1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_templateTable_x86_32.cpp.incl"
  27 
  28 #ifndef CC_INTERP
  29 #define __ _masm->
  30 
  31 //----------------------------------------------------------------------------------------------------
  32 // Platform-dependent initialization
  33 
  34 void TemplateTable::pd_initialize() {
  35   // No i486 specific initialization
  36 }
  37 
  38 //----------------------------------------------------------------------------------------------------
  39 // Address computation
  40 
  41 // local variables
  42 static inline Address iaddress(int n)            {
  43   return Address(rdi, Interpreter::local_offset_in_bytes(n));
  44 }
  45 
  46 static inline Address laddress(int n)            { return iaddress(n + 1); }
  47 static inline Address haddress(int n)            { return iaddress(n + 0); }
  48 static inline Address faddress(int n)            { return iaddress(n); }
  49 static inline Address daddress(int n)            { return laddress(n); }
  50 static inline Address aaddress(int n)            { return iaddress(n); }
  51 
  52 static inline Address iaddress(Register r)       {
  53   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::value_offset_in_bytes());
  54 }
  55 static inline Address laddress(Register r)       {
  56   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1));
  57 }
  58 static inline Address haddress(Register r)       {
  59   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
  60 }
  61 
  62 static inline Address faddress(Register r)       { return iaddress(r); };
  63 static inline Address daddress(Register r)       {
  64   assert(!TaggedStackInterpreter, "This doesn't work");
  65   return laddress(r);
  66 };
  67 static inline Address aaddress(Register r)       { return iaddress(r); };
  68 
  69 // expression stack
  70 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
  71 // data beyond the rsp which is potentially unsafe in an MT environment;
  72 // an interrupt may overwrite that data.)
  73 static inline Address at_rsp   () {
  74   return Address(rsp, 0);
  75 }
  76 
  77 // At top of Java expression stack which may be different than rsp().  It
  78 // isn't for category 1 objects.
  79 static inline Address at_tos   () {
  80   Address tos = Address(rsp,  Interpreter::expr_offset_in_bytes(0));
  81   return tos;
  82 }
  83 
  84 static inline Address at_tos_p1() {
  85   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
  86 }
  87 
  88 static inline Address at_tos_p2() {
  89   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
  90 }
  91 
  92 // Condition conversion
  93 static Assembler::Condition j_not(TemplateTable::Condition cc) {
  94   switch (cc) {
  95     case TemplateTable::equal        : return Assembler::notEqual;
  96     case TemplateTable::not_equal    : return Assembler::equal;
  97     case TemplateTable::less         : return Assembler::greaterEqual;
  98     case TemplateTable::less_equal   : return Assembler::greater;
  99     case TemplateTable::greater      : return Assembler::lessEqual;
 100     case TemplateTable::greater_equal: return Assembler::less;
 101   }
 102   ShouldNotReachHere();
 103   return Assembler::zero;
 104 }
 105 
 106 
 107 //----------------------------------------------------------------------------------------------------
 108 // Miscelaneous helper routines
 109 
 110 // Store an oop (or NULL) at the address described by obj.
 111 // If val == noreg this means store a NULL
 112 
 113 static void do_oop_store(InterpreterMacroAssembler* _masm,
 114                          Address obj,
 115                          Register val,
 116                          BarrierSet::Name barrier,
 117                          bool precise) {
 118   assert(val == noreg || val == rax, "parameter is just for looks");
 119   switch (barrier) {
 120 #ifndef SERIALGC
 121     case BarrierSet::G1SATBCT:
 122     case BarrierSet::G1SATBCTLogging:
 123       {
 124         // flatten object address if needed
 125         // We do it regardless of precise because we need the registers
 126         if (obj.index() == noreg && obj.disp() == 0) {
 127           if (obj.base() != rdx) {
 128             __ movl(rdx, obj.base());
 129           }
 130         } else {
 131           __ leal(rdx, obj);
 132         }
 133         __ get_thread(rcx);
 134         __ save_bcp();
 135         __ g1_write_barrier_pre(rdx, rcx, rsi, rbx, val != noreg);
 136 
 137         // Do the actual store
 138         // noreg means NULL
 139         if (val == noreg) {
 140           __ movptr(Address(rdx, 0), NULL_WORD);
 141           // No post barrier for NULL
 142         } else {
 143           __ movl(Address(rdx, 0), val);
 144           __ g1_write_barrier_post(rdx, rax, rcx, rbx, rsi);
 145         }
 146         __ restore_bcp();
 147 
 148       }
 149       break;
 150 #endif // SERIALGC
 151     case BarrierSet::CardTableModRef:
 152     case BarrierSet::CardTableExtension:
 153       {
 154         if (val == noreg) {
 155           __ movptr(obj, NULL_WORD);
 156         } else {
 157           __ movl(obj, val);
 158           // flatten object address if needed
 159           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
 160             __ store_check(obj.base());
 161           } else {
 162             __ leal(rdx, obj);
 163             __ store_check(rdx);
 164           }
 165         }
 166       }
 167       break;
 168     case BarrierSet::ModRef:
 169     case BarrierSet::Other:
 170       if (val == noreg) {
 171         __ movptr(obj, NULL_WORD);
 172       } else {
 173         __ movl(obj, val);
 174       }
 175       break;
 176     default      :
 177       ShouldNotReachHere();
 178 
 179   }
 180 }
 181 
 182 Address TemplateTable::at_bcp(int offset) {
 183   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 184   return Address(rsi, offset);
 185 }
 186 
 187 
 188 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
 189                                    Register scratch,
 190                                    bool load_bc_into_scratch/*=true*/) {
 191 
 192   if (!RewriteBytecodes) return;
 193   // the pair bytecodes have already done the load.
 194   if (load_bc_into_scratch) {
 195     __ movl(bc, bytecode);
 196   }
 197   Label patch_done;
 198   if (JvmtiExport::can_post_breakpoint()) {
 199     Label fast_patch;
 200     // if a breakpoint is present we can't rewrite the stream directly
 201     __ movzbl(scratch, at_bcp(0));
 202     __ cmpl(scratch, Bytecodes::_breakpoint);
 203     __ jcc(Assembler::notEqual, fast_patch);
 204     __ get_method(scratch);
 205     // Let breakpoint table handling rewrite to quicker bytecode
 206     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, rsi, bc);
 207 #ifndef ASSERT
 208     __ jmpb(patch_done);
 209 #else
 210     __ jmp(patch_done);
 211 #endif
 212     __ bind(fast_patch);
 213   }
 214 #ifdef ASSERT
 215   Label okay;
 216   __ load_unsigned_byte(scratch, at_bcp(0));
 217   __ cmpl(scratch, (int)Bytecodes::java_code(bytecode));
 218   __ jccb(Assembler::equal, okay);
 219   __ cmpl(scratch, bc);
 220   __ jcc(Assembler::equal, okay);
 221   __ stop("patching the wrong bytecode");
 222   __ bind(okay);
 223 #endif
 224   // patch bytecode
 225   __ movb(at_bcp(0), bc);
 226   __ bind(patch_done);
 227 }
 228 
 229 //----------------------------------------------------------------------------------------------------
 230 // Individual instructions
 231 
 232 void TemplateTable::nop() {
 233   transition(vtos, vtos);
 234   // nothing to do
 235 }
 236 
 237 void TemplateTable::shouldnotreachhere() {
 238   transition(vtos, vtos);
 239   __ stop("shouldnotreachhere bytecode");
 240 }
 241 
 242 
 243 
 244 void TemplateTable::aconst_null() {
 245   transition(vtos, atos);
 246   __ xorptr(rax, rax);
 247 }
 248 
 249 
 250 void TemplateTable::iconst(int value) {
 251   transition(vtos, itos);
 252   if (value == 0) {
 253     __ xorptr(rax, rax);
 254   } else {
 255     __ movptr(rax, value);
 256   }
 257 }
 258 
 259 
 260 void TemplateTable::lconst(int value) {
 261   transition(vtos, ltos);
 262   if (value == 0) {
 263     __ xorptr(rax, rax);
 264   } else {
 265     __ movptr(rax, value);
 266   }
 267   assert(value >= 0, "check this code");
 268   __ xorptr(rdx, rdx);
 269 }
 270 
 271 
 272 void TemplateTable::fconst(int value) {
 273   transition(vtos, ftos);
 274          if (value == 0) { __ fldz();
 275   } else if (value == 1) { __ fld1();
 276   } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
 277   } else                 { ShouldNotReachHere();
 278   }
 279 }
 280 
 281 
 282 void TemplateTable::dconst(int value) {
 283   transition(vtos, dtos);
 284          if (value == 0) { __ fldz();
 285   } else if (value == 1) { __ fld1();
 286   } else                 { ShouldNotReachHere();
 287   }
 288 }
 289 
 290 
 291 void TemplateTable::bipush() {
 292   transition(vtos, itos);
 293   __ load_signed_byte(rax, at_bcp(1));
 294 }
 295 
 296 
 297 void TemplateTable::sipush() {
 298   transition(vtos, itos);
 299   __ load_unsigned_short(rax, at_bcp(1));
 300   __ bswapl(rax);
 301   __ sarl(rax, 16);
 302 }
 303 
 304 void TemplateTable::ldc(bool wide) {
 305   transition(vtos, vtos);
 306   Label call_ldc, notFloat, notClass, Done;
 307 
 308   if (wide) {
 309     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 310   } else {
 311     __ load_unsigned_byte(rbx, at_bcp(1));
 312   }
 313   __ get_cpool_and_tags(rcx, rax);
 314   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
 315   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
 316 
 317   // get type
 318   __ xorptr(rdx, rdx);
 319   __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 320 
 321   // unresolved string - get the resolved string
 322   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
 323   __ jccb(Assembler::equal, call_ldc);
 324 
 325   // unresolved class - get the resolved class
 326   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
 327   __ jccb(Assembler::equal, call_ldc);
 328 
 329   // unresolved class in error (resolution failed) - call into runtime
 330   // so that the same error from first resolution attempt is thrown.
 331   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
 332   __ jccb(Assembler::equal, call_ldc);
 333 
 334   // resolved class - need to call vm to get java mirror of the class
 335   __ cmpl(rdx, JVM_CONSTANT_Class);
 336   __ jcc(Assembler::notEqual, notClass);
 337 
 338   __ bind(call_ldc);
 339   __ movl(rcx, wide);
 340   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx);
 341   __ push(atos);
 342   __ jmp(Done);
 343 
 344   __ bind(notClass);
 345   __ cmpl(rdx, JVM_CONSTANT_Float);
 346   __ jccb(Assembler::notEqual, notFloat);
 347   // ftos
 348   __ fld_s(    Address(rcx, rbx, Address::times_ptr, base_offset));
 349   __ push(ftos);
 350   __ jmp(Done);
 351 
 352   __ bind(notFloat);
 353 #ifdef ASSERT
 354   { Label L;
 355     __ cmpl(rdx, JVM_CONSTANT_Integer);
 356     __ jcc(Assembler::equal, L);
 357     __ cmpl(rdx, JVM_CONSTANT_String);
 358     __ jcc(Assembler::equal, L);
 359     __ stop("unexpected tag type in ldc");
 360     __ bind(L);
 361   }
 362 #endif
 363   Label isOop;
 364   // atos and itos
 365   // String is only oop type we will see here
 366   __ cmpl(rdx, JVM_CONSTANT_String);
 367   __ jccb(Assembler::equal, isOop);
 368   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
 369   __ push(itos);
 370   __ jmp(Done);
 371   __ bind(isOop);
 372   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
 373   __ push(atos);
 374 
 375   if (VerifyOops) {
 376     __ verify_oop(rax);
 377   }
 378   __ bind(Done);
 379 }
 380 
 381 void TemplateTable::ldc2_w() {
 382   transition(vtos, vtos);
 383   Label Long, Done;
 384   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 385 
 386   __ get_cpool_and_tags(rcx, rax);
 387   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
 388   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
 389 
 390   // get type
 391   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double);
 392   __ jccb(Assembler::notEqual, Long);
 393   // dtos
 394   __ fld_d(    Address(rcx, rbx, Address::times_ptr, base_offset));
 395   __ push(dtos);
 396   __ jmpb(Done);
 397 
 398   __ bind(Long);
 399   // ltos
 400   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
 401   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
 402 
 403   __ push(ltos);
 404 
 405   __ bind(Done);
 406 }
 407 
 408 
 409 void TemplateTable::locals_index(Register reg, int offset) {
 410   __ load_unsigned_byte(reg, at_bcp(offset));
 411   __ negptr(reg);
 412 }
 413 
 414 
 415 void TemplateTable::iload() {
 416   transition(vtos, itos);
 417   if (RewriteFrequentPairs) {
 418     Label rewrite, done;
 419 
 420     // get next byte
 421     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 422     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 423     // last two iloads in a pair.  Comparing against fast_iload means that
 424     // the next bytecode is neither an iload or a caload, and therefore
 425     // an iload pair.
 426     __ cmpl(rbx, Bytecodes::_iload);
 427     __ jcc(Assembler::equal, done);
 428 
 429     __ cmpl(rbx, Bytecodes::_fast_iload);
 430     __ movl(rcx, Bytecodes::_fast_iload2);
 431     __ jccb(Assembler::equal, rewrite);
 432 
 433     // if _caload, rewrite to fast_icaload
 434     __ cmpl(rbx, Bytecodes::_caload);
 435     __ movl(rcx, Bytecodes::_fast_icaload);
 436     __ jccb(Assembler::equal, rewrite);
 437 
 438     // rewrite so iload doesn't check again.
