1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
  26   jint& stub_inst = *(jint*) branch;
  27   stub_inst = patched_branch(target - branch, stub_inst, 0);
  28 }
  29 
  30 #ifndef PRODUCT
  31 inline void MacroAssembler::pd_print_patched_instruction(address branch) {
  32   jint stub_inst = *(jint*) branch;
  33   print_instruction(stub_inst);
  34   ::tty->print("%s", " (unresolved)");
  35 }
  36 #endif // PRODUCT
  37 
  38 inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
  39 
  40 
  41 inline int AddressLiteral::low10() const {
  42   return Assembler::low10(value());
  43 }
  44 
  45 
  46 // inlines for SPARC assembler -- dmu 5/97
  47 
  48 inline void Assembler::check_delay() {
  49 # ifdef CHECK_DELAY
  50   guarantee( delay_state != at_delay_slot, "must say delayed() when filling delay slot");
  51   delay_state = no_delay;
  52 # endif
  53 }
  54 
  55 inline void Assembler::emit_long(int x) {
  56   check_delay();
  57   AbstractAssembler::emit_long(x);
  58 }
  59 
  60 inline void Assembler::emit_data(int x, relocInfo::relocType rtype) {
  61   relocate(rtype);
  62   emit_long(x);
  63 }
  64 
  65 inline void Assembler::emit_data(int x, RelocationHolder const& rspec) {
  66   relocate(rspec);
  67   emit_long(x);
  68 }
  69 
  70 
  71 inline void Assembler::add(Register s1, Register s2, Register d )                             { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); }
  72 inline void Assembler::add(Register s1, int simm13a, Register d, relocInfo::relocType rtype ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rtype ); }
  73 inline void Assembler::add(Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec ); }
  74 
  75 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bpr_op2) | wdisp16(intptr_t(d), intptr_t(pc())) | predict(p) | rs1(s1), rt);  has_delay_slot(); }
  76 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, Label& L) { bpr( c, a, p, s1, target(L)); }
  77 
  78 inline void Assembler::fb( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
  79 inline void Assembler::fb( Condition c, bool a, Label& L ) { fb(c, a, target(L)); }
  80 
  81 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fbp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
  82 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) { fbp(c, a, cc, p, target(L)); }
  83 
  84 inline void Assembler::cb( Condition c, bool a, address d, relocInfo::relocType rt ) { v8_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(cb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
  85 inline void Assembler::cb( Condition c, bool a, Label& L ) { cb(c, a, target(L)); }
  86 
  87 inline void Assembler::br( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();   emit_data( op(branch_op) | annul(a) | cond(c) | op2(br_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
  88 inline void Assembler::br( Condition c, bool a, Label& L ) { br(c, a, target(L)); }
  89 
  90 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
  91 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) { bp(c, a, cc, p, target(L)); }
  92 
  93 inline void Assembler::call( address d,  relocInfo::relocType rt ) { emit_data( op(call_op) | wdisp(intptr_t(d), intptr_t(pc()), 30), rt);  has_delay_slot(); assert(rt != relocInfo::virtual_call_type, "must use virtual_call_Relocation::spec"); }
  94 inline void Assembler::call( Label& L,   relocInfo::relocType rt ) { call( target(L), rt); }
  95 
  96 inline void Assembler::flush( Register s1, Register s2) { emit_long( op(arith_op) | op3(flush_op3) | rs1(s1) | rs2(s2)); }
  97 inline void Assembler::flush( Register s1, int simm13a) { emit_data( op(arith_op) | op3(flush_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
  98 
  99 inline void Assembler::jmpl( Register s1, Register s2, Register d                          ) { emit_long( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
 100 inline void Assembler::jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec);  has_delay_slot(); }
 101 
 102 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d) {
 103   if (s2.is_register()) ldf(w, s1, s2.as_register(), d);
 104   else                  ldf(w, s1, s2.as_constant(), d);
 105 }
 106 
 107 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | rs2(s2) ); }
