0xA5);
2392     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2393     // SHL    $dst.lo,$shift"
2394     emit_opcode(cbuf,0xD3);
2395     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
2396   %}
2397 
2398   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
2399     // TEST shift,32
2400     emit_opcode(cbuf,0xF7);
2401     emit_rm(cbuf, 0x3, 0, ECX_enc);
2402     emit_d32(cbuf,0x20);
2403     // JEQ,s small
2404     emit_opcode(cbuf, 0x74);
2405     emit_d8(cbuf, 0x04);
2406     // MOV    $dst.lo,$dst.hi
2407     emit_opcode( cbuf, 0x8B );
2408     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2409     // CLR    $dst.hi
2410     emit_opcode(cbuf, 0x33);
2411     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
2412 // small:
2413     // SHRD   $dst.lo,$dst.hi,$shift
2414     emit_opcode(cbuf,0x0F);
2415     emit_opcode(cbuf,0xAD);
2416     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2417     // SHR    $dst.hi,$shift"
2418     emit_opcode(cbuf,0xD3);
2419     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
2420   %}
2421 
2422   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
2423     // TEST shift,32
2424     emit_opcode(cbuf,0xF7);
2425     emit_rm(cbuf, 0x3, 0, ECX_enc);
2426     emit_d32(cbuf,0x20);
2427     // JEQ,s small
2428     emit_opcode(cbuf, 0x74);
2429     emit_d8(cbuf, 0x05);
2430     // MOV    $dst.lo,$dst.hi
2431     emit_opcode( cbuf, 0x8B );
2432     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2433     // SAR    $dst.hi,31
2434     emit_opcode(cbuf, 0xC1);
2435     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
2436     emit_d8(cbuf, 0x1F );
2437 // small:
2438     // SHRD   $dst.lo,$dst.hi,$shift
2439     emit_opcode(cbuf,0x0F);
2440     emit_opcode(cbuf,0xAD);
2441     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2442     // SAR    $dst.hi,$shift"
2443     emit_opcode(cbuf,0xD3);
2444     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
2445   %}
2446 
2447 
2448   // ----------------- Encodings for floating point unit -----------------
2449   // May leave result in FPU-TOS or FPU reg depending on opcodes
2450   enc_class OpcReg_F (regF src) %{    // FMUL, FDIV
2451     $$$emit8$primary;
2452     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
2453   %}
2454 
2455   // Pop argument in FPR0 with FSTP ST(0)
2456   enc_class PopFPU() %{
2457     emit_opcode( cbuf, 0xDD );
2458     emit_d8( cbuf, 0xD8 );
2459   %}
2460 
2461   // !!!!! equivalent to Pop_Reg_F
2462   enc_class Pop_Reg_D( regD dst ) %{
2463     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2464     emit_d8( cbuf, 0xD8+$dst$$reg );
2465   %}
2466 
2467   enc_class Push_Reg_D( regD dst ) %{
2468     emit_opcode( cbuf, 0xD9 );
2469     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
2470   %}
2471 
2472   enc_class strictfp_bias1( regD dst ) %{
2473     emit_opcode( cbuf, 0xDB );           // FLD m80real
2474     emit_opcode( cbuf, 0x2D );
2475     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
2476     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2477     emit_opcode( cbuf, 0xC8+$dst$$reg );
2478   %}
2479 
2480   enc_class strictfp_bias2( regD dst ) %{
2481     emit_opcode( cbuf, 0xDB );           // FLD m80real
2482     emit_opcode( cbuf, 0x2D );
2483     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
2484     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2485     emit_opcode( cbuf, 0xC8+$dst$$reg );
2486   %}
2487 
2488   // Special case for moving an integer register to a stack slot.
2489   enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
2490     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
2491   %}
2492 
2493   // Special case for moving a register to a stack slot.
2494   enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
2495     // Opcode already emitted
2496     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
2497     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
2498     emit_d32(cbuf, $dst$$disp);   // Displacement
2499   %}
2500 
2501   // Push the integer in stackSlot 'src' onto FP-stack
2502   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
2503     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
2504   %}
2505 
2506   // Push the float in stackSlot 'src' onto FP-stack
2507   enc_class Push_Mem_F( memory src ) %{    // FLD_S   [ESP+src]
2508     store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
2509   %}
2510 
2511   // Push the double in stackSlot 'src' onto FP-stack
2512   enc_class Push_Mem_D( memory src ) %{    // FLD_D   [ESP+src]
2513     store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
2514   %}
2515 
2516   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
2517   enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
2518     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
2519   %}
2520 
2521   // Same as Pop_Mem_F except for opcode
2522   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
2523   enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
2524     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
2525   %}
2526 
2527   enc_class Pop_Reg_F( regF dst ) %{
2528     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2529     emit_d8( cbuf, 0xD8+$dst$$reg );
2530   %}
2531 
2532   enc_class Push_Reg_F( regF dst ) %{
2533     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
2534     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2535   %}
2536 
2537   // Push FPU's float to a stack-slot, and pop FPU-stack
2538   enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
2539     int pop = 0x02;
2540     if ($src$$reg != FPR1L_enc) {
2541       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2542       emit_d8( cbuf, 0xC0-1+$src$$reg );
2543       pop = 0x03;
2544     }
2545     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
2546   %}
2547 
2548   // Push FPU's double to a stack-slot, and pop FPU-stack
2549   enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
2550     int pop = 0x02;
2551     if ($src$$reg != FPR1L_enc) {
2552       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2553       emit_d8( cbuf, 0xC0-1+$src$$reg );
2554       pop = 0x03;
2555     }
2556     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
2557   %}
2558 
2559   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
2560   enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
2561     int pop = 0xD0 - 1; // -1 since we skip FLD
2562     if ($src$$reg != FPR1L_enc) {
2563       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
2564       emit_d8( cbuf, 0xC0-1+$src$$reg );
2565       pop = 0xD8;
2566     }
2567     emit_opcode( cbuf, 0xDD );
2568     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
2569   %}
2570 
2571 
2572   enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
2573     MacroAssembler masm(&cbuf);
2574     masm.fld_s(  $src1$$reg-1);   // nothing at TOS, load TOS from src1.reg
2575     masm.fmul(   $src2$$reg+0);   // value at TOS
2576     masm.fadd(   $src$$reg+0);    // value at TOS
2577     masm.fstp_d( $dst$$reg+0);    // value at TOS, popped off after store
2578   %}
2579 
2580 
2581   enc_class Push_Reg_Mod_D( regD dst, regD src) %{
2582     // load dst in FPR0
2583     emit_opcode( cbuf, 0xD9 );
2584     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2585     if ($src$$reg != FPR1L_enc) {
2586       // fincstp
2587       emit_opcode (cbuf, 0xD9);
2588       emit_opcode (cbuf, 0xF7);
2589       // swap src with FPR1:
2590       // FXCH FPR1 with src
2591       emit_opcode(cbuf, 0xD9);
2592       emit_d8(cbuf, 0xC8-1+$src$$reg );
2593       // fdecstp
2594       emit_opcode (cbuf, 0xD9);
2595       emit_opcode (cbuf, 0xF6);
2596     }
2597   %}
2598 
2599   enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
2600     // Allocate a word
2601     emit_opcode(cbuf,0x83);            // SUB ESP,8
2602     emit_opcode(cbuf,0xEC);
2603     emit_d8(cbuf,0x08);
2604 
2605     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src1
2606     emit_opcode  (cbuf, 0x0F );
2607     emit_opcode  (cbuf, 0x11 );
2608     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
2609 
2610     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2611     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2612 
2613     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src0
2614     emit_opcode  (cbuf, 0x0F );
2615     emit_opcode  (cbuf, 0x11 );
2616     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
2617 
2618     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2619     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2620 
2621   %}
2622 
2623   enc_class Push_ModX_encoding( regX src0, regX src1) %{
2624     // Allocate a word
2625     emit_opcode(cbuf,0x83);            // SUB ESP,4
2626     emit_opcode(cbuf,0xEC);
2627     emit_d8(cbuf,0x04);
2628 
2629     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src1
2630     emit_opcode  (cbuf, 0x0F );
2631     emit_opcode  (cbuf, 0x11 );
2632     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
2633 
2634     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
2635     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2636 
2637     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src0
2638     emit_opcode  (cbuf, 0x0F );
2639     emit_opcode  (cbuf, 0x11 );
2640     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
2641 
2642     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
2643     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2644 
2645   %}
2646 
2647   enc_class Push_ResultXD(regXD dst) %{
2648     store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]
2649 
2650     // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
2651     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
2652     emit_opcode  (cbuf, 0x0F );
2653     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
2654     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
2655 
2656     emit_opcode(cbuf,0x83);    // ADD ESP,8
2657     emit_opcode(cbuf,0xC4);
2658     emit_d8(cbuf,0x08);
2659   %}
2660 
2661   enc_class Push_ResultX(regX dst, immI d8) %{
2662     store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]
2663 
2664     emit_opcode  (cbuf, 0xF3 );     // MOVSS dst(xmm), [ESP]
2665     emit_opcode  (cbuf, 0x0F );
2666     emit_opcode  (cbuf, 0x10 );
2667     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
2668 
2669     emit_opcode(cbuf,0x83);    // ADD ESP,d8 (4 or 8)
2670     emit_opcode(cbuf,0xC4);
2671     emit_d8(cbuf,$d8$$constant);
2672   %}
2673 
2674   enc_class Push_SrcXD(regXD src) %{
2675     // Allocate a word
2676     emit_opcode(cbuf,0x83);            // SUB ESP,8
2677     emit_opcode(cbuf,0xEC);
2678     emit_d8(cbuf,0x08);
2679 
2680     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src
2681     emit_opcode  (cbuf, 0x0F );
2682     emit_opcode  (cbuf, 0x11 );
2683     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
2684 
2685     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2686     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2687   %}
2688 
2689   enc_class push_stack_temp_qword() %{
2690     emit_opcode(cbuf,0x83);     // SUB ESP,8
2691     emit_opcode(cbuf,0xEC);
2692     emit_d8    (cbuf,0x08);
2693   %}
2694 
2695   enc_class pop_stack_temp_qword() %{
2696     emit_opcode(cbuf,0x83);     // ADD ESP,8
2697     emit_opcode(cbuf,0xC4);
2698     emit_d8    (cbuf,0x08);
2699   %}
2700 
2701   enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
2702     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], xmm_src
2703     emit_opcode  (cbuf, 0x0F );
2704     emit_opcode  (cbuf, 0x11 );
2705     encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);
2706 
2707     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2708     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2709   %}
2710 
2711   // Compute X^Y using Intel's fast hardware instructions, if possible.
2712   // Otherwise return a NaN.
2713   enc_class pow_exp_core_encoding %{
2714     // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
2715     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
2716     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
2717     emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
2718     emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
2719     emit_opcode(cbuf,0x1C);
2720     emit_d8(cbuf,0x24);
2721     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
2722     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
2723     emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
2724     emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
2725     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
2726     emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
2727     emit_rm(cbuf, 0x3, 0x0, ECX_enc);
2728     emit_d32(cbuf,0xFFFFF800);
2729     emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
2730     emit_rm(cbuf, 0x3, 0x0, EAX_enc);
2731     emit_d32(cbuf,1023);
2732     emit_opcode(cbuf,0x8B);                          // mov rbx,eax
2733     emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
2734     emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
2735     emit_rm(cbuf,0x3,0x4,EAX_enc);
2736     emit_d8(cbuf,20);
2737     emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
2738     emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
2739     emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
2740     emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
2741     emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
2742     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
2743     emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
2744     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2745     emit_d32(cbuf,0);
2746     emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
2747     encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
2748   %}
2749 
2750 //   enc_class Pop_Reg_Mod_D( regD dst, regD src)
2751 //   was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()
2752 
2753   enc_class Push_Result_Mod_D( regD src) %{
2754     if ($src$$reg != FPR1L_enc) {
2755       // fincstp
2756       emit_opcode (cbuf, 0xD9);
2757       emit_opcode (cbuf, 0xF7);
2758       // FXCH FPR1 with src
2759       emit_opcode(cbuf, 0xD9);
2760       emit_d8(cbuf, 0xC8-1+$src$$reg );
2761       // fdecstp
2762       emit_opcode (cbuf, 0xD9);
2763       emit_opcode (cbuf, 0xF6);
2764     }
2765     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
2766     // // FSTP   FPR$dst$$reg
2767     // emit_opcode( cbuf, 0xDD );
2768     // emit_d8( cbuf, 0xD8+$dst$$reg );
2769   %}
2770 
2771   enc_class fnstsw_sahf_skip_parity() %{
2772     // fnstsw ax
2773     emit_opcode( cbuf, 0xDF );
2774     emit_opcode( cbuf, 0xE0 );
2775     // sahf
2776     emit_opcode( cbuf, 0x9E );
2777     // jnp  ::skip
2778     emit_opcode( cbuf, 0x7B );
2779     emit_opcode( cbuf, 0x05 );
2780   %}
2781 
2782   enc_class emitModD() %{
2783     // fprem must be iterative
2784     // :: loop
2785     // fprem
2786     emit_opcode( cbuf, 0xD9 );
2787     emit_opcode( cbuf, 0xF8 );
2788     // wait
2789     emit_opcode( cbuf, 0x9b );
2790     // fnstsw ax
2791     emit_opcode( cbuf, 0xDF );
2792     emit_opcode( cbuf, 0xE0 );
2793     // sahf
2794     emit_opcode( cbuf, 0x9E );
2795     // jp  ::loop
2796     emit_opcode( cbuf, 0x0F );
2797     emit_opcode( cbuf, 0x8A );
2798     emit_opcode( cbuf, 0xF4 );
2799     emit_opcode( cbuf, 0xFF );
2800     emit_opcode( cbuf, 0xFF );
2801     emit_opcode( cbuf, 0xFF );
2802   %}
2803 
2804   enc_class fpu_flags() %{
2805     // fnstsw_ax
2806     emit_opcode( cbuf, 0xDF);
2807     emit_opcode( cbuf, 0xE0);
2808     // test ax,0x0400
2809     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
2810     emit_opcode( cbuf, 0xA9 );
2811     emit_d16   ( cbuf, 0x0400 );
2812     // // // This sequence works, but stalls for 12-16 cycles on PPro
2813     // // test rax,0x0400
2814     // emit_opcode( cbuf, 0xA9 );
2815     // emit_d32   ( cbuf, 0x00000400 );
2816     //
2817     // jz exit (no unordered comparison)
2818     emit_opcode( cbuf, 0x74 );
2819     emit_d8    ( cbuf, 0x02 );
2820     // mov ah,1 - treat as LT case (set carry flag)
2821     emit_opcode( cbuf, 0xB4 );
2822     emit_d8    ( cbuf, 0x01 );
2823     // sahf
2824     emit_opcode( cbuf, 0x9E);
2825   %}
2826 
2827   enc_class cmpF_P6_fixup() %{
2828     // Fixup the integer flags in case comparison involved a NaN
2829     //
2830     // JNP exit (no unordered comparison, P-flag is set by NaN)
2831     emit_opcode( cbuf, 0x7B );
2832     emit_d8    ( cbuf, 0x03 );
2833     // MOV AH,1 - treat as LT case (set carry flag)
2834     emit_opcode( cbuf, 0xB4 );
2835     emit_d8    ( cbuf, 0x01 );
2836     // SAHF
2837     emit_opcode( cbuf, 0x9E);
2838     // NOP     // target for branch to avoid branch to branch
2839     emit_opcode( cbuf, 0x90);
2840   %}
2841 
2842 //     fnstsw_ax();
2843 //     sahf();
2844 //     movl(dst, nan_result);
2845 //     jcc(Assembler::parity, exit);
2846 //     movl(dst, less_result);
2847 //     jcc(Assembler::below, exit);
2848 //     movl(dst, equal_result);
2849 //     jcc(Assembler::equal, exit);
2850 //     movl(dst, greater_result);
2851 
2852 // less_result     =  1;
2853 // greater_result  = -1;
2854 // equal_result    = 0;
2855 // nan_result      = -1;
2856 
2857   enc_class CmpF_Result(eRegI dst) %{
2858     // fnstsw_ax();
2859     emit_opcode( cbuf, 0xDF);
2860     emit_opcode( cbuf, 0xE0);
2861     // sahf
2862     emit_opcode( cbuf, 0x9E);
2863     // movl(dst, nan_result);
2864     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2865     emit_d32( cbuf, -1 );
2866     // jcc(Assembler::parity, exit);
2867     emit_opcode( cbuf, 0x7A );
2868     emit_d8    ( cbuf, 0x13 );
2869     // movl(dst, less_result);
2870     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2871     emit_d32( cbuf, -1 );
2872     // jcc(Assembler::below, exit);
2873     emit_opcode( cbuf, 0x72 );
2874     emit_d8    ( cbuf, 0x0C );
2875     // movl(dst, equal_result);
2876     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2877     emit_d32( cbuf, 0 );
2878     // jcc(Assembler::equal, exit);
2879     emit_opcode( cbuf, 0x74 );
2880     emit_d8    ( cbuf, 0x05 );
2881     // movl(dst, greater_result);
2882     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2883     emit_d32( cbuf, 1 );
2884   %}
2885 
2886 
2887   // XMM version of CmpF_Result. Because the XMM compare
2888   // instructions set the EFLAGS directly. It becomes simpler than
2889   // the float version above.
2890   enc_class CmpX_Result(eRegI dst) %{
2891     MacroAssembler _masm(&cbuf);
2892     Label nan, inc, done;
2893 
2894     __ jccb(Assembler::parity, nan);
2895     __ jccb(Assembler::equal,  done);
2896     __ jccb(Assembler::above,  inc);
2897     __ bind(nan);
2898     __ decrement(as_Register($dst$$reg)); // NO L qqq
2899     __ jmpb(done);
2900     __ bind(inc);
2901     __ increment(as_Register($dst$$reg)); // NO L qqq
2902     __ bind(done);
2903   %}
2904 
2905   // Compare the longs and set flags
2906   // BROKEN!  Do Not use as-is
2907   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
2908     // CMP    $src1.hi,$src2.hi
2909     emit_opcode( cbuf, 0x3B );
2910     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2911     // JNE,s  done
2912     emit_opcode(cbuf,0x75);
2913     emit_d8(cbuf, 2 );
2914     // CMP    $src1.lo,$src2.lo
2915     emit_opcode( cbuf, 0x3B );
2916     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2917 // done:
2918   %}
2919 
2920   enc_class convert_int_long( regL dst, eRegI src ) %{
2921     // mov $dst.lo,$src
2922     int dst_encoding = $dst$$reg;
2923     int src_encoding = $src$$reg;
2924     encode_Copy( cbuf, dst_encoding  , src_encoding );
2925     // mov $dst.hi,$src
2926     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
2927     // sar $dst.hi,31
2928     emit_opcode( cbuf, 0xC1 );
2929     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
2930     emit_d8(cbuf, 0x1F );
2931   %}
2932 
2933   enc_class convert_long_double( eRegL src ) %{
2934     // push $src.hi
2935     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2936     // push $src.lo
2937     emit_opcode(cbuf, 0x50+$src$$reg  );
2938     // fild 64-bits at [SP]
2939     emit_opcode(cbuf,0xdf);
2940     emit_d8(cbuf, 0x6C);
2941     emit_d8(cbuf, 0x24);
2942     emit_d8(cbuf, 0x00);
2943     // pop stack
2944     emit_opcode(cbuf, 0x83); // add  SP, #8
2945     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2946     emit_d8(cbuf, 0x8);
2947   %}
2948 
2949   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
2950     // IMUL   EDX:EAX,$src1
2951     emit_opcode( cbuf, 0xF7 );
2952     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
2953     // SAR    EDX,$cnt-32
2954     int shift_count = ((int)$cnt$$constant) - 32;
2955     if (shift_count > 0) {
2956       emit_opcode(cbuf, 0xC1);
2957       emit_rm(cbuf, 0x3, 7, $dst$$reg );
2958       emit_d8(cbuf, shift_count);
2959     }
2960   %}
2961 
2962   // this version doesn't have add sp, 8
2963   enc_class convert_long_double2( eRegL src ) %{
2964     // push $src.hi
2965     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2966     // push $src.lo
2967     emit_opcode(cbuf, 0x50+$src$$reg  );
2968     // fild 64-bits at [SP]
2969     emit_opcode(cbuf,0xdf);
2970     emit_d8(cbuf, 0x6C);
2971     emit_d8(cbuf, 0x24);
2972     emit_d8(cbuf, 0x00);
2973   %}
2974 
2975   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
2976     // Basic idea: long = (long)int * (long)int
2977     // IMUL EDX:EAX, src
2978     emit_opcode( cbuf, 0xF7 );
2979     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
2980   %}
2981 
2982   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
2983     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
2984     // MUL EDX:EAX, src
2985     emit_opcode( cbuf, 0xF7 );
2986     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
2987   %}
2988 
2989   enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
2990     // Basic idea: lo(result) = lo(x_lo * y_lo)
2991     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
2992     // MOV    $tmp,$src.lo
2993     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
2994     // IMUL   $tmp,EDX
2995     emit_opcode( cbuf, 0x0F );
2996     emit_opcode( cbuf, 0xAF );
2997     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2998     // MOV    EDX,$src.hi
2999     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
3000     // IMUL   EDX,EAX
3001     emit_opcode( cbuf, 0x0F );
3002     emit_opcode( cbuf, 0xAF );
3003     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
3004     // ADD    $tmp,EDX
3005     emit_opcode( cbuf, 0x03 );
3006     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3007     // MUL   EDX:EAX,$src.lo
3008     emit_opcode( cbuf, 0xF7 );
3009     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
3010     // ADD    EDX,ESI
3011     emit_opcode( cbuf, 0x03 );
3012     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
3013   %}
3014 
3015   enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
3016     // Basic idea: lo(result) = lo(src * y_lo)
3017     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
3018     // IMUL   $tmp,EDX,$src
3019     emit_opcode( cbuf, 0x6B );
3020     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3021     emit_d8( cbuf, (int)$src$$constant );
3022     // MOV    EDX,$src
3023     emit_opcode(cbuf, 0xB8 + EDX_enc);
3024     emit_d32( cbuf, (int)$src$$constant );
3025     // MUL   EDX:EAX,EDX
3026     emit_opcode( cbuf, 0xF7 );
3027     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
3028     // ADD    EDX,ESI
3029     emit_opcode( cbuf, 0x03 );
3030     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
3031   %}
3032 
3033   enc_class long_div( eRegL src1, eRegL src2 ) %{
3034     // PUSH src1.hi
3035     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
3036     // PUSH src1.lo
3037     emit_opcode(cbuf,               0x50+$src1$$reg  );
3038     // PUSH src2.hi
3039     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
3040     // PUSH src2.lo
3041     emit_opcode(cbuf,               0x50+$src2$$reg  );
3042     // CALL directly to the runtime
3043     cbuf.set_inst_mark();
3044     emit_opcode(cbuf,0xE8);       // Call into runtime
3045     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3046     // Restore stack
3047     emit_opcode(cbuf, 0x83); // add  SP, #framesize
3048     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3049     emit_d8(cbuf, 4*4);
3050   %}
3051 
3052   enc_class long_mod( eRegL src1, eRegL src2 ) %{
3053     // PUSH src1.hi
3054     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
3055     // PUSH src1.lo
3056     emit_opcode(cbuf,               0x50+$src1$$reg  );
3057     // PUSH src2.hi
3058     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
3059     // PUSH src2.lo
3060     emit_opcode(cbuf,               0x50+$src2$$reg  );
3061     // CALL directly to the runtime
3062     cbuf.set_inst_mark();
3063     emit_opcode(cbuf,0xE8);       // Call into runtime
3064     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3065     // Restore stack
3066     emit_opcode(cbuf, 0x83); // add  SP, #framesize
3067     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3068     emit_d8(cbuf, 4*4);
3069   %}
3070 
3071   enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
3072     // MOV   $tmp,$src.lo
3073     emit_opcode(cbuf, 0x8B);
3074     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
3075     // OR    $tmp,$src.hi
3076     emit_opcode(cbuf, 0x0B);
3077     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
3078   %}
3079 
3080   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
3081     // CMP    $src1.lo,$src2.lo
3082     emit_opcode( cbuf, 0x3B );
3083     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
3084     // JNE,s  skip
3085     emit_cc(cbuf, 0x70, 0x5);
3086     emit_d8(cbuf,2);
3087     // CMP    $src1.hi,$src2.hi
3088     emit_opcode( cbuf, 0x3B );
3089     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
3090   %}
3091 
3092   enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
3093     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
3094     emit_opcode( cbuf, 0x3B );
3095     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
3096     // MOV    $tmp,$src1.hi
3097     emit_opcode( cbuf, 0x8B );
3098     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
3099     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
3100     emit_opcode( cbuf, 0x1B );
3101     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
3102   %}
3103 
3104   enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
3105     // XOR    $tmp,$tmp
3106     emit_opcode(cbuf,0x33);  // XOR
3107     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
3108     // CMP    $tmp,$src.lo
3109     emit_opcode( cbuf, 0x3B );
3110     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
3111     // SBB    $tmp,$src.hi
3112     emit_opcode( cbuf, 0x1B );
3113     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
3114   %}
3115 
3116  // Sniff, sniff... smells like Gnu Superoptimizer
3117   enc_class neg_long( eRegL dst ) %{
3118     emit_opcode(cbuf,0xF7);    // NEG hi
3119     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
3120     emit_opcode(cbuf,0xF7);    // NEG lo
3121     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
3122     emit_opcode(cbuf,0x83);    // SBB hi,0
3123     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
3124     emit_d8    (cbuf,0 );
3125   %}
3126 
3127   enc_class movq_ld(regXD dst, memory mem) %{
3128     MacroAssembler _masm(&cbuf);
3129     __ movq($dst$$XMMRegister, $mem$$Address);
3130   %}
3131 
3132   enc_class movq_st(memory mem, regXD src) %{
3133     MacroAssembler _masm(&cbuf);
3134     __ movq($mem$$Address, $src$$XMMRegister);
3135   %}
3136 
3137   enc_class pshufd_8x8(regX dst, regX src) %{
3138     MacroAssembler _masm(&cbuf);
3139 
3140     encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
3141     __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
3142     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
3143   %}
3144 
3145   enc_class pshufd_4x16(regX dst, regX src) %{
3146     MacroAssembler _masm(&cbuf);
3147 
3148     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
3149   %}
3150 
3151   enc_class pshufd(regXD dst, regXD src, int mode) %{
3152     MacroAssembler _masm(&cbuf);
3153 
3154     __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
3155   %}
3156 
3157   enc_class pxor(regXD dst, regXD src) %{
3158     MacroAssembler _masm(&cbuf);
3159 
3160     __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
3161   %}
3162 
3163   enc_class mov_i2x(regXD dst, eRegI src) %{
3164     MacroAssembler _masm(&cbuf);
3165 
3166     __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
3167   %}
3168 
3169 
3170   // Because the transitions from emitted code to the runtime
3171   // monitorenter/exit helper stubs are so slow it's critical that
3172   // we inline both the stack-locking fast-path and the inflated fast path.
3173   //
3174   // See also: cmpFastLock and cmpFastUnlock.
3175   //
3176   // What follows is a specialized inline transliteration of the code
3177   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
3178   // another option would be to emit TrySlowEnter and TrySlowExit methods
3179   // at startup-time.  These methods would accept arguments as
3180   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
3181   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
3182   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
3183   // In practice, however, the # of lock sites is bounded and is usually small.
3184   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
3185   // if the processor uses simple bimodal branch predictors keyed by EIP
3186   // Since the helper routines would be called from multiple synchronization
3187   // sites.
3188   //
3189   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
3190   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
3191   // to those specialized methods.  That'd give us a mostly platform-independent
3192   // implementation that the JITs could optimize and inline at their pleasure.
3193   // Done correctly, the only time we'd need to cross to native could would be
3194   // to park() or unpark() threads.  We'd also need a few more unsafe operators
3195   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
3196   // (b) explicit barriers or fence operations.
3197   //
3198   // TODO:
3199   //
3200   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
3201   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
3202   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
3203   //    the lock operators would typically be faster than reifying Self.
3204   //
3205   // *  Ideally I'd define the primitives as:
3206   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
3207   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
3208   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
3209   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
3210   //    Furthermore the register assignments are overconstrained, possibly resulting in
3211   //    sub-optimal code near the synchronization site.
3212   //
3213   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
3214   //    Alternately, use a better sp-proximity test.
3215   //
3216   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
3217   //    Either one is sufficient to uniquely identify a thread.
3218   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
3219   //
3220   // *  Intrinsify notify() and notifyAll() for the common cases where the
3221   //    object is locked by the calling thread but the waitlist is empty.
3222   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
3223   //
3224   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
3225   //    But beware of excessive branch density on AMD Opterons.
3226   //
3227   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
3228   //    or failure of the fast-path.  If the fast-path fails then we pass
3229   //    control to the slow-path, typically in C.  In Fast_Lock and
3230   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
3231   //    will emit a conditional branch immediately after the node.
3232   //    So we have branches to branches and lots of ICC.ZF games.
3233   //    Instead, it might be better to have C2 pass a "FailureLabel"
3234   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
3235   //    will drop through the node.  ICC.ZF is undefined at exit.
3236   //    In the case of failure, the node will branch directly to the
3237   //    FailureLabel
3238 
3239 
3240   // obj: object to lock
3241   // box: on-stack box address (displaced header location) - KILLED
3242   // rax,: tmp -- KILLED
3243   // scr: tmp -- KILLED
3244   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
3245 
3246     Register objReg = as_Register($obj$$reg);
3247     Register boxReg = as_Register($box$$reg);
3248     Register tmpReg = as_Register($tmp$$reg);
3249     Register scrReg = as_Register($scr$$reg);
3250 
3251     // Ensure the register assignents are disjoint
3252     guarantee (objReg != boxReg, "") ;
3253     guarantee (objReg != tmpReg, "") ;
3254     guarantee (objReg != scrReg, "") ;
3255     guarantee (boxReg != tmpReg, "") ;
3256     guarantee (boxReg != scrReg, "") ;
3257     guarantee (tmpReg == as_Register(EAX_enc), "") ;
3258 
3259     MacroAssembler masm(&cbuf);
3260 
3261     if (_counters != NULL) {
3262       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
3263     }
3264     if (EmitSync & 1) {
3265         // set box->dhw = unused_mark (3)
3266         // Force all sync thru slow-path: slow_enter() and slow_exit() 
3267         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
3268         masm.cmpptr (rsp, (int32_t)0) ;                        
3269     } else 
3270     if (EmitSync & 2) { 
3271         Label DONE_LABEL ;           
3272         if (UseBiasedLocking) {
3273            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
3274            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3275         }
3276 
3277         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
3278         masm.orptr (tmpReg, 0x1);
3279         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
3280         if (os::is_MP()) { masm.lock();  }
3281         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
3282         masm.jcc(Assembler::equal, DONE_LABEL);
3283         // Recursive locking
3284         masm.subptr(tmpReg, rsp);
3285         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
3286         masm.movptr(Address(boxReg, 0), tmpReg);
3287         masm.bind(DONE_LABEL) ; 
3288     } else {  
3289       // Possible cases that we'll encounter in fast_lock 
3290       // ------------------------------------------------
3291       // * Inflated
3292       //    -- unlocked
3293       //    -- Locked
3294       //       = by self
3295       //       = by other
3296       // * biased
3297       //    -- by Self
3298       //    -- by other
3299       // * neutral
3300       // * stack-locked
3301       //    -- by self
3302       //       = sp-proximity test hits
3303       //       = sp-proximity test generates false-negative
3304       //    -- by other
3305       //
3306 
3307       Label IsInflated, DONE_LABEL, PopDone ;
3308 
3309       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
3310       // order to reduce the number of conditional branches in the most common cases.
3311       // Beware -- there's a subtle invariant that fetch of the markword
3312       // at [FETCH], below, will never observe a biased encoding (*101b).
3313       // If this invariant is not held we risk exclusion (safety) failure.
3314       if (UseBiasedLocking && !UseOptoBiasInlining) {
3315         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3316       }
3317 
3318       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
3319       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
3320       masm.jccb  (Assembler::notZero, IsInflated) ;
3321 
3322       // Attempt stack-locking ...
3323       masm.orptr (tmpReg, 0x1);
3324       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
3325       if (os::is_MP()) { masm.lock();  }
3326       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
3327       if (_counters != NULL) {
3328         masm.cond_inc32(Assembler::equal,
3329                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3330       }
3331       masm.jccb (Assembler::equal, DONE_LABEL);
3332 
3333       // Recursive locking
3334       masm.subptr(tmpReg, rsp);
3335       masm.andptr(tmpReg, 0xFFFFF003 );
3336       masm.movptr(Address(boxReg, 0), tmpReg);
3337       if (_counters != NULL) {
3338         masm.cond_inc32(Assembler::equal,
3339                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3340       }
3341       masm.jmp  (DONE_LABEL) ;
3342 
3343       masm.bind (IsInflated) ;
3344 
3345       // The object is inflated.
3346       //
3347       // TODO-FIXME: eliminate the ugly use of manifest constants:
3348       //   Use markOopDesc::monitor_value instead of "2".
3349       //   use markOop::unused_mark() instead of "3".
3350       // The tmpReg value is an objectMonitor reference ORed with
3351       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
3352       // objectmonitor pointer by masking off the "2" bit or we can just
3353       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
3354       // field offsets with "-2" to compensate for and annul the low-order tag bit.
3355       //
3356       // I use the latter as it avoids AGI stalls.
3357       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
3358       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
3359       //
3360       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
3361 
3362       // boxReg refers to the on-stack BasicLock in the current frame.
3363       // We'd like to write:
3364       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
3365       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
3366       // additional latency as we have another ST in the store buffer that must drain.
3367 
3368       if (EmitSync & 8192) { 
3369          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
3370          masm.get_thread (scrReg) ; 
3371          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
3372          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
3373          if (os::is_MP()) { masm.lock(); } 
3374          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3375       } else 
3376       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
3377          masm.movptr(scrReg, boxReg) ; 
3378          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
3379 
3380          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3381          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
3382             // prefetchw [eax + Offset(_owner)-2]
3383             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3384          }
3385 
3386          if ((EmitSync & 64) == 0) {
3387            // Optimistic form: consider XORL tmpReg,tmpReg
3388            masm.movptr(tmpReg, NULL_WORD) ; 
3389          } else { 
3390            // Can suffer RTS->RTO upgrades on shared or cold $ lines
3391            // Test-And-CAS instead of CAS
3392            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3393            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3394            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3395          }
3396 
3397          // Appears unlocked - try to swing _owner from null to non-null.
3398          // Ideally, I'd manifest "Self" with get_thread and then attempt
3399          // to CAS the register containing Self into m->Owner.
3400          // But we don't have enough registers, so instead we can either try to CAS
3401          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
3402          // we later store "Self" into m->Owner.  Transiently storing a stack address
3403          // (rsp or the address of the box) into  m->owner is harmless.
3404          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3405          if (os::is_MP()) { masm.lock();  }
3406          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3407          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
3408          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3409          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
3410          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
3411          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
3412                        
3413          // If the CAS fails we can either retry or pass control to the slow-path.  
3414          // We use the latter tactic.  
3415          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3416          // If the CAS was successful ...
3417          //   Self has acquired the lock
3418          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3419          // Intentional fall-through into DONE_LABEL ...
3420       } else {
3421          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
3422          masm.movptr(boxReg, tmpReg) ; 
3423 
3424          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3425          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
3426             // prefetchw [eax + Offset(_owner)-2]
3427             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3428          }
3429 
3430          if ((EmitSync & 64) == 0) {
3431            // Optimistic form
3432            masm.xorptr  (tmpReg, tmpReg) ; 
3433          } else { 
3434            // Can suffer RTS->RTO upgrades on shared or cold $ lines
3435            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3436            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3437            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3438          }
3439 
3440          // Appears unlocked - try to swing _owner from null to non-null.
3441          // Use either "Self" (in scr) or rsp as thread identity in _owner.
3442          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3443          masm.get_thread (scrReg) ;
3444          if (os::is_MP()) { masm.lock(); }
3445          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3446 
3447          // If the CAS fails we can either retry or pass control to the slow-path.
3448          // We use the latter tactic.
3449          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3450          // If the CAS was successful ...
3451          //   Self has acquired the lock
3452          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3453          // Intentional fall-through into DONE_LABEL ...
3454       }
3455 
3456       // DONE_LABEL is a hot target - we'd really like to place it at the
3457       // start of cache line by padding with NOPs.
3458       // See the AMD and Intel software optimization manuals for the
3459       // most efficient "long" NOP encodings.
3460       // Unfortunately none of our alignment mechanisms suffice.
3461       masm.bind(DONE_LABEL);
3462 
3463       // Avoid branch-to-branch on AMD processors
3464       // This appears to be superstition.
3465       if (EmitSync & 32) masm.nop() ;
3466 
3467 
3468       // At DONE_LABEL the icc ZFlag is set as follows ...
3469       // Fast_Unlock uses the same protocol.
3470       // ZFlag == 1 -> Success
3471       // ZFlag == 0 -> Failure - force control through the slow-path
3472     }
3473   %}
3474 
3475   // obj: object to unlock
3476   // box: box address (displaced header location), killed.  Must be EAX.
3477   // rbx,: killed tmp; cannot be obj nor box.
3478   //
3479   // Some commentary on balanced locking:
3480   //
3481   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
3482   // Methods that don't have provably balanced locking are forced to run in the
3483   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
3484   // The interpreter provides two properties:
3485   // I1:  At return-time the interpreter automatically and quietly unlocks any
3486   //      objects acquired the current activation (frame).  Recall that the
3487   //      interpreter maintains an on-stack list of locks currently held by
3488   //      a frame.
3489   // I2:  If a method attempts to unlock an object that is not held by the
3490   //      the frame the interpreter throws IMSX.
3491   //
3492   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
3493   // B() doesn't have provably balanced locking so it runs in the interpreter.
3494   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
3495   // is still locked by A().
3496   //
3497   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
3498   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
3499   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
3500   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
3501 
3502   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
3503 
3504     Register objReg = as_Register($obj$$reg);
3505     Register boxReg = as_Register($box$$reg);
3506     Register tmpReg = as_Register($tmp$$reg);
3507 
3508     guarantee (objReg != boxReg, "") ;
3509     guarantee (objReg != tmpReg, "") ;
3510     guarantee (boxReg != tmpReg, "") ;
3511     guarantee (boxReg == as_Register(EAX_enc), "") ;
3512     MacroAssembler masm(&cbuf);
3513 
3514     if (EmitSync & 4) {
3515       // Disable - inhibit all inlining.  Force control through the slow-path
3516       masm.cmpptr (rsp, 0) ; 
3517     } else 
3518     if (EmitSync & 8) {
3519       Label DONE_LABEL ;
3520       if (UseBiasedLocking) {
3521          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3522       }
3523       // classic stack-locking code ...
3524       masm.movptr(tmpReg, Address(boxReg, 0)) ;
3525       masm.testptr(tmpReg, tmpReg) ;
3526       masm.jcc   (Assembler::zero, DONE_LABEL) ;
3527       if (os::is_MP()) { masm.lock(); }
3528       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
3529       masm.bind(DONE_LABEL);
3530     } else {
3531       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
3532 
3533       // Critically, the biased locking test must have precedence over
3534       // and appear before the (box->dhw == 0) recursive stack-lock test.
3535       if (UseBiasedLocking && !UseOptoBiasInlining) {
3536          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3537       }
3538       
3539       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
3540       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
3541       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
3542 
3543       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
3544       masm.jccb  (Assembler::zero, Stacked) ;
3545 
3546       masm.bind  (Inflated) ;
3547       // It's inflated.
3548       // Despite our balanced locking property we still check that m->_owner == Self
3549       // as java routines or native JNI code called by this thread might
3550       // have released the lock.
3551       // Refer to the comments in synchronizer.cpp for how we might encode extra
3552       // state in _succ so we can avoid fetching EntryList|cxq.
3553       //
3554       // I'd like to add more cases in fast_lock() and fast_unlock() --
3555       // such as recursive enter and exit -- but we have to be wary of
3556       // I$ bloat, T$ effects and BP$ effects.
3557       //
3558       // If there's no contention try a 1-0 exit.  That is, exit without
3559       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
3560       // we detect and recover from the race that the 1-0 exit admits.
3561       //
3562       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
3563       // before it STs null into _owner, releasing the lock.  Updates
3564       // to data protected by the critical section must be visible before
3565       // we drop the lock (and thus before any other thread could acquire
3566       // the lock and observe the fields protected by the lock).
3567       // IA32's memory-model is SPO, so STs are ordered with respect to
3568       // each other and there's no need for an explicit barrier (fence).
3569       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
3570 
3571       masm.get_thread (boxReg) ;
3572       if ((EmitSync & 4096) && VM_Version::supports_3dnow() && os::is_MP()) {
3573         // prefetchw [ebx + Offset(_owner)-2]
3574         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
3575       }
3576 
3577       // Note that we could employ various encoding schemes to reduce
3578       // the number of loads below (currently 4) to just 2 or 3.
3579       // Refer to the comments in synchronizer.cpp.
3580       // In practice the chain of fetches doesn't seem to impact performance, however.
3581       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
3582          // Attempt to reduce branch density - AMD's branch predictor.
3583          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3584          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3585          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3586          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3587          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3588          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3589          masm.jmpb  (DONE_LABEL) ; 
3590       } else { 
3591          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3592          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3593          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3594          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3595          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3596          masm.jccb  (Assembler::notZero, CheckSucc) ; 
3597          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3598          masm.jmpb  (DONE_LABEL) ; 
3599       }
3600 
3601       // The Following code fragment (EmitSync & 65536) improves the performance of
3602       // contended applications and contended synchronization microbenchmarks.
3603       // Unfortunately the emission of the code - even though not executed - causes regressions
3604       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
3605       // with an equal number of never-executed NOPs results in the same regression.
3606       // We leave it off by default.
3607 
3608       if ((EmitSync & 65536) != 0) {
3609          Label LSuccess, LGoSlowPath ;
3610 
3611          masm.bind  (CheckSucc) ;
3612 
3613          // Optional pre-test ... it's safe to elide this
3614          if ((EmitSync & 16) == 0) { 
3615             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3616             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
3617          }
3618 
3619          // We have a classic Dekker-style idiom:
3620          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
3621          // There are a number of ways to implement the barrier:
3622          // (1) lock:andl &m->_owner, 0
3623          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
3624          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
3625          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
3626          // (2) If supported, an explicit MFENCE is appealing.
3627          //     In older IA32 processors MFENCE is slower than lock:add or xchg
3628          //     particularly if the write-buffer is full as might be the case if
3629          //     if stores closely precede the fence or fence-equivalent instruction.
3630          //     In more modern implementations MFENCE appears faster, however.
3631          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
3632          //     The $lines underlying the top-of-stack should be in M-state.
3633          //     The locked add instruction is serializing, of course.
3634          // (4) Use xchg, which is serializing
3635          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
3636          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
3637          //     The integer condition codes will tell us if succ was 0.
3638          //     Since _succ and _owner should reside in the same $line and
3639          //     we just stored into _owner, it's likely that the $line
3640          //     remains in M-state for the lock:orl.
3641          //
3642          // We currently use (3), although it's likely that switching to (2)
3643          // is correct for the future.
3644             
3645          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3646          if (os::is_MP()) { 
3647             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
3648               masm.mfence();
3649             } else { 
3650               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
3651             }
3652          }
3653          // Ratify _succ remains non-null
3654          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3655          masm.jccb  (Assembler::notZero, LSuccess) ; 
3656 
3657          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
3658          if (os::is_MP()) { masm.lock(); }
3659          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
3660          masm.jccb  (Assembler::notEqual, LSuccess) ;
3661          // Since we're low on registers we installed rsp as a placeholding in _owner.
3662          // Now install Self over rsp.  This is safe as we're transitioning from
3663          // non-null to non=null
3664          masm.get_thread (boxReg) ;
3665          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
3666          // Intentional fall-through into LGoSlowPath ...
3667 
3668          masm.bind  (LGoSlowPath) ; 
3669          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
3670          masm.jmpb  (DONE_LABEL) ; 
3671 
3672          masm.bind  (LSuccess) ; 
3673          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
3674          masm.jmpb  (DONE_LABEL) ; 
3675       }
3676 
3677       masm.bind (Stacked) ;
3678       // It's not inflated and it's not recursively stack-locked and it's not biased.
3679       // It must be stack-locked.
3680       // Try to reset the header to displaced header.
3681       // The "box" value on the stack is stable, so we can reload
3682       // and be assured we observe the same value as above.
3683       masm.movptr(tmpReg, Address(boxReg, 0)) ;
3684       if (os::is_MP()) {   masm.lock();    }
3685       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
3686       // Intention fall-thru into DONE_LABEL
3687 
3688 
3689       // DONE_LABEL is a hot target - we'd really like to place it at the
3690       // start of cache line by padding with NOPs.
3691       // See the AMD and Intel software optimization manuals for the
3692       // most efficient "long" NOP encodings.
3693       // Unfortunately none of our alignment mechanisms suffice.
3694       if ((EmitSync & 65536) == 0) {
3695          masm.bind (CheckSucc) ;
3696       }
3697       masm.bind(DONE_LABEL);
3698 
3699       // Avoid branch to branch on AMD processors
3700       if (EmitSync & 32768) { masm.nop() ; }
3701     }
3702   %}
3703 
3704 
3705   enc_class enc_pop_rdx() %{
3706     emit_opcode(cbuf,0x5A);
3707   %}
3708 
3709   enc_class enc_rethrow() %{
3710     cbuf.set_inst_mark();
3711     emit_opcode(cbuf, 0xE9);        // jmp    entry
3712     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.code_end())-4,
3713                    runtime_call_Relocation::spec(), RELOC_IMM32 );
3714   %}
3715 
3716 
3717   // Convert a double to an int.  Java semantics require we do complex
3718   // manglelations in the corner cases.  So we set the rounding mode to
3719   // 'zero', store the darned double down as an int, and reset the
3720   // rounding mode to 'nearest'.  The hardware throws an exception which
3721   // patches up the correct value directly to the stack.
3722   enc_class D2I_encoding( regD src ) %{
3723     // Flip to round-to-zero mode.  We attempted to allow invalid-op
3724     // exceptions here, so that a NAN or other corner-case value will
3725     // thrown an exception (but normal values get converted at full speed).
3726     // However, I2C adapters and other float-stack manglers leave pending
3727     // invalid-op exceptions hanging.  We would have to clear them before
3728     // enabling them and that is more expensive than just testing for the
3729     // invalid value Intel stores down in the corner cases.
3730     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3731     emit_opcode(cbuf,0x2D);
3732     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3733     // Allocate a word
3734     emit_opcode(cbuf,0x83);            // SUB ESP,4
3735     emit_opcode(cbuf,0xEC);
3736     emit_d8(cbuf,0x04);
3737     // Encoding assumes a double has been pushed into FPR0.
3738     // Store down the double as an int, popping the FPU stack
3739     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
3740     emit_opcode(cbuf,0x1C);
3741     emit_d8(cbuf,0x24);
3742     // Restore the rounding mode; mask the exception
3743     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3744     emit_opcode(cbuf,0x2D);
3745     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3746         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3747         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3748 
3749     // Load the converted int; adjust CPU stack
3750     emit_opcode(cbuf,0x58);       // POP EAX
3751     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
3752     emit_d32   (cbuf,0x80000000); //         0x80000000
3753     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3754     emit_d8    (cbuf,0x07);       // Size of slow_call
3755     // Push src onto stack slow-path
3756     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3757     emit_d8    (cbuf,0xC0-1+$src$$reg );
3758     // CALL directly to the runtime
3759     cbuf.set_inst_mark();
3760     emit_opcode(cbuf,0xE8);       // Call into runtime
3761     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3762     // Carry on here...
