1 /*
   2  * Copyright 2000-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_ciTypeFlow.cpp.incl"
  27 
  28 // ciTypeFlow::JsrSet
  29 //
  30 // A JsrSet represents some set of JsrRecords.  This class
  31 // is used to record a set of all jsr routines which we permit
  32 // execution to return (ret) from.
  33 //
  34 // During abstract interpretation, JsrSets are used to determine
  35 // whether two paths which reach a given block are unique, and
  36 // should be cloned apart, or are compatible, and should merge
  37 // together.
  38 
  39 // ------------------------------------------------------------------
  40 // ciTypeFlow::JsrSet::JsrSet
  41 ciTypeFlow::JsrSet::JsrSet(Arena* arena, int default_len) {
  42   if (arena != NULL) {
  43     // Allocate growable array in Arena.
  44     _set = new (arena) GrowableArray<JsrRecord*>(arena, default_len, 0, NULL);
  45   } else {
  46     // Allocate growable array in current ResourceArea.
  47     _set = new GrowableArray<JsrRecord*>(4, 0, NULL, false);
  48   }
  49 }
  50 
  51 // ------------------------------------------------------------------
  52 // ciTypeFlow::JsrSet::copy_into
  53 void ciTypeFlow::JsrSet::copy_into(JsrSet* jsrs) {
  54   int len = size();
  55   jsrs->_set->clear();
  56   for (int i = 0; i < len; i++) {
  57     jsrs->_set->append(_set->at(i));
  58   }
  59 }
  60 
  61 // ------------------------------------------------------------------
  62 // ciTypeFlow::JsrSet::is_compatible_with
  63 //
  64 // !!!! MISGIVINGS ABOUT THIS... disregard
  65 //
  66 // Is this JsrSet compatible with some other JsrSet?
  67 //
  68 // In set-theoretic terms, a JsrSet can be viewed as a partial function
  69 // from entry addresses to return addresses.  Two JsrSets A and B are
  70 // compatible iff
  71 //
  72 //   For any x,
  73 //   A(x) defined and B(x) defined implies A(x) == B(x)
  74 //
  75 // Less formally, two JsrSets are compatible when they have identical
  76 // return addresses for any entry addresses they share in common.
  77 bool ciTypeFlow::JsrSet::is_compatible_with(JsrSet* other) {
  78   // Walk through both sets in parallel.  If the same entry address
  79   // appears in both sets, then the return address must match for
  80   // the sets to be compatible.
  81   int size1 = size();
  82   int size2 = other->size();
  83 
  84   // Special case.  If nothing is on the jsr stack, then there can
  85   // be no ret.
  86   if (size2 == 0) {
  87     return true;
  88   } else if (size1 != size2) {
  89     return false;
  90   } else {
  91     for (int i = 0; i < size1; i++) {
  92       JsrRecord* record1 = record_at(i);
  93       JsrRecord* record2 = other->record_at(i);
  94       if (record1->entry_address() != record2->entry_address() ||
  95           record1->return_address() != record2->return_address()) {
  96         return false;
  97       }
  98     }
  99     return true;
 100   }
 101 
 102 #if 0
 103   int pos1 = 0;
 104   int pos2 = 0;
 105   int size1 = size();
 106   int size2 = other->size();
 107   while (pos1 < size1 && pos2 < size2) {
 108     JsrRecord* record1 = record_at(pos1);
 109     JsrRecord* record2 = other->record_at(pos2);
 110     int entry1 = record1->entry_address();
 111     int entry2 = record2->entry_address();
 112     if (entry1 < entry2) {
 113       pos1++;
 114     } else if (entry1 > entry2) {
 115       pos2++;
 116     } else {
 117       if (record1->return_address() == record2->return_address()) {
 118         pos1++;
 119         pos2++;
 120       } else {
 121         // These two JsrSets are incompatible.
 122         return false;
 123       }
 124     }
 125   }
 126   // The two JsrSets agree.
 127   return true;
 128 #endif
 129 }
 130 
 131 // ------------------------------------------------------------------
 132 // ciTypeFlow::JsrSet::insert_jsr_record
 133 //
 134 // Insert the given JsrRecord into the JsrSet, maintaining the order
 135 // of the set and replacing any element with the same entry address.
 136 void ciTypeFlow::JsrSet::insert_jsr_record(JsrRecord* record) {
 137   int len = size();
 138   int entry = record->entry_address();
 139   int pos = 0;
 140   for ( ; pos < len; pos++) {
 141     JsrRecord* current = record_at(pos);
 142     if (entry == current->entry_address()) {
 143       // Stomp over this entry.
 144       _set->at_put(pos, record);
 145       assert(size() == len, "must be same size");
 146       return;
 147     } else if (entry < current->entry_address()) {
 148       break;
 149     }
 150   }
 151 
 152   // Insert the record into the list.
 153   JsrRecord* swap = record;
 154   JsrRecord* temp = NULL;
 155   for ( ; pos < len; pos++) {
 156     temp = _set->at(pos);
 157     _set->at_put(pos, swap);
 158     swap = temp;
 159   }
 160   _set->append(swap);
 161   assert(size() == len+1, "must be larger");
 162 }
 163 
 164 // ------------------------------------------------------------------
 165 // ciTypeFlow::JsrSet::remove_jsr_record
 166 //
 167 // Remove the JsrRecord with the given return address from the JsrSet.
 168 void ciTypeFlow::JsrSet::remove_jsr_record(int return_address) {
 169   int len = size();
 170   for (int i = 0; i < len; i++) {
 171     if (record_at(i)->return_address() == return_address) {
 172       // We have found the proper entry.  Remove it from the
 173       // JsrSet and exit.
 174       for (int j = i+1; j < len ; j++) {
 175         _set->at_put(j-1, _set->at(j));
 176       }
 177       _set->trunc_to(len-1);
 178       assert(size() == len-1, "must be smaller");
 179       return;
 180     }
 181   }
 182   assert(false, "verify: returning from invalid subroutine");
 183 }
 184 
 185 // ------------------------------------------------------------------
 186 // ciTypeFlow::JsrSet::apply_control
 187 //
 188 // Apply the effect of a control-flow bytecode on the JsrSet.  The
 189 // only bytecodes that modify the JsrSet are jsr and ret.
 190 void ciTypeFlow::JsrSet::apply_control(ciTypeFlow* analyzer,
 191                                        ciBytecodeStream* str,
 192                                        ciTypeFlow::StateVector* state) {
 193   Bytecodes::Code code = str->cur_bc();
 194   if (code == Bytecodes::_jsr) {
 195     JsrRecord* record =
 196       analyzer->make_jsr_record(str->get_dest(), str->next_bci());
 197     insert_jsr_record(record);
 198   } else if (code == Bytecodes::_jsr_w) {
 199     JsrRecord* record =
 200       analyzer->make_jsr_record(str->get_far_dest(), str->next_bci());
 201     insert_jsr_record(record);
 202   } else if (code == Bytecodes::_ret) {
 203     Cell local = state->local(str->get_index());
 204     ciType* return_address = state->type_at(local);
 205     assert(return_address->is_return_address(), "verify: wrong type");
 206     if (size() == 0) {
 207       // Ret-state underflow:  Hit a ret w/o any previous jsrs.  Bail out.
 208       // This can happen when a loop is inside a finally clause (4614060).
 209       analyzer->record_failure("OSR in finally clause");
 210       return;
 211     }
 212     remove_jsr_record(return_address->as_return_address()->bci());
 213   }
 214 }
 215 
 216 #ifndef PRODUCT
 217 // ------------------------------------------------------------------
 218 // ciTypeFlow::JsrSet::print_on
 219 void ciTypeFlow::JsrSet::print_on(outputStream* st) const {
 220   st->print("{ ");
 221   int num_elements = size();
 222   if (num_elements > 0) {
 223     int i = 0;
 224     for( ; i < num_elements - 1; i++) {
 225       _set->at(i)->print_on(st);
 226       st->print(", ");
 227     }
 228     _set->at(i)->print_on(st);
 229     st->print(" ");
 230   }
 231   st->print("}");
 232 }
 233 #endif
 234 
 235 // ciTypeFlow::StateVector
 236 //
 237 // A StateVector summarizes the type information at some point in
 238 // the program.
 239 
 240 // ------------------------------------------------------------------
 241 // ciTypeFlow::StateVector::type_meet
 242 //
 243 // Meet two types.
 244 //
 245 // The semi-lattice of types use by this analysis are modeled on those
 246 // of the verifier.  The lattice is as follows:
 247 //
 248 //        top_type() >= all non-extremal types >= bottom_type
 249 //                             and
 250 //   Every primitive type is comparable only with itself.  The meet of
 251 //   reference types is determined by their kind: instance class,
 252 //   interface, or array class.  The meet of two types of the same
 253 //   kind is their least common ancestor.  The meet of two types of
 254 //   different kinds is always java.lang.Object.
 255 ciType* ciTypeFlow::StateVector::type_meet_internal(ciType* t1, ciType* t2, ciTypeFlow* analyzer) {
 256   assert(t1 != t2, "checked in caller");
 257   if (t1->equals(top_type())) {
 258     return t2;
 259   } else if (t2->equals(top_type())) {
 260     return t1;
 261   } else if (t1->is_primitive_type() || t2->is_primitive_type()) {
 262     // Special case null_type.  null_type meet any reference type T
 263     // is T.  null_type meet null_type is null_type.
 264     if (t1->equals(null_type())) {
 265       if (!t2->is_primitive_type() || t2->equals(null_type())) {
 266         return t2;
 267       }
 268     } else if (t2->equals(null_type())) {
 269       if (!t1->is_primitive_type()) {
 270         return t1;
 271       }
 272     }
 273 
 274     // At least one of the two types is a non-top primitive type.
 275     // The other type is not equal to it.  Fall to bottom.
 276     return bottom_type();
 277   } else {
 278     // Both types are non-top non-primitive types.  That is,
 279     // both types are either instanceKlasses or arrayKlasses.
 280     ciKlass* object_klass = analyzer->env()->Object_klass();
 281     ciKlass* k1 = t1->as_klass();
 282     ciKlass* k2 = t2->as_klass();
 283     if (k1->equals(object_klass) || k2->equals(object_klass)) {
 284       return object_klass;
 285     } else if (!k1->is_loaded() || !k2->is_loaded()) {
 286       // Unloaded classes fall to java.lang.Object at a merge.
 287       return object_klass;
 288     } else if (k1->is_interface() != k2->is_interface()) {
 289       // When an interface meets a non-interface, we get Object;
 290       // This is what the verifier does.
 291       return object_klass;
 292     } else if (k1->is_array_klass() || k2->is_array_klass()) {
 293       // When an array meets a non-array, we get Object.
 294       // When objArray meets typeArray, we also get Object.
 295       // And when typeArray meets different typeArray, we again get Object.
 296       // But when objArray meets objArray, we look carefully at element types.
 297       if (k1->is_obj_array_klass() && k2->is_obj_array_klass()) {
 298         // Meet the element types, then construct the corresponding array type.
 299         ciKlass* elem1 = k1->as_obj_array_klass()->element_klass();
 300         ciKlass* elem2 = k2->as_obj_array_klass()->element_klass();
 301         ciKlass* elem  = type_meet_internal(elem1, elem2, analyzer)->as_klass();
 302         // Do an easy shortcut if one type is a super of the other.
 303         if (elem == elem1) {
 304           assert(k1 == ciObjArrayKlass::make(elem), "shortcut is OK");
 305           return k1;
 306         } else if (elem == elem2) {
 307           assert(k2 == ciObjArrayKlass::make(elem), "shortcut is OK");
 308           return k2;
 309         } else {
 310           return ciObjArrayKlass::make(elem);
 311         }
 312       } else {
 313         return object_klass;
 314       }
 315     } else {
 316       // Must be two plain old instance klasses.
 317       assert(k1->is_instance_klass(), "previous cases handle non-instances");
 318       assert(k2->is_instance_klass(), "previous cases handle non-instances");
 319       return k1->least_common_ancestor(k2);
 320     }
 321   }
 322 }
 323 
 324 
 325 // ------------------------------------------------------------------
 326 // ciTypeFlow::StateVector::StateVector
 327 //
 328 // Build a new state vector
 329 ciTypeFlow::StateVector::StateVector(ciTypeFlow* analyzer) {
 330   _outer = analyzer;
 331   _stack_size = -1;
 332   _monitor_count = -1;
 333   // Allocate the _types array
 334   int max_cells = analyzer->max_cells();
 335   _types = (ciType**)analyzer->arena()->Amalloc(sizeof(ciType*) * max_cells);
 336   for (int i=0; i<max_cells; i++) {
 337     _types[i] = top_type();
 338   }
 339   _trap_bci = -1;
 340   _trap_index = 0;
 341   _def_locals.clear();
 342 }
 343 
 344 
 345 // ------------------------------------------------------------------
 346 // ciTypeFlow::get_start_state
 347 //
 348 // Set this vector to the method entry state.