 108 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec); }
 109 
 110 inline void Assembler::ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) { relocate(a.rspec(offset)); ldf( w, a.base(), a.disp() + offset, d); }
 111 
 112 inline void Assembler::ldfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
 113 inline void Assembler::ldfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 114 inline void Assembler::ldxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
 115 inline void Assembler::ldxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 116 
 117 inline void Assembler::ldc(   Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | rs2(s2) ); }
 118 inline void Assembler::ldc(   Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 119 inline void Assembler::lddc(  Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | rs2(s2) ); }
 120 inline void Assembler::lddc(  Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 121 inline void Assembler::ldcsr( Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | rs2(s2) ); }
 122 inline void Assembler::ldcsr( Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 123 
 124 inline void Assembler::ldsb(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | rs2(s2) ); }
 125 inline void Assembler::ldsb(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 126 
 127 inline void Assembler::ldsh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | rs2(s2) ); }
 128 inline void Assembler::ldsh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 129 inline void Assembler::ldsw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | rs2(s2) ); }
 130 inline void Assembler::ldsw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 131 inline void Assembler::ldub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | rs2(s2) ); }
 132 inline void Assembler::ldub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 133 inline void Assembler::lduh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | rs2(s2) ); }
 134 inline void Assembler::lduh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 135 inline void Assembler::lduw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | rs2(s2) ); }
 136 inline void Assembler::lduw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 137 
 138 inline void Assembler::ldx(   Register s1, Register s2, Register d) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | rs2(s2) ); }
 139 inline void Assembler::ldx(   Register s1, int simm13a, Register d) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 140 inline void Assembler::ldd(   Register s1, Register s2, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | rs2(s2) ); }
 141 inline void Assembler::ldd(   Register s1, int simm13a, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 142 
 143 #ifdef _LP64
 144 // Make all 32 bit loads signed so 64 bit registers maintain proper sign
 145 inline void Assembler::ld(  Register s1, Register s2, Register d)      { ldsw( s1, s2, d); }
 146 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { ldsw( s1, simm13a, d); }
 147 #else
 148 inline void Assembler::ld(  Register s1, Register s2, Register d)      { lduw( s1, s2, d); }
 149 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { lduw( s1, simm13a, d); }
 150 #endif
 151 
 152 #ifdef ASSERT
 153   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 154 # ifdef _LP64
 155 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { ldsw( s1, in_bytes(simm13a), d); }
 156 # else
 157 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { lduw( s1, in_bytes(simm13a), d); }
 158 # endif
 159 #endif
 160 
 161 inline void Assembler::ld(  const Address& a, Register d, int offset) {
 162   if (a.has_index()) { assert(offset == 0, ""); ld(  a.base(), a.index(),         d); }
 163   else               {                          ld(  a.base(), a.disp() + offset, d); }
 164 }
 165 inline void Assembler::ldsb(const Address& a, Register d, int offset) {
 166   if (a.has_index()) { assert(offset == 0, ""); ldsb(a.base(), a.index(),         d); }
 167   else               {                          ldsb(a.base(), a.disp() + offset, d); }
 168 }
 169 inline void Assembler::ldsh(const Address& a, Register d, int offset) {
 170   if (a.has_index()) { assert(offset == 0, ""); ldsh(a.base(), a.index(),         d); }
