1 /*
   2  * Copyright 2003-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_interp_masm_x86_64.cpp.incl"
  27 
  28 
  29 // Implementation of InterpreterMacroAssembler
  30 
  31 #ifdef CC_INTERP
  32 void InterpreterMacroAssembler::get_method(Register reg) {
  33   movptr(reg, Address(rbp, -((int)sizeof(BytecodeInterpreter) + 2 * wordSize)));
  34   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
  35 }
  36 #endif // CC_INTERP
  37 
  38 #ifndef CC_INTERP
  39 
  40 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
  41                                                   int number_of_arguments) {
  42   // interpreter specific
  43   //
  44   // Note: No need to save/restore bcp & locals (r13 & r14) pointer
  45   //       since these are callee saved registers and no blocking/
  46   //       GC can happen in leaf calls.
  47   // Further Note: DO NOT save/restore bcp/locals. If a caller has
  48   // already saved them so that it can use esi/edi as temporaries
  49   // then a save/restore here will DESTROY the copy the caller
  50   // saved! There used to be a save_bcp() that only happened in
  51   // the ASSERT path (no restore_bcp). Which caused bizarre failures
  52   // when jvm built with ASSERTs.
  53 #ifdef ASSERT
  54   {
  55     Label L;
  56     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  57     jcc(Assembler::equal, L);
  58     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
  59          " last_sp != NULL");
  60     bind(L);
  61   }
  62 #endif
  63   // super call
  64   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  65   // interpreter specific
  66   // Used to ASSERT that r13/r14 were equal to frame's bcp/locals
  67   // but since they may not have been saved (and we don't want to
  68   // save thme here (see note above) the assert is invalid.
  69 }
  70 
  71 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
  72                                              Register java_thread,
  73                                              Register last_java_sp,
  74                                              address  entry_point,
  75                                              int      number_of_arguments,
  76                                              bool     check_exceptions) {
  77   // interpreter specific
  78   //
  79   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
  80   //       really make a difference for these runtime calls, since they are
  81   //       slow anyway. Btw., bcp must be saved/restored since it may change
  82   //       due to GC.
  83   // assert(java_thread == noreg , "not expecting a precomputed java thread");
  84   save_bcp();
  85 #ifdef ASSERT
  86   {
  87     Label L;
  88     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  89     jcc(Assembler::equal, L);
  90     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
  91          " last_sp != NULL");
  92     bind(L);
  93   }
  94 #endif /* ASSERT */
  95   // super call
  96   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
  97                                entry_point, number_of_arguments,
  98                                check_exceptions);
  99   // interpreter specific
 100   restore_bcp();
 101   restore_locals();
 102 }
 103 
 104 
 105 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
 106   if (JvmtiExport::can_pop_frame()) {
 107     Label L;
 108     // Initiate popframe handling only if it is not already being
 109     // processed.  If the flag has the popframe_processing bit set, it
 110     // means that this code is called *during* popframe handling - we
 111     // don't want to reenter.
 112     // This method is only called just after the call into the vm in
 113     // call_VM_base, so the arg registers are available.
 114     movl(c_rarg0, Address(r15_thread, JavaThread::popframe_condition_offset()));
 115     testl(c_rarg0, JavaThread::popframe_pending_bit);
 116     jcc(Assembler::zero, L);
 117     testl(c_rarg0, JavaThread::popframe_processing_bit);
 118     jcc(Assembler::notZero, L);
 119     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 120     // address of the same-named entrypoint in the generated interpreter code.
 121     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 122     jmp(rax);
 123     bind(L);
 124   }
 125 }
 126 
 127 
 128 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 129   movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
 130   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
 131   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
 132   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
 133   switch (state) {
 134     case atos: movptr(rax, oop_addr);
 135                movptr(oop_addr, (int32_t)NULL_WORD);
 136                verify_oop(rax, state);              break;
 137     case ltos: movptr(rax, val_addr);                 break;
 138     case btos:                                   // fall through
 139     case ctos:                                   // fall through
 140     case stos:                                   // fall through
 141     case itos: movl(rax, val_addr);                 break;
 142     case ftos: movflt(xmm0, val_addr);              break;
 143     case dtos: movdbl(xmm0, val_addr);              break;
 144     case vtos: /* nothing to do */                  break;
 145     default  : ShouldNotReachHere();
 146   }
 147   // Clean up tos value in the thread object
 148   movl(tos_addr,  (int) ilgl);
 149   movl(val_addr,  (int32_t) NULL_WORD);
 150 }
 151 
 152 
 153 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 154   if (JvmtiExport::can_force_early_return()) {
 155     Label L;
 156     movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
 157     testptr(c_rarg0, c_rarg0);
 158     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
 159 
 160     // Initiate earlyret handling only if it is not already being processed.
 161     // If the flag has the earlyret_processing bit set, it means that this code
 162     // is called *during* earlyret handling - we don't want to reenter.
 163     movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_state_offset()));
 164     cmpl(c_rarg0, JvmtiThreadState::earlyret_pending);
 165     jcc(Assembler::notEqual, L);
 166 
 167     // Call Interpreter::remove_activation_early_entry() to get the address of the
 168     // same-named entrypoint in the generated interpreter code.
 169     movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
 170     movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_tos_offset()));
 171     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), c_rarg0);
 172     jmp(rax);
 173     bind(L);
 174   }
 175 }
 176 
 177 
 178 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
 179   Register reg,
 180   int bcp_offset) {
 181   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 182   movl(reg, Address(r13, bcp_offset));
 183   bswapl(reg);
 184   shrl(reg, 16);
 185 }
 186 
 187 
 188 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 189                                                        int bcp_offset,
 190                                                        bool giant_index) {
 191   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 192   if (!giant_index) {
 193     load_unsigned_short(index, Address(r13, bcp_offset));
 194   } else {
 195     assert(EnableInvokeDynamic, "giant index used only for EnableInvokeDynamic");
 196     movl(index, Address(r13, bcp_offset));
 197     // Check if the secondary index definition is still ~x, otherwise
 198     // we have to change the following assembler code to calculate the
 199     // plain index.