3763   %}
3764 
3765   enc_class D2L_encoding( regD src ) %{
3766     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3767     emit_opcode(cbuf,0x2D);
3768     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3769     // Allocate a word
3770     emit_opcode(cbuf,0x83);            // SUB ESP,8
3771     emit_opcode(cbuf,0xEC);
3772     emit_d8(cbuf,0x08);
3773     // Encoding assumes a double has been pushed into FPR0.
3774     // Store down the double as a long, popping the FPU stack
3775     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
3776     emit_opcode(cbuf,0x3C);
3777     emit_d8(cbuf,0x24);
3778     // Restore the rounding mode; mask the exception
3779     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3780     emit_opcode(cbuf,0x2D);
3781     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3782         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3783         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3784 
3785     // Load the converted int; adjust CPU stack
3786     emit_opcode(cbuf,0x58);       // POP EAX
3787     emit_opcode(cbuf,0x5A);       // POP EDX
3788     emit_opcode(cbuf,0x81);       // CMP EDX,imm
3789     emit_d8    (cbuf,0xFA);       // rdx
3790     emit_d32   (cbuf,0x80000000); //         0x80000000
3791     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3792     emit_d8    (cbuf,0x07+4);     // Size of slow_call
3793     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
3794     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
3795     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3796     emit_d8    (cbuf,0x07);       // Size of slow_call
3797     // Push src onto stack slow-path
3798     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3799     emit_d8    (cbuf,0xC0-1+$src$$reg );
3800     // CALL directly to the runtime
3801     cbuf.set_inst_mark();
3802     emit_opcode(cbuf,0xE8);       // Call into runtime
3803     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3804     // Carry on here...
3805   %}
3806 
3807   enc_class X2L_encoding( regX src ) %{
3808     // Allocate a word
3809     emit_opcode(cbuf,0x83);      // SUB ESP,8
3810     emit_opcode(cbuf,0xEC);
3811     emit_d8(cbuf,0x08);
3812 
3813     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
3814     emit_opcode  (cbuf, 0x0F );
3815     emit_opcode  (cbuf, 0x11 );
3816     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3817 
3818     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
3819     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3820 
3821     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
3822     emit_opcode(cbuf,0x2D);
3823     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3824 
3825     // Encoding assumes a double has been pushed into FPR0.
3826     // Store down the double as a long, popping the FPU stack
3827     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
3828     emit_opcode(cbuf,0x3C);
3829     emit_d8(cbuf,0x24);
3830 
3831     // Restore the rounding mode; mask the exception
3832     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
3833     emit_opcode(cbuf,0x2D);
3834     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3835       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3836       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3837 
3838     // Load the converted int; adjust CPU stack
3839     emit_opcode(cbuf,0x58);      // POP EAX
3840 
3841     emit_opcode(cbuf,0x5A);      // POP EDX
3842 
3843     emit_opcode(cbuf,0x81);      // CMP EDX,imm
3844     emit_d8    (cbuf,0xFA);      // rdx
3845     emit_d32   (cbuf,0x80000000);//         0x80000000
3846 
3847     emit_opcode(cbuf,0x75);      // JNE around_slow_call
3848     emit_d8    (cbuf,0x13+4);    // Size of slow_call
3849 
3850     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
3851     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
3852 
3853     emit_opcode(cbuf,0x75);      // JNE around_slow_call
3854     emit_d8    (cbuf,0x13);      // Size of slow_call
3855 
3856     // Allocate a word
3857     emit_opcode(cbuf,0x83);      // SUB ESP,4
3858     emit_opcode(cbuf,0xEC);
3859     emit_d8(cbuf,0x04);
3860 
3861     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
3862     emit_opcode  (cbuf, 0x0F );
3863     emit_opcode  (cbuf, 0x11 );
3864     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3865 
3866     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
3867     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3868 
3869     emit_opcode(cbuf,0x83);      // ADD ESP,4
3870     emit_opcode(cbuf,0xC4);
3871     emit_d8(cbuf,0x04);
3872 
3873     // CALL directly to the runtime
3874     cbuf.set_inst_mark();
3875     emit_opcode(cbuf,0xE8);       // Call into runtime
3876     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3877     // Carry on here...
3878   %}
3879 
3880   enc_class XD2L_encoding( regXD src ) %{
3881     // Allocate a word
3882     emit_opcode(cbuf,0x83);      // SUB ESP,8
3883     emit_opcode(cbuf,0xEC);
3884     emit_d8(cbuf,0x08);
3885 
3886     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
3887     emit_opcode  (cbuf, 0x0F );
3888     emit_opcode  (cbuf, 0x11 );
3889     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3890 
3891     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
3892     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3893 
3894     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
3895     emit_opcode(cbuf,0x2D);
3896     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3897 
3898     // Encoding assumes a double has been pushed into FPR0.
3899     // Store down the double as a long, popping the FPU stack
3900     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
3901     emit_opcode(cbuf,0x3C);
3902     emit_d8(cbuf,0x24);
3903 
3904     // Restore the rounding mode; mask the exception
3905     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
3906     emit_opcode(cbuf,0x2D);
3907     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3908       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3909       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3910 
3911     // Load the converted int; adjust CPU stack
3912     emit_opcode(cbuf,0x58);      // POP EAX
3913 
3914     emit_opcode(cbuf,0x5A);      // POP EDX
3915 
3916     emit_opcode(cbuf,0x81);      // CMP EDX,imm
3917     emit_d8    (cbuf,0xFA);      // rdx
3918     emit_d32   (cbuf,0x80000000); //         0x80000000
3919 
3920     emit_opcode(cbuf,0x75);      // JNE around_slow_call
3921     emit_d8    (cbuf,0x13+4);    // Size of slow_call
3922 
3923     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
3924     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
3925 
3926     emit_opcode(cbuf,0x75);      // JNE around_slow_call
3927     emit_d8    (cbuf,0x13);      // Size of slow_call
3928 
3929     // Push src onto stack slow-path
3930     // Allocate a word
3931     emit_opcode(cbuf,0x83);      // SUB ESP,8
3932     emit_opcode(cbuf,0xEC);
3933     emit_d8(cbuf,0x08);
3934 
3935     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
3936     emit_opcode  (cbuf, 0x0F );
3937     emit_opcode  (cbuf, 0x11 );
3938     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3939 
3940     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
3941     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3942 
3943     emit_opcode(cbuf,0x83);      // ADD ESP,8
3944     emit_opcode(cbuf,0xC4);
3945     emit_d8(cbuf,0x08);
3946 
3947     // CALL directly to the runtime
3948     cbuf.set_inst_mark();
3949     emit_opcode(cbuf,0xE8);      // Call into runtime
3950     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3951     // Carry on here...
3952   %}
3953 
3954   enc_class D2X_encoding( regX dst, regD src ) %{
3955     // Allocate a word
3956     emit_opcode(cbuf,0x83);            // SUB ESP,4
3957     emit_opcode(cbuf,0xEC);
3958     emit_d8(cbuf,0x04);
3959     int pop = 0x02;
3960     if ($src$$reg != FPR1L_enc) {
3961       emit_opcode( cbuf, 0xD9 );       // FLD    ST(i-1)
3962       emit_d8( cbuf, 0xC0-1+$src$$reg );
3963       pop = 0x03;
3964     }
3965     store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S  [ESP]
3966 
3967     emit_opcode  (cbuf, 0xF3 );        // MOVSS dst(xmm), [ESP]
3968     emit_opcode  (cbuf, 0x0F );
3969     emit_opcode  (cbuf, 0x10 );
3970     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
3971 
3972     emit_opcode(cbuf,0x83);            // ADD ESP,4
3973     emit_opcode(cbuf,0xC4);
3974     emit_d8(cbuf,0x04);
3975     // Carry on here...
3976   %}
3977 
3978   enc_class FX2I_encoding( regX src, eRegI dst ) %{
3979     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
3980 
3981     // Compare the result to see if we need to go to the slow path
3982     emit_opcode(cbuf,0x81);       // CMP dst,imm
3983     emit_rm    (cbuf,0x3,0x7,$dst$$reg);
3984     emit_d32   (cbuf,0x80000000); //         0x80000000
3985 
3986     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3987     emit_d8    (cbuf,0x13);       // Size of slow_call
3988     // Store xmm to a temp memory
3989     // location and push it onto stack.
3990 
3991     emit_opcode(cbuf,0x83);  // SUB ESP,4
3992     emit_opcode(cbuf,0xEC);
3993     emit_d8(cbuf, $primary ? 0x8 : 0x4);
3994 
3995     emit_opcode  (cbuf, $primary ? 0xF2 : 0xF3 );   // MOVSS [ESP], xmm
3996     emit_opcode  (cbuf, 0x0F );
3997     emit_opcode  (cbuf, 0x11 );
3998     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3999 
4000     emit_opcode(cbuf, $primary ? 0xDD : 0xD9 );      // FLD [ESP]
4001     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4002 
4003     emit_opcode(cbuf,0x83);    // ADD ESP,4
4004     emit_opcode(cbuf,0xC4);
4005     emit_d8(cbuf, $primary ? 0x8 : 0x4);
4006 
4007     // CALL directly to the runtime
4008     cbuf.set_inst_mark();
4009     emit_opcode(cbuf,0xE8);       // Call into runtime
4010     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
4011 
4012     // Carry on here...
4013   %}
4014 
4015   enc_class X2D_encoding( regD dst, regX src ) %{
4016     // Allocate a word
4017     emit_opcode(cbuf,0x83);     // SUB ESP,4
4018     emit_opcode(cbuf,0xEC);
4019     emit_d8(cbuf,0x04);
4020 
4021     emit_opcode  (cbuf, 0xF3 ); // MOVSS [ESP], xmm
4022     emit_opcode  (cbuf, 0x0F );
4023     emit_opcode  (cbuf, 0x11 );
4024     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4025 
4026     emit_opcode(cbuf,0xD9 );    // FLD_S [ESP]
4027     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4028 
4029     emit_opcode(cbuf,0x83);     // ADD ESP,4
4030     emit_opcode(cbuf,0xC4);
4031     emit_d8(cbuf,0x04);
4032 
4033     // Carry on here...
4034   %}
4035 
4036   enc_class AbsXF_encoding(regX dst) %{
4037     address signmask_address=(address)float_signmask_pool;
4038     // andpd:\tANDPS  $dst,[signconst]
4039     emit_opcode(cbuf, 0x0F);
4040     emit_opcode(cbuf, 0x54);
4041     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4042     emit_d32(cbuf, (int)signmask_address);
4043   %}
4044 
4045   enc_class AbsXD_encoding(regXD dst) %{
4046     address signmask_address=(address)double_signmask_pool;
4047     // andpd:\tANDPD  $dst,[signconst]
4048     emit_opcode(cbuf, 0x66);
4049     emit_opcode(cbuf, 0x0F);
4050     emit_opcode(cbuf, 0x54);
4051     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4052     emit_d32(cbuf, (int)signmask_address);
4053   %}
4054 
4055   enc_class NegXF_encoding(regX dst) %{
4056     address signmask_address=(address)float_signflip_pool;
4057     // andpd:\tXORPS  $dst,[signconst]
4058     emit_opcode(cbuf, 0x0F);
4059     emit_opcode(cbuf, 0x57);
4060     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4061     emit_d32(cbuf, (int)signmask_address);
4062   %}
4063 
4064   enc_class NegXD_encoding(regXD dst) %{
4065     address signmask_address=(address)double_signflip_pool;
4066     // andpd:\tXORPD  $dst,[signconst]
4067     emit_opcode(cbuf, 0x66);
4068     emit_opcode(cbuf, 0x0F);
4069     emit_opcode(cbuf, 0x57);
4070     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4071     emit_d32(cbuf, (int)signmask_address);
4072   %}
4073 
4074   enc_class FMul_ST_reg( eRegF src1 ) %{
4075     // Operand was loaded from memory into fp ST (stack top)
4076     // FMUL   ST,$src  /* D8 C8+i */
4077     emit_opcode(cbuf, 0xD8);
4078     emit_opcode(cbuf, 0xC8 + $src1$$reg);
4079   %}
4080 
4081   enc_class FAdd_ST_reg( eRegF src2 ) %{
4082     // FADDP  ST,src2  /* D8 C0+i */
4083     emit_opcode(cbuf, 0xD8);
4084     emit_opcode(cbuf, 0xC0 + $src2$$reg);
4085     //could use FADDP  src2,fpST  /* DE C0+i */
4086   %}
4087 
4088   enc_class FAddP_reg_ST( eRegF src2 ) %{
4089     // FADDP  src2,ST  /* DE C0+i */
4090     emit_opcode(cbuf, 0xDE);
4091     emit_opcode(cbuf, 0xC0 + $src2$$reg);
4092   %}
4093 
4094   enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
4095     // Operand has been loaded into fp ST (stack top)
4096       // FSUB   ST,$src1
4097       emit_opcode(cbuf, 0xD8);
4098       emit_opcode(cbuf, 0xE0 + $src1$$reg);
4099 
4100       // FDIV
4101       emit_opcode(cbuf, 0xD8);
4102       emit_opcode(cbuf, 0xF0 + $src2$$reg);
4103   %}
4104 
4105   enc_class MulFAddF (eRegF src1, eRegF src2) %{
4106     // Operand was loaded from memory into fp ST (stack top)
4107     // FADD   ST,$src  /* D8 C0+i */
4108     emit_opcode(cbuf, 0xD8);
4109     emit_opcode(cbuf, 0xC0 + $src1$$reg);
4110 
4111     // FMUL  ST,src2  /* D8 C*+i */
4112     emit_opcode(cbuf, 0xD8);
4113     emit_opcode(cbuf, 0xC8 + $src2$$reg);
4114   %}
4115 
4116 
4117   enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
4118     // Operand was loaded from memory into fp ST (stack top)
4119     // FADD   ST,$src  /* D8 C0+i */
4120     emit_opcode(cbuf, 0xD8);
4121     emit_opcode(cbuf, 0xC0 + $src1$$reg);
4122 
4123     // FMULP  src2,ST  /* DE C8+i */
4124     emit_opcode(cbuf, 0xDE);
4125     emit_opcode(cbuf, 0xC8 + $src2$$reg);
4126   %}
4127 
4128   // Atomically load the volatile long
4129   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
4130     emit_opcode(cbuf,0xDF);
4131     int rm_byte_opcode = 0x05;
4132     int base     = $mem$$base;
4133     int index    = $mem$$index;
4134     int scale    = $mem$$scale;
4135     int displace = $mem$$disp;
4136     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4137     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
4138     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
4139   %}
4140 
4141   enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
4142     { // Atomic long load
4143       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
4144       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4145       emit_opcode(cbuf,0x0F);
4146       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4147       int base     = $mem$$base;
4148       int index    = $mem$$index;
4149       int scale    = $mem$$scale;
4150       int displace = $mem$$disp;
4151       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4152       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4153     }
4154     { // MOVSD $dst,$tmp ! atomic long store
4155       emit_opcode(cbuf,0xF2);
4156       emit_opcode(cbuf,0x0F);
4157       emit_opcode(cbuf,0x11);
4158       int base     = $dst$$base;
4159       int index    = $dst$$index;
4160       int scale    = $dst$$scale;
4161       int displace = $dst$$disp;
4162       bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
4163       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4164     }
4165   %}
4166 
4167   enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
4168     { // Atomic long load
4169       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
4170       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4171       emit_opcode(cbuf,0x0F);
4172       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4173       int base     = $mem$$base;
4174       int index    = $mem$$index;
4175       int scale    = $mem$$scale;
4176       int displace = $mem$$disp;
4177       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4178       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4179     }
4180     { // MOVD $dst.lo,$tmp
4181       emit_opcode(cbuf,0x66);
4182       emit_opcode(cbuf,0x0F);
4183       emit_opcode(cbuf,0x7E);
4184       emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
4185     }
4186     { // PSRLQ $tmp,32
4187       emit_opcode(cbuf,0x66);
4188       emit_opcode(cbuf,0x0F);
4189       emit_opcode(cbuf,0x73);
4190       emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
4191       emit_d8(cbuf, 0x20);
4192     }
4193     { // MOVD $dst.hi,$tmp
4194       emit_opcode(cbuf,0x66);
4195       emit_opcode(cbuf,0x0F);
4196       emit_opcode(cbuf,0x7E);
4197       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
4198     }
4199   %}
4200 
4201   // Volatile Store Long.  Must be atomic, so move it into
4202   // the FP TOS and then do a 64-bit FIST.  Has to probe the
4203   // target address before the store (for null-ptr checks)
4204   // so the memory operand is used twice in the encoding.
4205   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
4206     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
4207     cbuf.set_inst_mark();            // Mark start of FIST in case $mem has an oop
4208     emit_opcode(cbuf,0xDF);
4209     int rm_byte_opcode = 0x07;
4210     int base     = $mem$$base;
4211     int index    = $mem$$index;
4212     int scale    = $mem$$scale;
4213     int displace = $mem$$disp;
4214     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4215     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
4216   %}
4217 
4218   enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
4219     { // Atomic long load
4220       // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
4221       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4222       emit_opcode(cbuf,0x0F);
4223       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4224       int base     = $src$$base;
4225       int index    = $src$$index;
4226       int scale    = $src$$scale;
4227       int displace = $src$$disp;
4228       bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
4229       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4230     }
4231     cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
4232     { // MOVSD $mem,$tmp ! atomic long store
4233       emit_opcode(cbuf,0xF2);
4234       emit_opcode(cbuf,0x0F);
4235       emit_opcode(cbuf,0x11);
4236       int base     = $mem$$base;
4237       int index    = $mem$$index;
4238       int scale    = $mem$$scale;
4239       int displace = $mem$$disp;
4240       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4241       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4242     }
4243   %}
4244 
4245   enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
4246     { // MOVD $tmp,$src.lo
4247       emit_opcode(cbuf,0x66);
4248       emit_opcode(cbuf,0x0F);
4249       emit_opcode(cbuf,0x6E);
4250       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
4251     }
4252     { // MOVD $tmp2,$src.hi
4253       emit_opcode(cbuf,0x66);
4254       emit_opcode(cbuf,0x0F);
4255       emit_opcode(cbuf,0x6E);
4256       emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
4257     }
4258     { // PUNPCKLDQ $tmp,$tmp2
4259       emit_opcode(cbuf,0x66);
4260       emit_opcode(cbuf,0x0F);
4261       emit_opcode(cbuf,0x62);
4262       emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
4263     }
4264     cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
4265     { // MOVSD $mem,$tmp ! atomic long store
4266       emit_opcode(cbuf,0xF2);
4267       emit_opcode(cbuf,0x0F);
4268       emit_opcode(cbuf,0x11);
4269       int base     = $mem$$base;
4270       int index    = $mem$$index;
4271       int scale    = $mem$$scale;
4272       int displace = $mem$$disp;
4273       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4274       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4275     }
4276   %}
4277 
4278   // Safepoint Poll.  This polls the safepoint page, and causes an
4279   // exception if it is not readable. Unfortunately, it kills the condition code
4280   // in the process
4281   // We current use TESTL [spp],EDI
4282   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
4283 
4284   enc_class Safepoint_Poll() %{
4285     cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0);
4286     emit_opcode(cbuf,0x85);
4287     emit_rm (cbuf, 0x0, 0x7, 0x5);
4288     emit_d32(cbuf, (intptr_t)os::get_polling_page());
4289   %}
4290 %}
4291 
4292 
4293 //----------FRAME--------------------------------------------------------------
4294 // Definition of frame structure and management information.
4295 //
4296 //  S T A C K   L A Y O U T    Allocators stack-slot number
4297 //                             |   (to get allocators register number
4298 //  G  Owned by    |        |  v    add OptoReg::stack0())
4299 //  r   CALLER     |        |
4300 //  o     |        +--------+      pad to even-align allocators stack-slot
4301 //  w     V        |  pad0  |        numbers; owned by CALLER
4302 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
4303 //  h     ^        |   in   |  5
4304 //        |        |  args  |  4   Holes in incoming args owned by SELF
4305 //  |     |        |        |  3
4306 //  |     |        +--------+
4307 //  V     |        | old out|      Empty on Intel, window on Sparc
4308 //        |    old |preserve|      Must be even aligned.
4309 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
4310 //        |        |   in   |  3   area for Intel ret address
4311 //     Owned by    |preserve|      Empty on Sparc.
4312 //       SELF      +--------+
4313 //        |        |  pad2  |  2   pad to align old SP
4314 //        |        +--------+  1
4315 //        |        | locks  |  0
4316 //        |        +--------+----> OptoReg::stack0(), even aligned
4317 //        |        |  pad1  | 11   pad to align new SP
4318 //        |        +--------+
4319 //        |        |        | 10
4320 //        |        | spills |  9   spills
4321 //        V        |        |  8   (pad0 slot for callee)
4322 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
4323 //        ^        |  out   |  7
4324 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
4325 //     Owned by    +--------+
4326 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
4327 //        |    new |preserve|      Must be even-aligned.
4328 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
4329 //        |        |        |
4330 //
4331 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
4332 //         known from SELF's arguments and the Java calling convention.
4333 //         Region 6-7 is determined per call site.
4334 // Note 2: If the calling convention leaves holes in the incoming argument
4335 //         area, those holes are owned by SELF.  Holes in the outgoing area
4336 //         are owned by the CALLEE.  Holes should not be nessecary in the
4337 //         incoming area, as the Java calling convention is completely under
4338 //         the control of the AD file.  Doubles can be sorted and packed to
4339 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
4340 //         varargs C calling conventions.
4341 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
4342 //         even aligned with pad0 as needed.
4343 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
4344 //         region 6-11 is even aligned; it may be padded out more so that
4345 //         the region from SP to FP meets the minimum stack alignment.
4346 
4347 frame %{
4348   // What direction does stack grow in (assumed to be same for C & Java)
4349   stack_direction(TOWARDS_LOW);
4350 
4351   // These three registers define part of the calling convention
4352   // between compiled code and the interpreter.
4353   inline_cache_reg(EAX);                // Inline Cache Register
4354   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
4355 
4356   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
4357   cisc_spilling_operand_name(indOffset32);
4358 
4359   // Number of stack slots consumed by locking an object
4360   sync_stack_slots(1);
4361 
4362   // Compiled code's Frame Pointer
4363   frame_pointer(ESP);
4364   // Interpreter stores its frame pointer in a register which is
4365   // stored to the stack by I2CAdaptors.
4366   // I2CAdaptors convert from interpreted java to compiled java.
4367   interpreter_frame_pointer(EBP);
4368 
4369   // Stack alignment requirement
4370   // Alignment size in bytes (128-bit -> 16 bytes)
4371   stack_alignment(StackAlignmentInBytes);
4372 
4373   // Number of stack slots between incoming argument block and the start of
4374   // a new frame.  The PROLOG must add this many slots to the stack.  The
4375   // EPILOG must remove this many slots.  Intel needs one slot for
4376   // return address and one for rbp, (must save rbp)
4377   in_preserve_stack_slots(2+VerifyStackAtCalls);
4378 
4379   // Number of outgoing stack slots killed above the out_preserve_stack_slots
4380   // for calls to C.  Supports the var-args backing area for register parms.
4381   varargs_C_out_slots_killed(0);
4382 
4383   // The after-PROLOG location of the return address.  Location of
4384   // return address specifies a type (REG or STACK) and a number
4385   // representing the register number (i.e. - use a register name) or
4386   // stack slot.
4387   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
4388   // Otherwise, it is above the locks and verification slot and alignment word
4389   return_addr(STACK - 1 +
4390               round_to(1+VerifyStackAtCalls+
4391               Compile::current()->fixed_slots(),
4392               (StackAlignmentInBytes/wordSize)));
4393 
4394   // Body of function which returns an integer array locating
4395   // arguments either in registers or in stack slots.  Passed an array
4396   // of ideal registers called "sig" and a "length" count.  Stack-slot
4397   // offsets are based on outgoing arguments, i.e. a CALLER setting up
4398   // arguments for a CALLEE.  Incoming stack arguments are
4399   // automatically biased by the preserve_stack_slots field above.
4400   calling_convention %{
4401     // No difference between ingoing/outgoing just pass false
4402     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
4403   %}
4404 
4405 
4406   // Body of function which returns an integer array locating
4407   // arguments either in registers or in stack slots.  Passed an array
4408   // of ideal registers called "sig" and a "length" count.  Stack-slot
4409   // offsets are based on outgoing arguments, i.e. a CALLER setting up
4410   // arguments for a CALLEE.  Incoming stack arguments are
4411   // automatically biased by the preserve_stack_slots field above.
4412   c_calling_convention %{
4413     // This is obviously always outgoing
4414     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
4415   %}
4416 
4417   // Location of C & interpreter return values
4418   c_return_value %{
4419     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
4420     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
4421     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
4422 
4423     // in SSE2+ mode we want to keep the FPU stack clean so pretend
4424     // that C functions return float and double results in XMM0.
4425     if( ideal_reg == Op_RegD && UseSSE>=2 )
4426       return OptoRegPair(XMM0b_num,XMM0a_num);
4427     if( ideal_reg == Op_RegF && UseSSE>=2 )
4428       return OptoRegPair(OptoReg::Bad,XMM0a_num);
4429 
4430     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
4431   %}
4432 
4433   // Location of return values
4434   return_value %{
4435     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
4436     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
4437     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
4438     if( ideal_reg == Op_RegD && UseSSE>=2 )
4439       return OptoRegPair(XMM0b_num,XMM0a_num);
4440     if( ideal_reg == Op_RegF && UseSSE>=1 )
4441       return OptoRegPair(OptoReg::Bad,XMM0a_num);
4442     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
4443   %}
4444 
4445 %}
4446 
4447 //----------ATTRIBUTES---------------------------------------------------------
4448 //----------Operand Attributes-------------------------------------------------
4449 op_attrib op_cost(0);        // Required cost attribute
4450 
4451 //----------Instruction Attributes---------------------------------------------
4452 ins_attrib ins_cost(100);       // Required cost attribute
4453 ins_attrib ins_size(8);         // Required size attribute (in bits)
4454 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
4455 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
4456                                 // non-matching short branch variant of some
4457                                                             // long branch?
4458 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
4459                                 // specifies the alignment that some part of the instruction (not
4460                                 // necessarily the start) requires.  If > 1, a compute_padding()
4461                                 // function must be provided for the instruction
4462 
4463 //----------OPERANDS-----------------------------------------------------------
4464 // Operand definitions must precede instruction definitions for correct parsing
4465 // in the ADLC because operands constitute user defined types which are used in
4466 // instruction definitions.
4467 
4468 //----------Simple Operands----------------------------------------------------
4469 // Immediate Operands
4470 // Integer Immediate
4471 operand immI() %{
4472   match(ConI);
4473 
4474   op_cost(10);
4475   format %{ %}
4476   interface(CONST_INTER);
4477 %}
4478 
4479 // Constant for test vs zero
4480 operand immI0() %{
4481   predicate(n->get_int() == 0);
4482   match(ConI);
4483 
4484   op_cost(0);
4485   format %{ %}
4486   interface(CONST_INTER);
4487 %}
4488 
4489 // Constant for increment
4490 operand immI1() %{
4491   predicate(n->get_int() == 1);
4492   match(ConI);
4493 
4494   op_cost(0);
4495   format %{ %}
4496   interface(CONST_INTER);
4497 %}
4498 
4499 // Constant for decrement
4500 operand immI_M1() %{
4501   predicate(n->get_int() == -1);
4502   match(ConI);
4503 
4504   op_cost(0);
4505   format %{ %}
4506   interface(CONST_INTER);
4507 %}
4508 
4509 // Valid scale values for addressing modes
4510 operand immI2() %{
4511   predicate(0 <= n->get_int() && (n->get_int() <= 3));
4512   match(ConI);
4513 
4514   format %{ %}
4515   interface(CONST_INTER);
4516 %}
4517 
4518 operand immI8() %{
4519   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
4520   match(ConI);
4521 
4522   op_cost(5);
4523   format %{ %}
4524   interface(CONST_INTER);
4525 %}
4526 
4527 operand immI16() %{
4528   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
4529   match(ConI);
4530 
4531   op_cost(10);
4532   format %{ %}
4533   interface(CONST_INTER);
4534 %}
4535 
4536 // Constant for long shifts
4537 operand immI_32() %{
4538   predicate( n->get_int() == 32 );
4539   match(ConI);
4540 
4541   op_cost(0);
4542   format %{ %}
4543   interface(CONST_INTER);
4544 %}
4545 
4546 operand immI_1_31() %{
4547   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
4548   match(ConI);
4549 
4550   op_cost(0);
4551   format %{ %}
4552   interface(CONST_INTER);
4553 %}
4554 
4555 operand immI_32_63() %{
4556   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
4557   match(ConI);
4558   op_cost(0);
4559 
4560   format %{ %}
4561   interface(CONST_INTER);
4562 %}
4563 
4564 operand immI_1() %{
4565   predicate( n->get_int() == 1 );
4566   match(ConI);
4567 
4568   op_cost(0);
4569   format %{ %}
4570   interface(CONST_INTER);
4571 %}
4572 
4573 operand immI_2() %{
4574   predicate( n->get_int() == 2 );
4575   match(ConI);
4576 
4577   op_cost(0);
4578   format %{ %}
4579   interface(CONST_INTER);
4580 %}
4581 
4582 operand immI_3() %{
4583   predicate( n->get_int() == 3 );
4584   match(ConI);
4585 
4586   op_cost(0);
4587   format %{ %}
4588   interface(CONST_INTER);
4589 %}
4590 
4591 // Pointer Immediate
4592 operand immP() %{
4593   match(ConP);
4594 
4595   op_cost(10);
4596   format %{ %}
4597   interface(CONST_INTER);
4598 %}
4599 
4600 // NULL Pointer Immediate
4601 operand immP0() %{
4602   predicate( n->get_ptr() == 0 );
4603   match(ConP);
4604   op_cost(0);
4605 
4606   format %{ %}
4607   interface(CONST_INTER);
4608 %}
4609 
4610 // Long Immediate
4611 operand immL() %{
4612   match(ConL);
4613 
4614   op_cost(20);
4615   format %{ %}
4616   interface(CONST_INTER);
4617 %}
4618 
4619 // Long Immediate zero
4620 operand immL0() %{
4621   predicate( n->get_long() == 0L );
4622   match(ConL);
4623   op_cost(0);
4624 
4625   format %{ %}
4626   interface(CONST_INTER);
4627 %}
4628 
4629 // Long Immediate zero
4630 operand immL_M1() %{
4631   predicate( n->get_long() == -1L );
4632   match(ConL);
4633   op_cost(0);
4634 
4635   format %{ %}
4636   interface(CONST_INTER);
4637 %}
4638 
4639 // Long immediate from 0 to 127.
4640 // Used for a shorter form of long mul by 10.
4641 operand immL_127() %{
4642   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
4643   match(ConL);
4644   op_cost(0);
4645 
4646   format %{ %}
4647   interface(CONST_INTER);
4648 %}
4649 
4650 // Long Immediate: low 32-bit mask
4651 operand immL_32bits() %{
4652   predicate(n->get_long() == 0xFFFFFFFFL);
4653   match(ConL);
4654   op_cost(0);
4655 
4656   format %{ %}
4657   interface(CONST_INTER);
4658 %}
4659 
4660 // Long Immediate: low 32-bit mask
4661 operand immL32() %{
4662   predicate(n->get_long() == (int)(n->get_long()));
4663   match(ConL);
4664   op_cost(20);
4665 
4666   format %{ %}
4667   interface(CONST_INTER);
4668 %}
4669 
4670 //Double Immediate zero
4671 operand immD0() %{
4672   // Do additional (and counter-intuitive) test against NaN to work around VC++
4673   // bug that generates code such that NaNs compare equal to 0.0
4674   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
4675   match(ConD);
4676 
4677   op_cost(5);
4678   format %{ %}
4679   interface(CONST_INTER);
4680 %}
4681 
4682 // Double Immediate
4683 operand immD1() %{
4684   predicate( UseSSE<=1 && n->getd() == 1.0 );
4685   match(ConD);
4686 
4687   op_cost(5);
4688   format %{ %}
4689   interface(CONST_INTER);
4690 %}
4691 
4692 // Double Immediate
4693 operand immD() %{
4694   predicate(UseSSE<=1);
4695   match(ConD);
4696 
4697   op_cost(5);
4698   format %{ %}
4699   interface(CONST_INTER);
4700 %}
4701 
4702 operand immXD() %{
4703   predicate(UseSSE>=2);
4704   match(ConD);
4705 
4706   op_cost(5);
4707   format %{ %}
4708   interface(CONST_INTER);
4709 %}
4710 
4711 // Double Immediate zero
4712 operand immXD0() %{
4713   // Do additional (and counter-intuitive) test against NaN to work around VC++
4714   // bug that generates code such that NaNs compare equal to 0.0 AND do not
4715   // compare equal to -0.0.
4716   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
4717   match(ConD);
4718 
4719   format %{ %}
4720   interface(CONST_INTER);
4721 %}
4722 
4723 // Float Immediate zero
4724 operand immF0() %{
4725   predicate( UseSSE == 0 && n->getf() == 0.0 );
4726   match(ConF);
4727 
4728   op_cost(5);
4729   format %{ %}
4730   interface(CONST_INTER);
4731 %}
4732 
4733 // Float Immediate
4734 operand immF() %{
4735   predicate( UseSSE == 0 );
4736   match(ConF);
4737 
4738   op_cost(5);
4739   format %{ %}
4740   interface(CONST_INTER);
4741 %}
4742 
4743 // Float Immediate
4744 operand immXF() %{
4745   predicate(UseSSE >= 1);
4746   match(ConF);
4747 
4748   op_cost(5);
4749   format %{ %}
4750   interface(CONST_INTER);
4751 %}
4752 
4753 // Float Immediate zero.  Zero and not -0.0
4754 operand immXF0() %{
4755   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
4756   match(ConF);
4757 
4758   op_cost(5);
4759   format %{ %}
4760   interface(CONST_INTER);
4761 %}
4762 
4763 // Immediates for special shifts (sign extend)
4764 
4765 // Constants for increment
4766 operand immI_16() %{
4767   predicate( n->get_int() == 16 );
4768   match(ConI);
4769 
4770   format %{ %}
4771   interface(CONST_INTER);
4772 %}
4773 
4774 operand immI_24() %{
4775   predicate( n->get_int() == 24 );
4776   match(ConI);
4777 
4778   format %{ %}
4779   interface(CONST_INTER);
4780 %}
4781 
4782 // Constant for byte-wide masking
4783 operand immI_255() %{
4784   predicate( n->get_int() == 255 );
4785   match(ConI);
4786 
4787   format %{ %}
4788   interface(CONST_INTER);
4789 %}
4790 
4791 // Constant for short-wide masking
4792 operand immI_65535() %{
4793   predicate(n->get_int() == 65535);
4794   match(ConI);
4795 
4796   format %{ %}
4797   interface(CONST_INTER);
4798 %}
4799 
4800 // Register Operands
4801 // Integer Register
4802 operand eRegI() %{
4803   constraint(ALLOC_IN_RC(e_reg));
4804   match(RegI);
4805   match(xRegI);
4806   match(eAXRegI);
4807   match(eBXRegI);
4808   match(eCXRegI);
4809   match(eDXRegI);
4810   match(eDIRegI);
4811   match(eSIRegI);
4812 
4813   format %{ %}
4814   interface(REG_INTER);
4815 %}
4816 
4817 // Subset of Integer Register
4818 operand xRegI(eRegI reg) %{
4819   constraint(ALLOC_IN_RC(x_reg));
4820   match(reg);
4821   match(eAXRegI);
4822   match(eBXRegI);
4823   match(eCXRegI);
4824   match(eDXRegI);
4825 
4826   format %{ %}
4827   interface(REG_INTER);
4828 %}
4829 
4830 // Special Registers
4831 operand eAXRegI(xRegI reg) %{
4832   constraint(ALLOC_IN_RC(eax_reg));
4833   match(reg);
4834   match(eRegI);
4835 
4836   format %{ "EAX" %}
4837   interface(REG_INTER);
4838 %}
4839 
4840 // Special Registers
4841 operand eBXRegI(xRegI reg) %{
4842   constraint(ALLOC_IN_RC(ebx_reg));
4843   match(reg);
4844   match(eRegI);
4845 
4846   format %{ "EBX" %}
4847   interface(REG_INTER);
4848 %}
4849 
4850 operand eCXRegI(xRegI reg) %{
4851   constraint(ALLOC_IN_RC(ecx_reg));
4852   match(reg);
4853   match(eRegI);
4854 
4855   format %{ "ECX" %}
4856   interface(REG_INTER);
4857 %}
4858 
4859 operand eDXRegI(xRegI reg) %{
4860   constraint(ALLOC_IN_RC(edx_reg));
4861   match(reg);
4862   match(eRegI);
4863 
4864   format %{ "EDX" %}
4865   interface(REG_INTER);
4866 %}
4867 
4868 operand eDIRegI(xRegI reg) %{
4869   constraint(ALLOC_IN_RC(edi_reg));
4870   match(reg);
4871   match(eRegI);
4872 
4873   format %{ "EDI" %}
4874   interface(REG_INTER);
4875 %}
4876 
4877 operand naxRegI() %{
4878   constraint(ALLOC_IN_RC(nax_reg));
4879   match(RegI);
4880   match(eCXRegI);
4881   match(eDXRegI);
4882   match(eSIRegI);
4883   match(eDIRegI);
4884 
4885   format %{ %}
4886   interface(REG_INTER);
4887 %}
4888 
4889 operand nadxRegI() %{
4890   constraint(ALLOC_IN_RC(nadx_reg));
4891   match(RegI);
4892   match(eBXRegI);
4893   match(eCXRegI);
4894   match(eSIRegI);
4895   match(eDIRegI);
4896 
4897   format %{ %}
4898   interface(REG_INTER);
4899 %}
4900 
4901 operand ncxRegI() %{
4902   constraint(ALLOC_IN_RC(ncx_reg));
4903   match(RegI);
4904   match(eAXRegI);
4905   match(eDXRegI);
4906   match(eSIRegI);
4907   match(eDIRegI);
4908 
4909   format %{ %}
4910   interface(REG_INTER);
4911 %}
4912 
4913 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
4914 // //
4915 operand eSIRegI(xRegI reg) %{
4916    constraint(ALLOC_IN_RC(esi_reg));
4917    match(reg);
4918    match(eRegI);
4919 
4920    format %{ "ESI" %}
4921    interface(REG_INTER);
4922 %}
4923 
4924 // Pointer Register
4925 operand anyRegP() %{
4926   constraint(ALLOC_IN_RC(any_reg));
4927   match(RegP);
4928   match(eAXRegP);
4929   match(eBXRegP);
4930   match(eCXRegP);
4931   match(eDIRegP);
4932   match(eRegP);
4933 
4934   format %{ %}
4935   interface(REG_INTER);
4936 %}
4937 
4938 operand eRegP() %{
4939   constraint(ALLOC_IN_RC(e_reg));
4940   match(RegP);
4941   match(eAXRegP);
4942   match(eBXRegP);
4943   match(eCXRegP);
4944   match(eDIRegP);
4945 
4946   format %{ %}
4947   interface(REG_INTER);
4948 %}
4949 
4950 // On windows95, EBP is not safe to use for implicit null tests.
4951 operand eRegP_no_EBP() %{
4952   constraint(ALLOC_IN_RC(e_reg_no_rbp));
4953   match(RegP);
4954   match(eAXRegP);
4955   match(eBXRegP);
4956   match(eCXRegP);
4957   match(eDIRegP);
4958 
4959   op_cost(100);
4960   format %{ %}
4961   interface(REG_INTER);
4962 %}
4963 
4964 operand naxRegP() %{
4965   constraint(ALLOC_IN_RC(nax_reg));
4966   match(RegP);
4967   match(eBXRegP);
4968   match(eDXRegP);
4969   match(eCXRegP);
4970   match(eSIRegP);
4971   match(eDIRegP);
4972 
4973   format %{ %}
4974   interface(REG_INTER);
4975 %}
4976 
4977 operand nabxRegP() %{
4978   constraint(ALLOC_IN_RC(nabx_reg));
4979   match(RegP);
4980   match(eCXRegP);
4981   match(eDXRegP);
4982   match(eSIRegP);
4983   match(eDIRegP);
4984 
4985   format %{ %}
4986   interface(REG_INTER);
4987 %}
4988 
4989 operand pRegP() %{
4990   constraint(ALLOC_IN_RC(p_reg));
4991   match(RegP);
4992   match(eBXRegP);
4993   match(eDXRegP);
4994   match(eSIRegP);
4995   match(eDIRegP);
4996 
4997   format %{ %}
4998   interface(REG_INTER);
4999 %}
5000 
5001 // Special Registers
5002 // Return a pointer value
5003 operand eAXRegP(eRegP reg) %{
5004   constraint(ALLOC_IN_RC(eax_reg));
5005   match(reg);
5006   format %{ "EAX" %}
5007   interface(REG_INTER);
5008 %}
5009 
5010 // Used in AtomicAdd
5011 operand eBXRegP(eRegP reg) %{
5012   constraint(ALLOC_IN_RC(ebx_reg));
5013   match(reg);
5014   format %{ "EBX" %}
5015   interface(REG_INTER);
5016 %}
5017 
5018 // Tail-call (interprocedural jump) to interpreter
5019 operand eCXRegP(eRegP reg) %{
5020   constraint(ALLOC_IN_RC(ecx_reg));
5021   match(reg);
5022   format %{ "ECX" %}
5023   interface(REG_INTER);
5024 %}
5025 
5026 operand eSIRegP(eRegP reg) %{
5027   constraint(ALLOC_IN_RC(esi_reg));
5028   match(reg);
5029   format %{ "ESI" %}
5030   interface(REG_INTER);
5031 %}
5032 
5033 // Used in rep stosw
5034 operand eDIRegP(eRegP reg) %{
5035   constraint(ALLOC_IN_RC(edi_reg));
5036   match(reg);
5037   format %{ "EDI" %}
5038   interface(REG_INTER);
5039 %}
5040 
5041 operand eBPRegP() %{
5042   constraint(ALLOC_IN_RC(ebp_reg));
5043   match(RegP);
5044   format %{ "EBP" %}
5045   interface(REG_INTER);
5046 %}
5047 
5048 operand eRegL() %{
5049   constraint(ALLOC_IN_RC(long_reg));
5050   match(RegL);
5051   match(eADXRegL);
5052 
5053   format %{ %}
5054   interface(REG_INTER);
5055 %}
5056 
5057 operand eADXRegL( eRegL reg ) %{
5058   constraint(ALLOC_IN_RC(eadx_reg));
5059   match(reg);
5060 
5061   format %{ "EDX:EAX" %}
5062   interface(REG_INTER);
5063 %}
5064 
5065 operand eBCXRegL( eRegL reg ) %{
5066   constraint(ALLOC_IN_RC(ebcx_reg));
5067   match(reg);
5068 
5069   format %{ "EBX:ECX" %}
5070   interface(REG_INTER);
5071 %}
5072 
5073 // Special case for integer high multiply
5074 operand eADXRegL_low_only() %{
5075   constraint(ALLOC_IN_RC(eadx_reg));
5076   match(RegL);
5077 
5078   format %{ "EAX" %}
5079   interface(REG_INTER);
5080 %}
5081 
5082 // Flags register, used as output of compare instructions
5083 operand eFlagsReg() %{
5084   constraint(ALLOC_IN_RC(int_flags));
5085   match(RegFlags);
5086 
5087   format %{ "EFLAGS" %}
5088   interface(REG_INTER);
5089 %}
5090 
5091 // Flags register, used as output of FLOATING POINT compare instructions
5092 operand eFlagsRegU() %{
5093   constraint(ALLOC_IN_RC(int_flags));
5094   match(RegFlags);
5095 
5096   format %{ "EFLAGS_U" %}
5097   interface(REG_INTER);
5098 %}
5099 
5100 operand eFlagsRegUCF() %{
5101   constraint(ALLOC_IN_RC(int_flags));
5102   match(RegFlags);
5103   predicate(false);
5104 
5105   format %{ "EFLAGS_U_CF" %}
5106   interface(REG_INTER);
5107 %}
5108 
5109 // Condition Code Register used by long compare
5110 operand flagsReg_long_LTGE() %{
5111   constraint(ALLOC_IN_RC(int_flags));
5112   match(RegFlags);
5113   format %{ "FLAGS_LTGE" %}
5114   interface(REG_INTER);
5115 %}
5116 operand flagsReg_long_EQNE() %{
5117   constraint(ALLOC_IN_RC(int_flags));
5118   match(RegFlags);
5119   format %{ "FLAGS_EQNE" %}
5120   interface(REG_INTER);
5121 %}
5122 operand flagsReg_long_LEGT() %{
5123   constraint(ALLOC_IN_RC(int_flags));
5124   match(RegFlags);
5125   format %{ "FLAGS_LEGT" %}
5126   interface(REG_INTER);
5127 %}
5128 
5129 // Float register operands
5130 operand regD() %{
5131   predicate( UseSSE < 2 );
5132   constraint(ALLOC_IN_RC(dbl_reg));
5133   match(RegD);
5134   match(regDPR1);
5135   match(regDPR2);
5136   format %{ %}
5137   interface(REG_INTER);
5138 %}
5139 
5140 operand regDPR1(regD reg) %{
5141   predicate( UseSSE < 2 );
5142   constraint(ALLOC_IN_RC(dbl_reg0));
5143   match(reg);
5144   format %{ "FPR1" %}
5145   interface(REG_INTER);
5146 %}
5147 
5148 operand regDPR2(regD reg) %{
5149   predicate( UseSSE < 2 );
5150   constraint(ALLOC_IN_RC(dbl_reg1));
5151   match(reg);
5152   format %{ "FPR2" %}
5153   interface(REG_INTER);
5154 %}
5155 
5156 operand regnotDPR1(regD reg) %{
5157   predicate( UseSSE < 2 );
5158   constraint(ALLOC_IN_RC(dbl_notreg0));
5159   match(reg);
5160   format %{ %}
5161   interface(REG_INTER);
5162 %}
5163 
5164 // XMM Double register operands
5165 operand regXD() %{
5166   predicate( UseSSE>=2 );
5167   constraint(ALLOC_IN_RC(xdb_reg));
5168   match(RegD);
5169   match(regXD6);
5170   match(regXD7);
5171   format %{ %}
5172   interface(REG_INTER);
5173 %}
5174 
5175 // XMM6 double register operands
5176 operand regXD6(regXD reg) %{
5177   predicate( UseSSE>=2 );
5178   constraint(ALLOC_IN_RC(xdb_reg6));
5179   match(reg);
5180   format %{ "XMM6" %}
5181   interface(REG_INTER);
5182 %}
5183 
5184 // XMM7 double register operands
5185 operand regXD7(regXD reg) %{
5186   predicate( UseSSE>=2 );
5187   constraint(ALLOC_IN_RC(xdb_reg7));
5188   match(reg);
5189   format %{ "XMM7" %}
5190   interface(REG_INTER);
5191 %}
5192 
5193 // Float register operands
5194 operand regF() %{
5195   predicate( UseSSE < 2 );
5196   constraint(ALLOC_IN_RC(flt_reg));
5197   match(RegF);
5198   match(regFPR1);
5199   format %{ %}
5200   interface(REG_INTER);
5201 %}
5202 
5203 // Float register operands
5204 operand regFPR1(regF reg) %{
5205   predicate( UseSSE < 2 );
5206   constraint(ALLOC_IN_RC(flt_reg0));
5207   match(reg);
5208   format %{ "FPR1" %}
5209   interface(REG_INTER);
5210 %}
5211 
5212 // XMM register operands
5213 operand regX() %{
5214   predicate( UseSSE>=1 );
5215   constraint(ALLOC_IN_RC(xmm_reg));
5216   match(RegF);
5217   format %{ %}
5218   interface(REG_INTER);
5219 %}
5220 
5221 
5222 //----------Memory Operands----------------------------------------------------
5223 // Direct Memory Operand
5224 operand direct(immP addr) %{
5225   match(addr);
5226 
5227   format %{ "[$addr]" %}
5228   interface(MEMORY_INTER) %{
5229     base(0xFFFFFFFF);
5230     index(0x4);
5231     scale(0x0);
5232     disp($addr);
5233   %}
5234 %}
5235 
5236 // Indirect Memory Operand
5237 operand indirect(eRegP reg) %{
5238   constraint(ALLOC_IN_RC(e_reg));
5239   match(reg);
5240 
5241   format %{ "[$reg]" %}
5242   interface(MEMORY_INTER) %{
5243     base($reg);
5244     index(0x4);
5245     scale(0x0);
5246     disp(0x0);
5247   %}
5248 %}
5249 
5250 // Indirect Memory Plus Short Offset Operand
5251 operand indOffset8(eRegP reg, immI8 off) %{
5252   match(AddP reg off);
5253 
5254   format %{ "[$reg + $off]" %}
5255   interface(MEMORY_INTER) %{
5256     base($reg);
5257     index(0x4);
5258     scale(0x0);
5259     disp($off);
5260   %}
5261 %}
5262 
5263 // Indirect Memory Plus Long Offset Operand
5264 operand indOffset32(eRegP reg, immI off) %{
5265   match(AddP reg off);
5266 
5267   format %{ "[$reg + $off]" %}
5268   interface(MEMORY_INTER) %{
5269     base($reg);
5270     index(0x4);
5271     scale(0x0);
5272     disp($off);
5273   %}
5274 %}
5275 
5276 // Indirect Memory Plus Long Offset Operand
5277 operand indOffset32X(eRegI reg, immP off) %{
5278   match(AddP off reg);
5279 
5280   format %{ "[$reg + $off]" %}
5281   interface(MEMORY_INTER) %{
5282     base($reg);
5283     index(0x4);
5284     scale(0x0);
5285     disp($off);
5286   %}
5287 %}
5288 
5289 // Indirect Memory Plus Index Register Plus Offset Operand
5290 operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
5291   match(AddP (AddP reg ireg) off);
5292 
5293   op_cost(10);
5294   format %{"[$reg + $off + $ireg]" %}
5295   interface(MEMORY_INTER) %{
5296     base($reg);
5297     index($ireg);
5298     scale(0x0);
5299     disp($off);
5300   %}
5301 %}
5302 
5303 // Indirect Memory Plus Index Register Plus Offset Operand
5304 operand indIndex(eRegP reg, eRegI ireg) %{
5305   match(AddP reg ireg);
5306 
5307   op_cost(10);
5308   format %{"[$reg + $ireg]" %}
5309   interface(MEMORY_INTER) %{
5310     base($reg);
5311     index($ireg);
5312     scale(0x0);
5313     disp(0x0);
5314   %}
5315 %}
5316 
5317 // // -------------------------------------------------------------------------
5318 // // 486 architecture doesn't support "scale * index + offset" with out a base
5319 // // -------------------------------------------------------------------------
5320 // // Scaled Memory Operands
5321 // // Indirect Memory Times Scale Plus Offset Operand
5322 // operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
5323 //   match(AddP off (LShiftI ireg scale));
5324 //
5325 //   op_cost(10);
5326 //   format %{"[$off + $ireg << $scale]" %}
5327 //   interface(MEMORY_INTER) %{
5328 //     base(0x4);
5329 //     index($ireg);
5330 //     scale($scale);
5331 //     disp($off);
5332 //   %}
5333 // %}
5334 
5335 // Indirect Memory Times Scale Plus Index Register
5336 operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
5337   match(AddP reg (LShiftI ireg scale));
5338 
5339   op_cost(10);
5340   format %{"[$reg + $ireg << $scale]" %}
5341   interface(MEMORY_INTER) %{
5342     base($reg);
5343     index($ireg);
5344     scale($scale);
5345     disp(0x0);
5346   %}
5347 %}
5348 
5349 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
5350 operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
5351   match(AddP (AddP reg (LShiftI ireg scale)) off);
5352 
5353   op_cost(10);
5354   format %{"[$reg + $off + $ireg << $scale]" %}
5355   interface(MEMORY_INTER) %{
5356     base($reg);
5357     index($ireg);
5358     scale($scale);
5359     disp($off);
5360   %}
5361 %}
5362 
5363 //----------Load Long Memory Operands------------------------------------------
5364 // The load-long idiom will use it's address expression again after loading
5365 // the first word of the long.  If the load-long destination overlaps with
5366 // registers used in the addressing expression, the 2nd half will be loaded
5367 // from a clobbered address.  Fix this by requiring that load-long use
5368 // address registers that do not overlap with the load-long target.
