1 /*
   2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_interp_masm_sparc.cpp.incl"
  27 
  28 #ifndef CC_INTERP
  29 #ifndef FAST_DISPATCH
  30 #define FAST_DISPATCH 1
  31 #endif
  32 #undef FAST_DISPATCH
  33 
  34 // Implementation of InterpreterMacroAssembler
  35 
  36 // This file specializes the assember with interpreter-specific macros
  37 
  38 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
  39 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
  40 
  41 #else // CC_INTERP
  42 #ifndef STATE
  43 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
  44 #endif // STATE
  45 
  46 #endif // CC_INTERP
  47 
  48 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
  49   // Note: this algorithm is also used by C1's OSR entry sequence.
  50   // Any changes should also be applied to CodeEmitter::emit_osr_entry().
  51   assert_different_registers(args_size, locals_size);
  52   // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
  53   if (TaggedStackInterpreter) sll(locals_size, 1, locals_size);
  54   subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
  55   // Use br/mov combination because it works on both V8 and V9 and is
  56   // faster.
  57   Label skip_move;
  58   br(Assembler::negative, true, Assembler::pt, skip_move);
  59   delayed()->mov(G0, delta);
  60   bind(skip_move);
  61   round_to(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
  62   sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
  63 }
  64 
  65 #ifndef CC_INTERP
  66 
  67 // Dispatch code executed in the prolog of a bytecode which does not do it's
  68 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
  69 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
  70   assert_not_delayed();
  71 #ifdef FAST_DISPATCH
  72   // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
  73   // they both use I2.
  74   assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
  75   ldub(Lbcp, bcp_incr, Lbyte_code);                     // load next bytecode
  76   add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
  77                                                         // add offset to correct dispatch table
  78   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
  79   ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
  80 #else
  81   ldub( Lbcp, bcp_incr, Lbyte_code);                    // load next bytecode
  82   // dispatch table to use
  83   AddressLiteral tbl(Interpreter::dispatch_table(state));
  84   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
  85   set(tbl, G3_scratch);                                 // compute addr of table
  86   ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
  87 #endif
  88 }
  89 
  90 
  91 // Dispatch code executed in the epilog of a bytecode which does not do it's
  92 // own dispatch. The dispatch address in IdispatchAddress is used for the
  93 // dispatch.
  94 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
  95   assert_not_delayed();
  96   verify_FPU(1, state);
  97   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  98   jmp( IdispatchAddress, 0 );
  99   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
 100   else                delayed()->nop();
 101 }
 102 
 103 
 104 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
 105   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
 106   assert_not_delayed();
 107   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
 108   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
 109 }
 110 
 111 
 112 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
 113   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
 114   assert_not_delayed();
 115   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
 116   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
 117 }
 118 
 119 
 120 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 121   // load current bytecode
 122   assert_not_delayed();
 123   ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
 124   dispatch_base(state, table);
 125 }
 126 
 127 
 128 void InterpreterMacroAssembler::call_VM_leaf_base(
 129   Register java_thread,
 130   address  entry_point,
 131   int      number_of_arguments
 132 ) {
 133   if (!java_thread->is_valid())
 134     java_thread = L7_thread_cache;
 135   // super call
 136   MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
 137 }
 138 
 139 
 140 void InterpreterMacroAssembler::call_VM_base(
 141   Register        oop_result,
 142   Register        java_thread,
 143   Register        last_java_sp,
 144   address         entry_point,
 145   int             number_of_arguments,
 146   bool            check_exception
 147 ) {
 148   if (!java_thread->is_valid())
 149     java_thread = L7_thread_cache;
 150   // See class ThreadInVMfromInterpreter, which assumes that the interpreter
 151   // takes responsibility for setting its own thread-state on call-out.
 152   // However, ThreadInVMfromInterpreter resets the state to "in_Java".
 153 
 154   //save_bcp();                                  // save bcp
 155   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
 156   //restore_bcp();                               // restore bcp
 157   //restore_locals();                            // restore locals pointer
 158 }
 159 
 160 
 161 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
 162   if (JvmtiExport::can_pop_frame()) {
 163     Label L;
 164 
 165     // Check the "pending popframe condition" flag in the current thread
 166     ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
 167 
 168     // Initiate popframe handling only if it is not already being processed.  If the flag
 169     // has the popframe_processing bit set, it means that this code is called *during* popframe
 170     // handling - we don't want to reenter.