 200     assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
 201     notl(index);  // convert to plain index
 202   }
 203 }
 204 
 205 
 206 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
 207                                                            Register index,
 208                                                            int bcp_offset,
 209                                                            bool giant_index) {
 210   assert(cache != index, "must use different registers");
 211   get_cache_index_at_bcp(index, bcp_offset, giant_index);
 212   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 213   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 214   // convert from field index to ConstantPoolCacheEntry index
 215   shll(index, 2);
 216 }
 217 
 218 
 219 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
 220                                                                Register tmp,
 221                                                                int bcp_offset,
 222                                                                bool giant_index) {
 223   assert(cache != tmp, "must use different register");
 224   get_cache_index_at_bcp(tmp, bcp_offset, giant_index);
 225   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 226   // convert from field index to ConstantPoolCacheEntry index
 227   // and from word offset to byte offset
 228   shll(tmp, 2 + LogBytesPerWord);
 229   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 230   // skip past the header
 231   addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
 232   addptr(cache, tmp);  // construct pointer to cache entry
 233 }
 234 
 235 
 236 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 237 // subtype of super_klass.
 238 //
 239 // Args:
 240 //      rax: superklass
 241 //      Rsub_klass: subklass
 242 //
 243 // Kills:
 244 //      rcx, rdi
 245 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 246                                                   Label& ok_is_subtype) {
 247   assert(Rsub_klass != rax, "rax holds superklass");
 248   assert(Rsub_klass != r14, "r14 holds locals");
 249   assert(Rsub_klass != r13, "r13 holds bcp");
 250   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
 251   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
 252 
 253   // Profile the not-null value's klass.
 254   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
 255 
 256   // Do the check.
 257   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
 258 
 259   // Profile the failure of the check.
 260   profile_typecheck_failed(rcx); // blows rcx
 261 }
 262 
 263 
 264 
 265 // Java Expression Stack
 266 
 267 #ifdef ASSERT
 268 // Verifies that the stack tag matches.  Must be called before the stack
 269 // value is popped off the stack.
 270 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t) {
 271   if (TaggedStackInterpreter) {
 272     frame::Tag tag = t;
 273     if (t == frame::TagCategory2) {
 274       tag = frame::TagValue;
 275       Label hokay;
 276       cmpptr(Address(rsp, 3*wordSize), (int32_t)tag);
 277       jcc(Assembler::equal, hokay);
 278       stop("Java Expression stack tag high value is bad");
 279       bind(hokay);
 280     }
 281     Label okay;
 282     cmpptr(Address(rsp, wordSize), (int32_t)tag);
 283     jcc(Assembler::equal, okay);
 284     // Also compare if the stack value is zero, then the tag might
 285     // not have been set coming from deopt.
 286     cmpptr(Address(rsp, 0), 0);
 287     jcc(Assembler::equal, okay);
 288     stop("Java Expression stack tag value is bad");
 289     bind(okay);
 290   }
 291 }
 292 #endif // ASSERT
 293 
 294 void InterpreterMacroAssembler::pop_ptr(Register r) {
 295   debug_only(verify_stack_tag(frame::TagReference));
 296   pop(r);
 297   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
 298 }
 299 
 300 void InterpreterMacroAssembler::pop_ptr(Register r, Register tag) {
 301   pop(r);
 302   if (TaggedStackInterpreter) pop(tag);
 303 }
 304 
 305 void InterpreterMacroAssembler::pop_i(Register r) {
 306   // XXX can't use pop currently, upper half non clean
 307   debug_only(verify_stack_tag(frame::TagValue));
 308   movl(r, Address(rsp, 0));
 309   addptr(rsp, wordSize);
 310   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
 311 }
 312 
 313 void InterpreterMacroAssembler::pop_l(Register r) {
 314   debug_only(verify_stack_tag(frame::TagCategory2));
 315   movq(r, Address(rsp, 0));
 316   addptr(rsp, 2 * Interpreter::stackElementSize());
 317 }
 318 
 319 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
 320   debug_only(verify_stack_tag(frame::TagValue));
 321   movflt(r, Address(rsp, 0));
 322   addptr(rsp, wordSize);
 323   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
 324 }
 325 
 326 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
 327   debug_only(verify_stack_tag(frame::TagCategory2));
 328   movdbl(r, Address(rsp, 0));
 329   addptr(rsp, 2 * Interpreter::stackElementSize());
 330 }
 331 
 332 void InterpreterMacroAssembler::push_ptr(Register r) {
 333   if (TaggedStackInterpreter) push(frame::TagReference);
 334   push(r);
 335 }
 336 
 337 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
 338   if (TaggedStackInterpreter) push(tag);
 339   push(r);
 340 }
 341 
 342 void InterpreterMacroAssembler::push_i(Register r) {
 343   if (TaggedStackInterpreter) push(frame::TagValue);
 344   push(r);
 345 }
 346 
 347 void InterpreterMacroAssembler::push_l(Register r) {
 348   if (TaggedStackInterpreter) {
 349     push(frame::TagValue);
 350     subptr(rsp, 1 * wordSize);
 351     push(frame::TagValue);
 352     subptr(rsp, 1 * wordSize);
 353   } else {
 354     subptr(rsp, 2 * wordSize);
 355   }
 356   movq(Address(rsp, 0), r);
 357 }
 358 
 359 void InterpreterMacroAssembler::push_f(XMMRegister r) {
 360   if (TaggedStackInterpreter) push(frame::TagValue);
 361   subptr(rsp, wordSize);
 362   movflt(Address(rsp, 0), r);
 363 }
 364 
 365 void InterpreterMacroAssembler::push_d(XMMRegister r) {
 366   if (TaggedStackInterpreter) {
 367     push(frame::TagValue);
 368     subptr(rsp, 1 * wordSize);
 369     push(frame::TagValue);
 370     subptr(rsp, 1 * wordSize);
 371   } else {
 372     subptr(rsp, 2 * wordSize);
 373   }
 374   movdbl(Address(rsp, 0), r);
 375 }
 376 
 377 void InterpreterMacroAssembler::pop(TosState state) {
 378   switch (state) {
 379   case atos: pop_ptr();                 break;
 380   case btos:
 381   case ctos:
 382   case stos:
 383   case itos: pop_i();                   break;
 384   case ltos: pop_l();                   break;
 385   case ftos: pop_f();                   break;
 386   case dtos: pop_d();                   break;
 387   case vtos: /* nothing to do */        break;
 388   default:   ShouldNotReachHere();
 389   }
 390   verify_oop(rax, state);
 391 }
 392 
 393 void InterpreterMacroAssembler::push(TosState state) {
 394   verify_oop(rax, state);
 395   switch (state) {
 396   case atos: push_ptr();                break;
 397   case btos:
 398   case ctos:
 399   case stos:
 400   case itos: push_i();                  break;
 401   case ltos: push_l();                  break;