 171   else               {                          ldsh(a.base(), a.disp() + offset, d); }
 172 }
 173 inline void Assembler::ldsw(const Address& a, Register d, int offset) {
 174   if (a.has_index()) { assert(offset == 0, ""); ldsw(a.base(), a.index(),         d); }
 175   else               {                          ldsw(a.base(), a.disp() + offset, d); }
 176 }
 177 inline void Assembler::ldub(const Address& a, Register d, int offset) {
 178   if (a.has_index()) { assert(offset == 0, ""); ldub(a.base(), a.index(),         d); }
 179   else               {                          ldub(a.base(), a.disp() + offset, d); }
 180 }
 181 inline void Assembler::lduh(const Address& a, Register d, int offset) {
 182   if (a.has_index()) { assert(offset == 0, ""); lduh(a.base(), a.index(),         d); }
 183   else               {                          lduh(a.base(), a.disp() + offset, d); }
 184 }
 185 inline void Assembler::lduw(const Address& a, Register d, int offset) {
 186   if (a.has_index()) { assert(offset == 0, ""); lduw(a.base(), a.index(),         d); }
 187   else               {                          lduw(a.base(), a.disp() + offset, d); }
 188 }
 189 inline void Assembler::ldd( const Address& a, Register d, int offset) {
 190   if (a.has_index()) { assert(offset == 0, ""); ldd( a.base(), a.index(),         d); }
 191   else               {                          ldd( a.base(), a.disp() + offset, d); }
 192 }
 193 inline void Assembler::ldx( const Address& a, Register d, int offset) {
 194   if (a.has_index()) { assert(offset == 0, ""); ldx( a.base(), a.index(),         d); }
 195   else               {                          ldx( a.base(), a.disp() + offset, d); }
 196 }
 197 
 198 inline void Assembler::ldub(Register s1, RegisterOrConstant s2, Register d) { ldub(Address(s1, s2), d); }
 199 inline void Assembler::ldsb(Register s1, RegisterOrConstant s2, Register d) { ldsb(Address(s1, s2), d); }
 200 inline void Assembler::lduh(Register s1, RegisterOrConstant s2, Register d) { lduh(Address(s1, s2), d); }
 201 inline void Assembler::ldsh(Register s1, RegisterOrConstant s2, Register d) { ldsh(Address(s1, s2), d); }
 202 inline void Assembler::lduw(Register s1, RegisterOrConstant s2, Register d) { lduw(Address(s1, s2), d); }
 203 inline void Assembler::ldsw(Register s1, RegisterOrConstant s2, Register d) { ldsw(Address(s1, s2), d); }
 204 inline void Assembler::ldx( Register s1, RegisterOrConstant s2, Register d) { ldx( Address(s1, s2), d); }
 205 inline void Assembler::ld(  Register s1, RegisterOrConstant s2, Register d) { ld(  Address(s1, s2), d); }
 206 inline void Assembler::ldd( Register s1, RegisterOrConstant s2, Register d) { ldd( Address(s1, s2), d); }
 207 
 208 // form effective addresses this way:
 209 inline void Assembler::add(   Register s1, RegisterOrConstant s2, Register d, int offset) {
 210   if (s2.is_register())  add(s1, s2.as_register(), d);
 211   else                 { add(s1, s2.as_constant() + offset, d); offset = 0; }
 212   if (offset != 0)       add(d,  offset,                    d);
 213 }
 214 
 215 inline void Assembler::ldstub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | rs2(s2) ); }
 216 inline void Assembler::ldstub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 217 
 218 
 219 inline void Assembler::prefetch(Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
 220 inline void Assembler::prefetch(Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 221 
 222 inline void Assembler::prefetch(const Address& a, PrefetchFcn f, int offset) { v9_only(); relocate(a.rspec(offset)); prefetch(a.base(), a.disp() + offset, f); }
 223 
 224 
 225 inline void Assembler::rett( Register s1, Register s2                         ) { emit_long( op(arith_op) | op3(rett_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
 226 inline void Assembler::rett( Register s1, int simm13a, relocInfo::relocType rt) { emit_data( op(arith_op) | op3(rett_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rt);  has_delay_slot(); }
 227 
 228 inline void Assembler::sethi( int imm22a, Register d, RelocationHolder const& rspec ) { emit_data( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(imm22a), rspec); }
 229 
 230   // pp 222
 231 
 232 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2) {