 171     btst(JavaThread::popframe_pending_bit, scratch_reg);
 172     br(zero, false, pt, L);
 173     delayed()->nop();
 174     btst(JavaThread::popframe_processing_bit, scratch_reg);
 175     br(notZero, false, pt, L);
 176     delayed()->nop();
 177 
 178     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 179     // address of the same-named entrypoint in the generated interpreter code.
 180     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 181 
 182     // Jump to Interpreter::_remove_activation_preserving_args_entry
 183     jmpl(O0, G0, G0);
 184     delayed()->nop();
 185     bind(L);
 186   }
 187 }
 188 
 189 
 190 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 191   Register thr_state = G4_scratch;
 192   ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
 193   const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
 194   const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
 195   const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
 196   switch (state) {
 197   case ltos: ld_long(val_addr, Otos_l);                   break;
 198   case atos: ld_ptr(oop_addr, Otos_l);
 199              st_ptr(G0, oop_addr);                        break;
 200   case btos:                                           // fall through
 201   case ctos:                                           // fall through
 202   case stos:                                           // fall through
 203   case itos: ld(val_addr, Otos_l1);                       break;
 204   case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
 205   case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
 206   case vtos: /* nothing to do */                          break;
 207   default  : ShouldNotReachHere();
 208   }
 209   // Clean up tos value in the jvmti thread state
 210   or3(G0, ilgl, G3_scratch);
 211   stw(G3_scratch, tos_addr);
 212   st_long(G0, val_addr);
 213   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 214 }
 215 
 216 
 217 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
 218   if (JvmtiExport::can_force_early_return()) {
 219     Label L;
 220     Register thr_state = G3_scratch;
 221     ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
 222     tst(thr_state);
 223     br(zero, false, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
 224     delayed()->nop();
 225 
 226     // Initiate earlyret handling only if it is not already being processed.
 227     // If the flag has the earlyret_processing bit set, it means that this code
 228     // is called *during* earlyret handling - we don't want to reenter.
 229     ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
 230     cmp(G4_scratch, JvmtiThreadState::earlyret_pending);
 231     br(Assembler::notEqual, false, pt, L);
 232     delayed()->nop();
 233 
 234     // Call Interpreter::remove_activation_early_entry() to get the address of the
 235     // same-named entrypoint in the generated interpreter code
 236     ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
 237     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
 238 
 239     // Jump to Interpreter::_remove_activation_early_entry
 240     jmpl(O0, G0, G0);
 241     delayed()->nop();
 242     bind(L);
 243   }
 244 }
 245 
 246 
 247 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
 248   mov(arg_1, O0);
 249   mov(arg_2, O1);
 250   MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
 251 }
 252 #endif /* CC_INTERP */
 253 
 254 
 255 #ifndef CC_INTERP
 256 
 257 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
 258   assert_not_delayed();
 259   dispatch_Lbyte_code(state, table);
 260 }
 261 
 262 
 263 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
 264   dispatch_base(state, Interpreter::normal_table(state));
 265 }
 266 
 267 
 268 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 269   dispatch_base(state, Interpreter::dispatch_table(state));
 270 }
 271 
 272 
 273 // common code to dispatch and dispatch_only
 274 // dispatch value in Lbyte_code and increment Lbcp
 275 
 276 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
 277   verify_FPU(1, state);
 278   // %%%%% maybe implement +VerifyActivationFrameSize here
 279   //verify_thread(); //too slow; we will just verify on method entry & exit
 280   if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 281 #ifdef FAST_DISPATCH
 282   if (table == Interpreter::dispatch_table(state)) {
 283     // use IdispatchTables
 284     add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
 285                                                         // add offset to correct dispatch table
 286     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
 287     ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // get entry addr
 288   } else {
 289 #endif
 290     // dispatch table to use
 291     AddressLiteral tbl(table);
 292     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
 293     set(tbl, G3_scratch);                               // compute addr of table
 294     ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
 295 #ifdef FAST_DISPATCH
 296   }
 297 #endif
 298   jmp( G3_scratch, 0 );
 299   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
 300   else                delayed()->nop();
 301 }
 302 
 303 
 304 // Helpers for expression stack
 305 
 306 // Longs and doubles are Category 2 computational types in the
 307 // JVM specification (section 3.11.1) and take 2 expression stack or
 308 // local slots.