 439     __ movl(rcx, Bytecodes::_fast_iload);
 440 
 441     // rewrite
 442     // rcx: fast bytecode
 443     __ bind(rewrite);
 444     patch_bytecode(Bytecodes::_iload, rcx, rbx, false);
 445     __ bind(done);
 446   }
 447 
 448   // Get the local value into tos
 449   locals_index(rbx);
 450   __ movl(rax, iaddress(rbx));
 451   debug_only(__ verify_local_tag(frame::TagValue, rbx));
 452 }
 453 
 454 
 455 void TemplateTable::fast_iload2() {
 456   transition(vtos, itos);
 457   locals_index(rbx);
 458   __ movl(rax, iaddress(rbx));
 459   debug_only(__ verify_local_tag(frame::TagValue, rbx));
 460   __ push(itos);
 461   locals_index(rbx, 3);
 462   __ movl(rax, iaddress(rbx));
 463   debug_only(__ verify_local_tag(frame::TagValue, rbx));
 464 }
 465 
 466 void TemplateTable::fast_iload() {
 467   transition(vtos, itos);
 468   locals_index(rbx);
 469   __ movl(rax, iaddress(rbx));
 470   debug_only(__ verify_local_tag(frame::TagValue, rbx));
 471 }
 472 
 473 
 474 void TemplateTable::lload() {
 475   transition(vtos, ltos);
 476   locals_index(rbx);
 477   __ movptr(rax, laddress(rbx));
 478   NOT_LP64(__ movl(rdx, haddress(rbx)));
 479   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
 480 }
 481 
 482 
 483 void TemplateTable::fload() {
 484   transition(vtos, ftos);
 485   locals_index(rbx);
 486   __ fld_s(faddress(rbx));
 487   debug_only(__ verify_local_tag(frame::TagValue, rbx));
 488 }
 489 
 490 
 491 void TemplateTable::dload() {
 492   transition(vtos, dtos);
 493   locals_index(rbx);
 494   if (TaggedStackInterpreter) {
 495     // Get double out of locals array, onto temp stack and load with
 496     // float instruction into ST0
 497     __ movl(rax, laddress(rbx));
 498     __ movl(rdx, haddress(rbx));
 499     __ push(rdx);  // push hi first
 500     __ push(rax);
 501     __ fld_d(Address(rsp, 0));
 502     __ addptr(rsp, 2*wordSize);
 503     debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
 504   } else {
 505     __ fld_d(daddress(rbx));
 506   }
 507 }
 508 
 509 
 510 void TemplateTable::aload() {
 511   transition(vtos, atos);
 512   locals_index(rbx);
 513   __ movptr(rax, aaddress(rbx));
 514   debug_only(__ verify_local_tag(frame::TagReference, rbx));
 515 }
 516 
 517 
 518 void TemplateTable::locals_index_wide(Register reg) {
 519   __ movl(reg, at_bcp(2));
 520   __ bswapl(reg);
 521   __ shrl(reg, 16);
 522   __ negptr(reg);
 523 }
 524 
 525 
 526 void TemplateTable::wide_iload() {
 527   transition(vtos, itos);
 528   locals_index_wide(rbx);
 529   __ movl(rax, iaddress(rbx));
 530   debug_only(__ verify_local_tag(frame::TagValue, rbx));
 531 }
 532 
 533 
 534 void TemplateTable::wide_lload() {
 535   transition(vtos, ltos);
 536   locals_index_wide(rbx);
 537   __ movptr(rax, laddress(rbx));
 538   NOT_LP64(__ movl(rdx, haddress(rbx)));
 539   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
 540 }
 541 
 542 
 543 void TemplateTable::wide_fload() {
 544   transition(vtos, ftos);
 545   locals_index_wide(rbx);
 546   __ fld_s(faddress(rbx));
 547   debug_only(__ verify_local_tag(frame::TagValue, rbx));
 548 }
 549 
 550 
 551 void TemplateTable::wide_dload() {
 552   transition(vtos, dtos);
 553   locals_index_wide(rbx);
 554   if (TaggedStackInterpreter) {
 555     // Get double out of locals array, onto temp stack and load with
 556     // float instruction into ST0
 557     __ movl(rax, laddress(rbx));
 558     __ movl(rdx, haddress(rbx));
 559     __ push(rdx);  // push hi first
 560     __ push(rax);
 561     __ fld_d(Address(rsp, 0));
 562     __ addl(rsp, 2*wordSize);
 563     debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
 564   } else {
 565     __ fld_d(daddress(rbx));
 566   }
 567 }
 568 
 569 
 570 void TemplateTable::wide_aload() {
 571   transition(vtos, atos);
 572   locals_index_wide(rbx);
 573   __ movptr(rax, aaddress(rbx));
 574   debug_only(__ verify_local_tag(frame::TagReference, rbx));
 575 }
 576 
 577 void TemplateTable::index_check(Register array, Register index) {
 578   // Pop ptr into array
 579   __ pop_ptr(array);
 580   index_check_without_pop(array, index);
 581 }
 582 
 583 void TemplateTable::index_check_without_pop(Register array, Register index) {
 584   // destroys rbx,
 585   // check array
 586   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
 587   LP64_ONLY(__ movslq(index, index));
 588   // check index
 589   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
 590   if (index != rbx) {
 591     // ??? convention: move aberrant index into rbx, for exception message
 592     assert(rbx != array, "different registers");
 593     __ mov(rbx, index);
 594   }
 595   __ jump_cc(Assembler::aboveEqual,
 596              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
 597 }
 598 
 599 
 600 void TemplateTable::iaload() {
 601   transition(itos, itos);
 602   // rdx: array
 603   index_check(rdx, rax);  // kills rbx,
 604   // rax,: index
 605   __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)));
 606 }
 607 
 608 
 609 void TemplateTable::laload() {
 610   transition(itos, ltos);
 611   // rax,: index
 612   // rdx: array
 613   index_check(rdx, rax);
 614   __ mov(rbx, rax);
 615   // rbx,: index
 616   __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
 617   NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
 618 }
 619 
 620 
 621 void TemplateTable::faload() {
 622   transition(itos, ftos);
 623   // rdx: array
 624   index_check(rdx, rax);  // kills rbx,
 625   // rax,: index
 626   __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 627 }
 628 
 629 
 630 void TemplateTable::daload() {
 631   transition(itos, dtos);
 632   // rdx: array
 633   index_check(rdx, rax);  // kills rbx,
 634   // rax,: index
 635   __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 636 }
 637 
 638 
 639 void TemplateTable::aaload() {
 640   transition(itos, atos);
 641   // rdx: array
 642   index_check(rdx, rax);  // kills rbx,
 643   // rax,: index
 644   __ movptr(rax, Address(rdx, rax, Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 645 }
 646 
 647 
 648 void TemplateTable::baload() {
 649   transition(itos, itos);
 650   // rdx: array
 651   index_check(rdx, rax);  // kills rbx,
 652   // rax,: index
 653   // can do better code for P5 - fix this at some point
 654   __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
 655   __ mov(rax, rbx);
 656 }
 657 
 658 
 659 void TemplateTable::caload() {
 660   transition(itos, itos);
 661   // rdx: array
 662   index_check(rdx, rax);  // kills rbx,
 663   // rax,: index
 664   // can do better code for P5 - may want to improve this at some point
 665   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 666   __ mov(rax, rbx);
 667 }
 668 
 669 // iload followed by caload frequent pair
 670 void TemplateTable::fast_icaload() {
 671   transition(vtos, itos);
 672   // load index out of locals
 673   locals_index(rbx);
 674   __ movl(rax, iaddress(rbx));
 675   debug_only(__ verify_local_tag(frame::TagValue, rbx));
 676 
 677   // rdx: array
 678   index_check(rdx, rax);
 679   // rax,: index
 680   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 681   __ mov(rax, rbx);
 682 }
 683 
 684 void TemplateTable::saload() {
 685   transition(itos, itos);
 686   // rdx: array
 687   index_check(rdx, rax);  // kills rbx,
 688   // rax,: index
 689   // can do better code for P5 - may want to improve this at some point
 690   __ load_signed_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
 691   __ mov(rax, rbx);
 692 }
 693 
 694 
 695 void TemplateTable::iload(int n) {
 696   transition(vtos, itos);
 697   __ movl(rax, iaddress(n));
 698   debug_only(__ verify_local_tag(frame::TagValue, n));
 699 }
 700 
 701 
 702 void TemplateTable::lload(int n) {
 703   transition(vtos, ltos);
 704   __ movptr(rax, laddress(n));
 705   NOT_LP64(__ movptr(rdx, haddress(n)));
 706   debug_only(__ verify_local_tag(frame::TagCategory2, n));
 707 }
 708 
 709 
 710 void TemplateTable::fload(int n) {
 711   transition(vtos, ftos);
 712   __ fld_s(faddress(n));
 713   debug_only(__ verify_local_tag(frame::TagValue, n));
 714 }
 715 
 716 
 717 void TemplateTable::dload(int n) {
 718   transition(vtos, dtos);
 719   if (TaggedStackInterpreter) {
 720     // Get double out of locals array, onto temp stack and load with
 721     // float instruction into ST0
 722     __ movl(rax, laddress(n));
 723     __ movl(rdx, haddress(n));
 724     __ push(rdx);  // push hi first
 725     __ push(rax);
 726     __ fld_d(Address(rsp, 0));
 727     __ addptr(rsp, 2*wordSize);  // reset rsp
 728     debug_only(__ verify_local_tag(frame::TagCategory2, n));
 729   } else {
 730     __ fld_d(daddress(n));
 731   }
 732 }
 733 
 734 
 735 void TemplateTable::aload(int n) {
 736   transition(vtos, atos);
 737   __ movptr(rax, aaddress(n));
 738   debug_only(__ verify_local_tag(frame::TagReference, n));
 739 }
 740 
 741 
 742 void TemplateTable::aload_0() {
 743   transition(vtos, atos);
 744   // According to bytecode histograms, the pairs:
 745   //
 746   // _aload_0, _fast_igetfield
 747   // _aload_0, _fast_agetfield
 748   // _aload_0, _fast_fgetfield
 749   //
 750   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
 751   // bytecode checks if the next bytecode is either _fast_igetfield,
 752   // _fast_agetfield or _fast_fgetfield and then rewrites the
 753   // current bytecode into a pair bytecode; otherwise it rewrites the current
 754   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
 755   //
 756   // Note: If the next bytecode is _getfield, the rewrite must be delayed,
 757   //       otherwise we may miss an opportunity for a pair.
 758   //
 759   // Also rewrite frequent pairs
 760   //   aload_0, aload_1
 761   //   aload_0, iload_1
 762   // These bytecodes with a small amount of code are most profitable to rewrite
 763   if (RewriteFrequentPairs) {
 764     Label rewrite, done;
 765     // get next byte
 766     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 767 
 768     // do actual aload_0
 769     aload(0);
 770 
 771     // if _getfield then wait with rewrite
 772     __ cmpl(rbx, Bytecodes::_getfield);
 773     __ jcc(Assembler::equal, done);
 774 
 775     // if _igetfield then reqrite to _fast_iaccess_0
 776     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 777     __ cmpl(rbx, Bytecodes::_fast_igetfield);
 778     __ movl(rcx, Bytecodes::_fast_iaccess_0);
 779     __ jccb(Assembler::equal, rewrite);
 780 
 781     // if _agetfield then reqrite to _fast_aaccess_0
 782     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 783     __ cmpl(rbx, Bytecodes::_fast_agetfield);
 784     __ movl(rcx, Bytecodes::_fast_aaccess_0);
 785     __ jccb(Assembler::equal, rewrite);
 786 
 787     // if _fgetfield then reqrite to _fast_faccess_0
 788     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 789     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
 790     __ movl(rcx, Bytecodes::_fast_faccess_0);
 791     __ jccb(Assembler::equal, rewrite);
 792 
 793     // else rewrite to _fast_aload0
 794     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
 795     __ movl(rcx, Bytecodes::_fast_aload_0);
 796 
 797     // rewrite
 798     // rcx: fast bytecode
 799     __ bind(rewrite);
 800     patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false);
 801 
 802     __ bind(done);
 803   } else {
 804     aload(0);
 805   }
 806 }
 807 
 808 void TemplateTable::istore() {
 809   transition(itos, vtos);
 810   locals_index(rbx);
 811   __ movl(iaddress(rbx), rax);
 812   __ tag_local(frame::TagValue, rbx);
 813 }
 814 
 815 
 816 void TemplateTable::lstore() {
 817   transition(ltos, vtos);
 818   locals_index(rbx);
 819   __ movptr(laddress(rbx), rax);
 820   NOT_LP64(__ movptr(haddress(rbx), rdx));
 821   __ tag_local(frame::TagCategory2, rbx);
 822 }
 823 
 824 
 825 void TemplateTable::fstore() {
 826   transition(ftos, vtos);
 827   locals_index(rbx);
 828   __ fstp_s(faddress(rbx));
 829   __ tag_local(frame::TagValue, rbx);
 830 }
 831 
 832 
 833 void TemplateTable::dstore() {
 834   transition(dtos, vtos);
 835   locals_index(rbx);
 836   if (TaggedStackInterpreter) {
 837     // Store double on stack and reload into locals nonadjacently
 838     __ subptr(rsp, 2 * wordSize);
 839     __ fstp_d(Address(rsp, 0));
 840     __ pop(rax);
 841     __ pop(rdx);
 842     __ movptr(laddress(rbx), rax);
 843     __ movptr(haddress(rbx), rdx);
 844     __ tag_local(frame::TagCategory2, rbx);
 845   } else {
 846     __ fstp_d(daddress(rbx));
 847   }
 848 }
 849 
 850 
 851 void TemplateTable::astore() {
 852   transition(vtos, vtos);
 853   __ pop_ptr(rax, rdx);   // will need to pop tag too
 854   locals_index(rbx);
 855   __ movptr(aaddress(rbx), rax);
 856   __ tag_local(rdx, rbx);    // need to store same tag in local may be returnAddr
 857 }
 858 
 859 
 860 void TemplateTable::wide_istore() {
 861   transition(vtos, vtos);
 862   __ pop_i(rax);
 863   locals_index_wide(rbx);
 864   __ movl(iaddress(rbx), rax);
 865   __ tag_local(frame::TagValue, rbx);
 866 }
 867 
 868 
 869 void TemplateTable::wide_lstore() {
 870   transition(vtos, vtos);
 871   __ pop_l(rax, rdx);
 872   locals_index_wide(rbx);
 873   __ movptr(laddress(rbx), rax);
 874   NOT_LP64(__ movl(haddress(rbx), rdx));
 875   __ tag_local(frame::TagCategory2, rbx);
 876 }
 877 
 878 
 879 void TemplateTable::wide_fstore() {
 880   wide_istore();
 881 }
 882 
 883 
 884 void TemplateTable::wide_dstore() {
 885   wide_lstore();
 886 }
 887 
 888 
 889 void TemplateTable::wide_astore() {
 890   transition(vtos, vtos);
 891   __ pop_ptr(rax, rdx);
 892   locals_index_wide(rbx);
 893   __ movptr(aaddress(rbx), rax);
 894   __ tag_local(rdx, rbx);
 895 }
 896 
 897 
 898 void TemplateTable::iastore() {
 899   transition(itos, vtos);
 900   __ pop_i(rbx);
 901   // rax,: value
 902   // rdx: array
 903   index_check(rdx, rbx);  // prefer index in rbx,
 904   // rbx,: index
 905   __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax);
 906 }
 907 
 908 
 909 void TemplateTable::lastore() {
 910   transition(ltos, vtos);
 911   __ pop_i(rbx);
 912   // rax,: low(value)
 913   // rcx: array
 914   // rdx: high(value)
 915   index_check(rcx, rbx);  // prefer index in rbx,
 916   // rbx,: index
 917   __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
 918   NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
 919 }
 920 
 921 
 922 void TemplateTable::fastore() {
 923   transition(ftos, vtos);
 924   __ pop_i(rbx);
 925   // rdx: array
 926   // st0: value
 927   index_check(rdx, rbx);  // prefer index in rbx,
 928   // rbx,: index
 929   __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 930 }
 931 
 932 
 933 void TemplateTable::dastore() {
 934   transition(dtos, vtos);
 935   __ pop_i(rbx);
 936   // rdx: array
 937   // st0: value
 938   index_check(rdx, rbx);  // prefer index in rbx,
 939   // rbx,: index
 940   __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 941 }
 942 
 943 
 944 void TemplateTable::aastore() {
 945   Label is_null, ok_is_subtype, done;
 946   transition(vtos, vtos);
 947   // stack: ..., array, index, value
 948   __ movptr(rax, at_tos());     // Value
 949   __ movl(rcx, at_tos_p1());  // Index
 950   __ movptr(rdx, at_tos_p2());  // Array
 951 
 952   Address element_address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 953   index_check_without_pop(rdx, rcx);      // kills rbx,
 954   // do array store check - check for NULL value first
 955   __ testptr(rax, rax);
 956   __ jcc(Assembler::zero, is_null);
 957 
 958   // Move subklass into EBX
 959   __ movptr(rbx, Address(rax, oopDesc::klass_offset_in_bytes()));
 960   // Move superklass into EAX
 961   __ movptr(rax, Address(rdx, oopDesc::klass_offset_in_bytes()));
 962   __ movptr(rax, Address(rax, sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes()));
 963   // Compress array+index*wordSize+12 into a single register.  Frees ECX.
 964   __ lea(rdx, element_address);
 965 
 966   // Generate subtype check.  Blows ECX.  Resets EDI to locals.
 967   // Superklass in EAX.  Subklass in EBX.
