1 /*
   2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_interp_masm_sparc.cpp.incl"
  27 
  28 #ifndef CC_INTERP
  29 #ifndef FAST_DISPATCH
  30 #define FAST_DISPATCH 1
  31 #endif
  32 #undef FAST_DISPATCH
  33 
  34 // Implementation of InterpreterMacroAssembler
  35 
  36 // This file specializes the assember with interpreter-specific macros
  37 
  38 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
  39 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
  40 
  41 #else // CC_INTERP
  42 #ifndef STATE
  43 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
  44 #endif // STATE
  45 
  46 #endif // CC_INTERP
  47 
  48 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
  49   // Note: this algorithm is also used by C1's OSR entry sequence.
  50   // Any changes should also be applied to CodeEmitter::emit_osr_entry().
  51   assert_different_registers(args_size, locals_size);
  52   // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
  53   if (TaggedStackInterpreter) sll(locals_size, 1, locals_size);
  54   subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
  55   // Use br/mov combination because it works on both V8 and V9 and is
  56   // faster.
  57   Label skip_move;
  58   br(Assembler::negative, true, Assembler::pt, skip_move);
  59   delayed()->mov(G0, delta);
  60   bind(skip_move);
  61   round_to(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
  62   sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
  63 }
  64 
  65 #ifndef CC_INTERP
  66 
  67 // Dispatch code executed in the prolog of a bytecode which does not do it's
  68 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
  69 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
  70   assert_not_delayed();
  71 #ifdef FAST_DISPATCH
  72   // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
  73   // they both use I2.
  74   assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
  75   ldub(Lbcp, bcp_incr, Lbyte_code);                     // load next bytecode
  76   add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
  77                                                         // add offset to correct dispatch table
  78   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
  79   ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
  80 #else
  81   ldub( Lbcp, bcp_incr, Lbyte_code);                    // load next bytecode
  82   // dispatch table to use
  83   AddressLiteral tbl(Interpreter::dispatch_table(state));
  84   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
  85   set(tbl, G3_scratch);                                 // compute addr of table
  86   ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
  87 #endif
  88 }
  89 
  90 
  91 // Dispatch code executed in the epilog of a bytecode which does not do it's
  92 // own dispatch. The dispatch address in IdispatchAddress is used for the
  93 // dispatch.
  94 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
  95   assert_not_delayed();
  96   verify_FPU(1, state);
  97   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  98   jmp( IdispatchAddress, 0 );
  99   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
 100   else                delayed()->nop();
 101 }
 102 
 103 
 104 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
 105   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
 106   assert_not_delayed();
 107   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
 108   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
 109 }
 110 
 111 
 112 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
 113   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
 114   assert_not_delayed();
 115   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
 116   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
 117 }
 118 
 119 
 120 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 121   // load current bytecode
 122   assert_not_delayed();
 123   ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
 124   dispatch_base(state, table);
 125 }
 126 
 127 
 128 void InterpreterMacroAssembler::call_VM_leaf_base(
 129   Register java_thread,
 130   address  entry_point,
 131   int      number_of_arguments
 132 ) {
 133   if (!java_thread->is_valid())
 134     java_thread = L7_thread_cache;
 135   // super call
 136   MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
 137 }
 138 
 139 
 140 void InterpreterMacroAssembler::call_VM_base(
 141   Register        oop_result,
 142   Register        java_thread,
 143   Register        last_java_sp,
 144   address         entry_point,
 145   int             number_of_arguments,
 146   bool            check_exception
 147 ) {
 148   if (!java_thread->is_valid())
 149     java_thread = L7_thread_cache;
 150   // See class ThreadInVMfromInterpreter, which assumes that the interpreter
 151   // takes responsibility for setting its own thread-state on call-out.
 152   // However, ThreadInVMfromInterpreter resets the state to "in_Java".
 153 
 154   //save_bcp();                                  // save bcp
 155   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
 156   //restore_bcp();                               // restore bcp
 157   //restore_locals();                            // restore locals pointer
 158 }
 159 
 160 
 161 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
 162   if (JvmtiExport::can_pop_frame()) {
 163     Label L;
 164 
 165     // Check the "pending popframe condition" flag in the current thread
 166     ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
 167 
 168     // Initiate popframe handling only if it is not already being processed.  If the flag
 169     // has the popframe_processing bit set, it means that this code is called *during* popframe
 170     // handling - we don't want to reenter.
 171     btst(JavaThread::popframe_pending_bit, scratch_reg);
 172     br(zero, false, pt, L);
 173     delayed()->nop();
 174     btst(JavaThread::popframe_processing_bit, scratch_reg);
 175     br(notZero, false, pt, L);
 176     delayed()->nop();
 177 
 178     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 179     // address of the same-named entrypoint in the generated interpreter code.
 180     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 181 
 182     // Jump to Interpreter::_remove_activation_preserving_args_entry
 183     jmpl(O0, G0, G0);
 184     delayed()->nop();
 185     bind(L);
 186   }
 187 }
 188 
 189 
 190 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 191   Register thr_state = G4_scratch;
 192   ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
 193   const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
 194   const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
 195   const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
 196   switch (state) {
 197   case ltos: ld_long(val_addr, Otos_l);                   break;
 198   case atos: ld_ptr(oop_addr, Otos_l);
 199              st_ptr(G0, oop_addr);                        break;
 200   case btos:                                           // fall through
 201   case ctos:                                           // fall through
 202   case stos:                                           // fall through
 203   case itos: ld(val_addr, Otos_l1);                       break;
 204   case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
 205   case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
 206   case vtos: /* nothing to do */                          break;
 207   default  : ShouldNotReachHere();
 208   }
 209   // Clean up tos value in the jvmti thread state
 210   or3(G0, ilgl, G3_scratch);
 211   stw(G3_scratch, tos_addr);
 212   st_long(G0, val_addr);
 213   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 214 }
 215 
 216 
 217 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
 218   if (JvmtiExport::can_force_early_return()) {
 219     Label L;
 220     Register thr_state = G3_scratch;
 221     ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
 222     tst(thr_state);
 223     br(zero, false, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
 224     delayed()->nop();
 225 
 226     // Initiate earlyret handling only if it is not already being processed.
 227     // If the flag has the earlyret_processing bit set, it means that this code
 228     // is called *during* earlyret handling - we don't want to reenter.
 229     ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
 230     cmp(G4_scratch, JvmtiThreadState::earlyret_pending);
 231     br(Assembler::notEqual, false, pt, L);
 232     delayed()->nop();
 233 
 234     // Call Interpreter::remove_activation_early_entry() to get the address of the
 235     // same-named entrypoint in the generated interpreter code
 236     ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
 237     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
 238 
 239     // Jump to Interpreter::_remove_activation_early_entry
 240     jmpl(O0, G0, G0);
 241     delayed()->nop();
 242     bind(L);
 243   }
 244 }
 245 
 246 
 247 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
 248   mov(arg_1, O0);
 249   mov(arg_2, O1);
 250   MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
 251 }
 252 #endif /* CC_INTERP */
 253 
 254 
 255 #ifndef CC_INTERP
 256 
 257 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
 258   assert_not_delayed();
 259   dispatch_Lbyte_code(state, table);
 260 }
 261 
 262 
 263 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
 264   dispatch_base(state, Interpreter::normal_table(state));
 265 }
 266 
 267 
 268 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 269   dispatch_base(state, Interpreter::dispatch_table(state));
 270 }
 271 
 272 
 273 // common code to dispatch and dispatch_only
 274 // dispatch value in Lbyte_code and increment Lbcp
 275 
 276 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
 277   verify_FPU(1, state);
 278   // %%%%% maybe implement +VerifyActivationFrameSize here
 279   //verify_thread(); //too slow; we will just verify on method entry & exit
 280   if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 281 #ifdef FAST_DISPATCH
 282   if (table == Interpreter::dispatch_table(state)) {
 283     // use IdispatchTables
 284     add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
 285                                                         // add offset to correct dispatch table
 286     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
 287     ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // get entry addr
 288   } else {
 289 #endif
 290     // dispatch table to use
 291     AddressLiteral tbl(table);
 292     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
 293     set(tbl, G3_scratch);                               // compute addr of table
 294     ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
 295 #ifdef FAST_DISPATCH
 296   }
 297 #endif
 298   jmp( G3_scratch, 0 );
 299   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
 300   else                delayed()->nop();
 301 }
 302 
 303 
 304 // Helpers for expression stack
 305 
 306 // Longs and doubles are Category 2 computational types in the
 307 // JVM specification (section 3.11.1) and take 2 expression stack or
 308 // local slots.
 309 // Aligning them on 32 bit with tagged stacks is hard because the code generated
 310 // for the dup* bytecodes depends on what types are already on the stack.
 311 // If the types are split into the two stack/local slots, that is much easier
 312 // (and we can use 0 for non-reference tags).
 313 
 314 // Known good alignment in _LP64 but unknown otherwise
 315 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
 316   assert_not_delayed();
 317 
 318 #ifdef _LP64
 319   ldf(FloatRegisterImpl::D, r1, offset, d);
 320 #else
 321   ldf(FloatRegisterImpl::S, r1, offset, d);
 322   ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize(), d->successor());
 323 #endif
 324 }
 325 
 326 // Known good alignment in _LP64 but unknown otherwise
 327 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
 328   assert_not_delayed();
 329 
 330 #ifdef _LP64
 331   stf(FloatRegisterImpl::D, d, r1, offset);
 332   // store something more useful here
 333   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
 334 #else
 335   stf(FloatRegisterImpl::S, d, r1, offset);
 336   stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize());
 337 #endif
 338 }
 339 
 340 
 341 // Known good alignment in _LP64 but unknown otherwise
 342 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
 343   assert_not_delayed();
 344 #ifdef _LP64
 345   ldx(r1, offset, rd);
 346 #else
 347   ld(r1, offset, rd);
 348   ld(r1, offset + Interpreter::stackElementSize(), rd->successor());
 349 #endif
 350 }
 351 
 352 // Known good alignment in _LP64 but unknown otherwise
 353 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
 354   assert_not_delayed();
 355 
 356 #ifdef _LP64
 357   stx(l, r1, offset);
 358   // store something more useful here
 359   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
 360 #else
 361   st(l, r1, offset);
 362   st(l->successor(), r1, offset + Interpreter::stackElementSize());
 363 #endif
 364 }
 365 
 366 #ifdef ASSERT
 367 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t,
 368                                                  Register r,
 369                                                  Register scratch) {
 370   if (TaggedStackInterpreter) {
 371     Label ok, long_ok;
 372     ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(0), r);
 373     if (t == frame::TagCategory2) {
 374       cmp(r, G0);
 375       brx(Assembler::equal, false, Assembler::pt, long_ok);
 376       delayed()->ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(1), r);
 377       stop("stack long/double tag value bad");
 378       bind(long_ok);
 379       cmp(r, G0);
 380     } else if (t == frame::TagValue) {
 381       cmp(r, G0);
 382     } else {
 383       assert_different_registers(r, scratch);
 384       mov(t, scratch);
 385       cmp(r, scratch);
 386     }
 387     brx(Assembler::equal, false, Assembler::pt, ok);
 388     delayed()->nop();
 389     // Also compare if the stack value is zero, then the tag might
 390     // not have been set coming from deopt.