 349 const ciTypeFlow::StateVector* ciTypeFlow::get_start_state() {
 350   StateVector* state = new StateVector(this);
 351   if (is_osr_flow()) {
 352     ciTypeFlow* non_osr_flow = method()->get_flow_analysis();
 353     if (non_osr_flow->failing()) {
 354       record_failure(non_osr_flow->failure_reason());
 355       return NULL;
 356     }
 357     JsrSet* jsrs = new JsrSet(NULL, 16);
 358     Block* non_osr_block = non_osr_flow->existing_block_at(start_bci(), jsrs);
 359     if (non_osr_block == NULL) {
 360       record_failure("cannot reach OSR point");
 361       return NULL;
 362     }
 363     // load up the non-OSR state at this point
 364     non_osr_block->copy_state_into(state);
 365     int non_osr_start = non_osr_block->start();
 366     if (non_osr_start != start_bci()) {
 367       // must flow forward from it
 368       if (CITraceTypeFlow) {
 369         tty->print_cr(">> Interpreting pre-OSR block %d:", non_osr_start);
 370       }
 371       Block* block = block_at(non_osr_start, jsrs);
 372       assert(block->limit() == start_bci(), "must flow forward to start");
 373       flow_block(block, state, jsrs);
 374     }
 375     return state;
 376     // Note:  The code below would be an incorrect for an OSR flow,
 377     // even if it were possible for an OSR entry point to be at bci zero.
 378   }
 379   // "Push" the method signature into the first few locals.
 380   state->set_stack_size(-max_locals());
 381   if (!method()->is_static()) {
 382     state->push(method()->holder());
 383     assert(state->tos() == state->local(0), "");
 384   }
 385   for (ciSignatureStream str(method()->signature());
 386        !str.at_return_type();
 387        str.next()) {
 388     state->push_translate(str.type());
 389   }
 390   // Set the rest of the locals to bottom.
 391   Cell cell = state->next_cell(state->tos());
 392   state->set_stack_size(0);
 393   int limit = state->limit_cell();
 394   for (; cell < limit; cell = state->next_cell(cell)) {
 395     state->set_type_at(cell, state->bottom_type());
 396   }
 397   // Lock an object, if necessary.
 398   state->set_monitor_count(method()->is_synchronized() ? 1 : 0);
 399   return state;
 400 }
 401 
 402 // ------------------------------------------------------------------
 403 // ciTypeFlow::StateVector::copy_into
 404 //
 405 // Copy our value into some other StateVector
 406 void ciTypeFlow::StateVector::copy_into(ciTypeFlow::StateVector* copy)
 407 const {
 408   copy->set_stack_size(stack_size());
 409   copy->set_monitor_count(monitor_count());
 410   Cell limit = limit_cell();
 411   for (Cell c = start_cell(); c < limit; c = next_cell(c)) {
 412     copy->set_type_at(c, type_at(c));
 413   }
 414 }
 415 
 416 // ------------------------------------------------------------------
 417 // ciTypeFlow::StateVector::meet
 418 //
 419 // Meets this StateVector with another, destructively modifying this
 420 // one.  Returns true if any modification takes place.
 421 bool ciTypeFlow::StateVector::meet(const ciTypeFlow::StateVector* incoming) {
 422   if (monitor_count() == -1) {
 423     set_monitor_count(incoming->monitor_count());
 424   }
 425   assert(monitor_count() == incoming->monitor_count(), "monitors must match");
 426 
 427   if (stack_size() == -1) {
 428     set_stack_size(incoming->stack_size());
 429     Cell limit = limit_cell();
 430     #ifdef ASSERT
 431     { for (Cell c = start_cell(); c < limit; c = next_cell(c)) {
 432         assert(type_at(c) == top_type(), "");
 433     } }
 434     #endif
 435     // Make a simple copy of the incoming state.
 436     for (Cell c = start_cell(); c < limit; c = next_cell(c)) {
 437       set_type_at(c, incoming->type_at(c));
 438     }
 439     return true;  // it is always different the first time
 440   }
 441 #ifdef ASSERT
 442   if (stack_size() != incoming->stack_size()) {
 443     _outer->method()->print_codes();
 444     tty->print_cr("!!!! Stack size conflict");
 445     tty->print_cr("Current state:");
 446     print_on(tty);
 447     tty->print_cr("Incoming state:");
 448     ((StateVector*)incoming)->print_on(tty);
 449   }
 450 #endif
 451   assert(stack_size() == incoming->stack_size(), "sanity");
 452 
 453   bool different = false;
 454   Cell limit = limit_cell();
 455   for (Cell c = start_cell(); c < limit; c = next_cell(c)) {
 456     ciType* t1 = type_at(c);
 457     ciType* t2 = incoming->type_at(c);
 458     if (!t1->equals(t2)) {
 459       ciType* new_type = type_meet(t1, t2);
 460       if (!t1->equals(new_type)) {
 461         set_type_at(c, new_type);
 462         different = true;
 463       }
 464     }
 465   }
 466   return different;
 467 }
 468 
 469 // ------------------------------------------------------------------
 470 // ciTypeFlow::StateVector::meet_exception
 471 //
 472 // Meets this StateVector with another, destructively modifying this
 473 // one.  The incoming state is coming via an exception.  Returns true
 474 // if any modification takes place.
 475 bool ciTypeFlow::StateVector::meet_exception(ciInstanceKlass* exc,
 476                                      const ciTypeFlow::StateVector* incoming) {
 477   if (monitor_count() == -1) {
 478     set_monitor_count(incoming->monitor_count());
 479   }
 480   assert(monitor_count() == incoming->monitor_count(), "monitors must match");
 481 
 482   if (stack_size() == -1) {
 483     set_stack_size(1);
 484   }
 485 
 486   assert(stack_size() ==  1, "must have one-element stack");
 487 
 488   bool different = false;
 489 
 490   // Meet locals from incoming array.
 491   Cell limit = local(_outer->max_locals()-1);
 492   for (Cell c = start_cell(); c <= limit; c = next_cell(c)) {
 493     ciType* t1 = type_at(c);
 494     ciType* t2 = incoming->type_at(c);
 495     if (!t1->equals(t2)) {
 496       ciType* new_type = type_meet(t1, t2);
 497       if (!t1->equals(new_type)) {
 498         set_type_at(c, new_type);
 499         different = true;
 500       }
 501     }
 502   }
 503 
 504   // Handle stack separately.  When an exception occurs, the
 505   // only stack entry is the exception instance.
 506   ciType* tos_type = type_at_tos();
 507   if (!tos_type->equals(exc)) {
 508     ciType* new_type = type_meet(tos_type, exc);
 509     if (!tos_type->equals(new_type)) {
 510       set_type_at_tos(new_type);
 511       different = true;
 512     }
 513   }
 514 
 515   return different;
 516 }
 517 
 518 // ------------------------------------------------------------------
 519 // ciTypeFlow::StateVector::push_translate
 520 void ciTypeFlow::StateVector::push_translate(ciType* type) {
 521   BasicType basic_type = type->basic_type();
 522   if (basic_type == T_BOOLEAN || basic_type == T_CHAR ||
 523       basic_type == T_BYTE    || basic_type == T_SHORT) {
 524     push_int();
 525   } else {
 526     push(type);
 527     if (type->is_two_word()) {
 528       push(half_type(type));
 529     }
 530   }
 531 }
 532 
 533 // ------------------------------------------------------------------
 534 // ciTypeFlow::StateVector::do_aaload
 535 void ciTypeFlow::StateVector::do_aaload(ciBytecodeStream* str) {
 536   pop_int();
 537   ciObjArrayKlass* array_klass = pop_objArray();
 538   if (array_klass == NULL) {
 539     // Did aaload on a null reference; push a null and ignore the exception.
 540     // This instruction will never continue normally.  All we have to do
 541     // is report a value that will meet correctly with any downstream
 542     // reference types on paths that will truly be executed.  This null type
 543     // meets with any reference type to yield that same reference type.
 544     // (The compiler will generate an unconditional exception here.)
 545     push(null_type());
 546     return;
 547   }
 548   if (!array_klass->is_loaded()) {
 549     // Only fails for some -Xcomp runs
 550     trap(str, array_klass,
 551          Deoptimization::make_trap_request
 552          (Deoptimization::Reason_unloaded,
 553           Deoptimization::Action_reinterpret));
 554     return;
 555   }
 556   ciKlass* element_klass = array_klass->element_klass();
 557   if (!element_klass->is_loaded() && element_klass->is_instance_klass()) {
 558     Untested("unloaded array element class in ciTypeFlow");
 559     trap(str, element_klass,
 560          Deoptimization::make_trap_request
 561          (Deoptimization::Reason_unloaded,
 562           Deoptimization::Action_reinterpret));
 563   } else {
 564     push_object(element_klass);
 565   }
 566 }
 567 
 568 
 569 // ------------------------------------------------------------------
 570 // ciTypeFlow::StateVector::do_checkcast
 571 void ciTypeFlow::StateVector::do_checkcast(ciBytecodeStream* str) {
 572   bool will_link;
 573   ciKlass* klass = str->get_klass(will_link);
 574   if (!will_link) {
 575     // VM's interpreter will not load 'klass' if object is NULL.
 576     // Type flow after this block may still be needed in two situations:
 577     // 1) C2 uses do_null_assert() and continues compilation for later blocks
 578     // 2) C2 does an OSR compile in a later block (see bug 4778368).
 579     pop_object();
 580     do_null_assert(klass);
 581   } else {
 582     pop_object();
 583     push_object(klass);
 584   }
 585 }
 586 
 587 // ------------------------------------------------------------------
 588 // ciTypeFlow::StateVector::do_getfield
 589 void ciTypeFlow::StateVector::do_getfield(ciBytecodeStream* str) {
 590   // could add assert here for type of object.
 591   pop_object();
 592   do_getstatic(str);
 593 }
 594 
 595 // ------------------------------------------------------------------
 596 // ciTypeFlow::StateVector::do_getstatic
 597 void ciTypeFlow::StateVector::do_getstatic(ciBytecodeStream* str) {
 598   bool will_link;
 599   ciField* field = str->get_field(will_link);
 600   if (!will_link) {
 601     trap(str, field->holder(), str->get_field_holder_index());
 602   } else {
 603     ciType* field_type = field->type();
 604     if (!field_type->is_loaded()) {
 605       // Normally, we need the field's type to be loaded if we are to
 606       // do anything interesting with its value.
 607       // We used to do this:  trap(str, str->get_field_signature_index());
 608       //
 609       // There is one good reason not to trap here.  Execution can
 610       // get past this "getfield" or "getstatic" if the value of
 611       // the field is null.  As long as the value is null, the class
 612       // does not need to be loaded!  The compiler must assume that
 613       // the value of the unloaded class reference is null; if the code
 614       // ever sees a non-null value, loading has occurred.
 615       //
 616       // This actually happens often enough to be annoying.  If the
 617       // compiler throws an uncommon trap at this bytecode, you can
 618       // get an endless loop of recompilations, when all the code
 619       // needs to do is load a series of null values.  Also, a trap
 620       // here can make an OSR entry point unreachable, triggering the
 621       // assert on non_osr_block in ciTypeFlow::get_start_state.
 622       // (See bug 4379915.)
 623       do_null_assert(field_type->as_klass());
 624     } else {
 625       push_translate(field_type);
 626     }
 627   }
 628 }
 629 
 630 // ------------------------------------------------------------------
 631 // ciTypeFlow::StateVector::do_invoke
 632 void ciTypeFlow::StateVector::do_invoke(ciBytecodeStream* str,
 633                                         bool has_receiver) {
 634   bool will_link;
 635   ciMethod* method = str->get_method(will_link);
 636   if (!will_link) {
 637     // We weren't able to find the method.
 638     if (str->cur_bc() == Bytecodes::_invokedynamic) {
 639       trap(str, NULL,
 640            Deoptimization::make_trap_request
 641            (Deoptimization::Reason_uninitialized,
 642             Deoptimization::Action_reinterpret));
 643     } else {
 644       ciKlass* unloaded_holder = method->holder();
 645       trap(str, unloaded_holder, str->get_method_holder_index());
 646     }
 647   } else {
 648     ciSignature* signature = method->signature();
 649     ciSignatureStream sigstr(signature);
 650     int arg_size = signature->size();
 651     int stack_base = stack_size() - arg_size;
 652     int i = 0;
 653     for( ; !sigstr.at_return_type(); sigstr.next()) {
 654       ciType* type = sigstr.type();
 655       ciType* stack_type = type_at(stack(stack_base + i++));
 656       // Do I want to check this type?
 657       // assert(stack_type->is_subtype_of(type), "bad type for field value");
 658       if (type->is_two_word()) {
 659         ciType* stack_type2 = type_at(stack(stack_base + i++));
 660         assert(stack_type2->equals(half_type(type)), "must be 2nd half");
 661       }
 662     }
 663     assert(arg_size == i, "must match");
 664     for (int j = 0; j < arg_size; j++) {
 665       pop();
 666     }
 667     if (has_receiver) {
 668       // Check this?
 669       pop_object();
 670     }
 671     assert(!sigstr.is_done(), "must have return type");
 672     ciType* return_type = sigstr.type();
 673     if (!return_type->is_void()) {
 674       if (!return_type->is_loaded()) {
 675         // As in do_getstatic(), generally speaking, we need the return type to
 676         // be loaded if we are to do anything interesting with its value.
 677         // We used to do this:  trap(str, str->get_method_signature_index());
 678         //
 679         // We do not trap here since execution can get past this invoke if
 680         // the return value is null.  As long as the value is null, the class
 681         // does not need to be loaded!  The compiler must assume that
 682         // the value of the unloaded class reference is null; if the code
 683         // ever sees a non-null value, loading has occurred.
 684         //
 685         // See do_getstatic() for similar explanation, as well as bug 4684993.