 968   __ gen_subtype_check( rbx, ok_is_subtype );
 969 
 970   // Come here on failure
 971   // object is at TOS
 972   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
 973 
 974   // Come here on success
 975   __ bind(ok_is_subtype);
 976 
 977   // Get the value to store
 978   __ movptr(rax, at_rsp());
 979   // and store it with appropriate barrier
 980   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
 981 
 982   __ jmp(done);
 983 
 984   // Have a NULL in EAX, EDX=array, ECX=index.  Store NULL at ary[idx]
 985   __ bind(is_null);
 986   __ profile_null_seen(rbx);
 987 
 988   // Store NULL, (noreg means NULL to do_oop_store)
 989   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
 990 
 991   // Pop stack arguments
 992   __ bind(done);
 993   __ addptr(rsp, 3 * Interpreter::stackElementSize());
 994 }
 995 
 996 
 997 void TemplateTable::bastore() {
 998   transition(itos, vtos);
 999   __ pop_i(rbx);
1000   // rax,: value
1001   // rdx: array
1002   index_check(rdx, rbx);  // prefer index in rbx,
1003   // rbx,: index
1004   __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax);
1005 }
1006 
1007 
1008 void TemplateTable::castore() {
1009   transition(itos, vtos);
1010   __ pop_i(rbx);
1011   // rax,: value
1012   // rdx: array
1013   index_check(rdx, rbx);  // prefer index in rbx,
1014   // rbx,: index
1015   __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax);
1016 }
1017 
1018 
1019 void TemplateTable::sastore() {
1020   castore();
1021 }
1022 
1023 
1024 void TemplateTable::istore(int n) {
1025   transition(itos, vtos);
1026   __ movl(iaddress(n), rax);
1027   __ tag_local(frame::TagValue, n);
1028 }
1029 
1030 
1031 void TemplateTable::lstore(int n) {
1032   transition(ltos, vtos);
1033   __ movptr(laddress(n), rax);
1034   NOT_LP64(__ movptr(haddress(n), rdx));
1035   __ tag_local(frame::TagCategory2, n);
1036 }
1037 
1038 
1039 void TemplateTable::fstore(int n) {
1040   transition(ftos, vtos);
1041   __ fstp_s(faddress(n));
1042   __ tag_local(frame::TagValue, n);
1043 }
1044 
1045 
1046 void TemplateTable::dstore(int n) {
1047   transition(dtos, vtos);
1048   if (TaggedStackInterpreter) {
1049     __ subptr(rsp, 2 * wordSize);
1050     __ fstp_d(Address(rsp, 0));
1051     __ pop(rax);
1052     __ pop(rdx);
1053     __ movl(laddress(n), rax);
1054     __ movl(haddress(n), rdx);
1055     __ tag_local(frame::TagCategory2, n);
1056   } else {
1057     __ fstp_d(daddress(n));
1058   }
1059 }
1060 
1061 
1062 void TemplateTable::astore(int n) {
1063   transition(vtos, vtos);
1064   __ pop_ptr(rax, rdx);
1065   __ movptr(aaddress(n), rax);
1066   __ tag_local(rdx, n);
1067 }
1068 
1069 
1070 void TemplateTable::pop() {
1071   transition(vtos, vtos);
1072   __ addptr(rsp, Interpreter::stackElementSize());
1073 }
1074 
1075 
1076 void TemplateTable::pop2() {
1077   transition(vtos, vtos);
1078   __ addptr(rsp, 2*Interpreter::stackElementSize());
1079 }
1080 
1081 
1082 void TemplateTable::dup() {
1083   transition(vtos, vtos);
1084   // stack: ..., a
1085   __ load_ptr_and_tag(0, rax, rdx);
1086   __ push_ptr(rax, rdx);
1087   // stack: ..., a, a
1088 }
1089 
1090 
1091 void TemplateTable::dup_x1() {
1092   transition(vtos, vtos);
1093   // stack: ..., a, b
1094   __ load_ptr_and_tag(0, rax, rdx);  // load b
1095   __ load_ptr_and_tag(1, rcx, rbx);  // load a
1096   __ store_ptr_and_tag(1, rax, rdx); // store b
1097   __ store_ptr_and_tag(0, rcx, rbx); // store a
1098   __ push_ptr(rax, rdx);             // push b
1099   // stack: ..., b, a, b
1100 }
1101 
1102 
1103 void TemplateTable::dup_x2() {
1104   transition(vtos, vtos);
1105   // stack: ..., a, b, c
1106   __ load_ptr_and_tag(0, rax, rdx);  // load c
1107   __ load_ptr_and_tag(2, rcx, rbx);  // load a
1108   __ store_ptr_and_tag(2, rax, rdx); // store c in a
1109   __ push_ptr(rax, rdx);             // push c
1110   // stack: ..., c, b, c, c
1111   __ load_ptr_and_tag(2, rax, rdx);  // load b
1112   __ store_ptr_and_tag(2, rcx, rbx); // store a in b
1113   // stack: ..., c, a, c, c
1114   __ store_ptr_and_tag(1, rax, rdx); // store b in c
1115   // stack: ..., c, a, b, c
1116 }
1117 
1118 
1119 void TemplateTable::dup2() {
1120   transition(vtos, vtos);
1121   // stack: ..., a, b
1122   __ load_ptr_and_tag(1, rax, rdx);  // load a
1123   __ push_ptr(rax, rdx);             // push a
1124   __ load_ptr_and_tag(1, rax, rdx);  // load b
1125   __ push_ptr(rax, rdx);             // push b
1126   // stack: ..., a, b, a, b
1127 }
1128 
1129 
1130 void TemplateTable::dup2_x1() {
1131   transition(vtos, vtos);
1132   // stack: ..., a, b, c
1133   __ load_ptr_and_tag(0, rcx, rbx);  // load c
1134   __ load_ptr_and_tag(1, rax, rdx);  // load b
1135   __ push_ptr(rax, rdx);             // push b
1136   __ push_ptr(rcx, rbx);             // push c
1137   // stack: ..., a, b, c, b, c
1138   __ store_ptr_and_tag(3, rcx, rbx); // store c in b
1139   // stack: ..., a, c, c, b, c
1140   __ load_ptr_and_tag(4, rcx, rbx);  // load a
1141   __ store_ptr_and_tag(2, rcx, rbx); // store a in 2nd c
1142   // stack: ..., a, c, a, b, c
1143   __ store_ptr_and_tag(4, rax, rdx); // store b in a
1144   // stack: ..., b, c, a, b, c
1145   // stack: ..., b, c, a, b, c
1146 }
1147 
1148 
1149 void TemplateTable::dup2_x2() {
1150   transition(vtos, vtos);
1151   // stack: ..., a, b, c, d
1152   __ load_ptr_and_tag(0, rcx, rbx);  // load d
1153   __ load_ptr_and_tag(1, rax, rdx);  // load c
1154   __ push_ptr(rax, rdx);             // push c
1155   __ push_ptr(rcx, rbx);             // push d
1156   // stack: ..., a, b, c, d, c, d
1157   __ load_ptr_and_tag(4, rax, rdx);  // load b
1158   __ store_ptr_and_tag(2, rax, rdx); // store b in d
1159   __ store_ptr_and_tag(4, rcx, rbx); // store d in b
1160   // stack: ..., a, d, c, b, c, d
1161   __ load_ptr_and_tag(5, rcx, rbx);  // load a
1162   __ load_ptr_and_tag(3, rax, rdx);  // load c
1163   __ store_ptr_and_tag(3, rcx, rbx); // store a in c
1164   __ store_ptr_and_tag(5, rax, rdx); // store c in a
1165   // stack: ..., c, d, a, b, c, d
1166   // stack: ..., c, d, a, b, c, d
1167 }
1168 
1169 
1170 void TemplateTable::swap() {
1171   transition(vtos, vtos);
1172   // stack: ..., a, b
1173   __ load_ptr_and_tag(1, rcx, rbx);  // load a
1174   __ load_ptr_and_tag(0, rax, rdx);  // load b
1175   __ store_ptr_and_tag(0, rcx, rbx); // store a in b
1176   __ store_ptr_and_tag(1, rax, rdx); // store b in a
1177   // stack: ..., b, a
1178 }
1179 
1180 
1181 void TemplateTable::iop2(Operation op) {
1182   transition(itos, itos);
1183   switch (op) {
1184     case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
1185     case sub  : __ mov(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1186     case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
1187     case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
1188     case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
1189     case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
1190     case shl  : __ mov(rcx, rax); __ pop_i(rax); __ shll (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
1191     case shr  : __ mov(rcx, rax); __ pop_i(rax); __ sarl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
1192     case ushr : __ mov(rcx, rax); __ pop_i(rax); __ shrl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
1193     default   : ShouldNotReachHere();
1194   }
1195 }
1196 
1197 
1198 void TemplateTable::lop2(Operation op) {
1199   transition(ltos, ltos);
1200   __ pop_l(rbx, rcx);
1201   switch (op) {
1202     case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
1203     case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx);
1204                __ mov(rax, rbx); __ mov(rdx, rcx); break;
1205     case _and: __ andl(rax, rbx); __ andl(rdx, rcx); break;
1206     case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break;
1207     case _xor: __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
1208     default : ShouldNotReachHere();
1209   }
1210 }
1211 
1212 
1213 void TemplateTable::idiv() {
1214   transition(itos, itos);
1215   __ mov(rcx, rax);
1216   __ pop_i(rax);
1217   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
1218   //       they are not equal, one could do a normal division (no correction
1219   //       needed), which may speed up this implementation for the common case.
1220   //       (see also JVM spec., p.243 & p.271)
1221   __ corrected_idivl(rcx);
1222 }
1223 
1224 
1225 void TemplateTable::irem() {
1226   transition(itos, itos);
1227   __ mov(rcx, rax);
1228   __ pop_i(rax);
1229   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
1230   //       they are not equal, one could do a normal division (no correction
1231   //       needed), which may speed up this implementation for the common case.
1232   //       (see also JVM spec., p.243 & p.271)
1233   __ corrected_idivl(rcx);
1234   __ mov(rax, rdx);
1235 }
1236 
1237 
1238 void TemplateTable::lmul() {
1239   transition(ltos, ltos);
1240   __ pop_l(rbx, rcx);
1241   __ push(rcx); __ push(rbx);
1242   __ push(rdx); __ push(rax);
1243   __ lmul(2 * wordSize, 0);
1244   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1245 }
1246 
1247 
1248 void TemplateTable::ldiv() {
1249   transition(ltos, ltos);
1250   __ pop_l(rbx, rcx);
1251   __ push(rcx); __ push(rbx);
1252   __ push(rdx); __ push(rax);
1253   // check if y = 0
1254   __ orl(rax, rdx);
1255   __ jump_cc(Assembler::zero,
1256              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1257   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1258   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1259 }
1260 
1261 
1262 void TemplateTable::lrem() {
1263   transition(ltos, ltos);
1264   __ pop_l(rbx, rcx);
1265   __ push(rcx); __ push(rbx);
1266   __ push(rdx); __ push(rax);
1267   // check if y = 0
1268   __ orl(rax, rdx);
1269   __ jump_cc(Assembler::zero,
1270              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1271   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1272   __ addptr(rsp, 4 * wordSize);
1273 }
1274 
1275 
1276 void TemplateTable::lshl() {
1277   transition(itos, ltos);
1278   __ movl(rcx, rax);                             // get shift count
1279   __ pop_l(rax, rdx);                            // get shift value
1280   __ lshl(rdx, rax);
1281 }
1282 
1283 
1284 void TemplateTable::lshr() {
1285   transition(itos, ltos);
1286   __ mov(rcx, rax);                              // get shift count
1287   __ pop_l(rax, rdx);                            // get shift value
1288   __ lshr(rdx, rax, true);
1289 }
1290 
1291 
1292 void TemplateTable::lushr() {
1293   transition(itos, ltos);
1294   __ mov(rcx, rax);                              // get shift count
1295   __ pop_l(rax, rdx);                            // get shift value
1296   __ lshr(rdx, rax);
1297 }
1298 
1299 
1300 void TemplateTable::fop2(Operation op) {
1301   transition(ftos, ftos);
1302   __ pop_ftos_to_rsp();  // pop ftos into rsp
1303   switch (op) {
1304     case add: __ fadd_s (at_rsp());                break;
1305     case sub: __ fsubr_s(at_rsp());                break;
1306     case mul: __ fmul_s (at_rsp());                break;
1307     case div: __ fdivr_s(at_rsp());                break;
1308     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
1309     default : ShouldNotReachHere();
1310   }
1311   __ f2ieee();
1312   __ pop(rax);  // pop float thing off
1313 }
1314 
1315 
1316 void TemplateTable::dop2(Operation op) {
1317   transition(dtos, dtos);
1318   __ pop_dtos_to_rsp();  // pop dtos into rsp
1319 
1320   switch (op) {
1321     case add: __ fadd_d (at_rsp());                break;
1322     case sub: __ fsubr_d(at_rsp());                break;
1323     case mul: {
1324       Label L_strict;
1325       Label L_join;
1326       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
1327       __ get_method(rcx);
1328       __ movl(rcx, access_flags);
1329       __ testl(rcx, JVM_ACC_STRICT);
1330       __ jccb(Assembler::notZero, L_strict);
1331       __ fmul_d (at_rsp());
1332       __ jmpb(L_join);
1333       __ bind(L_strict);
1334       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1335       __ fmulp();
1336       __ fmul_d (at_rsp());
1337       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1338       __ fmulp();
1339       __ bind(L_join);
1340       break;
1341     }
1342     case div: {
1343       Label L_strict;
1344       Label L_join;
1345       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
1346       __ get_method(rcx);
1347       __ movl(rcx, access_flags);
1348       __ testl(rcx, JVM_ACC_STRICT);
1349       __ jccb(Assembler::notZero, L_strict);
1350       __ fdivr_d(at_rsp());
1351       __ jmp(L_join);
1352       __ bind(L_strict);
1353       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1354       __ fmul_d (at_rsp());
1355       __ fdivrp();
1356       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1357       __ fmulp();
1358       __ bind(L_join);
1359       break;
1360     }
1361     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
1362     default : ShouldNotReachHere();
1363   }
1364   __ d2ieee();
1365   // Pop double precision number from rsp.