 391     ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 392     cmp(r, G0);
 393     brx(Assembler::equal, false, Assembler::pt, ok);
 394     delayed()->nop();
 395     stop("Stack tag value is bad");
 396     bind(ok);
 397   }
 398 }
 399 #endif // ASSERT
 400 
 401 void InterpreterMacroAssembler::pop_i(Register r) {
 402   assert_not_delayed();
 403   // Uses destination register r for scratch
 404   debug_only(verify_stack_tag(frame::TagValue, r));
 405   ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 406   inc(Lesp, Interpreter::stackElementSize());
 407   debug_only(verify_esp(Lesp));
 408 }
 409 
 410 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
 411   assert_not_delayed();
 412   // Uses destination register r for scratch
 413   debug_only(verify_stack_tag(frame::TagReference, r, scratch));
 414   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 415   inc(Lesp, Interpreter::stackElementSize());
 416   debug_only(verify_esp(Lesp));
 417 }
 418 
 419 void InterpreterMacroAssembler::pop_l(Register r) {
 420   assert_not_delayed();
 421   // Uses destination register r for scratch
 422   debug_only(verify_stack_tag(frame::TagCategory2, r));
 423   load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 424   inc(Lesp, 2*Interpreter::stackElementSize());
 425   debug_only(verify_esp(Lesp));
 426 }
 427 
 428 
 429 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
 430   assert_not_delayed();
 431   debug_only(verify_stack_tag(frame::TagValue, scratch));
 432   ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
 433   inc(Lesp, Interpreter::stackElementSize());
 434   debug_only(verify_esp(Lesp));
 435 }
 436 
 437 
 438 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
 439   assert_not_delayed();
 440   debug_only(verify_stack_tag(frame::TagCategory2, scratch));
 441   load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
 442   inc(Lesp, 2*Interpreter::stackElementSize());
 443   debug_only(verify_esp(Lesp));
 444 }
 445 
 446 
 447 // (Note use register first, then decrement so dec can be done during store stall)
 448 void InterpreterMacroAssembler::tag_stack(Register r) {
 449   if (TaggedStackInterpreter) {
 450     st_ptr(r, Lesp, Interpreter::tag_offset_in_bytes());
 451   }
 452 }
 453 
 454 void InterpreterMacroAssembler::tag_stack(frame::Tag t, Register r) {
 455   if (TaggedStackInterpreter) {
 456     assert (frame::TagValue == 0, "TagValue must be zero");
 457     if (t == frame::TagValue) {
 458       st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
 459     } else if (t == frame::TagCategory2) {
 460       st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
 461       // Tag next slot down too
 462       st_ptr(G0, Lesp, -Interpreter::stackElementSize() + Interpreter::tag_offset_in_bytes());
 463     } else {
 464       assert_different_registers(r, O3);
 465       mov(t, O3);
 466       st_ptr(O3, Lesp, Interpreter::tag_offset_in_bytes());
 467     }
 468   }
 469 }
 470 
 471 void InterpreterMacroAssembler::push_i(Register r) {
 472   assert_not_delayed();
 473   debug_only(verify_esp(Lesp));
 474   tag_stack(frame::TagValue, r);
 475   st(  r,    Lesp, Interpreter::value_offset_in_bytes());
 476   dec( Lesp, Interpreter::stackElementSize());
 477 }
 478 
 479 void InterpreterMacroAssembler::push_ptr(Register r) {
 480   assert_not_delayed();
 481   tag_stack(frame::TagReference, r);
 482   st_ptr(  r,    Lesp, Interpreter::value_offset_in_bytes());
 483   dec( Lesp, Interpreter::stackElementSize());
 484 }
 485 
 486 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
 487   assert_not_delayed();
 488   tag_stack(tag);
 489   st_ptr(r, Lesp, Interpreter::value_offset_in_bytes());
 490   dec( Lesp, Interpreter::stackElementSize());
 491 }
 492 
 493 // remember: our convention for longs in SPARC is:
 494 // O0 (Otos_l1) has high-order part in first word,
 495 // O1 (Otos_l2) has low-order part in second word
 496 
 497 void InterpreterMacroAssembler::push_l(Register r) {
 498   assert_not_delayed();
 499   debug_only(verify_esp(Lesp));
 500   tag_stack(frame::TagCategory2, r);
 501   // Longs are in stored in memory-correct order, even if unaligned.
 502   // and may be separated by stack tags.
 503   int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
 504   store_unaligned_long(r, Lesp, offset);
 505   dec(Lesp, 2 * Interpreter::stackElementSize());
 506 }
 507 
 508 
 509 void InterpreterMacroAssembler::push_f(FloatRegister f) {
 510   assert_not_delayed();
 511   debug_only(verify_esp(Lesp));
 512   tag_stack(frame::TagValue, Otos_i);
 513   stf(FloatRegisterImpl::S, f, Lesp, Interpreter::value_offset_in_bytes());
 514   dec(Lesp, Interpreter::stackElementSize());
 515 }
 516 
 517 
 518 void InterpreterMacroAssembler::push_d(FloatRegister d)   {
 519   assert_not_delayed();
 520   debug_only(verify_esp(Lesp));
 521   tag_stack(frame::TagCategory2, Otos_i);
 522   // Longs are in stored in memory-correct order, even if unaligned.
 523   // and may be separated by stack tags.
 524   int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
 525   store_unaligned_double(d, Lesp, offset);
 526   dec(Lesp, 2 * Interpreter::stackElementSize());
 527 }
 528 
 529 
 530 void InterpreterMacroAssembler::push(TosState state) {
 531   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 532   switch (state) {
 533     case atos: push_ptr();            break;
 534     case btos: push_i();              break;
 535     case ctos:
 536     case stos: push_i();              break;
 537     case itos: push_i();              break;
 538     case ltos: push_l();              break;
 539     case ftos: push_f();              break;
 540     case dtos: push_d();              break;
 541     case vtos: /* nothing to do */    break;
 542     default  : ShouldNotReachHere();
 543   }
 544 }
 545 
 546 
 547 void InterpreterMacroAssembler::pop(TosState state) {
 548   switch (state) {
 549     case atos: pop_ptr();            break;
 550     case btos: pop_i();              break;
 551     case ctos:
 552     case stos: pop_i();              break;
 553     case itos: pop_i();              break;
 554     case ltos: pop_l();              break;
 555     case ftos: pop_f();              break;
 556     case dtos: pop_d();              break;
 557     case vtos: /* nothing to do */   break;
 558     default  : ShouldNotReachHere();
 559   }
 560   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 561 }
 562 
 563 
 564 // Tagged stack helpers for swap and dup
 565 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
 566                                                  Register tag) {
 567   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
 568   if (TaggedStackInterpreter) {
 569     ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(n), tag);
 570   }
 571 }
 572 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
 573                                                   Register tag) {
 574   st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
 575   if (TaggedStackInterpreter) {
 576     st_ptr(tag, Lesp, Interpreter::expr_tag_offset_in_bytes(n));
 577   }
 578 }
 579 
 580 
 581 void InterpreterMacroAssembler::load_receiver(Register param_count,
 582                                               Register recv) {
 583 
 584   sll(param_count, Interpreter::logStackElementSize(), param_count);
 585   if (TaggedStackInterpreter) {
 586     add(param_count, Interpreter::value_offset_in_bytes(), param_count);  // get obj address
 587   }
 588   ld_ptr(Lesp, param_count, recv);                      // gets receiver Oop
 589 }
 590 
 591 void InterpreterMacroAssembler::empty_expression_stack() {
 592   // Reset Lesp.
 593   sub( Lmonitors, wordSize, Lesp );
 594 
 595   // Reset SP by subtracting more space from Lesp.
 596   Label done;
 597   verify_oop(Lmethod);
 598   assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
 599 
 600   // A native does not need to do this, since its callee does not change SP.
 601   ld(Lmethod, methodOopDesc::access_flags_offset(), Gframe_size);  // Load access flags.
 602   btst(JVM_ACC_NATIVE, Gframe_size);
 603   br(Assembler::notZero, false, Assembler::pt, done);
 604   delayed()->nop();
 605 
 606   // Compute max expression stack+register save area
 607   lduh(Lmethod, in_bytes(methodOopDesc::max_stack_offset()), Gframe_size);  // Load max stack.
 608   if (TaggedStackInterpreter) sll ( Gframe_size, 1, Gframe_size);  // max_stack * 2 for TAGS
 609   add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
 610 
 611   //
 612   // now set up a stack frame with the size computed above
 613   //
 614   //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
 615   sll( Gframe_size, LogBytesPerWord, Gframe_size );
 616   sub( Lesp, Gframe_size, Gframe_size );
 617   and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
 618   debug_only(verify_sp(Gframe_size, G4_scratch));
 619 #ifdef _LP64
 620   sub(Gframe_size, STACK_BIAS, Gframe_size );
 621 #endif
 622   mov(Gframe_size, SP);
 623 
 624   bind(done);
 625 }
 626 
 627 
 628 #ifdef ASSERT
 629 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
 630   Label Bad, OK;
 631 
 632   // Saved SP must be aligned.
 633 #ifdef _LP64
 634   btst(2*BytesPerWord-1, Rsp);
 635 #else
 636   btst(LongAlignmentMask, Rsp);
 637 #endif
 638   br(Assembler::notZero, false, Assembler::pn, Bad);
 639   delayed()->nop();
 640 
 641   // Saved SP, plus register window size, must not be above FP.
 642   add(Rsp, frame::register_save_words * wordSize, Rtemp);
 643 #ifdef _LP64
 644   sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
 645 #endif
 646   cmp(Rtemp, FP);
 647   brx(Assembler::greaterUnsigned, false, Assembler::pn, Bad);
 648   delayed()->nop();
 649 
 650   // Saved SP must not be ridiculously below current SP.