 233   if (s2.is_register()) stf(w, d, s1, s2.as_register());
 234   else                  stf(w, d, s1, s2.as_constant());
 235 }
 236 
 237 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); }
 238 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 239 
 240 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) { relocate(a.rspec(offset)); stf(w, d, a.base(), a.disp() + offset); }
 241 
 242 inline void Assembler::stfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
 243 inline void Assembler::stfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 244 inline void Assembler::stxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
 245 inline void Assembler::stxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 246 
 247   // p 226
 248 
 249 inline void Assembler::stb(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | rs2(s2) ); }
 250 inline void Assembler::stb(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 251 inline void Assembler::sth(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | rs2(s2) ); }
 252 inline void Assembler::sth(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 253 inline void Assembler::stw(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | rs2(s2) ); }
 254 inline void Assembler::stw(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 255 
 256 
 257 inline void Assembler::stx(  Register d, Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | rs2(s2) ); }
 258 inline void Assembler::stx(  Register d, Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 259 inline void Assembler::std(  Register d, Register s1, Register s2) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | rs2(s2) ); }
 260 inline void Assembler::std(  Register d, Register s1, int simm13a) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 261 
 262 inline void Assembler::st( Register d, Register s1, Register s2)      { stw(d, s1, s2); }
 263 inline void Assembler::st( Register d, Register s1, int simm13a)      { stw(d, s1, simm13a); }
 264 
 265 #ifdef ASSERT
 266 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 267 inline void Assembler::st( Register d, Register s1, ByteSize simm13a) { stw(d, s1, in_bytes(simm13a)); }
 268 #endif
 269 
 270 inline void Assembler::stb(Register d, const Address& a, int offset) {
 271   if (a.has_index()) { assert(offset == 0, ""); stb(d, a.base(), a.index()        ); }
 272   else               {                          stb(d, a.base(), a.disp() + offset); }
 273 }
 274 inline void Assembler::sth(Register d, const Address& a, int offset) {
 275   if (a.has_index()) { assert(offset == 0, ""); sth(d, a.base(), a.index()        ); }
 276   else               {                          sth(d, a.base(), a.disp() + offset); }
 277 }
 278 inline void Assembler::stw(Register d, const Address& a, int offset) {
 279   if (a.has_index()) { assert(offset == 0, ""); stw(d, a.base(), a.index()        ); }
 280   else               {                          stw(d, a.base(), a.disp() + offset); }
 281 }
 282 inline void Assembler::st( Register d, const Address& a, int offset) {
 283   if (a.has_index()) { assert(offset == 0, ""); st( d, a.base(), a.index()        ); }
 284   else               {                          st( d, a.base(), a.disp() + offset); }
 285 }
 286 inline void Assembler::std(Register d, const Address& a, int offset) {
 287   if (a.has_index()) { assert(offset == 0, ""); std(d, a.base(), a.index()        ); }
 288   else               {                          std(d, a.base(), a.disp() + offset); }
 289 }
 290 inline void Assembler::stx(Register d, const Address& a, int offset) {
 291   if (a.has_index()) { assert(offset == 0, ""); stx(d, a.base(), a.index()        ); }
 292   else               {                          stx(d, a.base(), a.disp() + offset); }
 293 }
 294 
 295 inline void Assembler::stb(Register d, Register s1, RegisterOrConstant s2) { stb(d, Address(s1, s2)); }
 296 inline void Assembler::sth(Register d, Register s1, RegisterOrConstant s2) { sth(d, Address(s1, s2)); }
 297 inline void Assembler::stw(Register d, Register s1, RegisterOrConstant s2) { stw(d, Address(s1, s2)); }
 298 inline void Assembler::stx(Register d, Register s1, RegisterOrConstant s2) { stx(d, Address(s1, s2)); }