 402   case ftos: push_f();                  break;
 403   case dtos: push_d();                  break;
 404   case vtos: /* nothing to do */        break;
 405   default  : ShouldNotReachHere();
 406   }
 407 }
 408 
 409 
 410 
 411 
 412 // Tagged stack helpers for swap and dup
 413 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
 414                                                  Register tag) {
 415   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
 416   if (TaggedStackInterpreter) {
 417     movptr(tag, Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)));
 418   }
 419 }
 420 
 421 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
 422                                                   Register tag) {
 423   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
 424   if (TaggedStackInterpreter) {
 425     movptr(Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)), tag);
 426   }
 427 }
 428 
 429 
 430 // Tagged local support
 431 void InterpreterMacroAssembler::tag_local(frame::Tag tag, int n) {
 432   if (TaggedStackInterpreter) {
 433     if (tag == frame::TagCategory2) {
 434       movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)),
 435            (int32_t)frame::TagValue);
 436       movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n)),
 437            (int32_t)frame::TagValue);
 438     } else {
 439       movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (int32_t)tag);
 440     }
 441   }
 442 }
 443 
 444 void InterpreterMacroAssembler::tag_local(frame::Tag tag, Register idx) {
 445   if (TaggedStackInterpreter) {
 446     if (tag == frame::TagCategory2) {
 447       movptr(Address(r14, idx, Address::times_8,
 448                   Interpreter::local_tag_offset_in_bytes(1)), (int32_t)frame::TagValue);
 449       movptr(Address(r14, idx, Address::times_8,
 450                   Interpreter::local_tag_offset_in_bytes(0)), (int32_t)frame::TagValue);
 451     } else {
 452       movptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)),
 453            (int32_t)tag);
 454     }
 455   }
 456 }
 457 
 458 void InterpreterMacroAssembler::tag_local(Register tag, Register idx) {
 459   if (TaggedStackInterpreter) {
 460     // can only be TagValue or TagReference
 461     movptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), tag);
 462   }
 463 }
 464 
 465 
 466 void InterpreterMacroAssembler::tag_local(Register tag, int n) {
 467   if (TaggedStackInterpreter) {
 468     // can only be TagValue or TagReference
 469     movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), tag);
 470   }
 471 }
 472 
 473 #ifdef ASSERT
 474 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, int n) {
 475   if (TaggedStackInterpreter) {
 476      frame::Tag t = tag;
 477     if (tag == frame::TagCategory2) {
 478       Label nbl;
 479       t = frame::TagValue;  // change to what is stored in locals
 480       cmpptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)), (int32_t)t);
 481       jcc(Assembler::equal, nbl);
 482       stop("Local tag is bad for long/double");
 483       bind(nbl);
 484     }
 485     Label notBad;
 486     cmpq(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (int32_t)t);
 487     jcc(Assembler::equal, notBad);
 488     // Also compare if the local value is zero, then the tag might
 489     // not have been set coming from deopt.
 490     cmpptr(Address(r14, Interpreter::local_offset_in_bytes(n)), 0);
 491     jcc(Assembler::equal, notBad);
 492     stop("Local tag is bad");
 493     bind(notBad);
 494   }
 495 }
 496 
 497 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, Register idx) {
 498   if (TaggedStackInterpreter) {
 499     frame::Tag t = tag;
 500     if (tag == frame::TagCategory2) {
 501       Label nbl;
 502       t = frame::TagValue;  // change to what is stored in locals
 503       cmpptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(1)), (int32_t)t);
 504       jcc(Assembler::equal, nbl);
 505       stop("Local tag is bad for long/double");
 506       bind(nbl);
 507     }
 508     Label notBad;
 509     cmpptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), (int32_t)t);
 510     jcc(Assembler::equal, notBad);
 511     // Also compare if the local value is zero, then the tag might
 512     // not have been set coming from deopt.
 513     cmpptr(Address(r14, idx, Address::times_8, Interpreter::local_offset_in_bytes(0)), 0);
 514     jcc(Assembler::equal, notBad);
 515     stop("Local tag is bad");
 516     bind(notBad);
 517   }
 518 }
 519 #endif // ASSERT
 520 
 521 
 522 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) {
 523   MacroAssembler::call_VM_leaf_base(entry_point, 0);
 524 }
 525 
 526 
 527 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
 528                                                    Register arg_1) {
 529   if (c_rarg0 != arg_1) {
 530     mov(c_rarg0, arg_1);
 531   }
 532   MacroAssembler::call_VM_leaf_base(entry_point, 1);
 533 }
 534 
 535 
 536 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
 537                                                    Register arg_1,
 538                                                    Register arg_2) {
 539   assert(c_rarg0 != arg_2, "smashed argument");
 540   assert(c_rarg1 != arg_1, "smashed argument");
 541   if (c_rarg0 != arg_1) {
 542     mov(c_rarg0, arg_1);
 543   }
 544   if (c_rarg1 != arg_2) {
 545     mov(c_rarg1, arg_2);
 546   }
 547   MacroAssembler::call_VM_leaf_base(entry_point, 2);
 548 }
 549 
 550 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
 551                                                    Register arg_1,
 552                                                    Register arg_2,
 553                                                    Register arg_3) {
 554   assert(c_rarg0 != arg_2, "smashed argument");
 555   assert(c_rarg0 != arg_3, "smashed argument");
 556   assert(c_rarg1 != arg_1, "smashed argument");
 557   assert(c_rarg1 != arg_3, "smashed argument");
 558   assert(c_rarg2 != arg_1, "smashed argument");
 559   assert(c_rarg2 != arg_2, "smashed argument");
 560   if (c_rarg0 != arg_1) {
 561     mov(c_rarg0, arg_1);
 562   }
 563   if (c_rarg1 != arg_2) {
 564     mov(c_rarg1, arg_2);
 565   }
 566   if (c_rarg2 != arg_3) {
 567     mov(c_rarg2, arg_3);
 568   }
 569   MacroAssembler::call_VM_leaf_base(entry_point, 3);
 570 }
 571 
 572 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 573   // set sender sp
 574   lea(r13, Address(rsp, wordSize));
 575   // record last_sp
 576   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), r13);
 577 }
 578 
 579 
 580 // Jump to from_interpreted entry of a call unless single stepping is possible
 581 // in this thread in which case we must call the i2i entry
 582 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 583   prepare_to_jump_from_interpreted();
 584 
 585   if (JvmtiExport::can_post_interpreter_events()) {
 586     Label run_compiled_code;
 587     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 588     // compiled code in threads for which the event is enabled.  Check here for
 589     // interp_only_mode if these events CAN be enabled.