5369 
5370 // load-long support
5371 operand load_long_RegP() %{
5372   constraint(ALLOC_IN_RC(esi_reg));
5373   match(RegP);
5374   match(eSIRegP);
5375   op_cost(100);
5376   format %{  %}
5377   interface(REG_INTER);
5378 %}
5379 
5380 // Indirect Memory Operand Long
5381 operand load_long_indirect(load_long_RegP reg) %{
5382   constraint(ALLOC_IN_RC(esi_reg));
5383   match(reg);
5384 
5385   format %{ "[$reg]" %}
5386   interface(MEMORY_INTER) %{
5387     base($reg);
5388     index(0x4);
5389     scale(0x0);
5390     disp(0x0);
5391   %}
5392 %}
5393 
5394 // Indirect Memory Plus Long Offset Operand
5395 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
5396   match(AddP reg off);
5397 
5398   format %{ "[$reg + $off]" %}
5399   interface(MEMORY_INTER) %{
5400     base($reg);
5401     index(0x4);
5402     scale(0x0);
5403     disp($off);
5404   %}
5405 %}
5406 
5407 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
5408 
5409 
5410 //----------Special Memory Operands--------------------------------------------
5411 // Stack Slot Operand - This operand is used for loading and storing temporary
5412 //                      values on the stack where a match requires a value to
5413 //                      flow through memory.
5414 operand stackSlotP(sRegP reg) %{
5415   constraint(ALLOC_IN_RC(stack_slots));
5416   // No match rule because this operand is only generated in matching
5417   format %{ "[$reg]" %}
5418   interface(MEMORY_INTER) %{
5419     base(0x4);   // ESP
5420     index(0x4);  // No Index
5421     scale(0x0);  // No Scale
5422     disp($reg);  // Stack Offset
5423   %}
5424 %}
5425 
5426 operand stackSlotI(sRegI reg) %{
5427   constraint(ALLOC_IN_RC(stack_slots));
5428   // No match rule because this operand is only generated in matching
5429   format %{ "[$reg]" %}
5430   interface(MEMORY_INTER) %{
5431     base(0x4);   // ESP
5432     index(0x4);  // No Index
5433     scale(0x0);  // No Scale
5434     disp($reg);  // Stack Offset
5435   %}
5436 %}
5437 
5438 operand stackSlotF(sRegF reg) %{
5439   constraint(ALLOC_IN_RC(stack_slots));
5440   // No match rule because this operand is only generated in matching
5441   format %{ "[$reg]" %}
5442   interface(MEMORY_INTER) %{
5443     base(0x4);   // ESP
5444     index(0x4);  // No Index
5445     scale(0x0);  // No Scale
5446     disp($reg);  // Stack Offset
5447   %}
5448 %}
5449 
5450 operand stackSlotD(sRegD reg) %{
5451   constraint(ALLOC_IN_RC(stack_slots));
5452   // No match rule because this operand is only generated in matching
5453   format %{ "[$reg]" %}
5454   interface(MEMORY_INTER) %{
5455     base(0x4);   // ESP
5456     index(0x4);  // No Index
5457     scale(0x0);  // No Scale
5458     disp($reg);  // Stack Offset
5459   %}
5460 %}
5461 
5462 operand stackSlotL(sRegL reg) %{
5463   constraint(ALLOC_IN_RC(stack_slots));
5464   // No match rule because this operand is only generated in matching
5465   format %{ "[$reg]" %}
5466   interface(MEMORY_INTER) %{
5467     base(0x4);   // ESP
5468     index(0x4);  // No Index
5469     scale(0x0);  // No Scale
5470     disp($reg);  // Stack Offset
5471   %}
5472 %}
5473 
5474 //----------Memory Operands - Win95 Implicit Null Variants----------------
5475 // Indirect Memory Operand
5476 operand indirect_win95_safe(eRegP_no_EBP reg)
5477 %{
5478   constraint(ALLOC_IN_RC(e_reg));
5479   match(reg);
5480 
5481   op_cost(100);
5482   format %{ "[$reg]" %}
5483   interface(MEMORY_INTER) %{
5484     base($reg);
5485     index(0x4);
5486     scale(0x0);
5487     disp(0x0);
5488   %}
5489 %}
5490 
5491 // Indirect Memory Plus Short Offset Operand
5492 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
5493 %{
5494   match(AddP reg off);
5495 
5496   op_cost(100);
5497   format %{ "[$reg + $off]" %}
5498   interface(MEMORY_INTER) %{
5499     base($reg);
5500     index(0x4);
5501     scale(0x0);
5502     disp($off);
5503   %}
5504 %}
5505 
5506 // Indirect Memory Plus Long Offset Operand
5507 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
5508 %{
5509   match(AddP reg off);
5510 
5511   op_cost(100);
5512   format %{ "[$reg + $off]" %}
5513   interface(MEMORY_INTER) %{
5514     base($reg);
5515     index(0x4);
5516     scale(0x0);
5517     disp($off);
5518   %}
5519 %}
5520 
5521 // Indirect Memory Plus Index Register Plus Offset Operand
5522 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
5523 %{
5524   match(AddP (AddP reg ireg) off);
5525 
5526   op_cost(100);
5527   format %{"[$reg + $off + $ireg]" %}
5528   interface(MEMORY_INTER) %{
5529     base($reg);
5530     index($ireg);
5531     scale(0x0);
5532     disp($off);
5533   %}
5534 %}
5535 
5536 // Indirect Memory Times Scale Plus Index Register
5537 operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
5538 %{
5539   match(AddP reg (LShiftI ireg scale));
5540 
5541   op_cost(100);
5542   format %{"[$reg + $ireg << $scale]" %}
5543   interface(MEMORY_INTER) %{
5544     base($reg);
5545     index($ireg);
5546     scale($scale);
5547     disp(0x0);
5548   %}
5549 %}
5550 
5551 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
5552 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
5553 %{
5554   match(AddP (AddP reg (LShiftI ireg scale)) off);
5555 
5556   op_cost(100);
5557   format %{"[$reg + $off + $ireg << $scale]" %}
5558   interface(MEMORY_INTER) %{
5559     base($reg);
5560     index($ireg);
5561     scale($scale);
5562     disp($off);
5563   %}
5564 %}
5565 
5566 //----------Conditional Branch Operands----------------------------------------
5567 // Comparison Op  - This is the operation of the comparison, and is limited to
5568 //                  the following set of codes:
5569 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
5570 //
5571 // Other attributes of the comparison, such as unsignedness, are specified
5572 // by the comparison instruction that sets a condition code flags register.
5573 // That result is represented by a flags operand whose subtype is appropriate
5574 // to the unsignedness (etc.) of the comparison.
5575 //
5576 // Later, the instruction which matches both the Comparison Op (a Bool) and
5577 // the flags (produced by the Cmp) specifies the coding of the comparison op
5578 // by matching a specific subtype of Bool operand below, such as cmpOpU.
5579 
5580 // Comparision Code
5581 operand cmpOp() %{
5582   match(Bool);
5583 
5584   format %{ "" %}
5585   interface(COND_INTER) %{
5586     equal(0x4, "e");
5587     not_equal(0x5, "ne");
5588     less(0xC, "l");
5589     greater_equal(0xD, "ge");
5590     less_equal(0xE, "le");
5591     greater(0xF, "g");
5592   %}
5593 %}
5594 
5595 // Comparison Code, unsigned compare.  Used by FP also, with
5596 // C2 (unordered) turned into GT or LT already.  The other bits
5597 // C0 and C3 are turned into Carry & Zero flags.
5598 operand cmpOpU() %{
5599   match(Bool);
5600 
5601   format %{ "" %}
5602   interface(COND_INTER) %{
5603     equal(0x4, "e");
5604     not_equal(0x5, "ne");
5605     less(0x2, "b");
5606     greater_equal(0x3, "nb");
5607     less_equal(0x6, "be");
5608     greater(0x7, "nbe");
5609   %}
5610 %}
5611 
5612 // Floating comparisons that don't require any fixup for the unordered case
5613 operand cmpOpUCF() %{
5614   match(Bool);
5615   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
5616             n->as_Bool()->_test._test == BoolTest::ge ||
5617             n->as_Bool()->_test._test == BoolTest::le ||
5618             n->as_Bool()->_test._test == BoolTest::gt);
5619   format %{ "" %}
5620   interface(COND_INTER) %{
5621     equal(0x4, "e");
5622     not_equal(0x5, "ne");
5623     less(0x2, "b");
5624     greater_equal(0x3, "nb");
5625     less_equal(0x6, "be");
5626     greater(0x7, "nbe");
5627   %}
5628 %}
5629 
5630 
5631 // Floating comparisons that can be fixed up with extra conditional jumps
5632 operand cmpOpUCF2() %{
5633   match(Bool);
5634   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
5635             n->as_Bool()->_test._test == BoolTest::eq);
5636   format %{ "" %}
5637   interface(COND_INTER) %{
5638     equal(0x4, "e");
5639     not_equal(0x5, "ne");
5640     less(0x2, "b");
5641     greater_equal(0x3, "nb");
5642     less_equal(0x6, "be");
5643     greater(0x7, "nbe");
5644   %}
5645 %}
5646 
5647 // Comparison Code for FP conditional move
5648 operand cmpOp_fcmov() %{
5649   match(Bool);
5650 
5651   format %{ "" %}
5652   interface(COND_INTER) %{
5653     equal        (0x0C8);
5654     not_equal    (0x1C8);
5655     less         (0x0C0);
5656     greater_equal(0x1C0);
5657     less_equal   (0x0D0);
5658     greater      (0x1D0);
5659   %}
5660 %}
5661 
5662 // Comparision Code used in long compares
5663 operand cmpOp_commute() %{
5664   match(Bool);
5665 
5666   format %{ "" %}
5667   interface(COND_INTER) %{
5668     equal(0x4, "e");
5669     not_equal(0x5, "ne");
5670     less(0xF, "g");
5671     greater_equal(0xE, "le");
5672     less_equal(0xD, "ge");
5673     greater(0xC, "l");
5674   %}
5675 %}
5676 
5677 //----------OPERAND CLASSES----------------------------------------------------
5678 // Operand Classes are groups of operands that are used as to simplify
5679 // instruction definitions by not requiring the AD writer to specify separate
5680 // instructions for every form of operand when the instruction accepts
5681 // multiple operand types with the same basic encoding and format.  The classic
5682 // case of this is memory operands.
5683 
5684 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
5685                indIndex, indIndexScale, indIndexScaleOffset);
5686 
5687 // Long memory operations are encoded in 2 instructions and a +4 offset.
5688 // This means some kind of offset is always required and you cannot use
5689 // an oop as the offset (done when working on static globals).
5690 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
5691                     indIndex, indIndexScale, indIndexScaleOffset);
5692 
5693 
5694 //----------PIPELINE-----------------------------------------------------------
5695 // Rules which define the behavior of the target architectures pipeline.
5696 pipeline %{
5697 
5698 //----------ATTRIBUTES---------------------------------------------------------
5699 attributes %{
5700   variable_size_instructions;        // Fixed size instructions
5701   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
5702   instruction_unit_size = 1;         // An instruction is 1 bytes long
5703   instruction_fetch_unit_size = 16;  // The processor fetches one line
5704   instruction_fetch_units = 1;       // of 16 bytes
5705 
5706   // List of nop instructions
5707   nops( MachNop );
5708 %}
5709 
5710 //----------RESOURCES----------------------------------------------------------
5711 // Resources are the functional units available to the machine
5712 
5713 // Generic P2/P3 pipeline
5714 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
5715 // 3 instructions decoded per cycle.
5716 // 2 load/store ops per cycle, 1 branch, 1 FPU,
5717 // 2 ALU op, only ALU0 handles mul/div instructions.
5718 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
5719            MS0, MS1, MEM = MS0 | MS1,
5720            BR, FPU,
5721            ALU0, ALU1, ALU = ALU0 | ALU1 );
5722 
5723 //----------PIPELINE DESCRIPTION-----------------------------------------------
5724 // Pipeline Description specifies the stages in the machine's pipeline
5725 
5726 // Generic P2/P3 pipeline
5727 pipe_desc(S0, S1, S2, S3, S4, S5);
5728 
5729 //----------PIPELINE CLASSES---------------------------------------------------
5730 // Pipeline Classes describe the stages in which input and output are
5731 // referenced by the hardware pipeline.
5732 
5733 // Naming convention: ialu or fpu
5734 // Then: _reg
5735 // Then: _reg if there is a 2nd register
5736 // Then: _long if it's a pair of instructions implementing a long
5737 // Then: _fat if it requires the big decoder
5738 //   Or: _mem if it requires the big decoder and a memory unit.
5739 
5740 // Integer ALU reg operation
5741 pipe_class ialu_reg(eRegI dst) %{
5742     single_instruction;
5743     dst    : S4(write);
5744     dst    : S3(read);
5745     DECODE : S0;        // any decoder
5746     ALU    : S3;        // any alu
5747 %}
5748 
5749 // Long ALU reg operation
5750 pipe_class ialu_reg_long(eRegL dst) %{
5751     instruction_count(2);
5752     dst    : S4(write);
5753     dst    : S3(read);
5754     DECODE : S0(2);     // any 2 decoders
5755     ALU    : S3(2);     // both alus
5756 %}
5757 
5758 // Integer ALU reg operation using big decoder
5759 pipe_class ialu_reg_fat(eRegI dst) %{
5760     single_instruction;
5761     dst    : S4(write);
5762     dst    : S3(read);
5763     D0     : S0;        // big decoder only
5764     ALU    : S3;        // any alu
5765 %}
5766 
5767 // Long ALU reg operation using big decoder
5768 pipe_class ialu_reg_long_fat(eRegL dst) %{
5769     instruction_count(2);
5770     dst    : S4(write);
5771     dst    : S3(read);
5772     D0     : S0(2);     // big decoder only; twice
5773     ALU    : S3(2);     // any 2 alus
5774 %}
5775 
5776 // Integer ALU reg-reg operation
5777 pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
5778     single_instruction;
5779     dst    : S4(write);
5780     src    : S3(read);
5781     DECODE : S0;        // any decoder
5782     ALU    : S3;        // any alu
5783 %}
5784 
5785 // Long ALU reg-reg operation
5786 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
5787     instruction_count(2);
5788     dst    : S4(write);
5789     src    : S3(read);
5790     DECODE : S0(2);     // any 2 decoders
5791     ALU    : S3(2);     // both alus
5792 %}
5793 
5794 // Integer ALU reg-reg operation
5795 pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
5796     single_instruction;
5797     dst    : S4(write);
5798     src    : S3(read);
5799     D0     : S0;        // big decoder only
5800     ALU    : S3;        // any alu
5801 %}
5802 
5803 // Long ALU reg-reg operation
5804 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
5805     instruction_count(2);
5806     dst    : S4(write);
5807     src    : S3(read);
5808     D0     : S0(2);     // big decoder only; twice
5809     ALU    : S3(2);     // both alus
5810 %}
5811 
5812 // Integer ALU reg-mem operation
5813 pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
5814     single_instruction;
5815     dst    : S5(write);
5816     mem    : S3(read);
5817     D0     : S0;        // big decoder only
5818     ALU    : S4;        // any alu
5819     MEM    : S3;        // any mem
5820 %}
5821 
5822 // Long ALU reg-mem operation
5823 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
5824     instruction_count(2);
5825     dst    : S5(write);
5826     mem    : S3(read);
5827     D0     : S0(2);     // big decoder only; twice
5828     ALU    : S4(2);     // any 2 alus
5829     MEM    : S3(2);     // both mems
5830 %}
5831 
5832 // Integer mem operation (prefetch)
5833 pipe_class ialu_mem(memory mem)
5834 %{
5835     single_instruction;
5836     mem    : S3(read);
5837     D0     : S0;        // big decoder only
5838     MEM    : S3;        // any mem
5839 %}
5840 
5841 // Integer Store to Memory
5842 pipe_class ialu_mem_reg(memory mem, eRegI src) %{
5843     single_instruction;
5844     mem    : S3(read);
5845     src    : S5(read);
5846     D0     : S0;        // big decoder only
5847     ALU    : S4;        // any alu
5848     MEM    : S3;
5849 %}
5850 
5851 // Long Store to Memory
5852 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
5853     instruction_count(2);
5854     mem    : S3(read);
5855     src    : S5(read);
5856     D0     : S0(2);     // big decoder only; twice
5857     ALU    : S4(2);     // any 2 alus
5858     MEM    : S3(2);     // Both mems
5859 %}
5860 
5861 // Integer Store to Memory
5862 pipe_class ialu_mem_imm(memory mem) %{
5863     single_instruction;
5864     mem    : S3(read);
5865     D0     : S0;        // big decoder only
5866     ALU    : S4;        // any alu
5867     MEM    : S3;
5868 %}
5869 
5870 // Integer ALU0 reg-reg operation
5871 pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
5872     single_instruction;
5873     dst    : S4(write);
5874     src    : S3(read);
5875     D0     : S0;        // Big decoder only
5876     ALU0   : S3;        // only alu0
5877 %}
5878 
5879 // Integer ALU0 reg-mem operation
5880 pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
5881     single_instruction;
5882     dst    : S5(write);
5883     mem    : S3(read);
5884     D0     : S0;        // big decoder only
5885     ALU0   : S4;        // ALU0 only
5886     MEM    : S3;        // any mem
5887 %}
5888 
5889 // Integer ALU reg-reg operation
5890 pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
5891     single_instruction;
5892     cr     : S4(write);
5893     src1   : S3(read);
5894     src2   : S3(read);
5895     DECODE : S0;        // any decoder
5896     ALU    : S3;        // any alu
5897 %}
5898 
5899 // Integer ALU reg-imm operation
5900 pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
5901     single_instruction;
5902     cr     : S4(write);
5903     src1   : S3(read);
5904     DECODE : S0;        // any decoder
5905     ALU    : S3;        // any alu
5906 %}
5907 
5908 // Integer ALU reg-mem operation
5909 pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
5910     single_instruction;
5911     cr     : S4(write);
5912     src1   : S3(read);
5913     src2   : S3(read);
5914     D0     : S0;        // big decoder only
5915     ALU    : S4;        // any alu
5916     MEM    : S3;
5917 %}
5918 
5919 // Conditional move reg-reg
5920 pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
5921     instruction_count(4);
5922     y      : S4(read);
5923     q      : S3(read);
5924     p      : S3(read);
5925     DECODE : S0(4);     // any decoder
5926 %}
5927 
5928 // Conditional move reg-reg
5929 pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
5930     single_instruction;
5931     dst    : S4(write);
5932     src    : S3(read);
5933     cr     : S3(read);
5934     DECODE : S0;        // any decoder
5935 %}
5936 
5937 // Conditional move reg-mem
5938 pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
5939     single_instruction;
5940     dst    : S4(write);
5941     src    : S3(read);
5942     cr     : S3(read);
5943     DECODE : S0;        // any decoder
5944     MEM    : S3;
5945 %}
5946 
5947 // Conditional move reg-reg long
5948 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
5949     single_instruction;
5950     dst    : S4(write);
5951     src    : S3(read);
5952     cr     : S3(read);
5953     DECODE : S0(2);     // any 2 decoders
5954 %}
5955 
5956 // Conditional move double reg-reg
5957 pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
5958     single_instruction;
5959     dst    : S4(write);
5960     src    : S3(read);
5961     cr     : S3(read);
5962     DECODE : S0;        // any decoder
5963 %}
5964 
5965 // Float reg-reg operation
5966 pipe_class fpu_reg(regD dst) %{
5967     instruction_count(2);
5968     dst    : S3(read);
5969     DECODE : S0(2);     // any 2 decoders
5970     FPU    : S3;
5971 %}
5972 
5973 // Float reg-reg operation
5974 pipe_class fpu_reg_reg(regD dst, regD src) %{
5975     instruction_count(2);
5976     dst    : S4(write);
5977     src    : S3(read);
5978     DECODE : S0(2);     // any 2 decoders
5979     FPU    : S3;
5980 %}
5981 
5982 // Float reg-reg operation
5983 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
5984     instruction_count(3);
5985     dst    : S4(write);
5986     src1   : S3(read);
5987     src2   : S3(read);
5988     DECODE : S0(3);     // any 3 decoders
5989     FPU    : S3(2);
5990 %}
5991 
5992 // Float reg-reg operation
5993 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
5994     instruction_count(4);
5995     dst    : S4(write);
5996     src1   : S3(read);
5997     src2   : S3(read);
5998     src3   : S3(read);
5999     DECODE : S0(4);     // any 3 decoders
6000     FPU    : S3(2);
6001 %}
6002 
6003 // Float reg-reg operation
6004 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
6005     instruction_count(4);
6006     dst    : S4(write);
6007     src1   : S3(read);
6008     src2   : S3(read);
6009     src3   : S3(read);
6010     DECODE : S1(3);     // any 3 decoders
6011     D0     : S0;        // Big decoder only
6012     FPU    : S3(2);
6013     MEM    : S3;
6014 %}
6015 
6016 // Float reg-mem operation
6017 pipe_class fpu_reg_mem(regD dst, memory mem) %{
6018     instruction_count(2);
6019     dst    : S5(write);
6020     mem    : S3(read);
6021     D0     : S0;        // big decoder only
6022     DECODE : S1;        // any decoder for FPU POP
6023     FPU    : S4;
6024     MEM    : S3;        // any mem
6025 %}
6026 
6027 // Float reg-mem operation
6028 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
6029     instruction_count(3);
6030     dst    : S5(write);
6031     src1   : S3(read);
6032     mem    : S3(read);
6033     D0     : S0;        // big decoder only
6034     DECODE : S1(2);     // any decoder for FPU POP
6035     FPU    : S4;
6036     MEM    : S3;        // any mem
6037 %}
6038 
6039 // Float mem-reg operation
6040 pipe_class fpu_mem_reg(memory mem, regD src) %{
6041     instruction_count(2);
6042     src    : S5(read);
6043     mem    : S3(read);
6044     DECODE : S0;        // any decoder for FPU PUSH
6045     D0     : S1;        // big decoder only
6046     FPU    : S4;
6047     MEM    : S3;        // any mem
6048 %}
6049 
6050 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
6051     instruction_count(3);
6052     src1   : S3(read);
6053     src2   : S3(read);
6054     mem    : S3(read);
6055     DECODE : S0(2);     // any decoder for FPU PUSH
6056     D0     : S1;        // big decoder only
6057     FPU    : S4;
6058     MEM    : S3;        // any mem
6059 %}
6060 
6061 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
6062     instruction_count(3);
6063     src1   : S3(read);
6064     src2   : S3(read);
6065     mem    : S4(read);
6066     DECODE : S0;        // any decoder for FPU PUSH
6067     D0     : S0(2);     // big decoder only
6068     FPU    : S4;
6069     MEM    : S3(2);     // any mem
6070 %}
6071 
6072 pipe_class fpu_mem_mem(memory dst, memory src1) %{
6073     instruction_count(2);
6074     src1   : S3(read);
6075     dst    : S4(read);
6076     D0     : S0(2);     // big decoder only
6077     MEM    : S3(2);     // any mem
6078 %}
6079 
6080 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
6081     instruction_count(3);
6082     src1   : S3(read);
6083     src2   : S3(read);
6084     dst    : S4(read);
6085     D0     : S0(3);     // big decoder only
6086     FPU    : S4;
6087     MEM    : S3(3);     // any mem
6088 %}
6089 
6090 pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
6091     instruction_count(3);
6092     src1   : S4(read);
6093     mem    : S4(read);
6094     DECODE : S0;        // any decoder for FPU PUSH
6095     D0     : S0(2);     // big decoder only
6096     FPU    : S4;
6097     MEM    : S3(2);     // any mem
6098 %}
6099 
6100 // Float load constant
6101 pipe_class fpu_reg_con(regD dst) %{
6102     instruction_count(2);
6103     dst    : S5(write);
6104     D0     : S0;        // big decoder only for the load
6105     DECODE : S1;        // any decoder for FPU POP
6106     FPU    : S4;
6107     MEM    : S3;        // any mem
6108 %}
6109 
6110 // Float load constant
6111 pipe_class fpu_reg_reg_con(regD dst, regD src) %{
6112     instruction_count(3);
6113     dst    : S5(write);
6114     src    : S3(read);
6115     D0     : S0;        // big decoder only for the load
6116     DECODE : S1(2);     // any decoder for FPU POP
6117     FPU    : S4;
6118     MEM    : S3;        // any mem
6119 %}
6120 
6121 // UnConditional branch
6122 pipe_class pipe_jmp( label labl ) %{
6123     single_instruction;
6124     BR   : S3;
6125 %}
6126 
6127 // Conditional branch
6128 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
6129     single_instruction;
6130     cr    : S1(read);
6131     BR    : S3;
6132 %}
6133 
6134 // Allocation idiom
6135 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
6136     instruction_count(1); force_serialization;
6137     fixed_latency(6);
6138     heap_ptr : S3(read);
6139     DECODE   : S0(3);
6140     D0       : S2;
6141     MEM      : S3;
6142     ALU      : S3(2);
6143     dst      : S5(write);
6144     BR       : S5;
6145 %}
6146 
6147 // Generic big/slow expanded idiom
6148 pipe_class pipe_slow(  ) %{
6149     instruction_count(10); multiple_bundles; force_serialization;
6150     fixed_latency(100);
6151     D0  : S0(2);
6152     MEM : S3(2);
6153 %}
6154 
6155 // The real do-nothing guy
6156 pipe_class empty( ) %{
6157     instruction_count(0);
6158 %}
6159 
6160 // Define the class for the Nop node
6161 define %{
6162    MachNop = empty;
6163 %}
6164 
6165 %}
6166 
6167 //----------INSTRUCTIONS-------------------------------------------------------
6168 //
6169 // match      -- States which machine-independent subtree may be replaced
6170 //               by this instruction.
6171 // ins_cost   -- The estimated cost of this instruction is used by instruction
6172 //               selection to identify a minimum cost tree of machine
6173 //               instructions that matches a tree of machine-independent
6174 //               instructions.
6175 // format     -- A string providing the disassembly for this instruction.
6176 //               The value of an instruction's operand may be inserted
6177 //               by referring to it with a '$' prefix.
6178 // opcode     -- Three instruction opcodes may be provided.  These are referred
6179 //               to within an encode class as $primary, $secondary, and $tertiary
6180 //               respectively.  The primary opcode is commonly used to
6181 //               indicate the type of machine instruction, while secondary
6182 //               and tertiary are often used for prefix options or addressing
6183 //               modes.
6184 // ins_encode -- A list of encode classes with parameters. The encode class
6185 //               name must have been defined in an 'enc_class' specification
6186 //               in the encode section of the architecture description.
6187 
6188 //----------BSWAP-Instruction--------------------------------------------------
6189 instruct bytes_reverse_int(eRegI dst) %{
6190   match(Set dst (ReverseBytesI dst));
6191 
6192   format %{ "BSWAP  $dst" %}
6193   opcode(0x0F, 0xC8);
6194   ins_encode( OpcP, OpcSReg(dst) );
6195   ins_pipe( ialu_reg );
6196 %}
6197 
6198 instruct bytes_reverse_long(eRegL dst) %{
6199   match(Set dst (ReverseBytesL dst));
6200 
6201   format %{ "BSWAP  $dst.lo\n\t"
6202             "BSWAP  $dst.hi\n\t"
6203             "XCHG   $dst.lo $dst.hi" %}
6204 
6205   ins_cost(125);
6206   ins_encode( bswap_long_bytes(dst) );
6207   ins_pipe( ialu_reg_reg);
6208 %}
6209 
6210 
6211 //---------- Zeros Count Instructions ------------------------------------------
6212 
6213 instruct countLeadingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
6214   predicate(UseCountLeadingZerosInstruction);
6215   match(Set dst (CountLeadingZerosI src));
6216   effect(KILL cr);
6217 
6218   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
6219   ins_encode %{
6220     __ lzcntl($dst$$Register, $src$$Register);
6221   %}
6222   ins_pipe(ialu_reg);
6223 %}
6224 
6225 instruct countLeadingZerosI_bsr(eRegI dst, eRegI src, eFlagsReg cr) %{
6226   predicate(!UseCountLeadingZerosInstruction);
6227   match(Set dst (CountLeadingZerosI src));
6228   effect(KILL cr);
6229 
6230   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
6231             "JNZ    skip\n\t"
6232             "MOV    $dst, -1\n"
6233       "skip:\n\t"
6234             "NEG    $dst\n\t"
6235             "ADD    $dst, 31" %}
6236   ins_encode %{
6237     Register Rdst = $dst$$Register;
6238     Register Rsrc = $src$$Register;
6239     Label skip;
6240     __ bsrl(Rdst, Rsrc);
6241     __ jccb(Assembler::notZero, skip);
6242     __ movl(Rdst, -1);
6243     __ bind(skip);
6244     __ negl(Rdst);
6245     __ addl(Rdst, BitsPerInt - 1);
6246   %}
6247   ins_pipe(ialu_reg);
6248 %}
6249 
6250 instruct countLeadingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
6251   predicate(UseCountLeadingZerosInstruction);
6252   match(Set dst (CountLeadingZerosL src));
6253   effect(TEMP dst, KILL cr);
6254 
6255   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
6256             "JNC    done\n\t"
6257             "LZCNT  $dst, $src.lo\n\t"
6258             "ADD    $dst, 32\n"
6259       "done:" %}
6260   ins_encode %{
6261     Register Rdst = $dst$$Register;
6262     Register Rsrc = $src$$Register;
6263     Label done;
6264     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
6265     __ jccb(Assembler::carryClear, done);
6266     __ lzcntl(Rdst, Rsrc);
6267     __ addl(Rdst, BitsPerInt);
6268     __ bind(done);
6269   %}
6270   ins_pipe(ialu_reg);
6271 %}
6272 
6273 instruct countLeadingZerosL_bsr(eRegI dst, eRegL src, eFlagsReg cr) %{
6274   predicate(!UseCountLeadingZerosInstruction);
6275   match(Set dst (CountLeadingZerosL src));
6276   effect(TEMP dst, KILL cr);
6277 
6278   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
6279             "JZ     msw_is_zero\n\t"
6280             "ADD    $dst, 32\n\t"
6281             "JMP    not_zero\n"
6282       "msw_is_zero:\n\t"
6283             "BSR    $dst, $src.lo\n\t"
6284             "JNZ    not_zero\n\t"
6285             "MOV    $dst, -1\n"
6286       "not_zero:\n\t"
6287             "NEG    $dst\n\t"
6288             "ADD    $dst, 63\n" %}
6289  ins_encode %{
6290     Register Rdst = $dst$$Register;
6291     Register Rsrc = $src$$Register;
6292     Label msw_is_zero;
6293     Label not_zero;
6294     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
6295     __ jccb(Assembler::zero, msw_is_zero);
6296     __ addl(Rdst, BitsPerInt);
6297     __ jmpb(not_zero);
6298     __ bind(msw_is_zero);
6299     __ bsrl(Rdst, Rsrc);
6300     __ jccb(Assembler::notZero, not_zero);
6301     __ movl(Rdst, -1);
6302     __ bind(not_zero);
6303     __ negl(Rdst);
6304     __ addl(Rdst, BitsPerLong - 1);
6305   %}
6306   ins_pipe(ialu_reg);
6307 %}
6308 
6309 instruct countTrailingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
6310   match(Set dst (CountTrailingZerosI src));
6311   effect(KILL cr);
6312 
6313   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
6314             "JNZ    done\n\t"
6315             "MOV    $dst, 32\n"
6316       "done:" %}
6317   ins_encode %{
6318     Register Rdst = $dst$$Register;
6319     Label done;
6320     __ bsfl(Rdst, $src$$Register);
6321     __ jccb(Assembler::notZero, done);
6322     __ movl(Rdst, BitsPerInt);
6323     __ bind(done);
6324   %}
6325   ins_pipe(ialu_reg);
6326 %}
6327 
6328 instruct countTrailingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
6329   match(Set dst (CountTrailingZerosL src));
6330   effect(TEMP dst, KILL cr);
6331 
6332   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
6333             "JNZ    done\n\t"
6334             "BSF    $dst, $src.hi\n\t"
6335             "JNZ    msw_not_zero\n\t"
6336             "MOV    $dst, 32\n"
6337       "msw_not_zero:\n\t"
6338             "ADD    $dst, 32\n"
6339       "done:" %}
6340   ins_encode %{
6341     Register Rdst = $dst$$Register;
6342     Register Rsrc = $src$$Register;
6343     Label msw_not_zero;
6344     Label done;
6345     __ bsfl(Rdst, Rsrc);
6346     __ jccb(Assembler::notZero, done);
6347     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
6348     __ jccb(Assembler::notZero, msw_not_zero);
6349     __ movl(Rdst, BitsPerInt);
6350     __ bind(msw_not_zero);
6351     __ addl(Rdst, BitsPerInt);
6352     __ bind(done);
6353   %}
6354   ins_pipe(ialu_reg);
6355 %}
6356 
6357 
6358 //---------- Population Count Instructions -------------------------------------
6359 
6360 instruct popCountI(eRegI dst, eRegI src) %{
6361   predicate(UsePopCountInstruction);
6362   match(Set dst (PopCountI src));
6363 
6364   format %{ "POPCNT $dst, $src" %}
6365   ins_encode %{
6366     __ popcntl($dst$$Register, $src$$Register);
6367   %}
6368   ins_pipe(ialu_reg);
6369 %}
6370 
6371 instruct popCountI_mem(eRegI dst, memory mem) %{
6372   predicate(UsePopCountInstruction);
6373   match(Set dst (PopCountI (LoadI mem)));
6374 
6375   format %{ "POPCNT $dst, $mem" %}
6376   ins_encode %{
6377     __ popcntl($dst$$Register, $mem$$Address);
6378   %}
6379   ins_pipe(ialu_reg);
6380 %}
6381 
6382 // Note: Long.bitCount(long) returns an int.
6383 instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
6384   predicate(UsePopCountInstruction);
6385   match(Set dst (PopCountL src));
6386   effect(KILL cr, TEMP tmp, TEMP dst);
6387 
6388   format %{ "POPCNT $dst, $src.lo\n\t"
6389             "POPCNT $tmp, $src.hi\n\t"
6390             "ADD    $dst, $tmp" %}
6391   ins_encode %{
6392     __ popcntl($dst$$Register, $src$$Register);
6393     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
6394     __ addl($dst$$Register, $tmp$$Register);
6395   %}
6396   ins_pipe(ialu_reg);
6397 %}
6398 
6399 // Note: Long.bitCount(long) returns an int.
6400 instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{
6401   predicate(UsePopCountInstruction);
6402   match(Set dst (PopCountL (LoadL mem)));
6403   effect(KILL cr, TEMP tmp, TEMP dst);
6404 
6405   format %{ "POPCNT $dst, $mem\n\t"
6406             "POPCNT $tmp, $mem+4\n\t"
6407             "ADD    $dst, $tmp" %}
6408   ins_encode %{
6409     //__ popcntl($dst$$Register, $mem$$Address$$first);
6410     //__ popcntl($tmp$$Register, $mem$$Address$$second);
6411     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
6412     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
6413     __ addl($dst$$Register, $tmp$$Register);
6414   %}
6415   ins_pipe(ialu_reg);
6416 %}
6417 
6418 
6419 //----------Load/Store/Move Instructions---------------------------------------
6420 //----------Load Instructions--------------------------------------------------
6421 // Load Byte (8bit signed)
6422 instruct loadB(xRegI dst, memory mem) %{
6423   match(Set dst (LoadB mem));
6424 
6425   ins_cost(125);
6426   format %{ "MOVSX8 $dst,$mem\t# byte" %}
6427 
6428   ins_encode %{
6429     __ movsbl($dst$$Register, $mem$$Address);
6430   %}
6431 
6432   ins_pipe(ialu_reg_mem);
6433 %}
6434 
6435 // Load Byte (8bit signed) into Long Register
6436 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
6437   match(Set dst (ConvI2L (LoadB mem)));
6438   effect(KILL cr);
6439 
6440   ins_cost(375);
6441   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
6442             "MOV    $dst.hi,$dst.lo\n\t"
6443             "SAR    $dst.hi,7" %}
6444 
6445   ins_encode %{
6446     __ movsbl($dst$$Register, $mem$$Address);
6447     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6448     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
6449   %}
6450 
6451   ins_pipe(ialu_reg_mem);
6452 %}
6453 
6454 // Load Unsigned Byte (8bit UNsigned)
6455 instruct loadUB(xRegI dst, memory mem) %{
6456   match(Set dst (LoadUB mem));
6457 
6458   ins_cost(125);
6459   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
6460 
6461   ins_encode %{
6462     __ movzbl($dst$$Register, $mem$$Address);
6463   %}
6464 
6465   ins_pipe(ialu_reg_mem);
6466 %}
6467 
6468 // Load Unsigned Byte (8 bit UNsigned) into Long Register
6469 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
6470   match(Set dst (ConvI2L (LoadUB mem)));
6471   effect(KILL cr);
6472 
6473   ins_cost(250);
6474   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
6475             "XOR    $dst.hi,$dst.hi" %}
6476 
6477   ins_encode %{
6478     Register Rdst = $dst$$Register;
6479     __ movzbl(Rdst, $mem$$Address);
6480     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6481   %}
6482 
6483   ins_pipe(ialu_reg_mem);
6484 %}
6485 
6486 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
6487 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
6488   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
6489   effect(KILL cr);
6490 
6491   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
6492             "XOR    $dst.hi,$dst.hi\n\t"
6493             "AND    $dst.lo,$mask" %}
6494   ins_encode %{
6495     Register Rdst = $dst$$Register;
6496     __ movzbl(Rdst, $mem$$Address);
6497     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6498     __ andl(Rdst, $mask$$constant);
6499   %}
6500   ins_pipe(ialu_reg_mem);
6501 %}
6502 
6503 // Load Short (16bit signed)
6504 instruct loadS(eRegI dst, memory mem) %{
6505   match(Set dst (LoadS mem));
6506 
6507   ins_cost(125);
6508   format %{ "MOVSX  $dst,$mem\t# short" %}
6509 
6510   ins_encode %{
6511     __ movswl($dst$$Register, $mem$$Address);
6512   %}
6513 
6514   ins_pipe(ialu_reg_mem);
6515 %}
6516 
6517 // Load Short (16 bit signed) to Byte (8 bit signed)
6518 instruct loadS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
6519   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
6520 
6521   ins_cost(125);
6522   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
6523   ins_encode %{
6524     __ movsbl($dst$$Register, $mem$$Address);
6525   %}
6526   ins_pipe(ialu_reg_mem);
6527 %}
6528 
6529 // Load Short (16bit signed) into Long Register
6530 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
6531   match(Set dst (ConvI2L (LoadS mem)));
6532   effect(KILL cr);
6533 
6534   ins_cost(375);
6535   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
6536             "MOV    $dst.hi,$dst.lo\n\t"
6537             "SAR    $dst.hi,15" %}
6538 
6539   ins_encode %{
6540     __ movswl($dst$$Register, $mem$$Address);
6541     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6542     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
6543   %}
6544 
6545   ins_pipe(ialu_reg_mem);
6546 %}
6547 
6548 // Load Unsigned Short/Char (16bit unsigned)
6549 instruct loadUS(eRegI dst, memory mem) %{
6550   match(Set dst (LoadUS mem));
6551 
6552   ins_cost(125);
6553   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
6554 
6555   ins_encode %{
6556     __ movzwl($dst$$Register, $mem$$Address);
6557   %}
6558 
6559   ins_pipe(ialu_reg_mem);
6560 %}
6561 
6562 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
6563 instruct loadUS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
6564   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
6565 
6566   ins_cost(125);
6567   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
6568   ins_encode %{
6569     __ movsbl($dst$$Register, $mem$$Address);
6570   %}
6571   ins_pipe(ialu_reg_mem);
6572 %}
6573 
6574 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
6575 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
6576   match(Set dst (ConvI2L (LoadUS mem)));
6577   effect(KILL cr);
6578 
6579   ins_cost(250);
6580   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
6581             "XOR    $dst.hi,$dst.hi" %}
6582 
6583   ins_encode %{
6584     __ movzwl($dst$$Register, $mem$$Address);
6585     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6586   %}
6587 
6588   ins_pipe(ialu_reg_mem);
6589 %}
6590 
6591 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
6592 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6593   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
6594   effect(KILL cr);
6595 
6596   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
6597             "XOR    $dst.hi,$dst.hi" %}
6598   ins_encode %{
6599     Register Rdst = $dst$$Register;
6600     __ movzbl(Rdst, $mem$$Address);
6601     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6602   %}
6603   ins_pipe(ialu_reg_mem);
6604 %}
6605 
6606 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
6607 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
6608   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
6609   effect(KILL cr);
6610 
6611   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
6612             "XOR    $dst.hi,$dst.hi\n\t"
6613             "AND    $dst.lo,$mask" %}
6614   ins_encode %{
6615     Register Rdst = $dst$$Register;
6616     __ movzwl(Rdst, $mem$$Address);
6617     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6618     __ andl(Rdst, $mask$$constant);
6619   %}
6620   ins_pipe(ialu_reg_mem);
6621 %}
6622 
6623 // Load Integer
6624 instruct loadI(eRegI dst, memory mem) %{
6625   match(Set dst (LoadI mem));
6626 
6627   ins_cost(125);
6628   format %{ "MOV    $dst,$mem\t# int" %}
6629 
6630   ins_encode %{
6631     __ movl($dst$$Register, $mem$$Address);
6632   %}
6633 
6634   ins_pipe(ialu_reg_mem);
6635 %}
6636 
6637 // Load Integer (32 bit signed) to Byte (8 bit signed)
6638 instruct loadI2B(eRegI dst, memory mem, immI_24 twentyfour) %{
6639   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
6640 
6641   ins_cost(125);
6642   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
6643   ins_encode %{
6644     __ movsbl($dst$$Register, $mem$$Address);
6645   %}
6646   ins_pipe(ialu_reg_mem);
6647 %}
6648 
6649 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
6650 instruct loadI2UB(eRegI dst, memory mem, immI_255 mask) %{
6651   match(Set dst (AndI (LoadI mem) mask));
6652 
6653   ins_cost(125);
6654   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
6655   ins_encode %{
6656     __ movzbl($dst$$Register, $mem$$Address);
6657   %}
6658   ins_pipe(ialu_reg_mem);
6659 %}
6660 
6661 // Load Integer (32 bit signed) to Short (16 bit signed)
6662 instruct loadI2S(eRegI dst, memory mem, immI_16 sixteen) %{
6663   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
6664 
6665   ins_cost(125);
6666   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
6667   ins_encode %{
6668     __ movswl($dst$$Register, $mem$$Address);
6669   %}
6670   ins_pipe(ialu_reg_mem);
6671 %}
6672 
6673 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
6674 instruct loadI2US(eRegI dst, memory mem, immI_65535 mask) %{
6675   match(Set dst (AndI (LoadI mem) mask));
6676 
6677   ins_cost(125);
6678   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
6679   ins_encode %{
6680     __ movzwl($dst$$Register, $mem$$Address);
6681   %}
6682   ins_pipe(ialu_reg_mem);
6683 %}
6684 
6685 // Load Integer into Long Register
6686 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6687   match(Set dst (ConvI2L (LoadI mem)));
6688   effect(KILL cr);
6689 
6690   ins_cost(375);
6691   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
6692             "MOV    $dst.hi,$dst.lo\n\t"
6693             "SAR    $dst.hi,31" %}
6694 
6695   ins_encode %{
6696     __ movl($dst$$Register, $mem$$Address);
6697     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6698     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
6699   %}
6700 
6701   ins_pipe(ialu_reg_mem);
6702 %}
6703 
6704 // Load Integer with mask 0xFF into Long Register
6705 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6706   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6707   effect(KILL cr);
6708 
6709   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
6710             "XOR    $dst.hi,$dst.hi" %}
6711   ins_encode %{
6712     Register Rdst = $dst$$Register;
6713     __ movzbl(Rdst, $mem$$Address);
6714     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6715   %}
6716   ins_pipe(ialu_reg_mem);
6717 %}
6718 
6719 // Load Integer with mask 0xFFFF into Long Register
6720 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
6721   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6722   effect(KILL cr);
6723 
6724   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
6725             "XOR    $dst.hi,$dst.hi" %}
6726   ins_encode %{
6727     Register Rdst = $dst$$Register;
6728     __ movzwl(Rdst, $mem$$Address);
6729     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6730   %}
6731   ins_pipe(ialu_reg_mem);
6732 %}
6733 
6734 // Load Integer with 32-bit mask into Long Register
6735 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
6736   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6737   effect(KILL cr);
6738 
6739   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
6740             "XOR    $dst.hi,$dst.hi\n\t"
6741             "AND    $dst.lo,$mask" %}
6742   ins_encode %{
6743     Register Rdst = $dst$$Register;
6744     __ movl(Rdst, $mem$$Address);
6745     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6746     __ andl(Rdst, $mask$$constant);
6747   %}
6748   ins_pipe(ialu_reg_mem);
6749 %}
6750 
6751 // Load Unsigned Integer into Long Register
6752 instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6753   match(Set dst (LoadUI2L mem));
6754   effect(KILL cr);
6755 
6756   ins_cost(250);
6757   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
6758             "XOR    $dst.hi,$dst.hi" %}
6759 
6760   ins_encode %{
6761     __ movl($dst$$Register, $mem$$Address);
6762     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6763   %}
6764 
6765   ins_pipe(ialu_reg_mem);
6766 %}
6767 
6768 // Load Long.  Cannot clobber address while loading, so restrict address
6769 // register to ESI
6770 instruct loadL(eRegL dst, load_long_memory mem) %{
6771   predicate(!((LoadLNode*)n)->require_atomic_access());
6772   match(Set dst (LoadL mem));
6773 
6774   ins_cost(250);
6775   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
6776             "MOV    $dst.hi,$mem+4" %}
6777 
6778   ins_encode %{
6779     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
6780     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
6781     __ movl($dst$$Register, Amemlo);
6782     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
6783   %}
6784 
6785   ins_pipe(ialu_reg_long_mem);
6786 %}
6787 
6788 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
6789 // then store it down to the stack and reload on the int
6790 // side.