 299 inline void Assembler::std(Register d, Register s1, RegisterOrConstant s2) { std(d, Address(s1, s2)); }
 300 inline void Assembler::st( Register d, Register s1, RegisterOrConstant s2) { st( d, Address(s1, s2)); }
 301 
 302 // v8 p 99
 303 
 304 inline void Assembler::stc(    int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | rs2(s2) ); }
 305 inline void Assembler::stc(    int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 306 inline void Assembler::stdc(   int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | rs2(s2) ); }
 307 inline void Assembler::stdc(   int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 308 inline void Assembler::stcsr(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | rs2(s2) ); }
 309 inline void Assembler::stcsr(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 310 inline void Assembler::stdcq(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | rs2(s2) ); }
 311 inline void Assembler::stdcq(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 312 
 313 
 314 // pp 231
 315 
 316 inline void Assembler::swap(    Register s1, Register s2, Register d) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | rs2(s2) ); }
 317 inline void Assembler::swap(    Register s1, int simm13a, Register d) { v9_dep();  emit_data( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 318 
 319 inline void Assembler::swap(    Address& a, Register d, int offset ) { relocate(a.rspec(offset)); swap(  a.base(), a.disp() + offset, d ); }
 320 
 321 
 322 // Use the right loads/stores for the platform
 323 inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
 324 #ifdef _LP64
 325   Assembler::ldx(s1, s2, d);
 326 #else
 327   Assembler::ld( s1, s2, d);
 328 #endif
 329 }
 330 
 331 inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
 332 #ifdef _LP64
 333   Assembler::ldx(s1, simm13a, d);
 334 #else
 335   Assembler::ld( s1, simm13a, d);
 336 #endif
 337 }
 338 
 339 #ifdef ASSERT
 340 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 341 inline void MacroAssembler::ld_ptr( Register s1, ByteSize simm13a, Register d ) {
 342   ld_ptr(s1, in_bytes(simm13a), d);
 343 }
 344 #endif
 345 
 346 inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) {
 347 #ifdef _LP64
 348   Assembler::ldx(s1, s2, d);
 349 #else
 350   Assembler::ld( s1, s2, d);
 351 #endif
 352 }
 353 
 354 inline void MacroAssembler::ld_ptr(const Address& a, Register d, int offset) {
 355 #ifdef _LP64
 356   Assembler::ldx(a, d, offset);
 357 #else
 358   Assembler::ld( a, d, offset);
 359 #endif
 360 }
 361 
 362 inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
 363 #ifdef _LP64
 364   Assembler::stx(d, s1, s2);
 365 #else
 366   Assembler::st( d, s1, s2);
 367 #endif
 368 }
 369 
 370 inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
 371 #ifdef _LP64
 372   Assembler::stx(d, s1, simm13a);
 373 #else
 374   Assembler::st( d, s1, simm13a);
 375 #endif
 376 }
 377 
 378 #ifdef ASSERT
 379 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 380 inline void MacroAssembler::st_ptr( Register d, Register s1, ByteSize simm13a ) {
 381   st_ptr(d, s1, in_bytes(simm13a));
 382 }
 383 #endif
 384 
 385 inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) {
 386 #ifdef _LP64
 387   Assembler::stx(d, s1, s2);
 388 #else
 389   Assembler::st( d, s1, s2);
 390 #endif
 391 }
 392 
 393 inline void MacroAssembler::st_ptr(Register d, const Address& a, int offset) {
 394 #ifdef _LP64
 395   Assembler::stx(d, a, offset);
 396 #else
 397   Assembler::st( d, a, offset);
 398 #endif
 399 }
 400 
 401 // Use the right loads/stores for the platform
 402 inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
 403 #ifdef _LP64
 404   Assembler::ldx(s1, s2, d);
 405 #else
 406   Assembler::ldd(s1, s2, d);
 407 #endif
 408 }
 409 
 410 inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
 411 #ifdef _LP64
 412   Assembler::ldx(s1, simm13a, d);
 413 #else
 414   Assembler::ldd(s1, simm13a, d);
 415 #endif
 416 }
 417 
 418 inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) {
 419 #ifdef _LP64
 420   Assembler::ldx(s1, s2, d);
 421 #else
 422   Assembler::ldd(s1, s2, d);
 423 #endif
 424 }
 425 
 426 inline void MacroAssembler::ld_long(const Address& a, Register d, int offset) {
 427 #ifdef _LP64
 428   Assembler::ldx(a, d, offset);