1366   __ pop(rax);
1367   __ pop(rdx);
1368 }
1369 
1370 
1371 void TemplateTable::ineg() {
1372   transition(itos, itos);
1373   __ negl(rax);
1374 }
1375 
1376 
1377 void TemplateTable::lneg() {
1378   transition(ltos, ltos);
1379   __ lneg(rdx, rax);
1380 }
1381 
1382 
1383 void TemplateTable::fneg() {
1384   transition(ftos, ftos);
1385   __ fchs();
1386 }
1387 
1388 
1389 void TemplateTable::dneg() {
1390   transition(dtos, dtos);
1391   __ fchs();
1392 }
1393 
1394 
1395 void TemplateTable::iinc() {
1396   transition(vtos, vtos);
1397   __ load_signed_byte(rdx, at_bcp(2));           // get constant
1398   locals_index(rbx);
1399   __ addl(iaddress(rbx), rdx);
1400 }
1401 
1402 
1403 void TemplateTable::wide_iinc() {
1404   transition(vtos, vtos);
1405   __ movl(rdx, at_bcp(4));                       // get constant
1406   locals_index_wide(rbx);
1407   __ bswapl(rdx);                                 // swap bytes & sign-extend constant
1408   __ sarl(rdx, 16);
1409   __ addl(iaddress(rbx), rdx);
1410   // Note: should probably use only one movl to get both
1411   //       the index and the constant -> fix this
1412 }
1413 
1414 
1415 void TemplateTable::convert() {
1416   // Checking
1417 #ifdef ASSERT
1418   { TosState tos_in  = ilgl;
1419     TosState tos_out = ilgl;
1420     switch (bytecode()) {
1421       case Bytecodes::_i2l: // fall through
1422       case Bytecodes::_i2f: // fall through
1423       case Bytecodes::_i2d: // fall through
1424       case Bytecodes::_i2b: // fall through
1425       case Bytecodes::_i2c: // fall through
1426       case Bytecodes::_i2s: tos_in = itos; break;
1427       case Bytecodes::_l2i: // fall through
1428       case Bytecodes::_l2f: // fall through
1429       case Bytecodes::_l2d: tos_in = ltos; break;
1430       case Bytecodes::_f2i: // fall through
1431       case Bytecodes::_f2l: // fall through
1432       case Bytecodes::_f2d: tos_in = ftos; break;
1433       case Bytecodes::_d2i: // fall through
1434       case Bytecodes::_d2l: // fall through
1435       case Bytecodes::_d2f: tos_in = dtos; break;
1436       default             : ShouldNotReachHere();
1437     }
1438     switch (bytecode()) {
1439       case Bytecodes::_l2i: // fall through
1440       case Bytecodes::_f2i: // fall through
1441       case Bytecodes::_d2i: // fall through
1442       case Bytecodes::_i2b: // fall through
1443       case Bytecodes::_i2c: // fall through
1444       case Bytecodes::_i2s: tos_out = itos; break;
1445       case Bytecodes::_i2l: // fall through
1446       case Bytecodes::_f2l: // fall through
1447       case Bytecodes::_d2l: tos_out = ltos; break;
1448       case Bytecodes::_i2f: // fall through
1449       case Bytecodes::_l2f: // fall through
1450       case Bytecodes::_d2f: tos_out = ftos; break;
1451       case Bytecodes::_i2d: // fall through
1452       case Bytecodes::_l2d: // fall through
1453       case Bytecodes::_f2d: tos_out = dtos; break;
1454       default             : ShouldNotReachHere();
1455     }
1456     transition(tos_in, tos_out);
1457   }
1458 #endif // ASSERT
1459 
1460   // Conversion
1461   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
1462   switch (bytecode()) {
1463     case Bytecodes::_i2l:
1464       __ extend_sign(rdx, rax);
1465       break;
1466     case Bytecodes::_i2f:
1467       __ push(rax);          // store int on tos
1468       __ fild_s(at_rsp());   // load int to ST0
1469       __ f2ieee();           // truncate to float size
1470       __ pop(rcx);           // adjust rsp
1471       break;
1472     case Bytecodes::_i2d:
1473       __ push(rax);          // add one slot for d2ieee()
1474       __ push(rax);          // store int on tos
1475       __ fild_s(at_rsp());   // load int to ST0
1476       __ d2ieee();           // truncate to double size
1477       __ pop(rcx);           // adjust rsp
1478       __ pop(rcx);
1479       break;
1480     case Bytecodes::_i2b:
1481       __ shll(rax, 24);      // truncate upper 24 bits
1482       __ sarl(rax, 24);      // and sign-extend byte
1483       LP64_ONLY(__ movsbl(rax, rax));
1484       break;
1485     case Bytecodes::_i2c:
1486       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
1487       LP64_ONLY(__ movzwl(rax, rax));
1488       break;
1489     case Bytecodes::_i2s:
1490       __ shll(rax, 16);      // truncate upper 16 bits
1491       __ sarl(rax, 16);      // and sign-extend short
1492       LP64_ONLY(__ movswl(rax, rax));
1493       break;
1494     case Bytecodes::_l2i:
1495       /* nothing to do */
1496       break;
1497     case Bytecodes::_l2f:
1498       __ push(rdx);          // store long on tos
1499       __ push(rax);
1500       __ fild_d(at_rsp());   // load long to ST0
1501       __ f2ieee();           // truncate to float size
1502       __ pop(rcx);           // adjust rsp
1503       __ pop(rcx);
1504       break;
1505     case Bytecodes::_l2d:
1506       __ push(rdx);          // store long on tos
1507       __ push(rax);
1508       __ fild_d(at_rsp());   // load long to ST0
1509       __ d2ieee();           // truncate to double size
1510       __ pop(rcx);           // adjust rsp
1511       __ pop(rcx);
1512       break;
1513     case Bytecodes::_f2i:
1514       __ push(rcx);          // reserve space for argument
1515       __ fstp_s(at_rsp());   // pass float argument on stack
1516       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1517       break;
1518     case Bytecodes::_f2l:
1519       __ push(rcx);          // reserve space for argument
1520       __ fstp_s(at_rsp());   // pass float argument on stack
1521       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1522       break;
1523     case Bytecodes::_f2d:
1524       /* nothing to do */
1525       break;
1526     case Bytecodes::_d2i:
1527       __ push(rcx);          // reserve space for argument
1528       __ push(rcx);
1529       __ fstp_d(at_rsp());   // pass double argument on stack
1530       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
1531       break;
1532     case Bytecodes::_d2l:
1533       __ push(rcx);          // reserve space for argument
1534       __ push(rcx);
1535       __ fstp_d(at_rsp());   // pass double argument on stack
1536       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
1537       break;
1538     case Bytecodes::_d2f:
1539       __ push(rcx);          // reserve space for f2ieee()
1540       __ f2ieee();           // truncate to float size
1541       __ pop(rcx);           // adjust rsp
1542       break;
1543     default             :
1544       ShouldNotReachHere();
1545   }
1546 }
1547 
1548 
1549 void TemplateTable::lcmp() {
1550   transition(ltos, itos);
1551   // y = rdx:rax
1552   __ pop_l(rbx, rcx);             // get x = rcx:rbx
1553   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
1554   __ mov(rax, rcx);
1555 }
1556 
1557 
1558 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1559   if (is_float) {
1560     __ pop_ftos_to_rsp();
1561     __ fld_s(at_rsp());
1562   } else {
1563     __ pop_dtos_to_rsp();
1564     __ fld_d(at_rsp());
1565     __ pop(rdx);
1566   }
1567   __ pop(rcx);
1568   __ fcmp2int(rax, unordered_result < 0);
1569 }
1570 
1571 
1572 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1573   __ get_method(rcx);           // ECX holds method
1574   __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count
1575 
1576   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset();
1577   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset();
1578   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
1579 
1580   // Load up EDX with the branch displacement
1581   __ movl(rdx, at_bcp(1));
1582   __ bswapl(rdx);
1583   if (!is_wide) __ sarl(rdx, 16);
1584   LP64_ONLY(__ movslq(rdx, rdx));
1585 
1586 
1587   // Handle all the JSR stuff here, then exit.
1588   // It's much shorter and cleaner than intermingling with the
1589   // non-JSR normal-branch stuff occurring below.
1590   if (is_jsr) {
1591     // Pre-load the next target bytecode into EBX
1592     __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0));
1593 
1594     // compute return address as bci in rax,
1595     __ lea(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(constMethodOopDesc::codes_offset())));
1596     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
1597     // Adjust the bcp in RSI by the displacement in EDX
1598     __ addptr(rsi, rdx);
1599     // Push return address
1600     __ push_i(rax);
1601     // jsr returns vtos
1602     __ dispatch_only_noverify(vtos);
1603     return;
1604   }
1605 
1606   // Normal (non-jsr) branch handling
1607 
1608   // Adjust the bcp in RSI by the displacement in EDX
1609   __ addptr(rsi, rdx);
1610 
1611   assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
1612   Label backedge_counter_overflow;
1613   Label profile_method;
1614   Label dispatch;
1615   if (UseLoopCounter) {
1616     // increment backedge counter for backward branches
1617     // rax,: MDO
1618     // rbx,: MDO bumped taken-count
1619     // rcx: method
1620     // rdx: target offset
1621     // rsi: target bcp
1622     // rdi: locals pointer
1623     __ testl(rdx, rdx);             // check if forward or backward branch
1624     __ jcc(Assembler::positive, dispatch); // count only if backward branch
1625 
1626     // increment counter
1627     __ movl(rax, Address(rcx, be_offset));        // load backedge counter
1628     __ incrementl(rax, InvocationCounter::count_increment); // increment counter
1629     __ movl(Address(rcx, be_offset), rax);        // store counter
1630 
1631     __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
1632     __ andl(rax, InvocationCounter::count_mask_value);     // and the status bits
1633     __ addl(rax, Address(rcx, be_offset));        // add both counters
1634 
1635     if (ProfileInterpreter) {
1636       // Test to see if we should create a method data oop
1637       __ cmp32(rax,
1638                ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
1639       __ jcc(Assembler::less, dispatch);
1640 
1641       // if no method data exists, go to profile method
1642       __ test_method_data_pointer(rax, profile_method);
1643 
1644       if (UseOnStackReplacement) {
1645         // check for overflow against rbx, which is the MDO taken count
1646         __ cmp32(rbx,
1647                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1648         __ jcc(Assembler::below, dispatch);
1649 
1650         // When ProfileInterpreter is on, the backedge_count comes from the
1651         // methodDataOop, which value does not get reset on the call to
1652         // frequency_counter_overflow().  To avoid excessive calls to the overflow
1653         // routine while the method is being compiled, add a second test to make
1654         // sure the overflow function is called only once every overflow_frequency.
1655         const int overflow_frequency = 1024;
1656         __ andptr(rbx, overflow_frequency-1);
1657         __ jcc(Assembler::zero, backedge_counter_overflow);
1658 
1659       }
1660     } else {
1661       if (UseOnStackReplacement) {
1662         // check for overflow against rax, which is the sum of the counters
1663         __ cmp32(rax,
1664                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1665         __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
1666 
1667       }
1668     }
1669     __ bind(dispatch);
1670   }
1671 
1672   // Pre-load the next target bytecode into EBX
1673   __ load_unsigned_byte(rbx, Address(rsi, 0));
1674 
1675   // continue with the bytecode @ target
1676   // rax,: return bci for jsr's, unused otherwise
1677   // rbx,: target bytecode
1678   // rsi: target bcp
1679   __ dispatch_only(vtos);
1680 
1681   if (UseLoopCounter) {
1682     if (ProfileInterpreter) {
1683       // Out-of-line code to allocate method data oop.
1684       __ bind(profile_method);
1685       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), rsi);
1686       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
1687       __ movptr(rcx, Address(rbp, method_offset));
1688       __ movptr(rcx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
1689       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rcx);
1690       __ test_method_data_pointer(rcx, dispatch);
1691       // offset non-null mdp by MDO::data_offset() + IR::profile_method()
1692       __ addptr(rcx, in_bytes(methodDataOopDesc::data_offset()));
1693       __ addptr(rcx, rax);
1694       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rcx);
1695       __ jmp(dispatch);
1696     }
1697 
1698     if (UseOnStackReplacement) {
1699 
1700       // invocation counter overflow
1701       __ bind(backedge_counter_overflow);
1702       __ negptr(rdx);
1703       __ addptr(rdx, rsi);        // branch bcp
1704       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx);
1705       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
1706 
1707       // rax,: osr nmethod (osr ok) or NULL (osr not possible)
1708       // rbx,: target bytecode
1709       // rdx: scratch
1710       // rdi: locals pointer
1711       // rsi: bcp
1712       __ testptr(rax, rax);                      // test result
1713       __ jcc(Assembler::zero, dispatch);         // no osr if null
1714       // nmethod may have been invalidated (VM may block upon call_VM return)
1715       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
1716       __ cmpl(rcx, InvalidOSREntryBci);
1717       __ jcc(Assembler::equal, dispatch);
1718 
1719       // We have the address of an on stack replacement routine in rax,
1720       // We need to prepare to execute the OSR method. First we must
1721       // migrate the locals and monitors off of the stack.
1722 
1723       __ mov(rbx, rax);                             // save the nmethod
1724 
1725       const Register thread = rcx;
1726       __ get_thread(thread);
1727       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1728       // rax, is OSR buffer, move it to expected parameter location
1729       __ mov(rcx, rax);
1730 
1731       // pop the interpreter frame
1732       __ movptr(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1733       __ leave();                                // remove frame anchor
1734       __ pop(rdi);                               // get return address
1735       __ mov(rsp, rdx);                          // set sp to sender sp
1736 
1737 
1738       Label skip;
1739       Label chkint;
1740 
1741       // The interpreter frame we have removed may be returning to
1742       // either the callstub or the interpreter. Since we will
1743       // now be returning from a compiled (OSR) nmethod we must
1744       // adjust the return to the return were it can handler compiled
1745       // results and clean the fpu stack. This is very similar to
1746       // what a i2c adapter must do.
1747 
1748       // Are we returning to the call stub?
1749 
1750       __ cmp32(rdi, ExternalAddress(StubRoutines::_call_stub_return_address));
1751       __ jcc(Assembler::notEqual, chkint);
1752 
1753       // yes adjust to the specialized call stub  return.