 651   size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
 652   set(maxstack, Rtemp);
 653   sub(SP, Rtemp, Rtemp);
 654 #ifdef _LP64
 655   add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
 656 #endif
 657   cmp(Rsp, Rtemp);
 658   brx(Assembler::lessUnsigned, false, Assembler::pn, Bad);
 659   delayed()->nop();
 660 
 661   br(Assembler::always, false, Assembler::pn, OK);
 662   delayed()->nop();
 663 
 664   bind(Bad);
 665   stop("on return to interpreted call, restored SP is corrupted");
 666 
 667   bind(OK);
 668 }
 669 
 670 
 671 void InterpreterMacroAssembler::verify_esp(Register Resp) {
 672   // about to read or write Resp[0]
 673   // make sure it is not in the monitors or the register save area
 674   Label OK1, OK2;
 675 
 676   cmp(Resp, Lmonitors);
 677   brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
 678   delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
 679   stop("too many pops:  Lesp points into monitor area");
 680   bind(OK1);
 681 #ifdef _LP64
 682   sub(Resp, STACK_BIAS, Resp);
 683 #endif
 684   cmp(Resp, SP);
 685   brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
 686   delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
 687   stop("too many pushes:  Lesp points into register window");
 688   bind(OK2);
 689 }
 690 #endif // ASSERT
 691 
 692 // Load compiled (i2c) or interpreter entry when calling from interpreted and
 693 // do the call. Centralized so that all interpreter calls will do the same actions.
 694 // If jvmti single stepping is on for a thread we must not call compiled code.
 695 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
 696 
 697   // Assume we want to go compiled if available
 698 
 699   ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
 700 
 701   if (JvmtiExport::can_post_interpreter_events()) {
 702     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 703     // compiled code in threads for which the event is enabled.  Check here for
 704     // interp_only_mode if these events CAN be enabled.
 705     verify_thread();
 706     Label skip_compiled_code;
 707 
 708     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
 709     ld(interp_only, scratch);
 710     tst(scratch);
 711     br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
 712     delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
 713     bind(skip_compiled_code);
 714   }
 715 
 716   // the i2c_adapters need methodOop in G5_method (right? %%%)
 717   // do the call
 718 #ifdef ASSERT
 719   {
 720     Label ok;
 721     br_notnull(target, false, Assembler::pt, ok);
 722     delayed()->nop();
 723     stop("null entry point");
 724     bind(ok);
 725   }
 726 #endif // ASSERT
 727 
 728   // Adjust Rret first so Llast_SP can be same as Rret
 729   add(Rret, -frame::pc_return_offset, O7);
 730   add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
 731   // Record SP so we can remove any stack space allocated by adapter transition
 732   jmp(target, 0);
 733   delayed()->mov(SP, Llast_SP);
 734 }
 735 
 736 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
 737   assert_not_delayed();
 738 
 739   Label not_taken;
 740   if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
 741   else             br (cc, false, Assembler::pn, not_taken);
 742   delayed()->nop();
 743 
 744   TemplateTable::branch(false,false);
 745 
 746   bind(not_taken);
 747 
 748   profile_not_taken_branch(G3_scratch);
 749 }
 750 
 751 
 752 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
 753                                   int         bcp_offset,
 754                                   Register    Rtmp,
 755                                   Register    Rdst,
 756                                   signedOrNot is_signed,
 757                                   setCCOrNot  should_set_CC ) {
 758   assert(Rtmp != Rdst, "need separate temp register");
 759   assert_not_delayed();
 760   switch (is_signed) {
 761    default: ShouldNotReachHere();
 762 
 763    case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
 764    case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
 765   }
 766   ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
 767   sll( Rdst, BitsPerByte, Rdst);
 768   switch (should_set_CC ) {
 769    default: ShouldNotReachHere();
 770 
 771    case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
 772    case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
 773   }
 774 }
 775 
 776 
 777 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
 778                                   int        bcp_offset,
 779                                   Register   Rtmp,
 780                                   Register   Rdst,
 781                                   setCCOrNot should_set_CC ) {
 782   assert(Rtmp != Rdst, "need separate temp register");
 783   assert_not_delayed();
 784   add( Lbcp, bcp_offset, Rtmp);
 785   andcc( Rtmp, 3, G0);
 786   Label aligned;
 787   switch (should_set_CC ) {
 788    default: ShouldNotReachHere();
 789 
 790    case      set_CC: break;
 791    case dont_set_CC: break;
 792   }
 793 
 794   br(Assembler::zero, true, Assembler::pn, aligned);
 795 #ifdef _LP64
 796   delayed()->ldsw(Rtmp, 0, Rdst);
 797 #else
 798   delayed()->ld(Rtmp, 0, Rdst);
 799 #endif
 800 
 801   ldub(Lbcp, bcp_offset + 3, Rdst);
 802   ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
 803   ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
 804 #ifdef _LP64
 805   ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
 806 #else
 807   // Unsigned load is faster than signed on some implementations
 808   ldub(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
 809 #endif
 810   or3(Rtmp, Rdst, Rdst );
 811 
 812   bind(aligned);
 813   if (should_set_CC == set_CC) tst(Rdst);
 814 }
 815 
 816 
 817 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register cache, Register tmp,
 818                                                        int bcp_offset, bool giant_index) {
 819   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 820   if (!giant_index) {
 821     get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
 822   } else {
 823     assert(EnableInvokeDynamic, "giant index used only for EnableInvokeDynamic");
 824     get_4_byte_integer_at_bcp(bcp_offset, cache, tmp);
 825     assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
 826     xor3(tmp, -1, tmp);  // convert to plain index
 827   }
 828 }
 829 
 830 
 831 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
 832                                                            int bcp_offset, bool giant_index) {
 833   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 834   assert_different_registers(cache, tmp);
 835   assert_not_delayed();
 836   get_cache_index_at_bcp(cache, tmp, bcp_offset, giant_index);
 837   // convert from field index to ConstantPoolCacheEntry index and from
 838   // word index to byte offset
 839   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
 840   add(LcpoolCache, tmp, cache);
 841 }
 842 
 843 
 844 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
 845                                                                int bcp_offset, bool giant_index) {
 846   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 847   assert_different_registers(cache, tmp);
 848   assert_not_delayed();
 849   assert(!giant_index,"NYI");
 850   get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
 851               // convert from field index to ConstantPoolCacheEntry index
 852               // and from word index to byte offset
 853   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
 854               // skip past the header
 855   add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
 856               // construct pointer to cache entry
 857   add(LcpoolCache, tmp, cache);
 858 }
 859 
 860 
 861 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 862 // a subtype of super_klass.  Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
 863 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 864                                                   Register Rsuper_klass,
 865                                                   Register Rtmp1,
 866                                                   Register Rtmp2,
 867                                                   Register Rtmp3,
 868                                                   Label &ok_is_subtype ) {
 869   Label not_subtype;
 870 
 871   // Profile the not-null value's klass.
 872   profile_typecheck(Rsub_klass, Rtmp1);
 873 
 874   check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
 875                                 Rtmp1, Rtmp2,
 876                                 &ok_is_subtype, &not_subtype, NULL);
 877 
 878   check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
 879                                 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
 880                                 &ok_is_subtype, NULL);
 881 
 882   bind(not_subtype);
 883   profile_typecheck_failed(Rtmp1);
 884 }
 885 
 886 // Separate these two to allow for delay slot in middle
 887 // These are used to do a test and full jump to exception-throwing code.
 888 
 889 // %%%%% Could possibly reoptimize this by testing to see if could use
 890 // a single conditional branch (i.e. if span is small enough.
 891 // If you go that route, than get rid of the split and give up
 892 // on the delay-slot hack.
 893 
 894 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
 895                                                     Label&    ok ) {
 896   assert_not_delayed();
 897   br(ok_condition, true, pt, ok);
 898   // DELAY SLOT
 899 }
 900 
 901 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
 902                                                     Label&    ok ) {
 903   assert_not_delayed();
 904   bp( ok_condition, true, Assembler::xcc, pt, ok);
 905   // DELAY SLOT
 906 }
 907 
 908 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
 909                                                   Label&    ok ) {
 910   assert_not_delayed();
 911   brx(ok_condition, true, pt, ok);
 912   // DELAY SLOT
 913 }
 914 
 915 void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
 916                                                 Register Rscratch,
 917                                                 Label&   ok ) {
 918   assert(throw_entry_point != NULL, "entry point must be generated by now");
 919   AddressLiteral dest(throw_entry_point);
 920   jump_to(dest, Rscratch);
 921   delayed()->nop();
 922   bind(ok);
 923 }
 924 
 925 
 926 // And if you cannot use the delay slot, here is a shorthand:
 927 
 928 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
 929                                                   address   throw_entry_point,
 930                                                   Register  Rscratch ) {
 931   Label ok;
 932   if (ok_condition != never) {
 933     throw_if_not_1_icc( ok_condition, ok);
 934     delayed()->nop();
 935   }
 936   throw_if_not_2( throw_entry_point, Rscratch, ok);
 937 }
 938 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
 939                                                   address   throw_entry_point,
 940                                                   Register  Rscratch ) {
 941   Label ok;
 942   if (ok_condition != never) {
 943     throw_if_not_1_xcc( ok_condition, ok);
 944     delayed()->nop();
 945   }
 946   throw_if_not_2( throw_entry_point, Rscratch, ok);
 947 }
 948 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
 949                                                 address   throw_entry_point,
 950                                                 Register  Rscratch ) {
 951   Label ok;
 952   if (ok_condition != never) {
 953     throw_if_not_1_x( ok_condition, ok);
 954     delayed()->nop();
 955   }
 956   throw_if_not_2( throw_entry_point, Rscratch, ok);
 957 }
 958 
 959 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
 960 // Note: res is still shy of address by array offset into object.