 429 #else
 430   Assembler::ldd(a, d, offset);
 431 #endif
 432 }
 433 
 434 inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
 435 #ifdef _LP64
 436   Assembler::stx(d, s1, s2);
 437 #else
 438   Assembler::std(d, s1, s2);
 439 #endif
 440 }
 441 
 442 inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
 443 #ifdef _LP64
 444   Assembler::stx(d, s1, simm13a);
 445 #else
 446   Assembler::std(d, s1, simm13a);
 447 #endif
 448 }
 449 
 450 inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) {
 451 #ifdef _LP64
 452   Assembler::stx(d, s1, s2);
 453 #else
 454   Assembler::std(d, s1, s2);
 455 #endif
 456 }
 457 
 458 inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
 459 #ifdef _LP64
 460   Assembler::stx(d, a, offset);
 461 #else
 462   Assembler::std(d, a, offset);
 463 #endif
 464 }
 465 
 466 // Functions for isolating 64 bit shifts for LP64
 467 
 468 inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
 469 #ifdef _LP64
 470   Assembler::sllx(s1, s2, d);
 471 #else
 472   Assembler::sll( s1, s2, d);
 473 #endif
 474 }
 475 
 476 inline void MacroAssembler::sll_ptr( Register s1, int imm6a,   Register d ) {
 477 #ifdef _LP64
 478   Assembler::sllx(s1, imm6a, d);
 479 #else
 480   Assembler::sll( s1, imm6a, d);
 481 #endif
 482 }
 483 
 484 inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
 485 #ifdef _LP64
 486   Assembler::srlx(s1, s2, d);
 487 #else
 488   Assembler::srl( s1, s2, d);
 489 #endif
 490 }
 491 
 492 inline void MacroAssembler::srl_ptr( Register s1, int imm6a,   Register d ) {
 493 #ifdef _LP64
 494   Assembler::srlx(s1, imm6a, d);
 495 #else
 496   Assembler::srl( s1, imm6a, d);
 497 #endif
 498 }
 499 
 500 inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) {
 501   if (s2.is_register())  sll_ptr(s1, s2.as_register(), d);
 502   else                   sll_ptr(s1, s2.as_constant(), d);
 503 }
 504 
 505 // Use the right branch for the platform
 506 
 507 inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
 508   if (VM_Version::v9_instructions_work())
 509     Assembler::bp(c, a, icc, p, d, rt);
 510   else
 511     Assembler::br(c, a, d, rt);
 512 }
 513 
 514 inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
 515   br(c, a, p, target(L));
 516 }
 517 
 518 
 519 // Branch that tests either xcc or icc depending on the
 520 // architecture compiled (LP64 or not)
 521 inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
 522 #ifdef _LP64
 523     Assembler::bp(c, a, xcc, p, d, rt);
 524 #else
 525     MacroAssembler::br(c, a, p, d, rt);
 526 #endif
 527 }
 528 
 529 inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
 530   brx(c, a, p, target(L));
 531 }
 532 
 533 inline void MacroAssembler::ba( bool a, Label& L ) {
 534   br(always, a, pt, L);
 535 }
 536 
 537 // Warning: V9 only functions
 538 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
 539   Assembler::bp(c, a, cc, p, d, rt);
 540 }
 541 
 542 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
 543   Assembler::bp(c, a, cc, p, L);
 544 }
 545 
 546 inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
 547   if (VM_Version::v9_instructions_work())
 548     fbp(c, a, fcc0, p, d, rt);
 549   else
 550     Assembler::fb(c, a, d, rt);
 551 }
 552 
 553 inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
 554   fb(c, a, p, target(L));
 555 }
 556 
 557 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
 558   Assembler::fbp(c, a, cc, p, d, rt);
 559 }
 560 
 561 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
 562   Assembler::fbp(c, a, cc, p, L);
 563 }
 564 
 565 inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
 566 inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
 567 
 568 // Call with a check to see if we need to deal with the added
 569 // expense of relocation and if we overflow the displacement
 570 // of the quick call instruction./
 571 // Check to see if we have to deal with relocations
 572 inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
 573 #ifdef _LP64
 574   intptr_t disp;
 575   // NULL is ok because it will be relocated later.
 576   // Must change NULL to a reachable address in order to
 577   // pass asserts here and in wdisp.
 578   if ( d == NULL )
 579     d = pc();
 580 
 581   // Is this address within range of the call instruction?