 590     get_thread(temp);
 591     // interp_only is an int, on little endian it is sufficient to test the byte only
 592     // Is a cmpl faster (ce
 593     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
 594     jcc(Assembler::zero, run_compiled_code);
 595     jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
 596     bind(run_compiled_code);
 597   }
 598 
 599   jmp(Address(method, methodOopDesc::from_interpreted_offset()));
 600 
 601 }
 602 
 603 
 604 // The following two routines provide a hook so that an implementation
 605 // can schedule the dispatch in two parts.  amd64 does not do this.
 606 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 607   // Nothing amd64 specific to be done here
 608 }
 609 
 610 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 611   dispatch_next(state, step);
 612 }
 613 
 614 void InterpreterMacroAssembler::dispatch_base(TosState state,
 615                                               address* table,
 616                                               bool verifyoop) {
 617   verify_FPU(1, state);
 618   if (VerifyActivationFrameSize) {
 619     Label L;
 620     mov(rcx, rbp);
 621     subptr(rcx, rsp);
 622     int32_t min_frame_size =
 623       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
 624       wordSize;
 625     cmpptr(rcx, (int32_t)min_frame_size);
 626     jcc(Assembler::greaterEqual, L);
 627     stop("broken stack frame");
 628     bind(L);
 629   }
 630   if (verifyoop) {
 631     verify_oop(rax, state);
 632   }
 633   lea(rscratch1, ExternalAddress((address)table));
 634   jmp(Address(rscratch1, rbx, Address::times_8));
 635 }
 636 
 637 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 638   dispatch_base(state, Interpreter::dispatch_table(state));
 639 }
 640 
 641 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 642   dispatch_base(state, Interpreter::normal_table(state));
 643 }
 644 
 645 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 646   dispatch_base(state, Interpreter::normal_table(state), false);
 647 }
 648 
 649 
 650 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
 651   // load next bytecode (load before advancing r13 to prevent AGI)
 652   load_unsigned_byte(rbx, Address(r13, step));
 653   // advance r13
 654   increment(r13, step);
 655   dispatch_base(state, Interpreter::dispatch_table(state));
 656 }
 657 
 658 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 659   // load current bytecode
 660   load_unsigned_byte(rbx, Address(r13, 0));
 661   dispatch_base(state, table);
 662 }
 663 
 664 // remove activation
 665 //
 666 // Unlock the receiver if this is a synchronized method.
 667 // Unlock any Java monitors from syncronized blocks.
 668 // Remove the activation from the stack.
 669 //
 670 // If there are locked Java monitors
 671 //    If throw_monitor_exception
 672 //       throws IllegalMonitorStateException
 673 //    Else if install_monitor_exception
 674 //       installs IllegalMonitorStateException
 675 //    Else
 676 //       no error processing
 677 void InterpreterMacroAssembler::remove_activation(
 678         TosState state,
 679         Register ret_addr,
 680         bool throw_monitor_exception,
 681         bool install_monitor_exception,
 682         bool notify_jvmdi) {
 683   // Note: Registers rdx xmm0 may be in use for the
 684   // result check if synchronized method
 685   Label unlocked, unlock, no_unlock;
 686 
 687   // get the value of _do_not_unlock_if_synchronized into rdx
 688   const Address do_not_unlock_if_synchronized(r15_thread,
 689     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 690   movbool(rdx, do_not_unlock_if_synchronized);
 691   movbool(do_not_unlock_if_synchronized, false); // reset the flag
 692 
 693  // get method access flags
 694   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 695   movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
 696   testl(rcx, JVM_ACC_SYNCHRONIZED);
 697   jcc(Assembler::zero, unlocked);
 698 
 699   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 700   // is set.
 701   testbool(rdx);
 702   jcc(Assembler::notZero, no_unlock);
 703 
 704   // unlock monitor
 705   push(state); // save result
 706 
 707   // BasicObjectLock will be first in list, since this is a
 708   // synchronized method. However, need to check that the object has
 709   // not been unlocked by an explicit monitorexit bytecode.
 710   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
 711                         wordSize - (int) sizeof(BasicObjectLock));
 712   // We use c_rarg1 so that if we go slow path it will be the correct
 713   // register for unlock_object to pass to VM directly
 714   lea(c_rarg1, monitor); // address of first monitor
 715 
 716   movptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
 717   testptr(rax, rax);
 718   jcc(Assembler::notZero, unlock);
 719 
 720   pop(state);
 721   if (throw_monitor_exception) {
 722     // Entry already unlocked, need to throw exception
 723     call_VM(noreg, CAST_FROM_FN_PTR(address,
 724                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 725     should_not_reach_here();
 726   } else {
 727     // Monitor already unlocked during a stack unroll. If requested,
 728     // install an illegal_monitor_state_exception.  Continue with
 729     // stack unrolling.
 730     if (install_monitor_exception) {
 731       call_VM(noreg, CAST_FROM_FN_PTR(address,
 732                      InterpreterRuntime::new_illegal_monitor_state_exception));
 733     }
 734     jmp(unlocked);
 735   }
 736 
 737   bind(unlock);
 738   unlock_object(c_rarg1);
 739   pop(state);
 740 
 741   // Check that for block-structured locking (i.e., that all locked
 742   // objects has been unlocked)
 743   bind(unlocked);
 744 
 745   // rax: Might contain return value
 746 
 747   // Check that all monitors are unlocked
 748   {
 749     Label loop, exception, entry, restart;
 750     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 751     const Address monitor_block_top(
 752         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 753     const Address monitor_block_bot(
 754         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
 755 
 756     bind(restart);
 757     // We use c_rarg1 so that if we go slow path it will be the correct
 758     // register for unlock_object to pass to VM directly
 759     movptr(c_rarg1, monitor_block_top); // points to current entry, starting
 760                                   // with top-most entry
 761     lea(rbx, monitor_block_bot);  // points to word before bottom of
 762                                   // monitor block
 763     jmp(entry);
 764 
 765     // Entry already locked, need to throw exception
 766     bind(exception);
 767 
 768     if (throw_monitor_exception) {
 769       // Throw exception
 770       MacroAssembler::call_VM(noreg,
 771                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 772                                    throw_illegal_monitor_state_exception));
 773       should_not_reach_here();
 774     } else {
 775       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 776       // Unlock does not block, so don't have to worry about the frame.