 961 
 962 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
 963   assert_not_delayed();
 964 
 965   verify_oop(array);
 966 #ifdef _LP64
 967   // sign extend since tos (index) can be a 32bit value
 968   sra(index, G0, index);
 969 #endif // _LP64
 970 
 971   // check array
 972   Label ptr_ok;
 973   tst(array);
 974   throw_if_not_1_x( notZero, ptr_ok );
 975   delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
 976   throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
 977 
 978   Label index_ok;
 979   cmp(index, tmp);
 980   throw_if_not_1_icc( lessUnsigned, index_ok );
 981   if (index_shift > 0)  delayed()->sll(index, index_shift, index);
 982   else                  delayed()->add(array, index, res); // addr - const offset in index
 983   // convention: move aberrant index into G3_scratch for exception message
 984   mov(index, G3_scratch);
 985   throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
 986 
 987   // add offset if didn't do it in delay slot
 988   if (index_shift > 0)   add(array, index, res); // addr - const offset in index
 989 }
 990 
 991 
 992 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
 993   assert_not_delayed();
 994 
 995   // pop array
 996   pop_ptr(array);
 997 
 998   // check array
 999   index_check_without_pop(array, index, index_shift, tmp, res);
1000 }
1001 
1002 
1003 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
1004   ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
1005 }
1006 
1007 
1008 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
1009   get_constant_pool(Rdst);
1010   ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
1011 }
1012 
1013 
1014 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
1015   get_constant_pool(Rcpool);
1016   ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
1017 }
1018 
1019 
1020 // unlock if synchronized method
1021 //
1022 // Unlock the receiver if this is a synchronized method.
1023 // Unlock any Java monitors from syncronized blocks.
1024 //
1025 // If there are locked Java monitors
1026 //    If throw_monitor_exception
1027 //       throws IllegalMonitorStateException
1028 //    Else if install_monitor_exception
1029 //       installs IllegalMonitorStateException
1030 //    Else
1031 //       no error processing
1032 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
1033                                                               bool throw_monitor_exception,
1034                                                               bool install_monitor_exception) {
1035   Label unlocked, unlock, no_unlock;
1036 
1037   // get the value of _do_not_unlock_if_synchronized into G1_scratch
1038   const Address do_not_unlock_if_synchronized(G2_thread,
1039     JavaThread::do_not_unlock_if_synchronized_offset());
1040   ldbool(do_not_unlock_if_synchronized, G1_scratch);
1041   stbool(G0, do_not_unlock_if_synchronized); // reset the flag
1042 
1043   // check if synchronized method
1044   const Address access_flags(Lmethod, methodOopDesc::access_flags_offset());
1045   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1046   push(state); // save tos
1047   ld(access_flags, G3_scratch); // Load access flags.
1048   btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
1049   br(zero, false, pt, unlocked);
1050   delayed()->nop();
1051 
1052   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
1053   // is set.
1054   tstbool(G1_scratch);
1055   br(Assembler::notZero, false, pn, no_unlock);
1056   delayed()->nop();
1057 
1058   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
1059   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
1060 
1061   //Intel: if (throw_monitor_exception) ... else ...
1062   // Entry already unlocked, need to throw exception
1063   //...
1064 
1065   // pass top-most monitor elem
1066   add( top_most_monitor(), O1 );
1067 
1068   ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
1069   br_notnull(G3_scratch, false, pt, unlock);
1070   delayed()->nop();
1071 
1072   if (throw_monitor_exception) {
1073     // Entry already unlocked need to throw an exception
1074     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1075     should_not_reach_here();
1076   } else {
1077     // Monitor already unlocked during a stack unroll.
1078     // If requested, install an illegal_monitor_state_exception.
1079     // Continue with stack unrolling.
1080     if (install_monitor_exception) {
1081       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1082     }
1083     ba(false, unlocked);
1084     delayed()->nop();
1085   }
1086 
1087   bind(unlock);
1088 
1089   unlock_object(O1);
1090 
1091   bind(unlocked);
1092 
1093   // I0, I1: Might contain return value
1094 
1095   // Check that all monitors are unlocked
1096   { Label loop, exception, entry, restart;
1097 
1098     Register Rmptr   = O0;
1099     Register Rtemp   = O1;
1100     Register Rlimit  = Lmonitors;
1101     const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1102     assert( (delta & LongAlignmentMask) == 0,
1103             "sizeof BasicObjectLock must be even number of doublewords");
1104 
1105     #ifdef ASSERT
1106     add(top_most_monitor(), Rmptr, delta);
1107     { Label L;
1108       // ensure that Rmptr starts out above (or at) Rlimit
1109       cmp(Rmptr, Rlimit);
1110       brx(Assembler::greaterEqualUnsigned, false, pn, L);
1111       delayed()->nop();
1112       stop("monitor stack has negative size");
1113       bind(L);
1114     }
1115     #endif
1116     bind(restart);
1117     ba(false, entry);
1118     delayed()->
1119     add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
1120 
1121     // Entry is still locked, need to throw exception
1122     bind(exception);
1123     if (throw_monitor_exception) {
1124       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1125       should_not_reach_here();
1126     } else {
1127       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
1128       // Unlock does not block, so don't have to worry about the frame
1129       unlock_object(Rmptr);
1130       if (install_monitor_exception) {
1131         MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1132       }
1133       ba(false, restart);
1134       delayed()->nop();
1135     }
1136 
1137     bind(loop);
1138     cmp(Rtemp, G0);                             // check if current entry is used
1139     brx(Assembler::notEqual, false, pn, exception);
1140     delayed()->
1141     dec(Rmptr, delta);                          // otherwise advance to next entry
1142     #ifdef ASSERT
1143     { Label L;
1144       // ensure that Rmptr has not somehow stepped below Rlimit
1145       cmp(Rmptr, Rlimit);
1146       brx(Assembler::greaterEqualUnsigned, false, pn, L);
1147       delayed()->nop();
1148       stop("ran off the end of the monitor stack");
1149       bind(L);
1150     }
1151     #endif
1152     bind(entry);
1153     cmp(Rmptr, Rlimit);                         // check if bottom reached
1154     brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
1155     delayed()->
1156     ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
1157   }
1158 
1159   bind(no_unlock);
1160   pop(state);
1161   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1162 }
1163 
1164 
1165 // remove activation
1166 //
1167 // Unlock the receiver if this is a synchronized method.
1168 // Unlock any Java monitors from syncronized blocks.
1169 // Remove the activation from the stack.
1170 //
1171 // If there are locked Java monitors
1172 //    If throw_monitor_exception
1173 //       throws IllegalMonitorStateException
1174 //    Else if install_monitor_exception
1175 //       installs IllegalMonitorStateException
1176 //    Else
1177 //       no error processing
1178 void InterpreterMacroAssembler::remove_activation(TosState state,
1179                                                   bool throw_monitor_exception,
1180                                                   bool install_monitor_exception) {
1181 
1182   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
1183 
1184   // save result (push state before jvmti call and pop it afterwards) and notify jvmti
1185   notify_method_exit(false, state, NotifyJVMTI);
1186 
1187   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1188   verify_oop(Lmethod);
1189   verify_thread();
1190 
1191   // return tos
1192   assert(Otos_l1 == Otos_i, "adjust code below");
1193   switch (state) {
1194 #ifdef _LP64
1195   case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
1196 #else
1197   case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through  // O1 -> I1
1198 #endif
1199   case btos:                                      // fall through
1200   case ctos:
1201   case stos:                                      // fall through
1202   case atos:                                      // fall through
1203   case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
1204   case ftos:                                      // fall through
1205   case dtos:                                      // fall through
1206   case vtos: /* nothing to do */                     break;
1207   default  : ShouldNotReachHere();
1208   }
1209 
1210 #if defined(COMPILER2) && !defined(_LP64)
1211   if (state == ltos) {
1212     // C2 expects long results in G1 we can't tell if we're returning to interpreted
1213     // or compiled so just be safe use G1 and O0/O1
1214 
1215     // Shift bits into high (msb) of G1
1216     sllx(Otos_l1->after_save(), 32, G1);
1217     // Zero extend low bits
1218     srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
1219     or3 (Otos_l2->after_save(), G1, G1);
1220   }
1221 #endif /* COMPILER2 */
1222 
1223 }
1224 #endif /* CC_INTERP */
1225 
1226 
1227 // Lock object
1228 //
1229 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
1230 //            it must be initialized with the object to lock
1231 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
1232   if (UseHeavyMonitors) {
1233     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1234   }
1235   else {
1236     Register obj_reg = Object;
1237     Register mark_reg = G4_scratch;
1238     Register temp_reg = G1_scratch;
1239     Address  lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
1240     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1241     Label    done;
1242 
1243     Label slow_case;
1244 
1245     assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
1246 
1247     // load markOop from object into mark_reg
1248     ld_ptr(mark_addr, mark_reg);
1249 
1250     if (UseBiasedLocking) {
1251       biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
1252     }
1253 
1254     // get the address of basicLock on stack that will be stored in the object
1255     // we need a temporary register here as we do not want to clobber lock_reg
1256     // (cas clobbers the destination register)
1257     mov(lock_reg, temp_reg);
1258     // set mark reg to be (markOop of object | UNLOCK_VALUE)
1259     or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
1260     // initialize the box  (Must happen before we update the object mark!)
1261     st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1262     // compare and exchange object_addr, markOop | 1, stack address of basicLock
1263     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1264     casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
1265       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1266 
1267     // if the compare and exchange succeeded we are done (we saw an unlocked object)
1268     cmp(mark_reg, temp_reg);
1269     brx(Assembler::equal, true, Assembler::pt, done);
1270     delayed()->nop();
1271 
1272     // We did not see an unlocked object so try the fast recursive case
1273 
1274     // Check if owner is self by comparing the value in the markOop of object
1275     // with the stack pointer
1276     sub(temp_reg, SP, temp_reg);
1277 #ifdef _LP64
1278     sub(temp_reg, STACK_BIAS, temp_reg);
1279 #endif
1280     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
1281 
1282     // Composite "andcc" test:
1283     // (a) %sp -vs- markword proximity check, and,
1284     // (b) verify mark word LSBs == 0 (Stack-locked).
1285     //
1286     // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
1287     // Note that the page size used for %sp proximity testing is arbitrary and is
1288     // unrelated to the actual MMU page size.  We use a 'logical' page size of
1289     // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
1290     // field of the andcc instruction.