 309 // Aligning them on 32 bit with tagged stacks is hard because the code generated
 310 // for the dup* bytecodes depends on what types are already on the stack.
 311 // If the types are split into the two stack/local slots, that is much easier
 312 // (and we can use 0 for non-reference tags).
 313 
 314 // Known good alignment in _LP64 but unknown otherwise
 315 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
 316   assert_not_delayed();
 317 
 318 #ifdef _LP64
 319   ldf(FloatRegisterImpl::D, r1, offset, d);
 320 #else
 321   ldf(FloatRegisterImpl::S, r1, offset, d);
 322   ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize(), d->successor());
 323 #endif
 324 }
 325 
 326 // Known good alignment in _LP64 but unknown otherwise
 327 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
 328   assert_not_delayed();
 329 
 330 #ifdef _LP64
 331   stf(FloatRegisterImpl::D, d, r1, offset);
 332   // store something more useful here
 333   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
 334 #else
 335   stf(FloatRegisterImpl::S, d, r1, offset);
 336   stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize());
 337 #endif
 338 }
 339 
 340 
 341 // Known good alignment in _LP64 but unknown otherwise
 342 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
 343   assert_not_delayed();
 344 #ifdef _LP64
 345   ldx(r1, offset, rd);
 346 #else
 347   ld(r1, offset, rd);
 348   ld(r1, offset + Interpreter::stackElementSize(), rd->successor());
 349 #endif
 350 }
 351 
 352 // Known good alignment in _LP64 but unknown otherwise
 353 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
 354   assert_not_delayed();
 355 
 356 #ifdef _LP64
 357   stx(l, r1, offset);
 358   // store something more useful here
 359   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
 360 #else
 361   st(l, r1, offset);
 362   st(l->successor(), r1, offset + Interpreter::stackElementSize());
 363 #endif
 364 }
 365 
 366 #ifdef ASSERT
 367 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t,
 368                                                  Register r,
 369                                                  Register scratch) {
 370   if (TaggedStackInterpreter) {
 371     Label ok, long_ok;
 372     ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(0), r);
 373     if (t == frame::TagCategory2) {
 374       cmp(r, G0);
 375       brx(Assembler::equal, false, Assembler::pt, long_ok);
 376       delayed()->ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(1), r);
 377       stop("stack long/double tag value bad");
 378       bind(long_ok);
 379       cmp(r, G0);
 380     } else if (t == frame::TagValue) {
 381       cmp(r, G0);
 382     } else {
 383       assert_different_registers(r, scratch);
 384       mov(t, scratch);
 385       cmp(r, scratch);
 386     }
 387     brx(Assembler::equal, false, Assembler::pt, ok);
 388     delayed()->nop();
 389     // Also compare if the stack value is zero, then the tag might
 390     // not have been set coming from deopt.