1754       assert(StubRoutines::x86::get_call_stub_compiled_return() != NULL, "must be set");
1755       __ lea(rdi, ExternalAddress(StubRoutines::x86::get_call_stub_compiled_return()));
1756       __ jmp(skip);
1757 
1758       __ bind(chkint);
1759 
1760       // Are we returning to the interpreter? Look for sentinel
1761 
1762       __ cmpl(Address(rdi, -2*wordSize), Interpreter::return_sentinel);
1763       __ jcc(Assembler::notEqual, skip);
1764 
1765       // Adjust to compiled return back to interpreter
1766 
1767       __ movptr(rdi, Address(rdi, -wordSize));
1768       __ bind(skip);
1769 
1770       // Align stack pointer for compiled code (note that caller is
1771       // responsible for undoing this fixup by remembering the old SP
1772       // in an rbp,-relative location)
1773       __ andptr(rsp, -(StackAlignmentInBytes));
1774 
1775       // push the (possibly adjusted) return address
1776       __ push(rdi);
1777 
1778       // and begin the OSR nmethod
1779       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
1780     }
1781   }
1782 }
1783 
1784 
1785 void TemplateTable::if_0cmp(Condition cc) {
1786   transition(itos, vtos);
1787   // assume branch is more often taken than not (loops use backward branches)
1788   Label not_taken;
1789   __ testl(rax, rax);
1790   __ jcc(j_not(cc), not_taken);
1791   branch(false, false);
1792   __ bind(not_taken);
1793   __ profile_not_taken_branch(rax);
1794 }
1795 
1796 
1797 void TemplateTable::if_icmp(Condition cc) {
1798   transition(itos, vtos);
1799   // assume branch is more often taken than not (loops use backward branches)
1800   Label not_taken;
1801   __ pop_i(rdx);
1802   __ cmpl(rdx, rax);
1803   __ jcc(j_not(cc), not_taken);
1804   branch(false, false);
1805   __ bind(not_taken);
1806   __ profile_not_taken_branch(rax);
1807 }
1808 
1809 
1810 void TemplateTable::if_nullcmp(Condition cc) {
1811   transition(atos, vtos);
1812   // assume branch is more often taken than not (loops use backward branches)
1813   Label not_taken;
1814   __ testptr(rax, rax);
1815   __ jcc(j_not(cc), not_taken);
1816   branch(false, false);
1817   __ bind(not_taken);
1818   __ profile_not_taken_branch(rax);
1819 }
1820 
1821 
1822 void TemplateTable::if_acmp(Condition cc) {
1823   transition(atos, vtos);
1824   // assume branch is more often taken than not (loops use backward branches)
1825   Label not_taken;
1826   __ pop_ptr(rdx);
1827   __ cmpptr(rdx, rax);
1828   __ jcc(j_not(cc), not_taken);
1829   branch(false, false);
1830   __ bind(not_taken);
1831   __ profile_not_taken_branch(rax);
1832 }
1833 
1834 
1835 void TemplateTable::ret() {
1836   transition(vtos, vtos);
1837   locals_index(rbx);
1838   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
1839   __ profile_ret(rbx, rcx);
1840   __ get_method(rax);
1841   __ movptr(rsi, Address(rax, methodOopDesc::const_offset()));
1842   __ lea(rsi, Address(rsi, rbx, Address::times_1,
1843                       constMethodOopDesc::codes_offset()));
1844   __ dispatch_next(vtos);
1845 }
1846 
1847 
1848 void TemplateTable::wide_ret() {
1849   transition(vtos, vtos);
1850   locals_index_wide(rbx);
1851   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
1852   __ profile_ret(rbx, rcx);
1853   __ get_method(rax);
1854   __ movptr(rsi, Address(rax, methodOopDesc::const_offset()));
1855   __ lea(rsi, Address(rsi, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
1856   __ dispatch_next(vtos);
1857 }
1858 
1859 
1860 void TemplateTable::tableswitch() {
1861   Label default_case, continue_execution;
1862   transition(itos, vtos);
1863   // align rsi
1864   __ lea(rbx, at_bcp(wordSize));
1865   __ andptr(rbx, -wordSize);
1866   // load lo & hi
1867   __ movl(rcx, Address(rbx, 1 * wordSize));
1868   __ movl(rdx, Address(rbx, 2 * wordSize));
1869   __ bswapl(rcx);
1870   __ bswapl(rdx);
1871   // check against lo & hi
1872   __ cmpl(rax, rcx);
1873   __ jccb(Assembler::less, default_case);
1874   __ cmpl(rax, rdx);
1875   __ jccb(Assembler::greater, default_case);
1876   // lookup dispatch offset
1877   __ subl(rax, rcx);
1878   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
1879   __ profile_switch_case(rax, rbx, rcx);
1880   // continue execution
1881   __ bind(continue_execution);
1882   __ bswapl(rdx);
1883   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
1884   __ addptr(rsi, rdx);
1885   __ dispatch_only(vtos);
1886   // handle default
1887   __ bind(default_case);
1888   __ profile_switch_default(rax);
1889   __ movl(rdx, Address(rbx, 0));
1890   __ jmp(continue_execution);
1891 }
1892 
1893 
1894 void TemplateTable::lookupswitch() {
1895   transition(itos, itos);
1896   __ stop("lookupswitch bytecode should have been rewritten");
1897 }
1898 
1899 
1900 void TemplateTable::fast_linearswitch() {
1901   transition(itos, vtos);
1902   Label loop_entry, loop, found, continue_execution;
1903   // bswapl rax, so we can avoid bswapping the table entries
1904   __ bswapl(rax);
1905   // align rsi
1906   __ lea(rbx, at_bcp(wordSize));                // btw: should be able to get rid of this instruction (change offsets below)
1907   __ andptr(rbx, -wordSize);
1908   // set counter
1909   __ movl(rcx, Address(rbx, wordSize));
1910   __ bswapl(rcx);
1911   __ jmpb(loop_entry);
1912   // table search
1913   __ bind(loop);
1914   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize));
1915   __ jccb(Assembler::equal, found);
1916   __ bind(loop_entry);
1917   __ decrementl(rcx);
1918   __ jcc(Assembler::greaterEqual, loop);
1919   // default case
1920   __ profile_switch_default(rax);
1921   __ movl(rdx, Address(rbx, 0));
1922   __ jmpb(continue_execution);
1923   // entry found -> get offset
1924   __ bind(found);
1925   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize));
1926   __ profile_switch_case(rcx, rax, rbx);
1927   // continue execution
1928   __ bind(continue_execution);
1929   __ bswapl(rdx);
1930   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
1931   __ addptr(rsi, rdx);
1932   __ dispatch_only(vtos);
1933 }
1934 
1935 
1936 void TemplateTable::fast_binaryswitch() {
1937   transition(itos, vtos);
1938   // Implementation using the following core algorithm:
1939   //
1940   // int binary_search(int key, LookupswitchPair* array, int n) {
1941   //   // Binary search according to "Methodik des Programmierens" by
1942   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1943   //   int i = 0;
1944   //   int j = n;
1945   //   while (i+1 < j) {
1946   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1947   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1948   //     // where a stands for the array and assuming that the (inexisting)
1949   //     // element a[n] is infinitely big.
1950   //     int h = (i + j) >> 1;
1951   //     // i < h < j
1952   //     if (key < array[h].fast_match()) {
1953   //       j = h;
1954   //     } else {
1955   //       i = h;
1956   //     }
1957   //   }
1958   //   // R: a[i] <= key < a[i+1] or Q
1959   //   // (i.e., if key is within array, i is the correct index)
1960   //   return i;
1961   // }
1962 
1963   // register allocation
1964   const Register key   = rax;                    // already set (tosca)
1965   const Register array = rbx;
1966   const Register i     = rcx;
1967   const Register j     = rdx;
1968   const Register h     = rdi;                    // needs to be restored
1969   const Register temp  = rsi;
1970   // setup array
1971   __ save_bcp();
1972 
1973   __ lea(array, at_bcp(3*wordSize));             // btw: should be able to get rid of this instruction (change offsets below)
1974   __ andptr(array, -wordSize);
1975   // initialize i & j
1976   __ xorl(i, i);                                 // i = 0;
1977   __ movl(j, Address(array, -wordSize));         // j = length(array);
1978   // Convert j into native byteordering
1979   __ bswapl(j);
1980   // and start
1981   Label entry;
1982   __ jmp(entry);
1983 
1984   // binary search loop
1985   { Label loop;
1986     __ bind(loop);
1987     // int h = (i + j) >> 1;
1988     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
1989     __ sarl(h, 1);                               // h = (i + j) >> 1;
1990     // if (key < array[h].fast_match()) {
1991     //   j = h;
1992     // } else {
1993     //   i = h;
1994     // }
1995     // Convert array[h].match to native byte-ordering before compare
1996     __ movl(temp, Address(array, h, Address::times_8, 0*wordSize));
1997     __ bswapl(temp);
1998     __ cmpl(key, temp);
1999     if (VM_Version::supports_cmov()) {
2000       __ cmovl(Assembler::less        , j, h);   // j = h if (key <  array[h].fast_match())
2001       __ cmovl(Assembler::greaterEqual, i, h);   // i = h if (key >= array[h].fast_match())
2002     } else {
2003       Label set_i, end_of_if;
2004       __ jccb(Assembler::greaterEqual, set_i);     // {
2005       __ mov(j, h);                                //   j = h;
2006       __ jmp(end_of_if);                           // }
2007       __ bind(set_i);                              // else {
2008       __ mov(i, h);                                //   i = h;
2009       __ bind(end_of_if);                          // }
2010     }
2011     // while (i+1 < j)
2012     __ bind(entry);
2013     __ leal(h, Address(i, 1));                   // i+1
2014     __ cmpl(h, j);                               // i+1 < j
2015     __ jcc(Assembler::less, loop);
2016   }
2017 
2018   // end of binary search, result index is i (must check again!)
2019   Label default_case;
2020   // Convert array[i].match to native byte-ordering before compare
2021   __ movl(temp, Address(array, i, Address::times_8, 0*wordSize));
2022   __ bswapl(temp);
2023   __ cmpl(key, temp);
2024   __ jcc(Assembler::notEqual, default_case);
2025 
2026   // entry found -> j = offset
2027   __ movl(j , Address(array, i, Address::times_8, 1*wordSize));
2028   __ profile_switch_case(i, key, array);
2029   __ bswapl(j);
2030   LP64_ONLY(__ movslq(j, j));
2031   __ restore_bcp();
2032   __ restore_locals();                           // restore rdi
2033   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
2034 
2035   __ addptr(rsi, j);
2036   __ dispatch_only(vtos);
2037 
2038   // default case -> j = default offset
2039   __ bind(default_case);
2040   __ profile_switch_default(i);
2041   __ movl(j, Address(array, -2*wordSize));
2042   __ bswapl(j);
2043   LP64_ONLY(__ movslq(j, j));
2044   __ restore_bcp();
2045   __ restore_locals();                           // restore rdi
2046   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
2047   __ addptr(rsi, j);
2048   __ dispatch_only(vtos);
2049 }
2050 
2051 
2052 void TemplateTable::_return(TosState state) {
2053   transition(state, state);
2054   assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation
2055 
2056   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2057     assert(state == vtos, "only valid state");
2058     __ movptr(rax, aaddress(0));
2059     __ movptr(rdi, Address(rax, oopDesc::klass_offset_in_bytes()));
2060     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
2061     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2062     Label skip_register_finalizer;
2063     __ jcc(Assembler::zero, skip_register_finalizer);
2064 
2065     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax);
2066 
2067     __ bind(skip_register_finalizer);
2068   }
2069 
2070   __ remove_activation(state, rsi);
2071   __ jmp(rsi);
2072 }
2073 
2074 
2075 // ----------------------------------------------------------------------------
2076 // Volatile variables demand their effects be made known to all CPU's in
2077 // order.  Store buffers on most chips allow reads & writes to reorder; the
2078 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
2079 // memory barrier (i.e., it's not sufficient that the interpreter does not
2080 // reorder volatile references, the hardware also must not reorder them).
2081 //
2082 // According to the new Java Memory Model (JMM):
2083 // (1) All volatiles are serialized wrt to each other.
2084 // ALSO reads & writes act as aquire & release, so:
2085 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
2086 // the read float up to before the read.  It's OK for non-volatile memory refs
2087 // that happen before the volatile read to float down below it.
2088 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
2089 // that happen BEFORE the write float down to after the write.  It's OK for
2090 // non-volatile memory refs that happen after the volatile write to float up
2091 // before it.
2092 //
2093 // We only put in barriers around volatile refs (they are expensive), not
2094 // _between_ memory refs (that would require us to track the flavor of the
2095 // previous memory refs).  Requirements (2) and (3) require some barriers
2096 // before volatile stores and after volatile loads.  These nearly cover
2097 // requirement (1) but miss the volatile-store-volatile-load case.  This final
2098 // case is placed after volatile-stores although it could just as well go
2099 // before volatile-loads.
2100 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
2101   // Helper function to insert a is-volatile test and memory barrier
2102   if( !os::is_MP() ) return;    // Not needed on single CPU
2103   __ membar(order_constraint);
2104 }
2105 
2106 void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register index) {
2107   assert(byte_no == 1 || byte_no == 2, "byte_no out of range");
2108   bool is_invokedynamic = (bytecode() == Bytecodes::_invokedynamic);
2109 
2110   Register temp = rbx;
2111 
2112   assert_different_registers(Rcache, index, temp);
2113 
2114   const int shift_count = (1 + byte_no)*BitsPerByte;
2115   Label resolved;
2116   __ get_cache_and_index_at_bcp(Rcache, index, 1, is_invokedynamic);
2117   if (is_invokedynamic) {
2118     // we are resolved if the f1 field contains a non-null CallSite object
2119     __ cmpptr(Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()), (int32_t) NULL_WORD);
2120     __ jcc(Assembler::notEqual, resolved);
2121   } else {
2122     __ movl(temp, Address(Rcache, index, Address::times_4, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
2123     __ shrl(temp, shift_count);
2124     // have we resolved this bytecode?
2125     __ andl(temp, 0xFF);
2126     __ cmpl(temp, (int)bytecode());
2127     __ jcc(Assembler::equal, resolved);
2128   }
2129 
2130   // resolve first time through
2131   address entry;
2132   switch (bytecode()) {
2133     case Bytecodes::_getstatic      : // fall through
2134     case Bytecodes::_putstatic      : // fall through
2135     case Bytecodes::_getfield       : // fall through
2136     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
2137     case Bytecodes::_invokevirtual  : // fall through
2138     case Bytecodes::_invokespecial  : // fall through
2139     case Bytecodes::_invokestatic   : // fall through
2140     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
2141     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break;
2142     default                         : ShouldNotReachHere();                                 break;
2143   }
2144   __ movl(temp, (int)bytecode());
2145   __ call_VM(noreg, entry, temp);
2146   // Update registers with resolved info
2147   __ get_cache_and_index_at_bcp(Rcache, index, 1, is_invokedynamic);
2148   __ bind(resolved);
2149 }
2150 
2151 
2152 // The cache and index registers must be set before call
2153 void TemplateTable::load_field_cp_cache_entry(Register obj,
2154                                               Register cache,
2155                                               Register index,
2156                                               Register off,
2157                                               Register flags,
2158                                               bool is_static = false) {
2159   assert_different_registers(cache, index, flags, off);
2160 
2161   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2162   // Field offset
2163   __ movptr(off, Address(cache, index, Address::times_ptr,
2164                          in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset())));
2165   // Flags
2166   __ movl(flags, Address(cache, index, Address::times_ptr,
2167            in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset())));
2168 
2169   // klass     overwrite register
2170   if (is_static) {
2171     __ movptr(obj, Address(cache, index, Address::times_ptr,
2172                            in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset())));
2173   }
2174 }
2175 
2176 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2177                                                Register method,
2178                                                Register itable_index,
2179                                                Register flags,
2180                                                bool is_invokevirtual,
2181                                                bool is_invokevfinal /*unused*/) {
2182   // setup registers
2183   const Register cache = rcx;
2184   const Register index = rdx;
2185   assert_different_registers(method, flags);
2186   assert_different_registers(method, cache, index);
2187   assert_different_registers(itable_index, flags);
2188   assert_different_registers(itable_index, cache, index);
2189   // determine constant pool cache field offsets
2190   const int method_offset = in_bytes(
2191     constantPoolCacheOopDesc::base_offset() +
2192       (is_invokevirtual
2193        ? ConstantPoolCacheEntry::f2_offset()
2194        : ConstantPoolCacheEntry::f1_offset()
2195       )
2196     );
2197   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
2198                                     ConstantPoolCacheEntry::flags_offset());
2199   // access constant pool cache fields
2200   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
2201                                     ConstantPoolCacheEntry::f2_offset());
2202 
2203   resolve_cache_and_index(byte_no, cache, index);
2204 
2205   __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
2206   if (itable_index != noreg) {
2207     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2208   }
2209   __ movl(flags , Address(cache, index, Address::times_ptr, flags_offset ));
2210 }
2211 
2212 
2213 // The registers cache and index expected to be set before call.
2214 // Correct values of the cache and index registers are preserved.
2215 void TemplateTable::jvmti_post_field_access(Register cache,
2216                                             Register index,
2217                                             bool is_static,
2218                                             bool has_tos) {
2219   if (JvmtiExport::can_post_field_access()) {
2220     // Check to see if a field access watch has been set before we take
2221     // the time to call into the VM.
2222     Label L1;
2223     assert_different_registers(cache, index, rax);
2224     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2225     __ testl(rax,rax);
2226     __ jcc(Assembler::zero, L1);
2227 
2228     // cache entry pointer
2229     __ addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
2230     __ shll(index, LogBytesPerWord);
2231     __ addptr(cache, index);
2232     if (is_static) {
2233       __ xorptr(rax, rax);      // NULL object reference
2234     } else {
2235       __ pop(atos);         // Get the object
2236       __ verify_oop(rax);
2237       __ push(atos);        // Restore stack state
2238     }
2239     // rax,:   object pointer or NULL
2240     // cache: cache entry pointer
2241     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2242                rax, cache);
2243     __ get_cache_and_index_at_bcp(cache, index, 1);
2244     __ bind(L1);
2245   }
2246 }
2247 
2248 void TemplateTable::pop_and_check_object(Register r) {
2249   __ pop_ptr(r);
2250   __ null_check(r);  // for field access must check obj.