 777       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 778 
 779       push(state);
 780       unlock_object(c_rarg1);
 781       pop(state);
 782 
 783       if (install_monitor_exception) {
 784         call_VM(noreg, CAST_FROM_FN_PTR(address,
 785                                         InterpreterRuntime::
 786                                         new_illegal_monitor_state_exception));
 787       }
 788 
 789       jmp(restart);
 790     }
 791 
 792     bind(loop);
 793     // check if current entry is used
 794     cmpptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
 795     jcc(Assembler::notEqual, exception);
 796 
 797     addptr(c_rarg1, entry_size); // otherwise advance to next entry
 798     bind(entry);
 799     cmpptr(c_rarg1, rbx); // check if bottom reached
 800     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
 801   }
 802 
 803   bind(no_unlock);
 804 
 805   // jvmti support
 806   if (notify_jvmdi) {
 807     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
 808   } else {
 809     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 810   }
 811 
 812   // remove activation
 813   // get sender sp
 814   movptr(rbx,
 815          Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
 816   leave();                           // remove frame anchor
 817   pop(ret_addr);                     // get return address
 818   mov(rsp, rbx);                     // set sp to sender sp
 819 }
 820 
 821 #endif // C_INTERP
 822 
 823 // Lock object
 824 //
 825 // Args:
 826 //      c_rarg1: BasicObjectLock to be used for locking
 827 //
 828 // Kills:
 829 //      rax
 830 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
 831 //      rscratch1, rscratch2 (scratch regs)
 832 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
 833   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
 834 
 835   if (UseHeavyMonitors) {
 836     call_VM(noreg,
 837             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 838             lock_reg);
 839   } else {
 840     Label done;
 841 
 842     const Register swap_reg = rax; // Must use rax for cmpxchg instruction
 843     const Register obj_reg = c_rarg3; // Will contain the oop
 844 
 845     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
 846     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
 847     const int mark_offset = lock_offset +
 848                             BasicLock::displaced_header_offset_in_bytes();
 849 
 850     Label slow_case;
 851 
 852     // Load object pointer into obj_reg %c_rarg3
 853     movptr(obj_reg, Address(lock_reg, obj_offset));
 854 
 855     if (UseBiasedLocking) {
 856       biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case);
 857     }
 858 
 859     // Load immediate 1 into swap_reg %rax
 860     movl(swap_reg, 1);
 861 
 862     // Load (object->mark() | 1) into swap_reg %rax
 863     orptr(swap_reg, Address(obj_reg, 0));
 864 
 865     // Save (object->mark() | 1) into BasicLock's displaced header
 866     movptr(Address(lock_reg, mark_offset), swap_reg);
 867 
 868     assert(lock_offset == 0,
 869            "displached header must be first word in BasicObjectLock");
 870 
 871     if (os::is_MP()) lock();
 872     cmpxchgptr(lock_reg, Address(obj_reg, 0));
 873     if (PrintBiasedLockingStatistics) {
 874       cond_inc32(Assembler::zero,
 875                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
 876     }
 877     jcc(Assembler::zero, done);
 878 
 879     // Test if the oopMark is an obvious stack pointer, i.e.,
 880     //  1) (mark & 7) == 0, and
 881     //  2) rsp <= mark < mark + os::pagesize()
 882     //
 883     // These 3 tests can be done by evaluating the following
 884     // expression: ((mark - rsp) & (7 - os::vm_page_size())),
 885     // assuming both stack pointer and pagesize have their
 886     // least significant 3 bits clear.
 887     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
 888     subptr(swap_reg, rsp);
 889     andptr(swap_reg, 7 - os::vm_page_size());
 890 
 891     // Save the test result, for recursive case, the result is zero
 892     movptr(Address(lock_reg, mark_offset), swap_reg);
 893 
 894     if (PrintBiasedLockingStatistics) {
 895       cond_inc32(Assembler::zero,
 896                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
 897     }
 898     jcc(Assembler::zero, done);
 899 
 900     bind(slow_case);
 901 
 902     // Call the runtime routine for slow case
 903     call_VM(noreg,
 904             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 905             lock_reg);
 906 
 907     bind(done);
 908   }
 909 }
 910 
 911 
 912 // Unlocks an object. Used in monitorexit bytecode and
 913 // remove_activation.  Throws an IllegalMonitorException if object is
 914 // not locked by current thread.
 915 //
 916 // Args:
 917 //      c_rarg1: BasicObjectLock for lock
 918 //
 919 // Kills:
 920 //      rax
 921 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
 922 //      rscratch1, rscratch2 (scratch regs)
 923 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
 924   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
 925 
 926   if (UseHeavyMonitors) {
 927     call_VM(noreg,
 928             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 929             lock_reg);
 930   } else {
 931     Label done;
 932 
 933     const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
 934     const Register header_reg = c_rarg2;  // Will contain the old oopMark
 935     const Register obj_reg    = c_rarg3;  // Will contain the oop
 936 
 937     save_bcp(); // Save in case of exception
 938 
 939     // Convert from BasicObjectLock structure to object and BasicLock
 940     // structure Store the BasicLock address into %rax
 941     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
 942 
 943     // Load oop into obj_reg(%c_rarg3)
 944     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
 945 
 946     // Free entry
 947     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
 948 
 949     if (UseBiasedLocking) {
 950       biased_locking_exit(obj_reg, header_reg, done);
 951     }
 952 
 953     // Load the old header from BasicLock structure
 954     movptr(header_reg, Address(swap_reg,
 955                                BasicLock::displaced_header_offset_in_bytes()));
 956 
 957     // Test for recursion
 958     testptr(header_reg, header_reg);
 959 
 960     // zero for recursive case
 961     jcc(Assembler::zero, done);
 962 
 963     // Atomic swap back the old header
 964     if (os::is_MP()) lock();
 965     cmpxchgptr(header_reg, Address(obj_reg, 0));
 966 
 967     // zero for recursive case
 968     jcc(Assembler::zero, done);
 969 
 970     // Call the runtime routine for slow case.
 971     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
 972          obj_reg); // restore obj
 973     call_VM(noreg,
 974             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 975             lock_reg);
 976 
 977     bind(done);
 978 
 979     restore_bcp();
 980   }
 981 }
 982 
 983 #ifndef CC_INTERP
 984 
 985 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
 986                                                          Label& zero_continue) {
 987   assert(ProfileInterpreter, "must be profiling interpreter");
 988   movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
 989   testptr(mdp, mdp);
 990   jcc(Assembler::zero, zero_continue);
 991 }
 992 
 993 
 994 // Set the method data pointer for the current bcp.
 995 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 996   assert(ProfileInterpreter, "must be profiling interpreter");
 997   Label zero_continue;
 998   push(rax);
 999   push(rbx);
1000 
1001   get_method(rbx);
1002   // Test MDO to avoid the call if it is NULL.