 686         do_null_assert(return_type->as_klass());
 687       } else {
 688         push_translate(return_type);
 689       }
 690     }
 691   }
 692 }
 693 
 694 // ------------------------------------------------------------------
 695 // ciTypeFlow::StateVector::do_jsr
 696 void ciTypeFlow::StateVector::do_jsr(ciBytecodeStream* str) {
 697   push(ciReturnAddress::make(str->next_bci()));
 698 }
 699 
 700 // ------------------------------------------------------------------
 701 // ciTypeFlow::StateVector::do_ldc
 702 void ciTypeFlow::StateVector::do_ldc(ciBytecodeStream* str) {
 703   ciConstant con = str->get_constant();
 704   BasicType basic_type = con.basic_type();
 705   if (basic_type == T_ILLEGAL) {
 706     // OutOfMemoryError in the CI while loading constant
 707     push_null();
 708     outer()->record_failure("ldc did not link");
 709     return;
 710   }
 711   if (basic_type == T_OBJECT || basic_type == T_ARRAY) {
 712     ciObject* obj = con.as_object();
 713     if (obj->is_null_object()) {
 714       push_null();
 715     } else if (obj->is_klass()) {
 716       // The type of ldc <class> is java.lang.Class
 717       push_object(outer()->env()->Class_klass());
 718     } else {
 719       push_object(obj->klass());
 720     }
 721   } else {
 722     push_translate(ciType::make(basic_type));
 723   }
 724 }
 725 
 726 // ------------------------------------------------------------------
 727 // ciTypeFlow::StateVector::do_multianewarray
 728 void ciTypeFlow::StateVector::do_multianewarray(ciBytecodeStream* str) {
 729   int dimensions = str->get_dimensions();
 730   bool will_link;
 731   ciArrayKlass* array_klass = str->get_klass(will_link)->as_array_klass();
 732   if (!will_link) {
 733     trap(str, array_klass, str->get_klass_index());
 734   } else {
 735     for (int i = 0; i < dimensions; i++) {
 736       pop_int();
 737     }
 738     push_object(array_klass);
 739   }
 740 }
 741 
 742 // ------------------------------------------------------------------
 743 // ciTypeFlow::StateVector::do_new
 744 void ciTypeFlow::StateVector::do_new(ciBytecodeStream* str) {
 745   bool will_link;
 746   ciKlass* klass = str->get_klass(will_link);
 747   if (!will_link || str->is_unresolved_klass()) {
 748     trap(str, klass, str->get_klass_index());
 749   } else {
 750     push_object(klass);
 751   }
 752 }
 753 
 754 // ------------------------------------------------------------------
 755 // ciTypeFlow::StateVector::do_newarray
 756 void ciTypeFlow::StateVector::do_newarray(ciBytecodeStream* str) {
 757   pop_int();
 758   ciKlass* klass = ciTypeArrayKlass::make((BasicType)str->get_index());
 759   push_object(klass);
 760 }
 761 
 762 // ------------------------------------------------------------------
 763 // ciTypeFlow::StateVector::do_putfield
 764 void ciTypeFlow::StateVector::do_putfield(ciBytecodeStream* str) {
 765   do_putstatic(str);
 766   if (_trap_bci != -1)  return;  // unloaded field holder, etc.
 767   // could add assert here for type of object.
 768   pop_object();
 769 }
 770 
 771 // ------------------------------------------------------------------
 772 // ciTypeFlow::StateVector::do_putstatic
 773 void ciTypeFlow::StateVector::do_putstatic(ciBytecodeStream* str) {
 774   bool will_link;
 775   ciField* field = str->get_field(will_link);
 776   if (!will_link) {
 777     trap(str, field->holder(), str->get_field_holder_index());
 778   } else {
 779     ciType* field_type = field->type();
 780     ciType* type = pop_value();
 781     // Do I want to check this type?
 782     //      assert(type->is_subtype_of(field_type), "bad type for field value");
 783     if (field_type->is_two_word()) {
 784       ciType* type2 = pop_value();
 785       assert(type2->is_two_word(), "must be 2nd half");
 786       assert(type == half_type(type2), "must be 2nd half");
 787     }
 788   }
 789 }
 790 
 791 // ------------------------------------------------------------------
 792 // ciTypeFlow::StateVector::do_ret
 793 void ciTypeFlow::StateVector::do_ret(ciBytecodeStream* str) {
 794   Cell index = local(str->get_index());
 795 
 796   ciType* address = type_at(index);
 797   assert(address->is_return_address(), "bad return address");
 798   set_type_at(index, bottom_type());
 799 }
 800 
 801 // ------------------------------------------------------------------
 802 // ciTypeFlow::StateVector::trap
 803 //
 804 // Stop interpretation of this path with a trap.
 805 void ciTypeFlow::StateVector::trap(ciBytecodeStream* str, ciKlass* klass, int index) {
 806   _trap_bci = str->cur_bci();
 807   _trap_index = index;
 808 
 809   // Log information about this trap:
 810   CompileLog* log = outer()->env()->log();
 811   if (log != NULL) {
 812     int mid = log->identify(outer()->method());
 813     int kid = (klass == NULL)? -1: log->identify(klass);
 814     log->begin_elem("uncommon_trap method='%d' bci='%d'", mid, str->cur_bci());
 815     char buf[100];
 816     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
 817                                                           index));
 818     if (kid >= 0)
 819       log->print(" klass='%d'", kid);
 820     log->end_elem();
 821   }
 822 }
 823 
 824 // ------------------------------------------------------------------
 825 // ciTypeFlow::StateVector::do_null_assert
 826 // Corresponds to graphKit::do_null_assert.
 827 void ciTypeFlow::StateVector::do_null_assert(ciKlass* unloaded_klass) {
 828   if (unloaded_klass->is_loaded()) {
 829     // We failed to link, but we can still compute with this class,
 830     // since it is loaded somewhere.  The compiler will uncommon_trap
 831     // if the object is not null, but the typeflow pass can not assume
 832     // that the object will be null, otherwise it may incorrectly tell
 833     // the parser that an object is known to be null. 4761344, 4807707
 834     push_object(unloaded_klass);
 835   } else {
 836     // The class is not loaded anywhere.  It is safe to model the
 837     // null in the typestates, because we can compile in a null check
 838     // which will deoptimize us if someone manages to load the
 839     // class later.
 840     push_null();
 841   }
 842 }
 843 
 844 
 845 // ------------------------------------------------------------------
 846 // ciTypeFlow::StateVector::apply_one_bytecode
 847 //
 848 // Apply the effect of one bytecode to this StateVector
 849 bool ciTypeFlow::StateVector::apply_one_bytecode(ciBytecodeStream* str) {
 850   _trap_bci = -1;
 851   _trap_index = 0;
 852 
 853   if (CITraceTypeFlow) {
 854     tty->print_cr(">> Interpreting bytecode %d:%s", str->cur_bci(),
 855                   Bytecodes::name(str->cur_bc()));
 856   }
 857 
 858   switch(str->cur_bc()) {
 859   case Bytecodes::_aaload: do_aaload(str);                       break;
 860 
 861   case Bytecodes::_aastore:
 862     {
 863       pop_object();
 864       pop_int();
 865       pop_objArray();
 866       break;
 867     }
 868   case Bytecodes::_aconst_null:
 869     {
 870       push_null();
 871       break;
 872     }
 873   case Bytecodes::_aload:   load_local_object(str->get_index());    break;
 874   case Bytecodes::_aload_0: load_local_object(0);                   break;
 875   case Bytecodes::_aload_1: load_local_object(1);                   break;
 876   case Bytecodes::_aload_2: load_local_object(2);                   break;
 877   case Bytecodes::_aload_3: load_local_object(3);                   break;
 878 
 879   case Bytecodes::_anewarray:
 880     {
 881       pop_int();
 882       bool will_link;
 883       ciKlass* element_klass = str->get_klass(will_link);
 884       if (!will_link) {
 885         trap(str, element_klass, str->get_klass_index());
 886       } else {
 887         push_object(ciObjArrayKlass::make(element_klass));
 888       }
 889       break;
 890     }
 891   case Bytecodes::_areturn:
 892   case Bytecodes::_ifnonnull:
 893   case Bytecodes::_ifnull:
 894     {
 895       pop_object();
 896       break;
 897     }
 898   case Bytecodes::_monitorenter:
 899     {
 900       pop_object();
 901       set_monitor_count(monitor_count() + 1);
 902       break;
 903     }
 904   case Bytecodes::_monitorexit:
 905     {
 906       pop_object();
 907       assert(monitor_count() > 0, "must be a monitor to exit from");
 908       set_monitor_count(monitor_count() - 1);
 909       break;
 910     }
 911   case Bytecodes::_arraylength:
 912     {
 913       pop_array();
 914       push_int();
 915       break;
 916     }
 917   case Bytecodes::_astore:   store_local_object(str->get_index());  break;
 918   case Bytecodes::_astore_0: store_local_object(0);                 break;
 919   case Bytecodes::_astore_1: store_local_object(1);                 break;
 920   case Bytecodes::_astore_2: store_local_object(2);                 break;
 921   case Bytecodes::_astore_3: store_local_object(3);                 break;
 922 
 923   case Bytecodes::_athrow:
 924     {
 925       NEEDS_CLEANUP;
 926       pop_object();
 927       break;
 928     }
 929   case Bytecodes::_baload:
 930   case Bytecodes::_caload:
 931   case Bytecodes::_iaload:
 932   case Bytecodes::_saload:
 933     {
 934       pop_int();
 935       ciTypeArrayKlass* array_klass = pop_typeArray();
 936       // Put assert here for right type?
 937       push_int();
 938       break;
 939     }
 940   case Bytecodes::_bastore:
 941   case Bytecodes::_castore:
 942   case Bytecodes::_iastore:
 943   case Bytecodes::_sastore:
 944     {
 945       pop_int();
 946       pop_int();
 947       pop_typeArray();
 948       // assert here?
 949       break;
 950     }
 951   case Bytecodes::_bipush:
 952   case Bytecodes::_iconst_m1:
 953   case Bytecodes::_iconst_0:
 954   case Bytecodes::_iconst_1:
 955   case Bytecodes::_iconst_2:
 956   case Bytecodes::_iconst_3:
 957   case Bytecodes::_iconst_4:
 958   case Bytecodes::_iconst_5:
 959   case Bytecodes::_sipush:
 960     {
 961       push_int();
 962       break;
 963     }
 964   case Bytecodes::_checkcast: do_checkcast(str);                  break;
 965 
 966   case Bytecodes::_d2f:
 967     {
 968       pop_double();
 969       push_float();
 970       break;
 971     }
 972   case Bytecodes::_d2i:
 973     {
 974       pop_double();
 975       push_int();
 976       break;
 977     }
 978   case Bytecodes::_d2l:
 979     {
 980       pop_double();
 981       push_long();
 982       break;
 983     }
 984   case Bytecodes::_dadd:
 985   case Bytecodes::_ddiv:
 986   case Bytecodes::_dmul:
 987   case Bytecodes::_drem:
 988   case Bytecodes::_dsub:
 989     {
 990       pop_double();
 991       pop_double();
 992       push_double();
 993       break;
 994     }
 995   case Bytecodes::_daload:
 996     {
 997       pop_int();
 998       ciTypeArrayKlass* array_klass = pop_typeArray();
 999       // Put assert here for right type?
1000       push_double();
1001       break;
1002     }
1003   case Bytecodes::_dastore:
1004     {
1005       pop_double();
1006       pop_int();
1007       pop_typeArray();
1008       // assert here?
1009       break;
1010     }
1011   case Bytecodes::_dcmpg:
1012   case Bytecodes::_dcmpl:
1013     {
1014       pop_double();
1015       pop_double();
1016       push_int();
1017       break;
1018     }
1019   case Bytecodes::_dconst_0:
1020   case Bytecodes::_dconst_1:
1021     {
1022       push_double();
1023       break;
1024     }
1025   case Bytecodes::_dload:   load_local_double(str->get_index());    break;
1026   case Bytecodes::_dload_0: load_local_double(0);                   break;
1027   case Bytecodes::_dload_1: load_local_double(1);                   break;
1028   case Bytecodes::_dload_2: load_local_double(2);                   break;
1029   case Bytecodes::_dload_3: load_local_double(3);                   break;
1030 
1031   case Bytecodes::_dneg:
1032     {
1033       pop_double();
1034       push_double();
1035       break;
1036     }
1037   case Bytecodes::_dreturn:
1038     {
1039       pop_double();
1040       break;
1041     }
1042   case Bytecodes::_dstore:   store_local_double(str->get_index());  break;
1043   case Bytecodes::_dstore_0: store_local_double(0);                 break;
1044   case Bytecodes::_dstore_1: store_local_double(1);                 break;
1045   case Bytecodes::_dstore_2: store_local_double(2);                 break;
1046   case Bytecodes::_dstore_3: store_local_double(3);                 break;
1047 
1048   case Bytecodes::_dup:
1049     {
1050       push(type_at_tos());
1051       break;
1052     }
1053   case Bytecodes::_dup_x1:
1054     {
1055       ciType* value1 = pop_value();
1056       ciType* value2 = pop_value();
1057       push(value1);
1058       push(value2);
1059       push(value1);
1060       break;
1061     }
1062   case Bytecodes::_dup_x2:
1063     {
1064       ciType* value1 = pop_value();
1065       ciType* value2 = pop_value();
1066       ciType* value3 = pop_value();
1067       push(value1);
1068       push(value3);
1069       push(value2);
1070       push(value1);
1071       break;
1072     }
1073   case Bytecodes::_dup2:
1074     {
1075       ciType* value1 = pop_value();
1076       ciType* value2 = pop_value();
1077       push(value2);
1078       push(value1);
1079       push(value2);
1080       push(value1);
1081       break;
1082     }
1083   case Bytecodes::_dup2_x1:
1084     {
1085       ciType* value1 = pop_value();
1086       ciType* value2 = pop_value();
1087       ciType* value3 = pop_value();
1088       push(value2);
1089       push(value1);
1090       push(value3);
1091       push(value2);
1092       push(value1);
1093       break;
1094     }
1095   case Bytecodes::_dup2_x2:
1096     {
1097       ciType* value1 = pop_value();
1098       ciType* value2 = pop_value();
1099       ciType* value3 = pop_value();
1100       ciType* value4 = pop_value();
1101       push(value2);
1102       push(value1);
1103       push(value4);
1104       push(value3);
1105       push(value2);
1106       push(value1);
1107       break;
1108     }
1109   case Bytecodes::_f2d:
1110     {
1111       pop_float();
1112       push_double();
1113       break;
1114     }
1115   case Bytecodes::_f2i:
1116     {
1117       pop_float();
1118       push_int();
1119       break;
1120     }
1121   case Bytecodes::_f2l:
1122     {
1123       pop_float();
1124       push_long();
1125       break;
1126     }
1127   case Bytecodes::_fadd:
1128   case Bytecodes::_fdiv:
1129   case Bytecodes::_fmul:
1130   case Bytecodes::_frem:
1131   case Bytecodes::_fsub:
1132     {
1133       pop_float();
1134       pop_float();
1135       push_float();
1136       break;
1137     }
1138   case Bytecodes::_faload:
1139     {
1140       pop_int();
1141       ciTypeArrayKlass* array_klass = pop_typeArray();
1142       // Put assert here.