6791 instruct loadL_volatile(stackSlotL dst, memory mem) %{
6792   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
6793   match(Set dst (LoadL mem));
6794 
6795   ins_cost(200);
6796   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
6797             "FISTp  $dst" %}
6798   ins_encode(enc_loadL_volatile(mem,dst));
6799   ins_pipe( fpu_reg_mem );
6800 %}
6801 
6802 instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
6803   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6804   match(Set dst (LoadL mem));
6805   effect(TEMP tmp);
6806   ins_cost(180);
6807   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6808             "MOVSD  $dst,$tmp" %}
6809   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
6810   ins_pipe( pipe_slow );
6811 %}
6812 
6813 instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
6814   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6815   match(Set dst (LoadL mem));
6816   effect(TEMP tmp);
6817   ins_cost(160);
6818   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6819             "MOVD   $dst.lo,$tmp\n\t"
6820             "PSRLQ  $tmp,32\n\t"
6821             "MOVD   $dst.hi,$tmp" %}
6822   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
6823   ins_pipe( pipe_slow );
6824 %}
6825 
6826 // Load Range
6827 instruct loadRange(eRegI dst, memory mem) %{
6828   match(Set dst (LoadRange mem));
6829 
6830   ins_cost(125);
6831   format %{ "MOV    $dst,$mem" %}
6832   opcode(0x8B);
6833   ins_encode( OpcP, RegMem(dst,mem));
6834   ins_pipe( ialu_reg_mem );
6835 %}
6836 
6837 
6838 // Load Pointer
6839 instruct loadP(eRegP dst, memory mem) %{
6840   match(Set dst (LoadP mem));
6841 
6842   ins_cost(125);
6843   format %{ "MOV    $dst,$mem" %}
6844   opcode(0x8B);
6845   ins_encode( OpcP, RegMem(dst,mem));
6846   ins_pipe( ialu_reg_mem );
6847 %}
6848 
6849 // Load Klass Pointer
6850 instruct loadKlass(eRegP dst, memory mem) %{
6851   match(Set dst (LoadKlass mem));
6852 
6853   ins_cost(125);
6854   format %{ "MOV    $dst,$mem" %}
6855   opcode(0x8B);
6856   ins_encode( OpcP, RegMem(dst,mem));
6857   ins_pipe( ialu_reg_mem );
6858 %}
6859 
6860 // Load Double
6861 instruct loadD(regD dst, memory mem) %{
6862   predicate(UseSSE<=1);
6863   match(Set dst (LoadD mem));
6864 
6865   ins_cost(150);
6866   format %{ "FLD_D  ST,$mem\n\t"
6867             "FSTP   $dst" %}
6868   opcode(0xDD);               /* DD /0 */
6869   ins_encode( OpcP, RMopc_Mem(0x00,mem),
6870               Pop_Reg_D(dst) );
6871   ins_pipe( fpu_reg_mem );
6872 %}
6873 
6874 // Load Double to XMM
6875 instruct loadXD(regXD dst, memory mem) %{
6876   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
6877   match(Set dst (LoadD mem));
6878   ins_cost(145);
6879   format %{ "MOVSD  $dst,$mem" %}
6880   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
6881   ins_pipe( pipe_slow );
6882 %}
6883 
6884 instruct loadXD_partial(regXD dst, memory mem) %{
6885   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
6886   match(Set dst (LoadD mem));
6887   ins_cost(145);
6888   format %{ "MOVLPD $dst,$mem" %}
6889   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
6890   ins_pipe( pipe_slow );
6891 %}
6892 
6893 // Load to XMM register (single-precision floating point)
6894 // MOVSS instruction
6895 instruct loadX(regX dst, memory mem) %{
6896   predicate(UseSSE>=1);
6897   match(Set dst (LoadF mem));
6898   ins_cost(145);
6899   format %{ "MOVSS  $dst,$mem" %}
6900   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
6901   ins_pipe( pipe_slow );
6902 %}
6903 
6904 // Load Float
6905 instruct loadF(regF dst, memory mem) %{
6906   predicate(UseSSE==0);
6907   match(Set dst (LoadF mem));
6908 
6909   ins_cost(150);
6910   format %{ "FLD_S  ST,$mem\n\t"
6911             "FSTP   $dst" %}
6912   opcode(0xD9);               /* D9 /0 */
6913   ins_encode( OpcP, RMopc_Mem(0x00,mem),
6914               Pop_Reg_F(dst) );
6915   ins_pipe( fpu_reg_mem );
6916 %}
6917 
6918 // Load Aligned Packed Byte to XMM register
6919 instruct loadA8B(regXD dst, memory mem) %{
6920   predicate(UseSSE>=1);
6921   match(Set dst (Load8B mem));
6922   ins_cost(125);
6923   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
6924   ins_encode( movq_ld(dst, mem));
6925   ins_pipe( pipe_slow );
6926 %}
6927 
6928 // Load Aligned Packed Short to XMM register
6929 instruct loadA4S(regXD dst, memory mem) %{
6930   predicate(UseSSE>=1);
6931   match(Set dst (Load4S mem));
6932   ins_cost(125);
6933   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
6934   ins_encode( movq_ld(dst, mem));
6935   ins_pipe( pipe_slow );
6936 %}
6937 
6938 // Load Aligned Packed Char to XMM register
6939 instruct loadA4C(regXD dst, memory mem) %{
6940   predicate(UseSSE>=1);
6941   match(Set dst (Load4C mem));
6942   ins_cost(125);
6943   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
6944   ins_encode( movq_ld(dst, mem));
6945   ins_pipe( pipe_slow );
6946 %}
6947 
6948 // Load Aligned Packed Integer to XMM register
6949 instruct load2IU(regXD dst, memory mem) %{
6950   predicate(UseSSE>=1);
6951   match(Set dst (Load2I mem));
6952   ins_cost(125);
6953   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
6954   ins_encode( movq_ld(dst, mem));
6955   ins_pipe( pipe_slow );
6956 %}
6957 
6958 // Load Aligned Packed Single to XMM
6959 instruct loadA2F(regXD dst, memory mem) %{
6960   predicate(UseSSE>=1);
6961   match(Set dst (Load2F mem));
6962   ins_cost(145);
6963   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
6964   ins_encode( movq_ld(dst, mem));
6965   ins_pipe( pipe_slow );
6966 %}
6967 
6968 // Load Effective Address
6969 instruct leaP8(eRegP dst, indOffset8 mem) %{
6970   match(Set dst mem);
6971 
6972   ins_cost(110);
6973   format %{ "LEA    $dst,$mem" %}
6974   opcode(0x8D);
6975   ins_encode( OpcP, RegMem(dst,mem));
6976   ins_pipe( ialu_reg_reg_fat );
6977 %}
6978 
6979 instruct leaP32(eRegP dst, indOffset32 mem) %{
6980   match(Set dst mem);
6981 
6982   ins_cost(110);
6983   format %{ "LEA    $dst,$mem" %}
6984   opcode(0x8D);
6985   ins_encode( OpcP, RegMem(dst,mem));
6986   ins_pipe( ialu_reg_reg_fat );
6987 %}
6988 
6989 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
6990   match(Set dst mem);
6991 
6992   ins_cost(110);
6993   format %{ "LEA    $dst,$mem" %}
6994   opcode(0x8D);
6995   ins_encode( OpcP, RegMem(dst,mem));
6996   ins_pipe( ialu_reg_reg_fat );
6997 %}
6998 
6999 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
7000   match(Set dst mem);
7001 
7002   ins_cost(110);
7003   format %{ "LEA    $dst,$mem" %}
7004   opcode(0x8D);
7005   ins_encode( OpcP, RegMem(dst,mem));
7006   ins_pipe( ialu_reg_reg_fat );
7007 %}
7008 
7009 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
7010   match(Set dst mem);
7011 
7012   ins_cost(110);
7013   format %{ "LEA    $dst,$mem" %}
7014   opcode(0x8D);
7015   ins_encode( OpcP, RegMem(dst,mem));
7016   ins_pipe( ialu_reg_reg_fat );
7017 %}
7018 
7019 // Load Constant
7020 instruct loadConI(eRegI dst, immI src) %{
7021   match(Set dst src);
7022 
7023   format %{ "MOV    $dst,$src" %}
7024   ins_encode( LdImmI(dst, src) );
7025   ins_pipe( ialu_reg_fat );
7026 %}
7027 
7028 // Load Constant zero
7029 instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
7030   match(Set dst src);
7031   effect(KILL cr);
7032 
7033   ins_cost(50);
7034   format %{ "XOR    $dst,$dst" %}
7035   opcode(0x33);  /* + rd */
7036   ins_encode( OpcP, RegReg( dst, dst ) );
7037   ins_pipe( ialu_reg );
7038 %}
7039 
7040 instruct loadConP(eRegP dst, immP src) %{
7041   match(Set dst src);
7042 
7043   format %{ "MOV    $dst,$src" %}
7044   opcode(0xB8);  /* + rd */
7045   ins_encode( LdImmP(dst, src) );
7046   ins_pipe( ialu_reg_fat );
7047 %}
7048 
7049 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
7050   match(Set dst src);
7051   effect(KILL cr);
7052   ins_cost(200);
7053   format %{ "MOV    $dst.lo,$src.lo\n\t"
7054             "MOV    $dst.hi,$src.hi" %}
7055   opcode(0xB8);
7056   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
7057   ins_pipe( ialu_reg_long_fat );
7058 %}
7059 
7060 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
7061   match(Set dst src);
7062   effect(KILL cr);
7063   ins_cost(150);
7064   format %{ "XOR    $dst.lo,$dst.lo\n\t"
7065             "XOR    $dst.hi,$dst.hi" %}
7066   opcode(0x33,0x33);
7067   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
7068   ins_pipe( ialu_reg_long );
7069 %}
7070 
7071 // The instruction usage is guarded by predicate in operand immF().
7072 instruct loadConF(regF dst, immF src) %{
7073   match(Set dst src);
7074   ins_cost(125);
7075 
7076   format %{ "FLD_S  ST,$src\n\t"
7077             "FSTP   $dst" %}
7078   opcode(0xD9, 0x00);       /* D9 /0 */
7079   ins_encode(LdImmF(src), Pop_Reg_F(dst) );
7080   ins_pipe( fpu_reg_con );
7081 %}
7082 
7083 // The instruction usage is guarded by predicate in operand immXF().
7084 instruct loadConX(regX dst, immXF con) %{
7085   match(Set dst con);
7086   ins_cost(125);
7087   format %{ "MOVSS  $dst,[$con]" %}
7088   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), LdImmX(dst, con));
7089   ins_pipe( pipe_slow );
7090 %}
7091 
7092 // The instruction usage is guarded by predicate in operand immXF0().
7093 instruct loadConX0(regX dst, immXF0 src) %{
7094   match(Set dst src);
7095   ins_cost(100);
7096   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
7097   ins_encode( Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
7098   ins_pipe( pipe_slow );
7099 %}
7100 
7101 // The instruction usage is guarded by predicate in operand immD().
7102 instruct loadConD(regD dst, immD src) %{
7103   match(Set dst src);
7104   ins_cost(125);
7105 
7106   format %{ "FLD_D  ST,$src\n\t"
7107             "FSTP   $dst" %}
7108   ins_encode(LdImmD(src), Pop_Reg_D(dst) );
7109   ins_pipe( fpu_reg_con );
7110 %}
7111 
7112 // The instruction usage is guarded by predicate in operand immXD().
7113 instruct loadConXD(regXD dst, immXD con) %{
7114   match(Set dst con);
7115   ins_cost(125);
7116   format %{ "MOVSD  $dst,[$con]" %}
7117   ins_encode(load_conXD(dst, con));
7118   ins_pipe( pipe_slow );
7119 %}
7120 
7121 // The instruction usage is guarded by predicate in operand immXD0().
7122 instruct loadConXD0(regXD dst, immXD0 src) %{
7123   match(Set dst src);
7124   ins_cost(100);
7125   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
7126   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
7127   ins_pipe( pipe_slow );
7128 %}
7129 
7130 // Load Stack Slot
7131 instruct loadSSI(eRegI dst, stackSlotI src) %{
7132   match(Set dst src);
7133   ins_cost(125);
7134 
7135   format %{ "MOV    $dst,$src" %}
7136   opcode(0x8B);
7137   ins_encode( OpcP, RegMem(dst,src));
7138   ins_pipe( ialu_reg_mem );
7139 %}
7140 
7141 instruct loadSSL(eRegL dst, stackSlotL src) %{
7142   match(Set dst src);
7143 
7144   ins_cost(200);
7145   format %{ "MOV    $dst,$src.lo\n\t"
7146             "MOV    $dst+4,$src.hi" %}
7147   opcode(0x8B, 0x8B);
7148   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
7149   ins_pipe( ialu_mem_long_reg );
7150 %}
7151 
7152 // Load Stack Slot
7153 instruct loadSSP(eRegP dst, stackSlotP src) %{
7154   match(Set dst src);
7155   ins_cost(125);
7156 
7157   format %{ "MOV    $dst,$src" %}
7158   opcode(0x8B);
7159   ins_encode( OpcP, RegMem(dst,src));
7160   ins_pipe( ialu_reg_mem );
7161 %}
7162 
7163 // Load Stack Slot
7164 instruct loadSSF(regF dst, stackSlotF src) %{
7165   match(Set dst src);
7166   ins_cost(125);
7167 
7168   format %{ "FLD_S  $src\n\t"
7169             "FSTP   $dst" %}
7170   opcode(0xD9);               /* D9 /0, FLD m32real */
7171   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
7172               Pop_Reg_F(dst) );
7173   ins_pipe( fpu_reg_mem );
7174 %}
7175 
7176 // Load Stack Slot
7177 instruct loadSSD(regD dst, stackSlotD src) %{
7178   match(Set dst src);
7179   ins_cost(125);
7180 
7181   format %{ "FLD_D  $src\n\t"
7182             "FSTP   $dst" %}
7183   opcode(0xDD);               /* DD /0, FLD m64real */
7184   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
7185               Pop_Reg_D(dst) );
7186   ins_pipe( fpu_reg_mem );
7187 %}
7188 
7189 // Prefetch instructions.
7190 // Must be safe to execute with invalid address (cannot fault).
7191 
7192 instruct prefetchr0( memory mem ) %{
7193   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
7194   match(PrefetchRead mem);
7195   ins_cost(0);
7196   size(0);
7197   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
7198   ins_encode();
7199   ins_pipe(empty);
7200 %}
7201 
7202 instruct prefetchr( memory mem ) %{
7203   predicate(UseSSE==0 && VM_Version::supports_3dnow() || ReadPrefetchInstr==3);
7204   match(PrefetchRead mem);
7205   ins_cost(100);
7206 
7207   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
7208   opcode(0x0F, 0x0d);     /* Opcode 0F 0d /0 */
7209   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
7210   ins_pipe(ialu_mem);
7211 %}
7212 
7213 instruct prefetchrNTA( memory mem ) %{
7214   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
7215   match(PrefetchRead mem);
7216   ins_cost(100);
7217 
7218   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
7219   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
7220   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
7221   ins_pipe(ialu_mem);
7222 %}
7223 
7224 instruct prefetchrT0( memory mem ) %{
7225   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
7226   match(PrefetchRead mem);
7227   ins_cost(100);
7228 
7229   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
7230   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
7231   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
7232   ins_pipe(ialu_mem);
7233 %}
7234 
7235 instruct prefetchrT2( memory mem ) %{
7236   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
7237   match(PrefetchRead mem);
7238   ins_cost(100);
7239 
7240   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
7241   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
7242   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
7243   ins_pipe(ialu_mem);
7244 %}
7245 
7246 instruct prefetchw0( memory mem ) %{
7247   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
7248   match(PrefetchWrite mem);
7249   ins_cost(0);
7250   size(0);
7251   format %{ "Prefetch (non-SSE is empty encoding)" %}
7252   ins_encode();
7253   ins_pipe(empty);
7254 %}
7255 
7256 instruct prefetchw( memory mem ) %{
7257   predicate(UseSSE==0 && VM_Version::supports_3dnow() || AllocatePrefetchInstr==3);
7258   match( PrefetchWrite mem );
7259   ins_cost(100);
7260 
7261   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
7262   opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
7263   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
7264   ins_pipe(ialu_mem);
7265 %}
7266 
7267 instruct prefetchwNTA( memory mem ) %{
7268   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
7269   match(PrefetchWrite mem);
7270   ins_cost(100);
7271 
7272   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
7273   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
7274   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
7275   ins_pipe(ialu_mem);
7276 %}
7277 
7278 instruct prefetchwT0( memory mem ) %{
7279   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
7280   match(PrefetchWrite mem);
7281   ins_cost(100);
7282 
7283   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %}
7284   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
7285   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
7286   ins_pipe(ialu_mem);
7287 %}
7288 
7289 instruct prefetchwT2( memory mem ) %{
7290   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
7291   match(PrefetchWrite mem);
7292   ins_cost(100);
7293 
7294   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %}
7295   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
7296   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
7297   ins_pipe(ialu_mem);
7298 %}
7299 
7300 //----------Store Instructions-------------------------------------------------
7301 
7302 // Store Byte
7303 instruct storeB(memory mem, xRegI src) %{
7304   match(Set mem (StoreB mem src));
7305 
7306   ins_cost(125);
7307   format %{ "MOV8   $mem,$src" %}
7308   opcode(0x88);
7309   ins_encode( OpcP, RegMem( src, mem ) );
7310   ins_pipe( ialu_mem_reg );
7311 %}
7312 
7313 // Store Char/Short
7314 instruct storeC(memory mem, eRegI src) %{
7315   match(Set mem (StoreC mem src));
7316 
7317   ins_cost(125);
7318   format %{ "MOV16  $mem,$src" %}
7319   opcode(0x89, 0x66);
7320   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
7321   ins_pipe( ialu_mem_reg );
7322 %}
7323 
7324 // Store Integer
7325 instruct storeI(memory mem, eRegI src) %{
7326   match(Set mem (StoreI mem src));
7327 
7328   ins_cost(125);
7329   format %{ "MOV    $mem,$src" %}
7330   opcode(0x89);
7331   ins_encode( OpcP, RegMem( src, mem ) );
7332   ins_pipe( ialu_mem_reg );
7333 %}
7334 
7335 // Store Long
7336 instruct storeL(long_memory mem, eRegL src) %{
7337   predicate(!((StoreLNode*)n)->require_atomic_access());
7338   match(Set mem (StoreL mem src));
7339 
7340   ins_cost(200);
7341   format %{ "MOV    $mem,$src.lo\n\t"
7342             "MOV    $mem+4,$src.hi" %}
7343   opcode(0x89, 0x89);
7344   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
7345   ins_pipe( ialu_mem_long_reg );
7346 %}
7347 
7348 // Store Long to Integer
7349 instruct storeL2I(memory mem, eRegL src) %{
7350   match(Set mem (StoreI mem (ConvL2I src)));
7351 
7352   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
7353   ins_encode %{
7354     __ movl($mem$$Address, $src$$Register);
7355   %}
7356   ins_pipe(ialu_mem_reg);
7357 %}
7358 
7359 // Volatile Store Long.  Must be atomic, so move it into
7360 // the FP TOS and then do a 64-bit FIST.  Has to probe the
7361 // target address before the store (for null-ptr checks)
7362 // so the memory operand is used twice in the encoding.
7363 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
7364   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
7365   match(Set mem (StoreL mem src));
7366   effect( KILL cr );
7367   ins_cost(400);
7368   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7369             "FILD   $src\n\t"
7370             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
7371   opcode(0x3B);
7372   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
7373   ins_pipe( fpu_reg_mem );
7374 %}
7375 
7376 instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
7377   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
7378   match(Set mem (StoreL mem src));
7379   effect( TEMP tmp, KILL cr );
7380   ins_cost(380);
7381   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7382             "MOVSD  $tmp,$src\n\t"
7383             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
7384   opcode(0x3B);
7385   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
7386   ins_pipe( pipe_slow );
7387 %}
7388 
7389 instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
7390   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
7391   match(Set mem (StoreL mem src));
7392   effect( TEMP tmp2 , TEMP tmp, KILL cr );
7393   ins_cost(360);
7394   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7395             "MOVD   $tmp,$src.lo\n\t"
7396             "MOVD   $tmp2,$src.hi\n\t"
7397             "PUNPCKLDQ $tmp,$tmp2\n\t"
7398             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
7399   opcode(0x3B);
7400   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
7401   ins_pipe( pipe_slow );
7402 %}
7403 
7404 // Store Pointer; for storing unknown oops and raw pointers
7405 instruct storeP(memory mem, anyRegP src) %{
7406   match(Set mem (StoreP mem src));
7407 
7408   ins_cost(125);
7409   format %{ "MOV    $mem,$src" %}
7410   opcode(0x89);
7411   ins_encode( OpcP, RegMem( src, mem ) );
7412   ins_pipe( ialu_mem_reg );
7413 %}
7414 
7415 // Store Integer Immediate
7416 instruct storeImmI(memory mem, immI src) %{
7417   match(Set mem (StoreI mem src));
7418 
7419   ins_cost(150);
7420   format %{ "MOV    $mem,$src" %}
7421   opcode(0xC7);               /* C7 /0 */
7422   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
7423   ins_pipe( ialu_mem_imm );
7424 %}
7425 
7426 // Store Short/Char Immediate
7427 instruct storeImmI16(memory mem, immI16 src) %{
7428   predicate(UseStoreImmI16);
7429   match(Set mem (StoreC mem src));
7430 
7431   ins_cost(150);
7432   format %{ "MOV16  $mem,$src" %}
7433   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
7434   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
7435   ins_pipe( ialu_mem_imm );
7436 %}
7437 
7438 // Store Pointer Immediate; null pointers or constant oops that do not
7439 // need card-mark barriers.
7440 instruct storeImmP(memory mem, immP src) %{
7441   match(Set mem (StoreP mem src));
7442 
7443   ins_cost(150);
7444   format %{ "MOV    $mem,$src" %}
7445   opcode(0xC7);               /* C7 /0 */
7446   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
7447   ins_pipe( ialu_mem_imm );
7448 %}
7449 
7450 // Store Byte Immediate
7451 instruct storeImmB(memory mem, immI8 src) %{
7452   match(Set mem (StoreB mem src));
7453 
7454   ins_cost(150);
7455   format %{ "MOV8   $mem,$src" %}
7456   opcode(0xC6);               /* C6 /0 */
7457   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
7458   ins_pipe( ialu_mem_imm );
7459 %}
7460 
7461 // Store Aligned Packed Byte XMM register to memory
7462 instruct storeA8B(memory mem, regXD src) %{
7463   predicate(UseSSE>=1);
7464   match(Set mem (Store8B mem src));
7465   ins_cost(145);
7466   format %{ "MOVQ  $mem,$src\t! packed8B" %}
7467   ins_encode( movq_st(mem, src));
7468   ins_pipe( pipe_slow );
7469 %}
7470 
7471 // Store Aligned Packed Char/Short XMM register to memory
7472 instruct storeA4C(memory mem, regXD src) %{
7473   predicate(UseSSE>=1);
7474   match(Set mem (Store4C mem src));
7475   ins_cost(145);
7476   format %{ "MOVQ  $mem,$src\t! packed4C" %}
7477   ins_encode( movq_st(mem, src));
7478   ins_pipe( pipe_slow );
7479 %}
7480 
7481 // Store Aligned Packed Integer XMM register to memory
7482 instruct storeA2I(memory mem, regXD src) %{
7483   predicate(UseSSE>=1);
7484   match(Set mem (Store2I mem src));
7485   ins_cost(145);
7486   format %{ "MOVQ  $mem,$src\t! packed2I" %}
7487   ins_encode( movq_st(mem, src));
7488   ins_pipe( pipe_slow );
7489 %}
7490 
7491 // Store CMS card-mark Immediate
7492 instruct storeImmCM(memory mem, immI8 src) %{
7493   match(Set mem (StoreCM mem src));
7494 
7495   ins_cost(150);
7496   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
7497   opcode(0xC6);               /* C6 /0 */
7498   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
7499   ins_pipe( ialu_mem_imm );
7500 %}
7501 
7502 // Store Double
7503 instruct storeD( memory mem, regDPR1 src) %{
7504   predicate(UseSSE<=1);
7505   match(Set mem (StoreD mem src));
7506 
7507   ins_cost(100);
7508   format %{ "FST_D  $mem,$src" %}
7509   opcode(0xDD);       /* DD /2 */
7510   ins_encode( enc_FP_store(mem,src) );
7511   ins_pipe( fpu_mem_reg );
7512 %}
7513 
7514 // Store double does rounding on x86
7515 instruct storeD_rounded( memory mem, regDPR1 src) %{
7516   predicate(UseSSE<=1);
7517   match(Set mem (StoreD mem (RoundDouble src)));
7518 
7519   ins_cost(100);
7520   format %{ "FST_D  $mem,$src\t# round" %}
7521   opcode(0xDD);       /* DD /2 */
7522   ins_encode( enc_FP_store(mem,src) );
7523   ins_pipe( fpu_mem_reg );
7524 %}
7525 
7526 // Store XMM register to memory (double-precision floating points)
7527 // MOVSD instruction
7528 instruct storeXD(memory mem, regXD src) %{
7529   predicate(UseSSE>=2);
7530   match(Set mem (StoreD mem src));
7531   ins_cost(95);
7532   format %{ "MOVSD  $mem,$src" %}
7533   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
7534   ins_pipe( pipe_slow );
7535 %}
7536 
7537 // Store XMM register to memory (single-precision floating point)
7538 // MOVSS instruction
7539 instruct storeX(memory mem, regX src) %{
7540   predicate(UseSSE>=1);
7541   match(Set mem (StoreF mem src));
7542   ins_cost(95);
7543   format %{ "MOVSS  $mem,$src" %}
7544   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
7545   ins_pipe( pipe_slow );
7546 %}
7547 
7548 // Store Aligned Packed Single Float XMM register to memory
7549 instruct storeA2F(memory mem, regXD src) %{
7550   predicate(UseSSE>=1);
7551   match(Set mem (Store2F mem src));
7552   ins_cost(145);
7553   format %{ "MOVQ  $mem,$src\t! packed2F" %}
7554   ins_encode( movq_st(mem, src));
7555   ins_pipe( pipe_slow );
7556 %}
7557 
7558 // Store Float
7559 instruct storeF( memory mem, regFPR1 src) %{
7560   predicate(UseSSE==0);
7561   match(Set mem (StoreF mem src));
7562 
7563   ins_cost(100);
7564   format %{ "FST_S  $mem,$src" %}
7565   opcode(0xD9);       /* D9 /2 */
7566   ins_encode( enc_FP_store(mem,src) );
7567   ins_pipe( fpu_mem_reg );
7568 %}
7569 
7570 // Store Float does rounding on x86
7571 instruct storeF_rounded( memory mem, regFPR1 src) %{
7572   predicate(UseSSE==0);
7573   match(Set mem (StoreF mem (RoundFloat src)));
7574 
7575   ins_cost(100);
7576   format %{ "FST_S  $mem,$src\t# round" %}
7577   opcode(0xD9);       /* D9 /2 */
7578   ins_encode( enc_FP_store(mem,src) );
7579   ins_pipe( fpu_mem_reg );
7580 %}
7581 
7582 // Store Float does rounding on x86
7583 instruct storeF_Drounded( memory mem, regDPR1 src) %{
7584   predicate(UseSSE<=1);
7585   match(Set mem (StoreF mem (ConvD2F src)));
7586 
7587   ins_cost(100);
7588   format %{ "FST_S  $mem,$src\t# D-round" %}
7589   opcode(0xD9);       /* D9 /2 */
7590   ins_encode( enc_FP_store(mem,src) );
7591   ins_pipe( fpu_mem_reg );
7592 %}
7593 
7594 // Store immediate Float value (it is faster than store from FPU register)
7595 // The instruction usage is guarded by predicate in operand immF().
7596 instruct storeF_imm( memory mem, immF src) %{
7597   match(Set mem (StoreF mem src));
7598 
7599   ins_cost(50);
7600   format %{ "MOV    $mem,$src\t# store float" %}
7601   opcode(0xC7);               /* C7 /0 */
7602   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
7603   ins_pipe( ialu_mem_imm );
7604 %}
7605 
7606 // Store immediate Float value (it is faster than store from XMM register)
7607 // The instruction usage is guarded by predicate in operand immXF().
7608 instruct storeX_imm( memory mem, immXF src) %{
7609   match(Set mem (StoreF mem src));
7610 
7611   ins_cost(50);
7612   format %{ "MOV    $mem,$src\t# store float" %}
7613   opcode(0xC7);               /* C7 /0 */
7614   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32XF_as_bits( src ));
7615   ins_pipe( ialu_mem_imm );
7616 %}
7617 
7618 // Store Integer to stack slot
7619 instruct storeSSI(stackSlotI dst, eRegI src) %{
7620   match(Set dst src);
7621 
7622   ins_cost(100);
7623   format %{ "MOV    $dst,$src" %}
7624   opcode(0x89);
7625   ins_encode( OpcPRegSS( dst, src ) );
7626   ins_pipe( ialu_mem_reg );
7627 %}
7628 
7629 // Store Integer to stack slot
7630 instruct storeSSP(stackSlotP dst, eRegP src) %{
7631   match(Set dst src);
7632 
7633   ins_cost(100);
7634   format %{ "MOV    $dst,$src" %}
7635   opcode(0x89);
7636   ins_encode( OpcPRegSS( dst, src ) );
7637   ins_pipe( ialu_mem_reg );
7638 %}
7639 
7640 // Store Long to stack slot
7641 instruct storeSSL(stackSlotL dst, eRegL src) %{
7642   match(Set dst src);
7643 
7644   ins_cost(200);
7645   format %{ "MOV    $dst,$src.lo\n\t"
7646             "MOV    $dst+4,$src.hi" %}
7647   opcode(0x89, 0x89);
7648   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
7649   ins_pipe( ialu_mem_long_reg );
7650 %}
7651 
7652 //----------MemBar Instructions-----------------------------------------------
7653 // Memory barrier flavors
7654 
7655 instruct membar_acquire() %{
7656   match(MemBarAcquire);
7657   ins_cost(400);
7658 
7659   size(0);
7660   format %{ "MEMBAR-acquire ! (empty encoding)" %}
7661   ins_encode();
7662   ins_pipe(empty);
7663 %}
7664 
7665 instruct membar_acquire_lock() %{
7666   match(MemBarAcquire);
7667   predicate(Matcher::prior_fast_lock(n));
7668   ins_cost(0);
7669 
7670   size(0);
7671   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
7672   ins_encode( );
7673   ins_pipe(empty);
7674 %}
7675 
7676 instruct membar_release() %{
7677   match(MemBarRelease);
7678   ins_cost(400);
7679 
7680   size(0);
7681   format %{ "MEMBAR-release ! (empty encoding)" %}
7682   ins_encode( );
7683   ins_pipe(empty);
7684 %}
7685 
7686 instruct membar_release_lock() %{
7687   match(MemBarRelease);
7688   predicate(Matcher::post_fast_unlock(n));
7689   ins_cost(0);
7690 
7691   size(0);
7692   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
7693   ins_encode( );
7694   ins_pipe(empty);
7695 %}
7696 
7697 instruct membar_volatile(eFlagsReg cr) %{
7698   match(MemBarVolatile);
7699   effect(KILL cr);
7700   ins_cost(400);
7701 
7702   format %{ 
7703     $$template
7704     if (os::is_MP()) {
7705       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
7706     } else {
7707       $$emit$$"MEMBAR-volatile ! (empty encoding)"
7708     }
7709   %}
7710   ins_encode %{
7711     __ membar(Assembler::StoreLoad);
7712   %}
7713   ins_pipe(pipe_slow);
7714 %}
7715 
7716 instruct unnecessary_membar_volatile() %{
7717   match(MemBarVolatile);
7718   predicate(Matcher::post_store_load_barrier(n));
7719   ins_cost(0);
7720 
7721   size(0);
7722   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
7723   ins_encode( );
7724   ins_pipe(empty);
7725 %}
7726 
7727 //----------Move Instructions--------------------------------------------------
7728 instruct castX2P(eAXRegP dst, eAXRegI src) %{
7729   match(Set dst (CastX2P src));
7730   format %{ "# X2P  $dst, $src" %}
7731   ins_encode( /*empty encoding*/ );
7732   ins_cost(0);
7733   ins_pipe(empty);
7734 %}
7735 
7736 instruct castP2X(eRegI dst, eRegP src ) %{
7737   match(Set dst (CastP2X src));
7738   ins_cost(50);
7739   format %{ "MOV    $dst, $src\t# CastP2X" %}
7740   ins_encode( enc_Copy( dst, src) );
7741   ins_pipe( ialu_reg_reg );
7742 %}
7743 
7744 //----------Conditional Move---------------------------------------------------
7745 // Conditional move
7746 instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
7747   predicate(VM_Version::supports_cmov() );
7748   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7749   ins_cost(200);
7750   format %{ "CMOV$cop $dst,$src" %}
7751   opcode(0x0F,0x40);
7752   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7753   ins_pipe( pipe_cmov_reg );
7754 %}
7755 
7756 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
7757   predicate(VM_Version::supports_cmov() );
7758   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7759   ins_cost(200);
7760   format %{ "CMOV$cop $dst,$src" %}
7761   opcode(0x0F,0x40);
7762   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7763   ins_pipe( pipe_cmov_reg );
7764 %}
7765 
7766 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
7767   predicate(VM_Version::supports_cmov() );
7768   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7769   ins_cost(200);
7770   expand %{
7771     cmovI_regU(cop, cr, dst, src);
7772   %}
7773 %}
7774 
7775 // Conditional move
7776 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
7777   predicate(VM_Version::supports_cmov() );
7778   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7779   ins_cost(250);
7780   format %{ "CMOV$cop $dst,$src" %}
7781   opcode(0x0F,0x40);
7782   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7783   ins_pipe( pipe_cmov_mem );
7784 %}
7785 
7786 // Conditional move
7787 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
7788   predicate(VM_Version::supports_cmov() );
7789   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7790   ins_cost(250);
7791   format %{ "CMOV$cop $dst,$src" %}
7792   opcode(0x0F,0x40);
7793   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7794   ins_pipe( pipe_cmov_mem );
7795 %}
7796 
7797 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
7798   predicate(VM_Version::supports_cmov() );
7799   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7800   ins_cost(250);
7801   expand %{
7802     cmovI_memU(cop, cr, dst, src);
7803   %}
7804 %}
7805 
7806 // Conditional move
7807 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7808   predicate(VM_Version::supports_cmov() );
7809   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7810   ins_cost(200);
7811   format %{ "CMOV$cop $dst,$src\t# ptr" %}
7812   opcode(0x0F,0x40);
7813   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7814   ins_pipe( pipe_cmov_reg );
7815 %}
7816 
7817 // Conditional move (non-P6 version)
7818 // Note:  a CMoveP is generated for  stubs and native wrappers
7819 //        regardless of whether we are on a P6, so we
7820 //        emulate a cmov here
7821 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7822   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7823   ins_cost(300);
7824   format %{ "Jn$cop   skip\n\t"
7825           "MOV    $dst,$src\t# pointer\n"
7826       "skip:" %}
7827   opcode(0x8b);
7828   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
7829   ins_pipe( pipe_cmov_reg );
7830 %}
7831 
7832 // Conditional move
7833 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
7834   predicate(VM_Version::supports_cmov() );
7835   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7836   ins_cost(200);
7837   format %{ "CMOV$cop $dst,$src\t# ptr" %}
7838   opcode(0x0F,0x40);
7839   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7840   ins_pipe( pipe_cmov_reg );
7841 %}
7842 
7843 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
7844   predicate(VM_Version::supports_cmov() );
7845   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7846   ins_cost(200);
7847   expand %{
7848     cmovP_regU(cop, cr, dst, src);
7849   %}
7850 %}
7851 
7852 // DISABLED: Requires the ADLC to emit a bottom_type call that
7853 // correctly meets the two pointer arguments; one is an incoming
7854 // register but the other is a memory operand.  ALSO appears to
7855 // be buggy with implicit null checks.
7856 //
7857 //// Conditional move
7858 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
7859 //  predicate(VM_Version::supports_cmov() );
7860 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7861 //  ins_cost(250);
7862 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7863 //  opcode(0x0F,0x40);
7864 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7865 //  ins_pipe( pipe_cmov_mem );
7866 //%}
7867 //
7868 //// Conditional move
7869 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
7870 //  predicate(VM_Version::supports_cmov() );
7871 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7872 //  ins_cost(250);
7873 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7874 //  opcode(0x0F,0x40);
7875 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7876 //  ins_pipe( pipe_cmov_mem );
7877 //%}
7878 
7879 // Conditional move
7880 instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
7881   predicate(UseSSE<=1);
7882   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7883   ins_cost(200);
7884   format %{ "FCMOV$cop $dst,$src\t# double" %}
7885   opcode(0xDA);
7886   ins_encode( enc_cmov_d(cop,src) );
7887   ins_pipe( pipe_cmovD_reg );
7888 %}
7889 
7890 // Conditional move
7891 instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
7892   predicate(UseSSE==0);
7893   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7894   ins_cost(200);
7895   format %{ "FCMOV$cop $dst,$src\t# float" %}
7896   opcode(0xDA);
7897   ins_encode( enc_cmov_d(cop,src) );
7898   ins_pipe( pipe_cmovD_reg );
7899 %}
7900 
7901 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7902 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
7903   predicate(UseSSE<=1);
7904   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7905   ins_cost(200);
7906   format %{ "Jn$cop   skip\n\t"
7907             "MOV    $dst,$src\t# double\n"
7908       "skip:" %}
7909   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
7910   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
7911   ins_pipe( pipe_cmovD_reg );
7912 %}
7913 
7914 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7915 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
7916   predicate(UseSSE==0);
7917   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7918   ins_cost(200);
7919   format %{ "Jn$cop    skip\n\t"
7920             "MOV    $dst,$src\t# float\n"
7921       "skip:" %}
7922   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
7923   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
7924   ins_pipe( pipe_cmovD_reg );
7925 %}
7926 
7927 // No CMOVE with SSE/SSE2
7928 instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
7929   predicate (UseSSE>=1);
7930   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7931   ins_cost(200);
7932   format %{ "Jn$cop   skip\n\t"
7933             "MOVSS  $dst,$src\t# float\n"
7934       "skip:" %}
7935   ins_encode %{
7936     Label skip;
7937     // Invert sense of branch from sense of CMOV
7938     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7939     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7940     __ bind(skip);
7941   %}
7942   ins_pipe( pipe_slow );
7943 %}
7944 
7945 // No CMOVE with SSE/SSE2
7946 instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
7947   predicate (UseSSE>=2);
7948   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7949   ins_cost(200);
7950   format %{ "Jn$cop   skip\n\t"
7951             "MOVSD  $dst,$src\t# float\n"
7952       "skip:" %}
7953   ins_encode %{
7954     Label skip;
7955     // Invert sense of branch from sense of CMOV
7956     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7957     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7958     __ bind(skip);
7959   %}
7960   ins_pipe( pipe_slow );
7961 %}
7962 
7963 // unsigned version
7964 instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
7965   predicate (UseSSE>=1);
7966   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7967   ins_cost(200);
7968   format %{ "Jn$cop   skip\n\t"
7969             "MOVSS  $dst,$src\t# float\n"
7970       "skip:" %}
7971   ins_encode %{
7972     Label skip;
7973     // Invert sense of branch from sense of CMOV
7974     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7975     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7976     __ bind(skip);
7977   %}
7978   ins_pipe( pipe_slow );
7979 %}
7980 
7981 instruct fcmovX_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regX dst, regX src) %{
7982   predicate (UseSSE>=1);
7983   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7984   ins_cost(200);
7985   expand %{
7986     fcmovX_regU(cop, cr, dst, src);
7987   %}
7988 %}
7989 
7990 // unsigned version
7991 instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
7992   predicate (UseSSE>=2);
7993   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7994   ins_cost(200);
7995   format %{ "Jn$cop   skip\n\t"
7996             "MOVSD  $dst,$src\t# float\n"
7997       "skip:" %}
7998   ins_encode %{
7999     Label skip;
8000     // Invert sense of branch from sense of CMOV
8001     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8002     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
8003     __ bind(skip);
8004   %}
8005   ins_pipe( pipe_slow );
8006 %}
8007 
8008 instruct fcmovXD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regXD dst, regXD src) %{
8009   predicate (UseSSE>=2);
8010   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8011   ins_cost(200);
8012   expand %{
8013     fcmovXD_regU(cop, cr, dst, src);
8014   %}
8015 %}
8016 
8017 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
8018   predicate(VM_Version::supports_cmov() );
8019   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
8020   ins_cost(200);
8021   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
8022             "CMOV$cop $dst.hi,$src.hi" %}
8023   opcode(0x0F,0x40);
8024   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
8025   ins_pipe( pipe_cmov_reg_long );
8026 %}
8027 
8028 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
8029   predicate(VM_Version::supports_cmov() );
8030   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
8031   ins_cost(200);
8032   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
8033             "CMOV$cop $dst.hi,$src.hi" %}
8034   opcode(0x0F,0x40);
8035   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
8036   ins_pipe( pipe_cmov_reg_long );
8037 %}
8038 
8039 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
8040   predicate(VM_Version::supports_cmov() );
8041   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
8042   ins_cost(200);
8043   expand %{
8044     cmovL_regU(cop, cr, dst, src);
8045   %}
8046 %}
8047 
8048 //----------Arithmetic Instructions--------------------------------------------
8049 //----------Addition Instructions----------------------------------------------
8050 // Integer Addition Instructions
8051 instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8052   match(Set dst (AddI dst src));
8053   effect(KILL cr);
8054 
8055   size(2);
8056   format %{ "ADD    $dst,$src" %}
8057   opcode(0x03);
8058   ins_encode( OpcP, RegReg( dst, src) );
8059   ins_pipe( ialu_reg_reg );
8060 %}
8061 
8062 instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8063   match(Set dst (AddI dst src));
8064   effect(KILL cr);
8065 
8066   format %{ "ADD    $dst,$src" %}
8067   opcode(0x81, 0x00); /* /0 id */
8068   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8069   ins_pipe( ialu_reg );
8070 %}
8071 
8072 instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
8073   predicate(UseIncDec);
8074   match(Set dst (AddI dst src));
8075   effect(KILL cr);
8076 
8077   size(1);
8078   format %{ "INC    $dst" %}
8079   opcode(0x40); /*  */
8080   ins_encode( Opc_plus( primary, dst ) );
8081   ins_pipe( ialu_reg );
8082 %}
8083 
8084 instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
8085   match(Set dst (AddI src0 src1));
8086   ins_cost(110);
8087 
8088   format %{ "LEA    $dst,[$src0 + $src1]" %}
8089   opcode(0x8D); /* 0x8D /r */
8090   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
8091   ins_pipe( ialu_reg_reg );
8092 %}
8093 
8094 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
8095   match(Set dst (AddP src0 src1));
8096   ins_cost(110);
8097 
8098   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
8099   opcode(0x8D); /* 0x8D /r */
8100   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
8101   ins_pipe( ialu_reg_reg );
8102 %}
8103 
8104 instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
8105   predicate(UseIncDec);
8106   match(Set dst (AddI dst src));
8107   effect(KILL cr);
8108 
8109   size(1);
8110   format %{ "DEC    $dst" %}
8111   opcode(0x48); /*  */
8112   ins_encode( Opc_plus( primary, dst ) );
8113   ins_pipe( ialu_reg );
8114 %}
8115 
8116 instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
8117   match(Set dst (AddP dst src));
8118   effect(KILL cr);
8119 
8120   size(2);
8121   format %{ "ADD    $dst,$src" %}
8122   opcode(0x03);
8123   ins_encode( OpcP, RegReg( dst, src) );
8124   ins_pipe( ialu_reg_reg );
8125 %}
8126 
8127 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
8128   match(Set dst (AddP dst src));
8129   effect(KILL cr);
8130 
8131   format %{ "ADD    $dst,$src" %}
8132   opcode(0x81,0x00); /* Opcode 81 /0 id */
8133   // ins_encode( RegImm( dst, src) );
8134   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8135   ins_pipe( ialu_reg );
8136 %}
8137 
8138 instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8139   match(Set dst (AddI dst (LoadI src)));
8140   effect(KILL cr);
8141 
8142   ins_cost(125);
8143   format %{ "ADD    $dst,$src" %}
8144   opcode(0x03);
8145   ins_encode( OpcP, RegMem( dst, src) );
8146   ins_pipe( ialu_reg_mem );
8147 %}
8148 
8149 instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8150   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8151   effect(KILL cr);
8152 
8153   ins_cost(150);
8154   format %{ "ADD    $dst,$src" %}
8155   opcode(0x01);  /* Opcode 01 /r */
8156   ins_encode( OpcP, RegMem( src, dst ) );
8157   ins_pipe( ialu_mem_reg );
8158 %}
8159 
8160 // Add Memory with Immediate
8161 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8162   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8163   effect(KILL cr);
8164 
8165   ins_cost(125);
8166   format %{ "ADD    $dst,$src" %}
8167   opcode(0x81);               /* Opcode 81 /0 id */
8168   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
8169   ins_pipe( ialu_mem_imm );
8170 %}
8171 
8172 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
8173   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8174   effect(KILL cr);
8175 
8176   ins_cost(125);
8177   format %{ "INC    $dst" %}
8178   opcode(0xFF);               /* Opcode FF /0 */
8179   ins_encode( OpcP, RMopc_Mem(0x00,dst));
8180   ins_pipe( ialu_mem_imm );
8181 %}
8182 
8183 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
8184   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8185   effect(KILL cr);
8186 
8187   ins_cost(125);
8188   format %{ "DEC    $dst" %}
8189   opcode(0xFF);               /* Opcode FF /1 */
8190   ins_encode( OpcP, RMopc_Mem(0x01,dst));
8191   ins_pipe( ialu_mem_imm );
8192 %}
8193 
8194 
8195 instruct checkCastPP( eRegP dst ) %{
8196   match(Set dst (CheckCastPP dst));
8197 
8198   size(0);
8199   format %{ "#checkcastPP of $dst" %}
8200   ins_encode( /*empty encoding*/ );
8201   ins_pipe( empty );
8202 %}
8203 
8204 instruct castPP( eRegP dst ) %{
8205   match(Set dst (CastPP dst));
8206   format %{ "#castPP of $dst" %}
8207   ins_encode( /*empty encoding*/ );
8208   ins_pipe( empty );
8209 %}
8210 
8211 instruct castII( eRegI dst ) %{
8212   match(Set dst (CastII dst));
8213   format %{ "#castII of $dst" %}
8214   ins_encode( /*empty encoding*/ );
8215   ins_cost(0);
8216   ins_pipe( empty );
8217 %}
8218 
8219 
8220 // Load-locked - same as a regular pointer load when used with compare-swap
8221 instruct loadPLocked(eRegP dst, memory mem) %{
8222   match(Set dst (LoadPLocked mem));
8223 
8224   ins_cost(125);
8225   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
8226   opcode(0x8B);
8227   ins_encode( OpcP, RegMem(dst,mem));
8228   ins_pipe( ialu_reg_mem );
8229 %}
8230 
8231 // LoadLong-locked - same as a volatile long load when used with compare-swap
8232 instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
8233   predicate(UseSSE<=1);
8234   match(Set dst (LoadLLocked mem));
8235 
8236   ins_cost(200);
8237   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
8238             "FISTp  $dst" %}
8239   ins_encode(enc_loadL_volatile(mem,dst));
8240   ins_pipe( fpu_reg_mem );
8241 %}
8242 
8243 instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
8244   predicate(UseSSE>=2);
8245   match(Set dst (LoadLLocked mem));
8246   effect(TEMP tmp);
8247   ins_cost(180);
8248   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
8249             "MOVSD  $dst,$tmp" %}
8250   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
8251   ins_pipe( pipe_slow );
8252 %}
8253 
8254 instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
8255   predicate(UseSSE>=2);
8256   match(Set dst (LoadLLocked mem));
8257   effect(TEMP tmp);
8258   ins_cost(160);
8259   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
8260             "MOVD   $dst.lo,$tmp\n\t"
8261             "PSRLQ  $tmp,32\n\t"
8262             "MOVD   $dst.hi,$tmp" %}
8263   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
8264   ins_pipe( pipe_slow );
8265 %}
8266 
8267 // Conditional-store of the updated heap-top.