 391     ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 392     cmp(r, G0);
 393     brx(Assembler::equal, false, Assembler::pt, ok);
 394     delayed()->nop();
 395     stop("Stack tag value is bad");
 396     bind(ok);
 397   }
 398 }
 399 #endif // ASSERT
 400 
 401 void InterpreterMacroAssembler::pop_i(Register r) {
 402   assert_not_delayed();
 403   // Uses destination register r for scratch
 404   debug_only(verify_stack_tag(frame::TagValue, r));
 405   ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 406   inc(Lesp, Interpreter::stackElementSize());
 407   debug_only(verify_esp(Lesp));
 408 }
 409 
 410 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
 411   assert_not_delayed();
 412   // Uses destination register r for scratch
 413   debug_only(verify_stack_tag(frame::TagReference, r, scratch));
 414   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 415   inc(Lesp, Interpreter::stackElementSize());
 416   debug_only(verify_esp(Lesp));
 417 }
 418 
 419 void InterpreterMacroAssembler::pop_l(Register r) {
 420   assert_not_delayed();
 421   // Uses destination register r for scratch
 422   debug_only(verify_stack_tag(frame::TagCategory2, r));
 423   load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 424   inc(Lesp, 2*Interpreter::stackElementSize());
 425   debug_only(verify_esp(Lesp));
 426 }
 427 
 428 
 429 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
 430   assert_not_delayed();
 431   debug_only(verify_stack_tag(frame::TagValue, scratch));
 432   ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
 433   inc(Lesp, Interpreter::stackElementSize());
 434   debug_only(verify_esp(Lesp));
 435 }
 436 
 437 
 438 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
 439   assert_not_delayed();
 440   debug_only(verify_stack_tag(frame::TagCategory2, scratch));
 441   load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
 442   inc(Lesp, 2*Interpreter::stackElementSize());
 443   debug_only(verify_esp(Lesp));
 444 }
 445 
 446 
 447 // (Note use register first, then decrement so dec can be done during store stall)
 448 void InterpreterMacroAssembler::tag_stack(Register r) {
 449   if (TaggedStackInterpreter) {
 450     st_ptr(r, Lesp, Interpreter::tag_offset_in_bytes());
 451   }
 452 }
 453 
 454 void InterpreterMacroAssembler::tag_stack(frame::Tag t, Register r) {
 455   if (TaggedStackInterpreter) {
 456     assert (frame::TagValue == 0, "TagValue must be zero");
 457     if (t == frame::TagValue) {
 458       st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
 459     } else if (t == frame::TagCategory2) {
 460       st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
 461       // Tag next slot down too
 462       st_ptr(G0, Lesp, -Interpreter::stackElementSize() + Interpreter::tag_offset_in_bytes());
 463     } else {
 464       assert_different_registers(r, O3);
 465       mov(t, O3);
 466       st_ptr(O3, Lesp, Interpreter::tag_offset_in_bytes());
 467     }
 468   }
 469 }
 470 
 471 void InterpreterMacroAssembler::push_i(Register r) {
 472   assert_not_delayed();
 473   debug_only(verify_esp(Lesp));
 474   tag_stack(frame::TagValue, r);
 475   st(  r,    Lesp, Interpreter::value_offset_in_bytes());
 476   dec( Lesp, Interpreter::stackElementSize());
 477 }
 478 
 479 void InterpreterMacroAssembler::push_ptr(Register r) {
 480   assert_not_delayed();
 481   tag_stack(frame::TagReference, r);
 482   st_ptr(  r,    Lesp, Interpreter::value_offset_in_bytes());
 483   dec( Lesp, Interpreter::stackElementSize());
 484 }
 485 
 486 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
 487   assert_not_delayed();
 488   tag_stack(tag);
 489   st_ptr(r, Lesp, Interpreter::value_offset_in_bytes());
 490   dec( Lesp, Interpreter::stackElementSize());
 491 }
 492 
 493 // remember: our convention for longs in SPARC is:
 494 // O0 (Otos_l1) has high-order part in first word,
 495 // O1 (Otos_l2) has low-order part in second word
 496 
 497 void InterpreterMacroAssembler::push_l(Register r) {
 498   assert_not_delayed();
 499   debug_only(verify_esp(Lesp));
 500   tag_stack(frame::TagCategory2, r);
 501   // Longs are in stored in memory-correct order, even if unaligned.
 502   // and may be separated by stack tags.
 503   int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
 504   store_unaligned_long(r, Lesp, offset);
 505   dec(Lesp, 2 * Interpreter::stackElementSize());
 506 }
 507 
 508 
 509 void InterpreterMacroAssembler::push_f(FloatRegister f) {
 510   assert_not_delayed();
 511   debug_only(verify_esp(Lesp));
 512   tag_stack(frame::TagValue, Otos_i);
 513   stf(FloatRegisterImpl::S, f, Lesp, Interpreter::value_offset_in_bytes());
 514   dec(Lesp, Interpreter::stackElementSize());
 515 }
 516 
 517 
 518 void InterpreterMacroAssembler::push_d(FloatRegister d)   {
 519   assert_not_delayed();
 520   debug_only(verify_esp(Lesp));
 521   tag_stack(frame::TagCategory2, Otos_i);
 522   // Longs are in stored in memory-correct order, even if unaligned.