 582   // If not, use the expensive instruction sequence
 583   disp = (intptr_t)d - (intptr_t)pc();
 584   if ( disp != (intptr_t)(int32_t)disp ) {
 585     relocate(rt);
 586     AddressLiteral dest(d);
 587     jumpl_to(dest, O7, O7);
 588   }
 589   else {
 590     Assembler::call( d, rt );
 591   }
 592 #else
 593   Assembler::call( d, rt );
 594 #endif
 595 }
 596 
 597 inline void MacroAssembler::call( Label& L,   relocInfo::relocType rt ) {
 598   MacroAssembler::call( target(L), rt);
 599 }
 600 
 601 
 602 
 603 inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
 604 inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
 605 
 606 // prefetch instruction
 607 inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
 608   if (VM_Version::v9_instructions_work())
 609     Assembler::bp( never, true, xcc, pt, d, rt );
 610 }
 611 inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
 612 
 613 
 614 // clobbers o7 on V8!!
 615 // returns delta from gotten pc to addr after
 616 inline int MacroAssembler::get_pc( Register d ) {
 617   int x = offset();
 618   if (VM_Version::v9_instructions_work())
 619     rdpc(d);
 620   else {
 621     Label lbl;
 622     Assembler::call(lbl, relocInfo::none);  // No relocation as this is call to pc+0x8
 623     if (d == O7)  delayed()->nop();
 624     else          delayed()->mov(O7, d);
 625     bind(lbl);
 626   }
 627   return offset() - x;
 628 }
 629 
 630 
 631 // Note:  All MacroAssembler::set_foo functions are defined out-of-line.
 632 
 633 
 634 // Loads the current PC of the following instruction as an immediate value in
 635 // 2 instructions.  All PCs in the CodeCache are within 2 Gig of each other.
 636 inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
 637   intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
 638 #ifdef _LP64
 639   Unimplemented();
 640 #else
 641   Assembler::sethi(  thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
 642   Assembler::add(reg,thepc &  0x3ff, reg, internal_word_Relocation::spec((address)thepc));
 643 #endif
 644   return thepc;
 645 }
 646 
 647 
 648 inline void MacroAssembler::load_contents(AddressLiteral& addrlit, Register d, int offset) {
 649   assert_not_delayed();
 650   sethi(addrlit, d);
 651   ld(d, addrlit.low10() + offset, d);
 652 }
 653 
 654 
 655 inline void MacroAssembler::load_ptr_contents(AddressLiteral& addrlit, Register d, int offset) {
 656   assert_not_delayed();
 657   sethi(addrlit, d);
 658   ld_ptr(d, addrlit.low10() + offset, d);
 659 }
 660 
 661 
 662 inline void MacroAssembler::store_contents(Register s, AddressLiteral& addrlit, Register temp, int offset) {
 663   assert_not_delayed();
 664   sethi(addrlit, temp);
 665   st(s, temp, addrlit.low10() + offset);
 666 }
 667 
 668 
 669 inline void MacroAssembler::store_ptr_contents(Register s, AddressLiteral& addrlit, Register temp, int offset) {
 670   assert_not_delayed();
 671   sethi(addrlit, temp);
 672   st_ptr(s, temp, addrlit.low10() + offset);
 673 }
 674 
 675 
 676 // This code sequence is relocatable to any address, even on LP64.
 677 inline void MacroAssembler::jumpl_to(AddressLiteral& addrlit, Register temp, Register d, int offset) {
 678   assert_not_delayed();
 679   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
 680   // variable length instruction streams.
 681   patchable_sethi(addrlit, temp);
 682   jmpl(temp, addrlit.low10() + offset, d);
 683 }
 684 
 685 
 686 inline void MacroAssembler::jump_to(AddressLiteral& addrlit, Register temp, int offset) {
 687   jumpl_to(addrlit, temp, G0, offset);
 688 }
 689 
 690 
 691 inline void MacroAssembler::jump_indirect_to(Address& a, Register temp,
 692                                              int ld_offset, int jmp_offset) {
 693   assert_not_delayed();
 694   //sethi(al);                   // sethi is caller responsibility for this one
 695   ld_ptr(a, temp, ld_offset);
 696   jmp(temp, jmp_offset);
 697 }
 698 
 699 
 700 inline void MacroAssembler::set_oop(jobject obj, Register d) {
 701   set_oop(allocate_oop_address(obj), d);
 702 }
 703 
 704 
 705 inline void MacroAssembler::set_oop_constant(jobject obj, Register d) {
 706   set_oop(constant_oop_address(obj), d);
 707 }
 708 
 709 
 710 inline void MacroAssembler::set_oop(AddressLiteral& obj_addr, Register d) {
 711   assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
 712   set(obj_addr, d);
 713 }
 714 
 715 
 716 inline void MacroAssembler::load_argument( Argument& a, Register  d ) {
 717   if (a.is_register())
 718     mov(a.as_register(), d);
 719   else
 720     ld (a.as_address(),  d);
 721 }
 722 
 723 inline void MacroAssembler::store_argument( Register s, Argument& a ) {
 724   if (a.is_register())
 725     mov(s, a.as_register());
 726   else
 727     st_ptr (s, a.as_address());         // ABI says everything is right justified.