1143       push_float();
1144       break;
1145     }
1146   case Bytecodes::_fastore:
1147     {
1148       pop_float();
1149       pop_int();
1150       ciTypeArrayKlass* array_klass = pop_typeArray();
1151       // Put assert here.
1152       break;
1153     }
1154   case Bytecodes::_fcmpg:
1155   case Bytecodes::_fcmpl:
1156     {
1157       pop_float();
1158       pop_float();
1159       push_int();
1160       break;
1161     }
1162   case Bytecodes::_fconst_0:
1163   case Bytecodes::_fconst_1:
1164   case Bytecodes::_fconst_2:
1165     {
1166       push_float();
1167       break;
1168     }
1169   case Bytecodes::_fload:   load_local_float(str->get_index());     break;
1170   case Bytecodes::_fload_0: load_local_float(0);                    break;
1171   case Bytecodes::_fload_1: load_local_float(1);                    break;
1172   case Bytecodes::_fload_2: load_local_float(2);                    break;
1173   case Bytecodes::_fload_3: load_local_float(3);                    break;
1174 
1175   case Bytecodes::_fneg:
1176     {
1177       pop_float();
1178       push_float();
1179       break;
1180     }
1181   case Bytecodes::_freturn:
1182     {
1183       pop_float();
1184       break;
1185     }
1186   case Bytecodes::_fstore:    store_local_float(str->get_index());   break;
1187   case Bytecodes::_fstore_0:  store_local_float(0);                  break;
1188   case Bytecodes::_fstore_1:  store_local_float(1);                  break;
1189   case Bytecodes::_fstore_2:  store_local_float(2);                  break;
1190   case Bytecodes::_fstore_3:  store_local_float(3);                  break;
1191 
1192   case Bytecodes::_getfield:  do_getfield(str);                      break;
1193   case Bytecodes::_getstatic: do_getstatic(str);                     break;
1194 
1195   case Bytecodes::_goto:
1196   case Bytecodes::_goto_w:
1197   case Bytecodes::_nop:
1198   case Bytecodes::_return:
1199     {
1200       // do nothing.
1201       break;
1202     }
1203   case Bytecodes::_i2b:
1204   case Bytecodes::_i2c:
1205   case Bytecodes::_i2s:
1206   case Bytecodes::_ineg:
1207     {
1208       pop_int();
1209       push_int();
1210       break;
1211     }
1212   case Bytecodes::_i2d:
1213     {
1214       pop_int();
1215       push_double();
1216       break;
1217     }
1218   case Bytecodes::_i2f:
1219     {
1220       pop_int();
1221       push_float();
1222       break;
1223     }
1224   case Bytecodes::_i2l:
1225     {
1226       pop_int();
1227       push_long();
1228       break;
1229     }
1230   case Bytecodes::_iadd:
1231   case Bytecodes::_iand:
1232   case Bytecodes::_idiv:
1233   case Bytecodes::_imul:
1234   case Bytecodes::_ior:
1235   case Bytecodes::_irem:
1236   case Bytecodes::_ishl:
1237   case Bytecodes::_ishr:
1238   case Bytecodes::_isub:
1239   case Bytecodes::_iushr:
1240   case Bytecodes::_ixor:
1241     {
1242       pop_int();
1243       pop_int();
1244       push_int();
1245       break;
1246     }
1247   case Bytecodes::_if_acmpeq:
1248   case Bytecodes::_if_acmpne:
1249     {
1250       pop_object();
1251       pop_object();
1252       break;
1253     }
1254   case Bytecodes::_if_icmpeq:
1255   case Bytecodes::_if_icmpge:
1256   case Bytecodes::_if_icmpgt:
1257   case Bytecodes::_if_icmple:
1258   case Bytecodes::_if_icmplt:
1259   case Bytecodes::_if_icmpne:
1260     {
1261       pop_int();
1262       pop_int();
1263       break;
1264     }
1265   case Bytecodes::_ifeq:
1266   case Bytecodes::_ifle:
1267   case Bytecodes::_iflt:
1268   case Bytecodes::_ifge:
1269   case Bytecodes::_ifgt:
1270   case Bytecodes::_ifne:
1271   case Bytecodes::_ireturn:
1272   case Bytecodes::_lookupswitch:
1273   case Bytecodes::_tableswitch:
1274     {
1275       pop_int();
1276       break;
1277     }
1278   case Bytecodes::_iinc:
1279     {
1280       int lnum = str->get_index();
1281       check_int(local(lnum));
1282       store_to_local(lnum);
1283       break;
1284     }
1285   case Bytecodes::_iload:   load_local_int(str->get_index()); break;
1286   case Bytecodes::_iload_0: load_local_int(0);                      break;
1287   case Bytecodes::_iload_1: load_local_int(1);                      break;
1288   case Bytecodes::_iload_2: load_local_int(2);                      break;
1289   case Bytecodes::_iload_3: load_local_int(3);                      break;
1290 
1291   case Bytecodes::_instanceof:
1292     {
1293       // Check for uncommon trap:
1294       do_checkcast(str);
1295       pop_object();
1296       push_int();
1297       break;
1298     }
1299   case Bytecodes::_invokeinterface: do_invoke(str, true);           break;
1300   case Bytecodes::_invokespecial:   do_invoke(str, true);           break;
1301   case Bytecodes::_invokestatic:    do_invoke(str, false);          break;
1302   case Bytecodes::_invokevirtual:   do_invoke(str, true);           break;
1303   case Bytecodes::_invokedynamic:   do_invoke(str, false);          break;
1304 
1305   case Bytecodes::_istore:   store_local_int(str->get_index());     break;
1306   case Bytecodes::_istore_0: store_local_int(0);                    break;
1307   case Bytecodes::_istore_1: store_local_int(1);                    break;
1308   case Bytecodes::_istore_2: store_local_int(2);                    break;
1309   case Bytecodes::_istore_3: store_local_int(3);                    break;
1310 
1311   case Bytecodes::_jsr:
1312   case Bytecodes::_jsr_w: do_jsr(str);                              break;
1313 
1314   case Bytecodes::_l2d:
1315     {
1316       pop_long();
1317       push_double();
1318       break;
1319     }
1320   case Bytecodes::_l2f:
1321     {
1322       pop_long();
1323       push_float();
1324       break;
1325     }
1326   case Bytecodes::_l2i:
1327     {
1328       pop_long();
1329       push_int();
1330       break;
1331     }
1332   case Bytecodes::_ladd:
1333   case Bytecodes::_land:
1334   case Bytecodes::_ldiv:
1335   case Bytecodes::_lmul:
1336   case Bytecodes::_lor:
1337   case Bytecodes::_lrem:
1338   case Bytecodes::_lsub:
1339   case Bytecodes::_lxor:
1340     {
1341       pop_long();
1342       pop_long();
1343       push_long();
1344       break;
1345     }
1346   case Bytecodes::_laload:
1347     {
1348       pop_int();
1349       ciTypeArrayKlass* array_klass = pop_typeArray();
1350       // Put assert here for right type?
1351       push_long();
1352       break;
1353     }
1354   case Bytecodes::_lastore:
1355     {
1356       pop_long();
1357       pop_int();
1358       pop_typeArray();
1359       // assert here?
1360       break;
1361     }
1362   case Bytecodes::_lcmp:
1363     {
1364       pop_long();
1365       pop_long();
1366       push_int();
1367       break;
1368     }
1369   case Bytecodes::_lconst_0:
1370   case Bytecodes::_lconst_1:
1371     {
1372       push_long();
1373       break;
1374     }
1375   case Bytecodes::_ldc:
1376   case Bytecodes::_ldc_w:
1377   case Bytecodes::_ldc2_w:
1378     {
1379       do_ldc(str);
1380       break;
1381     }
1382 
1383   case Bytecodes::_lload:   load_local_long(str->get_index());      break;
1384   case Bytecodes::_lload_0: load_local_long(0);                     break;
1385   case Bytecodes::_lload_1: load_local_long(1);                     break;
1386   case Bytecodes::_lload_2: load_local_long(2);                     break;
1387   case Bytecodes::_lload_3: load_local_long(3);                     break;
1388 
1389   case Bytecodes::_lneg:
1390     {
1391       pop_long();
1392       push_long();
1393       break;
1394     }
1395   case Bytecodes::_lreturn:
1396     {
1397       pop_long();
1398       break;
1399     }
1400   case Bytecodes::_lshl:
1401   case Bytecodes::_lshr:
1402   case Bytecodes::_lushr:
1403     {
1404       pop_int();
1405       pop_long();
1406       push_long();
1407       break;
1408     }
1409   case Bytecodes::_lstore:   store_local_long(str->get_index());    break;
1410   case Bytecodes::_lstore_0: store_local_long(0);                   break;
1411   case Bytecodes::_lstore_1: store_local_long(1);                   break;
1412   case Bytecodes::_lstore_2: store_local_long(2);                   break;
1413   case Bytecodes::_lstore_3: store_local_long(3);                   break;
1414 
1415   case Bytecodes::_multianewarray: do_multianewarray(str);          break;
1416 
1417   case Bytecodes::_new:      do_new(str);                           break;
1418 
1419   case Bytecodes::_newarray: do_newarray(str);                      break;
1420 
1421   case Bytecodes::_pop:
1422     {
1423       pop();
1424       break;
1425     }
1426   case Bytecodes::_pop2:
1427     {
1428       pop();
1429       pop();
1430       break;
1431     }
1432 
1433   case Bytecodes::_putfield:       do_putfield(str);                 break;
1434   case Bytecodes::_putstatic:      do_putstatic(str);                break;
1435 
1436   case Bytecodes::_ret: do_ret(str);                                 break;
1437 
1438   case Bytecodes::_swap:
1439     {
1440       ciType* value1 = pop_value();
1441       ciType* value2 = pop_value();
1442       push(value1);
1443       push(value2);
1444       break;
1445     }
1446   case Bytecodes::_wide:
1447   default:
1448     {
1449       // The iterator should skip this.
1450       ShouldNotReachHere();
1451       break;
1452     }
1453   }
1454 
1455   if (CITraceTypeFlow) {
1456     print_on(tty);
1457   }
1458 
1459   return (_trap_bci != -1);
1460 }
1461 
1462 #ifndef PRODUCT
1463 // ------------------------------------------------------------------
1464 // ciTypeFlow::StateVector::print_cell_on
1465 void ciTypeFlow::StateVector::print_cell_on(outputStream* st, Cell c) const {
1466   ciType* type = type_at(c);
1467   if (type == top_type()) {
1468     st->print("top");
1469   } else if (type == bottom_type()) {
1470     st->print("bottom");
1471   } else if (type == null_type()) {
1472     st->print("null");
1473   } else if (type == long2_type()) {
1474     st->print("long2");
1475   } else if (type == double2_type()) {
1476     st->print("double2");
1477   } else if (is_int(type)) {
1478     st->print("int");
1479   } else if (is_long(type)) {
1480     st->print("long");
1481   } else if (is_float(type)) {
1482     st->print("float");
1483   } else if (is_double(type)) {
1484     st->print("double");
1485   } else if (type->is_return_address()) {
1486     st->print("address(%d)", type->as_return_address()->bci());
1487   } else {
1488     if (type->is_klass()) {
1489       type->as_klass()->name()->print_symbol_on(st);
1490     } else {
1491       st->print("UNEXPECTED TYPE");
1492       type->print();
1493     }
1494   }
1495 }
1496 
1497 // ------------------------------------------------------------------
1498 // ciTypeFlow::StateVector::print_on
1499 void ciTypeFlow::StateVector::print_on(outputStream* st) const {
1500   int num_locals   = _outer->max_locals();
1501   int num_stack    = stack_size();
1502   int num_monitors = monitor_count();
1503   st->print_cr("  State : locals %d, stack %d, monitors %d", num_locals, num_stack, num_monitors);
1504   if (num_stack >= 0) {
1505     int i;
1506     for (i = 0; i < num_locals; i++) {
1507       st->print("    local %2d : ", i);
1508       print_cell_on(st, local(i));
1509       st->cr();
1510     }
1511     for (i = 0; i < num_stack; i++) {
1512       st->print("    stack %2d : ", i);
1513       print_cell_on(st, stack(i));
1514       st->cr();
1515     }
1516   }
1517 }
1518 #endif
1519 
1520 
1521 // ------------------------------------------------------------------
1522 // ciTypeFlow::SuccIter::next
1523 //
1524 void ciTypeFlow::SuccIter::next() {
1525   int succ_ct = _pred->successors()->length();
1526   int next = _index + 1;
1527   if (next < succ_ct) {
1528     _index = next;
1529     _succ = _pred->successors()->at(next);
1530     return;
1531   }
1532   for (int i = next - succ_ct; i < _pred->exceptions()->length(); i++) {
1533     // Do not compile any code for unloaded exception types.