1291     andcc (temp_reg, 0xFFFFF003, G0) ;
1292 
1293     // if condition is true we are done and hence we can store 0 in the displaced
1294     // header indicating it is a recursive lock and be done
1295     brx(Assembler::zero, true, Assembler::pt, done);
1296     delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1297 
1298     // none of the above fast optimizations worked so we have to get into the
1299     // slow case of monitor enter
1300     bind(slow_case);
1301     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1302 
1303     bind(done);
1304   }
1305 }
1306 
1307 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
1308 //
1309 // Argument - lock_reg points to the BasicObjectLock for lock
1310 // Throw IllegalMonitorException if object is not locked by current thread
1311 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1312   if (UseHeavyMonitors) {
1313     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1314   } else {
1315     Register obj_reg = G3_scratch;
1316     Register mark_reg = G4_scratch;
1317     Register displaced_header_reg = G1_scratch;
1318     Address  lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
1319     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1320     Label    done;
1321 
1322     if (UseBiasedLocking) {
1323       // load the object out of the BasicObjectLock
1324       ld_ptr(lockobj_addr, obj_reg);
1325       biased_locking_exit(mark_addr, mark_reg, done, true);
1326       st_ptr(G0, lockobj_addr);  // free entry
1327     }
1328 
1329     // Test first if we are in the fast recursive case
1330     Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
1331     ld_ptr(lock_addr, displaced_header_reg);
1332     br_null(displaced_header_reg, true, Assembler::pn, done);
1333     delayed()->st_ptr(G0, lockobj_addr);  // free entry
1334 
1335     // See if it is still a light weight lock, if so we just unlock
1336     // the object and we are done
1337 
1338     if (!UseBiasedLocking) {
1339       // load the object out of the BasicObjectLock
1340       ld_ptr(lockobj_addr, obj_reg);
1341     }
1342 
1343     // we have the displaced header in displaced_header_reg
1344     // we expect to see the stack address of the basicLock in case the
1345     // lock is still a light weight lock (lock_reg)
1346     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1347     casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
1348       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1349     cmp(lock_reg, displaced_header_reg);
1350     brx(Assembler::equal, true, Assembler::pn, done);
1351     delayed()->st_ptr(G0, lockobj_addr);  // free entry
1352 
1353     // The lock has been converted into a heavy lock and hence
1354     // we need to get into the slow case
1355 
1356     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1357 
1358     bind(done);
1359   }
1360 }
1361 
1362 #ifndef CC_INTERP
1363 
1364 // Get the method data pointer from the methodOop and set the
1365 // specified register to its value.
1366 
1367 void InterpreterMacroAssembler::set_method_data_pointer_offset(Register Roff) {
1368   assert(ProfileInterpreter, "must be profiling interpreter");
1369   Label get_continue;
1370 
1371   ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
1372   test_method_data_pointer(get_continue);
1373   add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
1374   if (Roff != noreg)
1375     // Roff contains a method data index ("mdi").  It defaults to zero.
1376     add(ImethodDataPtr, Roff, ImethodDataPtr);
1377   bind(get_continue);
1378 }
1379 
1380 // Set the method data pointer for the current bcp.
1381 
1382 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1383   assert(ProfileInterpreter, "must be profiling interpreter");
1384   Label zero_continue;
1385 
1386   // Test MDO to avoid the call if it is NULL.
1387   ld_ptr(Lmethod, methodOopDesc::method_data_offset(), ImethodDataPtr);
1388   test_method_data_pointer(zero_continue);
1389   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
1390   set_method_data_pointer_offset(O0);
1391   bind(zero_continue);
1392 }
1393 
1394 // Test ImethodDataPtr.  If it is null, continue at the specified label
1395 
1396 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1397   assert(ProfileInterpreter, "must be profiling interpreter");
1398 #ifdef _LP64
1399   bpr(Assembler::rc_z, false, Assembler::pn, ImethodDataPtr, zero_continue);
1400 #else
1401   tst(ImethodDataPtr);
1402   br(Assembler::zero, false, Assembler::pn, zero_continue);
1403 #endif
1404   delayed()->nop();
1405 }
1406 
1407 void InterpreterMacroAssembler::verify_method_data_pointer() {
1408   assert(ProfileInterpreter, "must be profiling interpreter");
1409 #ifdef ASSERT
1410   Label verify_continue;
1411   test_method_data_pointer(verify_continue);
1412 
1413   // If the mdp is valid, it will point to a DataLayout header which is
1414   // consistent with the bcp.  The converse is highly probable also.
1415   lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
1416   ld_ptr(Lmethod, methodOopDesc::const_offset(), O5);
1417   add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
1418   add(G3_scratch, O5, G3_scratch);
1419   cmp(Lbcp, G3_scratch);
1420   brx(Assembler::equal, false, Assembler::pt, verify_continue);
1421 
1422   Register temp_reg = O5;
1423   delayed()->mov(ImethodDataPtr, temp_reg);
1424   // %%% should use call_VM_leaf here?
1425   //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
1426   save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
1427   Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
1428   stf(FloatRegisterImpl::D, Ftos_d, d_save);
1429   mov(temp_reg->after_save(), O2);
1430   save_thread(L7_thread_cache);
1431   call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
1432   delayed()->nop();
1433   restore_thread(L7_thread_cache);
1434   ldf(FloatRegisterImpl::D, d_save, Ftos_d);
1435   restore();
1436   bind(verify_continue);
1437 #endif // ASSERT
1438 }
1439 
1440 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1441                                                                 Register cur_bcp,
1442                                                                 Register Rtmp,
1443                                                                 Label &profile_continue) {
1444   assert(ProfileInterpreter, "must be profiling interpreter");
1445   // Control will flow to "profile_continue" if the counter is less than the
1446   // limit or if we call profile_method()
1447 
1448   Label done;
1449 
1450   // if no method data exists, and the counter is high enough, make one
1451 #ifdef _LP64
1452   bpr(Assembler::rc_nz, false, Assembler::pn, ImethodDataPtr, done);
1453 #else
1454   tst(ImethodDataPtr);
1455   br(Assembler::notZero, false, Assembler::pn, done);
1456 #endif
1457 
1458   // Test to see if we should create a method data oop
1459   AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
1460 #ifdef _LP64
1461   delayed()->nop();
1462   sethi(profile_limit, Rtmp);
1463 #else
1464   delayed()->sethi(profile_limit, Rtmp);
1465 #endif
1466   ld(Rtmp, profile_limit.low10(), Rtmp);
1467   cmp(invocation_count, Rtmp);
1468   br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
1469   delayed()->nop();
1470 
1471   // Build it now.
1472   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), cur_bcp);
1473   set_method_data_pointer_offset(O0);
1474   ba(false, profile_continue);
1475   delayed()->nop();
1476   bind(done);
1477 }
1478 
1479 // Store a value at some constant offset from the method data pointer.
1480 
1481 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1482   assert(ProfileInterpreter, "must be profiling interpreter");
1483   st_ptr(value, ImethodDataPtr, constant);
1484 }
1485 
1486 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
1487                                                       Register bumped_count,
1488                                                       bool decrement) {
1489   assert(ProfileInterpreter, "must be profiling interpreter");
1490 
1491   // Load the counter.
1492   ld_ptr(counter, bumped_count);
1493 
1494   if (decrement) {
1495     // Decrement the register.  Set condition codes.
1496     subcc(bumped_count, DataLayout::counter_increment, bumped_count);
1497 
1498     // If the decrement causes the counter to overflow, stay negative
1499     Label L;
1500     brx(Assembler::negative, true, Assembler::pn, L);
1501 
1502     // Store the decremented counter, if it is still negative.
1503     delayed()->st_ptr(bumped_count, counter);
1504     bind(L);
1505   } else {
1506     // Increment the register.  Set carry flag.
1507     addcc(bumped_count, DataLayout::counter_increment, bumped_count);
1508 
1509     // If the increment causes the counter to overflow, pull back by 1.
1510     assert(DataLayout::counter_increment == 1, "subc works");
1511     subc(bumped_count, G0, bumped_count);
1512 
1513     // Store the incremented counter.
1514     st_ptr(bumped_count, counter);
1515   }
1516 }
1517 
1518 // Increment the value at some constant offset from the method data pointer.
1519 
1520 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1521                                                       Register bumped_count,
1522                                                       bool decrement) {
1523   // Locate the counter at a fixed offset from the mdp:
1524   Address counter(ImethodDataPtr, constant);
1525   increment_mdp_data_at(counter, bumped_count, decrement);
1526 }
1527 
1528 // Increment the value at some non-fixed (reg + constant) offset from
1529 // the method data pointer.
1530 
1531 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1532                                                       int constant,
1533                                                       Register bumped_count,
1534                                                       Register scratch2,
1535                                                       bool decrement) {
1536   // Add the constant to reg to get the offset.
1537   add(ImethodDataPtr, reg, scratch2);
1538   Address counter(scratch2, constant);
1539   increment_mdp_data_at(counter, bumped_count, decrement);
1540 }
1541 
1542 // Set a flag value at the current method data pointer position.
1543 // Updates a single byte of the header, to avoid races with other header bits.
1544 
1545 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1546                                                 Register scratch) {
1547   assert(ProfileInterpreter, "must be profiling interpreter");
1548   // Load the data header
1549   ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
1550 
1551   // Set the flag
1552   or3(scratch, flag_constant, scratch);
1553 
1554   // Store the modified header.
1555   stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
1556 }
1557 
1558 // Test the location at some offset from the method data pointer.
1559 // If it is not equal to value, branch to the not_equal_continue Label.
1560 // Set condition codes to match the nullness of the loaded value.
1561 
1562 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1563                                                  Register value,
1564                                                  Label& not_equal_continue,
1565                                                  Register scratch) {
1566   assert(ProfileInterpreter, "must be profiling interpreter");
1567   ld_ptr(ImethodDataPtr, offset, scratch);
1568   cmp(value, scratch);
1569   brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
1570   delayed()->tst(scratch);
1571 }
1572 
1573 // Update the method data pointer by the displacement located at some fixed
1574 // offset from the method data pointer.
1575 
1576 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1577                                                      Register scratch) {
1578   assert(ProfileInterpreter, "must be profiling interpreter");
1579   ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
1580   add(ImethodDataPtr, scratch, ImethodDataPtr);
1581 }
1582 
1583 // Update the method data pointer by the displacement located at the
1584 // offset (reg + offset_of_disp).
1585 
1586 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1587                                                      int offset_of_disp,
1588                                                      Register scratch) {
1589   assert(ProfileInterpreter, "must be profiling interpreter");
1590   add(reg, offset_of_disp, scratch);
1591   ld_ptr(ImethodDataPtr, scratch, scratch);
1592   add(ImethodDataPtr, scratch, ImethodDataPtr);
1593 }
1594 
1595 // Update the method data pointer by a simple constant displacement.
1596 
1597 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1598   assert(ProfileInterpreter, "must be profiling interpreter");
1599   add(ImethodDataPtr, constant, ImethodDataPtr);
1600 }
1601 
1602 // Update the method data pointer for a _ret bytecode whose target
1603 // was not among our cached targets.