8268 // Used during allocation of the shared heap.
8269 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
8270 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
8271   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
8272   // EAX is killed if there is contention, but then it's also unused.
8273   // In the common case of no contention, EAX holds the new oop address.
8274   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
8275   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
8276   ins_pipe( pipe_cmpxchg );
8277 %}
8278 
8279 // Conditional-store of an int value.
8280 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
8281 instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
8282   match(Set cr (StoreIConditional mem (Binary oldval newval)));
8283   effect(KILL oldval);
8284   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
8285   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
8286   ins_pipe( pipe_cmpxchg );
8287 %}
8288 
8289 // Conditional-store of a long value.
8290 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
8291 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
8292   match(Set cr (StoreLConditional mem (Binary oldval newval)));
8293   effect(KILL oldval);
8294   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
8295             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
8296             "XCHG   EBX,ECX"
8297   %}
8298   ins_encode %{
8299     // Note: we need to swap rbx, and rcx before and after the
8300     //       cmpxchg8 instruction because the instruction uses
8301     //       rcx as the high order word of the new value to store but
8302     //       our register encoding uses rbx.
8303     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
8304     if( os::is_MP() )
8305       __ lock();
8306     __ cmpxchg8($mem$$Address);
8307     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
8308   %}
8309   ins_pipe( pipe_cmpxchg );
8310 %}
8311 
8312 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
8313 
8314 instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
8315   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
8316   effect(KILL cr, KILL oldval);
8317   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
8318             "MOV    $res,0\n\t"
8319             "JNE,s  fail\n\t"
8320             "MOV    $res,1\n"
8321           "fail:" %}
8322   ins_encode( enc_cmpxchg8(mem_ptr),
8323               enc_flags_ne_to_boolean(res) );
8324   ins_pipe( pipe_cmpxchg );
8325 %}
8326 
8327 instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
8328   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
8329   effect(KILL cr, KILL oldval);
8330   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
8331             "MOV    $res,0\n\t"
8332             "JNE,s  fail\n\t"
8333             "MOV    $res,1\n"
8334           "fail:" %}
8335   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
8336   ins_pipe( pipe_cmpxchg );
8337 %}
8338 
8339 instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
8340   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
8341   effect(KILL cr, KILL oldval);
8342   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
8343             "MOV    $res,0\n\t"
8344             "JNE,s  fail\n\t"
8345             "MOV    $res,1\n"
8346           "fail:" %}
8347   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
8348   ins_pipe( pipe_cmpxchg );
8349 %}
8350 
8351 //----------Subtraction Instructions-------------------------------------------
8352 // Integer Subtraction Instructions
8353 instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8354   match(Set dst (SubI dst src));
8355   effect(KILL cr);
8356 
8357   size(2);
8358   format %{ "SUB    $dst,$src" %}
8359   opcode(0x2B);
8360   ins_encode( OpcP, RegReg( dst, src) );
8361   ins_pipe( ialu_reg_reg );
8362 %}
8363 
8364 instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8365   match(Set dst (SubI dst src));
8366   effect(KILL cr);
8367 
8368   format %{ "SUB    $dst,$src" %}
8369   opcode(0x81,0x05);  /* Opcode 81 /5 */
8370   // ins_encode( RegImm( dst, src) );
8371   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8372   ins_pipe( ialu_reg );
8373 %}
8374 
8375 instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8376   match(Set dst (SubI dst (LoadI src)));
8377   effect(KILL cr);
8378 
8379   ins_cost(125);
8380   format %{ "SUB    $dst,$src" %}
8381   opcode(0x2B);
8382   ins_encode( OpcP, RegMem( dst, src) );
8383   ins_pipe( ialu_reg_mem );
8384 %}
8385 
8386 instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8387   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
8388   effect(KILL cr);
8389 
8390   ins_cost(150);
8391   format %{ "SUB    $dst,$src" %}
8392   opcode(0x29);  /* Opcode 29 /r */
8393   ins_encode( OpcP, RegMem( src, dst ) );
8394   ins_pipe( ialu_mem_reg );
8395 %}
8396 
8397 // Subtract from a pointer
8398 instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
8399   match(Set dst (AddP dst (SubI zero src)));
8400   effect(KILL cr);
8401 
8402   size(2);
8403   format %{ "SUB    $dst,$src" %}
8404   opcode(0x2B);
8405   ins_encode( OpcP, RegReg( dst, src) );
8406   ins_pipe( ialu_reg_reg );
8407 %}
8408 
8409 instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
8410   match(Set dst (SubI zero dst));
8411   effect(KILL cr);
8412 
8413   size(2);
8414   format %{ "NEG    $dst" %}
8415   opcode(0xF7,0x03);  // Opcode F7 /3
8416   ins_encode( OpcP, RegOpc( dst ) );
8417   ins_pipe( ialu_reg );
8418 %}
8419 
8420 
8421 //----------Multiplication/Division Instructions-------------------------------
8422 // Integer Multiplication Instructions
8423 // Multiply Register
8424 instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8425   match(Set dst (MulI dst src));
8426   effect(KILL cr);
8427 
8428   size(3);
8429   ins_cost(300);
8430   format %{ "IMUL   $dst,$src" %}
8431   opcode(0xAF, 0x0F);
8432   ins_encode( OpcS, OpcP, RegReg( dst, src) );
8433   ins_pipe( ialu_reg_reg_alu0 );
8434 %}
8435 
8436 // Multiply 32-bit Immediate
8437 instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
8438   match(Set dst (MulI src imm));
8439   effect(KILL cr);
8440 
8441   ins_cost(300);
8442   format %{ "IMUL   $dst,$src,$imm" %}
8443   opcode(0x69);  /* 69 /r id */
8444   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
8445   ins_pipe( ialu_reg_reg_alu0 );
8446 %}
8447 
8448 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
8449   match(Set dst src);
8450   effect(KILL cr);
8451 
8452   // Note that this is artificially increased to make it more expensive than loadConL
8453   ins_cost(250);
8454   format %{ "MOV    EAX,$src\t// low word only" %}
8455   opcode(0xB8);
8456   ins_encode( LdImmL_Lo(dst, src) );
8457   ins_pipe( ialu_reg_fat );
8458 %}
8459 
8460 // Multiply by 32-bit Immediate, taking the shifted high order results
8461 //  (special case for shift by 32)
8462 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
8463   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
8464   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
8465              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
8466              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
8467   effect(USE src1, KILL cr);
8468 
8469   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8470   ins_cost(0*100 + 1*400 - 150);
8471   format %{ "IMUL   EDX:EAX,$src1" %}
8472   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8473   ins_pipe( pipe_slow );
8474 %}
8475 
8476 // Multiply by 32-bit Immediate, taking the shifted high order results
8477 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
8478   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
8479   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
8480              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
8481              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
8482   effect(USE src1, KILL cr);
8483 
8484   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8485   ins_cost(1*100 + 1*400 - 150);
8486   format %{ "IMUL   EDX:EAX,$src1\n\t"
8487             "SAR    EDX,$cnt-32" %}
8488   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8489   ins_pipe( pipe_slow );
8490 %}
8491 
8492 // Multiply Memory 32-bit Immediate
8493 instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
8494   match(Set dst (MulI (LoadI src) imm));
8495   effect(KILL cr);
8496 
8497   ins_cost(300);
8498   format %{ "IMUL   $dst,$src,$imm" %}
8499   opcode(0x69);  /* 69 /r id */
8500   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
8501   ins_pipe( ialu_reg_mem_alu0 );
8502 %}
8503 
8504 // Multiply Memory
8505 instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
8506   match(Set dst (MulI dst (LoadI src)));
8507   effect(KILL cr);
8508 
8509   ins_cost(350);
8510   format %{ "IMUL   $dst,$src" %}
8511   opcode(0xAF, 0x0F);
8512   ins_encode( OpcS, OpcP, RegMem( dst, src) );
8513   ins_pipe( ialu_reg_mem_alu0 );
8514 %}
8515 
8516 // Multiply Register Int to Long
8517 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
8518   // Basic Idea: long = (long)int * (long)int
8519   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
8520   effect(DEF dst, USE src, USE src1, KILL flags);
8521 
8522   ins_cost(300);
8523   format %{ "IMUL   $dst,$src1" %}
8524 
8525   ins_encode( long_int_multiply( dst, src1 ) );
8526   ins_pipe( ialu_reg_reg_alu0 );
8527 %}
8528 
8529 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
8530   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
8531   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
8532   effect(KILL flags);
8533 
8534   ins_cost(300);
8535   format %{ "MUL    $dst,$src1" %}
8536 
8537   ins_encode( long_uint_multiply(dst, src1) );
8538   ins_pipe( ialu_reg_reg_alu0 );
8539 %}
8540 
8541 // Multiply Register Long
8542 instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
8543   match(Set dst (MulL dst src));
8544   effect(KILL cr, TEMP tmp);
8545   ins_cost(4*100+3*400);
8546 // Basic idea: lo(result) = lo(x_lo * y_lo)
8547 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
8548   format %{ "MOV    $tmp,$src.lo\n\t"
8549             "IMUL   $tmp,EDX\n\t"
8550             "MOV    EDX,$src.hi\n\t"
8551             "IMUL   EDX,EAX\n\t"
8552             "ADD    $tmp,EDX\n\t"
8553             "MUL    EDX:EAX,$src.lo\n\t"
8554             "ADD    EDX,$tmp" %}
8555   ins_encode( long_multiply( dst, src, tmp ) );
8556   ins_pipe( pipe_slow );
8557 %}
8558 
8559 // Multiply Register Long by small constant
8560 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
8561   match(Set dst (MulL dst src));
8562   effect(KILL cr, TEMP tmp);
8563   ins_cost(2*100+2*400);
8564   size(12);
8565 // Basic idea: lo(result) = lo(src * EAX)
8566 //             hi(result) = hi(src * EAX) + lo(src * EDX)
8567   format %{ "IMUL   $tmp,EDX,$src\n\t"
8568             "MOV    EDX,$src\n\t"
8569             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
8570             "ADD    EDX,$tmp" %}
8571   ins_encode( long_multiply_con( dst, src, tmp ) );
8572   ins_pipe( pipe_slow );
8573 %}
8574 
8575 // Integer DIV with Register
8576 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8577   match(Set rax (DivI rax div));
8578   effect(KILL rdx, KILL cr);
8579   size(26);
8580   ins_cost(30*100+10*100);
8581   format %{ "CMP    EAX,0x80000000\n\t"
8582             "JNE,s  normal\n\t"
8583             "XOR    EDX,EDX\n\t"
8584             "CMP    ECX,-1\n\t"
8585             "JE,s   done\n"
8586     "normal: CDQ\n\t"
8587             "IDIV   $div\n\t"
8588     "done:"        %}
8589   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8590   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8591   ins_pipe( ialu_reg_reg_alu0 );
8592 %}
8593 
8594 // Divide Register Long
8595 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8596   match(Set dst (DivL src1 src2));
8597   effect( KILL cr, KILL cx, KILL bx );
8598   ins_cost(10000);
8599   format %{ "PUSH   $src1.hi\n\t"
8600             "PUSH   $src1.lo\n\t"
8601             "PUSH   $src2.hi\n\t"
8602             "PUSH   $src2.lo\n\t"
8603             "CALL   SharedRuntime::ldiv\n\t"
8604             "ADD    ESP,16" %}
8605   ins_encode( long_div(src1,src2) );
8606   ins_pipe( pipe_slow );
8607 %}
8608 
8609 // Integer DIVMOD with Register, both quotient and mod results
8610 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8611   match(DivModI rax div);
8612   effect(KILL cr);
8613   size(26);
8614   ins_cost(30*100+10*100);
8615   format %{ "CMP    EAX,0x80000000\n\t"
8616             "JNE,s  normal\n\t"
8617             "XOR    EDX,EDX\n\t"
8618             "CMP    ECX,-1\n\t"
8619             "JE,s   done\n"
8620     "normal: CDQ\n\t"
8621             "IDIV   $div\n\t"
8622     "done:"        %}
8623   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8624   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8625   ins_pipe( pipe_slow );
8626 %}
8627 
8628 // Integer MOD with Register
8629 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
8630   match(Set rdx (ModI rax div));
8631   effect(KILL rax, KILL cr);
8632 
8633   size(26);
8634   ins_cost(300);
8635   format %{ "CDQ\n\t"
8636             "IDIV   $div" %}
8637   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8638   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8639   ins_pipe( ialu_reg_reg_alu0 );
8640 %}
8641 
8642 // Remainder Register Long
8643 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8644   match(Set dst (ModL src1 src2));
8645   effect( KILL cr, KILL cx, KILL bx );
8646   ins_cost(10000);
8647   format %{ "PUSH   $src1.hi\n\t"
8648             "PUSH   $src1.lo\n\t"
8649             "PUSH   $src2.hi\n\t"
8650             "PUSH   $src2.lo\n\t"
8651             "CALL   SharedRuntime::lrem\n\t"
8652             "ADD    ESP,16" %}
8653   ins_encode( long_mod(src1,src2) );
8654   ins_pipe( pipe_slow );
8655 %}
8656 
8657 // Integer Shift Instructions
8658 // Shift Left by one
8659 instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8660   match(Set dst (LShiftI dst shift));
8661   effect(KILL cr);
8662 
8663   size(2);
8664   format %{ "SHL    $dst,$shift" %}
8665   opcode(0xD1, 0x4);  /* D1 /4 */
8666   ins_encode( OpcP, RegOpc( dst ) );
8667   ins_pipe( ialu_reg );
8668 %}
8669 
8670 // Shift Left by 8-bit immediate
8671 instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
8672   match(Set dst (LShiftI dst shift));
8673   effect(KILL cr);
8674 
8675   size(3);
8676   format %{ "SHL    $dst,$shift" %}
8677   opcode(0xC1, 0x4);  /* C1 /4 ib */
8678   ins_encode( RegOpcImm( dst, shift) );
8679   ins_pipe( ialu_reg );
8680 %}
8681 
8682 // Shift Left by variable
8683 instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
8684   match(Set dst (LShiftI dst shift));
8685   effect(KILL cr);
8686 
8687   size(2);
8688   format %{ "SHL    $dst,$shift" %}
8689   opcode(0xD3, 0x4);  /* D3 /4 */
8690   ins_encode( OpcP, RegOpc( dst ) );
8691   ins_pipe( ialu_reg_reg );
8692 %}
8693 
8694 // Arithmetic shift right by one
8695 instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8696   match(Set dst (RShiftI dst shift));
8697   effect(KILL cr);
8698 
8699   size(2);
8700   format %{ "SAR    $dst,$shift" %}
8701   opcode(0xD1, 0x7);  /* D1 /7 */
8702   ins_encode( OpcP, RegOpc( dst ) );
8703   ins_pipe( ialu_reg );
8704 %}
8705 
8706 // Arithmetic shift right by one
8707 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
8708   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8709   effect(KILL cr);
8710   format %{ "SAR    $dst,$shift" %}
8711   opcode(0xD1, 0x7);  /* D1 /7 */
8712   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
8713   ins_pipe( ialu_mem_imm );
8714 %}
8715 
8716 // Arithmetic Shift Right by 8-bit immediate
8717 instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
8718   match(Set dst (RShiftI dst shift));
8719   effect(KILL cr);
8720 
8721   size(3);
8722   format %{ "SAR    $dst,$shift" %}
8723   opcode(0xC1, 0x7);  /* C1 /7 ib */
8724   ins_encode( RegOpcImm( dst, shift ) );
8725   ins_pipe( ialu_mem_imm );
8726 %}
8727 
8728 // Arithmetic Shift Right by 8-bit immediate
8729 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
8730   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8731   effect(KILL cr);
8732 
8733   format %{ "SAR    $dst,$shift" %}
8734   opcode(0xC1, 0x7);  /* C1 /7 ib */
8735   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
8736   ins_pipe( ialu_mem_imm );
8737 %}
8738 
8739 // Arithmetic Shift Right by variable
8740 instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
8741   match(Set dst (RShiftI dst shift));
8742   effect(KILL cr);
8743 
8744   size(2);
8745   format %{ "SAR    $dst,$shift" %}
8746   opcode(0xD3, 0x7);  /* D3 /7 */
8747   ins_encode( OpcP, RegOpc( dst ) );
8748   ins_pipe( ialu_reg_reg );
8749 %}
8750 
8751 // Logical shift right by one
8752 instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8753   match(Set dst (URShiftI dst shift));
8754   effect(KILL cr);
8755 
8756   size(2);
8757   format %{ "SHR    $dst,$shift" %}
8758   opcode(0xD1, 0x5);  /* D1 /5 */
8759   ins_encode( OpcP, RegOpc( dst ) );
8760   ins_pipe( ialu_reg );
8761 %}
8762 
8763 // Logical Shift Right by 8-bit immediate
8764 instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
8765   match(Set dst (URShiftI dst shift));
8766   effect(KILL cr);
8767 
8768   size(3);
8769   format %{ "SHR    $dst,$shift" %}
8770   opcode(0xC1, 0x5);  /* C1 /5 ib */
8771   ins_encode( RegOpcImm( dst, shift) );
8772   ins_pipe( ialu_reg );
8773 %}
8774 
8775 
8776 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8777 // This idiom is used by the compiler for the i2b bytecode.
8778 instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour) %{
8779   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8780 
8781   size(3);
8782   format %{ "MOVSX  $dst,$src :8" %}
8783   ins_encode %{
8784     __ movsbl($dst$$Register, $src$$Register);
8785   %}
8786   ins_pipe(ialu_reg_reg);
8787 %}
8788 
8789 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8790 // This idiom is used by the compiler the i2s bytecode.
8791 instruct i2s(eRegI dst, xRegI src, immI_16 sixteen) %{
8792   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8793 
8794   size(3);
8795   format %{ "MOVSX  $dst,$src :16" %}
8796   ins_encode %{
8797     __ movswl($dst$$Register, $src$$Register);
8798   %}
8799   ins_pipe(ialu_reg_reg);
8800 %}
8801 
8802 
8803 // Logical Shift Right by variable
8804 instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
8805   match(Set dst (URShiftI dst shift));
8806   effect(KILL cr);
8807 
8808   size(2);
8809   format %{ "SHR    $dst,$shift" %}
8810   opcode(0xD3, 0x5);  /* D3 /5 */
8811   ins_encode( OpcP, RegOpc( dst ) );
8812   ins_pipe( ialu_reg_reg );
8813 %}
8814 
8815 
8816 //----------Logical Instructions-----------------------------------------------
8817 //----------Integer Logical Instructions---------------------------------------
8818 // And Instructions
8819 // And Register with Register
8820 instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8821   match(Set dst (AndI dst src));
8822   effect(KILL cr);
8823 
8824   size(2);
8825   format %{ "AND    $dst,$src" %}
8826   opcode(0x23);
8827   ins_encode( OpcP, RegReg( dst, src) );
8828   ins_pipe( ialu_reg_reg );
8829 %}
8830 
8831 // And Register with Immediate
8832 instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8833   match(Set dst (AndI dst src));
8834   effect(KILL cr);
8835 
8836   format %{ "AND    $dst,$src" %}
8837   opcode(0x81,0x04);  /* Opcode 81 /4 */
8838   // ins_encode( RegImm( dst, src) );
8839   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8840   ins_pipe( ialu_reg );
8841 %}
8842 
8843 // And Register with Memory
8844 instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8845   match(Set dst (AndI dst (LoadI src)));
8846   effect(KILL cr);
8847 
8848   ins_cost(125);
8849   format %{ "AND    $dst,$src" %}
8850   opcode(0x23);
8851   ins_encode( OpcP, RegMem( dst, src) );
8852   ins_pipe( ialu_reg_mem );
8853 %}
8854 
8855 // And Memory with Register
8856 instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8857   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8858   effect(KILL cr);
8859 
8860   ins_cost(150);
8861   format %{ "AND    $dst,$src" %}
8862   opcode(0x21);  /* Opcode 21 /r */
8863   ins_encode( OpcP, RegMem( src, dst ) );
8864   ins_pipe( ialu_mem_reg );
8865 %}
8866 
8867 // And Memory with Immediate
8868 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8869   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8870   effect(KILL cr);
8871 
8872   ins_cost(125);
8873   format %{ "AND    $dst,$src" %}
8874   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
8875   // ins_encode( MemImm( dst, src) );
8876   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8877   ins_pipe( ialu_mem_imm );
8878 %}
8879 
8880 // Or Instructions
8881 // Or Register with Register
8882 instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8883   match(Set dst (OrI dst src));
8884   effect(KILL cr);
8885 
8886   size(2);
8887   format %{ "OR     $dst,$src" %}
8888   opcode(0x0B);
8889   ins_encode( OpcP, RegReg( dst, src) );
8890   ins_pipe( ialu_reg_reg );
8891 %}
8892 
8893 instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
8894   match(Set dst (OrI dst (CastP2X src)));
8895   effect(KILL cr);
8896 
8897   size(2);
8898   format %{ "OR     $dst,$src" %}
8899   opcode(0x0B);
8900   ins_encode( OpcP, RegReg( dst, src) );
8901   ins_pipe( ialu_reg_reg );
8902 %}
8903 
8904 
8905 // Or Register with Immediate
8906 instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8907   match(Set dst (OrI dst src));
8908   effect(KILL cr);
8909 
8910   format %{ "OR     $dst,$src" %}
8911   opcode(0x81,0x01);  /* Opcode 81 /1 id */
8912   // ins_encode( RegImm( dst, src) );
8913   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8914   ins_pipe( ialu_reg );
8915 %}
8916 
8917 // Or Register with Memory
8918 instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8919   match(Set dst (OrI dst (LoadI src)));
8920   effect(KILL cr);
8921 
8922   ins_cost(125);
8923   format %{ "OR     $dst,$src" %}
8924   opcode(0x0B);
8925   ins_encode( OpcP, RegMem( dst, src) );
8926   ins_pipe( ialu_reg_mem );
8927 %}
8928 
8929 // Or Memory with Register
8930 instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8931   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8932   effect(KILL cr);
8933 
8934   ins_cost(150);
8935   format %{ "OR     $dst,$src" %}
8936   opcode(0x09);  /* Opcode 09 /r */
8937   ins_encode( OpcP, RegMem( src, dst ) );
8938   ins_pipe( ialu_mem_reg );
8939 %}
8940 
8941 // Or Memory with Immediate
8942 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8943   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8944   effect(KILL cr);
8945 
8946   ins_cost(125);
8947   format %{ "OR     $dst,$src" %}
8948   opcode(0x81,0x1);  /* Opcode 81 /1 id */
8949   // ins_encode( MemImm( dst, src) );
8950   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8951   ins_pipe( ialu_mem_imm );
8952 %}
8953 
8954 // ROL/ROR
8955 // ROL expand
8956 instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8957   effect(USE_DEF dst, USE shift, KILL cr);
8958 
8959   format %{ "ROL    $dst, $shift" %}
8960   opcode(0xD1, 0x0); /* Opcode D1 /0 */
8961   ins_encode( OpcP, RegOpc( dst ));
8962   ins_pipe( ialu_reg );
8963 %}
8964 
8965 instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
8966   effect(USE_DEF dst, USE shift, KILL cr);
8967 
8968   format %{ "ROL    $dst, $shift" %}
8969   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
8970   ins_encode( RegOpcImm(dst, shift) );
8971   ins_pipe(ialu_reg);
8972 %}
8973 
8974 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
8975   effect(USE_DEF dst, USE shift, KILL cr);
8976 
8977   format %{ "ROL    $dst, $shift" %}
8978   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
8979   ins_encode(OpcP, RegOpc(dst));
8980   ins_pipe( ialu_reg_reg );
8981 %}
8982 // end of ROL expand
8983 
8984 // ROL 32bit by one once
8985 instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
8986   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8987 
8988   expand %{
8989     rolI_eReg_imm1(dst, lshift, cr);
8990   %}
8991 %}
8992 
8993 // ROL 32bit var by imm8 once
8994 instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
8995   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8996   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8997 
8998   expand %{
8999     rolI_eReg_imm8(dst, lshift, cr);
9000   %}
9001 %}
9002 
9003 // ROL 32bit var by var once
9004 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
9005   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
9006 
9007   expand %{
9008     rolI_eReg_CL(dst, shift, cr);
9009   %}
9010 %}
9011 
9012 // ROL 32bit var by var once
9013 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
9014   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
9015 
9016   expand %{
9017     rolI_eReg_CL(dst, shift, cr);
9018   %}
9019 %}
9020 
9021 // ROR expand
9022 instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
9023   effect(USE_DEF dst, USE shift, KILL cr);
9024 
9025   format %{ "ROR    $dst, $shift" %}
9026   opcode(0xD1,0x1);  /* Opcode D1 /1 */
9027   ins_encode( OpcP, RegOpc( dst ) );
9028   ins_pipe( ialu_reg );
9029 %}
9030 
9031 instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
9032   effect (USE_DEF dst, USE shift, KILL cr);
9033 
9034   format %{ "ROR    $dst, $shift" %}
9035   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
9036   ins_encode( RegOpcImm(dst, shift) );
9037   ins_pipe( ialu_reg );
9038 %}
9039 
9040 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
9041   effect(USE_DEF dst, USE shift, KILL cr);
9042 
9043   format %{ "ROR    $dst, $shift" %}
9044   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
9045   ins_encode(OpcP, RegOpc(dst));
9046   ins_pipe( ialu_reg_reg );
9047 %}
9048 // end of ROR expand
9049 
9050 // ROR right once
9051 instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
9052   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9053 
9054   expand %{
9055     rorI_eReg_imm1(dst, rshift, cr);
9056   %}
9057 %}
9058 
9059 // ROR 32bit by immI8 once
9060 instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
9061   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
9062   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9063 
9064   expand %{
9065     rorI_eReg_imm8(dst, rshift, cr);
9066   %}
9067 %}
9068 
9069 // ROR 32bit var by var once
9070 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
9071   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
9072 
9073   expand %{
9074     rorI_eReg_CL(dst, shift, cr);
9075   %}
9076 %}
9077 
9078 // ROR 32bit var by var once
9079 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
9080   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
9081 
9082   expand %{
9083     rorI_eReg_CL(dst, shift, cr);
9084   %}
9085 %}
9086 
9087 // Xor Instructions
9088 // Xor Register with Register
9089 instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
9090   match(Set dst (XorI dst src));
9091   effect(KILL cr);
9092 
9093   size(2);
9094   format %{ "XOR    $dst,$src" %}
9095   opcode(0x33);
9096   ins_encode( OpcP, RegReg( dst, src) );
9097   ins_pipe( ialu_reg_reg );
9098 %}
9099 
9100 // Xor Register with Immediate -1
9101 instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
9102   match(Set dst (XorI dst imm));  
9103 
9104   size(2);
9105   format %{ "NOT    $dst" %}  
9106   ins_encode %{
9107      __ notl($dst$$Register);
9108   %}
9109   ins_pipe( ialu_reg );
9110 %}
9111 
9112 // Xor Register with Immediate
9113 instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
9114   match(Set dst (XorI dst src));
9115   effect(KILL cr);
9116 
9117   format %{ "XOR    $dst,$src" %}
9118   opcode(0x81,0x06);  /* Opcode 81 /6 id */
9119   // ins_encode( RegImm( dst, src) );
9120   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
9121   ins_pipe( ialu_reg );
9122 %}
9123 
9124 // Xor Register with Memory
9125 instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
9126   match(Set dst (XorI dst (LoadI src)));
9127   effect(KILL cr);
9128 
9129   ins_cost(125);
9130   format %{ "XOR    $dst,$src" %}
9131   opcode(0x33);
9132   ins_encode( OpcP, RegMem(dst, src) );
9133   ins_pipe( ialu_reg_mem );
9134 %}
9135 
9136 // Xor Memory with Register
9137 instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
9138   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9139   effect(KILL cr);
9140 
9141   ins_cost(150);
9142   format %{ "XOR    $dst,$src" %}
9143   opcode(0x31);  /* Opcode 31 /r */
9144   ins_encode( OpcP, RegMem( src, dst ) );
9145   ins_pipe( ialu_mem_reg );
9146 %}
9147 
9148 // Xor Memory with Immediate
9149 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
9150   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9151   effect(KILL cr);
9152 
9153   ins_cost(125);
9154   format %{ "XOR    $dst,$src" %}
9155   opcode(0x81,0x6);  /* Opcode 81 /6 id */
9156   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
9157   ins_pipe( ialu_mem_imm );
9158 %}
9159 
9160 //----------Convert Int to Boolean---------------------------------------------
9161 
9162 instruct movI_nocopy(eRegI dst, eRegI src) %{
9163   effect( DEF dst, USE src );
9164   format %{ "MOV    $dst,$src" %}
9165   ins_encode( enc_Copy( dst, src) );
9166   ins_pipe( ialu_reg_reg );
9167 %}
9168 
9169 instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
9170   effect( USE_DEF dst, USE src, KILL cr );
9171 
9172   size(4);
9173   format %{ "NEG    $dst\n\t"
9174             "ADC    $dst,$src" %}
9175   ins_encode( neg_reg(dst),
9176               OpcRegReg(0x13,dst,src) );
9177   ins_pipe( ialu_reg_reg_long );
9178 %}
9179 
9180 instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
9181   match(Set dst (Conv2B src));
9182 
9183   expand %{
9184     movI_nocopy(dst,src);
9185     ci2b(dst,src,cr);
9186   %}
9187 %}
9188 
9189 instruct movP_nocopy(eRegI dst, eRegP src) %{
9190   effect( DEF dst, USE src );
9191   format %{ "MOV    $dst,$src" %}
9192   ins_encode( enc_Copy( dst, src) );
9193   ins_pipe( ialu_reg_reg );
9194 %}
9195 
9196 instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
9197   effect( USE_DEF dst, USE src, KILL cr );
9198   format %{ "NEG    $dst\n\t"
9199             "ADC    $dst,$src" %}
9200   ins_encode( neg_reg(dst),
9201               OpcRegReg(0x13,dst,src) );
9202   ins_pipe( ialu_reg_reg_long );
9203 %}
9204 
9205 instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
9206   match(Set dst (Conv2B src));
9207 
9208   expand %{
9209     movP_nocopy(dst,src);
9210     cp2b(dst,src,cr);
9211   %}
9212 %}
9213 
9214 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
9215   match(Set dst (CmpLTMask p q));
9216   effect( KILL cr );
9217   ins_cost(400);
9218 
9219   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
9220   format %{ "XOR    $dst,$dst\n\t"
9221             "CMP    $p,$q\n\t"
9222             "SETlt  $dst\n\t"
9223             "NEG    $dst" %}
9224   ins_encode( OpcRegReg(0x33,dst,dst),
9225               OpcRegReg(0x3B,p,q),
9226               setLT_reg(dst), neg_reg(dst) );
9227   ins_pipe( pipe_slow );
9228 %}
9229 
9230 instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
9231   match(Set dst (CmpLTMask dst zero));
9232   effect( DEF dst, KILL cr );
9233   ins_cost(100);
9234 
9235   format %{ "SAR    $dst,31" %}
9236   opcode(0xC1, 0x7);  /* C1 /7 ib */
9237   ins_encode( RegOpcImm( dst, 0x1F ) );
9238   ins_pipe( ialu_reg );
9239 %}
9240 
9241 
9242 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
9243   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
9244   effect( KILL tmp, KILL cr );
9245   ins_cost(400);
9246   // annoyingly, $tmp has no edges so you cant ask for it in
9247   // any format or encoding
9248   format %{ "SUB    $p,$q\n\t"
9249             "SBB    ECX,ECX\n\t"
9250             "AND    ECX,$y\n\t"
9251             "ADD    $p,ECX" %}
9252   ins_encode( enc_cmpLTP(p,q,y,tmp) );
9253   ins_pipe( pipe_cmplt );
9254 %}
9255 
9256 /* If I enable this, I encourage spilling in the inner loop of compress.
9257 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
9258   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
9259   effect( USE_KILL tmp, KILL cr );
9260   ins_cost(400);
9261 
9262   format %{ "SUB    $p,$q\n\t"
9263             "SBB    ECX,ECX\n\t"
9264             "AND    ECX,$y\n\t"
9265             "ADD    $p,ECX" %}
9266   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
9267 %}
9268 */
9269 
9270 //----------Long Instructions------------------------------------------------
9271 // Add Long Register with Register
9272 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9273   match(Set dst (AddL dst src));
9274   effect(KILL cr);
9275   ins_cost(200);
9276   format %{ "ADD    $dst.lo,$src.lo\n\t"
9277             "ADC    $dst.hi,$src.hi" %}
9278   opcode(0x03, 0x13);
9279   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
9280   ins_pipe( ialu_reg_reg_long );
9281 %}
9282 
9283 // Add Long Register with Immediate
9284 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9285   match(Set dst (AddL dst src));
9286   effect(KILL cr);
9287   format %{ "ADD    $dst.lo,$src.lo\n\t"
9288             "ADC    $dst.hi,$src.hi" %}
9289   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
9290   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9291   ins_pipe( ialu_reg_long );
9292 %}
9293 
9294 // Add Long Register with Memory
9295 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9296   match(Set dst (AddL dst (LoadL mem)));
9297   effect(KILL cr);
9298   ins_cost(125);
9299   format %{ "ADD    $dst.lo,$mem\n\t"
9300             "ADC    $dst.hi,$mem+4" %}
9301   opcode(0x03, 0x13);
9302   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9303   ins_pipe( ialu_reg_long_mem );
9304 %}
9305 
9306 // Subtract Long Register with Register.