1534     // Following compiler passes are responsible for doing this also.
1535     ciInstanceKlass* exception_klass = _pred->exc_klasses()->at(i);
1536     if (exception_klass->is_loaded()) {
1537       _index = next;
1538       _succ = _pred->exceptions()->at(i);
1539       return;
1540     }
1541     next++;
1542   }
1543   _index = -1;
1544   _succ = NULL;
1545 }
1546 
1547 // ------------------------------------------------------------------
1548 // ciTypeFlow::SuccIter::set_succ
1549 //
1550 void ciTypeFlow::SuccIter::set_succ(Block* succ) {
1551   int succ_ct = _pred->successors()->length();
1552   if (_index < succ_ct) {
1553     _pred->successors()->at_put(_index, succ);
1554   } else {
1555     int idx = _index - succ_ct;
1556     _pred->exceptions()->at_put(idx, succ);
1557   }
1558 }
1559 
1560 // ciTypeFlow::Block
1561 //
1562 // A basic block.
1563 
1564 // ------------------------------------------------------------------
1565 // ciTypeFlow::Block::Block
1566 ciTypeFlow::Block::Block(ciTypeFlow* outer,
1567                          ciBlock *ciblk,
1568                          ciTypeFlow::JsrSet* jsrs) {
1569   _ciblock = ciblk;
1570   _exceptions = NULL;
1571   _exc_klasses = NULL;
1572   _successors = NULL;
1573   _state = new (outer->arena()) StateVector(outer);
1574   JsrSet* new_jsrs =
1575     new (outer->arena()) JsrSet(outer->arena(), jsrs->size());
1576   jsrs->copy_into(new_jsrs);
1577   _jsrs = new_jsrs;
1578   _next = NULL;
1579   _on_work_list = false;
1580   _backedge_copy = false;
1581   _exception_entry = false;
1582   _trap_bci = -1;
1583   _trap_index = 0;
1584   df_init();
1585 
1586   if (CITraceTypeFlow) {
1587     tty->print_cr(">> Created new block");
1588     print_on(tty);
1589   }
1590 
1591   assert(this->outer() == outer, "outer link set up");
1592   assert(!outer->have_block_count(), "must not have mapped blocks yet");
1593 }
1594 
1595 // ------------------------------------------------------------------
1596 // ciTypeFlow::Block::df_init
1597 void ciTypeFlow::Block::df_init() {
1598   _pre_order = -1; assert(!has_pre_order(), "");
1599   _post_order = -1; assert(!has_post_order(), "");
1600   _loop = NULL;
1601   _irreducible_entry = false;
1602   _rpo_next = NULL;
1603 }
1604 
1605 // ------------------------------------------------------------------
1606 // ciTypeFlow::Block::successors
1607 //
1608 // Get the successors for this Block.
1609 GrowableArray<ciTypeFlow::Block*>*
1610 ciTypeFlow::Block::successors(ciBytecodeStream* str,
1611                               ciTypeFlow::StateVector* state,
1612                               ciTypeFlow::JsrSet* jsrs) {
1613   if (_successors == NULL) {
1614     if (CITraceTypeFlow) {
1615       tty->print(">> Computing successors for block ");
1616       print_value_on(tty);
1617       tty->cr();
1618     }
1619 
1620     ciTypeFlow* analyzer = outer();
1621     Arena* arena = analyzer->arena();
1622     Block* block = NULL;
1623     bool has_successor = !has_trap() &&
1624                          (control() != ciBlock::fall_through_bci || limit() < analyzer->code_size());
1625     if (!has_successor) {
1626       _successors =
1627         new (arena) GrowableArray<Block*>(arena, 1, 0, NULL);
1628       // No successors
1629     } else if (control() == ciBlock::fall_through_bci) {
1630       assert(str->cur_bci() == limit(), "bad block end");
1631       // This block simply falls through to the next.
1632       _successors =
1633         new (arena) GrowableArray<Block*>(arena, 1, 0, NULL);
1634 
1635       Block* block = analyzer->block_at(limit(), _jsrs);
1636       assert(_successors->length() == FALL_THROUGH, "");
1637       _successors->append(block);
1638     } else {
1639       int current_bci = str->cur_bci();
1640       int next_bci = str->next_bci();
1641       int branch_bci = -1;
1642       Block* target = NULL;
1643       assert(str->next_bci() == limit(), "bad block end");
1644       // This block is not a simple fall-though.  Interpret
1645       // the current bytecode to find our successors.
1646       switch (str->cur_bc()) {
1647       case Bytecodes::_ifeq:         case Bytecodes::_ifne:
1648       case Bytecodes::_iflt:         case Bytecodes::_ifge:
1649       case Bytecodes::_ifgt:         case Bytecodes::_ifle:
1650       case Bytecodes::_if_icmpeq:    case Bytecodes::_if_icmpne:
1651       case Bytecodes::_if_icmplt:    case Bytecodes::_if_icmpge:
1652       case Bytecodes::_if_icmpgt:    case Bytecodes::_if_icmple:
1653       case Bytecodes::_if_acmpeq:    case Bytecodes::_if_acmpne:
1654       case Bytecodes::_ifnull:       case Bytecodes::_ifnonnull:
1655         // Our successors are the branch target and the next bci.
1656         branch_bci = str->get_dest();
1657         _successors =
1658           new (arena) GrowableArray<Block*>(arena, 2, 0, NULL);
1659         assert(_successors->length() == IF_NOT_TAKEN, "");
1660         _successors->append(analyzer->block_at(next_bci, jsrs));
1661         assert(_successors->length() == IF_TAKEN, "");
1662         _successors->append(analyzer->block_at(branch_bci, jsrs));
1663         break;
1664 
1665       case Bytecodes::_goto:
1666         branch_bci = str->get_dest();
1667         _successors =
1668           new (arena) GrowableArray<Block*>(arena, 1, 0, NULL);
1669         assert(_successors->length() == GOTO_TARGET, "");
1670         _successors->append(analyzer->block_at(branch_bci, jsrs));
1671         break;
1672 
1673       case Bytecodes::_jsr:
1674         branch_bci = str->get_dest();
1675         _successors =
1676           new (arena) GrowableArray<Block*>(arena, 1, 0, NULL);
1677         assert(_successors->length() == GOTO_TARGET, "");
1678         _successors->append(analyzer->block_at(branch_bci, jsrs));
1679         break;
1680 
1681       case Bytecodes::_goto_w:
1682       case Bytecodes::_jsr_w:
1683         _successors =
1684           new (arena) GrowableArray<Block*>(arena, 1, 0, NULL);
1685         assert(_successors->length() == GOTO_TARGET, "");
1686         _successors->append(analyzer->block_at(str->get_far_dest(), jsrs));
1687         break;
1688 
1689       case Bytecodes::_tableswitch:  {
1690         Bytecode_tableswitch *tableswitch =
1691           Bytecode_tableswitch_at(str->cur_bcp());
1692 
1693         int len = tableswitch->length();
1694         _successors =
1695           new (arena) GrowableArray<Block*>(arena, len+1, 0, NULL);
1696         int bci = current_bci + tableswitch->default_offset();
1697         Block* block = analyzer->block_at(bci, jsrs);
1698         assert(_successors->length() == SWITCH_DEFAULT, "");
1699         _successors->append(block);
1700         while (--len >= 0) {
1701           int bci = current_bci + tableswitch->dest_offset_at(len);
1702           block = analyzer->block_at(bci, jsrs);
1703           assert(_successors->length() >= SWITCH_CASES, "");
1704           _successors->append_if_missing(block);
1705         }
1706         break;
1707       }
1708 
1709       case Bytecodes::_lookupswitch: {
1710         Bytecode_lookupswitch *lookupswitch =
1711           Bytecode_lookupswitch_at(str->cur_bcp());
1712 
1713         int npairs = lookupswitch->number_of_pairs();
1714         _successors =
1715           new (arena) GrowableArray<Block*>(arena, npairs+1, 0, NULL);
1716         int bci = current_bci + lookupswitch->default_offset();
1717         Block* block = analyzer->block_at(bci, jsrs);
1718         assert(_successors->length() == SWITCH_DEFAULT, "");
1719         _successors->append(block);
1720         while(--npairs >= 0) {
1721           LookupswitchPair *pair = lookupswitch->pair_at(npairs);
1722           int bci = current_bci + pair->offset();
1723           Block* block = analyzer->block_at(bci, jsrs);
1724           assert(_successors->length() >= SWITCH_CASES, "");
1725           _successors->append_if_missing(block);
1726         }
1727         break;
1728       }
1729 
1730       case Bytecodes::_athrow:     case Bytecodes::_ireturn:
1731       case Bytecodes::_lreturn:    case Bytecodes::_freturn:
1732       case Bytecodes::_dreturn:    case Bytecodes::_areturn:
1733       case Bytecodes::_return:
1734         _successors =
1735           new (arena) GrowableArray<Block*>(arena, 1, 0, NULL);
1736         // No successors
1737         break;
1738 
1739       case Bytecodes::_ret: {
1740         _successors =
1741           new (arena) GrowableArray<Block*>(arena, 1, 0, NULL);
1742 
1743         Cell local = state->local(str->get_index());
1744         ciType* return_address = state->type_at(local);
1745         assert(return_address->is_return_address(), "verify: wrong type");
1746         int bci = return_address->as_return_address()->bci();
1747         assert(_successors->length() == GOTO_TARGET, "");
1748         _successors->append(analyzer->block_at(bci, jsrs));
1749         break;
1750       }
1751 
1752       case Bytecodes::_wide:
1753       default:
1754         ShouldNotReachHere();
1755         break;
1756       }
1757     }
1758   }
1759   return _successors;
1760 }
1761 
1762 // ------------------------------------------------------------------
1763 // ciTypeFlow::Block:compute_exceptions
1764 //
1765 // Compute the exceptional successors and types for this Block.
1766 void ciTypeFlow::Block::compute_exceptions() {
1767   assert(_exceptions == NULL && _exc_klasses == NULL, "repeat");
1768 
1769   if (CITraceTypeFlow) {
1770     tty->print(">> Computing exceptions for block ");
1771     print_value_on(tty);
1772     tty->cr();
1773   }
1774 
1775   ciTypeFlow* analyzer = outer();
1776   Arena* arena = analyzer->arena();
1777 
1778   // Any bci in the block will do.
1779   ciExceptionHandlerStream str(analyzer->method(), start());
1780 
1781   // Allocate our growable arrays.
1782   int exc_count = str.count();
1783   _exceptions = new (arena) GrowableArray<Block*>(arena, exc_count, 0, NULL);
1784   _exc_klasses = new (arena) GrowableArray<ciInstanceKlass*>(arena, exc_count,
1785                                                              0, NULL);
1786 
1787   for ( ; !str.is_done(); str.next()) {
1788     ciExceptionHandler* handler = str.handler();
1789     int bci = handler->handler_bci();
1790     ciInstanceKlass* klass = NULL;
1791     if (bci == -1) {
1792       // There is no catch all.  It is possible to exit the method.
1793       break;
1794     }
1795     if (handler->is_catch_all()) {
1796       klass = analyzer->env()->Throwable_klass();
1797     } else {
1798       klass = handler->catch_klass();
1799     }
1800     _exceptions->append(analyzer->block_at(bci, _jsrs));
1801     _exc_klasses->append(klass);
1802   }
1803 }
1804 
1805 // ------------------------------------------------------------------
1806 // ciTypeFlow::Block::set_backedge_copy
1807 // Use this only to make a pre-existing public block into a backedge copy.
1808 void ciTypeFlow::Block::set_backedge_copy(bool z) {
1809   assert(z || (z == is_backedge_copy()), "cannot make a backedge copy public");
1810   _backedge_copy = z;
1811 }
1812 
1813 // ------------------------------------------------------------------
1814 // ciTypeFlow::Block::is_clonable_exit
1815 //
1816 // At most 2 normal successors, one of which continues looping,
1817 // and all exceptional successors must exit.