1003   movptr(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
1004   testptr(rax, rax);
1005   jcc(Assembler::zero, zero_continue);
1006 
1007   // rbx: method
1008   // r13: bcp
1009   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, r13);
1010   // rax: mdi
1011 
1012   movptr(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
1013   testptr(rbx, rbx);
1014   jcc(Assembler::zero, zero_continue);
1015   addptr(rbx, in_bytes(methodDataOopDesc::data_offset()));
1016   addptr(rbx, rax);
1017   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rbx);
1018 
1019   bind(zero_continue);
1020   pop(rbx);
1021   pop(rax);
1022 }
1023 
1024 void InterpreterMacroAssembler::verify_method_data_pointer() {
1025   assert(ProfileInterpreter, "must be profiling interpreter");
1026 #ifdef ASSERT
1027   Label verify_continue;
1028   push(rax);
1029   push(rbx);
1030   push(c_rarg3);
1031   push(c_rarg2);
1032   test_method_data_pointer(c_rarg3, verify_continue); // If mdp is zero, continue
1033   get_method(rbx);
1034 
1035   // If the mdp is valid, it will point to a DataLayout header which is
1036   // consistent with the bcp.  The converse is highly probable also.
1037   load_unsigned_short(c_rarg2,
1038                       Address(c_rarg3, in_bytes(DataLayout::bci_offset())));
1039   addptr(c_rarg2, Address(rbx, methodOopDesc::const_offset()));
1040   lea(c_rarg2, Address(c_rarg2, constMethodOopDesc::codes_offset()));
1041   cmpptr(c_rarg2, r13);
1042   jcc(Assembler::equal, verify_continue);
1043   // rbx: method
1044   // r13: bcp
1045   // c_rarg3: mdp
1046   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1047                rbx, r13, c_rarg3);
1048   bind(verify_continue);
1049   pop(c_rarg2);
1050   pop(c_rarg3);
1051   pop(rbx);
1052   pop(rax);
1053 #endif // ASSERT
1054 }
1055 
1056 
1057 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1058                                                 int constant,
1059                                                 Register value) {
1060   assert(ProfileInterpreter, "must be profiling interpreter");
1061   Address data(mdp_in, constant);
1062   movptr(data, value);
1063 }
1064 
1065 
1066 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1067                                                       int constant,
1068                                                       bool decrement) {
1069   // Counter address
1070   Address data(mdp_in, constant);
1071 
1072   increment_mdp_data_at(data, decrement);
1073 }
1074 
1075 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
1076                                                       bool decrement) {
1077   assert(ProfileInterpreter, "must be profiling interpreter");
1078   // %%% this does 64bit counters at best it is wasting space
1079   // at worst it is a rare bug when counters overflow
1080 
1081   if (decrement) {
1082     // Decrement the register.  Set condition codes.
1083     addptr(data, (int32_t) -DataLayout::counter_increment);
1084     // If the decrement causes the counter to overflow, stay negative
1085     Label L;
1086     jcc(Assembler::negative, L);
1087     addptr(data, (int32_t) DataLayout::counter_increment);
1088     bind(L);
1089   } else {
1090     assert(DataLayout::counter_increment == 1,
1091            "flow-free idiom only works with 1");
1092     // Increment the register.  Set carry flag.
1093     addptr(data, DataLayout::counter_increment);
1094     // If the increment causes the counter to overflow, pull back by 1.
1095     sbbptr(data, (int32_t)0);
1096   }
1097 }
1098 
1099 
1100 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1101                                                       Register reg,
1102                                                       int constant,
1103                                                       bool decrement) {
1104   Address data(mdp_in, reg, Address::times_1, constant);
1105 
1106   increment_mdp_data_at(data, decrement);
1107 }
1108 
1109 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1110                                                 int flag_byte_constant) {
1111   assert(ProfileInterpreter, "must be profiling interpreter");
1112   int header_offset = in_bytes(DataLayout::header_offset());
1113   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
1114   // Set the flag
1115   orl(Address(mdp_in, header_offset), header_bits);
1116 }
1117 
1118 
1119 
1120 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1121                                                  int offset,
1122                                                  Register value,
1123                                                  Register test_value_out,
1124                                                  Label& not_equal_continue) {
1125   assert(ProfileInterpreter, "must be profiling interpreter");
1126   if (test_value_out == noreg) {
1127     cmpptr(value, Address(mdp_in, offset));
1128   } else {
1129     // Put the test value into a register, so caller can use it:
1130     movptr(test_value_out, Address(mdp_in, offset));
1131     cmpptr(test_value_out, value);
1132   }
1133   jcc(Assembler::notEqual, not_equal_continue);
1134 }
1135 
1136 
1137 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1138                                                      int offset_of_disp) {
1139   assert(ProfileInterpreter, "must be profiling interpreter");
1140   Address disp_address(mdp_in, offset_of_disp);
1141   addptr(mdp_in, disp_address);
1142   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
1143 }
1144 
1145 
1146 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1147                                                      Register reg,
1148                                                      int offset_of_disp) {
1149   assert(ProfileInterpreter, "must be profiling interpreter");
1150   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1151   addptr(mdp_in, disp_address);
1152   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
1153 }
1154 
1155 
1156 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1157                                                        int constant) {
1158   assert(ProfileInterpreter, "must be profiling interpreter");
1159   addptr(mdp_in, constant);
1160   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
1161 }
1162 
1163 
1164 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1165   assert(ProfileInterpreter, "must be profiling interpreter");
1166   push(return_bci); // save/restore across call_VM
1167   call_VM(noreg,
1168           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1169           return_bci);
1170   pop(return_bci);
1171 }
1172 
1173 
1174 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1175                                                      Register bumped_count) {
1176   if (ProfileInterpreter) {
1177     Label profile_continue;
1178 
1179     // If no method data exists, go to profile_continue.
1180     // Otherwise, assign to mdp
1181     test_method_data_pointer(mdp, profile_continue);
1182 
1183     // We are taking a branch.  Increment the taken count.
1184     // We inline increment_mdp_data_at to return bumped_count in a register
1185     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1186     Address data(mdp, in_bytes(JumpData::taken_offset()));
1187     movptr(bumped_count, data);
1188     assert(DataLayout::counter_increment == 1,
1189             "flow-free idiom only works with 1");
1190     addptr(bumped_count, DataLayout::counter_increment);
1191     sbbptr(bumped_count, 0);
1192     movptr(data, bumped_count); // Store back out
1193 
1194     // The method data pointer needs to be updated to reflect the new target.
1195     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1196     bind(profile_continue);
1197   }
1198 }
1199 
1200 
1201 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1202   if (ProfileInterpreter) {
1203     Label profile_continue;
1204 
1205     // If no method data exists, go to profile_continue.
1206     test_method_data_pointer(mdp, profile_continue);
1207 
1208     // We are taking a branch.  Increment the not taken count.