9307 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9308   match(Set dst (SubL dst src));
9309   effect(KILL cr);
9310   ins_cost(200);
9311   format %{ "SUB    $dst.lo,$src.lo\n\t"
9312             "SBB    $dst.hi,$src.hi" %}
9313   opcode(0x2B, 0x1B);
9314   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
9315   ins_pipe( ialu_reg_reg_long );
9316 %}
9317 
9318 // Subtract Long Register with Immediate
9319 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9320   match(Set dst (SubL dst src));
9321   effect(KILL cr);
9322   format %{ "SUB    $dst.lo,$src.lo\n\t"
9323             "SBB    $dst.hi,$src.hi" %}
9324   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
9325   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9326   ins_pipe( ialu_reg_long );
9327 %}
9328 
9329 // Subtract Long Register with Memory
9330 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9331   match(Set dst (SubL dst (LoadL mem)));
9332   effect(KILL cr);
9333   ins_cost(125);
9334   format %{ "SUB    $dst.lo,$mem\n\t"
9335             "SBB    $dst.hi,$mem+4" %}
9336   opcode(0x2B, 0x1B);
9337   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9338   ins_pipe( ialu_reg_long_mem );
9339 %}
9340 
9341 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
9342   match(Set dst (SubL zero dst));
9343   effect(KILL cr);
9344   ins_cost(300);
9345   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
9346   ins_encode( neg_long(dst) );
9347   ins_pipe( ialu_reg_reg_long );
9348 %}
9349 
9350 // And Long Register with Register
9351 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9352   match(Set dst (AndL dst src));
9353   effect(KILL cr);
9354   format %{ "AND    $dst.lo,$src.lo\n\t"
9355             "AND    $dst.hi,$src.hi" %}
9356   opcode(0x23,0x23);
9357   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9358   ins_pipe( ialu_reg_reg_long );
9359 %}
9360 
9361 // And Long Register with Immediate
9362 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9363   match(Set dst (AndL dst src));
9364   effect(KILL cr);
9365   format %{ "AND    $dst.lo,$src.lo\n\t"
9366             "AND    $dst.hi,$src.hi" %}
9367   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
9368   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9369   ins_pipe( ialu_reg_long );
9370 %}
9371 
9372 // And Long Register with Memory
9373 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9374   match(Set dst (AndL dst (LoadL mem)));
9375   effect(KILL cr);
9376   ins_cost(125);
9377   format %{ "AND    $dst.lo,$mem\n\t"
9378             "AND    $dst.hi,$mem+4" %}
9379   opcode(0x23, 0x23);
9380   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9381   ins_pipe( ialu_reg_long_mem );
9382 %}
9383 
9384 // Or Long Register with Register
9385 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9386   match(Set dst (OrL dst src));
9387   effect(KILL cr);
9388   format %{ "OR     $dst.lo,$src.lo\n\t"
9389             "OR     $dst.hi,$src.hi" %}
9390   opcode(0x0B,0x0B);
9391   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9392   ins_pipe( ialu_reg_reg_long );
9393 %}
9394 
9395 // Or Long Register with Immediate
9396 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9397   match(Set dst (OrL dst src));
9398   effect(KILL cr);
9399   format %{ "OR     $dst.lo,$src.lo\n\t"
9400             "OR     $dst.hi,$src.hi" %}
9401   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
9402   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9403   ins_pipe( ialu_reg_long );
9404 %}
9405 
9406 // Or Long Register with Memory
9407 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9408   match(Set dst (OrL dst (LoadL mem)));
9409   effect(KILL cr);
9410   ins_cost(125);
9411   format %{ "OR     $dst.lo,$mem\n\t"
9412             "OR     $dst.hi,$mem+4" %}
9413   opcode(0x0B,0x0B);
9414   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9415   ins_pipe( ialu_reg_long_mem );
9416 %}
9417 
9418 // Xor Long Register with Register
9419 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9420   match(Set dst (XorL dst src));
9421   effect(KILL cr);
9422   format %{ "XOR    $dst.lo,$src.lo\n\t"
9423             "XOR    $dst.hi,$src.hi" %}
9424   opcode(0x33,0x33);
9425   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9426   ins_pipe( ialu_reg_reg_long );
9427 %}
9428 
9429 // Xor Long Register with Immediate -1
9430 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
9431   match(Set dst (XorL dst imm));  
9432   format %{ "NOT    $dst.lo\n\t"
9433             "NOT    $dst.hi" %}
9434   ins_encode %{
9435      __ notl($dst$$Register);
9436      __ notl(HIGH_FROM_LOW($dst$$Register));
9437   %}
9438   ins_pipe( ialu_reg_long );
9439 %}
9440 
9441 // Xor Long Register with Immediate
9442 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9443   match(Set dst (XorL dst src));
9444   effect(KILL cr);
9445   format %{ "XOR    $dst.lo,$src.lo\n\t"
9446             "XOR    $dst.hi,$src.hi" %}
9447   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
9448   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9449   ins_pipe( ialu_reg_long );
9450 %}
9451 
9452 // Xor Long Register with Memory
9453 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9454   match(Set dst (XorL dst (LoadL mem)));
9455   effect(KILL cr);
9456   ins_cost(125);
9457   format %{ "XOR    $dst.lo,$mem\n\t"
9458             "XOR    $dst.hi,$mem+4" %}
9459   opcode(0x33,0x33);
9460   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9461   ins_pipe( ialu_reg_long_mem );
9462 %}
9463 
9464 // Shift Left Long by 1
9465 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
9466   predicate(UseNewLongLShift);
9467   match(Set dst (LShiftL dst cnt));
9468   effect(KILL cr);
9469   ins_cost(100);
9470   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9471             "ADC    $dst.hi,$dst.hi" %}
9472   ins_encode %{
9473     __ addl($dst$$Register,$dst$$Register);
9474     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9475   %}
9476   ins_pipe( ialu_reg_long );
9477 %}
9478 
9479 // Shift Left Long by 2
9480 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
9481   predicate(UseNewLongLShift);
9482   match(Set dst (LShiftL dst cnt));
9483   effect(KILL cr);
9484   ins_cost(100);
9485   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9486             "ADC    $dst.hi,$dst.hi\n\t" 
9487             "ADD    $dst.lo,$dst.lo\n\t"
9488             "ADC    $dst.hi,$dst.hi" %}
9489   ins_encode %{
9490     __ addl($dst$$Register,$dst$$Register);
9491     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9492     __ addl($dst$$Register,$dst$$Register);
9493     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9494   %}
9495   ins_pipe( ialu_reg_long );
9496 %}
9497 
9498 // Shift Left Long by 3
9499 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
9500   predicate(UseNewLongLShift);
9501   match(Set dst (LShiftL dst cnt));
9502   effect(KILL cr);
9503   ins_cost(100);
9504   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9505             "ADC    $dst.hi,$dst.hi\n\t" 
9506             "ADD    $dst.lo,$dst.lo\n\t"
9507             "ADC    $dst.hi,$dst.hi\n\t" 
9508             "ADD    $dst.lo,$dst.lo\n\t"
9509             "ADC    $dst.hi,$dst.hi" %}
9510   ins_encode %{
9511     __ addl($dst$$Register,$dst$$Register);
9512     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9513     __ addl($dst$$Register,$dst$$Register);
9514     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9515     __ addl($dst$$Register,$dst$$Register);
9516     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9517   %}
9518   ins_pipe( ialu_reg_long );
9519 %}
9520 
9521 // Shift Left Long by 1-31
9522 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9523   match(Set dst (LShiftL dst cnt));
9524   effect(KILL cr);
9525   ins_cost(200);
9526   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
9527             "SHL    $dst.lo,$cnt" %}
9528   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
9529   ins_encode( move_long_small_shift(dst,cnt) );
9530   ins_pipe( ialu_reg_long );
9531 %}
9532 
9533 // Shift Left Long by 32-63
9534 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9535   match(Set dst (LShiftL dst cnt));
9536   effect(KILL cr);
9537   ins_cost(300);
9538   format %{ "MOV    $dst.hi,$dst.lo\n"
9539           "\tSHL    $dst.hi,$cnt-32\n"
9540           "\tXOR    $dst.lo,$dst.lo" %}
9541   opcode(0xC1, 0x4);  /* C1 /4 ib */
9542   ins_encode( move_long_big_shift_clr(dst,cnt) );
9543   ins_pipe( ialu_reg_long );
9544 %}
9545 
9546 // Shift Left Long by variable
9547 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9548   match(Set dst (LShiftL dst shift));
9549   effect(KILL cr);
9550   ins_cost(500+200);
9551   size(17);
9552   format %{ "TEST   $shift,32\n\t"
9553             "JEQ,s  small\n\t"
9554             "MOV    $dst.hi,$dst.lo\n\t"
9555             "XOR    $dst.lo,$dst.lo\n"
9556     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
9557             "SHL    $dst.lo,$shift" %}
9558   ins_encode( shift_left_long( dst, shift ) );
9559   ins_pipe( pipe_slow );
9560 %}
9561 
9562 // Shift Right Long by 1-31
9563 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9564   match(Set dst (URShiftL dst cnt));
9565   effect(KILL cr);
9566   ins_cost(200);
9567   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9568             "SHR    $dst.hi,$cnt" %}
9569   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
9570   ins_encode( move_long_small_shift(dst,cnt) );
9571   ins_pipe( ialu_reg_long );
9572 %}
9573 
9574 // Shift Right Long by 32-63
9575 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9576   match(Set dst (URShiftL dst cnt));
9577   effect(KILL cr);
9578   ins_cost(300);
9579   format %{ "MOV    $dst.lo,$dst.hi\n"
9580           "\tSHR    $dst.lo,$cnt-32\n"
9581           "\tXOR    $dst.hi,$dst.hi" %}
9582   opcode(0xC1, 0x5);  /* C1 /5 ib */
9583   ins_encode( move_long_big_shift_clr(dst,cnt) );
9584   ins_pipe( ialu_reg_long );
9585 %}
9586 
9587 // Shift Right Long by variable
9588 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9589   match(Set dst (URShiftL dst shift));
9590   effect(KILL cr);
9591   ins_cost(600);
9592   size(17);
9593   format %{ "TEST   $shift,32\n\t"
9594             "JEQ,s  small\n\t"
9595             "MOV    $dst.lo,$dst.hi\n\t"
9596             "XOR    $dst.hi,$dst.hi\n"
9597     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9598             "SHR    $dst.hi,$shift" %}
9599   ins_encode( shift_right_long( dst, shift ) );
9600   ins_pipe( pipe_slow );
9601 %}
9602 
9603 // Shift Right Long by 1-31
9604 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9605   match(Set dst (RShiftL dst cnt));
9606   effect(KILL cr);
9607   ins_cost(200);
9608   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9609             "SAR    $dst.hi,$cnt" %}
9610   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
9611   ins_encode( move_long_small_shift(dst,cnt) );
9612   ins_pipe( ialu_reg_long );
9613 %}
9614 
9615 // Shift Right Long by 32-63
9616 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9617   match(Set dst (RShiftL dst cnt));
9618   effect(KILL cr);
9619   ins_cost(300);
9620   format %{ "MOV    $dst.lo,$dst.hi\n"
9621           "\tSAR    $dst.lo,$cnt-32\n"
9622           "\tSAR    $dst.hi,31" %}
9623   opcode(0xC1, 0x7);  /* C1 /7 ib */
9624   ins_encode( move_long_big_shift_sign(dst,cnt) );
9625   ins_pipe( ialu_reg_long );
9626 %}
9627 
9628 // Shift Right arithmetic Long by variable
9629 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9630   match(Set dst (RShiftL dst shift));
9631   effect(KILL cr);
9632   ins_cost(600);
9633   size(18);
9634   format %{ "TEST   $shift,32\n\t"
9635             "JEQ,s  small\n\t"
9636             "MOV    $dst.lo,$dst.hi\n\t"
9637             "SAR    $dst.hi,31\n"
9638     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9639             "SAR    $dst.hi,$shift" %}
9640   ins_encode( shift_right_arith_long( dst, shift ) );
9641   ins_pipe( pipe_slow );
9642 %}
9643 
9644 
9645 //----------Double Instructions------------------------------------------------
9646 // Double Math
9647 
9648 // Compare & branch
9649 
9650 // P6 version of float compare, sets condition codes in EFLAGS
9651 instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
9652   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9653   match(Set cr (CmpD src1 src2));
9654   effect(KILL rax);
9655   ins_cost(150);
9656   format %{ "FLD    $src1\n\t"
9657             "FUCOMIP ST,$src2  // P6 instruction\n\t"
9658             "JNP    exit\n\t"
9659             "MOV    ah,1       // saw a NaN, set CF\n\t"
9660             "SAHF\n"
9661      "exit:\tNOP               // avoid branch to branch" %}
9662   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9663   ins_encode( Push_Reg_D(src1),
9664               OpcP, RegOpc(src2),
9665               cmpF_P6_fixup );
9666   ins_pipe( pipe_slow );
9667 %}
9668 
9669 instruct cmpD_cc_P6CF(eFlagsRegUCF cr, regD src1, regD src2) %{
9670   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9671   match(Set cr (CmpD src1 src2));
9672   ins_cost(150);
9673   format %{ "FLD    $src1\n\t"
9674             "FUCOMIP ST,$src2  // P6 instruction" %}
9675   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9676   ins_encode( Push_Reg_D(src1),
9677               OpcP, RegOpc(src2));
9678   ins_pipe( pipe_slow );
9679 %}
9680 
9681 // Compare & branch
9682 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
9683   predicate(UseSSE<=1);
9684   match(Set cr (CmpD src1 src2));
9685   effect(KILL rax);
9686   ins_cost(200);
9687   format %{ "FLD    $src1\n\t"
9688             "FCOMp  $src2\n\t"
9689             "FNSTSW AX\n\t"
9690             "TEST   AX,0x400\n\t"
9691             "JZ,s   flags\n\t"
9692             "MOV    AH,1\t# unordered treat as LT\n"
9693     "flags:\tSAHF" %}
9694   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9695   ins_encode( Push_Reg_D(src1),
9696               OpcP, RegOpc(src2),
9697               fpu_flags);
9698   ins_pipe( pipe_slow );
9699 %}
9700 
9701 // Compare vs zero into -1,0,1
9702 instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
9703   predicate(UseSSE<=1);
9704   match(Set dst (CmpD3 src1 zero));
9705   effect(KILL cr, KILL rax);
9706   ins_cost(280);
9707   format %{ "FTSTD  $dst,$src1" %}
9708   opcode(0xE4, 0xD9);
9709   ins_encode( Push_Reg_D(src1),
9710               OpcS, OpcP, PopFPU,
9711               CmpF_Result(dst));
9712   ins_pipe( pipe_slow );
9713 %}
9714 
9715 // Compare into -1,0,1
9716 instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
9717   predicate(UseSSE<=1);
9718   match(Set dst (CmpD3 src1 src2));
9719   effect(KILL cr, KILL rax);
9720   ins_cost(300);
9721   format %{ "FCMPD  $dst,$src1,$src2" %}
9722   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9723   ins_encode( Push_Reg_D(src1),
9724               OpcP, RegOpc(src2),
9725               CmpF_Result(dst));
9726   ins_pipe( pipe_slow );
9727 %}
9728 
9729 // float compare and set condition codes in EFLAGS by XMM regs
9730 instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
9731   predicate(UseSSE>=2);
9732   match(Set cr (CmpD dst src));
9733   effect(KILL rax);
9734   ins_cost(125);
9735   format %{ "COMISD $dst,$src\n"
9736           "\tJNP    exit\n"
9737           "\tMOV    ah,1       // saw a NaN, set CF\n"
9738           "\tSAHF\n"
9739      "exit:\tNOP               // avoid branch to branch" %}
9740   opcode(0x66, 0x0F, 0x2F);
9741   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
9742   ins_pipe( pipe_slow );
9743 %}
9744 
9745 instruct cmpXD_ccCF(eFlagsRegUCF cr, regXD dst, regXD src) %{
9746   predicate(UseSSE>=2);
9747   match(Set cr (CmpD dst src));
9748   ins_cost(100);
9749   format %{ "COMISD $dst,$src" %}
9750   opcode(0x66, 0x0F, 0x2F);
9751   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
9752   ins_pipe( pipe_slow );
9753 %}
9754 
9755 // float compare and set condition codes in EFLAGS by XMM regs
9756 instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
9757   predicate(UseSSE>=2);
9758   match(Set cr (CmpD dst (LoadD src)));
9759   effect(KILL rax);
9760   ins_cost(145);
9761   format %{ "COMISD $dst,$src\n"
9762           "\tJNP    exit\n"
9763           "\tMOV    ah,1       // saw a NaN, set CF\n"
9764           "\tSAHF\n"
9765      "exit:\tNOP               // avoid branch to branch" %}
9766   opcode(0x66, 0x0F, 0x2F);
9767   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
9768   ins_pipe( pipe_slow );
9769 %}
9770 
9771 instruct cmpXD_ccmemCF(eFlagsRegUCF cr, regXD dst, memory src) %{
9772   predicate(UseSSE>=2);
9773   match(Set cr (CmpD dst (LoadD src)));
9774   ins_cost(100);
9775   format %{ "COMISD $dst,$src" %}
9776   opcode(0x66, 0x0F, 0x2F);
9777   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src));
9778   ins_pipe( pipe_slow );
9779 %}
9780 
9781 // Compare into -1,0,1 in XMM
9782 instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
9783   predicate(UseSSE>=2);
9784   match(Set dst (CmpD3 src1 src2));
9785   effect(KILL cr);
9786   ins_cost(255);
9787   format %{ "XOR    $dst,$dst\n"
9788           "\tCOMISD $src1,$src2\n"
9789           "\tJP,s   nan\n"
9790           "\tJEQ,s  exit\n"
9791           "\tJA,s   inc\n"
9792       "nan:\tDEC    $dst\n"
9793           "\tJMP,s  exit\n"
9794       "inc:\tINC    $dst\n"
9795       "exit:"
9796                 %}
9797   opcode(0x66, 0x0F, 0x2F);
9798   ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
9799              CmpX_Result(dst));
9800   ins_pipe( pipe_slow );
9801 %}
9802 
9803 // Compare into -1,0,1 in XMM and memory
9804 instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
9805   predicate(UseSSE>=2);
9806   match(Set dst (CmpD3 src1 (LoadD mem)));
9807   effect(KILL cr);
9808   ins_cost(275);
9809   format %{ "COMISD $src1,$mem\n"
9810           "\tMOV    $dst,0\t\t# do not blow flags\n"
9811           "\tJP,s   nan\n"
9812           "\tJEQ,s  exit\n"
9813           "\tJA,s   inc\n"
9814       "nan:\tDEC    $dst\n"
9815           "\tJMP,s  exit\n"
9816       "inc:\tINC    $dst\n"
9817       "exit:"
9818                 %}
9819   opcode(0x66, 0x0F, 0x2F);
9820   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
9821              LdImmI(dst,0x0), CmpX_Result(dst));
9822   ins_pipe( pipe_slow );
9823 %}
9824 
9825 
9826 instruct subD_reg(regD dst, regD src) %{
9827   predicate (UseSSE <=1);
9828   match(Set dst (SubD dst src));
9829 
9830   format %{ "FLD    $src\n\t"
9831             "DSUBp  $dst,ST" %}
9832   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
9833   ins_cost(150);
9834   ins_encode( Push_Reg_D(src),
9835               OpcP, RegOpc(dst) );
9836   ins_pipe( fpu_reg_reg );
9837 %}
9838 
9839 instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
9840   predicate (UseSSE <=1);
9841   match(Set dst (RoundDouble (SubD src1 src2)));
9842   ins_cost(250);
9843 
9844   format %{ "FLD    $src2\n\t"
9845             "DSUB   ST,$src1\n\t"
9846             "FSTP_D $dst\t# D-round" %}
9847   opcode(0xD8, 0x5);
9848   ins_encode( Push_Reg_D(src2),
9849               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
9850   ins_pipe( fpu_mem_reg_reg );
9851 %}
9852 
9853 
9854 instruct subD_reg_mem(regD dst, memory src) %{
9855   predicate (UseSSE <=1);
9856   match(Set dst (SubD dst (LoadD src)));
9857   ins_cost(150);
9858 
9859   format %{ "FLD    $src\n\t"
9860             "DSUBp  $dst,ST" %}
9861   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9862   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9863               OpcP, RegOpc(dst) );
9864   ins_pipe( fpu_reg_mem );
9865 %}
9866 
9867 instruct absD_reg(regDPR1 dst, regDPR1 src) %{
9868   predicate (UseSSE<=1);
9869   match(Set dst (AbsD src));
9870   ins_cost(100);
9871   format %{ "FABS" %}
9872   opcode(0xE1, 0xD9);
9873   ins_encode( OpcS, OpcP );
9874   ins_pipe( fpu_reg_reg );
9875 %}
9876 
9877 instruct absXD_reg( regXD dst ) %{
9878   predicate(UseSSE>=2);
9879   match(Set dst (AbsD dst));
9880   format %{ "ANDPD  $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
9881   ins_encode( AbsXD_encoding(dst));
9882   ins_pipe( pipe_slow );
9883 %}
9884 
9885 instruct negD_reg(regDPR1 dst, regDPR1 src) %{
9886   predicate(UseSSE<=1);
9887   match(Set dst (NegD src));
9888   ins_cost(100);
9889   format %{ "FCHS" %}
9890   opcode(0xE0, 0xD9);
9891   ins_encode( OpcS, OpcP );
9892   ins_pipe( fpu_reg_reg );
9893 %}
9894 
9895 instruct negXD_reg( regXD dst ) %{
9896   predicate(UseSSE>=2);
9897   match(Set dst (NegD dst));
9898   format %{ "XORPD  $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
9899   ins_encode %{
9900      __ xorpd($dst$$XMMRegister,
9901               ExternalAddress((address)double_signflip_pool));
9902   %}
9903   ins_pipe( pipe_slow );
9904 %}
9905 
9906 instruct addD_reg(regD dst, regD src) %{
9907   predicate(UseSSE<=1);
9908   match(Set dst (AddD dst src));
9909   format %{ "FLD    $src\n\t"
9910             "DADD   $dst,ST" %}
9911   size(4);
9912   ins_cost(150);
9913   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
9914   ins_encode( Push_Reg_D(src),
9915               OpcP, RegOpc(dst) );
9916   ins_pipe( fpu_reg_reg );
9917 %}
9918 
9919 
9920 instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
9921   predicate(UseSSE<=1);
9922   match(Set dst (RoundDouble (AddD src1 src2)));
9923   ins_cost(250);
9924 
9925   format %{ "FLD    $src2\n\t"
9926             "DADD   ST,$src1\n\t"
9927             "FSTP_D $dst\t# D-round" %}
9928   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
9929   ins_encode( Push_Reg_D(src2),
9930               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
9931   ins_pipe( fpu_mem_reg_reg );
9932 %}
9933 
9934 
9935 instruct addD_reg_mem(regD dst, memory src) %{
9936   predicate(UseSSE<=1);
9937   match(Set dst (AddD dst (LoadD src)));
9938   ins_cost(150);
9939 
9940   format %{ "FLD    $src\n\t"
9941             "DADDp  $dst,ST" %}
9942   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9943   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9944               OpcP, RegOpc(dst) );
9945   ins_pipe( fpu_reg_mem );
9946 %}
9947 
9948 // add-to-memory
9949 instruct addD_mem_reg(memory dst, regD src) %{
9950   predicate(UseSSE<=1);
9951   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
9952   ins_cost(150);
9953 
9954   format %{ "FLD_D  $dst\n\t"
9955             "DADD   ST,$src\n\t"
9956             "FST_D  $dst" %}
9957   opcode(0xDD, 0x0);
9958   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
9959               Opcode(0xD8), RegOpc(src),
9960               set_instruction_start,
9961               Opcode(0xDD), RMopc_Mem(0x03,dst) );
9962   ins_pipe( fpu_reg_mem );
9963 %}
9964 
9965 instruct addD_reg_imm1(regD dst, immD1 src) %{
9966   predicate(UseSSE<=1);
9967   match(Set dst (AddD dst src));
9968   ins_cost(125);
9969   format %{ "FLD1\n\t"
9970             "DADDp  $dst,ST" %}
9971   opcode(0xDE, 0x00);
9972   ins_encode( LdImmD(src),
9973               OpcP, RegOpc(dst) );
9974   ins_pipe( fpu_reg );
9975 %}
9976 
9977 instruct addD_reg_imm(regD dst, immD src) %{
9978   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9979   match(Set dst (AddD dst src));
9980   ins_cost(200);
9981   format %{ "FLD_D  [$src]\n\t"
9982             "DADDp  $dst,ST" %}
9983   opcode(0xDE, 0x00);       /* DE /0 */
9984   ins_encode( LdImmD(src),
9985               OpcP, RegOpc(dst));
9986   ins_pipe( fpu_reg_mem );
9987 %}
9988 
9989 instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
9990   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
9991   match(Set dst (RoundDouble (AddD src con)));
9992   ins_cost(200);
9993   format %{ "FLD_D  [$con]\n\t"
9994             "DADD   ST,$src\n\t"
9995             "FSTP_D $dst\t# D-round" %}
9996   opcode(0xD8, 0x00);       /* D8 /0 */
9997   ins_encode( LdImmD(con),
9998               OpcP, RegOpc(src), Pop_Mem_D(dst));
9999   ins_pipe( fpu_mem_reg_con );
10000 %}
10001 
10002 // Add two double precision floating point values in xmm
10003 instruct addXD_reg(regXD dst, regXD src) %{
10004   predicate(UseSSE>=2);
10005   match(Set dst (AddD dst src));
10006   format %{ "ADDSD  $dst,$src" %}
10007   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
10008   ins_pipe( pipe_slow );
10009 %}
10010 
10011 instruct addXD_imm(regXD dst, immXD con) %{
10012   predicate(UseSSE>=2);
10013   match(Set dst (AddD dst con));
10014   format %{ "ADDSD  $dst,[$con]" %}
10015   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), LdImmXD(dst, con) );
10016   ins_pipe( pipe_slow );
10017 %}
10018 
10019 instruct addXD_mem(regXD dst, memory mem) %{
10020   predicate(UseSSE>=2);
10021   match(Set dst (AddD dst (LoadD mem)));
10022   format %{ "ADDSD  $dst,$mem" %}
10023   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
10024   ins_pipe( pipe_slow );
10025 %}
10026 
10027 // Sub two double precision floating point values in xmm
10028 instruct subXD_reg(regXD dst, regXD src) %{
10029   predicate(UseSSE>=2);
10030   match(Set dst (SubD dst src));
10031   format %{ "SUBSD  $dst,$src" %}
10032   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
10033   ins_pipe( pipe_slow );
10034 %}
10035 
10036 instruct subXD_imm(regXD dst, immXD con) %{
10037   predicate(UseSSE>=2);
10038   match(Set dst (SubD dst con));
10039   format %{ "SUBSD  $dst,[$con]" %}
10040   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), LdImmXD(dst, con) );
10041   ins_pipe( pipe_slow );
10042 %}
10043 
10044 instruct subXD_mem(regXD dst, memory mem) %{
10045   predicate(UseSSE>=2);
10046   match(Set dst (SubD dst (LoadD mem)));
10047   format %{ "SUBSD  $dst,$mem" %}
10048   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
10049   ins_pipe( pipe_slow );
10050 %}
10051 
10052 // Mul two double precision floating point values in xmm
10053 instruct mulXD_reg(regXD dst, regXD src) %{
10054   predicate(UseSSE>=2);
10055   match(Set dst (MulD dst src));
10056   format %{ "MULSD  $dst,$src" %}
10057   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
10058   ins_pipe( pipe_slow );
10059 %}
10060 
10061 instruct mulXD_imm(regXD dst, immXD con) %{
10062   predicate(UseSSE>=2);
10063   match(Set dst (MulD dst con));
10064   format %{ "MULSD  $dst,[$con]" %}
10065   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), LdImmXD(dst, con) );
10066   ins_pipe( pipe_slow );
10067 %}
10068 
10069 instruct mulXD_mem(regXD dst, memory mem) %{
10070   predicate(UseSSE>=2);
10071   match(Set dst (MulD dst (LoadD mem)));
10072   format %{ "MULSD  $dst,$mem" %}
10073   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
10074   ins_pipe( pipe_slow );
10075 %}
10076 
10077 // Div two double precision floating point values in xmm
10078 instruct divXD_reg(regXD dst, regXD src) %{
10079   predicate(UseSSE>=2);
10080   match(Set dst (DivD dst src));
10081   format %{ "DIVSD  $dst,$src" %}
10082   opcode(0xF2, 0x0F, 0x5E);
10083   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
10084   ins_pipe( pipe_slow );
10085 %}
10086 
10087 instruct divXD_imm(regXD dst, immXD con) %{
10088   predicate(UseSSE>=2);
10089   match(Set dst (DivD dst con));
10090   format %{ "DIVSD  $dst,[$con]" %}
10091   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), LdImmXD(dst, con));
10092   ins_pipe( pipe_slow );
10093 %}
10094 
10095 instruct divXD_mem(regXD dst, memory mem) %{
10096   predicate(UseSSE>=2);
10097   match(Set dst (DivD dst (LoadD mem)));
10098   format %{ "DIVSD  $dst,$mem" %}
10099   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
10100   ins_pipe( pipe_slow );
10101 %}
10102 
10103 
10104 instruct mulD_reg(regD dst, regD src) %{
10105   predicate(UseSSE<=1);
10106   match(Set dst (MulD dst src));
10107   format %{ "FLD    $src\n\t"
10108             "DMULp  $dst,ST" %}
10109   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
10110   ins_cost(150);
10111   ins_encode( Push_Reg_D(src),
10112               OpcP, RegOpc(dst) );
10113   ins_pipe( fpu_reg_reg );
10114 %}
10115 
10116 // Strict FP instruction biases argument before multiply then
10117 // biases result to avoid double rounding of subnormals.
10118 //
10119 // scale arg1 by multiplying arg1 by 2^(-15360)
10120 // load arg2
10121 // multiply scaled arg1 by arg2
10122 // rescale product by 2^(15360)
10123 //
10124 instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
10125   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
10126   match(Set dst (MulD dst src));
10127   ins_cost(1);   // Select this instruction for all strict FP double multiplies
10128 
10129   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
10130             "DMULp  $dst,ST\n\t"
10131             "FLD    $src\n\t"
10132             "DMULp  $dst,ST\n\t"
10133             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
10134             "DMULp  $dst,ST\n\t" %}
10135   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
10136   ins_encode( strictfp_bias1(dst),
10137               Push_Reg_D(src),
10138               OpcP, RegOpc(dst),
10139               strictfp_bias2(dst) );
10140   ins_pipe( fpu_reg_reg );
10141 %}
10142 
10143 instruct mulD_reg_imm(regD dst, immD src) %{
10144   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
10145   match(Set dst (MulD dst src));
10146   ins_cost(200);
10147   format %{ "FLD_D  [$src]\n\t"
10148             "DMULp  $dst,ST" %}
10149   opcode(0xDE, 0x1); /* DE /1 */
10150   ins_encode( LdImmD(src),
10151               OpcP, RegOpc(dst) );
10152   ins_pipe( fpu_reg_mem );
10153 %}
10154 
10155 
10156 instruct mulD_reg_mem(regD dst, memory src) %{
10157   predicate( UseSSE<=1 );
10158   match(Set dst (MulD dst (LoadD src)));
10159   ins_cost(200);
10160   format %{ "FLD_D  $src\n\t"
10161             "DMULp  $dst,ST" %}
10162   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
10163   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10164               OpcP, RegOpc(dst) );
10165   ins_pipe( fpu_reg_mem );
10166 %}
10167 
10168 //
10169 // Cisc-alternate to reg-reg multiply
10170 instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
10171   predicate( UseSSE<=1 );
10172   match(Set dst (MulD src (LoadD mem)));
10173   ins_cost(250);
10174   format %{ "FLD_D  $mem\n\t"
10175             "DMUL   ST,$src\n\t"
10176             "FSTP_D $dst" %}
10177   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
10178   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
10179               OpcReg_F(src),
10180               Pop_Reg_D(dst) );
10181   ins_pipe( fpu_reg_reg_mem );
10182 %}
10183 
10184 
10185 // MACRO3 -- addD a mulD
10186 // This instruction is a '2-address' instruction in that the result goes
10187 // back to src2.  This eliminates a move from the macro; possibly the
10188 // register allocator will have to add it back (and maybe not).
10189 instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
10190   predicate( UseSSE<=1 );
10191   match(Set src2 (AddD (MulD src0 src1) src2));
10192   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
10193             "DMUL   ST,$src1\n\t"
10194             "DADDp  $src2,ST" %}
10195   ins_cost(250);
10196   opcode(0xDD); /* LoadD DD /0 */
10197   ins_encode( Push_Reg_F(src0),
10198               FMul_ST_reg(src1),
10199               FAddP_reg_ST(src2) );
10200   ins_pipe( fpu_reg_reg_reg );
10201 %}
10202 
10203 
10204 // MACRO3 -- subD a mulD
10205 instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
10206   predicate( UseSSE<=1 );
10207   match(Set src2 (SubD (MulD src0 src1) src2));
10208   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
10209             "DMUL   ST,$src1\n\t"
10210             "DSUBRp $src2,ST" %}
10211   ins_cost(250);
10212   ins_encode( Push_Reg_F(src0),
10213               FMul_ST_reg(src1),
10214               Opcode(0xDE), Opc_plus(0xE0,src2));
10215   ins_pipe( fpu_reg_reg_reg );
10216 %}
10217 
10218 
10219 instruct divD_reg(regD dst, regD src) %{
10220   predicate( UseSSE<=1 );
10221   match(Set dst (DivD dst src));
10222 
10223   format %{ "FLD    $src\n\t"
10224             "FDIVp  $dst,ST" %}
10225   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10226   ins_cost(150);
10227   ins_encode( Push_Reg_D(src),
10228               OpcP, RegOpc(dst) );
10229   ins_pipe( fpu_reg_reg );
10230 %}
10231 
10232 // Strict FP instruction biases argument before division then
10233 // biases result, to avoid double rounding of subnormals.
10234 //
10235 // scale dividend by multiplying dividend by 2^(-15360)
10236 // load divisor
10237 // divide scaled dividend by divisor
10238 // rescale quotient by 2^(15360)
10239 //
10240 instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
10241   predicate (UseSSE<=1);
10242   match(Set dst (DivD dst src));
10243   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
10244   ins_cost(01);
10245 
10246   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
10247             "DMULp  $dst,ST\n\t"
10248             "FLD    $src\n\t"
10249             "FDIVp  $dst,ST\n\t"
10250             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
10251             "DMULp  $dst,ST\n\t" %}
10252   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10253   ins_encode( strictfp_bias1(dst),
10254               Push_Reg_D(src),
10255               OpcP, RegOpc(dst),
10256               strictfp_bias2(dst) );
10257   ins_pipe( fpu_reg_reg );
10258 %}
10259 
10260 instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
10261   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
10262   match(Set dst (RoundDouble (DivD src1 src2)));
10263 
10264   format %{ "FLD    $src1\n\t"
10265             "FDIV   ST,$src2\n\t"
10266             "FSTP_D $dst\t# D-round" %}
10267   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
10268   ins_encode( Push_Reg_D(src1),
10269               OpcP, RegOpc(src2), Pop_Mem_D(dst) );
10270   ins_pipe( fpu_mem_reg_reg );
10271 %}
10272 
10273 
10274 instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
10275   predicate(UseSSE<=1);
10276   match(Set dst (ModD dst src));
10277   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
10278 
10279   format %{ "DMOD   $dst,$src" %}
10280   ins_cost(250);
10281   ins_encode(Push_Reg_Mod_D(dst, src),
10282               emitModD(),
10283               Push_Result_Mod_D(src),
10284               Pop_Reg_D(dst));
10285   ins_pipe( pipe_slow );
10286 %}
10287 
10288 instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
10289   predicate(UseSSE>=2);
10290   match(Set dst (ModD src0 src1));
10291   effect(KILL rax, KILL cr);
10292 
10293   format %{ "SUB    ESP,8\t # DMOD\n"
10294           "\tMOVSD  [ESP+0],$src1\n"
10295           "\tFLD_D  [ESP+0]\n"
10296           "\tMOVSD  [ESP+0],$src0\n"
10297           "\tFLD_D  [ESP+0]\n"
10298      "loop:\tFPREM\n"
10299           "\tFWAIT\n"
10300           "\tFNSTSW AX\n"
10301           "\tSAHF\n"
10302           "\tJP     loop\n"
10303           "\tFSTP_D [ESP+0]\n"
10304           "\tMOVSD  $dst,[ESP+0]\n"
10305           "\tADD    ESP,8\n"
10306           "\tFSTP   ST0\t # Restore FPU Stack"
10307     %}
10308   ins_cost(250);
10309   ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
10310   ins_pipe( pipe_slow );
10311 %}
10312 
10313 instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
10314   predicate (UseSSE<=1);
10315   match(Set dst (SinD src));
10316   ins_cost(1800);
10317   format %{ "DSIN   $dst" %}
10318   opcode(0xD9, 0xFE);
10319   ins_encode( OpcP, OpcS );
10320   ins_pipe( pipe_slow );
10321 %}
10322 
10323 instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
10324   predicate (UseSSE>=2);
10325   match(Set dst (SinD dst));
10326   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10327   ins_cost(1800);
10328   format %{ "DSIN   $dst" %}
10329   opcode(0xD9, 0xFE);
10330   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
10331   ins_pipe( pipe_slow );
10332 %}
10333 
10334 instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
10335   predicate (UseSSE<=1);
10336   match(Set dst (CosD src));
10337   ins_cost(1800);
10338   format %{ "DCOS   $dst" %}
10339   opcode(0xD9, 0xFF);
10340   ins_encode( OpcP, OpcS );
10341   ins_pipe( pipe_slow );
10342 %}
10343 
10344 instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
10345   predicate (UseSSE>=2);
10346   match(Set dst (CosD dst));
10347   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10348   ins_cost(1800);
10349   format %{ "DCOS   $dst" %}
10350   opcode(0xD9, 0xFF);
10351   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
10352   ins_pipe( pipe_slow );
10353 %}
10354 
10355 instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
10356   predicate (UseSSE<=1);
10357   match(Set dst(TanD src));
10358   format %{ "DTAN   $dst" %}
10359   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
10360               Opcode(0xDD), Opcode(0xD8));   // fstp st
10361   ins_pipe( pipe_slow );
10362 %}
10363 
10364 instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
10365   predicate (UseSSE>=2);
10366   match(Set dst(TanD dst));
10367   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10368   format %{ "DTAN   $dst" %}
10369   ins_encode( Push_SrcXD(dst),
10370               Opcode(0xD9), Opcode(0xF2),    // fptan
10371               Opcode(0xDD), Opcode(0xD8),   // fstp st
10372               Push_ResultXD(dst) );
10373   ins_pipe( pipe_slow );
10374 %}
10375 
10376 instruct atanD_reg(regD dst, regD src) %{
10377   predicate (UseSSE<=1);
10378   match(Set dst(AtanD dst src));
10379   format %{ "DATA   $dst,$src" %}
10380   opcode(0xD9, 0xF3);
10381   ins_encode( Push_Reg_D(src),
10382               OpcP, OpcS, RegOpc(dst) );
10383   ins_pipe( pipe_slow );
10384 %}
10385 
10386 instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10387   predicate (UseSSE>=2);
10388   match(Set dst(AtanD dst src));
10389   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10390   format %{ "DATA   $dst,$src" %}
10391   opcode(0xD9, 0xF3);
10392   ins_encode( Push_SrcXD(src),
10393               OpcP, OpcS, Push_ResultXD(dst) );
10394   ins_pipe( pipe_slow );
10395 %}
10396 
10397 instruct sqrtD_reg(regD dst, regD src) %{
10398   predicate (UseSSE<=1);
10399   match(Set dst (SqrtD src));
10400   format %{ "DSQRT  $dst,$src" %}
10401   opcode(0xFA, 0xD9);
10402   ins_encode( Push_Reg_D(src),
10403               OpcS, OpcP, Pop_Reg_D(dst) );
10404   ins_pipe( pipe_slow );
10405 %}
10406 
10407 instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10408   predicate (UseSSE<=1);
10409   match(Set Y (PowD X Y));  // Raise X to the Yth power
10410   effect(KILL rax, KILL rbx, KILL rcx);
10411   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
10412             "FLD_D  $X\n\t"
10413             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
10414 
10415             "FDUP   \t\t\t# Q Q\n\t"
10416             "FRNDINT\t\t\t# int(Q) Q\n\t"
10417             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10418             "FISTP  dword [ESP]\n\t"
10419             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10420             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10421             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10422             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10423             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10424             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10425             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10426             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10427             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10428             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10429             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10430             "MOV    [ESP+0],0\n\t"
10431             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10432 
10433             "ADD    ESP,8"
10434              %}
10435   ins_encode( push_stack_temp_qword,
10436               Push_Reg_D(X),
10437               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10438               pow_exp_core_encoding,
10439               pop_stack_temp_qword);
10440   ins_pipe( pipe_slow );
10441 %}
10442 
10443 instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
10444   predicate (UseSSE>=2);
10445   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
10446   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
10447   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
10448             "MOVSD  [ESP],$src1\n\t"
10449             "FLD    FPR1,$src1\n\t"
10450             "MOVSD  [ESP],$src0\n\t"
10451             "FLD    FPR1,$src0\n\t"
10452             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
10453 
10454             "FDUP   \t\t\t# Q Q\n\t"
10455             "FRNDINT\t\t\t# int(Q) Q\n\t"
10456             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10457             "FISTP  dword [ESP]\n\t"
10458             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10459             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10460             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10461             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10462             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10463             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10464             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10465             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10466             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10467             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10468             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10469             "MOV    [ESP+0],0\n\t"
10470             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10471 
10472             "FST_D  [ESP]\n\t"
10473             "MOVSD  $dst,[ESP]\n\t"
10474             "ADD    ESP,8"
10475              %}
10476   ins_encode( push_stack_temp_qword,
10477               push_xmm_to_fpr1(src1),
10478               push_xmm_to_fpr1(src0),
10479               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10480               pow_exp_core_encoding,
10481               Push_ResultXD(dst) );
10482   ins_pipe( pipe_slow );
10483 %}
10484 
10485 
10486 instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10487   predicate (UseSSE<=1);
10488   match(Set dpr1 (ExpD dpr1));
10489   effect(KILL rax, KILL rbx, KILL rcx);
10490   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
10491             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
10492             "FMULP  \t\t\t# Q=X*log2(e)\n\t"
10493 
10494             "FDUP   \t\t\t# Q Q\n\t"
10495             "FRNDINT\t\t\t# int(Q) Q\n\t"
10496             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10497             "FISTP  dword [ESP]\n\t"
10498             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10499             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10500             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10501             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10502             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10503             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10504             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10505             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10506             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10507             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10508             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10509             "MOV    [ESP+0],0\n\t"
10510             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10511 
10512             "ADD    ESP,8"
10513              %}
10514   ins_encode( push_stack_temp_qword,
10515               Opcode(0xD9), Opcode(0xEA),   // fldl2e
10516               Opcode(0xDE), Opcode(0xC9),   // fmulp
10517               pow_exp_core_encoding,
10518               pop_stack_temp_qword);
10519   ins_pipe( pipe_slow );
10520 %}
10521 
10522 instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10523   predicate (UseSSE>=2);
10524   match(Set dst (ExpD src));
10525   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
10526   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
10527             "MOVSD  [ESP],$src\n\t"
10528             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
10529             "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
10530 
10531             "FDUP   \t\t\t# Q Q\n\t"
10532             "FRNDINT\t\t\t# int(Q) Q\n\t"
10533             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10534             "FISTP  dword [ESP]\n\t"
10535             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10536             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10537             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10538             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10539             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10540             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10541             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10542             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10543             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10544             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10545             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10546             "MOV    [ESP+0],0\n\t"
10547             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10548 
10549             "FST_D  [ESP]\n\t"
10550             "MOVSD  $dst,[ESP]\n\t"
10551             "ADD    ESP,8"
10552              %}
10553   ins_encode( Push_SrcXD(src),
10554               Opcode(0xD9), Opcode(0xEA),   // fldl2e
10555               Opcode(0xDE), Opcode(0xC9),   // fmulp
10556               pow_exp_core_encoding,
10557               Push_ResultXD(dst) );
10558   ins_pipe( pipe_slow );
10559 %}
10560 
10561 
10562 
10563 instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
10564   predicate (UseSSE<=1);
10565   // The source Double operand on FPU stack
10566   match(Set dst (Log10D src));
10567   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10568   // fxch         ; swap ST(0) with ST(1)
10569   // fyl2x        ; compute log_10(2) * log_2(x)
10570   format %{ "FLDLG2 \t\t\t#Log10\n\t"
10571             "FXCH   \n\t"
10572             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10573          %}
10574   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10575               Opcode(0xD9), Opcode(0xC9),   // fxch
10576               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10577 
10578   ins_pipe( pipe_slow );
10579 %}
10580 
10581 instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10582   predicate (UseSSE>=2);
10583   effect(KILL cr);
10584   match(Set dst (Log10D src));
10585   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10586   // fyl2x        ; compute log_10(2) * log_2(x)
10587   format %{ "FLDLG2 \t\t\t#Log10\n\t"
10588             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10589          %}
10590   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10591               Push_SrcXD(src),
10592               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10593               Push_ResultXD(dst));
10594 
10595   ins_pipe( pipe_slow );
10596 %}
10597 
10598 instruct logD_reg(regDPR1 dst, regDPR1 src) %{
10599   predicate (UseSSE<=1);
10600   // The source Double operand on FPU stack
10601   match(Set dst (LogD src));
10602   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10603   // fxch         ; swap ST(0) with ST(1)
10604   // fyl2x        ; compute log_e(2) * log_2(x)
10605   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10606             "FXCH   \n\t"
10607             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10608          %}
10609   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10610               Opcode(0xD9), Opcode(0xC9),   // fxch
10611               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10612 
10613   ins_pipe( pipe_slow );
10614 %}
10615 
10616 instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10617   predicate (UseSSE>=2);
10618   effect(KILL cr);
10619   // The source and result Double operands in XMM registers
10620   match(Set dst (LogD src));
10621   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10622   // fyl2x        ; compute log_e(2) * log_2(x)
10623   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10624             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10625          %}
10626   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10627               Push_SrcXD(src),
10628               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10629               Push_ResultXD(dst));
10630   ins_pipe( pipe_slow );
10631 %}
10632 
10633 //-------------Float Instructions-------------------------------
10634 // Float Math
10635 
10636 // Code for float compare:
10637 //     fcompp();
10638 //     fwait(); fnstsw_ax();
10639 //     sahf();
10640 //     movl(dst, unordered_result);
10641 //     jcc(Assembler::parity, exit);
10642 //     movl(dst, less_result);
10643 //     jcc(Assembler::below, exit);
10644 //     movl(dst, equal_result);
10645 //     jcc(Assembler::equal, exit);
10646 //     movl(dst, greater_result);
10647 //   exit:
10648 
10649 // P6 version of float compare, sets condition codes in EFLAGS
10650 instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
10651   predicate(VM_Version::supports_cmov() && UseSSE == 0);
10652   match(Set cr (CmpF src1 src2));
10653   effect(KILL rax);
10654   ins_cost(150);
10655   format %{ "FLD    $src1\n\t"
10656             "FUCOMIP ST,$src2  // P6 instruction\n\t"
10657             "JNP    exit\n\t"
10658             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
10659             "SAHF\n"
10660      "exit:\tNOP               // avoid branch to branch" %}
10661   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10662   ins_encode( Push_Reg_D(src1),
10663               OpcP, RegOpc(src2),
10664               cmpF_P6_fixup );
10665   ins_pipe( pipe_slow );
10666 %}
10667 
10668 instruct cmpF_cc_P6CF(eFlagsRegUCF cr, regF src1, regF src2) %{
10669   predicate(VM_Version::supports_cmov() && UseSSE == 0);
10670   match(Set cr (CmpF src1 src2));
10671   ins_cost(100);
10672   format %{ "FLD    $src1\n\t"
10673             "FUCOMIP ST,$src2  // P6 instruction" %}
10674   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10675   ins_encode( Push_Reg_D(src1),
10676               OpcP, RegOpc(src2));
10677   ins_pipe( pipe_slow );
10678 %}
10679 
10680 
10681 // Compare & branch
10682 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
10683   predicate(UseSSE == 0);
10684   match(Set cr (CmpF src1 src2));
10685   effect(KILL rax);
10686   ins_cost(200);
10687   format %{ "FLD    $src1\n\t"
10688             "FCOMp  $src2\n\t"
10689             "FNSTSW AX\n\t"
10690             "TEST   AX,0x400\n\t"
10691             "JZ,s   flags\n\t"
10692             "MOV    AH,1\t# unordered treat as LT\n"
10693     "flags:\tSAHF" %}
10694   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10695   ins_encode( Push_Reg_D(src1),
10696               OpcP, RegOpc(src2),
10697               fpu_flags);
10698   ins_pipe( pipe_slow );
10699 %}
10700 
10701 // Compare vs zero into -1,0,1
10702 instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
10703   predicate(UseSSE == 0);
10704   match(Set dst (CmpF3 src1 zero));
10705   effect(KILL cr, KILL rax);
10706   ins_cost(280);
10707   format %{ "FTSTF  $dst,$src1" %}
10708   opcode(0xE4, 0xD9);
10709   ins_encode( Push_Reg_D(src1),
10710               OpcS, OpcP, PopFPU,
10711               CmpF_Result(dst));
10712   ins_pipe( pipe_slow );
10713 %}
10714 
10715 // Compare into -1,0,1
10716 instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
10717   predicate(UseSSE == 0);
10718   match(Set dst (CmpF3 src1 src2));
10719   effect(KILL cr, KILL rax);
10720   ins_cost(300);
10721   format %{ "FCMPF  $dst,$src1,$src2" %}
10722   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10723   ins_encode( Push_Reg_D(src1),
10724               OpcP, RegOpc(src2),
10725               CmpF_Result(dst));
10726   ins_pipe( pipe_slow );
10727 %}
10728 
10729 // float compare and set condition codes in EFLAGS by XMM regs
10730 instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
10731   predicate(UseSSE>=1);
10732   match(Set cr (CmpF dst src));
10733   effect(KILL rax);
10734   ins_cost(145);
10735   format %{ "COMISS $dst,$src\n"
10736           "\tJNP    exit\n"
10737           "\tMOV    ah,1       // saw a NaN, set CF\n"
10738           "\tSAHF\n"
10739      "exit:\tNOP               // avoid branch to branch" %}
10740   opcode(0x0F, 0x2F);
10741   ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
10742   ins_pipe( pipe_slow );
10743 %}
10744 
10745 instruct cmpX_ccCF(eFlagsRegUCF cr, regX dst, regX src) %{
10746   predicate(UseSSE>=1);
10747   match(Set cr (CmpF dst src));
10748   ins_cost(100);
10749   format %{ "COMISS $dst,$src" %}
10750   opcode(0x0F, 0x2F);
10751   ins_encode(OpcP, OpcS, RegReg(dst, src));
10752   ins_pipe( pipe_slow );
10753 %}
10754 
10755 // float compare and set condition codes in EFLAGS by XMM regs
10756 instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
10757   predicate(UseSSE>=1);
10758   match(Set cr (CmpF dst (LoadF src)));
10759   effect(KILL rax);
10760   ins_cost(165);
10761   format %{ "COMISS $dst,$src\n"
10762           "\tJNP    exit\n"
10763           "\tMOV    ah,1       // saw a NaN, set CF\n"
10764           "\tSAHF\n"
10765      "exit:\tNOP               // avoid branch to branch" %}
10766   opcode(0x0F, 0x2F);
10767   ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
10768   ins_pipe( pipe_slow );
10769 %}
10770 
10771 instruct cmpX_ccmemCF(eFlagsRegUCF cr, regX dst, memory src) %{
10772   predicate(UseSSE>=1);
10773   match(Set cr (CmpF dst (LoadF src)));
10774   ins_cost(100);
10775   format %{ "COMISS $dst,$src" %}
10776   opcode(0x0F, 0x2F);
10777   ins_encode(OpcP, OpcS, RegMem(dst, src));
10778   ins_pipe( pipe_slow );
10779 %}
10780 
10781 // Compare into -1,0,1 in XMM
10782 instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
10783   predicate(UseSSE>=1);
10784   match(Set dst (CmpF3 src1 src2));
10785   effect(KILL cr);
10786   ins_cost(255);
10787   format %{ "XOR    $dst,$dst\n"
10788           "\tCOMISS $src1,$src2\n"
10789           "\tJP,s   nan\n"
10790           "\tJEQ,s  exit\n"
10791           "\tJA,s   inc\n"
10792       "nan:\tDEC    $dst\n"
10793           "\tJMP,s  exit\n"
10794       "inc:\tINC    $dst\n"
10795       "exit:"
10796                 %}
10797   opcode(0x0F, 0x2F);
10798   ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
10799   ins_pipe( pipe_slow );
10800 %}
10801 
10802 // Compare into -1,0,1 in XMM and memory
10803 instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
10804   predicate(UseSSE>=1);
10805   match(Set dst (CmpF3 src1 (LoadF mem)));
10806   effect(KILL cr);
10807   ins_cost(275);
10808   format %{ "COMISS $src1,$mem\n"
10809           "\tMOV    $dst,0\t\t# do not blow flags\n"
10810           "\tJP,s   nan\n"
10811           "\tJEQ,s  exit\n"
10812           "\tJA,s   inc\n"
10813       "nan:\tDEC    $dst\n"
10814           "\tJMP,s  exit\n"
10815       "inc:\tINC    $dst\n"
10816       "exit:"
10817                 %}
10818   opcode(0x0F, 0x2F);
10819   ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
10820   ins_pipe( pipe_slow );
10821 %}
10822 
10823 // Spill to obtain 24-bit precision
10824 instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
10825   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10826   match(Set dst (SubF src1 src2));
10827 
10828   format %{ "FSUB   $dst,$src1 - $src2" %}
10829   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
10830   ins_encode( Push_Reg_F(src1),
10831               OpcReg_F(src2),
10832               Pop_Mem_F(dst) );
10833   ins_pipe( fpu_mem_reg_reg );
10834 %}
10835 //
10836 // This instruction does not round to 24-bits
10837 instruct subF_reg(regF dst, regF src) %{
10838   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10839   match(Set dst (SubF dst src));
10840 
10841   format %{ "FSUB   $dst,$src" %}
10842   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
10843   ins_encode( Push_Reg_F(src),
10844               OpcP, RegOpc(dst) );
10845   ins_pipe( fpu_reg_reg );
10846 %}
10847 
10848 // Spill to obtain 24-bit precision
10849 instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
10850   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10851   match(Set dst (AddF src1 src2));
10852 
10853   format %{ "FADD   $dst,$src1,$src2" %}
10854   opcode(0xD8, 0x0); /* D8 C0+i */
10855   ins_encode( Push_Reg_F(src2),
10856               OpcReg_F(src1),
10857               Pop_Mem_F(dst) );
10858   ins_pipe( fpu_mem_reg_reg );
10859 %}
10860 //
10861 // This instruction does not round to 24-bits
10862 instruct addF_reg(regF dst, regF src) %{
10863   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10864   match(Set dst (AddF dst src));
10865 
10866   format %{ "FLD    $src\n\t"
10867             "FADDp  $dst,ST" %}
10868   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
10869   ins_encode( Push_Reg_F(src),
10870               OpcP, RegOpc(dst) );
10871   ins_pipe( fpu_reg_reg );
10872 %}
10873 
10874 // Add two single precision floating point values in xmm
10875 instruct addX_reg(regX dst, regX src) %{
10876   predicate(UseSSE>=1);
10877   match(Set dst (AddF dst src));
10878   format %{ "ADDSS  $dst,$src" %}
10879   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
10880   ins_pipe( pipe_slow );
10881 %}
10882 
10883 instruct addX_imm(regX dst, immXF con) %{
10884   predicate(UseSSE>=1);
10885   match(Set dst (AddF dst con));
10886   format %{ "ADDSS  $dst,[$con]" %}
10887   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), LdImmX(dst, con) );
10888   ins_pipe( pipe_slow );
10889 %}
10890 
10891 instruct addX_mem(regX dst, memory mem) %{
10892   predicate(UseSSE>=1);
10893   match(Set dst (AddF dst (LoadF mem)));
10894   format %{ "ADDSS  $dst,$mem" %}
10895   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
10896   ins_pipe( pipe_slow );
10897 %}
10898 
10899 // Subtract two single precision floating point values in xmm
10900 instruct subX_reg(regX dst, regX src) %{
10901   predicate(UseSSE>=1);
10902   match(Set dst (SubF dst src));
10903   format %{ "SUBSS  $dst,$src" %}
10904   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
10905   ins_pipe( pipe_slow );
10906 %}
10907 
10908 instruct subX_imm(regX dst, immXF con) %{
10909   predicate(UseSSE>=1);
10910   match(Set dst (SubF dst con));
10911   format %{ "SUBSS  $dst,[$con]" %}
10912   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), LdImmX(dst, con) );
10913   ins_pipe( pipe_slow );
10914 %}
10915 
10916 instruct subX_mem(regX dst, memory mem) %{
10917   predicate(UseSSE>=1);
10918   match(Set dst (SubF dst (LoadF mem)));
10919   format %{ "SUBSS  $dst,$mem" %}
10920   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
10921   ins_pipe( pipe_slow );
10922 %}
10923 
10924 // Multiply two single precision floating point values in xmm
10925 instruct mulX_reg(regX dst, regX src) %{
10926   predicate(UseSSE>=1);
10927   match(Set dst (MulF dst src));
10928   format %{ "MULSS  $dst,$src" %}
10929   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
10930   ins_pipe( pipe_slow );
10931 %}
10932 
10933 instruct mulX_imm(regX dst, immXF con) %{
10934   predicate(UseSSE>=1);
10935   match(Set dst (MulF dst con));
10936   format %{ "MULSS  $dst,[$con]" %}
10937   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), LdImmX(dst, con) );
10938   ins_pipe( pipe_slow );
10939 %}
10940 
10941 instruct mulX_mem(regX dst, memory mem) %{
10942   predicate(UseSSE>=1);
10943   match(Set dst (MulF dst (LoadF mem)));
10944   format %{ "MULSS  $dst,$mem" %}
10945   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
10946   ins_pipe( pipe_slow );
10947 %}
10948 
10949 // Divide two single precision floating point values in xmm
10950 instruct divX_reg(regX dst, regX src) %{
10951   predicate(UseSSE>=1);
10952   match(Set dst (DivF dst src));
10953   format %{ "DIVSS  $dst,$src" %}
10954   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
10955   ins_pipe( pipe_slow );
10956 %}
10957 
10958 instruct divX_imm(regX dst, immXF con) %{
10959   predicate(UseSSE>=1);
10960   match(Set dst (DivF dst con));
10961   format %{ "DIVSS  $dst,[$con]" %}
10962   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), LdImmX(dst, con) );
10963   ins_pipe( pipe_slow );
10964 %}
10965 
10966 instruct divX_mem(regX dst, memory mem) %{
10967   predicate(UseSSE>=1);
10968   match(Set dst (DivF dst (LoadF mem)));
10969   format %{ "DIVSS  $dst,$mem" %}
10970   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
10971   ins_pipe( pipe_slow );
10972 %}
10973 
10974 // Get the square root of a single precision floating point values in xmm
10975 instruct sqrtX_reg(regX dst, regX src) %{
10976   predicate(UseSSE>=1);
10977   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
10978   format %{ "SQRTSS $dst,$src" %}
10979   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
10980   ins_pipe( pipe_slow );
10981 %}
10982 
10983 instruct sqrtX_mem(regX dst, memory mem) %{
10984   predicate(UseSSE>=1);
10985   match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
10986   format %{ "SQRTSS $dst,$mem" %}
10987   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
10988   ins_pipe( pipe_slow );
10989 %}
10990 
10991 // Get the square root of a double precision floating point values in xmm
10992 instruct sqrtXD_reg(regXD dst, regXD src) %{
10993   predicate(UseSSE>=2);
10994   match(Set dst (SqrtD src));
10995   format %{ "SQRTSD $dst,$src" %}
10996   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
10997   ins_pipe( pipe_slow );
10998 %}
10999 
11000 instruct sqrtXD_mem(regXD dst, memory mem) %{
11001   predicate(UseSSE>=2);
11002   match(Set dst (SqrtD (LoadD mem)));
11003   format %{ "SQRTSD $dst,$mem" %}
11004   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
11005   ins_pipe( pipe_slow );
11006 %}
11007 
11008 instruct absF_reg(regFPR1 dst, regFPR1 src) %{
11009   predicate(UseSSE==0);
11010   match(Set dst (AbsF src));
11011   ins_cost(100);
11012   format %{ "FABS" %}
11013   opcode(0xE1, 0xD9);
11014   ins_encode( OpcS, OpcP );
11015   ins_pipe( fpu_reg_reg );
11016 %}
11017 
11018 instruct absX_reg(regX dst ) %{
11019   predicate(UseSSE>=1);
11020   match(Set dst (AbsF dst));
11021   format %{ "ANDPS  $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
11022   ins_encode( AbsXF_encoding(dst));
11023   ins_pipe( pipe_slow );
11024 %}
11025 
11026 instruct negF_reg(regFPR1 dst, regFPR1 src) %{
11027   predicate(UseSSE==0);
11028   match(Set dst (NegF src));
11029   ins_cost(100);
11030   format %{ "FCHS" %}
11031   opcode(0xE0, 0xD9);
11032   ins_encode( OpcS, OpcP );
11033   ins_pipe( fpu_reg_reg );
11034 %}
11035 
11036 instruct negX_reg( regX dst ) %{
11037   predicate(UseSSE>=1);
11038   match(Set dst (NegF dst));
11039   format %{ "XORPS  $dst,[0x80000000]\t# CHS F by sign flipping" %}
11040   ins_encode( NegXF_encoding(dst));
11041   ins_pipe( pipe_slow );
11042 %}
11043 
11044 // Cisc-alternate to addF_reg
11045 // Spill to obtain 24-bit precision
11046 instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
11047   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11048   match(Set dst (AddF src1 (LoadF src2)));
11049 
11050   format %{ "FLD    $src2\n\t"
11051             "FADD   ST,$src1\n\t"
11052             "FSTP_S $dst" %}
11053   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
11054   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11055               OpcReg_F(src1),
11056               Pop_Mem_F(dst) );
11057   ins_pipe( fpu_mem_reg_mem );
11058 %}
11059 //
11060 // Cisc-alternate to addF_reg
11061 // This instruction does not round to 24-bits
11062 instruct addF_reg_mem(regF dst, memory src) %{
11063   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11064   match(Set dst (AddF dst (LoadF src)));
11065 
11066   format %{ "FADD   $dst,$src" %}
11067   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
11068   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
11069               OpcP, RegOpc(dst) );
11070   ins_pipe( fpu_reg_mem );
11071 %}
11072 
11073 // // Following two instructions for _222_mpegaudio
11074 // Spill to obtain 24-bit precision
11075 instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
11076   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11077   match(Set dst (AddF src1 src2));
11078 
11079   format %{ "FADD   $dst,$src1,$src2" %}
11080   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
11081   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
11082               OpcReg_F(src2),
11083               Pop_Mem_F(dst) );
11084   ins_pipe( fpu_mem_reg_mem );
11085 %}
11086 
11087 // Cisc-spill variant
11088 // Spill to obtain 24-bit precision
11089 instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
11090   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11091   match(Set dst (AddF src1 (LoadF src2)));
11092 
11093   format %{ "FADD   $dst,$src1,$src2 cisc" %}
11094   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
11095   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11096               set_instruction_start,
11097               OpcP, RMopc_Mem(secondary,src1),
11098               Pop_Mem_F(dst) );
11099   ins_pipe( fpu_mem_mem_mem );
11100 %}
11101 
11102 // Spill to obtain 24-bit precision
11103 instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
11104   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11105   match(Set dst (AddF src1 src2));
11106 
11107   format %{ "FADD   $dst,$src1,$src2" %}
11108   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
11109   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11110               set_instruction_start,
11111               OpcP, RMopc_Mem(secondary,src1),
11112               Pop_Mem_F(dst) );
11113   ins_pipe( fpu_mem_mem_mem );
11114 %}
11115 
11116 
11117 // Spill to obtain 24-bit precision
11118 instruct addF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
11119   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11120   match(Set dst (AddF src1 src2));
11121   format %{ "FLD    $src1\n\t"
11122             "FADD   $src2\n\t"
11123             "FSTP_S $dst"  %}
11124   opcode(0xD8, 0x00);       /* D8 /0 */
11125   ins_encode( Push_Reg_F(src1),
11126               Opc_MemImm_F(src2),
11127               Pop_Mem_F(dst));
11128   ins_pipe( fpu_mem_reg_con );
11129 %}
11130 //
11131 // This instruction does not round to 24-bits
11132 instruct addF_reg_imm(regF dst, regF src1, immF src2) %{
11133   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11134   match(Set dst (AddF src1 src2));
11135   format %{ "FLD    $src1\n\t"
11136             "FADD   $src2\n\t"
11137             "FSTP_S $dst"  %}
11138   opcode(0xD8, 0x00);       /* D8 /0 */
11139   ins_encode( Push_Reg_F(src1),
11140               Opc_MemImm_F(src2),
11141               Pop_Reg_F(dst));
11142   ins_pipe( fpu_reg_reg_con );
11143 %}
11144 
11145 // Spill to obtain 24-bit precision
11146 instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
11147   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11148   match(Set dst (MulF src1 src2));
11149 
11150   format %{ "FLD    $src1\n\t"
11151             "FMUL   $src2\n\t"
11152             "FSTP_S $dst"  %}
11153   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
11154   ins_encode( Push_Reg_F(src1),
11155               OpcReg_F(src2),
11156               Pop_Mem_F(dst) );
11157   ins_pipe( fpu_mem_reg_reg );
11158 %}
11159 //
11160 // This instruction does not round to 24-bits
11161 instruct mulF_reg(regF dst, regF src1, regF src2) %{
11162   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11163   match(Set dst (MulF src1 src2));
11164 
11165   format %{ "FLD    $src1\n\t"
11166             "FMUL   $src2\n\t"
11167             "FSTP_S $dst"  %}
11168   opcode(0xD8, 0x1); /* D8 C8+i */
11169   ins_encode( Push_Reg_F(src2),
11170               OpcReg_F(src1),
11171               Pop_Reg_F(dst) );
11172   ins_pipe( fpu_reg_reg_reg );
11173 %}
11174 
11175 
11176 // Spill to obtain 24-bit precision
11177 // Cisc-alternate to reg-reg multiply
11178 instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
11179   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11180   match(Set dst (MulF src1 (LoadF src2)));
11181 
11182   format %{ "FLD_S  $src2\n\t"
11183             "FMUL   $src1\n\t"
11184             "FSTP_S $dst"  %}
11185   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
11186   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11187               OpcReg_F(src1),
11188               Pop_Mem_F(dst) );
11189   ins_pipe( fpu_mem_reg_mem );
11190 %}
11191 //
11192 // This instruction does not round to 24-bits
11193 // Cisc-alternate to reg-reg multiply
11194 instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
11195   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11196   match(Set dst (MulF src1 (LoadF src2)));
11197 
11198   format %{ "FMUL   $dst,$src1,$src2" %}
11199   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
11200   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11201               OpcReg_F(src1),
11202               Pop_Reg_F(dst) );
11203   ins_pipe( fpu_reg_reg_mem );
11204 %}
11205 
11206 // Spill to obtain 24-bit precision
11207 instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
11208   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11209   match(Set dst (MulF src1 src2));
11210 
11211   format %{ "FMUL   $dst,$src1,$src2" %}
11212   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
11213   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11214               set_instruction_start,
11215               OpcP, RMopc_Mem(secondary,src1),
11216               Pop_Mem_F(dst) );
11217   ins_pipe( fpu_mem_mem_mem );
11218 %}
11219 
11220 // Spill to obtain 24-bit precision
11221 instruct mulF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
11222   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11223   match(Set dst (MulF src1 src2));
11224 
11225   format %{ "FMULc $dst,$src1,$src2" %}
11226   opcode(0xD8, 0x1);  /* D8 /1*/
11227   ins_encode( Push_Reg_F(src1),
11228               Opc_MemImm_F(src2),
11229               Pop_Mem_F(dst));
11230   ins_pipe( fpu_mem_reg_con );
11231 %}
11232 //
11233 // This instruction does not round to 24-bits
11234 instruct mulF_reg_imm(regF dst, regF src1, immF src2) %{
11235   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11236   match(Set dst (MulF src1 src2));
11237 
11238   format %{ "FMULc $dst. $src1, $src2" %}
11239   opcode(0xD8, 0x1);  /* D8 /1*/
11240   ins_encode( Push_Reg_F(src1),
11241               Opc_MemImm_F(src2),
11242               Pop_Reg_F(dst));
11243   ins_pipe( fpu_reg_reg_con );
11244 %}
11245 
11246 
11247 //
11248 // MACRO1 -- subsume unshared load into mulF
11249 // This instruction does not round to 24-bits
11250 instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
11251   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11252   match(Set dst (MulF (LoadF mem1) src));
11253 
11254   format %{ "FLD    $mem1    ===MACRO1===\n\t"
11255             "FMUL   ST,$src\n\t"
11256             "FSTP   $dst" %}
11257   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
11258   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
11259               OpcReg_F(src),
11260               Pop_Reg_F(dst) );
11261   ins_pipe( fpu_reg_reg_mem );
11262 %}
11263 //
11264 // MACRO2 -- addF a mulF which subsumed an unshared load
11265 // This instruction does not round to 24-bits
11266 instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
11267   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11268   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
11269   ins_cost(95);
11270 
11271   format %{ "FLD    $mem1     ===MACRO2===\n\t"
11272             "FMUL   ST,$src1  subsume mulF left load\n\t"
11273             "FADD   ST,$src2\n\t"
11274             "FSTP   $dst" %}
11275   opcode(0xD9); /* LoadF D9 /0 */
11276   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
11277               FMul_ST_reg(src1),
11278               FAdd_ST_reg(src2),
11279               Pop_Reg_F(dst) );
11280   ins_pipe( fpu_reg_mem_reg_reg );
11281 %}
11282 
11283 // MACRO3 -- addF a mulF
11284 // This instruction does not round to 24-bits.  It is a '2-address'
11285 // instruction in that the result goes back to src2.  This eliminates
11286 // a move from the macro; possibly the register allocator will have
11287 // to add it back (and maybe not).