1818 bool ciTypeFlow::Block::is_clonable_exit(ciTypeFlow::Loop* lp) {
1819   int normal_cnt  = 0;
1820   int in_loop_cnt = 0;
1821   for (SuccIter iter(this); !iter.done(); iter.next()) {
1822     Block* succ = iter.succ();
1823     if (iter.is_normal_ctrl()) {
1824       if (++normal_cnt > 2) return false;
1825       if (lp->contains(succ->loop())) {
1826         if (++in_loop_cnt > 1) return false;
1827       }
1828     } else {
1829       if (lp->contains(succ->loop())) return false;
1830     }
1831   }
1832   return in_loop_cnt == 1;
1833 }
1834 
1835 // ------------------------------------------------------------------
1836 // ciTypeFlow::Block::looping_succ
1837 //
1838 ciTypeFlow::Block* ciTypeFlow::Block::looping_succ(ciTypeFlow::Loop* lp) {
1839   assert(successors()->length() <= 2, "at most 2 normal successors");
1840   for (SuccIter iter(this); !iter.done(); iter.next()) {
1841     Block* succ = iter.succ();
1842     if (lp->contains(succ->loop())) {
1843       return succ;
1844     }
1845   }
1846   return NULL;
1847 }
1848 
1849 #ifndef PRODUCT
1850 // ------------------------------------------------------------------
1851 // ciTypeFlow::Block::print_value_on
1852 void ciTypeFlow::Block::print_value_on(outputStream* st) const {
1853   if (has_pre_order()) st->print("#%-2d ", pre_order());
1854   if (has_rpo())       st->print("rpo#%-2d ", rpo());
1855   st->print("[%d - %d)", start(), limit());
1856   if (is_loop_head()) st->print(" lphd");
1857   if (is_irreducible_entry()) st->print(" irred");
1858   if (_jsrs->size() > 0) { st->print("/");  _jsrs->print_on(st); }
1859   if (is_backedge_copy())  st->print("/backedge_copy");
1860 }
1861 
1862 // ------------------------------------------------------------------
1863 // ciTypeFlow::Block::print_on
1864 void ciTypeFlow::Block::print_on(outputStream* st) const {
1865   if ((Verbose || WizardMode)) {
1866     outer()->method()->print_codes_on(start(), limit(), st);
1867   }
1868   st->print_cr("  ====================================================  ");
1869   st->print ("  ");
1870   print_value_on(st);
1871   st->print(" Stored locals: "); def_locals()->print_on(st, outer()->method()->max_locals()); tty->cr();
1872   if (loop() && loop()->parent() != NULL) {
1873     st->print(" loops:");
1874     Loop* lp = loop();
1875     do {
1876       st->print(" %d<-%d", lp->head()->pre_order(),lp->tail()->pre_order());
1877       if (lp->is_irreducible()) st->print("(ir)");
1878       lp = lp->parent();
1879     } while (lp->parent() != NULL);
1880   }
1881   st->cr();
1882   _state->print_on(st);
1883   if (_successors == NULL) {
1884     st->print_cr("  No successor information");
1885   } else {
1886     int num_successors = _successors->length();
1887     st->print_cr("  Successors : %d", num_successors);
1888     for (int i = 0; i < num_successors; i++) {
1889       Block* successor = _successors->at(i);
1890       st->print("    ");
1891       successor->print_value_on(st);
1892       st->cr();
1893     }
1894   }
1895   if (_exceptions == NULL) {
1896     st->print_cr("  No exception information");
1897   } else {
1898     int num_exceptions = _exceptions->length();
1899     st->print_cr("  Exceptions : %d", num_exceptions);
1900     for (int i = 0; i < num_exceptions; i++) {
1901       Block* exc_succ = _exceptions->at(i);
1902       ciInstanceKlass* exc_klass = _exc_klasses->at(i);
1903       st->print("    ");
1904       exc_succ->print_value_on(st);
1905       st->print(" -- ");
1906       exc_klass->name()->print_symbol_on(st);
1907       st->cr();
1908     }
1909   }
1910   if (has_trap()) {
1911     st->print_cr("  Traps on %d with trap index %d", trap_bci(), trap_index());
1912   }
1913   st->print_cr("  ====================================================  ");
1914 }
1915 #endif
1916 
1917 #ifndef PRODUCT
1918 // ------------------------------------------------------------------
1919 // ciTypeFlow::LocalSet::print_on
1920 void ciTypeFlow::LocalSet::print_on(outputStream* st, int limit) const {
1921   st->print("{");
1922   for (int i = 0; i < max; i++) {
1923     if (test(i)) st->print(" %d", i);
1924   }
1925   if (limit > max) {
1926     st->print(" %d..%d ", max, limit);
1927   }
1928   st->print(" }");
1929 }
1930 #endif
1931 
1932 // ciTypeFlow
1933 //
1934 // This is a pass over the bytecodes which computes the following:
1935 //   basic block structure
1936 //   interpreter type-states (a la the verifier)
1937 
1938 // ------------------------------------------------------------------
1939 // ciTypeFlow::ciTypeFlow
1940 ciTypeFlow::ciTypeFlow(ciEnv* env, ciMethod* method, int osr_bci) {
1941   _env = env;
1942   _method = method;
1943   _methodBlocks = method->get_method_blocks();
1944   _max_locals = method->max_locals();
1945   _max_stack = method->max_stack();
1946   _code_size = method->code_size();
1947   _has_irreducible_entry = false;
1948   _osr_bci = osr_bci;
1949   _failure_reason = NULL;
1950   assert(start_bci() >= 0 && start_bci() < code_size() , "correct osr_bci argument");
1951   _work_list = NULL;
1952 
1953   _ciblock_count = _methodBlocks->num_blocks();
1954   _idx_to_blocklist = NEW_ARENA_ARRAY(arena(), GrowableArray<Block*>*, _ciblock_count);
1955   for (int i = 0; i < _ciblock_count; i++) {
1956     _idx_to_blocklist[i] = NULL;
1957   }
1958   _block_map = NULL;  // until all blocks are seen
1959   _jsr_count = 0;
1960   _jsr_records = NULL;
1961 }
1962 
1963 // ------------------------------------------------------------------
1964 // ciTypeFlow::work_list_next
1965 //
1966 // Get the next basic block from our work list.
1967 ciTypeFlow::Block* ciTypeFlow::work_list_next() {
1968   assert(!work_list_empty(), "work list must not be empty");
1969   Block* next_block = _work_list;
1970   _work_list = next_block->next();
1971   next_block->set_next(NULL);
1972   next_block->set_on_work_list(false);
1973   return next_block;
1974 }
1975 
1976 // ------------------------------------------------------------------
1977 // ciTypeFlow::add_to_work_list
1978 //
1979 // Add a basic block to our work list.
1980 // List is sorted by decreasing postorder sort (same as increasing RPO)
1981 void ciTypeFlow::add_to_work_list(ciTypeFlow::Block* block) {
1982   assert(!block->is_on_work_list(), "must not already be on work list");
1983 
1984   if (CITraceTypeFlow) {
1985     tty->print(">> Adding block ");
1986     block->print_value_on(tty);
1987     tty->print_cr(" to the work list : ");
1988   }
1989 
1990   block->set_on_work_list(true);
1991 
1992   // decreasing post order sort
1993 
1994   Block* prev = NULL;
1995   Block* current = _work_list;
1996   int po = block->post_order();
1997   while (current != NULL) {
1998     if (!current->has_post_order() || po > current->post_order())
1999       break;
2000     prev = current;
2001     current = current->next();
2002   }
2003   if (prev == NULL) {
2004     block->set_next(_work_list);
2005     _work_list = block;
2006   } else {
2007     block->set_next(current);
2008     prev->set_next(block);
2009   }
2010 
2011   if (CITraceTypeFlow) {
2012     tty->cr();
2013   }
2014 }
2015 
2016 // ------------------------------------------------------------------
2017 // ciTypeFlow::block_at
2018 //
2019 // Return the block beginning at bci which has a JsrSet compatible
2020 // with jsrs.
2021 ciTypeFlow::Block* ciTypeFlow::block_at(int bci, ciTypeFlow::JsrSet* jsrs, CreateOption option) {
2022   // First find the right ciBlock.
2023   if (CITraceTypeFlow) {
2024     tty->print(">> Requesting block for %d/", bci);
2025     jsrs->print_on(tty);
2026     tty->cr();
2027   }
2028 
2029   ciBlock* ciblk = _methodBlocks->block_containing(bci);
2030   assert(ciblk->start_bci() == bci, "bad ciBlock boundaries");
2031   Block* block = get_block_for(ciblk->index(), jsrs, option);
2032 
2033   assert(block == NULL? (option == no_create): block->is_backedge_copy() == (option == create_backedge_copy), "create option consistent with result");
2034 
2035   if (CITraceTypeFlow) {
2036     if (block != NULL) {
2037       tty->print(">> Found block ");
2038       block->print_value_on(tty);
2039       tty->cr();
2040     } else {
2041       tty->print_cr(">> No such block.");
2042     }
2043   }
2044 
2045   return block;
2046 }
2047 
2048 // ------------------------------------------------------------------
2049 // ciTypeFlow::make_jsr_record
2050 //
2051 // Make a JsrRecord for a given (entry, return) pair, if such a record
2052 // does not already exist.
2053 ciTypeFlow::JsrRecord* ciTypeFlow::make_jsr_record(int entry_address,
2054                                                    int return_address) {
2055   if (_jsr_records == NULL) {
2056     _jsr_records = new (arena()) GrowableArray<JsrRecord*>(arena(),
2057                                                            _jsr_count,
2058                                                            0,
2059                                                            NULL);
2060   }
2061   JsrRecord* record = NULL;
2062   int len = _jsr_records->length();
2063   for (int i = 0; i < len; i++) {
2064     JsrRecord* record = _jsr_records->at(i);
2065     if (record->entry_address() == entry_address &&
2066         record->return_address() == return_address) {
2067       return record;
2068     }
2069   }
2070 
2071   record = new (arena()) JsrRecord(entry_address, return_address);
2072   _jsr_records->append(record);
2073   return record;
2074 }
2075 
2076 // ------------------------------------------------------------------
2077 // ciTypeFlow::flow_exceptions
2078 //
2079 // Merge the current state into all exceptional successors at the
2080 // current point in the code.
2081 void ciTypeFlow::flow_exceptions(GrowableArray<ciTypeFlow::Block*>* exceptions,
2082                                  GrowableArray<ciInstanceKlass*>* exc_klasses,
2083                                  ciTypeFlow::StateVector* state) {
2084   int len = exceptions->length();
2085   assert(exc_klasses->length() == len, "must have same length");
2086   for (int i = 0; i < len; i++) {
2087     Block* block = exceptions->at(i);
2088     ciInstanceKlass* exception_klass = exc_klasses->at(i);
2089 
2090     if (!exception_klass->is_loaded()) {
2091       // Do not compile any code for unloaded exception types.
2092       // Following compiler passes are responsible for doing this also.
2093       continue;
2094     }
2095 
2096     if (block->meet_exception(exception_klass, state)) {
2097       // Block was modified and has PO.  Add it to the work list.
2098       if (block->has_post_order() &&
2099           !block->is_on_work_list()) {
2100         add_to_work_list(block);
2101       }
2102     }
2103   }
2104 }
2105 
2106 // ------------------------------------------------------------------
2107 // ciTypeFlow::flow_successors
2108 //
2109 // Merge the current state into all successors at the current point
2110 // in the code.
2111 void ciTypeFlow::flow_successors(GrowableArray<ciTypeFlow::Block*>* successors,
2112                                  ciTypeFlow::StateVector* state) {
2113   int len = successors->length();
2114   for (int i = 0; i < len; i++) {
2115     Block* block = successors->at(i);
2116     if (block->meet(state)) {
2117       // Block was modified and has PO.  Add it to the work list.
2118       if (block->has_post_order() &&
2119           !block->is_on_work_list()) {
2120         add_to_work_list(block);
2121       }
2122     }
2123   }
2124 }
2125 
2126 // ------------------------------------------------------------------
2127 // ciTypeFlow::can_trap
2128 //
2129 // Tells if a given instruction is able to generate an exception edge.
2130 bool ciTypeFlow::can_trap(ciBytecodeStream& str) {
2131   // Cf. GenerateOopMap::do_exception_edge.
2132   if (!Bytecodes::can_trap(str.cur_bc()))  return false;
2133 
2134   switch (str.cur_bc()) {
2135     case Bytecodes::_ldc:
2136     case Bytecodes::_ldc_w:
2137     case Bytecodes::_ldc2_w:
2138     case Bytecodes::_aload_0:
2139       // These bytecodes can trap for rewriting.  We need to assume that
2140       // they do not throw exceptions to make the monitor analysis work.
2141       return false;
2142 
2143     case Bytecodes::_ireturn:
2144     case Bytecodes::_lreturn:
2145     case Bytecodes::_freturn:
2146     case Bytecodes::_dreturn:
2147     case Bytecodes::_areturn:
2148     case Bytecodes::_return:
2149       // We can assume the monitor stack is empty in this analysis.
2150       return false;
2151 
2152     case Bytecodes::_monitorexit:
2153       // We can assume monitors are matched in this analysis.
2154       return false;
2155   }
2156 
2157   return true;
2158 }
2159 
2160 // ------------------------------------------------------------------
2161 // ciTypeFlow::clone_loop_heads
2162 //
2163 // Clone the loop heads
2164 bool ciTypeFlow::clone_loop_heads(Loop* lp, StateVector* temp_vector, JsrSet* temp_set) {
2165   bool rslt = false;
2166   for (PreorderLoops iter(loop_tree_root()); !iter.done(); iter.next()) {
2167     lp = iter.current();
2168     Block* head = lp->head();
2169     if (lp == loop_tree_root() ||
2170         lp->is_irreducible() ||
2171         !head->is_clonable_exit(lp))
2172       continue;
2173 
2174     // check not already cloned
2175     if (head->backedge_copy_count() != 0)
2176       continue;
2177 
2178     // check _no_ shared head below us
2179     Loop* ch;
2180     for (ch = lp->child(); ch != NULL && ch->head() != head; ch = ch->sibling());
2181     if (ch != NULL)
2182       continue;
2183 
2184     // Clone head
2185     Block* new_head = head->looping_succ(lp);
2186     Block* clone = clone_loop_head(lp, temp_vector, temp_set);
2187     // Update lp's info
2188     clone->set_loop(lp);
2189     lp->set_head(new_head);
2190     lp->set_tail(clone);
2191     // And move original head into outer loop
2192     head->set_loop(lp->parent());
2193 
2194     rslt = true;
2195   }
2196   return rslt;
2197 }
2198 
2199 // ------------------------------------------------------------------
2200 // ciTypeFlow::clone_loop_head
2201 //
2202 // Clone lp's head and replace tail's successors with clone.