2251   __ verify_oop(r);
2252 }
2253 
2254 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2255   transition(vtos, vtos);
2256 
2257   const Register cache = rcx;
2258   const Register index = rdx;
2259   const Register obj   = rcx;
2260   const Register off   = rbx;
2261   const Register flags = rax;
2262 
2263   resolve_cache_and_index(byte_no, cache, index);
2264   jvmti_post_field_access(cache, index, is_static, false);
2265   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2266 
2267   if (!is_static) pop_and_check_object(obj);
2268 
2269   const Address lo(obj, off, Address::times_1, 0*wordSize);
2270   const Address hi(obj, off, Address::times_1, 1*wordSize);
2271 
2272   Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
2273 
2274   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2275   assert(btos == 0, "change code, btos != 0");
2276   // btos
2277   __ andptr(flags, 0x0f);
2278   __ jcc(Assembler::notZero, notByte);
2279 
2280   __ load_signed_byte(rax, lo );
2281   __ push(btos);
2282   // Rewrite bytecode to be faster
2283   if (!is_static) {
2284     patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx);
2285   }
2286   __ jmp(Done);
2287 
2288   __ bind(notByte);
2289   // itos
2290   __ cmpl(flags, itos );
2291   __ jcc(Assembler::notEqual, notInt);
2292 
2293   __ movl(rax, lo );
2294   __ push(itos);
2295   // Rewrite bytecode to be faster
2296   if (!is_static) {
2297     patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx);
2298   }
2299   __ jmp(Done);
2300 
2301   __ bind(notInt);
2302   // atos
2303   __ cmpl(flags, atos );
2304   __ jcc(Assembler::notEqual, notObj);
2305 
2306   __ movl(rax, lo );
2307   __ push(atos);
2308   if (!is_static) {
2309     patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx);
2310   }
2311   __ jmp(Done);
2312 
2313   __ bind(notObj);
2314   // ctos
2315   __ cmpl(flags, ctos );
2316   __ jcc(Assembler::notEqual, notChar);
2317 
2318   __ load_unsigned_short(rax, lo );
2319   __ push(ctos);
2320   if (!is_static) {
2321     patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx);
2322   }
2323   __ jmp(Done);
2324 
2325   __ bind(notChar);
2326   // stos
2327   __ cmpl(flags, stos );
2328   __ jcc(Assembler::notEqual, notShort);
2329 
2330   __ load_signed_short(rax, lo );
2331   __ push(stos);
2332   if (!is_static) {
2333     patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx);
2334   }
2335   __ jmp(Done);
2336 
2337   __ bind(notShort);
2338   // ltos
2339   __ cmpl(flags, ltos );
2340   __ jcc(Assembler::notEqual, notLong);
2341 
2342   // Generate code as if volatile.  There just aren't enough registers to
2343   // save that information and this code is faster than the test.
2344   __ fild_d(lo);                // Must load atomically
2345   __ subptr(rsp,2*wordSize);    // Make space for store
2346   __ fistp_d(Address(rsp,0));
2347   __ pop(rax);
2348   __ pop(rdx);
2349 
2350   __ push(ltos);
2351   // Don't rewrite to _fast_lgetfield for potential volatile case.
2352   __ jmp(Done);
2353 
2354   __ bind(notLong);
2355   // ftos
2356   __ cmpl(flags, ftos );
2357   __ jcc(Assembler::notEqual, notFloat);
2358 
2359   __ fld_s(lo);
2360   __ push(ftos);
2361   if (!is_static) {
2362     patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx);
2363   }
2364   __ jmp(Done);
2365 
2366   __ bind(notFloat);
2367   // dtos
2368   __ cmpl(flags, dtos );
2369   __ jcc(Assembler::notEqual, notDouble);
2370 
2371   __ fld_d(lo);
2372   __ push(dtos);
2373   if (!is_static) {
2374     patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx);
2375   }
2376   __ jmpb(Done);
2377 
2378   __ bind(notDouble);
2379 
2380   __ stop("Bad state");
2381 
2382   __ bind(Done);
2383   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
2384   // volatile_barrier( );
2385 }
2386 
2387 
2388 void TemplateTable::getfield(int byte_no) {
2389   getfield_or_static(byte_no, false);
2390 }
2391 
2392 
2393 void TemplateTable::getstatic(int byte_no) {
2394   getfield_or_static(byte_no, true);
2395 }
2396 
2397 // The registers cache and index expected to be set before call.
2398 // The function may destroy various registers, just not the cache and index registers.
2399 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2400 
2401   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2402 
2403   if (JvmtiExport::can_post_field_modification()) {
2404     // Check to see if a field modification watch has been set before we take
2405     // the time to call into the VM.
2406     Label L1;
2407     assert_different_registers(cache, index, rax);
2408     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2409     __ testl(rax, rax);
2410     __ jcc(Assembler::zero, L1);
2411 
2412     // The cache and index registers have been already set.
2413     // This allows to eliminate this call but the cache and index
2414     // registers have to be correspondingly used after this line.
2415     __ get_cache_and_index_at_bcp(rax, rdx, 1);
2416 
2417     if (is_static) {
2418       // Life is simple.  Null out the object pointer.
2419       __ xorptr(rbx, rbx);
2420     } else {
2421       // Life is harder. The stack holds the value on top, followed by the object.
2422       // We don't know the size of the value, though; it could be one or two words
2423       // depending on its type. As a result, we must find the type to determine where
2424       // the object is.
2425       Label two_word, valsize_known;
2426       __ movl(rcx, Address(rax, rdx, Address::times_ptr, in_bytes(cp_base_offset +
2427                                    ConstantPoolCacheEntry::flags_offset())));
2428       __ mov(rbx, rsp);
2429       __ shrl(rcx, ConstantPoolCacheEntry::tosBits);
2430       // Make sure we don't need to mask rcx for tosBits after the above shift
2431       ConstantPoolCacheEntry::verify_tosBits();
2432       __ cmpl(rcx, ltos);
2433       __ jccb(Assembler::equal, two_word);
2434       __ cmpl(rcx, dtos);
2435       __ jccb(Assembler::equal, two_word);
2436       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
2437       __ jmpb(valsize_known);
2438 
2439       __ bind(two_word);
2440       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
2441 
2442       __ bind(valsize_known);
2443       // setup object pointer
2444       __ movptr(rbx, Address(rbx, 0));
2445     }
2446     // cache entry pointer
2447     __ addptr(rax, in_bytes(cp_base_offset));
2448     __ shll(rdx, LogBytesPerWord);
2449     __ addptr(rax, rdx);
2450     // object (tos)
2451     __ mov(rcx, rsp);
2452     // rbx,: object pointer set up above (NULL if static)
2453     // rax,: cache entry pointer
2454     // rcx: jvalue object on the stack
2455     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
2456                rbx, rax, rcx);
2457     __ get_cache_and_index_at_bcp(cache, index, 1);
2458     __ bind(L1);
2459   }
2460 }
2461 
2462 
2463 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2464   transition(vtos, vtos);
2465 
2466   const Register cache = rcx;
2467   const Register index = rdx;
2468   const Register obj   = rcx;
2469   const Register off   = rbx;
2470   const Register flags = rax;
2471 
2472   resolve_cache_and_index(byte_no, cache, index);
2473   jvmti_post_field_mod(cache, index, is_static);
2474   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2475 
2476   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
2477   // volatile_barrier( );
2478 
2479   Label notVolatile, Done;
2480   __ movl(rdx, flags);
2481   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2482   __ andl(rdx, 0x1);
2483 
2484   // field addresses
2485   const Address lo(obj, off, Address::times_1, 0*wordSize);
2486   const Address hi(obj, off, Address::times_1, 1*wordSize);
2487 
2488   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
2489 
2490   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2491   assert(btos == 0, "change code, btos != 0");
2492   // btos
2493   __ andl(flags, 0x0f);
2494   __ jcc(Assembler::notZero, notByte);
2495 
2496   __ pop(btos);
2497   if (!is_static) pop_and_check_object(obj);
2498   __ movb(lo, rax );
2499   if (!is_static) {
2500     patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx);
2501   }
2502   __ jmp(Done);
2503 
2504   __ bind(notByte);
2505   // itos
2506   __ cmpl(flags, itos );
2507   __ jcc(Assembler::notEqual, notInt);
2508 
2509   __ pop(itos);
2510   if (!is_static) pop_and_check_object(obj);
2511 
2512   __ movl(lo, rax );
2513   if (!is_static) {
2514     patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx);
2515   }
2516   __ jmp(Done);
2517 
2518   __ bind(notInt);
2519   // atos
2520   __ cmpl(flags, atos );
2521   __ jcc(Assembler::notEqual, notObj);
2522 
2523   __ pop(atos);
2524   if (!is_static) pop_and_check_object(obj);
2525 
2526   do_oop_store(_masm, lo, rax, _bs->kind(), false);
2527 
2528   if (!is_static) {
2529     patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx);
2530   }
2531 
2532   __ jmp(Done);
2533 
2534   __ bind(notObj);
2535   // ctos
2536   __ cmpl(flags, ctos );
2537   __ jcc(Assembler::notEqual, notChar);
2538 
2539   __ pop(ctos);
2540   if (!is_static) pop_and_check_object(obj);
2541   __ movw(lo, rax );
2542   if (!is_static) {
2543     patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx);
2544   }
2545   __ jmp(Done);
2546 
2547   __ bind(notChar);
2548   // stos
2549   __ cmpl(flags, stos );
2550   __ jcc(Assembler::notEqual, notShort);
2551 
2552   __ pop(stos);
2553   if (!is_static) pop_and_check_object(obj);
2554   __ movw(lo, rax );
2555   if (!is_static) {
2556     patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx);
2557   }
2558   __ jmp(Done);
2559 
2560   __ bind(notShort);
2561   // ltos
2562   __ cmpl(flags, ltos );
2563   __ jcc(Assembler::notEqual, notLong);
2564 
2565   Label notVolatileLong;
2566   __ testl(rdx, rdx);
2567   __ jcc(Assembler::zero, notVolatileLong);
2568 
2569   __ pop(ltos);  // overwrites rdx, do this after testing volatile.
2570   if (!is_static) pop_and_check_object(obj);
2571 
2572   // Replace with real volatile test
2573   __ push(rdx);
2574   __ push(rax);                 // Must update atomically with FIST
2575   __ fild_d(Address(rsp,0));    // So load into FPU register
2576   __ fistp_d(lo);               // and put into memory atomically
2577   __ addptr(rsp, 2*wordSize);
2578   // volatile_barrier();
2579   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2580                                                Assembler::StoreStore));
2581   // Don't rewrite volatile version
2582   __ jmp(notVolatile);
2583 
2584   __ bind(notVolatileLong);
2585 
2586   __ pop(ltos);  // overwrites rdx
2587   if (!is_static) pop_and_check_object(obj);
2588   NOT_LP64(__ movptr(hi, rdx));
2589   __ movptr(lo, rax);
2590   if (!is_static) {
2591     patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx);
2592   }
2593   __ jmp(notVolatile);
2594 
2595   __ bind(notLong);
2596   // ftos
2597   __ cmpl(flags, ftos );
2598   __ jcc(Assembler::notEqual, notFloat);
2599 
2600   __ pop(ftos);
2601   if (!is_static) pop_and_check_object(obj);
2602   __ fstp_s(lo);
2603   if (!is_static) {
2604     patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx);
2605   }
2606   __ jmp(Done);
2607 
2608   __ bind(notFloat);
2609   // dtos
2610   __ cmpl(flags, dtos );
2611   __ jcc(Assembler::notEqual, notDouble);
2612 
2613   __ pop(dtos);
2614   if (!is_static) pop_and_check_object(obj);
2615   __ fstp_d(lo);
2616   if (!is_static) {
2617     patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx);
2618   }
2619   __ jmp(Done);
2620 
2621   __ bind(notDouble);
2622 
2623   __ stop("Bad state");
2624 
2625   __ bind(Done);
2626 
2627   // Check for volatile store
2628   __ testl(rdx, rdx);
2629   __ jcc(Assembler::zero, notVolatile);
2630   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2631                                                Assembler::StoreStore));
2632   __ bind(notVolatile);
2633 }
2634 
2635 
2636 void TemplateTable::putfield(int byte_no) {
2637   putfield_or_static(byte_no, false);
2638 }
2639 
2640 
2641 void TemplateTable::putstatic(int byte_no) {
2642   putfield_or_static(byte_no, true);
2643 }
2644 
2645 void TemplateTable::jvmti_post_fast_field_mod() {
2646   if (JvmtiExport::can_post_field_modification()) {
2647     // Check to see if a field modification watch has been set before we take
2648     // the time to call into the VM.
2649     Label L2;
2650     __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2651     __ testl(rcx,rcx);
2652     __ jcc(Assembler::zero, L2);
2653     __ pop_ptr(rbx);               // copy the object pointer from tos
2654     __ verify_oop(rbx);
2655     __ push_ptr(rbx);              // put the object pointer back on tos
2656     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
2657     __ mov(rcx, rsp);
2658     __ push_ptr(rbx);                 // save object pointer so we can steal rbx,
2659     __ xorptr(rbx, rbx);
2660     const Address lo_value(rcx, rbx, Address::times_1, 0*wordSize);
2661     const Address hi_value(rcx, rbx, Address::times_1, 1*wordSize);
2662     switch (bytecode()) {          // load values into the jvalue object
2663     case Bytecodes::_fast_bputfield: __ movb(lo_value, rax); break;
2664     case Bytecodes::_fast_sputfield: __ movw(lo_value, rax); break;
2665     case Bytecodes::_fast_cputfield: __ movw(lo_value, rax); break;
2666     case Bytecodes::_fast_iputfield: __ movl(lo_value, rax);                         break;
2667     case Bytecodes::_fast_lputfield:
2668       NOT_LP64(__ movptr(hi_value, rdx));
2669       __ movptr(lo_value, rax);
2670       break;
2671 
2672     // need to call fld_s() after fstp_s() to restore the value for below
2673     case Bytecodes::_fast_fputfield: __ fstp_s(lo_value); __ fld_s(lo_value);        break;
2674 
2675     // need to call fld_d() after fstp_d() to restore the value for below
2676     case Bytecodes::_fast_dputfield: __ fstp_d(lo_value); __ fld_d(lo_value);        break;
2677 
2678     // since rcx is not an object we don't call store_check() here
2679     case Bytecodes::_fast_aputfield: __ movptr(lo_value, rax);                       break;
2680 
2681     default:  ShouldNotReachHere();
2682     }
2683     __ pop_ptr(rbx);  // restore copy of object pointer
2684 
2685     // Save rax, and sometimes rdx because call_VM() will clobber them,
2686     // then use them for JVM/DI purposes
2687     __ push(rax);
2688     if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
2689     // access constant pool cache entry
2690     __ get_cache_entry_pointer_at_bcp(rax, rdx, 1);
2691     __ verify_oop(rbx);
2692     // rbx,: object pointer copied above
2693     // rax,: cache entry pointer
2694     // rcx: jvalue object on the stack
2695     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx);
2696     if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);  // restore high value
2697     __ pop(rax);     // restore lower value
2698     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
2699     __ bind(L2);
2700   }
2701 }
2702 
2703 void TemplateTable::fast_storefield(TosState state) {
2704   transition(state, vtos);
2705 
2706   ByteSize base = constantPoolCacheOopDesc::base_offset();
2707 
2708   jvmti_post_fast_field_mod();
2709 
2710   // access constant pool cache
2711   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2712 
2713   // test for volatile with rdx but rdx is tos register for lputfield.