1604 
1605 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1606                                                    Register return_bci) {
1607   assert(ProfileInterpreter, "must be profiling interpreter");
1608   push(state);
1609   st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
1610   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1611   ld_ptr(l_tmp, return_bci);
1612   pop(state);
1613 }
1614 
1615 // Count a taken branch in the bytecodes.
1616 
1617 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1618   if (ProfileInterpreter) {
1619     Label profile_continue;
1620 
1621     // If no method data exists, go to profile_continue.
1622     test_method_data_pointer(profile_continue);
1623 
1624     // We are taking a branch.  Increment the taken count.
1625     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
1626 
1627     // The method data pointer needs to be updated to reflect the new target.
1628     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1629     bind (profile_continue);
1630   }
1631 }
1632 
1633 
1634 // Count a not-taken branch in the bytecodes.
1635 
1636 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
1637   if (ProfileInterpreter) {
1638     Label profile_continue;
1639 
1640     // If no method data exists, go to profile_continue.
1641     test_method_data_pointer(profile_continue);
1642 
1643     // We are taking a branch.  Increment the not taken count.
1644     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
1645 
1646     // The method data pointer needs to be updated to correspond to the
1647     // next bytecode.
1648     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1649     bind (profile_continue);
1650   }
1651 }
1652 
1653 
1654 // Count a non-virtual call in the bytecodes.
1655 
1656 void InterpreterMacroAssembler::profile_call(Register scratch) {
1657   if (ProfileInterpreter) {
1658     Label profile_continue;
1659 
1660     // If no method data exists, go to profile_continue.
1661     test_method_data_pointer(profile_continue);
1662 
1663     // We are making a call.  Increment the count.
1664     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1665 
1666     // The method data pointer needs to be updated to reflect the new target.
1667     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1668     bind (profile_continue);
1669   }
1670 }
1671 
1672 
1673 // Count a final call in the bytecodes.
1674 
1675 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
1676   if (ProfileInterpreter) {
1677     Label profile_continue;
1678 
1679     // If no method data exists, go to profile_continue.
1680     test_method_data_pointer(profile_continue);
1681 
1682     // We are making a call.  Increment the count.
1683     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1684 
1685     // The method data pointer needs to be updated to reflect the new target.
1686     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1687     bind (profile_continue);
1688   }
1689 }
1690 
1691 
1692 // Count a virtual call in the bytecodes.
1693 
1694 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1695                                                      Register scratch,
1696                                                      bool receiver_can_be_null) {
1697   if (ProfileInterpreter) {
1698     Label profile_continue;
1699 
1700     // If no method data exists, go to profile_continue.
1701     test_method_data_pointer(profile_continue);
1702 
1703 
1704     Label skip_receiver_profile;
1705     if (receiver_can_be_null) {
1706       Label not_null;
1707       tst(receiver);
1708       brx(Assembler::notZero, false, Assembler::pt, not_null);
1709       delayed()->nop();
1710       // We are making a call.  Increment the count for null receiver.
1711       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1712       ba(false, skip_receiver_profile);
1713       delayed()->nop();
1714       bind(not_null);
1715     }
1716 
1717     // Record the receiver type.
1718     record_klass_in_profile(receiver, scratch, true);
1719     bind(skip_receiver_profile);
1720 
1721     // The method data pointer needs to be updated to reflect the new target.
1722     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1723     bind (profile_continue);
1724   }
1725 }
1726 
1727 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1728                                         Register receiver, Register scratch,
1729                                         int start_row, Label& done, bool is_virtual_call) {
1730   if (TypeProfileWidth == 0) {
1731     if (is_virtual_call) {
1732       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1733     }
1734     return;
1735   }
1736 
1737   int last_row = VirtualCallData::row_limit() - 1;
1738   assert(start_row <= last_row, "must be work left to do");
1739   // Test this row for both the receiver and for null.
1740   // Take any of three different outcomes:
1741   //   1. found receiver => increment count and goto done
1742   //   2. found null => keep looking for case 1, maybe allocate this cell
1743   //   3. found something else => keep looking for cases 1 and 2
1744   // Case 3 is handled by a recursive call.
1745   for (int row = start_row; row <= last_row; row++) {
1746     Label next_test;
1747     bool test_for_null_also = (row == start_row);
1748 
1749     // See if the receiver is receiver[n].
1750     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1751     test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
1752     // delayed()->tst(scratch);
1753 
1754     // The receiver is receiver[n].  Increment count[n].
1755     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1756     increment_mdp_data_at(count_offset, scratch);
1757     ba(false, done);
1758     delayed()->nop();
1759     bind(next_test);
1760 
1761     if (test_for_null_also) {
1762       Label found_null;
1763       // Failed the equality check on receiver[n]...  Test for null.
1764       if (start_row == last_row) {
1765         // The only thing left to do is handle the null case.
1766         if (is_virtual_call) {
1767           brx(Assembler::zero, false, Assembler::pn, found_null);
1768           delayed()->nop();
1769           // Receiver did not match any saved receiver and there is no empty row for it.
1770           // Increment total counter to indicate polymorphic case.
1771           increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1772           ba(false, done);
1773           delayed()->nop();
1774           bind(found_null);
1775         } else {
1776           brx(Assembler::notZero, false, Assembler::pt, done);
1777           delayed()->nop();
1778         }
1779         break;
1780       }
1781       // Since null is rare, make it be the branch-taken case.
1782       brx(Assembler::zero, false, Assembler::pn, found_null);
1783       delayed()->nop();
1784 
1785       // Put all the "Case 3" tests here.
1786       record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
1787 
1788       // Found a null.  Keep searching for a matching receiver,
1789       // but remember that this is an empty (unused) slot.
1790       bind(found_null);
1791     }
1792   }
1793 
1794   // In the fall-through case, we found no matching receiver, but we
1795   // observed the receiver[start_row] is NULL.
1796 
1797   // Fill in the receiver field and increment the count.
1798   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1799   set_mdp_data_at(recvr_offset, receiver);
1800   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1801   mov(DataLayout::counter_increment, scratch);
1802   set_mdp_data_at(count_offset, scratch);
1803   if (start_row > 0) {
1804     ba(false, done);
1805     delayed()->nop();
1806   }
1807 }
1808 
1809 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1810                                                         Register scratch, bool is_virtual_call) {
1811   assert(ProfileInterpreter, "must be profiling");
1812   Label done;
1813 
1814   record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
1815 
1816   bind (done);
1817 }
1818 
1819 
1820 // Count a ret in the bytecodes.
1821 
1822 void InterpreterMacroAssembler::profile_ret(TosState state,
1823                                             Register return_bci,
1824                                             Register scratch) {
1825   if (ProfileInterpreter) {
1826     Label profile_continue;
1827     uint row;
1828 
1829     // If no method data exists, go to profile_continue.
1830     test_method_data_pointer(profile_continue);
1831 
1832     // Update the total ret count.
1833     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1834 
1835     for (row = 0; row < RetData::row_limit(); row++) {
1836       Label next_test;
1837 
1838       // See if return_bci is equal to bci[n]:
1839       test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
1840                        return_bci, next_test, scratch);
1841 
1842       // return_bci is equal to bci[n].  Increment the count.
1843       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
1844 
1845       // The method data pointer needs to be updated to reflect the new target.
1846       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
1847       ba(false, profile_continue);
1848       delayed()->nop();
1849       bind(next_test);
1850     }
1851 
1852     update_mdp_for_ret(state, return_bci);
1853 
1854     bind (profile_continue);
1855   }
1856 }
1857 
1858 // Profile an unexpected null in the bytecodes.
1859 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
1860   if (ProfileInterpreter) {
1861     Label profile_continue;
1862 
1863     // If no method data exists, go to profile_continue.
1864     test_method_data_pointer(profile_continue);
1865 
1866     set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
1867 
1868     // The method data pointer needs to be updated.
1869     int mdp_delta = in_bytes(BitData::bit_data_size());
1870     if (TypeProfileCasts) {
1871       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1872     }
1873     update_mdp_by_constant(mdp_delta);
1874 
1875     bind (profile_continue);
1876   }
1877 }
1878 
1879 void InterpreterMacroAssembler::profile_typecheck(Register klass,
1880                                                   Register scratch) {
1881   if (ProfileInterpreter) {
1882     Label profile_continue;
1883 
1884     // If no method data exists, go to profile_continue.
1885     test_method_data_pointer(profile_continue);
1886 
1887     int mdp_delta = in_bytes(BitData::bit_data_size());
1888     if (TypeProfileCasts) {
1889       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1890 
1891       // Record the object type.
1892       record_klass_in_profile(klass, scratch, false);
1893     }
1894 
1895     // The method data pointer needs to be updated.
1896     update_mdp_by_constant(mdp_delta);
1897 
1898     bind (profile_continue);
1899   }
1900 }
1901 
1902 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
1903   if (ProfileInterpreter && TypeProfileCasts) {
1904     Label profile_continue;
1905 
1906     // If no method data exists, go to profile_continue.
1907     test_method_data_pointer(profile_continue);
1908 
1909     int count_offset = in_bytes(CounterData::count_offset());
1910     // Back up the address, since we have already bumped the mdp.
1911     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1912 
1913     // *Decrement* the counter.  We expect to see zero or small negatives.
1914     increment_mdp_data_at(count_offset, scratch, true);
1915 
1916     bind (profile_continue);
1917   }
1918 }
1919 
1920 // Count the default case of a switch construct.
1921 
1922 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
1923   if (ProfileInterpreter) {
1924     Label profile_continue;
1925 
1926     // If no method data exists, go to profile_continue.
1927     test_method_data_pointer(profile_continue);
1928 
1929     // Update the default case count
1930     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1931                           scratch);
1932 
1933     // The method data pointer needs to be updated.
1934     update_mdp_by_offset(
1935                     in_bytes(MultiBranchData::default_displacement_offset()),
1936                     scratch);
1937 
1938     bind (profile_continue);
1939   }
1940 }
1941 
1942 // Count the index'th case of a switch construct.
1943 
1944 void InterpreterMacroAssembler::profile_switch_case(Register index,
1945                                                     Register scratch,
1946                                                     Register scratch2,
1947                                                     Register scratch3) {
1948   if (ProfileInterpreter) {
1949     Label profile_continue;
1950 
1951     // If no method data exists, go to profile_continue.