2203 //
2204 //  |
2205 //  v
2206 // head <-> body
2207 //  |
2208 //  v
2209 // exit
2210 //
2211 // new_head
2212 //
2213 //  |
2214 //  v
2215 // head ----------\
2216 //  |             |
2217 //  |             v
2218 //  |  clone <-> body
2219 //  |    |
2220 //  | /--/
2221 //  | |
2222 //  v v
2223 // exit
2224 //
2225 ciTypeFlow::Block* ciTypeFlow::clone_loop_head(Loop* lp, StateVector* temp_vector, JsrSet* temp_set) {
2226   Block* head = lp->head();
2227   Block* tail = lp->tail();
2228   if (CITraceTypeFlow) {
2229     tty->print(">> Requesting clone of loop head "); head->print_value_on(tty);
2230     tty->print("  for predecessor ");                tail->print_value_on(tty);
2231     tty->cr();
2232   }
2233   Block* clone = block_at(head->start(), head->jsrs(), create_backedge_copy);
2234   assert(clone->backedge_copy_count() == 1, "one backedge copy for all back edges");
2235 
2236   assert(!clone->has_pre_order(), "just created");
2237   clone->set_next_pre_order();
2238 
2239   // Insert clone after (orig) tail in reverse post order
2240   clone->set_rpo_next(tail->rpo_next());
2241   tail->set_rpo_next(clone);
2242 
2243   // tail->head becomes tail->clone
2244   for (SuccIter iter(tail); !iter.done(); iter.next()) {
2245     if (iter.succ() == head) {
2246       iter.set_succ(clone);
2247     }
2248   }
2249   flow_block(tail, temp_vector, temp_set);
2250   if (head == tail) {
2251     // For self-loops, clone->head becomes clone->clone
2252     flow_block(clone, temp_vector, temp_set);
2253     for (SuccIter iter(clone); !iter.done(); iter.next()) {
2254       if (iter.succ() == head) {
2255         iter.set_succ(clone);
2256         break;
2257       }
2258     }
2259   }
2260   flow_block(clone, temp_vector, temp_set);
2261 
2262   return clone;
2263 }
2264 
2265 // ------------------------------------------------------------------
2266 // ciTypeFlow::flow_block
2267 //
2268 // Interpret the effects of the bytecodes on the incoming state
2269 // vector of a basic block.  Push the changed state to succeeding
2270 // basic blocks.
2271 void ciTypeFlow::flow_block(ciTypeFlow::Block* block,
2272                             ciTypeFlow::StateVector* state,
2273                             ciTypeFlow::JsrSet* jsrs) {
2274   if (CITraceTypeFlow) {
2275     tty->print("\n>> ANALYZING BLOCK : ");
2276     tty->cr();
2277     block->print_on(tty);
2278   }
2279   assert(block->has_pre_order(), "pre-order is assigned before 1st flow");
2280 
2281   int start = block->start();
2282   int limit = block->limit();
2283   int control = block->control();
2284   if (control != ciBlock::fall_through_bci) {
2285     limit = control;
2286   }
2287 
2288   // Grab the state from the current block.
2289   block->copy_state_into(state);
2290   state->def_locals()->clear();
2291 
2292   GrowableArray<Block*>*           exceptions = block->exceptions();
2293   GrowableArray<ciInstanceKlass*>* exc_klasses = block->exc_klasses();
2294   bool has_exceptions = exceptions->length() > 0;
2295 
2296   bool exceptions_used = false;
2297 
2298   ciBytecodeStream str(method());
2299   str.reset_to_bci(start);
2300   Bytecodes::Code code;
2301   while ((code = str.next()) != ciBytecodeStream::EOBC() &&
2302          str.cur_bci() < limit) {
2303     // Check for exceptional control flow from this point.
2304     if (has_exceptions && can_trap(str)) {
2305       flow_exceptions(exceptions, exc_klasses, state);
2306       exceptions_used = true;
2307     }
2308     // Apply the effects of the current bytecode to our state.
2309     bool res = state->apply_one_bytecode(&str);
2310 
2311     // Watch for bailouts.
2312     if (failing())  return;
2313 
2314     if (res) {
2315 
2316       // We have encountered a trap.  Record it in this block.
2317       block->set_trap(state->trap_bci(), state->trap_index());
2318 
2319       if (CITraceTypeFlow) {
2320         tty->print_cr(">> Found trap");
2321         block->print_on(tty);
2322       }
2323 
2324       // Save set of locals defined in this block
2325       block->def_locals()->add(state->def_locals());
2326 
2327       // Record (no) successors.
2328       block->successors(&str, state, jsrs);
2329 
2330       assert(!has_exceptions || exceptions_used, "Not removing exceptions");
2331 
2332       // Discontinue interpretation of this Block.
2333       return;
2334     }
2335   }
2336 
2337   GrowableArray<Block*>* successors = NULL;
2338   if (control != ciBlock::fall_through_bci) {
2339     // Check for exceptional control flow from this point.
2340     if (has_exceptions && can_trap(str)) {
2341       flow_exceptions(exceptions, exc_klasses, state);
2342       exceptions_used = true;
2343     }
2344 
2345     // Fix the JsrSet to reflect effect of the bytecode.
2346     block->copy_jsrs_into(jsrs);
2347     jsrs->apply_control(this, &str, state);
2348 
2349     // Find successor edges based on old state and new JsrSet.
2350     successors = block->successors(&str, state, jsrs);
2351 
2352     // Apply the control changes to the state.
2353     state->apply_one_bytecode(&str);
2354   } else {
2355     // Fall through control
2356     successors = block->successors(&str, NULL, NULL);
2357   }
2358 
2359   // Save set of locals defined in this block
2360   block->def_locals()->add(state->def_locals());
2361 
2362   // Remove untaken exception paths
2363   if (!exceptions_used)
2364     exceptions->clear();
2365 
2366   // Pass our state to successors.
2367   flow_successors(successors, state);
2368 }
2369 
2370 // ------------------------------------------------------------------
2371 // ciTypeFlow::PostOrderLoops::next
2372 //
2373 // Advance to next loop tree using a postorder, left-to-right traversal.
2374 void ciTypeFlow::PostorderLoops::next() {
2375   assert(!done(), "must not be done.");
2376   if (_current->sibling() != NULL) {
2377     _current = _current->sibling();
2378     while (_current->child() != NULL) {
2379       _current = _current->child();
2380     }
2381   } else {
2382     _current = _current->parent();
2383   }
2384 }
2385 
2386 // ------------------------------------------------------------------
2387 // ciTypeFlow::PreOrderLoops::next
2388 //
2389 // Advance to next loop tree using a preorder, left-to-right traversal.
2390 void ciTypeFlow::PreorderLoops::next() {
2391   assert(!done(), "must not be done.");
2392   if (_current->child() != NULL) {
2393     _current = _current->child();
2394   } else if (_current->sibling() != NULL) {
2395     _current = _current->sibling();
2396   } else {
2397     while (_current != _root && _current->sibling() == NULL) {
2398       _current = _current->parent();
2399     }
2400     if (_current == _root) {
2401       _current = NULL;
2402       assert(done(), "must be done.");
2403     } else {
2404       assert(_current->sibling() != NULL, "must be more to do");
2405       _current = _current->sibling();
2406     }
2407   }
2408 }
2409 
2410 // ------------------------------------------------------------------
2411 // ciTypeFlow::Loop::sorted_merge
2412 //
2413 // Merge the branch lp into this branch, sorting on the loop head
2414 // pre_orders. Returns the leaf of the merged branch.
2415 // Child and sibling pointers will be setup later.
2416 // Sort is (looking from leaf towards the root)
2417 //  descending on primary key: loop head's pre_order, and
2418 //  ascending  on secondary key: loop tail's pre_order.
2419 ciTypeFlow::Loop* ciTypeFlow::Loop::sorted_merge(Loop* lp) {
2420   Loop* leaf = this;
2421   Loop* prev = NULL;
2422   Loop* current = leaf;
2423   while (lp != NULL) {
2424     int lp_pre_order = lp->head()->pre_order();
2425     // Find insertion point for "lp"
2426     while (current != NULL) {
2427       if (current == lp)
2428         return leaf; // Already in list
2429       if (current->head()->pre_order() < lp_pre_order)
2430         break;
2431       if (current->head()->pre_order() == lp_pre_order &&
2432           current->tail()->pre_order() > lp->tail()->pre_order()) {
2433         break;
2434       }
2435       prev = current;
2436       current = current->parent();
2437     }
2438     Loop* next_lp = lp->parent(); // Save future list of items to insert
2439     // Insert lp before current
2440     lp->set_parent(current);
2441     if (prev != NULL) {
2442       prev->set_parent(lp);
2443     } else {
2444       leaf = lp;
2445     }
2446     prev = lp;     // Inserted item is new prev[ious]
2447     lp = next_lp;  // Next item to insert
2448   }
2449   return leaf;
2450 }
2451 
2452 // ------------------------------------------------------------------
2453 // ciTypeFlow::build_loop_tree
2454 //
2455 // Incrementally build loop tree.
2456 void ciTypeFlow::build_loop_tree(Block* blk) {
2457   assert(!blk->is_post_visited(), "precondition");
2458   Loop* innermost = NULL; // merge of loop tree branches over all successors
2459 
2460   for (SuccIter iter(blk); !iter.done(); iter.next()) {
2461     Loop*  lp   = NULL;
2462     Block* succ = iter.succ();
2463     if (!succ->is_post_visited()) {
2464       // Found backedge since predecessor post visited, but successor is not
2465       assert(succ->pre_order() <= blk->pre_order(), "should be backedge");
2466 
2467       // Create a LoopNode to mark this loop.
2468       lp = new (arena()) Loop(succ, blk);
2469       if (succ->loop() == NULL)
2470         succ->set_loop(lp);
2471       // succ->loop will be updated to innermost loop on a later call, when blk==succ
2472 
2473     } else {  // Nested loop
2474       lp = succ->loop();
2475 
2476       // If succ is loop head, find outer loop.
2477       while (lp != NULL && lp->head() == succ) {
2478         lp = lp->parent();
2479       }
2480       if (lp == NULL) {
2481         // Infinite loop, it's parent is the root
2482         lp = loop_tree_root();
2483       }
2484     }
2485 
2486     // Check for irreducible loop.
2487     // Successor has already been visited. If the successor's loop head
2488     // has already been post-visited, then this is another entry into the loop.
2489     while (lp->head()->is_post_visited() && lp != loop_tree_root()) {
2490       _has_irreducible_entry = true;
2491       lp->set_irreducible(succ);
2492       if (!succ->is_on_work_list()) {
2493         // Assume irreducible entries need more data flow
2494         add_to_work_list(succ);
2495       }
2496       Loop* plp = lp->parent();
2497       if (plp == NULL) {
2498         // This only happens for some irreducible cases.  The parent
2499         // will be updated during a later pass.
2500         break;
2501       }
2502       lp = plp;
2503     }
2504 
2505     // Merge loop tree branch for all successors.
2506     innermost = innermost == NULL ? lp : innermost->sorted_merge(lp);
2507 
2508   } // end loop
2509 
2510   if (innermost == NULL) {
2511     assert(blk->successors()->length() == 0, "CFG exit");
2512     blk->set_loop(loop_tree_root());
2513   } else if (innermost->head() == blk) {
2514     // If loop header, complete the tree pointers
2515     if (blk->loop() != innermost) {
2516 #if ASSERT
2517       assert(blk->loop()->head() == innermost->head(), "same head");
2518       Loop* dl;
2519       for (dl = innermost; dl != NULL && dl != blk->loop(); dl = dl->parent());
2520       assert(dl == blk->loop(), "blk->loop() already in innermost list");
2521 #endif
2522       blk->set_loop(innermost);
2523     }
2524     innermost->def_locals()->add(blk->def_locals());
2525     Loop* l = innermost;
2526     Loop* p = l->parent();
2527     while (p && l->head() == blk) {
2528       l->set_sibling(p->child());  // Put self on parents 'next child'
2529       p->set_child(l);             // Make self the first child of parent
2530       p->def_locals()->add(l->def_locals());
2531       l = p;                       // Walk up the parent chain
2532       p = l->parent();
2533     }
2534   } else {
2535     blk->set_loop(innermost);
2536     innermost->def_locals()->add(blk->def_locals());
2537   }
2538 }
2539 
2540 // ------------------------------------------------------------------
2541 // ciTypeFlow::Loop::contains
2542 //
2543 // Returns true if lp is nested loop.
2544 bool ciTypeFlow::Loop::contains(ciTypeFlow::Loop* lp) const {
2545   assert(lp != NULL, "");
2546   if (this == lp || head() == lp->head()) return true;
2547   int depth1 = depth();
2548   int depth2 = lp->depth();
2549   if (depth1 > depth2)
2550     return false;
2551   while (depth1 < depth2) {
2552     depth2--;
2553     lp = lp->parent();
2554   }
2555   return this == lp;
2556 }
2557 
2558 // ------------------------------------------------------------------
2559 // ciTypeFlow::Loop::depth
2560 //
2561 // Loop depth
2562 int ciTypeFlow::Loop::depth() const {
2563   int dp = 0;
2564   for (Loop* lp = this->parent(); lp != NULL; lp = lp->parent())
2565     dp++;
2566   return dp;
2567 }
2568 
2569 #ifndef PRODUCT
2570 // ------------------------------------------------------------------
2571 // ciTypeFlow::Loop::print
2572 void ciTypeFlow::Loop::print(outputStream* st, int indent) const {
2573   for (int i = 0; i < indent; i++) st->print(" ");
2574   st->print("%d<-%d %s",
2575             is_root() ? 0 : this->head()->pre_order(),
2576             is_root() ? 0 : this->tail()->pre_order(),
2577             is_irreducible()?" irr":"");
2578   st->print(" defs: ");
2579   def_locals()->print_on(st, _head->outer()->method()->max_locals());
2580   st->cr();
2581   for (Loop* ch = child(); ch != NULL; ch = ch->sibling())
2582     ch->print(st, indent+2);
2583 }
2584 #endif
2585 
2586 // ------------------------------------------------------------------
2587 // ciTypeFlow::df_flow_types
2588 //
2589 // Perform the depth first type flow analysis. Helper for flow_types.