 523   // and may be separated by stack tags.
 524   int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
 525   store_unaligned_double(d, Lesp, offset);
 526   dec(Lesp, 2 * Interpreter::stackElementSize());
 527 }
 528 
 529 
 530 void InterpreterMacroAssembler::push(TosState state) {
 531   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 532   switch (state) {
 533     case atos: push_ptr();            break;
 534     case btos: push_i();              break;
 535     case ctos:
 536     case stos: push_i();              break;
 537     case itos: push_i();              break;
 538     case ltos: push_l();              break;
 539     case ftos: push_f();              break;
 540     case dtos: push_d();              break;
 541     case vtos: /* nothing to do */    break;
 542     default  : ShouldNotReachHere();
 543   }
 544 }
 545 
 546 
 547 void InterpreterMacroAssembler::pop(TosState state) {
 548   switch (state) {
 549     case atos: pop_ptr();            break;
 550     case btos: pop_i();              break;
 551     case ctos:
 552     case stos: pop_i();              break;
 553     case itos: pop_i();              break;
 554     case ltos: pop_l();              break;
 555     case ftos: pop_f();              break;
 556     case dtos: pop_d();              break;
 557     case vtos: /* nothing to do */   break;
 558     default  : ShouldNotReachHere();
 559   }
 560   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 561 }
 562 
 563 
 564 // Tagged stack helpers for swap and dup
 565 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
 566                                                  Register tag) {
 567   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
 568   if (TaggedStackInterpreter) {
 569     ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(n), tag);
 570   }
 571 }
 572 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
 573                                                   Register tag) {
 574   st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
 575   if (TaggedStackInterpreter) {
 576     st_ptr(tag, Lesp, Interpreter::expr_tag_offset_in_bytes(n));
 577   }
 578 }
 579 
 580 
 581 void InterpreterMacroAssembler::load_receiver(Register param_count,
 582                                               Register recv) {
 583 
 584   sll(param_count, Interpreter::logStackElementSize(), param_count);
 585   if (TaggedStackInterpreter) {
 586     add(param_count, Interpreter::value_offset_in_bytes(), param_count);  // get obj address
 587   }
 588   ld_ptr(Lesp, param_count, recv);                      // gets receiver Oop
 589 }
 590 
 591 void InterpreterMacroAssembler::empty_expression_stack() {
 592   // Reset Lesp.
 593   sub( Lmonitors, wordSize, Lesp );
 594 
 595   // Reset SP by subtracting more space from Lesp.
 596   Label done;
 597   verify_oop(Lmethod);
 598   assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
 599 
 600   // A native does not need to do this, since its callee does not change SP.
 601   ld(Lmethod, methodOopDesc::access_flags_offset(), Gframe_size);  // Load access flags.
 602   btst(JVM_ACC_NATIVE, Gframe_size);
 603   br(Assembler::notZero, false, Assembler::pt, done);
 604   delayed()->nop();
 605 
 606   // Compute max expression stack+register save area
 607   lduh(Lmethod, in_bytes(methodOopDesc::max_stack_offset()), Gframe_size);  // Load max stack.
 608   if (TaggedStackInterpreter) sll ( Gframe_size, 1, Gframe_size);  // max_stack * 2 for TAGS
 609   add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
 610 
 611   //
 612   // now set up a stack frame with the size computed above
 613   //
 614   //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
 615   sll( Gframe_size, LogBytesPerWord, Gframe_size );
 616   sub( Lesp, Gframe_size, Gframe_size );
 617   and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
 618   debug_only(verify_sp(Gframe_size, G4_scratch));
 619 #ifdef _LP64
 620   sub(Gframe_size, STACK_BIAS, Gframe_size );
 621 #endif
 622   mov(Gframe_size, SP);
 623 
 624   bind(done);
 625 }
 626 
 627 
 628 #ifdef ASSERT
 629 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
 630   Label Bad, OK;
 631 
 632   // Saved SP must be aligned.