1209     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1210 
1211     // The method data pointer needs to be updated to correspond to
1212     // the next bytecode
1213     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1214     bind(profile_continue);
1215   }
1216 }
1217 
1218 
1219 void InterpreterMacroAssembler::profile_call(Register mdp) {
1220   if (ProfileInterpreter) {
1221     Label profile_continue;
1222 
1223     // If no method data exists, go to profile_continue.
1224     test_method_data_pointer(mdp, profile_continue);
1225 
1226     // We are making a call.  Increment the count.
1227     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1228 
1229     // The method data pointer needs to be updated to reflect the new target.
1230     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1231     bind(profile_continue);
1232   }
1233 }
1234 
1235 
1236 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1237   if (ProfileInterpreter) {
1238     Label profile_continue;
1239 
1240     // If no method data exists, go to profile_continue.
1241     test_method_data_pointer(mdp, profile_continue);
1242 
1243     // We are making a call.  Increment the count.
1244     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1245 
1246     // The method data pointer needs to be updated to reflect the new target.
1247     update_mdp_by_constant(mdp,
1248                            in_bytes(VirtualCallData::
1249                                     virtual_call_data_size()));
1250     bind(profile_continue);
1251   }
1252 }
1253 
1254 
1255 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1256                                                      Register mdp,
1257                                                      Register reg2,
1258                                                      bool receiver_can_be_null) {
1259   if (ProfileInterpreter) {
1260     Label profile_continue;
1261 
1262     // If no method data exists, go to profile_continue.
1263     test_method_data_pointer(mdp, profile_continue);
1264 
1265     // We are making a call.  Increment the count.
1266     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1267 
1268     Label skip_receiver_profile;
1269     if (receiver_can_be_null) {
1270       testptr(receiver, receiver);
1271       jcc(Assembler::zero, skip_receiver_profile);
1272     }
1273 
1274     // Record the receiver type.
1275     record_klass_in_profile(receiver, mdp, reg2);
1276     bind(skip_receiver_profile);
1277 
1278     // The method data pointer needs to be updated to reflect the new target.
1279     update_mdp_by_constant(mdp,
1280                            in_bytes(VirtualCallData::
1281                                     virtual_call_data_size()));
1282     bind(profile_continue);
1283   }
1284 }
1285 
1286 // This routine creates a state machine for updating the multi-row
1287 // type profile at a virtual call site (or other type-sensitive bytecode).
1288 // The machine visits each row (of receiver/count) until the receiver type
1289 // is found, or until it runs out of rows.  At the same time, it remembers
1290 // the location of the first empty row.  (An empty row records null for its
1291 // receiver, and can be allocated for a newly-observed receiver type.)
1292 // Because there are two degrees of freedom in the state, a simple linear
1293 // search will not work; it must be a decision tree.  Hence this helper
1294 // function is recursive, to generate the required tree structured code.
1295 // It's the interpreter, so we are trading off code space for speed.
1296 // See below for example code.
1297 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1298                                         Register receiver, Register mdp,
1299                                         Register reg2,
1300                                         int start_row, Label& done) {
1301   if (TypeProfileWidth == 0)
1302     return;
1303 
1304   int last_row = VirtualCallData::row_limit() - 1;
1305   assert(start_row <= last_row, "must be work left to do");
1306   // Test this row for both the receiver and for null.
1307   // Take any of three different outcomes:
1308   //   1. found receiver => increment count and goto done
1309   //   2. found null => keep looking for case 1, maybe allocate this cell
1310   //   3. found something else => keep looking for cases 1 and 2
1311   // Case 3 is handled by a recursive call.
1312   for (int row = start_row; row <= last_row; row++) {
1313     Label next_test;
1314     bool test_for_null_also = (row == start_row);
1315 
1316     // See if the receiver is receiver[n].
1317     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1318     test_mdp_data_at(mdp, recvr_offset, receiver,
1319                      (test_for_null_also ? reg2 : noreg),
1320                      next_test);
1321     // (Reg2 now contains the receiver from the CallData.)
1322 
1323     // The receiver is receiver[n].  Increment count[n].
1324     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1325     increment_mdp_data_at(mdp, count_offset);
1326     jmp(done);
1327     bind(next_test);
1328 
1329     if (test_for_null_also) {
1330       // Failed the equality check on receiver[n]...  Test for null.
1331       testptr(reg2, reg2);
1332       if (start_row == last_row) {
1333         // The only thing left to do is handle the null case.
1334         jcc(Assembler::notZero, done);
1335         break;
1336       }
1337       // Since null is rare, make it be the branch-taken case.
1338       Label found_null;
1339       jcc(Assembler::zero, found_null);
1340 
1341       // Put all the "Case 3" tests here.
1342       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done);
1343 
1344       // Found a null.  Keep searching for a matching receiver,
1345       // but remember that this is an empty (unused) slot.
1346       bind(found_null);
1347     }
1348   }
1349 
1350   // In the fall-through case, we found no matching receiver, but we
1351   // observed the receiver[start_row] is NULL.
1352 
1353   // Fill in the receiver field and increment the count.
1354   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1355   set_mdp_data_at(mdp, recvr_offset, receiver);
1356   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1357   movl(reg2, DataLayout::counter_increment);
1358   set_mdp_data_at(mdp, count_offset, reg2);
1359   jmp(done);
1360 }
1361 
1362 // Example state machine code for three profile rows:
1363 //   // main copy of decision tree, rooted at row[1]
1364 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1365 //   if (row[0].rec != NULL) {
1366 //     // inner copy of decision tree, rooted at row[1]
1367 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1368 //     if (row[1].rec != NULL) {
1369 //       // degenerate decision tree, rooted at row[2]
1370 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1371 //       if (row[2].rec != NULL) { goto done; } // overflow
1372 //       row[2].init(rec); goto done;
1373 //     } else {
1374 //       // remember row[1] is empty
1375 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1376 //       row[1].init(rec); goto done;
1377 //     }
1378 //   } else {
1379 //     // remember row[0] is empty
1380 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1381 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1382 //     row[0].init(rec); goto done;
1383 //   }
1384 
1385 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1386                                                         Register mdp,
1387                                                         Register reg2) {
1388   assert(ProfileInterpreter, "must be profiling");
1389   Label done;
1390 
1391   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
1392 
1393   bind (done);
1394 }
1395 
1396 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1397                                             Register mdp) {
1398   if (ProfileInterpreter) {
1399     Label profile_continue;
1400     uint row;
1401 
1402     // If no method data exists, go to profile_continue.
1403     test_method_data_pointer(mdp, profile_continue);
1404 
1405     // Update the total ret count.