11288 instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
11289   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11290   match(Set src2 (AddF (MulF src0 src1) src2));
11291 
11292   format %{ "FLD    $src0     ===MACRO3===\n\t"
11293             "FMUL   ST,$src1\n\t"
11294             "FADDP  $src2,ST" %}
11295   opcode(0xD9); /* LoadF D9 /0 */
11296   ins_encode( Push_Reg_F(src0),
11297               FMul_ST_reg(src1),
11298               FAddP_reg_ST(src2) );
11299   ins_pipe( fpu_reg_reg_reg );
11300 %}
11301 
11302 // MACRO4 -- divF subF
11303 // This instruction does not round to 24-bits
11304 instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
11305   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11306   match(Set dst (DivF (SubF src2 src1) src3));
11307 
11308   format %{ "FLD    $src2   ===MACRO4===\n\t"
11309             "FSUB   ST,$src1\n\t"
11310             "FDIV   ST,$src3\n\t"
11311             "FSTP  $dst" %}
11312   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
11313   ins_encode( Push_Reg_F(src2),
11314               subF_divF_encode(src1,src3),
11315               Pop_Reg_F(dst) );
11316   ins_pipe( fpu_reg_reg_reg_reg );
11317 %}
11318 
11319 // Spill to obtain 24-bit precision
11320 instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
11321   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11322   match(Set dst (DivF src1 src2));
11323 
11324   format %{ "FDIV   $dst,$src1,$src2" %}
11325   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
11326   ins_encode( Push_Reg_F(src1),
11327               OpcReg_F(src2),
11328               Pop_Mem_F(dst) );
11329   ins_pipe( fpu_mem_reg_reg );
11330 %}
11331 //
11332 // This instruction does not round to 24-bits
11333 instruct divF_reg(regF dst, regF src) %{
11334   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11335   match(Set dst (DivF dst src));
11336 
11337   format %{ "FDIV   $dst,$src" %}
11338   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
11339   ins_encode( Push_Reg_F(src),
11340               OpcP, RegOpc(dst) );
11341   ins_pipe( fpu_reg_reg );
11342 %}
11343 
11344 
11345 // Spill to obtain 24-bit precision
11346 instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
11347   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11348   match(Set dst (ModF src1 src2));
11349   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
11350 
11351   format %{ "FMOD   $dst,$src1,$src2" %}
11352   ins_encode( Push_Reg_Mod_D(src1, src2),
11353               emitModD(),
11354               Push_Result_Mod_D(src2),
11355               Pop_Mem_F(dst));
11356   ins_pipe( pipe_slow );
11357 %}
11358 //
11359 // This instruction does not round to 24-bits
11360 instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
11361   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11362   match(Set dst (ModF dst src));
11363   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
11364 
11365   format %{ "FMOD   $dst,$src" %}
11366   ins_encode(Push_Reg_Mod_D(dst, src),
11367               emitModD(),
11368               Push_Result_Mod_D(src),
11369               Pop_Reg_F(dst));
11370   ins_pipe( pipe_slow );
11371 %}
11372 
11373 instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
11374   predicate(UseSSE>=1);
11375   match(Set dst (ModF src0 src1));
11376   effect(KILL rax, KILL cr);
11377   format %{ "SUB    ESP,4\t # FMOD\n"
11378           "\tMOVSS  [ESP+0],$src1\n"
11379           "\tFLD_S  [ESP+0]\n"
11380           "\tMOVSS  [ESP+0],$src0\n"
11381           "\tFLD_S  [ESP+0]\n"
11382      "loop:\tFPREM\n"
11383           "\tFWAIT\n"
11384           "\tFNSTSW AX\n"
11385           "\tSAHF\n"
11386           "\tJP     loop\n"
11387           "\tFSTP_S [ESP+0]\n"
11388           "\tMOVSS  $dst,[ESP+0]\n"
11389           "\tADD    ESP,4\n"
11390           "\tFSTP   ST0\t # Restore FPU Stack"
11391     %}
11392   ins_cost(250);
11393   ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
11394   ins_pipe( pipe_slow );
11395 %}
11396 
11397 
11398 //----------Arithmetic Conversion Instructions---------------------------------
11399 // The conversions operations are all Alpha sorted.  Please keep it that way!
11400 
11401 instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
11402   predicate(UseSSE==0);
11403   match(Set dst (RoundFloat src));
11404   ins_cost(125);
11405   format %{ "FST_S  $dst,$src\t# F-round" %}
11406   ins_encode( Pop_Mem_Reg_F(dst, src) );
11407   ins_pipe( fpu_mem_reg );
11408 %}
11409 
11410 instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
11411   predicate(UseSSE<=1);
11412   match(Set dst (RoundDouble src));
11413   ins_cost(125);
11414   format %{ "FST_D  $dst,$src\t# D-round" %}
11415   ins_encode( Pop_Mem_Reg_D(dst, src) );
11416   ins_pipe( fpu_mem_reg );
11417 %}
11418 
11419 // Force rounding to 24-bit precision and 6-bit exponent
11420 instruct convD2F_reg(stackSlotF dst, regD src) %{
11421   predicate(UseSSE==0);
11422   match(Set dst (ConvD2F src));
11423   format %{ "FST_S  $dst,$src\t# F-round" %}
11424   expand %{
11425     roundFloat_mem_reg(dst,src);
11426   %}
11427 %}
11428 
11429 // Force rounding to 24-bit precision and 6-bit exponent
11430 instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
11431   predicate(UseSSE==1);
11432   match(Set dst (ConvD2F src));
11433   effect( KILL cr );
11434   format %{ "SUB    ESP,4\n\t"
11435             "FST_S  [ESP],$src\t# F-round\n\t"
11436             "MOVSS  $dst,[ESP]\n\t"
11437             "ADD ESP,4" %}
11438   ins_encode( D2X_encoding(dst, src) );
11439   ins_pipe( pipe_slow );
11440 %}
11441 
11442 // Force rounding double precision to single precision
11443 instruct convXD2X_reg(regX dst, regXD src) %{
11444   predicate(UseSSE>=2);
11445   match(Set dst (ConvD2F src));
11446   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
11447   opcode(0xF2, 0x0F, 0x5A);
11448   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11449   ins_pipe( pipe_slow );
11450 %}
11451 
11452 instruct convF2D_reg_reg(regD dst, regF src) %{
11453   predicate(UseSSE==0);
11454   match(Set dst (ConvF2D src));
11455   format %{ "FST_S  $dst,$src\t# D-round" %}
11456   ins_encode( Pop_Reg_Reg_D(dst, src));
11457   ins_pipe( fpu_reg_reg );
11458 %}
11459 
11460 instruct convF2D_reg(stackSlotD dst, regF src) %{
11461   predicate(UseSSE==1);
11462   match(Set dst (ConvF2D src));
11463   format %{ "FST_D  $dst,$src\t# D-round" %}
11464   expand %{
11465     roundDouble_mem_reg(dst,src);
11466   %}
11467 %}
11468 
11469 instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
11470   predicate(UseSSE==1);
11471   match(Set dst (ConvF2D src));
11472   effect( KILL cr );
11473   format %{ "SUB    ESP,4\n\t"
11474             "MOVSS  [ESP] $src\n\t"
11475             "FLD_S  [ESP]\n\t"
11476             "ADD    ESP,4\n\t"
11477             "FSTP   $dst\t# D-round" %}
11478   ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
11479   ins_pipe( pipe_slow );
11480 %}
11481 
11482 instruct convX2XD_reg(regXD dst, regX src) %{
11483   predicate(UseSSE>=2);
11484   match(Set dst (ConvF2D src));
11485   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
11486   opcode(0xF3, 0x0F, 0x5A);
11487   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11488   ins_pipe( pipe_slow );
11489 %}
11490 
11491 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
11492 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
11493   predicate(UseSSE<=1);
11494   match(Set dst (ConvD2I src));
11495   effect( KILL tmp, KILL cr );
11496   format %{ "FLD    $src\t# Convert double to int \n\t"
11497             "FLDCW  trunc mode\n\t"
11498             "SUB    ESP,4\n\t"
11499             "FISTp  [ESP + #0]\n\t"
11500             "FLDCW  std/24-bit mode\n\t"
11501             "POP    EAX\n\t"
11502             "CMP    EAX,0x80000000\n\t"
11503             "JNE,s  fast\n\t"
11504             "FLD_D  $src\n\t"
11505             "CALL   d2i_wrapper\n"
11506       "fast:" %}
11507   ins_encode( Push_Reg_D(src), D2I_encoding(src) );
11508   ins_pipe( pipe_slow );
11509 %}
11510 
11511 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
11512 instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
11513   predicate(UseSSE>=2);
11514   match(Set dst (ConvD2I src));
11515   effect( KILL tmp, KILL cr );
11516   format %{ "CVTTSD2SI $dst, $src\n\t"
11517             "CMP    $dst,0x80000000\n\t"
11518             "JNE,s  fast\n\t"
11519             "SUB    ESP, 8\n\t"
11520             "MOVSD  [ESP], $src\n\t"
11521             "FLD_D  [ESP]\n\t"
11522             "ADD    ESP, 8\n\t"
11523             "CALL   d2i_wrapper\n"
11524       "fast:" %}
11525   opcode(0x1); // double-precision conversion
11526   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
11527   ins_pipe( pipe_slow );
11528 %}
11529 
11530 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
11531   predicate(UseSSE<=1);
11532   match(Set dst (ConvD2L src));
11533   effect( KILL cr );
11534   format %{ "FLD    $src\t# Convert double to long\n\t"
11535             "FLDCW  trunc mode\n\t"
11536             "SUB    ESP,8\n\t"
11537             "FISTp  [ESP + #0]\n\t"
11538             "FLDCW  std/24-bit mode\n\t"
11539             "POP    EAX\n\t"
11540             "POP    EDX\n\t"
11541             "CMP    EDX,0x80000000\n\t"
11542             "JNE,s  fast\n\t"
11543             "TEST   EAX,EAX\n\t"
11544             "JNE,s  fast\n\t"
11545             "FLD    $src\n\t"
11546             "CALL   d2l_wrapper\n"
11547       "fast:" %}
11548   ins_encode( Push_Reg_D(src),  D2L_encoding(src) );
11549   ins_pipe( pipe_slow );
11550 %}
11551 
11552 // XMM lacks a float/double->long conversion, so use the old FPU stack.
11553 instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
11554   predicate (UseSSE>=2);
11555   match(Set dst (ConvD2L src));
11556   effect( KILL cr );
11557   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
11558             "MOVSD  [ESP],$src\n\t"
11559             "FLD_D  [ESP]\n\t"
11560             "FLDCW  trunc mode\n\t"
11561             "FISTp  [ESP + #0]\n\t"
11562             "FLDCW  std/24-bit mode\n\t"
11563             "POP    EAX\n\t"
11564             "POP    EDX\n\t"
11565             "CMP    EDX,0x80000000\n\t"
11566             "JNE,s  fast\n\t"
11567             "TEST   EAX,EAX\n\t"
11568             "JNE,s  fast\n\t"
11569             "SUB    ESP,8\n\t"
11570             "MOVSD  [ESP],$src\n\t"
11571             "FLD_D  [ESP]\n\t"
11572             "CALL   d2l_wrapper\n"
11573       "fast:" %}
11574   ins_encode( XD2L_encoding(src) );
11575   ins_pipe( pipe_slow );
11576 %}
11577 
11578 // Convert a double to an int.  Java semantics require we do complex
11579 // manglations in the corner cases.  So we set the rounding mode to
11580 // 'zero', store the darned double down as an int, and reset the
11581 // rounding mode to 'nearest'.  The hardware stores a flag value down
11582 // if we would overflow or converted a NAN; we check for this and
11583 // and go the slow path if needed.
11584 instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
11585   predicate(UseSSE==0);
11586   match(Set dst (ConvF2I src));
11587   effect( KILL tmp, KILL cr );
11588   format %{ "FLD    $src\t# Convert float to int \n\t"
11589             "FLDCW  trunc mode\n\t"
11590             "SUB    ESP,4\n\t"
11591             "FISTp  [ESP + #0]\n\t"
11592             "FLDCW  std/24-bit mode\n\t"
11593             "POP    EAX\n\t"
11594             "CMP    EAX,0x80000000\n\t"
11595             "JNE,s  fast\n\t"
11596             "FLD    $src\n\t"
11597             "CALL   d2i_wrapper\n"
11598       "fast:" %}
11599   // D2I_encoding works for F2I
11600   ins_encode( Push_Reg_F(src), D2I_encoding(src) );
11601   ins_pipe( pipe_slow );
11602 %}
11603 
11604 // Convert a float in xmm to an int reg.
11605 instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
11606   predicate(UseSSE>=1);
11607   match(Set dst (ConvF2I src));
11608   effect( KILL tmp, KILL cr );
11609   format %{ "CVTTSS2SI $dst, $src\n\t"
11610             "CMP    $dst,0x80000000\n\t"
11611             "JNE,s  fast\n\t"
11612             "SUB    ESP, 4\n\t"
11613             "MOVSS  [ESP], $src\n\t"
11614             "FLD    [ESP]\n\t"
11615             "ADD    ESP, 4\n\t"
11616             "CALL   d2i_wrapper\n"
11617       "fast:" %}
11618   opcode(0x0); // single-precision conversion
11619   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
11620   ins_pipe( pipe_slow );
11621 %}
11622 
11623 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
11624   predicate(UseSSE==0);
11625   match(Set dst (ConvF2L src));
11626   effect( KILL cr );
11627   format %{ "FLD    $src\t# Convert float to long\n\t"
11628             "FLDCW  trunc mode\n\t"
11629             "SUB    ESP,8\n\t"
11630             "FISTp  [ESP + #0]\n\t"
11631             "FLDCW  std/24-bit mode\n\t"
11632             "POP    EAX\n\t"
11633             "POP    EDX\n\t"
11634             "CMP    EDX,0x80000000\n\t"
11635             "JNE,s  fast\n\t"
11636             "TEST   EAX,EAX\n\t"
11637             "JNE,s  fast\n\t"
11638             "FLD    $src\n\t"
11639             "CALL   d2l_wrapper\n"
11640       "fast:" %}
11641   // D2L_encoding works for F2L
11642   ins_encode( Push_Reg_F(src), D2L_encoding(src) );
11643   ins_pipe( pipe_slow );
11644 %}
11645 
11646 // XMM lacks a float/double->long conversion, so use the old FPU stack.
11647 instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
11648   predicate (UseSSE>=1);
11649   match(Set dst (ConvF2L src));
11650   effect( KILL cr );
11651   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
11652             "MOVSS  [ESP],$src\n\t"
11653             "FLD_S  [ESP]\n\t"
11654             "FLDCW  trunc mode\n\t"
11655             "FISTp  [ESP + #0]\n\t"
11656             "FLDCW  std/24-bit mode\n\t"
11657             "POP    EAX\n\t"
11658             "POP    EDX\n\t"
11659             "CMP    EDX,0x80000000\n\t"
11660             "JNE,s  fast\n\t"
11661             "TEST   EAX,EAX\n\t"
11662             "JNE,s  fast\n\t"
11663             "SUB    ESP,4\t# Convert float to long\n\t"
11664             "MOVSS  [ESP],$src\n\t"
11665             "FLD_S  [ESP]\n\t"
11666             "ADD    ESP,4\n\t"
11667             "CALL   d2l_wrapper\n"
11668       "fast:" %}
11669   ins_encode( X2L_encoding(src) );
11670   ins_pipe( pipe_slow );
11671 %}
11672 
11673 instruct convI2D_reg(regD dst, stackSlotI src) %{
11674   predicate( UseSSE<=1 );
11675   match(Set dst (ConvI2D src));
11676   format %{ "FILD   $src\n\t"
11677             "FSTP   $dst" %}
11678   opcode(0xDB, 0x0);  /* DB /0 */
11679   ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
11680   ins_pipe( fpu_reg_mem );
11681 %}
11682 
11683 instruct convI2XD_reg(regXD dst, eRegI src) %{
11684   predicate( UseSSE>=2 && !UseXmmI2D );
11685   match(Set dst (ConvI2D src));
11686   format %{ "CVTSI2SD $dst,$src" %}
11687   opcode(0xF2, 0x0F, 0x2A);
11688   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11689   ins_pipe( pipe_slow );
11690 %}
11691 
11692 instruct convI2XD_mem(regXD dst, memory mem) %{
11693   predicate( UseSSE>=2 );
11694   match(Set dst (ConvI2D (LoadI mem)));
11695   format %{ "CVTSI2SD $dst,$mem" %}
11696   opcode(0xF2, 0x0F, 0x2A);
11697   ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
11698   ins_pipe( pipe_slow );
11699 %}
11700 
11701 instruct convXI2XD_reg(regXD dst, eRegI src)
11702 %{
11703   predicate( UseSSE>=2 && UseXmmI2D );
11704   match(Set dst (ConvI2D src));
11705 
11706   format %{ "MOVD  $dst,$src\n\t"
11707             "CVTDQ2PD $dst,$dst\t# i2d" %}
11708   ins_encode %{
11709     __ movdl($dst$$XMMRegister, $src$$Register);
11710     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
11711   %}
11712   ins_pipe(pipe_slow); // XXX
11713 %}
11714 
11715 instruct convI2D_mem(regD dst, memory mem) %{
11716   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
11717   match(Set dst (ConvI2D (LoadI mem)));
11718   format %{ "FILD   $mem\n\t"
11719             "FSTP   $dst" %}
11720   opcode(0xDB);      /* DB /0 */
11721   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11722               Pop_Reg_D(dst));
11723   ins_pipe( fpu_reg_mem );
11724 %}
11725 
11726 // Convert a byte to a float; no rounding step needed.
11727 instruct conv24I2F_reg(regF dst, stackSlotI src) %{
11728   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
11729   match(Set dst (ConvI2F src));
11730   format %{ "FILD   $src\n\t"
11731             "FSTP   $dst" %}
11732 
11733   opcode(0xDB, 0x0);  /* DB /0 */
11734   ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
11735   ins_pipe( fpu_reg_mem );
11736 %}
11737 
11738 // In 24-bit mode, force exponent rounding by storing back out
11739 instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
11740   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11741   match(Set dst (ConvI2F src));
11742   ins_cost(200);
11743   format %{ "FILD   $src\n\t"
11744             "FSTP_S $dst" %}
11745   opcode(0xDB, 0x0);  /* DB /0 */
11746   ins_encode( Push_Mem_I(src),
11747               Pop_Mem_F(dst));
11748   ins_pipe( fpu_mem_mem );
11749 %}
11750 
11751 // In 24-bit mode, force exponent rounding by storing back out
11752 instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
11753   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11754   match(Set dst (ConvI2F (LoadI mem)));
11755   ins_cost(200);
11756   format %{ "FILD   $mem\n\t"
11757             "FSTP_S $dst" %}
11758   opcode(0xDB);  /* DB /0 */
11759   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11760               Pop_Mem_F(dst));
11761   ins_pipe( fpu_mem_mem );
11762 %}
11763 
11764 // This instruction does not round to 24-bits
11765 instruct convI2F_reg(regF dst, stackSlotI src) %{
11766   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11767   match(Set dst (ConvI2F src));
11768   format %{ "FILD   $src\n\t"
11769             "FSTP   $dst" %}
11770   opcode(0xDB, 0x0);  /* DB /0 */
11771   ins_encode( Push_Mem_I(src),
11772               Pop_Reg_F(dst));
11773   ins_pipe( fpu_reg_mem );
11774 %}
11775 
11776 // This instruction does not round to 24-bits
11777 instruct convI2F_mem(regF dst, memory mem) %{
11778   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11779   match(Set dst (ConvI2F (LoadI mem)));
11780   format %{ "FILD   $mem\n\t"
11781             "FSTP   $dst" %}
11782   opcode(0xDB);      /* DB /0 */
11783   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11784               Pop_Reg_F(dst));
11785   ins_pipe( fpu_reg_mem );
11786 %}
11787 
11788 // Convert an int to a float in xmm; no rounding step needed.
11789 instruct convI2X_reg(regX dst, eRegI src) %{
11790   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
11791   match(Set dst (ConvI2F src));
11792   format %{ "CVTSI2SS $dst, $src" %}
11793 
11794   opcode(0xF3, 0x0F, 0x2A);  /* F3 0F 2A /r */
11795   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11796   ins_pipe( pipe_slow );
11797 %}
11798 
11799  instruct convXI2X_reg(regX dst, eRegI src)
11800 %{
11801   predicate( UseSSE>=2 && UseXmmI2F );
11802   match(Set dst (ConvI2F src));
11803 
11804   format %{ "MOVD  $dst,$src\n\t"
11805             "CVTDQ2PS $dst,$dst\t# i2f" %}
11806   ins_encode %{
11807     __ movdl($dst$$XMMRegister, $src$$Register);
11808     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
11809   %}
11810   ins_pipe(pipe_slow); // XXX
11811 %}
11812 
11813 instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
11814   match(Set dst (ConvI2L src));
11815   effect(KILL cr);
11816   ins_cost(375);
11817   format %{ "MOV    $dst.lo,$src\n\t"
11818             "MOV    $dst.hi,$src\n\t"
11819             "SAR    $dst.hi,31" %}
11820   ins_encode(convert_int_long(dst,src));
11821   ins_pipe( ialu_reg_reg_long );
11822 %}
11823 
11824 // Zero-extend convert int to long
11825 instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
11826   match(Set dst (AndL (ConvI2L src) mask) );
11827   effect( KILL flags );
11828   ins_cost(250);
11829   format %{ "MOV    $dst.lo,$src\n\t"
11830             "XOR    $dst.hi,$dst.hi" %}
11831   opcode(0x33); // XOR
11832   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11833   ins_pipe( ialu_reg_reg_long );
11834 %}
11835 
11836 // Zero-extend long
11837 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
11838   match(Set dst (AndL src mask) );
11839   effect( KILL flags );
11840   ins_cost(250);
11841   format %{ "MOV    $dst.lo,$src.lo\n\t"
11842             "XOR    $dst.hi,$dst.hi\n\t" %}
11843   opcode(0x33); // XOR
11844   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11845   ins_pipe( ialu_reg_reg_long );
11846 %}
11847 
11848 instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
11849   predicate (UseSSE<=1);
11850   match(Set dst (ConvL2D src));
11851   effect( KILL cr );
11852   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11853             "PUSH   $src.lo\n\t"
11854             "FILD   ST,[ESP + #0]\n\t"
11855             "ADD    ESP,8\n\t"
11856             "FSTP_D $dst\t# D-round" %}
11857   opcode(0xDF, 0x5);  /* DF /5 */
11858   ins_encode(convert_long_double(src), Pop_Mem_D(dst));
11859   ins_pipe( pipe_slow );
11860 %}
11861 
11862 instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
11863   predicate (UseSSE>=2);
11864   match(Set dst (ConvL2D src));
11865   effect( KILL cr );
11866   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11867             "PUSH   $src.lo\n\t"
11868             "FILD_D [ESP]\n\t"
11869             "FSTP_D [ESP]\n\t"
11870             "MOVSD  $dst,[ESP]\n\t"
11871             "ADD    ESP,8" %}
11872   opcode(0xDF, 0x5);  /* DF /5 */
11873   ins_encode(convert_long_double2(src), Push_ResultXD(dst));
11874   ins_pipe( pipe_slow );
11875 %}
11876 
11877 instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
11878   predicate (UseSSE>=1);
11879   match(Set dst (ConvL2F src));
11880   effect( KILL cr );
11881   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11882             "PUSH   $src.lo\n\t"
11883             "FILD_D [ESP]\n\t"
11884             "FSTP_S [ESP]\n\t"
11885             "MOVSS  $dst,[ESP]\n\t"
11886             "ADD    ESP,8" %}
11887   opcode(0xDF, 0x5);  /* DF /5 */
11888   ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
11889   ins_pipe( pipe_slow );
11890 %}
11891 
11892 instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
11893   match(Set dst (ConvL2F src));
11894   effect( KILL cr );
11895   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11896             "PUSH   $src.lo\n\t"
11897             "FILD   ST,[ESP + #0]\n\t"
11898             "ADD    ESP,8\n\t"
11899             "FSTP_S $dst\t# F-round" %}
11900   opcode(0xDF, 0x5);  /* DF /5 */
11901   ins_encode(convert_long_double(src), Pop_Mem_F(dst));
11902   ins_pipe( pipe_slow );
11903 %}
11904 
11905 instruct convL2I_reg( eRegI dst, eRegL src ) %{
11906   match(Set dst (ConvL2I src));
11907   effect( DEF dst, USE src );
11908   format %{ "MOV    $dst,$src.lo" %}
11909   ins_encode(enc_CopyL_Lo(dst,src));
11910   ins_pipe( ialu_reg_reg );
11911 %}
11912 
11913 
11914 instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
11915   match(Set dst (MoveF2I src));
11916   effect( DEF dst, USE src );
11917   ins_cost(100);
11918   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
11919   opcode(0x8B);
11920   ins_encode( OpcP, RegMem(dst,src));
11921   ins_pipe( ialu_reg_mem );
11922 %}
11923 
11924 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
11925   predicate(UseSSE==0);
11926   match(Set dst (MoveF2I src));
11927   effect( DEF dst, USE src );
11928 
11929   ins_cost(125);
11930   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
11931   ins_encode( Pop_Mem_Reg_F(dst, src) );
11932   ins_pipe( fpu_mem_reg );
11933 %}
11934 
11935 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
11936   predicate(UseSSE>=1);
11937   match(Set dst (MoveF2I src));
11938   effect( DEF dst, USE src );
11939 
11940   ins_cost(95);
11941   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
11942   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
11943   ins_pipe( pipe_slow );
11944 %}
11945 
11946 instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
11947   predicate(UseSSE>=2);
11948   match(Set dst (MoveF2I src));
11949   effect( DEF dst, USE src );
11950   ins_cost(85);
11951   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
11952   ins_encode( MovX2I_reg(dst, src));
11953   ins_pipe( pipe_slow );
11954 %}
11955 
11956 instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
11957   match(Set dst (MoveI2F src));
11958   effect( DEF dst, USE src );
11959 
11960   ins_cost(100);
11961   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
11962   opcode(0x89);
11963   ins_encode( OpcPRegSS( dst, src ) );
11964   ins_pipe( ialu_mem_reg );
11965 %}
11966 
11967 
11968 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
11969   predicate(UseSSE==0);
11970   match(Set dst (MoveI2F src));
11971   effect(DEF dst, USE src);
11972 
11973   ins_cost(125);
11974   format %{ "FLD_S  $src\n\t"
11975             "FSTP   $dst\t# MoveI2F_stack_reg" %}
11976   opcode(0xD9);               /* D9 /0, FLD m32real */
11977   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11978               Pop_Reg_F(dst) );
11979   ins_pipe( fpu_reg_mem );
11980 %}
11981 
11982 instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
11983   predicate(UseSSE>=1);
11984   match(Set dst (MoveI2F src));
11985   effect( DEF dst, USE src );
11986 
11987   ins_cost(95);
11988   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
11989   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
11990   ins_pipe( pipe_slow );
11991 %}
11992 
11993 instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
11994   predicate(UseSSE>=2);
11995   match(Set dst (MoveI2F src));
11996   effect( DEF dst, USE src );
11997 
11998   ins_cost(85);
11999   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
12000   ins_encode( MovI2X_reg(dst, src) );
12001   ins_pipe( pipe_slow );
12002 %}
12003 
12004 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
12005   match(Set dst (MoveD2L src));
12006   effect(DEF dst, USE src);
12007 
12008   ins_cost(250);
12009   format %{ "MOV    $dst.lo,$src\n\t"
12010             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
12011   opcode(0x8B, 0x8B);
12012   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
12013   ins_pipe( ialu_mem_long_reg );
12014 %}
12015 
12016 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
12017   predicate(UseSSE<=1);
12018   match(Set dst (MoveD2L src));
12019   effect(DEF dst, USE src);
12020 
12021   ins_cost(125);
12022   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
12023   ins_encode( Pop_Mem_Reg_D(dst, src) );
12024   ins_pipe( fpu_mem_reg );
12025 %}
12026 
12027 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
12028   predicate(UseSSE>=2);
12029   match(Set dst (MoveD2L src));
12030   effect(DEF dst, USE src);
12031   ins_cost(95);
12032 
12033   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
12034   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
12035   ins_pipe( pipe_slow );
12036 %}
12037 
12038 instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
12039   predicate(UseSSE>=2);
12040   match(Set dst (MoveD2L src));
12041   effect(DEF dst, USE src, TEMP tmp);
12042   ins_cost(85);
12043   format %{ "MOVD   $dst.lo,$src\n\t"
12044             "PSHUFLW $tmp,$src,0x4E\n\t"
12045             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
12046   ins_encode( MovXD2L_reg(dst, src, tmp) );
12047   ins_pipe( pipe_slow );
12048 %}
12049 
12050 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
12051   match(Set dst (MoveL2D src));
12052   effect(DEF dst, USE src);
12053 
12054   ins_cost(200);
12055   format %{ "MOV    $dst,$src.lo\n\t"
12056             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
12057   opcode(0x89, 0x89);
12058   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
12059   ins_pipe( ialu_mem_long_reg );
12060 %}
12061 
12062 
12063 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
12064   predicate(UseSSE<=1);
12065   match(Set dst (MoveL2D src));
12066   effect(DEF dst, USE src);
12067   ins_cost(125);
12068 
12069   format %{ "FLD_D  $src\n\t"
12070             "FSTP   $dst\t# MoveL2D_stack_reg" %}
12071   opcode(0xDD);               /* DD /0, FLD m64real */
12072   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
12073               Pop_Reg_D(dst) );
12074   ins_pipe( fpu_reg_mem );
12075 %}
12076 
12077 
12078 instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
12079   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
12080   match(Set dst (MoveL2D src));
12081   effect(DEF dst, USE src);
12082 
12083   ins_cost(95);
12084   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
12085   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
12086   ins_pipe( pipe_slow );
12087 %}
12088 
12089 instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
12090   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
12091   match(Set dst (MoveL2D src));
12092   effect(DEF dst, USE src);
12093 
12094   ins_cost(95);
12095   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
12096   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
12097   ins_pipe( pipe_slow );
12098 %}
12099 
12100 instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
12101   predicate(UseSSE>=2);
12102   match(Set dst (MoveL2D src));
12103   effect(TEMP dst, USE src, TEMP tmp);
12104   ins_cost(85);
12105   format %{ "MOVD   $dst,$src.lo\n\t"
12106             "MOVD   $tmp,$src.hi\n\t"
12107             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
12108   ins_encode( MovL2XD_reg(dst, src, tmp) );
12109   ins_pipe( pipe_slow );
12110 %}
12111 
12112 // Replicate scalar to packed byte (1 byte) values in xmm
12113 instruct Repl8B_reg(regXD dst, regXD src) %{
12114   predicate(UseSSE>=2);
12115   match(Set dst (Replicate8B src));
12116   format %{ "MOVDQA  $dst,$src\n\t"
12117             "PUNPCKLBW $dst,$dst\n\t"
12118             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
12119   ins_encode( pshufd_8x8(dst, src));
12120   ins_pipe( pipe_slow );
12121 %}
12122 
12123 // Replicate scalar to packed byte (1 byte) values in xmm
12124 instruct Repl8B_eRegI(regXD dst, eRegI src) %{
12125   predicate(UseSSE>=2);
12126   match(Set dst (Replicate8B src));
12127   format %{ "MOVD    $dst,$src\n\t"
12128             "PUNPCKLBW $dst,$dst\n\t"
12129             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
12130   ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
12131   ins_pipe( pipe_slow );
12132 %}
12133 
12134 // Replicate scalar zero to packed byte (1 byte) values in xmm
12135 instruct Repl8B_immI0(regXD dst, immI0 zero) %{
12136   predicate(UseSSE>=2);
12137   match(Set dst (Replicate8B zero));
12138   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
12139   ins_encode( pxor(dst, dst));
12140   ins_pipe( fpu_reg_reg );
12141 %}
12142 
12143 // Replicate scalar to packed shore (2 byte) values in xmm
12144 instruct Repl4S_reg(regXD dst, regXD src) %{
12145   predicate(UseSSE>=2);
12146   match(Set dst (Replicate4S src));
12147   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
12148   ins_encode( pshufd_4x16(dst, src));
12149   ins_pipe( fpu_reg_reg );
12150 %}
12151 
12152 // Replicate scalar to packed shore (2 byte) values in xmm
12153 instruct Repl4S_eRegI(regXD dst, eRegI src) %{
12154   predicate(UseSSE>=2);
12155   match(Set dst (Replicate4S src));
12156   format %{ "MOVD    $dst,$src\n\t"
12157             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
12158   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
12159   ins_pipe( fpu_reg_reg );
12160 %}
12161 
12162 // Replicate scalar zero to packed short (2 byte) values in xmm
12163 instruct Repl4S_immI0(regXD dst, immI0 zero) %{
12164   predicate(UseSSE>=2);
12165   match(Set dst (Replicate4S zero));
12166   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
12167   ins_encode( pxor(dst, dst));
12168   ins_pipe( fpu_reg_reg );
12169 %}
12170 
12171 // Replicate scalar to packed char (2 byte) values in xmm
12172 instruct Repl4C_reg(regXD dst, regXD src) %{
12173   predicate(UseSSE>=2);
12174   match(Set dst (Replicate4C src));
12175   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
12176   ins_encode( pshufd_4x16(dst, src));
12177   ins_pipe( fpu_reg_reg );
12178 %}
12179 
12180 // Replicate scalar to packed char (2 byte) values in xmm
12181 instruct Repl4C_eRegI(regXD dst, eRegI src) %{
12182   predicate(UseSSE>=2);
12183   match(Set dst (Replicate4C src));
12184   format %{ "MOVD    $dst,$src\n\t"
12185             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
12186   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
12187   ins_pipe( fpu_reg_reg );
12188 %}
12189 
12190 // Replicate scalar zero to packed char (2 byte) values in xmm
12191 instruct Repl4C_immI0(regXD dst, immI0 zero) %{
12192   predicate(UseSSE>=2);
12193   match(Set dst (Replicate4C zero));
12194   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
12195   ins_encode( pxor(dst, dst));
12196   ins_pipe( fpu_reg_reg );
12197 %}
12198 
12199 // Replicate scalar to packed integer (4 byte) values in xmm
12200 instruct Repl2I_reg(regXD dst, regXD src) %{
12201   predicate(UseSSE>=2);
12202   match(Set dst (Replicate2I src));
12203   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
12204   ins_encode( pshufd(dst, src, 0x00));
12205   ins_pipe( fpu_reg_reg );
12206 %}
12207 
12208 // Replicate scalar to packed integer (4 byte) values in xmm
12209 instruct Repl2I_eRegI(regXD dst, eRegI src) %{
12210   predicate(UseSSE>=2);
12211   match(Set dst (Replicate2I src));
12212   format %{ "MOVD   $dst,$src\n\t"
12213             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
12214   ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
12215   ins_pipe( fpu_reg_reg );
12216 %}
12217 
12218 // Replicate scalar zero to packed integer (2 byte) values in xmm
12219 instruct Repl2I_immI0(regXD dst, immI0 zero) %{
12220   predicate(UseSSE>=2);
12221   match(Set dst (Replicate2I zero));
12222   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
12223   ins_encode( pxor(dst, dst));
12224   ins_pipe( fpu_reg_reg );
12225 %}
12226 
12227 // Replicate scalar to packed single precision floating point values in xmm
12228 instruct Repl2F_reg(regXD dst, regXD src) %{
12229   predicate(UseSSE>=2);
12230   match(Set dst (Replicate2F src));
12231   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
12232   ins_encode( pshufd(dst, src, 0xe0));
12233   ins_pipe( fpu_reg_reg );
12234 %}
12235 
12236 // Replicate scalar to packed single precision floating point values in xmm
12237 instruct Repl2F_regX(regXD dst, regX src) %{
12238   predicate(UseSSE>=2);
12239   match(Set dst (Replicate2F src));
12240   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
12241   ins_encode( pshufd(dst, src, 0xe0));
12242   ins_pipe( fpu_reg_reg );
12243 %}
12244 
12245 // Replicate scalar to packed single precision floating point values in xmm
12246 instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
12247   predicate(UseSSE>=2);
12248   match(Set dst (Replicate2F zero));
12249   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
12250   ins_encode( pxor(dst, dst));
12251   ins_pipe( fpu_reg_reg );
12252 %}
12253 
12254 // =======================================================================
12255 // fast clearing of an array
12256 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
12257   match(Set dummy (ClearArray cnt base));
12258   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
12259   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
12260             "XOR    EAX,EAX\n\t"
12261             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
12262   opcode(0,0x4);
12263   ins_encode( Opcode(0xD1), RegOpc(ECX),
12264               OpcRegReg(0x33,EAX,EAX),
12265               Opcode(0xF3), Opcode(0xAB) );
12266   ins_pipe( pipe_slow );
12267 %}
12268 
12269 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eBXRegI cnt2,
12270                         eAXRegI result, regXD tmp1, regXD tmp2, eFlagsReg cr) %{
12271   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
12272   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
12273 
12274   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1, $tmp2" %}
12275   ins_encode %{
12276     __ string_compare($str1$$Register, $str2$$Register,
12277                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
12278                       $tmp1$$XMMRegister, $tmp2$$XMMRegister);
12279   %}
12280   ins_pipe( pipe_slow );
12281 %}
12282 
12283 // fast string equals
12284 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
12285                        regXD tmp1, regXD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
12286   match(Set result (StrEquals (Binary str1 str2) cnt));
12287   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
12288 
12289   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
12290   ins_encode %{
12291     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
12292                           $cnt$$Register, $result$$Register, $tmp3$$Register,
12293                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
12294   %}
12295   ins_pipe( pipe_slow );
12296 %}
12297 
12298 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
12299                         eBXRegI result, regXD tmp1, eCXRegI tmp2, eFlagsReg cr) %{
12300   predicate(UseSSE42Intrinsics);
12301   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
12302   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp2, KILL cr);
12303 
12304   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp2, $tmp1" %}
12305   ins_encode %{
12306     __ string_indexof($str1$$Register, $str2$$Register,
12307                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
12308                       $tmp1$$XMMRegister, $tmp2$$Register);
12309   %}
12310   ins_pipe( pipe_slow );
12311 %}
12312 
12313 // fast array equals
12314 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
12315                       regXD tmp1, regXD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
12316 %{
12317   match(Set result (AryEq ary1 ary2));
12318   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
12319   //ins_cost(300);
12320 
12321   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
12322   ins_encode %{
12323     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
12324                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
12325                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
12326   %}
12327   ins_pipe( pipe_slow );
12328 %}
12329 
12330 //----------Control Flow Instructions------------------------------------------
12331 // Signed compare Instructions
12332 instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
12333   match(Set cr (CmpI op1 op2));
12334   effect( DEF cr, USE op1, USE op2 );
12335   format %{ "CMP    $op1,$op2" %}
12336   opcode(0x3B);  /* Opcode 3B /r */
12337   ins_encode( OpcP, RegReg( op1, op2) );
12338   ins_pipe( ialu_cr_reg_reg );
12339 %}
12340 
12341 instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
12342   match(Set cr (CmpI op1 op2));
12343   effect( DEF cr, USE op1 );
12344   format %{ "CMP    $op1,$op2" %}
12345   opcode(0x81,0x07);  /* Opcode 81 /7 */
12346   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
12347   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12348   ins_pipe( ialu_cr_reg_imm );
12349 %}
12350 
12351 // Cisc-spilled version of cmpI_eReg
12352 instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
12353   match(Set cr (CmpI op1 (LoadI op2)));
12354 
12355   format %{ "CMP    $op1,$op2" %}
12356   ins_cost(500);
12357   opcode(0x3B);  /* Opcode 3B /r */
12358   ins_encode( OpcP, RegMem( op1, op2) );
12359   ins_pipe( ialu_cr_reg_mem );
12360 %}
12361 
12362 instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
12363   match(Set cr (CmpI src zero));
12364   effect( DEF cr, USE src );
12365 
12366   format %{ "TEST   $src,$src" %}
12367   opcode(0x85);
12368   ins_encode( OpcP, RegReg( src, src ) );
12369   ins_pipe( ialu_cr_reg_imm );
12370 %}
12371 
12372 instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
12373   match(Set cr (CmpI (AndI src con) zero));
12374 
12375   format %{ "TEST   $src,$con" %}
12376   opcode(0xF7,0x00);
12377   ins_encode( OpcP, RegOpc(src), Con32(con) );
12378   ins_pipe( ialu_cr_reg_imm );
12379 %}
12380 
12381 instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
12382   match(Set cr (CmpI (AndI src mem) zero));
12383 
12384   format %{ "TEST   $src,$mem" %}
12385   opcode(0x85);
12386   ins_encode( OpcP, RegMem( src, mem ) );
12387   ins_pipe( ialu_cr_reg_mem );
12388 %}
12389 
12390 // Unsigned compare Instructions; really, same as signed except they
12391 // produce an eFlagsRegU instead of eFlagsReg.