 633 #ifdef _LP64
 634   btst(2*BytesPerWord-1, Rsp);
 635 #else
 636   btst(LongAlignmentMask, Rsp);
 637 #endif
 638   br(Assembler::notZero, false, Assembler::pn, Bad);
 639   delayed()->nop();
 640 
 641   // Saved SP, plus register window size, must not be above FP.
 642   add(Rsp, frame::register_save_words * wordSize, Rtemp);
 643 #ifdef _LP64
 644   sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
 645 #endif
 646   cmp(Rtemp, FP);
 647   brx(Assembler::greaterUnsigned, false, Assembler::pn, Bad);
 648   delayed()->nop();
 649 
 650   // Saved SP must not be ridiculously below current SP.
 651   size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
 652   set(maxstack, Rtemp);
 653   sub(SP, Rtemp, Rtemp);
 654 #ifdef _LP64
 655   add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
 656 #endif
 657   cmp(Rsp, Rtemp);
 658   brx(Assembler::lessUnsigned, false, Assembler::pn, Bad);
 659   delayed()->nop();
 660 
 661   br(Assembler::always, false, Assembler::pn, OK);
 662   delayed()->nop();
 663 
 664   bind(Bad);
 665   stop("on return to interpreted call, restored SP is corrupted");
 666 
 667   bind(OK);
 668 }
 669 
 670 
 671 void InterpreterMacroAssembler::verify_esp(Register Resp) {
 672   // about to read or write Resp[0]
 673   // make sure it is not in the monitors or the register save area
 674   Label OK1, OK2;
 675 
 676   cmp(Resp, Lmonitors);
 677   brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
 678   delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
 679   stop("too many pops:  Lesp points into monitor area");
 680   bind(OK1);
 681 #ifdef _LP64
 682   sub(Resp, STACK_BIAS, Resp);
 683 #endif
 684   cmp(Resp, SP);
 685   brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
 686   delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
 687   stop("too many pushes:  Lesp points into register window");
 688   bind(OK2);
 689 }
 690 #endif // ASSERT
 691 
 692 // Load compiled (i2c) or interpreter entry when calling from interpreted and
 693 // do the call. Centralized so that all interpreter calls will do the same actions.
 694 // If jvmti single stepping is on for a thread we must not call compiled code.
 695 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
 696 
 697   // Assume we want to go compiled if available
 698 
 699   ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
 700 
 701   if (JvmtiExport::can_post_interpreter_events()) {
 702     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 703     // compiled code in threads for which the event is enabled.  Check here for
 704     // interp_only_mode if these events CAN be enabled.
 705     verify_thread();
 706     Label skip_compiled_code;
 707 
 708     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
 709     ld(interp_only, scratch);
 710     tst(scratch);
 711     br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
 712     delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
 713     bind(skip_compiled_code);
 714   }
 715 
 716   // the i2c_adapters need methodOop in G5_method (right? %%%)
 717   // do the call
 718 #ifdef ASSERT
 719   {
 720     Label ok;
 721     br_notnull(target, false, Assembler::pt, ok);
 722     delayed()->nop();
 723     stop("null entry point");
 724     bind(ok);
 725   }
 726 #endif // ASSERT
 727 
 728   // Adjust Rret first so Llast_SP can be same as Rret
 729   add(Rret, -frame::pc_return_offset, O7);
 730   add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
 731   // Record SP so we can remove any stack space allocated by adapter transition
 732   jmp(target, 0);
 733   delayed()->mov(SP, Llast_SP);
 734 }
 735 
 736 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
 737   assert_not_delayed();
 738 
 739   Label not_taken;
 740   if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
 741   else             br (cc, false, Assembler::pn, not_taken);
 742   delayed()->nop();
 743 
 744   TemplateTable::branch(false,false);
 745 
 746   bind(not_taken);
 747 
 748   profile_not_taken_branch(G3_scratch);
 749 }
 750 
 751 
 752 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
 753                                   int         bcp_offset,
 754                                   Register    Rtmp,
 755                                   Register    Rdst,
 756                                   signedOrNot is_signed,
 757                                   setCCOrNot  should_set_CC ) {
 758   assert(Rtmp != Rdst, "need separate temp register");
 759   assert_not_delayed();
 760   switch (is_signed) {
 761    default: ShouldNotReachHere();
 762 
 763    case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
 764    case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
 765   }
 766   ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
 767   sll( Rdst, BitsPerByte, Rdst);
 768   switch (should_set_CC ) {
 769    default: ShouldNotReachHere();