2714   if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
2715   __ movl(rdx, Address(rcx, rbx, Address::times_ptr, in_bytes(base +
2716                        ConstantPoolCacheEntry::flags_offset())));
2717 
2718   // replace index with field offset from cache entry
2719   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
2720 
2721   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
2722   // volatile_barrier( );
2723 
2724   Label notVolatile, Done;
2725   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2726   __ andl(rdx, 0x1);
2727   // Check for volatile store
2728   __ testl(rdx, rdx);
2729   __ jcc(Assembler::zero, notVolatile);
2730 
2731   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
2732 
2733   // Get object from stack
2734   pop_and_check_object(rcx);
2735 
2736   // field addresses
2737   const Address lo(rcx, rbx, Address::times_1, 0*wordSize);
2738   const Address hi(rcx, rbx, Address::times_1, 1*wordSize);
2739 
2740   // access field
2741   switch (bytecode()) {
2742     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
2743     case Bytecodes::_fast_sputfield: // fall through
2744     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
2745     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
2746     case Bytecodes::_fast_lputfield:
2747       NOT_LP64(__ movptr(hi, rdx));
2748       __ movptr(lo, rax);
2749       break;
2750     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
2751     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
2752     case Bytecodes::_fast_aputfield: {
2753       do_oop_store(_masm, lo, rax, _bs->kind(), false);
2754       break;
2755     }
2756     default:
2757       ShouldNotReachHere();
2758   }
2759 
2760   Label done;
2761   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2762                                                Assembler::StoreStore));
2763   // Barriers are so large that short branch doesn't reach!
2764   __ jmp(done);
2765 
2766   // Same code as above, but don't need rdx to test for volatile.
2767   __ bind(notVolatile);
2768 
2769   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
2770 
2771   // Get object from stack
2772   pop_and_check_object(rcx);
2773 
2774   // access field
2775   switch (bytecode()) {
2776     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
2777     case Bytecodes::_fast_sputfield: // fall through
2778     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
2779     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
2780     case Bytecodes::_fast_lputfield:
2781       NOT_LP64(__ movptr(hi, rdx));
2782       __ movptr(lo, rax);
2783       break;
2784     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
2785     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
2786     case Bytecodes::_fast_aputfield: {
2787       do_oop_store(_masm, lo, rax, _bs->kind(), false);
2788       break;
2789     }
2790     default:
2791       ShouldNotReachHere();
2792   }
2793   __ bind(done);
2794 }
2795 
2796 
2797 void TemplateTable::fast_accessfield(TosState state) {
2798   transition(atos, state);
2799 
2800   // do the JVMTI work here to avoid disturbing the register state below
2801   if (JvmtiExport::can_post_field_access()) {
2802     // Check to see if a field access watch has been set before we take
2803     // the time to call into the VM.
2804     Label L1;
2805     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2806     __ testl(rcx,rcx);
2807     __ jcc(Assembler::zero, L1);
2808     // access constant pool cache entry
2809     __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1);
2810     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
2811     __ verify_oop(rax);
2812     // rax,: object pointer copied above
2813     // rcx: cache entry pointer
2814     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx);
2815     __ pop_ptr(rax);   // restore object pointer
2816     __ bind(L1);
2817   }
2818 
2819   // access constant pool cache
2820   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2821   // replace index with field offset from cache entry
2822   __ movptr(rbx, Address(rcx,
2823                          rbx,
2824                          Address::times_ptr,
2825                          in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
2826 
2827 
2828   // rax,: object
2829   __ verify_oop(rax);
2830   __ null_check(rax);
2831   // field addresses
2832   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
2833   const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize);
2834 
2835   // access field
2836   switch (bytecode()) {
2837     case Bytecodes::_fast_bgetfield: __ movsbl(rax, lo );                 break;
2838     case Bytecodes::_fast_sgetfield: __ load_signed_short(rax, lo );      break;
2839     case Bytecodes::_fast_cgetfield: __ load_unsigned_short(rax, lo );    break;
2840     case Bytecodes::_fast_igetfield: __ movl(rax, lo);                    break;
2841     case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten");  break;
2842     case Bytecodes::_fast_fgetfield: __ fld_s(lo);                        break;
2843     case Bytecodes::_fast_dgetfield: __ fld_d(lo);                        break;
2844     case Bytecodes::_fast_agetfield: __ movptr(rax, lo); __ verify_oop(rax); break;
2845     default:
2846       ShouldNotReachHere();
2847   }
2848 
2849   // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO)
2850   // volatile_barrier( );
2851 }
2852 
2853 void TemplateTable::fast_xaccess(TosState state) {
2854   transition(vtos, state);
2855   // get receiver
2856   __ movptr(rax, aaddress(0));
2857   debug_only(__ verify_local_tag(frame::TagReference, 0));
2858   // access constant pool cache
2859   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
2860   __ movptr(rbx, Address(rcx,
2861                          rdx,
2862                          Address::times_ptr,
2863                          in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
2864   // make sure exception is reported in correct bcp range (getfield is next instruction)
2865   __ increment(rsi);
2866   __ null_check(rax);
2867   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
2868   if (state == itos) {
2869     __ movl(rax, lo);
2870   } else if (state == atos) {
2871     __ movptr(rax, lo);
2872     __ verify_oop(rax);
2873   } else if (state == ftos) {
2874     __ fld_s(lo);
2875   } else {
2876     ShouldNotReachHere();
2877   }
2878   __ decrement(rsi);
2879 }
2880 
2881 
2882 
2883 //----------------------------------------------------------------------------------------------------
2884 // Calls
2885 
2886 void TemplateTable::count_calls(Register method, Register temp) {
2887   // implemented elsewhere
2888   ShouldNotReachHere();
2889 }
2890 
2891 
2892 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) {
2893   // determine flags
2894   Bytecodes::Code code = bytecode();
2895   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2896   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2897   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2898   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2899   const bool load_receiver      = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic);
2900   const bool receiver_null_check = is_invokespecial;
2901   const bool save_flags = is_invokeinterface || is_invokevirtual;
2902   // setup registers & access constant pool cache
2903   const Register recv   = rcx;
2904   const Register flags  = rdx;
2905   assert_different_registers(method, index, recv, flags);
2906 
2907   // save 'interpreter return address'
2908   __ save_bcp();
2909 
2910   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual);
2911 
2912   // load receiver if needed (note: no return address pushed yet)
2913   if (load_receiver) {
2914     __ movl(recv, flags);
2915     __ andl(recv, 0xFF);
2916     // recv count is 0 based?
2917     Address recv_addr(rsp, recv, Interpreter::stackElementScale(), -Interpreter::expr_offset_in_bytes(1));
2918     if (is_invokedynamic) {
2919       __ lea(recv, recv_addr);
2920     } else {
2921       __ movptr(recv, recv_addr);
2922       __ verify_oop(recv);
2923     }
2924   }
2925 
2926   // do null check if needed
2927   if (receiver_null_check) {
2928     __ null_check(recv);
2929   }
2930 
2931   if (save_flags) {
2932     __ mov(rsi, flags);
2933   }
2934 
2935   // compute return type
2936   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2937   // Make sure we don't need to mask flags for tosBits after the above shift
2938   ConstantPoolCacheEntry::verify_tosBits();
2939   // load return address
2940   {
2941     address table_addr;
2942     if (is_invokeinterface || is_invokedynamic)
2943       table_addr = (address)Interpreter::return_5_addrs_by_index_table();
2944     else
2945       table_addr = (address)Interpreter::return_3_addrs_by_index_table();
2946     ExternalAddress table(table_addr);
2947     __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)));
2948   }
2949 
2950   // push return address
2951   __ push(flags);
2952 
2953   // Restore flag value from the constant pool cache, and restore rsi
2954   // for later null checks.  rsi is the bytecode pointer
2955   if (save_flags) {
2956     __ mov(flags, rsi);
2957     __ restore_bcp();
2958   }
2959 }
2960 
2961 
2962 void TemplateTable::invokevirtual_helper(Register index, Register recv,
2963                         Register flags) {
2964 
2965   // Uses temporary registers rax, rdx
2966   assert_different_registers(index, recv, rax, rdx);
2967 
2968   // Test for an invoke of a final method
2969   Label notFinal;
2970   __ movl(rax, flags);
2971   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
2972   __ jcc(Assembler::zero, notFinal);
2973 
2974   Register method = index;  // method must be rbx,
2975   assert(method == rbx, "methodOop must be rbx, for interpreter calling convention");
2976 
2977   // do the call - the index is actually the method to call
2978   __ verify_oop(method);
2979 
2980   // It's final, need a null check here!
2981   __ null_check(recv);
2982 
2983   // profile this call
2984   __ profile_final_call(rax);
2985 
2986   __ jump_from_interpreted(method, rax);
2987 
2988   __ bind(notFinal);
2989 
2990   // get receiver klass
2991   __ null_check(recv, oopDesc::klass_offset_in_bytes());
2992   // Keep recv in rcx for callee expects it there
2993   __ movptr(rax, Address(recv, oopDesc::klass_offset_in_bytes()));
2994   __ verify_oop(rax);
2995 
2996   // profile this call
2997   __ profile_virtual_call(rax, rdi, rdx);
2998 
2999   // get target methodOop & entry point
3000   const int base = instanceKlass::vtable_start_offset() * wordSize;
3001   assert(vtableEntry::size() * wordSize == 4, "adjust the scaling in the code below");
3002   __ movptr(method, Address(rax, index, Address::times_ptr, base + vtableEntry::method_offset_in_bytes()));
3003   __ jump_from_interpreted(method, rdx);
3004 }
3005 
3006 
3007 void TemplateTable::invokevirtual(int byte_no) {
3008   transition(vtos, vtos);
3009   prepare_invoke(rbx, noreg, byte_no);
3010 
3011   // rbx,: index
3012   // rcx: receiver
3013   // rdx: flags
3014 
3015   invokevirtual_helper(rbx, rcx, rdx);
3016 }
3017 
3018 
3019 void TemplateTable::invokespecial(int byte_no) {
3020   transition(vtos, vtos);
3021   prepare_invoke(rbx, noreg, byte_no);
3022   // do the call
3023   __ verify_oop(rbx);
3024   __ profile_call(rax);
3025   __ jump_from_interpreted(rbx, rax);
3026 }
3027 
3028 
3029 void TemplateTable::invokestatic(int byte_no) {
3030   transition(vtos, vtos);
3031   prepare_invoke(rbx, noreg, byte_no);
3032   // do the call
3033   __ verify_oop(rbx);
3034   __ profile_call(rax);
3035   __ jump_from_interpreted(rbx, rax);
3036 }
3037 
3038 
3039 void TemplateTable::fast_invokevfinal(int byte_no) {
3040   transition(vtos, vtos);
3041   __ stop("fast_invokevfinal not used on x86");
3042 }
3043 
3044 
3045 void TemplateTable::invokeinterface(int byte_no) {
3046   transition(vtos, vtos);
3047   prepare_invoke(rax, rbx, byte_no);
3048 
3049   // rax,: Interface
3050   // rbx,: index
3051   // rcx: receiver
3052   // rdx: flags
3053 
3054   // Special case of invokeinterface called for virtual method of
3055   // java.lang.Object.  See cpCacheOop.cpp for details.
3056   // This code isn't produced by javac, but could be produced by
3057   // another compliant java compiler.
3058   Label notMethod;
3059   __ movl(rdi, rdx);
3060   __ andl(rdi, (1 << ConstantPoolCacheEntry::methodInterface));
3061   __ jcc(Assembler::zero, notMethod);
3062 
3063   invokevirtual_helper(rbx, rcx, rdx);
3064   __ bind(notMethod);
3065 
3066   // Get receiver klass into rdx - also a null check
3067   __ restore_locals();  // restore rdi
3068   __ movptr(rdx, Address(rcx, oopDesc::klass_offset_in_bytes()));
3069   __ verify_oop(rdx);
3070 
3071   // profile this call
3072   __ profile_virtual_call(rdx, rsi, rdi);
3073 
3074   Label no_such_interface, no_such_method;
3075 
3076   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3077                              rdx, rax, rbx,
3078                              // outputs: method, scan temp. reg
3079                              rbx, rsi,
3080                              no_such_interface);
3081 
3082   // rbx,: methodOop to call
3083   // rcx: receiver
3084   // Check for abstract method error
3085   // Note: This should be done more efficiently via a throw_abstract_method_error
3086   //       interpreter entry point and a conditional jump to it in case of a null
3087   //       method.
3088   __ testptr(rbx, rbx);
3089   __ jcc(Assembler::zero, no_such_method);
3090 
3091   // do the call
3092   // rcx: receiver
3093   // rbx,: methodOop
3094   __ jump_from_interpreted(rbx, rdx);
3095   __ should_not_reach_here();
3096 
3097   // exception handling code follows...
3098   // note: must restore interpreter registers to canonical
3099   //       state for exception handling to work correctly!
3100 
3101   __ bind(no_such_method);
3102   // throw exception
3103   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3104   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
3105   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3106   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3107   // the call_VM checks for exception, so we should never return here.
3108   __ should_not_reach_here();
3109 
3110   __ bind(no_such_interface);
3111   // throw exception
3112   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3113   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
3114   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3115   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3116                    InterpreterRuntime::throw_IncompatibleClassChangeError));
3117   // the call_VM checks for exception, so we should never return here.
3118   __ should_not_reach_here();
3119 }
3120 
3121 void TemplateTable::invokedynamic(int byte_no) {
3122   transition(vtos, vtos);
3123 
3124   if (!EnableInvokeDynamic) {
3125     // We should not encounter this bytecode if !EnableInvokeDynamic.
3126     // The verifier will stop it.  However, if we get past the verifier,
3127     // this will stop the thread in a reasonable way, without crashing the JVM.
3128     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3129                      InterpreterRuntime::throw_IncompatibleClassChangeError));
3130     // the call_VM checks for exception, so we should never return here.
3131     __ should_not_reach_here();
3132     return;
3133   }
3134 
3135   prepare_invoke(rax, rbx, byte_no);
3136 
3137   // rax: CallSite object (f1)
3138   // rbx: unused (f2)
3139   // rcx: receiver address
3140   // rdx: flags (unused)
3141 
3142   if (ProfileInterpreter) {
3143     Label L;
3144     // %%% should make a type profile for any invokedynamic that takes a ref argument
3145     // profile this call
3146     __ profile_call(rsi);
3147   }
3148 
3149   Label handle_unlinked_site;
3150   __ movptr(rcx, Address(rax, __ delayed_value(java_dyn_CallSite::target_offset_in_bytes, rcx)));
3151   __ null_check(rcx);
3152   __ prepare_to_jump_from_interpreted();
3153   __ jump_to_method_handle_entry(rcx, rdx);
3154 }
3155 
3156 //----------------------------------------------------------------------------------------------------
3157 // Allocation
3158 
3159 void TemplateTable::_new() {
3160   transition(vtos, atos);
3161   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3162   Label slow_case;
3163   Label done;
3164   Label initialize_header;
3165   Label initialize_object;  // including clearing the fields
3166   Label allocate_shared;
3167 
3168   __ get_cpool_and_tags(rcx, rax);
3169   // get instanceKlass
3170   __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(constantPoolOopDesc)));
3171   __ push(rcx);  // save the contexts of klass for initializing the header
3172 
3173   // make sure the class we're about to instantiate has been resolved.