1952     test_method_data_pointer(profile_continue);
1953 
1954     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1955     set(in_bytes(MultiBranchData::per_case_size()), scratch);
1956     smul(index, scratch, scratch);
1957     add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
1958 
1959     // Update the case count
1960     increment_mdp_data_at(scratch,
1961                           in_bytes(MultiBranchData::relative_count_offset()),
1962                           scratch2,
1963                           scratch3);
1964 
1965     // The method data pointer needs to be updated.
1966     update_mdp_by_offset(scratch,
1967                      in_bytes(MultiBranchData::relative_displacement_offset()),
1968                      scratch2);
1969 
1970     bind (profile_continue);
1971   }
1972 }
1973 
1974 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
1975 
1976 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
1977                                                       Register Rtemp,
1978                                                       Register Rtemp2 ) {
1979 
1980   Register Rlimit = Lmonitors;
1981   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1982   assert( (delta & LongAlignmentMask) == 0,
1983           "sizeof BasicObjectLock must be even number of doublewords");
1984 
1985   sub( SP,        delta, SP);
1986   sub( Lesp,      delta, Lesp);
1987   sub( Lmonitors, delta, Lmonitors);
1988 
1989   if (!stack_is_empty) {
1990 
1991     // must copy stack contents down
1992 
1993     Label start_copying, next;
1994 
1995     // untested("monitor stack expansion");
1996     compute_stack_base(Rtemp);
1997     ba( false, start_copying );
1998     delayed()->cmp( Rtemp, Rlimit); // done? duplicated below
1999 
2000     // note: must copy from low memory upwards
2001     // On entry to loop,
2002     // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
2003     // Loop mutates Rtemp
2004 
2005     bind( next);
2006 
2007     st_ptr(Rtemp2, Rtemp, 0);
2008     inc(Rtemp, wordSize);
2009     cmp(Rtemp, Rlimit); // are we done? (duplicated above)
2010 
2011     bind( start_copying );
2012 
2013     brx( notEqual, true, pn, next );
2014     delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
2015 
2016     // done copying stack
2017   }
2018 }
2019 
2020 // Locals
2021 #ifdef ASSERT
2022 void InterpreterMacroAssembler::verify_local_tag(frame::Tag t,
2023                                                  Register base,
2024                                                  Register scratch,
2025                                                  int n) {
2026   if (TaggedStackInterpreter) {
2027     Label ok, long_ok;
2028     // Use dst for scratch
2029     assert_different_registers(base, scratch);
2030     ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n), scratch);
2031     if (t == frame::TagCategory2) {
2032       cmp(scratch, G0);
2033       brx(Assembler::equal, false, Assembler::pt, long_ok);
2034       delayed()->ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n+1), scratch);
2035       stop("local long/double tag value bad");
2036       bind(long_ok);
2037       // compare second half tag
2038       cmp(scratch, G0);
2039     } else if (t == frame::TagValue) {
2040       cmp(scratch, G0);
2041     } else {
2042       assert_different_registers(O3, base, scratch);
2043       mov(t, O3);
2044       cmp(scratch, O3);
2045     }
2046     brx(Assembler::equal, false, Assembler::pt, ok);
2047     delayed()->nop();
2048     // Also compare if the local value is zero, then the tag might
2049     // not have been set coming from deopt.
2050     ld_ptr(base, Interpreter::local_offset_in_bytes(n), scratch);
2051     cmp(scratch, G0);
2052     brx(Assembler::equal, false, Assembler::pt, ok);
2053     delayed()->nop();
2054     stop("Local tag value is bad");
2055     bind(ok);
2056   }
2057 }
2058 #endif // ASSERT
2059 
2060 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
2061   assert_not_delayed();
2062   sll(index, Interpreter::logStackElementSize(), index);
2063   sub(Llocals, index, index);
2064   debug_only(verify_local_tag(frame::TagReference, index, dst));
2065   ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
2066   // Note:  index must hold the effective address--the iinc template uses it
2067 }
2068 
2069 // Just like access_local_ptr but the tag is a returnAddress
2070 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
2071                                                            Register dst ) {
2072   assert_not_delayed();
2073   sll(index, Interpreter::logStackElementSize(), index);
2074   sub(Llocals, index, index);
2075   debug_only(verify_local_tag(frame::TagValue, index, dst));
2076   ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
2077 }
2078 
2079 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
2080   assert_not_delayed();
2081   sll(index, Interpreter::logStackElementSize(), index);
2082   sub(Llocals, index, index);
2083   debug_only(verify_local_tag(frame::TagValue, index, dst));
2084   ld(index, Interpreter::value_offset_in_bytes(), dst);
2085   // Note:  index must hold the effective address--the iinc template uses it
2086 }
2087 
2088 
2089 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
2090   assert_not_delayed();
2091   sll(index, Interpreter::logStackElementSize(), index);
2092   sub(Llocals, index, index);
2093   debug_only(verify_local_tag(frame::TagCategory2, index, dst));
2094   // First half stored at index n+1 (which grows down from Llocals[n])
2095   load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
2096 }
2097 
2098 
2099 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
2100   assert_not_delayed();
2101   sll(index, Interpreter::logStackElementSize(), index);
2102   sub(Llocals, index, index);
2103   debug_only(verify_local_tag(frame::TagValue, index, G1_scratch));
2104   ldf(FloatRegisterImpl::S, index, Interpreter::value_offset_in_bytes(), dst);
2105 }
2106 
2107 
2108 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
2109   assert_not_delayed();
2110   sll(index, Interpreter::logStackElementSize(), index);
2111   sub(Llocals, index, index);
2112   debug_only(verify_local_tag(frame::TagCategory2, index, G1_scratch));
2113   load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
2114 }
2115 
2116 
2117 #ifdef ASSERT
2118 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
2119   Label L;
2120 
2121   assert(Rindex != Rscratch, "Registers cannot be same");
2122   assert(Rindex != Rscratch1, "Registers cannot be same");
2123   assert(Rlimit != Rscratch, "Registers cannot be same");
2124   assert(Rlimit != Rscratch1, "Registers cannot be same");
2125   assert(Rscratch1 != Rscratch, "Registers cannot be same");
2126 
2127   // untested("reg area corruption");
2128   add(Rindex, offset, Rscratch);
2129   add(Rlimit, 64 + STACK_BIAS, Rscratch1);
2130   cmp(Rscratch, Rscratch1);
2131   brx(Assembler::greaterEqualUnsigned, false, pn, L);
2132   delayed()->nop();
2133   stop("regsave area is being clobbered");
2134   bind(L);
2135 }
2136 #endif // ASSERT
2137 
2138 void InterpreterMacroAssembler::tag_local(frame::Tag t,
2139                                           Register base,
2140                                           Register src,
2141                                           int n) {
2142   if (TaggedStackInterpreter) {
2143     // have to store zero because local slots can be reused (rats!)
2144     if (t == frame::TagValue) {
2145       st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
2146     } else if (t == frame::TagCategory2) {
2147       st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
2148       st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n+1));
2149     } else {
2150       // assert that we don't stomp the value in 'src'
2151       // O3 is arbitrary because it's not used.
2152       assert_different_registers(src, base, O3);
2153       mov( t, O3);
2154       st_ptr(O3, base, Interpreter::local_tag_offset_in_bytes(n));
2155     }
2156   }
2157 }
2158 
2159 
2160 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
2161   assert_not_delayed();
2162   sll(index, Interpreter::logStackElementSize(), index);
2163   sub(Llocals, index, index);
2164   debug_only(check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);)
2165   tag_local(frame::TagValue, index, src);
2166   st(src, index, Interpreter::value_offset_in_bytes());
2167 }
2168 
2169 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src,
2170                                                  Register tag ) {
2171   assert_not_delayed();
2172   sll(index, Interpreter::logStackElementSize(), index);
2173   sub(Llocals, index, index);
2174   #ifdef ASSERT
2175   check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
2176   #endif
2177   st_ptr(src, index, Interpreter::value_offset_in_bytes());
2178   // Store tag register directly
2179   if (TaggedStackInterpreter) {
2180     st_ptr(tag, index, Interpreter::tag_offset_in_bytes());
2181   }
2182 }
2183 
2184 
2185 
2186 void InterpreterMacroAssembler::store_local_ptr( int n, Register src,
2187                                                  Register tag ) {
2188   st_ptr(src,  Llocals, Interpreter::local_offset_in_bytes(n));
2189   if (TaggedStackInterpreter) {
2190     st_ptr(tag, Llocals, Interpreter::local_tag_offset_in_bytes(n));
2191   }
2192 }
2193 
2194 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
2195   assert_not_delayed();
2196   sll(index, Interpreter::logStackElementSize(), index);
2197   sub(Llocals, index, index);
2198   #ifdef ASSERT
2199   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2200   #endif
2201   tag_local(frame::TagCategory2, index, src);
2202   store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
2203 }
2204 
2205 
2206 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
2207   assert_not_delayed();
2208   sll(index, Interpreter::logStackElementSize(), index);
2209   sub(Llocals, index, index);
2210   #ifdef ASSERT
2211   check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
2212   #endif
2213   tag_local(frame::TagValue, index, G1_scratch);
2214   stf(FloatRegisterImpl::S, src, index, Interpreter::value_offset_in_bytes());
2215 }
2216 
2217 
2218 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
2219   assert_not_delayed();
2220   sll(index, Interpreter::logStackElementSize(), index);
2221   sub(Llocals, index, index);
2222   #ifdef ASSERT
2223   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2224   #endif
2225   tag_local(frame::TagCategory2, index, G1_scratch);
2226   store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
2227 }
2228 
2229 
2230 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
2231   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2232   int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
2233   return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
2234 }
2235 
2236 
2237 Address InterpreterMacroAssembler::top_most_monitor() {
2238   return Address(FP, top_most_monitor_byte_offset());
2239 }
2240 
2241 
2242 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
2243   add( Lesp,      wordSize,                                    Rdest );
2244 }
2245 
2246 #endif /* CC_INTERP */
2247 
2248 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
2249   assert(UseCompiler, "incrementing must be useful");
2250 #ifdef CC_INTERP
2251   Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
2252                                  InvocationCounter::counter_offset());
2253   Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
2254                                  InvocationCounter::counter_offset());
2255 #else
2256   Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
2257                                InvocationCounter::counter_offset());
2258   Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
2259                                InvocationCounter::counter_offset());
2260 #endif /* CC_INTERP */
2261   int delta = InvocationCounter::count_increment;
2262 
2263   // Load each counter in a register
2264   ld( inv_counter, Rtmp );
2265   ld( be_counter, Rtmp2 );
2266 
2267   assert( is_simm13( delta ), " delta too large.");
2268 
2269   // Add the delta to the invocation counter and store the result
2270   add( Rtmp, delta, Rtmp );
2271 
2272   // Mask the backedge counter
2273   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2274 
2275   // Store value
2276   st( Rtmp, inv_counter);
2277 
2278   // Add invocation counter + backedge counter
2279   add( Rtmp, Rtmp2, Rtmp);
2280 
2281   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2282 }
2283 
2284 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
2285   assert(UseCompiler, "incrementing must be useful");
2286 #ifdef CC_INTERP
2287   Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
2288                                  InvocationCounter::counter_offset());
2289   Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
2290                                  InvocationCounter::counter_offset());
2291 #else
2292   Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
2293                                InvocationCounter::counter_offset());
2294   Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
2295                                InvocationCounter::counter_offset());
2296 #endif /* CC_INTERP */
2297   int delta = InvocationCounter::count_increment;
2298   // Load each counter in a register
2299   ld( be_counter, Rtmp );
2300   ld( inv_counter, Rtmp2 );
2301 
2302   // Add the delta to the backedge counter
2303   add( Rtmp, delta, Rtmp );
2304 
2305   // Mask the invocation counter, add to backedge counter
2306   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2307 
2308   // and store the result to memory
2309   st( Rtmp, be_counter );
2310 
2311   // Add backedge + invocation counter
2312   add( Rtmp, Rtmp2, Rtmp );
2313 
2314   // Note that this macro must leave backedge_count + invocation_count in Rtmp!