2590 void ciTypeFlow::df_flow_types(Block* start,
2591                                bool do_flow,
2592                                StateVector* temp_vector,
2593                                JsrSet* temp_set) {
2594   int dft_len = 100;
2595   GrowableArray<Block*> stk(arena(), dft_len, 0, NULL);
2596 
2597   ciBlock* dummy = _methodBlocks->make_dummy_block();
2598   JsrSet* root_set = new JsrSet(NULL, 0);
2599   Block* root_head = new (arena()) Block(this, dummy, root_set);
2600   Block* root_tail = new (arena()) Block(this, dummy, root_set);
2601   root_head->set_pre_order(0);
2602   root_head->set_post_order(0);
2603   root_tail->set_pre_order(max_jint);
2604   root_tail->set_post_order(max_jint);
2605   set_loop_tree_root(new (arena()) Loop(root_head, root_tail));
2606 
2607   stk.push(start);
2608 
2609   _next_pre_order = 0;  // initialize pre_order counter
2610   _rpo_list = NULL;
2611   int next_po = 0;      // initialize post_order counter
2612 
2613   // Compute RPO and the control flow graph
2614   int size;
2615   while ((size = stk.length()) > 0) {
2616     Block* blk = stk.top(); // Leave node on stack
2617     if (!blk->is_visited()) {
2618       // forward arc in graph
2619       assert (!blk->has_pre_order(), "");
2620       blk->set_next_pre_order();
2621 
2622       if (_next_pre_order >= MaxNodeLimit / 2) {
2623         // Too many basic blocks.  Bail out.
2624         // This can happen when try/finally constructs are nested to depth N,
2625         // and there is O(2**N) cloning of jsr bodies.  See bug 4697245!
2626         // "MaxNodeLimit / 2" is used because probably the parser will
2627         // generate at least twice that many nodes and bail out.
2628         record_failure("too many basic blocks");
2629         return;
2630       }
2631       if (do_flow) {
2632         flow_block(blk, temp_vector, temp_set);
2633         if (failing()) return; // Watch for bailouts.
2634       }
2635     } else if (!blk->is_post_visited()) {
2636       // cross or back arc
2637       for (SuccIter iter(blk); !iter.done(); iter.next()) {
2638         Block* succ = iter.succ();
2639         if (!succ->is_visited()) {
2640           stk.push(succ);
2641         }
2642       }
2643       if (stk.length() == size) {
2644         // There were no additional children, post visit node now
2645         stk.pop(); // Remove node from stack
2646 
2647         build_loop_tree(blk);
2648         blk->set_post_order(next_po++);   // Assign post order
2649         prepend_to_rpo_list(blk);
2650         assert(blk->is_post_visited(), "");
2651 
2652         if (blk->is_loop_head() && !blk->is_on_work_list()) {
2653           // Assume loop heads need more data flow
2654           add_to_work_list(blk);
2655         }
2656       }
2657     } else {
2658       stk.pop(); // Remove post-visited node from stack
2659     }
2660   }
2661 }
2662 
2663 // ------------------------------------------------------------------
2664 // ciTypeFlow::flow_types
2665 //
2666 // Perform the type flow analysis, creating and cloning Blocks as
2667 // necessary.
2668 void ciTypeFlow::flow_types() {
2669   ResourceMark rm;
2670   StateVector* temp_vector = new StateVector(this);
2671   JsrSet* temp_set = new JsrSet(NULL, 16);
2672 
2673   // Create the method entry block.
2674   Block* start = block_at(start_bci(), temp_set);
2675 
2676   // Load the initial state into it.
2677   const StateVector* start_state = get_start_state();
2678   if (failing())  return;
2679   start->meet(start_state);
2680 
2681   // Depth first visit
2682   df_flow_types(start, true /*do flow*/, temp_vector, temp_set);
2683 
2684   if (failing())  return;
2685   assert(_rpo_list == start, "must be start");
2686 
2687   // Any loops found?
2688   if (loop_tree_root()->child() != NULL &&
2689       env()->comp_level() >= CompLevel_full_optimization) {
2690       // Loop optimizations are not performed on Tier1 compiles.
2691 
2692     bool changed = clone_loop_heads(loop_tree_root(), temp_vector, temp_set);
2693 
2694     // If some loop heads were cloned, recompute postorder and loop tree
2695     if (changed) {
2696       loop_tree_root()->set_child(NULL);
2697       for (Block* blk = _rpo_list; blk != NULL;) {
2698         Block* next = blk->rpo_next();
2699         blk->df_init();
2700         blk = next;
2701       }
2702       df_flow_types(start, false /*no flow*/, temp_vector, temp_set);
2703     }
2704   }
2705 
2706   if (CITraceTypeFlow) {
2707     tty->print_cr("\nLoop tree");
2708     loop_tree_root()->print();
2709   }
2710 
2711   // Continue flow analysis until fixed point reached
2712 
2713   debug_only(int max_block = _next_pre_order;)
2714 
2715   while (!work_list_empty()) {
2716     Block* blk = work_list_next();
2717     assert (blk->has_post_order(), "post order assigned above");
2718 
2719     flow_block(blk, temp_vector, temp_set);
2720 
2721     assert (max_block == _next_pre_order, "no new blocks");
2722     assert (!failing(), "no more bailouts");
2723   }
2724 }
2725 
2726 // ------------------------------------------------------------------
2727 // ciTypeFlow::map_blocks
2728 //
2729 // Create the block map, which indexes blocks in reverse post-order.
2730 void ciTypeFlow::map_blocks() {
2731   assert(_block_map == NULL, "single initialization");
2732   int block_ct = _next_pre_order;
2733   _block_map = NEW_ARENA_ARRAY(arena(), Block*, block_ct);
2734   assert(block_ct == block_count(), "");
2735 
2736   Block* blk = _rpo_list;
2737   for (int m = 0; m < block_ct; m++) {
2738     int rpo = blk->rpo();
2739     assert(rpo == m, "should be sequential");
2740     _block_map[rpo] = blk;
2741     blk = blk->rpo_next();
2742   }
2743   assert(blk == NULL, "should be done");
2744 
2745   for (int j = 0; j < block_ct; j++) {
2746     assert(_block_map[j] != NULL, "must not drop any blocks");
2747     Block* block = _block_map[j];
2748     // Remove dead blocks from successor lists:
2749     for (int e = 0; e <= 1; e++) {
2750       GrowableArray<Block*>* l = e? block->exceptions(): block->successors();
2751       for (int k = 0; k < l->length(); k++) {
2752         Block* s = l->at(k);
2753         if (!s->has_post_order()) {
2754           if (CITraceTypeFlow) {
2755             tty->print("Removing dead %s successor of #%d: ", (e? "exceptional":  "normal"), block->pre_order());
2756             s->print_value_on(tty);
2757             tty->cr();
2758           }
2759           l->remove(s);
2760           --k;
2761         }
2762       }
2763     }
2764   }
2765 }
2766 
2767 // ------------------------------------------------------------------
2768 // ciTypeFlow::get_block_for
2769 //
2770 // Find a block with this ciBlock which has a compatible JsrSet.
2771 // If no such block exists, create it, unless the option is no_create.
2772 // If the option is create_backedge_copy, always create a fresh backedge copy.
2773 ciTypeFlow::Block* ciTypeFlow::get_block_for(int ciBlockIndex, ciTypeFlow::JsrSet* jsrs, CreateOption option) {
2774   Arena* a = arena();
2775   GrowableArray<Block*>* blocks = _idx_to_blocklist[ciBlockIndex];
2776   if (blocks == NULL) {
2777     // Query only?
2778     if (option == no_create)  return NULL;
2779 
2780     // Allocate the growable array.
2781     blocks = new (a) GrowableArray<Block*>(a, 4, 0, NULL);
2782     _idx_to_blocklist[ciBlockIndex] = blocks;
2783   }
2784 
2785   if (option != create_backedge_copy) {
2786     int len = blocks->length();
2787     for (int i = 0; i < len; i++) {
2788       Block* block = blocks->at(i);
2789       if (!block->is_backedge_copy() && block->is_compatible_with(jsrs)) {
2790         return block;
2791       }
2792     }
2793   }
2794 
2795   // Query only?
2796   if (option == no_create)  return NULL;
2797 
2798   // We did not find a compatible block.  Create one.
2799   Block* new_block = new (a) Block(this, _methodBlocks->block(ciBlockIndex), jsrs);
2800   if (option == create_backedge_copy)  new_block->set_backedge_copy(true);
2801   blocks->append(new_block);
2802   return new_block;
2803 }
2804 
2805 // ------------------------------------------------------------------
2806 // ciTypeFlow::backedge_copy_count
2807 //
2808 int ciTypeFlow::backedge_copy_count(int ciBlockIndex, ciTypeFlow::JsrSet* jsrs) const {
2809   GrowableArray<Block*>* blocks = _idx_to_blocklist[ciBlockIndex];
2810 
2811   if (blocks == NULL) {
2812     return 0;
2813   }
2814 
2815   int count = 0;
2816   int len = blocks->length();
2817   for (int i = 0; i < len; i++) {
2818     Block* block = blocks->at(i);
2819     if (block->is_backedge_copy() && block->is_compatible_with(jsrs)) {
2820       count++;
2821     }
2822   }
2823 
2824   return count;
2825 }
2826 
2827 // ------------------------------------------------------------------
2828 // ciTypeFlow::do_flow
2829 //
2830 // Perform type inference flow analysis.
2831 void ciTypeFlow::do_flow() {
2832   if (CITraceTypeFlow) {
2833     tty->print_cr("\nPerforming flow analysis on method");
2834     method()->print();
2835     if (is_osr_flow())  tty->print(" at OSR bci %d", start_bci());
2836     tty->cr();
2837     method()->print_codes();
2838   }
2839   if (CITraceTypeFlow) {
2840     tty->print_cr("Initial CI Blocks");
2841     print_on(tty);
2842   }
2843   flow_types();
2844   // Watch for bailouts.
2845   if (failing()) {
2846     return;
2847   }
2848 
2849   map_blocks();
2850 
2851   if (CIPrintTypeFlow || CITraceTypeFlow) {
2852     rpo_print_on(tty);
2853   }
2854 }
2855 
2856 // ------------------------------------------------------------------
2857 // ciTypeFlow::record_failure()
2858 // The ciTypeFlow object keeps track of failure reasons separately from the ciEnv.
2859 // This is required because there is not a 1-1 relation between the ciEnv and
2860 // the TypeFlow passes within a compilation task.  For example, if the compiler
2861 // is considering inlining a method, it will request a TypeFlow.  If that fails,
2862 // the compilation as a whole may continue without the inlining.  Some TypeFlow
2863 // requests are not optional; if they fail the requestor is responsible for
2864 // copying the failure reason up to the ciEnv.  (See Parse::Parse.)
2865 void ciTypeFlow::record_failure(const char* reason) {
2866   if (env()->log() != NULL) {
2867     env()->log()->elem("failure reason='%s' phase='typeflow'", reason);
2868   }
2869   if (_failure_reason == NULL) {
2870     // Record the first failure reason.
2871     _failure_reason = reason;
2872   }
2873 }
2874 
2875 #ifndef PRODUCT
2876 // ------------------------------------------------------------------
2877 // ciTypeFlow::print_on
2878 void ciTypeFlow::print_on(outputStream* st) const {
2879   // Walk through CI blocks
2880   st->print_cr("********************************************************");
2881   st->print   ("TypeFlow for ");
2882   method()->name()->print_symbol_on(st);
2883   int limit_bci = code_size();
2884   st->print_cr("  %d bytes", limit_bci);
2885   ciMethodBlocks  *mblks = _methodBlocks;
2886   ciBlock* current = NULL;
2887   for (int bci = 0; bci < limit_bci; bci++) {
2888     ciBlock* blk = mblks->block_containing(bci);
2889     if (blk != NULL && blk != current) {
2890       current = blk;
2891       current->print_on(st);
2892 
2893       GrowableArray<Block*>* blocks = _idx_to_blocklist[blk->index()];
2894       int num_blocks = (blocks == NULL) ? 0 : blocks->length();
2895 
2896       if (num_blocks == 0) {
2897         st->print_cr("  No Blocks");
2898       } else {
2899         for (int i = 0; i < num_blocks; i++) {
2900           Block* block = blocks->at(i);
2901           block->print_on(st);
2902         }
2903       }
2904       st->print_cr("--------------------------------------------------------");
2905       st->cr();
2906     }
2907   }
2908   st->print_cr("********************************************************");
2909   st->cr();
2910 }
2911 
2912 void ciTypeFlow::rpo_print_on(outputStream* st) const {
2913   st->print_cr("********************************************************");
2914   st->print   ("TypeFlow for ");
2915   method()->name()->print_symbol_on(st);
2916   int limit_bci = code_size();
2917   st->print_cr("  %d bytes", limit_bci);
2918   for (Block* blk = _rpo_list; blk != NULL; blk = blk->rpo_next()) {
2919     blk->print_on(st);
2920     st->print_cr("--------------------------------------------------------");
2921     st->cr();
2922   }
2923   st->print_cr("********************************************************");
2924   st->cr();
2925 }
2926 #endif