 728 }
 729 
 730 inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
 731   if (a.is_register())
 732     mov(s, a.as_register());
 733   else
 734     st_ptr (s, a.as_address());
 735 }
 736 
 737 
 738 #ifdef _LP64
 739 inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
 740   if (a.is_float_register())
 741 // V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
 742     fmov(FloatRegisterImpl::S, s, a.as_float_register() );
 743   else
 744     // Floats are stored in the high half of the stack entry
 745     // The low half is undefined per the ABI.
 746     stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
 747 }
 748 
 749 inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
 750   if (a.is_float_register())
 751 // V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
 752     fmov(FloatRegisterImpl::D, s, a.as_double_register() );
 753   else
 754     stf(FloatRegisterImpl::D, s, a.as_address());
 755 }
 756 
 757 inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
 758   if (a.is_register())
 759     mov(s, a.as_register());
 760   else
 761     stx(s, a.as_address());
 762 }
 763 #endif
 764 
 765 inline void MacroAssembler::clrb( Register s1, Register s2) {  stb( G0, s1, s2 ); }
 766 inline void MacroAssembler::clrh( Register s1, Register s2) {  sth( G0, s1, s2 ); }
 767 inline void MacroAssembler::clr(  Register s1, Register s2) {  stw( G0, s1, s2 ); }
 768 inline void MacroAssembler::clrx( Register s1, Register s2) {  stx( G0, s1, s2 ); }
 769 
 770 inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
 771 inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
 772 inline void MacroAssembler::clr(  Register s1, int simm13a) { stw( G0, s1, simm13a); }
 773 inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
 774 
 775 // returns if membar generates anything, obviously this code should mirror
 776 // membar below.
 777 inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
 778   if( !os::is_MP() ) return false;  // Not needed on single CPU
 779   if( VM_Version::v9_instructions_work() ) {
 780     const Membar_mask_bits effective_mask =
 781         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
 782     return (effective_mask != 0);
 783   } else {
 784     return true;
 785   }
 786 }
 787 
 788 inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
 789   // Uniprocessors do not need memory barriers
 790   if (!os::is_MP()) return;
 791   // Weakened for current Sparcs and TSO.  See the v9 manual, sections 8.4.3,
 792   // 8.4.4.3, a.31 and a.50.
 793   if( VM_Version::v9_instructions_work() ) {
 794     // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
 795     // of the mmask subfield of const7a that does anything that isn't done
 796     // implicitly is StoreLoad.
 797     const Membar_mask_bits effective_mask =
 798         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
 799     if ( effective_mask != 0 ) {
 800       Assembler::membar( effective_mask );
 801     }
 802   } else {
 803     // stbar is the closest there is on v8.  Equivalent to membar(StoreStore).  We
 804     // do not issue the stbar because to my knowledge all v8 machines implement TSO,
 805     // which guarantees that all stores behave as if an stbar were issued just after
 806     // each one of them.  On these machines, stbar ought to be a nop.  There doesn't
 807     // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
 808     // it can't be specified by stbar, nor have I come up with a way to simulate it.
 809     //
 810     // Addendum.  Dave says that ldstub guarantees a write buffer flush to coherent
 811     // space.  Put one here to be on the safe side.
 812     Assembler::ldstub(SP, 0, G0);
 813   }
 814 }