2315 }
2316 
2317 #ifndef CC_INTERP
2318 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
2319                                                              Register branch_bcp,
2320                                                              Register Rtmp ) {
2321   Label did_not_overflow;
2322   Label overflow_with_error;
2323   assert_different_registers(backedge_count, Rtmp, branch_bcp);
2324   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
2325 
2326   AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
2327   load_contents(limit, Rtmp);
2328   cmp(backedge_count, Rtmp);
2329   br(Assembler::lessUnsigned, false, Assembler::pt, did_not_overflow);
2330   delayed()->nop();
2331 
2332   // When ProfileInterpreter is on, the backedge_count comes from the
2333   // methodDataOop, which value does not get reset on the call to
2334   // frequency_counter_overflow().  To avoid excessive calls to the overflow
2335   // routine while the method is being compiled, add a second test to make sure
2336   // the overflow function is called only once every overflow_frequency.
2337   if (ProfileInterpreter) {
2338     const int overflow_frequency = 1024;
2339     andcc(backedge_count, overflow_frequency-1, Rtmp);
2340     brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
2341     delayed()->nop();
2342   }
2343 
2344   // overflow in loop, pass branch bytecode
2345   set(6,Rtmp);
2346   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
2347 
2348   // Was an OSR adapter generated?
2349   // O0 = osr nmethod
2350   tst(O0);
2351   brx(Assembler::zero, false, Assembler::pn, overflow_with_error);
2352   delayed()->nop();
2353 
2354   // Has the nmethod been invalidated already?
2355   ld(O0, nmethod::entry_bci_offset(), O2);
2356   cmp(O2, InvalidOSREntryBci);
2357   br(Assembler::equal, false, Assembler::pn, overflow_with_error);
2358   delayed()->nop();
2359 
2360   // migrate the interpreter frame off of the stack
2361 
2362   mov(G2_thread, L7);
2363   // save nmethod
2364   mov(O0, L6);
2365   set_last_Java_frame(SP, noreg);
2366   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
2367   reset_last_Java_frame();
2368   mov(L7, G2_thread);
2369 
2370   // move OSR nmethod to I1
2371   mov(L6, I1);
2372 
2373   // OSR buffer to I0
2374   mov(O0, I0);
2375 
2376   // remove the interpreter frame
2377   restore(I5_savedSP, 0, SP);
2378 
2379   // Jump to the osr code.
2380   ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
2381   jmp(O2, G0);
2382   delayed()->nop();
2383 
2384   bind(overflow_with_error);
2385 
2386   bind(did_not_overflow);
2387 }
2388 
2389 
2390 
2391 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
2392   if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
2393 }
2394 
2395 
2396 // local helper function for the verify_oop_or_return_address macro
2397 static bool verify_return_address(methodOopDesc* m, int bci) {
2398 #ifndef PRODUCT
2399   address pc = (address)(m->constMethod())
2400              + in_bytes(constMethodOopDesc::codes_offset()) + bci;
2401   // assume it is a valid return address if it is inside m and is preceded by a jsr
2402   if (!m->contains(pc))                                          return false;
2403   address jsr_pc;
2404   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2405   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2406   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2407   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2408 #endif // PRODUCT
2409   return false;
2410 }
2411 
2412 
2413 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2414   if (!VerifyOops)  return;
2415   // the VM documentation for the astore[_wide] bytecode allows
2416   // the TOS to be not only an oop but also a return address
2417   Label test;
2418   Label skip;
2419   // See if it is an address (in the current method):
2420 
2421   mov(reg, Rtmp);
2422   const int log2_bytecode_size_limit = 16;
2423   srl(Rtmp, log2_bytecode_size_limit, Rtmp);
2424   br_notnull( Rtmp, false, pt, test );
2425   delayed()->nop();
2426 
2427   // %%% should use call_VM_leaf here?
2428   save_frame_and_mov(0, Lmethod, O0, reg, O1);
2429   save_thread(L7_thread_cache);
2430   call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
2431   delayed()->nop();
2432   restore_thread(L7_thread_cache);
2433   br_notnull( O0, false, pt, skip );
2434   delayed()->restore();
2435 
2436   // Perform a more elaborate out-of-line call
2437   // Not an address; verify it:
2438   bind(test);
2439   verify_oop(reg);
2440   bind(skip);
2441 }
2442 
2443 
2444 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2445   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
2446 }
2447 #endif /* CC_INTERP */
2448 
2449 // Inline assembly for:
2450 //
2451 // if (thread is in interp_only_mode) {
2452 //   InterpreterRuntime::post_method_entry();
2453 // }
2454 // if (DTraceMethodProbes) {
2455 //   SharedRuntime::dtrace_method_entry(method, receiver);
2456 // }
2457 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2458 //   SharedRuntime::rc_trace_method_entry(method, receiver);
2459 // }
2460 
2461 void InterpreterMacroAssembler::notify_method_entry() {
2462 
2463   // C++ interpreter only uses this for native methods.
2464 
2465   // Whenever JVMTI puts a thread in interp_only_mode, method
2466   // entry/exit events are sent for that thread to track stack
2467   // depth.  If it is possible to enter interp_only_mode we add
2468   // the code to check if the event should be sent.
2469   if (JvmtiExport::can_post_interpreter_events()) {
2470     Label L;
2471     Register temp_reg = O5;
2472     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2473     ld(interp_only, temp_reg);
2474     tst(temp_reg);
2475     br(zero, false, pt, L);
2476     delayed()->nop();
2477     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
2478     bind(L);
2479   }
2480 
2481   {
2482     Register temp_reg = O5;
2483     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2484     call_VM_leaf(noreg,
2485       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2486       G2_thread, Lmethod);
2487   }
2488 
2489   // RedefineClasses() tracing support for obsolete method entry
2490   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2491     call_VM_leaf(noreg,
2492       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2493       G2_thread, Lmethod);
2494   }
2495 }
2496 
2497 
2498 // Inline assembly for:
2499 //
2500 // if (thread is in interp_only_mode) {
2501 //   // save result
2502 //   InterpreterRuntime::post_method_exit();
2503 //   // restore result
2504 // }
2505 // if (DTraceMethodProbes) {
2506 //   SharedRuntime::dtrace_method_exit(thread, method);
2507 // }
2508 //
2509 // Native methods have their result stored in d_tmp and l_tmp
2510 // Java methods have their result stored in the expression stack
2511 
2512 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
2513                                                    TosState state,
2514                                                    NotifyMethodExitMode mode) {
2515   // C++ interpreter only uses this for native methods.
2516 
2517   // Whenever JVMTI puts a thread in interp_only_mode, method
2518   // entry/exit events are sent for that thread to track stack
2519   // depth.  If it is possible to enter interp_only_mode we add
2520   // the code to check if the event should be sent.
2521   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2522     Label L;
2523     Register temp_reg = O5;
2524     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2525     ld(interp_only, temp_reg);
2526     tst(temp_reg);
2527     br(zero, false, pt, L);
2528     delayed()->nop();
2529 
2530     // Note: frame::interpreter_frame_result has a dependency on how the
2531     // method result is saved across the call to post_method_exit. For
2532     // native methods it assumes the result registers are saved to
2533     // l_scratch and d_scratch. If this changes then the interpreter_frame_result
2534     // implementation will need to be updated too.
2535 
2536     save_return_value(state, is_native_method);
2537     call_VM(noreg,
2538             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2539     restore_return_value(state, is_native_method);
2540     bind(L);
2541   }
2542 
2543   {
2544     Register temp_reg = O5;
2545     // Dtrace notification
2546     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2547     save_return_value(state, is_native_method);
2548     call_VM_leaf(
2549       noreg,
2550       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2551       G2_thread, Lmethod);
2552     restore_return_value(state, is_native_method);
2553   }
2554 }
2555 
2556 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
2557 #ifdef CC_INTERP
2558   // result potentially in O0/O1: save it across calls
2559   stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
2560 #ifdef _LP64
2561   stx(O0, STATE(_native_lresult));
2562 #else
2563   std(O0, STATE(_native_lresult));
2564 #endif
2565 #else // CC_INTERP
2566   if (is_native_call) {
2567     stf(FloatRegisterImpl::D, F0, d_tmp);
2568 #ifdef _LP64
2569     stx(O0, l_tmp);
2570 #else
2571     std(O0, l_tmp);
2572 #endif
2573   } else {
2574     push(state);
2575   }
2576 #endif // CC_INTERP
2577 }
2578 
2579 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
2580 #ifdef CC_INTERP
2581   ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
2582 #ifdef _LP64
2583   ldx(STATE(_native_lresult), O0);
2584 #else
2585   ldd(STATE(_native_lresult), O0);
2586 #endif
2587 #else // CC_INTERP
2588   if (is_native_call) {
2589     ldf(FloatRegisterImpl::D, d_tmp, F0);
2590 #ifdef _LP64
2591     ldx(l_tmp, O0);
2592 #else
2593     ldd(l_tmp, O0);
2594 #endif
2595   } else {
2596     pop(state);
2597   }
2598 #endif // CC_INTERP
2599 }