12392 instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
12393   match(Set cr (CmpU op1 op2));
12394 
12395   format %{ "CMPu   $op1,$op2" %}
12396   opcode(0x3B);  /* Opcode 3B /r */
12397   ins_encode( OpcP, RegReg( op1, op2) );
12398   ins_pipe( ialu_cr_reg_reg );
12399 %}
12400 
12401 instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
12402   match(Set cr (CmpU op1 op2));
12403 
12404   format %{ "CMPu   $op1,$op2" %}
12405   opcode(0x81,0x07);  /* Opcode 81 /7 */
12406   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12407   ins_pipe( ialu_cr_reg_imm );
12408 %}
12409 
12410 // // Cisc-spilled version of cmpU_eReg
12411 instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
12412   match(Set cr (CmpU op1 (LoadI op2)));
12413 
12414   format %{ "CMPu   $op1,$op2" %}
12415   ins_cost(500);
12416   opcode(0x3B);  /* Opcode 3B /r */
12417   ins_encode( OpcP, RegMem( op1, op2) );
12418   ins_pipe( ialu_cr_reg_mem );
12419 %}
12420 
12421 // // Cisc-spilled version of cmpU_eReg
12422 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
12423 //  match(Set cr (CmpU (LoadI op1) op2));
12424 //
12425 //  format %{ "CMPu   $op1,$op2" %}
12426 //  ins_cost(500);
12427 //  opcode(0x39);  /* Opcode 39 /r */
12428 //  ins_encode( OpcP, RegMem( op1, op2) );
12429 //%}
12430 
12431 instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
12432   match(Set cr (CmpU src zero));
12433 
12434   format %{ "TESTu  $src,$src" %}
12435   opcode(0x85);
12436   ins_encode( OpcP, RegReg( src, src ) );
12437   ins_pipe( ialu_cr_reg_imm );
12438 %}
12439 
12440 // Unsigned pointer compare Instructions
12441 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
12442   match(Set cr (CmpP op1 op2));
12443 
12444   format %{ "CMPu   $op1,$op2" %}
12445   opcode(0x3B);  /* Opcode 3B /r */
12446   ins_encode( OpcP, RegReg( op1, op2) );
12447   ins_pipe( ialu_cr_reg_reg );
12448 %}
12449 
12450 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
12451   match(Set cr (CmpP op1 op2));
12452 
12453   format %{ "CMPu   $op1,$op2" %}
12454   opcode(0x81,0x07);  /* Opcode 81 /7 */
12455   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12456   ins_pipe( ialu_cr_reg_imm );
12457 %}
12458 
12459 // // Cisc-spilled version of cmpP_eReg
12460 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
12461   match(Set cr (CmpP op1 (LoadP op2)));
12462 
12463   format %{ "CMPu   $op1,$op2" %}
12464   ins_cost(500);
12465   opcode(0x3B);  /* Opcode 3B /r */
12466   ins_encode( OpcP, RegMem( op1, op2) );
12467   ins_pipe( ialu_cr_reg_mem );
12468 %}
12469 
12470 // // Cisc-spilled version of cmpP_eReg
12471 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
12472 //  match(Set cr (CmpP (LoadP op1) op2));
12473 //
12474 //  format %{ "CMPu   $op1,$op2" %}
12475 //  ins_cost(500);
12476 //  opcode(0x39);  /* Opcode 39 /r */
12477 //  ins_encode( OpcP, RegMem( op1, op2) );
12478 //%}
12479 
12480 // Compare raw pointer (used in out-of-heap check).
12481 // Only works because non-oop pointers must be raw pointers
12482 // and raw pointers have no anti-dependencies.
12483 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
12484   predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
12485   match(Set cr (CmpP op1 (LoadP op2)));
12486 
12487   format %{ "CMPu   $op1,$op2" %}
12488   opcode(0x3B);  /* Opcode 3B /r */
12489   ins_encode( OpcP, RegMem( op1, op2) );
12490   ins_pipe( ialu_cr_reg_mem );
12491 %}
12492 
12493 //
12494 // This will generate a signed flags result. This should be ok
12495 // since any compare to a zero should be eq/neq.
12496 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
12497   match(Set cr (CmpP src zero));
12498 
12499   format %{ "TEST   $src,$src" %}
12500   opcode(0x85);
12501   ins_encode( OpcP, RegReg( src, src ) );
12502   ins_pipe( ialu_cr_reg_imm );
12503 %}
12504 
12505 // Cisc-spilled version of testP_reg
12506 // This will generate a signed flags result. This should be ok
12507 // since any compare to a zero should be eq/neq.
12508 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
12509   match(Set cr (CmpP (LoadP op) zero));
12510 
12511   format %{ "TEST   $op,0xFFFFFFFF" %}
12512   ins_cost(500);
12513   opcode(0xF7);               /* Opcode F7 /0 */
12514   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
12515   ins_pipe( ialu_cr_reg_imm );
12516 %}
12517 
12518 // Yanked all unsigned pointer compare operations.
12519 // Pointer compares are done with CmpP which is already unsigned.
12520 
12521 //----------Max and Min--------------------------------------------------------
12522 // Min Instructions
12523 ////
12524 //   *** Min and Max using the conditional move are slower than the
12525 //   *** branch version on a Pentium III.
12526 // // Conditional move for min
12527 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
12528 //  effect( USE_DEF op2, USE op1, USE cr );
12529 //  format %{ "CMOVlt $op2,$op1\t! min" %}
12530 //  opcode(0x4C,0x0F);
12531 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
12532 //  ins_pipe( pipe_cmov_reg );
12533 //%}
12534 //
12535 //// Min Register with Register (P6 version)
12536 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
12537 //  predicate(VM_Version::supports_cmov() );
12538 //  match(Set op2 (MinI op1 op2));
12539 //  ins_cost(200);
12540 //  expand %{
12541 //    eFlagsReg cr;
12542 //    compI_eReg(cr,op1,op2);
12543 //    cmovI_reg_lt(op2,op1,cr);
12544 //  %}
12545 //%}
12546 
12547 // Min Register with Register (generic version)
12548 instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
12549   match(Set dst (MinI dst src));
12550   effect(KILL flags);
12551   ins_cost(300);
12552 
12553   format %{ "MIN    $dst,$src" %}
12554   opcode(0xCC);
12555   ins_encode( min_enc(dst,src) );
12556   ins_pipe( pipe_slow );
12557 %}
12558 
12559 // Max Register with Register
12560 //   *** Min and Max using the conditional move are slower than the
12561 //   *** branch version on a Pentium III.
12562 // // Conditional move for max
12563 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
12564 //  effect( USE_DEF op2, USE op1, USE cr );
12565 //  format %{ "CMOVgt $op2,$op1\t! max" %}
12566 //  opcode(0x4F,0x0F);
12567 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
12568 //  ins_pipe( pipe_cmov_reg );
12569 //%}
12570 //
12571 // // Max Register with Register (P6 version)
12572 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
12573 //  predicate(VM_Version::supports_cmov() );
12574 //  match(Set op2 (MaxI op1 op2));
12575 //  ins_cost(200);
12576 //  expand %{
12577 //    eFlagsReg cr;
12578 //    compI_eReg(cr,op1,op2);
12579 //    cmovI_reg_gt(op2,op1,cr);
12580 //  %}
12581 //%}
12582 
12583 // Max Register with Register (generic version)
12584 instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
12585   match(Set dst (MaxI dst src));
12586   effect(KILL flags);
12587   ins_cost(300);
12588 
12589   format %{ "MAX    $dst,$src" %}
12590   opcode(0xCC);
12591   ins_encode( max_enc(dst,src) );
12592   ins_pipe( pipe_slow );
12593 %}
12594 
12595 // ============================================================================
12596 // Branch Instructions
12597 // Jump Table
12598 instruct jumpXtnd(eRegI switch_val) %{
12599   match(Jump switch_val);
12600   ins_cost(350);
12601 
12602   format %{  "JMP    [table_base](,$switch_val,1)\n\t" %}
12603 
12604   ins_encode %{
12605     address table_base  = __ address_table_constant(_index2label);
12606 
12607     // Jump to Address(table_base + switch_reg)
12608     InternalAddress table(table_base);
12609     Address index(noreg, $switch_val$$Register, Address::times_1);
12610     __ jump(ArrayAddress(table, index));
12611   %}
12612   ins_pc_relative(1);
12613   ins_pipe(pipe_jmp);
12614 %}
12615 
12616 // Jump Direct - Label defines a relative address from JMP+1
12617 instruct jmpDir(label labl) %{
12618   match(Goto);
12619   effect(USE labl);
12620 
12621   ins_cost(300);
12622   format %{ "JMP    $labl" %}
12623   size(5);
12624   opcode(0xE9);
12625   ins_encode( OpcP, Lbl( labl ) );
12626   ins_pipe( pipe_jmp );
12627   ins_pc_relative(1);
12628 %}
12629 
12630 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12631 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
12632   match(If cop cr);
12633   effect(USE labl);
12634 
12635   ins_cost(300);
12636   format %{ "J$cop    $labl" %}
12637   size(6);
12638   opcode(0x0F, 0x80);
12639   ins_encode( Jcc( cop, labl) );
12640   ins_pipe( pipe_jcc );
12641   ins_pc_relative(1);
12642 %}
12643 
12644 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12645 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
12646   match(CountedLoopEnd cop cr);
12647   effect(USE labl);
12648 
12649   ins_cost(300);
12650   format %{ "J$cop    $labl\t# Loop end" %}
12651   size(6);
12652   opcode(0x0F, 0x80);
12653   ins_encode( Jcc( cop, labl) );
12654   ins_pipe( pipe_jcc );
12655   ins_pc_relative(1);
12656 %}
12657 
12658 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12659 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12660   match(CountedLoopEnd cop cmp);
12661   effect(USE labl);
12662 
12663   ins_cost(300);
12664   format %{ "J$cop,u  $labl\t# Loop end" %}
12665   size(6);
12666   opcode(0x0F, 0x80);
12667   ins_encode( Jcc( cop, labl) );
12668   ins_pipe( pipe_jcc );
12669   ins_pc_relative(1);
12670 %}
12671 
12672 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12673   match(CountedLoopEnd cop cmp);
12674   effect(USE labl);
12675 
12676   ins_cost(200);
12677   format %{ "J$cop,u  $labl\t# Loop end" %}
12678   size(6);
12679   opcode(0x0F, 0x80);
12680   ins_encode( Jcc( cop, labl) );
12681   ins_pipe( pipe_jcc );
12682   ins_pc_relative(1);
12683 %}
12684 
12685 // Jump Direct Conditional - using unsigned comparison
12686 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12687   match(If cop cmp);
12688   effect(USE labl);
12689 
12690   ins_cost(300);
12691   format %{ "J$cop,u  $labl" %}
12692   size(6);
12693   opcode(0x0F, 0x80);
12694   ins_encode(Jcc(cop, labl));
12695   ins_pipe(pipe_jcc);
12696   ins_pc_relative(1);
12697 %}
12698 
12699 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12700   match(If cop cmp);
12701   effect(USE labl);
12702 
12703   ins_cost(200);
12704   format %{ "J$cop,u  $labl" %}
12705   size(6);
12706   opcode(0x0F, 0x80);
12707   ins_encode(Jcc(cop, labl));
12708   ins_pipe(pipe_jcc);
12709   ins_pc_relative(1);
12710 %}
12711 
12712 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12713   match(If cop cmp);
12714   effect(USE labl);
12715 
12716   ins_cost(200);
12717   format %{ $$template
12718     if ($cop$$cmpcode == Assembler::notEqual) {
12719       $$emit$$"JP,u   $labl\n\t"
12720       $$emit$$"J$cop,u   $labl"
12721     } else {
12722       $$emit$$"JP,u   done\n\t"
12723       $$emit$$"J$cop,u   $labl\n\t"
12724       $$emit$$"done:"
12725     }
12726   %}
12727   size(12);
12728   opcode(0x0F, 0x80);
12729   ins_encode %{
12730     Label* l = $labl$$label;
12731     $$$emit8$primary;
12732     emit_cc(cbuf, $secondary, Assembler::parity);
12733     int parity_disp = -1;
12734     bool ok = false;
12735     if ($cop$$cmpcode == Assembler::notEqual) {
12736        // the two jumps 6 bytes apart so the jump distances are too
12737        parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
12738     } else if ($cop$$cmpcode == Assembler::equal) {
12739        parity_disp = 6;
12740        ok = true;
12741     } else {
12742        ShouldNotReachHere();
12743     }
12744     emit_d32(cbuf, parity_disp);
12745     $$$emit8$primary;
12746     emit_cc(cbuf, $secondary, $cop$$cmpcode);
12747     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
12748     emit_d32(cbuf, disp);
12749   %}
12750   ins_pipe(pipe_jcc);
12751   ins_pc_relative(1);
12752 %}
12753 
12754 // ============================================================================
12755 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
12756 // array for an instance of the superklass.  Set a hidden internal cache on a
12757 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
12758 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
12759 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
12760   match(Set result (PartialSubtypeCheck sub super));
12761   effect( KILL rcx, KILL cr );
12762 
12763   ins_cost(1100);  // slightly larger than the next version
12764   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12765             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
12766             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12767             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12768             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
12769             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
12770             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
12771      "miss:\t" %}
12772 
12773   opcode(0x1); // Force a XOR of EDI
12774   ins_encode( enc_PartialSubtypeCheck() );
12775   ins_pipe( pipe_slow );
12776 %}
12777 
12778 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
12779   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
12780   effect( KILL rcx, KILL result );
12781 
12782   ins_cost(1000);
12783   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12784             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
12785             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12786             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12787             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
12788             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
12789      "miss:\t" %}
12790 
12791   opcode(0x0);  // No need to XOR EDI
12792   ins_encode( enc_PartialSubtypeCheck() );
12793   ins_pipe( pipe_slow );
12794 %}
12795 
12796 // ============================================================================
12797 // Branch Instructions -- short offset versions
12798 //
12799 // These instructions are used to replace jumps of a long offset (the default
12800 // match) with jumps of a shorter offset.  These instructions are all tagged
12801 // with the ins_short_branch attribute, which causes the ADLC to suppress the
12802 // match rules in general matching.  Instead, the ADLC generates a conversion
12803 // method in the MachNode which can be used to do in-place replacement of the
12804 // long variant with the shorter variant.  The compiler will determine if a
12805 // branch can be taken by the is_short_branch_offset() predicate in the machine
12806 // specific code section of the file.
12807 
12808 // Jump Direct - Label defines a relative address from JMP+1
12809 instruct jmpDir_short(label labl) %{
12810   match(Goto);
12811   effect(USE labl);
12812 
12813   ins_cost(300);
12814   format %{ "JMP,s  $labl" %}
12815   size(2);
12816   opcode(0xEB);
12817   ins_encode( OpcP, LblShort( labl ) );
12818   ins_pipe( pipe_jmp );
12819   ins_pc_relative(1);
12820   ins_short_branch(1);
12821 %}
12822 
12823 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12824 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
12825   match(If cop cr);
12826   effect(USE labl);
12827 
12828   ins_cost(300);
12829   format %{ "J$cop,s  $labl" %}
12830   size(2);
12831   opcode(0x70);
12832   ins_encode( JccShort( cop, labl) );
12833   ins_pipe( pipe_jcc );
12834   ins_pc_relative(1);
12835   ins_short_branch(1);
12836 %}
12837 
12838 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12839 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
12840   match(CountedLoopEnd cop cr);
12841   effect(USE labl);
12842 
12843   ins_cost(300);
12844   format %{ "J$cop,s  $labl\t# Loop end" %}
12845   size(2);
12846   opcode(0x70);
12847   ins_encode( JccShort( cop, labl) );
12848   ins_pipe( pipe_jcc );
12849   ins_pc_relative(1);
12850   ins_short_branch(1);
12851 %}
12852 
12853 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12854 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12855   match(CountedLoopEnd cop cmp);
12856   effect(USE labl);
12857 
12858   ins_cost(300);
12859   format %{ "J$cop,us $labl\t# Loop end" %}
12860   size(2);
12861   opcode(0x70);
12862   ins_encode( JccShort( cop, labl) );
12863   ins_pipe( pipe_jcc );
12864   ins_pc_relative(1);
12865   ins_short_branch(1);
12866 %}
12867 
12868 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12869   match(CountedLoopEnd cop cmp);
12870   effect(USE labl);
12871 
12872   ins_cost(300);
12873   format %{ "J$cop,us $labl\t# Loop end" %}
12874   size(2);
12875   opcode(0x70);
12876   ins_encode( JccShort( cop, labl) );
12877   ins_pipe( pipe_jcc );
12878   ins_pc_relative(1);
12879   ins_short_branch(1);
12880 %}
12881 
12882 // Jump Direct Conditional - using unsigned comparison
12883 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12884   match(If cop cmp);
12885   effect(USE labl);
12886 
12887   ins_cost(300);
12888   format %{ "J$cop,us $labl" %}
12889   size(2);
12890   opcode(0x70);
12891   ins_encode( JccShort( cop, labl) );
12892   ins_pipe( pipe_jcc );
12893   ins_pc_relative(1);
12894   ins_short_branch(1);
12895 %}
12896 
12897 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12898   match(If cop cmp);
12899   effect(USE labl);
12900 
12901   ins_cost(300);
12902   format %{ "J$cop,us $labl" %}
12903   size(2);
12904   opcode(0x70);
12905   ins_encode( JccShort( cop, labl) );
12906   ins_pipe( pipe_jcc );
12907   ins_pc_relative(1);
12908   ins_short_branch(1);
12909 %}
12910 
12911 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12912   match(If cop cmp);
12913   effect(USE labl);
12914 
12915   ins_cost(300);
12916   format %{ $$template
12917     if ($cop$$cmpcode == Assembler::notEqual) {
12918       $$emit$$"JP,u,s   $labl\n\t"
12919       $$emit$$"J$cop,u,s   $labl"
12920     } else {
12921       $$emit$$"JP,u,s   done\n\t"
12922       $$emit$$"J$cop,u,s  $labl\n\t"
12923       $$emit$$"done:"
12924     }
12925   %}
12926   size(4);
12927   opcode(0x70);
12928   ins_encode %{
12929     Label* l = $labl$$label;
12930     emit_cc(cbuf, $primary, Assembler::parity);
12931     int parity_disp = -1;
12932     if ($cop$$cmpcode == Assembler::notEqual) {
12933       parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
12934     } else if ($cop$$cmpcode == Assembler::equal) {
12935       parity_disp = 2;
12936     } else {
12937       ShouldNotReachHere();
12938     }
12939     emit_d8(cbuf, parity_disp);
12940     emit_cc(cbuf, $primary, $cop$$cmpcode);
12941     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
12942     emit_d8(cbuf, disp);
12943     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
12944     assert(-128 <= parity_disp && parity_disp <= 127, "Displacement too large for short jmp");
12945   %}
12946   ins_pipe(pipe_jcc);
12947   ins_pc_relative(1);
12948   ins_short_branch(1);
12949 %}
12950 
12951 // ============================================================================
12952 // Long Compare
12953 //
12954 // Currently we hold longs in 2 registers.  Comparing such values efficiently
12955 // is tricky.  The flavor of compare used depends on whether we are testing
12956 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
12957 // The GE test is the negated LT test.  The LE test can be had by commuting
12958 // the operands (yielding a GE test) and then negating; negate again for the
12959 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
12960 // NE test is negated from that.
12961 
12962 // Due to a shortcoming in the ADLC, it mixes up expressions like:
12963 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
12964 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
12965 // are collapsed internally in the ADLC's dfa-gen code.  The match for
12966 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
12967 // foo match ends up with the wrong leaf.  One fix is to not match both
12968 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
12969 // both forms beat the trinary form of long-compare and both are very useful
12970 // on Intel which has so few registers.
12971 
12972 // Manifest a CmpL result in an integer register.  Very painful.
12973 // This is the test to avoid.
12974 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
12975   match(Set dst (CmpL3 src1 src2));
12976   effect( KILL flags );
12977   ins_cost(1000);
12978   format %{ "XOR    $dst,$dst\n\t"
12979             "CMP    $src1.hi,$src2.hi\n\t"
12980             "JLT,s  m_one\n\t"
12981             "JGT,s  p_one\n\t"
12982             "CMP    $src1.lo,$src2.lo\n\t"
12983             "JB,s   m_one\n\t"
12984             "JEQ,s  done\n"
12985     "p_one:\tINC    $dst\n\t"
12986             "JMP,s  done\n"
12987     "m_one:\tDEC    $dst\n"
12988      "done:" %}
12989   ins_encode %{
12990     Label p_one, m_one, done;
12991     __ xorptr($dst$$Register, $dst$$Register);
12992     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
12993     __ jccb(Assembler::less,    m_one);
12994     __ jccb(Assembler::greater, p_one);
12995     __ cmpl($src1$$Register, $src2$$Register);
12996     __ jccb(Assembler::below,   m_one);
12997     __ jccb(Assembler::equal,   done);
12998     __ bind(p_one);
12999     __ incrementl($dst$$Register);
13000     __ jmpb(done);
13001     __ bind(m_one);
13002     __ decrementl($dst$$Register);
13003     __ bind(done);
13004   %}
13005   ins_pipe( pipe_slow );
13006 %}
13007 
13008 //======
13009 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
13010 // compares.  Can be used for LE or GT compares by reversing arguments.
13011 // NOT GOOD FOR EQ/NE tests.
13012 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
13013   match( Set flags (CmpL src zero ));
13014   ins_cost(100);
13015   format %{ "TEST   $src.hi,$src.hi" %}
13016   opcode(0x85);
13017   ins_encode( OpcP, RegReg_Hi2( src, src ) );
13018   ins_pipe( ialu_cr_reg_reg );
13019 %}
13020 
13021 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
13022 // compares.  Can be used for LE or GT compares by reversing arguments.
13023 // NOT GOOD FOR EQ/NE tests.
13024 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
13025   match( Set flags (CmpL src1 src2 ));
13026   effect( TEMP tmp );
13027   ins_cost(300);
13028   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
13029             "MOV    $tmp,$src1.hi\n\t"
13030             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
13031   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
13032   ins_pipe( ialu_cr_reg_reg );
13033 %}
13034 
13035 // Long compares reg < zero/req OR reg >= zero/req.
13036 // Just a wrapper for a normal branch, plus the predicate test.
13037 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
13038   match(If cmp flags);
13039   effect(USE labl);
13040   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13041   expand %{
13042     jmpCon(cmp,flags,labl);    // JLT or JGE...
13043   %}
13044 %}
13045 
13046 // Compare 2 longs and CMOVE longs.
13047 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
13048   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13049   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13050   ins_cost(400);
13051   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13052             "CMOV$cmp $dst.hi,$src.hi" %}
13053   opcode(0x0F,0x40);
13054   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13055   ins_pipe( pipe_cmov_reg_long );
13056 %}
13057 
13058 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
13059   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13060   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13061   ins_cost(500);
13062   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13063             "CMOV$cmp $dst.hi,$src.hi" %}
13064   opcode(0x0F,0x40);
13065   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13066   ins_pipe( pipe_cmov_reg_long );
13067 %}
13068 
13069 // Compare 2 longs and CMOVE ints.
13070 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
13071   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13072   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13073   ins_cost(200);
13074   format %{ "CMOV$cmp $dst,$src" %}
13075   opcode(0x0F,0x40);
13076   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13077   ins_pipe( pipe_cmov_reg );
13078 %}
13079 
13080 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
13081   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13082   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13083   ins_cost(250);
13084   format %{ "CMOV$cmp $dst,$src" %}
13085   opcode(0x0F,0x40);
13086   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13087   ins_pipe( pipe_cmov_mem );
13088 %}
13089 
13090 // Compare 2 longs and CMOVE ints.
13091 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
13092   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13093   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13094   ins_cost(200);
13095   format %{ "CMOV$cmp $dst,$src" %}
13096   opcode(0x0F,0x40);
13097   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13098   ins_pipe( pipe_cmov_reg );
13099 %}
13100 
13101 // Compare 2 longs and CMOVE doubles
13102 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
13103   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13104   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13105   ins_cost(200);
13106   expand %{
13107     fcmovD_regS(cmp,flags,dst,src);
13108   %}
13109 %}
13110 
13111 // Compare 2 longs and CMOVE doubles
13112 instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
13113   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13114   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13115   ins_cost(200);
13116   expand %{
13117     fcmovXD_regS(cmp,flags,dst,src);
13118   %}
13119 %}
13120 
13121 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
13122   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13123   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13124   ins_cost(200);
13125   expand %{
13126     fcmovF_regS(cmp,flags,dst,src);
13127   %}
13128 %}
13129 
13130 instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
13131   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13132   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13133   ins_cost(200);
13134   expand %{
13135     fcmovX_regS(cmp,flags,dst,src);
13136   %}
13137 %}
13138 
13139 //======
13140 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
13141 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
13142   match( Set flags (CmpL src zero ));
13143   effect(TEMP tmp);
13144   ins_cost(200);
13145   format %{ "MOV    $tmp,$src.lo\n\t"
13146             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
13147   ins_encode( long_cmp_flags0( src, tmp ) );
13148   ins_pipe( ialu_reg_reg_long );
13149 %}
13150 
13151 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
13152 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
13153   match( Set flags (CmpL src1 src2 ));
13154   ins_cost(200+300);
13155   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
13156             "JNE,s  skip\n\t"
13157             "CMP    $src1.hi,$src2.hi\n\t"
13158      "skip:\t" %}
13159   ins_encode( long_cmp_flags1( src1, src2 ) );
13160   ins_pipe( ialu_cr_reg_reg );
13161 %}
13162 
13163 // Long compare reg == zero/reg OR reg != zero/reg
13164 // Just a wrapper for a normal branch, plus the predicate test.
13165 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
13166   match(If cmp flags);
13167   effect(USE labl);
13168   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13169   expand %{
13170     jmpCon(cmp,flags,labl);    // JEQ or JNE...
13171   %}
13172 %}
13173 
13174 // Compare 2 longs and CMOVE longs.
13175 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
13176   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13177   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13178   ins_cost(400);
13179   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13180             "CMOV$cmp $dst.hi,$src.hi" %}
13181   opcode(0x0F,0x40);
13182   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13183   ins_pipe( pipe_cmov_reg_long );
13184 %}
13185 
13186 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
13187   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13188   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13189   ins_cost(500);
13190   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13191             "CMOV$cmp $dst.hi,$src.hi" %}
13192   opcode(0x0F,0x40);
13193   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13194   ins_pipe( pipe_cmov_reg_long );
13195 %}
13196 
13197 // Compare 2 longs and CMOVE ints.
13198 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
13199   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13200   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13201   ins_cost(200);
13202   format %{ "CMOV$cmp $dst,$src" %}
13203   opcode(0x0F,0x40);
13204   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13205   ins_pipe( pipe_cmov_reg );
13206 %}
13207 
13208 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
13209   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13210   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13211   ins_cost(250);
13212   format %{ "CMOV$cmp $dst,$src" %}
13213   opcode(0x0F,0x40);
13214   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13215   ins_pipe( pipe_cmov_mem );
13216 %}
13217 
13218 // Compare 2 longs and CMOVE ints.
13219 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
13220   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13221   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13222   ins_cost(200);
13223   format %{ "CMOV$cmp $dst,$src" %}
13224   opcode(0x0F,0x40);
13225   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13226   ins_pipe( pipe_cmov_reg );
13227 %}
13228 
13229 // Compare 2 longs and CMOVE doubles
13230 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
13231   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13232   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13233   ins_cost(200);
13234   expand %{
13235     fcmovD_regS(cmp,flags,dst,src);
13236   %}
13237 %}
13238 
13239 // Compare 2 longs and CMOVE doubles
13240 instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
13241   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13242   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13243   ins_cost(200);
13244   expand %{
13245     fcmovXD_regS(cmp,flags,dst,src);
13246   %}
13247 %}
13248 
13249 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
13250   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13251   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13252   ins_cost(200);
13253   expand %{
13254     fcmovF_regS(cmp,flags,dst,src);
13255   %}
13256 %}
13257 
13258 instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
13259   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13260   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13261   ins_cost(200);
13262   expand %{
13263     fcmovX_regS(cmp,flags,dst,src);
13264   %}
13265 %}
13266 
13267 //======
13268 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
13269 // Same as cmpL_reg_flags_LEGT except must negate src
13270 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
13271   match( Set flags (CmpL src zero ));
13272   effect( TEMP tmp );
13273   ins_cost(300);
13274   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
13275             "CMP    $tmp,$src.lo\n\t"
13276             "SBB    $tmp,$src.hi\n\t" %}
13277   ins_encode( long_cmp_flags3(src, tmp) );
13278   ins_pipe( ialu_reg_reg_long );
13279 %}
13280 
13281 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
13282 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
13283 // requires a commuted test to get the same result.
13284 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
13285   match( Set flags (CmpL src1 src2 ));
13286   effect( TEMP tmp );
13287   ins_cost(300);
13288   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
13289             "MOV    $tmp,$src2.hi\n\t"
13290             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
13291   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
13292   ins_pipe( ialu_cr_reg_reg );
13293 %}
13294 
13295 // Long compares reg < zero/req OR reg >= zero/req.
13296 // Just a wrapper for a normal branch, plus the predicate test
13297 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
13298   match(If cmp flags);
13299   effect(USE labl);
13300   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
13301   ins_cost(300);
13302   expand %{
13303     jmpCon(cmp,flags,labl);    // JGT or JLE...
13304   %}
13305 %}
13306 
13307 // Compare 2 longs and CMOVE longs.
13308 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
13309   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13310   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13311   ins_cost(400);
13312   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13313             "CMOV$cmp $dst.hi,$src.hi" %}
13314   opcode(0x0F,0x40);
13315   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13316   ins_pipe( pipe_cmov_reg_long );
13317 %}
13318 
13319 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
13320   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13321   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13322   ins_cost(500);
13323   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13324             "CMOV$cmp $dst.hi,$src.hi+4" %}
13325   opcode(0x0F,0x40);
13326   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13327   ins_pipe( pipe_cmov_reg_long );
13328 %}
13329 
13330 // Compare 2 longs and CMOVE ints.
13331 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
13332   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13333   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13334   ins_cost(200);
13335   format %{ "CMOV$cmp $dst,$src" %}
13336   opcode(0x0F,0x40);
13337   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13338   ins_pipe( pipe_cmov_reg );
13339 %}
13340 
13341 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
13342   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13343   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13344   ins_cost(250);
13345   format %{ "CMOV$cmp $dst,$src" %}
13346   opcode(0x0F,0x40);
13347   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13348   ins_pipe( pipe_cmov_mem );
13349 %}
13350 
13351 // Compare 2 longs and CMOVE ptrs.
13352 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
13353   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13354   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13355   ins_cost(200);
13356   format %{ "CMOV$cmp $dst,$src" %}
13357   opcode(0x0F,0x40);
13358   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13359   ins_pipe( pipe_cmov_reg );
13360 %}
13361 
13362 // Compare 2 longs and CMOVE doubles
13363 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
13364   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13365   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13366   ins_cost(200);
13367   expand %{
13368     fcmovD_regS(cmp,flags,dst,src);
13369   %}
13370 %}
13371 
13372 // Compare 2 longs and CMOVE doubles
13373 instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
13374   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13375   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13376   ins_cost(200);
13377   expand %{
13378     fcmovXD_regS(cmp,flags,dst,src);
13379   %}
13380 %}
13381 
13382 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
13383   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13384   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13385   ins_cost(200);
13386   expand %{
13387     fcmovF_regS(cmp,flags,dst,src);
13388   %}
13389 %}
13390 
13391 
13392 instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
13393   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13394   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13395   ins_cost(200);
13396   expand %{
13397     fcmovX_regS(cmp,flags,dst,src);
13398   %}
13399 %}
13400 
13401 
13402 // ============================================================================
13403 // Procedure Call/Return Instructions
13404 // Call Java Static Instruction
13405 // Note: If this code changes, the corresponding ret_addr_offset() and
13406 //       compute_padding() functions will have to be adjusted.
13407 instruct CallStaticJavaDirect(method meth) %{
13408   match(CallStaticJava);
13409   effect(USE meth);
13410 
13411   ins_cost(300);
13412   format %{ "CALL,static " %}
13413   opcode(0xE8); /* E8 cd */
13414   ins_encode( pre_call_FPU,
13415               Java_Static_Call( meth ),
13416               call_epilog,
13417               post_call_FPU );
13418   ins_pipe( pipe_slow );
13419   ins_pc_relative(1);
13420   ins_alignment(4);
13421 %}
13422 
13423 // Call Java Dynamic Instruction
13424 // Note: If this code changes, the corresponding ret_addr_offset() and
13425 //       compute_padding() functions will have to be adjusted.
13426 instruct CallDynamicJavaDirect(method meth) %{
13427   match(CallDynamicJava);
13428   effect(USE meth);
13429 
13430   ins_cost(300);
13431   format %{ "MOV    EAX,(oop)-1\n\t"
13432             "CALL,dynamic" %}
13433   opcode(0xE8); /* E8 cd */
13434   ins_encode( pre_call_FPU,
13435               Java_Dynamic_Call( meth ),
13436               call_epilog,
13437               post_call_FPU );
13438   ins_pipe( pipe_slow );
13439   ins_pc_relative(1);
13440   ins_alignment(4);
13441 %}
13442 
13443 // Call Runtime Instruction
13444 instruct CallRuntimeDirect(method meth) %{
13445   match(CallRuntime );
13446   effect(USE meth);
13447 
13448   ins_cost(300);
13449   format %{ "CALL,runtime " %}
13450   opcode(0xE8); /* E8 cd */
13451   // Use FFREEs to clear entries in float stack
13452   ins_encode( pre_call_FPU,
13453               FFree_Float_Stack_All,
13454               Java_To_Runtime( meth ),
13455               post_call_FPU );
13456   ins_pipe( pipe_slow );
13457   ins_pc_relative(1);
13458 %}
13459 
13460 // Call runtime without safepoint
13461 instruct CallLeafDirect(method meth) %{
13462   match(CallLeaf);
13463   effect(USE meth);
13464 
13465   ins_cost(300);
13466   format %{ "CALL_LEAF,runtime " %}
13467   opcode(0xE8); /* E8 cd */
13468   ins_encode( pre_call_FPU,
13469               FFree_Float_Stack_All,
13470               Java_To_Runtime( meth ),
13471               Verify_FPU_For_Leaf, post_call_FPU );
13472   ins_pipe( pipe_slow );
13473   ins_pc_relative(1);
13474 %}
13475 
13476 instruct CallLeafNoFPDirect(method meth) %{
13477   match(CallLeafNoFP);
13478   effect(USE meth);
13479 
13480   ins_cost(300);
13481   format %{ "CALL_LEAF_NOFP,runtime " %}
13482   opcode(0xE8); /* E8 cd */
13483   ins_encode(Java_To_Runtime(meth));
13484   ins_pipe( pipe_slow );
13485   ins_pc_relative(1);
13486 %}
13487 
13488 
13489 // Return Instruction
13490 // Remove the return address & jump to it.
13491 instruct Ret() %{
13492   match(Return);
13493   format %{ "RET" %}
13494   opcode(0xC3);
13495   ins_encode(OpcP);
13496   ins_pipe( pipe_jmp );
13497 %}
13498 
13499 // Tail Call; Jump from runtime stub to Java code.
13500 // Also known as an 'interprocedural jump'.
13501 // Target of jump will eventually return to caller.
13502 // TailJump below removes the return address.
13503 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
13504   match(TailCall jump_target method_oop );
13505   ins_cost(300);
13506   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
13507   opcode(0xFF, 0x4);  /* Opcode FF /4 */
13508   ins_encode( OpcP, RegOpc(jump_target) );
13509   ins_pipe( pipe_jmp );
13510 %}
13511 
13512 
13513 // Tail Jump; remove the return address; jump to target.
13514 // TailCall above leaves the return address around.
13515 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
13516   match( TailJump jump_target ex_oop );
13517   ins_cost(300);
13518   format %{ "POP    EDX\t# pop return address into dummy\n\t"
13519             "JMP    $jump_target " %}
13520   opcode(0xFF, 0x4);  /* Opcode FF /4 */
13521   ins_encode( enc_pop_rdx,
13522               OpcP, RegOpc(jump_target) );
13523   ins_pipe( pipe_jmp );
13524 %}
13525 
13526 // Create exception oop: created by stack-crawling runtime code.
13527 // Created exception is now available to this handler, and is setup
13528 // just prior to jumping to this handler.  No code emitted.
13529 instruct CreateException( eAXRegP ex_oop )
13530 %{
13531   match(Set ex_oop (CreateEx));
13532 
13533   size(0);
13534   // use the following format syntax
13535   format %{ "# exception oop is in EAX; no code emitted" %}
13536   ins_encode();
13537   ins_pipe( empty );
13538 %}
13539 
13540 
13541 // Rethrow exception:
13542 // The exception oop will come in the first argument position.
13543 // Then JUMP (not call) to the rethrow stub code.
13544 instruct RethrowException()
13545 %{
13546   match(Rethrow);
13547 
13548   // use the following format syntax
13549   format %{ "JMP    rethrow_stub" %}
13550   ins_encode(enc_rethrow);
13551   ins_pipe( pipe_jmp );
13552 %}
13553 
13554 // inlined locking and unlocking
13555 
13556 
13557 instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
13558   match( Set cr (FastLock object box) );
13559   effect( TEMP tmp, TEMP scr );
13560   ins_cost(300);
13561   format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
13562   ins_encode( Fast_Lock(object,box,tmp,scr) );
13563   ins_pipe( pipe_slow );
13564   ins_pc_relative(1);
13565 %}
13566 
13567 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
13568   match( Set cr (FastUnlock object box) );
13569   effect( TEMP tmp );
13570   ins_cost(300);
13571   format %{ "FASTUNLOCK $object, $box, $tmp" %}
13572   ins_encode( Fast_Unlock(object,box,tmp) );
13573   ins_pipe( pipe_slow );
13574   ins_pc_relative(1);
13575 %}
13576 
13577 
13578 
13579 // ============================================================================
13580 // Safepoint Instruction
13581 instruct safePoint_poll(eFlagsReg cr) %{
13582   match(SafePoint);
13583   effect(KILL cr);
13584 
13585   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
13586   // On SPARC that might be acceptable as we can generate the address with
13587   // just a sethi, saving an or.  By polling at offset 0 we can end up
13588   // putting additional pressure on the index-0 in the D$.  Because of
13589   // alignment (just like the situation at hand) the lower indices tend
13590   // to see more traffic.  It'd be better to change the polling address
13591   // to offset 0 of the last $line in the polling page.
13592 
13593   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
13594   ins_cost(125);
13595   size(6) ;
13596   ins_encode( Safepoint_Poll() );
13597   ins_pipe( ialu_reg_mem );
13598 %}
13599 
13600 //----------PEEPHOLE RULES-----------------------------------------------------
13601 // These must follow all instruction definitions as they use the names
13602 // defined in the instructions definitions.
13603 //
13604 // peepmatch ( root_instr_name [preceding_instruction]* );
13605 //
13606 // peepconstraint %{
13607 // (instruction_number.operand_name relational_op instruction_number.operand_name
13608 //  [, ...] );
13609 // // instruction numbers are zero-based using left to right order in peepmatch
13610 //
13611 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
13612 // // provide an instruction_number.operand_name for each operand that appears
13613 // // in the replacement instruction's match rule
13614 //
13615 // ---------VM FLAGS---------------------------------------------------------
13616 //
13617 // All peephole optimizations can be turned off using -XX:-OptoPeephole
13618 //
13619 // Each peephole rule is given an identifying number starting with zero and
13620 // increasing by one in the order seen by the parser.  An individual peephole
13621 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
13622 // on the command-line.
13623 //
13624 // ---------CURRENT LIMITATIONS----------------------------------------------
13625 //
13626 // Only match adjacent instructions in same basic block
13627 // Only equality constraints
13628 // Only constraints between operands, not (0.dest_reg == EAX_enc)
13629 // Only one replacement instruction
13630 //
13631 // ---------EXAMPLE----------------------------------------------------------
13632 //
13633 // // pertinent parts of existing instructions in architecture description
13634 // instruct movI(eRegI dst, eRegI src) %{
13635 //   match(Set dst (CopyI src));
13636 // %}
13637 //
13638 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
13639 //   match(Set dst (AddI dst src));
13640 //   effect(KILL cr);
13641 // %}
13642 //
13643 // // Change (inc mov) to lea
13644 // peephole %{
13645 //   // increment preceeded by register-register move
13646 //   peepmatch ( incI_eReg movI );
13647 //   // require that the destination register of the increment
13648 //   // match the destination register of the move
13649 //   peepconstraint ( 0.dst == 1.dst );
13650 //   // construct a replacement instruction that sets
13651 //   // the destination to ( move's source register + one )
13652 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13653 // %}
13654 //
13655 // Implementation no longer uses movX instructions since
13656 // machine-independent system no longer uses CopyX nodes.
13657 //
13658 // peephole %{
13659 //   peepmatch ( incI_eReg movI );
13660 //   peepconstraint ( 0.dst == 1.dst );
13661 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13662 // %}
13663 //
13664 // peephole %{
13665 //   peepmatch ( decI_eReg movI );
13666 //   peepconstraint ( 0.dst == 1.dst );
13667 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13668 // %}
13669 //
13670 // peephole %{
13671 //   peepmatch ( addI_eReg_imm movI );
13672 //   peepconstraint ( 0.dst == 1.dst );
13673 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13674 // %}
13675 //
13676 // peephole %{
13677 //   peepmatch ( addP_eReg_imm movP );
13678 //   peepconstraint ( 0.dst == 1.dst );
13679 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
13680 // %}
13681 
13682 // // Change load of spilled value to only a spill
13683 // instruct storeI(memory mem, eRegI src) %{
13684 //   match(Set mem (StoreI mem src));
13685 // %}
13686 //
13687 // instruct loadI(eRegI dst, memory mem) %{
13688 //   match(Set dst (LoadI mem));
13689 // %}
13690 //
13691 peephole %{
13692   peepmatch ( loadI storeI );
13693   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
13694   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
13695 %}
13696 
13697 //----------SMARTSPILL RULES---------------------------------------------------
13698 // These must follow all instruction definitions as they use the names
13699 // defined in the instructions definitions.