1406     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1407 
1408     for (row = 0; row < RetData::row_limit(); row++) {
1409       Label next_test;
1410 
1411       // See if return_bci is equal to bci[n]:
1412       test_mdp_data_at(mdp,
1413                        in_bytes(RetData::bci_offset(row)),
1414                        return_bci, noreg,
1415                        next_test);
1416 
1417       // return_bci is equal to bci[n].  Increment the count.
1418       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1419 
1420       // The method data pointer needs to be updated to reflect the new target.
1421       update_mdp_by_offset(mdp,
1422                            in_bytes(RetData::bci_displacement_offset(row)));
1423       jmp(profile_continue);
1424       bind(next_test);
1425     }
1426 
1427     update_mdp_for_ret(return_bci);
1428 
1429     bind(profile_continue);
1430   }
1431 }
1432 
1433 
1434 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1435   if (ProfileInterpreter) {
1436     Label profile_continue;
1437 
1438     // If no method data exists, go to profile_continue.
1439     test_method_data_pointer(mdp, profile_continue);
1440 
1441     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1442 
1443     // The method data pointer needs to be updated.
1444     int mdp_delta = in_bytes(BitData::bit_data_size());
1445     if (TypeProfileCasts) {
1446       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1447     }
1448     update_mdp_by_constant(mdp, mdp_delta);
1449 
1450     bind(profile_continue);
1451   }
1452 }
1453 
1454 
1455 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1456   if (ProfileInterpreter && TypeProfileCasts) {
1457     Label profile_continue;
1458 
1459     // If no method data exists, go to profile_continue.
1460     test_method_data_pointer(mdp, profile_continue);
1461 
1462     int count_offset = in_bytes(CounterData::count_offset());
1463     // Back up the address, since we have already bumped the mdp.
1464     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1465 
1466     // *Decrement* the counter.  We expect to see zero or small negatives.
1467     increment_mdp_data_at(mdp, count_offset, true);
1468 
1469     bind (profile_continue);
1470   }
1471 }
1472 
1473 
1474 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1475   if (ProfileInterpreter) {
1476     Label profile_continue;
1477 
1478     // If no method data exists, go to profile_continue.
1479     test_method_data_pointer(mdp, profile_continue);
1480 
1481     // The method data pointer needs to be updated.
1482     int mdp_delta = in_bytes(BitData::bit_data_size());
1483     if (TypeProfileCasts) {
1484       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1485 
1486       // Record the object type.
1487       record_klass_in_profile(klass, mdp, reg2);
1488     }
1489     update_mdp_by_constant(mdp, mdp_delta);
1490 
1491     bind(profile_continue);
1492   }
1493 }
1494 
1495 
1496 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1497   if (ProfileInterpreter) {
1498     Label profile_continue;
1499 
1500     // If no method data exists, go to profile_continue.
1501     test_method_data_pointer(mdp, profile_continue);
1502 
1503     // Update the default case count
1504     increment_mdp_data_at(mdp,
1505                           in_bytes(MultiBranchData::default_count_offset()));
1506 
1507     // The method data pointer needs to be updated.
1508     update_mdp_by_offset(mdp,
1509                          in_bytes(MultiBranchData::
1510                                   default_displacement_offset()));
1511 
1512     bind(profile_continue);
1513   }
1514 }
1515 
1516 
1517 void InterpreterMacroAssembler::profile_switch_case(Register index,
1518                                                     Register mdp,
1519                                                     Register reg2) {
1520   if (ProfileInterpreter) {
1521     Label profile_continue;
1522 
1523     // If no method data exists, go to profile_continue.
1524     test_method_data_pointer(mdp, profile_continue);
1525 
1526     // Build the base (index * per_case_size_in_bytes()) +
1527     // case_array_offset_in_bytes()
1528     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1529     imulptr(index, reg2); // XXX l ?
1530     addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1531 
1532     // Update the case count
1533     increment_mdp_data_at(mdp,
1534                           index,
1535                           in_bytes(MultiBranchData::relative_count_offset()));
1536 
1537     // The method data pointer needs to be updated.
1538     update_mdp_by_offset(mdp,
1539                          index,
1540                          in_bytes(MultiBranchData::
1541                                   relative_displacement_offset()));
1542 
1543     bind(profile_continue);
1544   }
1545 }
1546 
1547 
1548 
1549 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1550   if (state == atos) {
1551     MacroAssembler::verify_oop(reg);
1552   }
1553 }
1554 
1555 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1556 }
1557 #endif // !CC_INTERP
1558 
1559 
1560 void InterpreterMacroAssembler::notify_method_entry() {
1561   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1562   // track stack depth.  If it is possible to enter interp_only_mode we add
1563   // the code to check if the event should be sent.
1564   if (JvmtiExport::can_post_interpreter_events()) {
1565     Label L;
1566     movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
1567     testl(rdx, rdx);
1568     jcc(Assembler::zero, L);
1569     call_VM(noreg, CAST_FROM_FN_PTR(address,
1570                                     InterpreterRuntime::post_method_entry));
1571     bind(L);
1572   }
1573 
1574   {
1575     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1576     get_method(c_rarg1);
1577     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1578                  r15_thread, c_rarg1);
1579   }
1580 
1581   // RedefineClasses() tracing support for obsolete method entry
1582   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1583     get_method(c_rarg1);
1584     call_VM_leaf(
1585       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1586       r15_thread, c_rarg1);
1587   }
1588 }
1589 
1590 
1591 void InterpreterMacroAssembler::notify_method_exit(
1592     TosState state, NotifyMethodExitMode mode) {
1593   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1594   // track stack depth.  If it is possible to enter interp_only_mode we add
1595   // the code to check if the event should be sent.
1596   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1597     Label L;
1598     // Note: frame::interpreter_frame_result has a dependency on how the
1599     // method result is saved across the call to post_method_exit. If this
1600     // is changed then the interpreter_frame_result implementation will
1601     // need to be updated too.
1602 
1603     // For c++ interpreter the result is always stored at a known location in the frame
1604     // template interpreter will leave it on the top of the stack.
1605     NOT_CC_INTERP(push(state);)
1606     movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
1607     testl(rdx, rdx);
1608     jcc(Assembler::zero, L);
1609     call_VM(noreg,
1610             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1611     bind(L);
1612     NOT_CC_INTERP(pop(state));
1613   }
1614 
1615   {
1616     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1617     NOT_CC_INTERP(push(state));
1618     get_method(c_rarg1);
1619     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1620                  r15_thread, c_rarg1);
1621     NOT_CC_INTERP(pop(state));
1622   }
1623 }