3174   // Note: slow_case does a pop of stack, which is why we loaded class/pushed above
3175   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
3176   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
3177   __ jcc(Assembler::notEqual, slow_case);
3178 
3179   // make sure klass is initialized & doesn't have finalizer
3180   // make sure klass is fully initialized
3181   __ cmpl(Address(rcx, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), instanceKlass::fully_initialized);
3182   __ jcc(Assembler::notEqual, slow_case);
3183 
3184   // get instance_size in instanceKlass (scaled to a count of bytes)
3185   __ movl(rdx, Address(rcx, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
3186   // test to see if it has a finalizer or is malformed in some way
3187   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
3188   __ jcc(Assembler::notZero, slow_case);
3189 
3190   //
3191   // Allocate the instance
3192   // 1) Try to allocate in the TLAB
3193   // 2) if fail and the object is large allocate in the shared Eden
3194   // 3) if the above fails (or is not applicable), go to a slow case
3195   // (creates a new TLAB, etc.)
3196 
3197   const bool allow_shared_alloc =
3198     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3199 
3200   if (UseTLAB) {
3201     const Register thread = rcx;
3202 
3203     __ get_thread(thread);
3204     __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
3205     __ lea(rbx, Address(rax, rdx, Address::times_1));
3206     __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
3207     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
3208     __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
3209     if (ZeroTLAB) {
3210       // the fields have been already cleared
3211       __ jmp(initialize_header);
3212     } else {
3213       // initialize both the header and fields
3214       __ jmp(initialize_object);
3215     }
3216   }
3217 
3218   // Allocation in the shared Eden, if allowed.
3219   //
3220   // rdx: instance size in bytes
3221   if (allow_shared_alloc) {
3222     __ bind(allocate_shared);
3223 
3224     ExternalAddress heap_top((address)Universe::heap()->top_addr());
3225 
3226     Label retry;
3227     __ bind(retry);
3228     __ movptr(rax, heap_top);
3229     __ lea(rbx, Address(rax, rdx, Address::times_1));
3230     __ cmpptr(rbx, ExternalAddress((address)Universe::heap()->end_addr()));
3231     __ jcc(Assembler::above, slow_case);
3232 
3233     // Compare rax, with the top addr, and if still equal, store the new
3234     // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
3235     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
3236     //
3237     // rax,: object begin
3238     // rbx,: object end
3239     // rdx: instance size in bytes
3240     __ locked_cmpxchgptr(rbx, heap_top);
3241 
3242     // if someone beat us on the allocation, try again, otherwise continue
3243     __ jcc(Assembler::notEqual, retry);
3244   }
3245 
3246   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3247     // The object is initialized before the header.  If the object size is
3248     // zero, go directly to the header initialization.
3249     __ bind(initialize_object);
3250     __ decrement(rdx, sizeof(oopDesc));
3251     __ jcc(Assembler::zero, initialize_header);
3252 
3253   // Initialize topmost object field, divide rdx by 8, check if odd and
3254   // test if zero.
3255     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
3256     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
3257 
3258   // rdx must have been multiple of 8
3259 #ifdef ASSERT
3260     // make sure rdx was multiple of 8
3261     Label L;
3262     // Ignore partial flag stall after shrl() since it is debug VM
3263     __ jccb(Assembler::carryClear, L);
3264     __ stop("object size is not multiple of 2 - adjust this code");
3265     __ bind(L);
3266     // rdx must be > 0, no extra check needed here
3267 #endif
3268 
3269     // initialize remaining object fields: rdx was a multiple of 8
3270     { Label loop;
3271     __ bind(loop);
3272     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
3273     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
3274     __ decrement(rdx);
3275     __ jcc(Assembler::notZero, loop);
3276     }
3277 
3278     // initialize object header only.
3279     __ bind(initialize_header);
3280     if (UseBiasedLocking) {
3281       __ pop(rcx);   // get saved klass back in the register.
3282       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
3283       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
3284     } else {
3285       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
3286                 (int32_t)markOopDesc::prototype()); // header
3287       __ pop(rcx);   // get saved klass back in the register.
3288     }
3289     __ movptr(Address(rax, oopDesc::klass_offset_in_bytes()), rcx);  // klass
3290 
3291     {
3292       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
3293       // Trigger dtrace event for fastpath
3294       __ push(atos);
3295       __ call_VM_leaf(
3296            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
3297       __ pop(atos);
3298     }
3299 
3300     __ jmp(done);
3301   }
3302 
3303   // slow case
3304   __ bind(slow_case);
3305   __ pop(rcx);   // restore stack pointer to what it was when we came in.
3306   __ get_constant_pool(rax);
3307   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3308   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx);
3309 
3310   // continue
3311   __ bind(done);
3312 }
3313 
3314 
3315 void TemplateTable::newarray() {
3316   transition(itos, atos);
3317   __ push_i(rax);                                 // make sure everything is on the stack
3318   __ load_unsigned_byte(rdx, at_bcp(1));
3319   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax);
3320   __ pop_i(rdx);                                  // discard size
3321 }
3322 
3323 
3324 void TemplateTable::anewarray() {
3325   transition(itos, atos);
3326   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3327   __ get_constant_pool(rcx);
3328   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax);
3329 }
3330 
3331 
3332 void TemplateTable::arraylength() {
3333   transition(atos, itos);
3334   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
3335   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
3336 }
3337 
3338 
3339 void TemplateTable::checkcast() {
3340   transition(atos, atos);
3341   Label done, is_null, ok_is_subtype, quicked, resolved;
3342   __ testptr(rax, rax);   // Object is in EAX
3343   __ jcc(Assembler::zero, is_null);
3344 
3345   // Get cpool & tags index
3346   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
3347   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
3348   // See if bytecode has already been quicked
3349   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
3350   __ jcc(Assembler::equal, quicked);
3351 
3352   __ push(atos);
3353   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3354   __ pop_ptr(rdx);
3355   __ jmpb(resolved);
3356 
3357   // Get superklass in EAX and subklass in EBX
3358   __ bind(quicked);
3359   __ mov(rdx, rax);          // Save object in EDX; EAX needed for subtype check
3360   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc)));
3361 
3362   __ bind(resolved);
3363   __ movptr(rbx, Address(rdx, oopDesc::klass_offset_in_bytes()));
3364 
3365   // Generate subtype check.  Blows ECX.  Resets EDI.  Object in EDX.
3366   // Superklass in EAX.  Subklass in EBX.
3367   __ gen_subtype_check( rbx, ok_is_subtype );
3368 
3369   // Come here on failure
3370   __ push(rdx);
3371   // object is at TOS
3372   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
3373 
3374   // Come here on success
3375   __ bind(ok_is_subtype);
3376   __ mov(rax,rdx);           // Restore object in EDX
3377 
3378   // Collect counts on whether this check-cast sees NULLs a lot or not.
3379   if (ProfileInterpreter) {
3380     __ jmp(done);
3381     __ bind(is_null);
3382     __ profile_null_seen(rcx);
3383   } else {
3384     __ bind(is_null);   // same as 'done'
3385   }
3386   __ bind(done);
3387 }
3388 
3389 
3390 void TemplateTable::instanceof() {
3391   transition(atos, itos);
3392   Label done, is_null, ok_is_subtype, quicked, resolved;
3393   __ testptr(rax, rax);
3394   __ jcc(Assembler::zero, is_null);
3395 
3396   // Get cpool & tags index
3397   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
3398   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
3399   // See if bytecode has already been quicked
3400   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
3401   __ jcc(Assembler::equal, quicked);
3402 
3403   __ push(atos);
3404   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3405   __ pop_ptr(rdx);
3406   __ movptr(rdx, Address(rdx, oopDesc::klass_offset_in_bytes()));
3407   __ jmp(resolved);
3408 
3409   // Get superklass in EAX and subklass in EDX
3410   __ bind(quicked);
3411   __ movptr(rdx, Address(rax, oopDesc::klass_offset_in_bytes()));
3412   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc)));
3413 
3414   __ bind(resolved);
3415 
3416   // Generate subtype check.  Blows ECX.  Resets EDI.
3417   // Superklass in EAX.  Subklass in EDX.
3418   __ gen_subtype_check( rdx, ok_is_subtype );
3419 
3420   // Come here on failure
3421   __ xorl(rax,rax);
3422   __ jmpb(done);
3423   // Come here on success
3424   __ bind(ok_is_subtype);
3425   __ movl(rax, 1);
3426 
3427   // Collect counts on whether this test sees NULLs a lot or not.
3428   if (ProfileInterpreter) {
3429     __ jmp(done);
3430     __ bind(is_null);
3431     __ profile_null_seen(rcx);
3432   } else {
3433     __ bind(is_null);   // same as 'done'
3434   }
3435   __ bind(done);
3436   // rax, = 0: obj == NULL or  obj is not an instanceof the specified klass
3437   // rax, = 1: obj != NULL and obj is     an instanceof the specified klass
3438 }
3439 
3440 
3441 //----------------------------------------------------------------------------------------------------
3442 // Breakpoints
3443 void TemplateTable::_breakpoint() {
3444 
3445   // Note: We get here even if we are single stepping..
3446   // jbug inists on setting breakpoints at every bytecode
3447   // even if we are in single step mode.
3448 
3449   transition(vtos, vtos);
3450 
3451   // get the unpatched byte code
3452   __ get_method(rcx);
3453   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi);
3454   __ mov(rbx, rax);
3455 
3456   // post the breakpoint event
3457   __ get_method(rcx);
3458   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi);
3459 
3460   // complete the execution of original bytecode
3461   __ dispatch_only_normal(vtos);
3462 }
3463 
3464 
3465 //----------------------------------------------------------------------------------------------------
3466 // Exceptions
3467 
3468 void TemplateTable::athrow() {
3469   transition(atos, vtos);
3470   __ null_check(rax);
3471   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
3472 }
3473 
3474 
3475 //----------------------------------------------------------------------------------------------------
3476 // Synchronization
3477 //
3478 // Note: monitorenter & exit are symmetric routines; which is reflected
3479 //       in the assembly code structure as well
3480 //
3481 // Stack layout:
3482 //
3483 // [expressions  ] <--- rsp               = expression stack top
3484 // ..
3485 // [expressions  ]
3486 // [monitor entry] <--- monitor block top = expression stack bot
3487 // ..
3488 // [monitor entry]
3489 // [frame data   ] <--- monitor block bot
3490 // ...
3491 // [saved rbp,    ] <--- rbp,
3492 
3493 
3494 void TemplateTable::monitorenter() {
3495   transition(atos, vtos);
3496 
3497   // check for NULL object
3498   __ null_check(rax);
3499 
3500   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3501   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
3502   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
3503   Label allocated;
3504 
3505   // initialize entry pointer
3506   __ xorl(rdx, rdx);                             // points to free slot or NULL
3507 
3508   // find a free slot in the monitor block (result in rdx)
3509   { Label entry, loop, exit;
3510     __ movptr(rcx, monitor_block_top);            // points to current entry, starting with top-most entry
3511     __ lea(rbx, monitor_block_bot);               // points to word before bottom of monitor block
3512     __ jmpb(entry);
3513 
3514     __ bind(loop);
3515     __ cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
3516 
3517 // TODO - need new func here - kbt
3518     if (VM_Version::supports_cmov()) {
3519       __ cmov(Assembler::equal, rdx, rcx);       // if not used then remember entry in rdx
3520     } else {
3521       Label L;
3522       __ jccb(Assembler::notEqual, L);
3523       __ mov(rdx, rcx);                          // if not used then remember entry in rdx
3524       __ bind(L);
3525     }
3526     __ cmpptr(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
3527     __ jccb(Assembler::equal, exit);             // if same object then stop searching
3528     __ addptr(rcx, entry_size);                  // otherwise advance to next entry
3529     __ bind(entry);
3530     __ cmpptr(rcx, rbx);                         // check if bottom reached
3531     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
3532     __ bind(exit);
3533   }
3534 
3535   __ testptr(rdx, rdx);                          // check if a slot has been found
3536   __ jccb(Assembler::notZero, allocated);        // if found, continue with that one
3537 
3538   // allocate one if there's no free slot
3539   { Label entry, loop;
3540     // 1. compute new pointers                   // rsp: old expression stack top
3541     __ movptr(rdx, monitor_block_bot);           // rdx: old expression stack bottom
3542     __ subptr(rsp, entry_size);                  // move expression stack top
3543     __ subptr(rdx, entry_size);                  // move expression stack bottom
3544     __ mov(rcx, rsp);                            // set start value for copy loop
3545     __ movptr(monitor_block_bot, rdx);           // set new monitor block top
3546     __ jmp(entry);
3547     // 2. move expression stack contents
3548     __ bind(loop);
3549     __ movptr(rbx, Address(rcx, entry_size));    // load expression stack word from old location
3550     __ movptr(Address(rcx, 0), rbx);             // and store it at new location
3551     __ addptr(rcx, wordSize);                    // advance to next word
3552     __ bind(entry);
3553     __ cmpptr(rcx, rdx);                         // check if bottom reached
3554     __ jcc(Assembler::notEqual, loop);           // if not at bottom then copy next word
3555   }
3556 
3557   // call run-time routine
3558   // rdx: points to monitor entry
3559   __ bind(allocated);
3560 
3561   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3562   // The object has already been poped from the stack, so the expression stack looks correct.
3563   __ increment(rsi);
3564 
3565   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax);     // store object
3566   __ lock_object(rdx);
3567 
3568   // check to make sure this monitor doesn't cause stack overflow after locking
3569   __ save_bcp();  // in case of exception
3570   __ generate_stack_overflow_check(0);
3571 
3572   // The bcp has already been incremented. Just need to dispatch to next instruction.
3573   __ dispatch_next(vtos);
3574 }
3575 
3576 
3577 void TemplateTable::monitorexit() {
3578   transition(atos, vtos);
3579 
3580   // check for NULL object
3581   __ null_check(rax);
3582 
3583   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3584   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
3585   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
3586   Label found;
3587 
3588   // find matching slot
3589   { Label entry, loop;
3590     __ movptr(rdx, monitor_block_top);           // points to current entry, starting with top-most entry
3591     __ lea(rbx, monitor_block_bot);             // points to word before bottom of monitor block
3592     __ jmpb(entry);
3593 
3594     __ bind(loop);
3595     __ cmpptr(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
3596     __ jcc(Assembler::equal, found);             // if same object then stop searching
3597     __ addptr(rdx, entry_size);                  // otherwise advance to next entry
3598     __ bind(entry);
3599     __ cmpptr(rdx, rbx);                         // check if bottom reached
3600     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
3601   }
3602 
3603   // error handling. Unlocking was not block-structured
3604   Label end;
3605   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
3606   __ should_not_reach_here();
3607 
3608   // call run-time routine
3609   // rcx: points to monitor entry
3610   __ bind(found);
3611   __ push_ptr(rax);                                 // make sure object is on stack (contract with oopMaps)
3612   __ unlock_object(rdx);
3613   __ pop_ptr(rax);                                  // discard object
3614   __ bind(end);
3615 }
3616 
3617 
3618 //----------------------------------------------------------------------------------------------------
3619 // Wide instructions
3620 
3621 void TemplateTable::wide() {
3622   transition(vtos, vtos);
3623   __ load_unsigned_byte(rbx, at_bcp(1));
3624   ExternalAddress wtable((address)Interpreter::_wentry_point);
3625   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
3626   // Note: the rsi increment step is part of the individual wide bytecode implementations
3627 }
3628 
3629 
3630 //----------------------------------------------------------------------------------------------------
3631 // Multi arrays
3632 
3633 void TemplateTable::multianewarray() {
3634   transition(vtos, atos);
3635   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
3636   // last dim is on top of stack; we want address of first one:
3637   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
3638   // the latter wordSize to point to the beginning of the array.
3639   __ lea(  rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
3640   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax);     // pass in rax,
3641   __ load_unsigned_byte(rbx, at_bcp(3));
3642   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
3643 }
3644 
3645 #endif /* !CC_INTERP */