 770 
 771    case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
 772    case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
 773   }
 774 }
 775 
 776 
 777 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
 778                                   int        bcp_offset,
 779                                   Register   Rtmp,
 780                                   Register   Rdst,
 781                                   setCCOrNot should_set_CC ) {
 782   assert(Rtmp != Rdst, "need separate temp register");
 783   assert_not_delayed();
 784   add( Lbcp, bcp_offset, Rtmp);
 785   andcc( Rtmp, 3, G0);
 786   Label aligned;
 787   switch (should_set_CC ) {
 788    default: ShouldNotReachHere();
 789 
 790    case      set_CC: break;
 791    case dont_set_CC: break;
 792   }
 793 
 794   br(Assembler::zero, true, Assembler::pn, aligned);
 795 #ifdef _LP64
 796   delayed()->ldsw(Rtmp, 0, Rdst);
 797 #else
 798   delayed()->ld(Rtmp, 0, Rdst);
 799 #endif
 800 
 801   ldub(Lbcp, bcp_offset + 3, Rdst);
 802   ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
 803   ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
 804 #ifdef _LP64
 805   ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
 806 #else
 807   // Unsigned load is faster than signed on some implementations
 808   ldub(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
 809 #endif
 810   or3(Rtmp, Rdst, Rdst );
 811 
 812   bind(aligned);
 813   if (should_set_CC == set_CC) tst(Rdst);
 814 }
 815 
 816 
 817 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp, int bcp_offset) {
 818   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 819   assert_different_registers(cache, tmp);
 820   assert_not_delayed();
 821   get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
 822               // convert from field index to ConstantPoolCacheEntry index
 823               // and from word index to byte offset
 824   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
 825   add(LcpoolCache, tmp, cache);
 826 }
 827 
 828 
 829 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset) {
 830   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 831   assert_different_registers(cache, tmp);
 832   assert_not_delayed();
 833   get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
 834               // convert from field index to ConstantPoolCacheEntry index
 835               // and from word index to byte offset
 836   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
 837               // skip past the header
 838   add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
 839               // construct pointer to cache entry
 840   add(LcpoolCache, tmp, cache);
 841 }
 842 
 843 
 844 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 845 // a subtype of super_klass.  Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
 846 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 847                                                   Register Rsuper_klass,
 848                                                   Register Rtmp1,
 849                                                   Register Rtmp2,
 850                                                   Register Rtmp3,
 851                                                   Label &ok_is_subtype ) {
 852   Label not_subtype;
 853 
 854   // Profile the not-null value's klass.
 855   profile_typecheck(Rsub_klass, Rtmp1);
 856 
 857   check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
 858                                 Rtmp1, Rtmp2,
 859                                 &ok_is_subtype, &not_subtype, NULL);
 860 
 861   check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
 862                                 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
 863                                 &ok_is_subtype, NULL);
 864 
 865   bind(not_subtype);
 866   profile_typecheck_failed(Rtmp1);
 867 }
 868 
 869 // Separate these two to allow for delay slot in middle
 870 // These are used to do a test and full jump to exception-throwing code.
 871 
 872 // %%%%% Could possibly reoptimize this by testing to see if could use
 873 // a single conditional branch (i.e. if span is small enough.
 874 // If you go that route, than get rid of the split and give up
 875 // on the delay-slot hack.
 876 
 877 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
 878                                                     Label&    ok ) {
 879   assert_not_delayed();
 880   br(ok_condition, true, pt, ok);
 881   // DELAY SLOT
 882 }
 883 
 884 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
 885                                                     Label&    ok ) {
 886   assert_not_delayed();
 887   bp( ok_condition, true, Assembler::xcc, pt, ok);
 888   // DELAY SLOT
 889 }
 890 
 891 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
 892                                                   Label&    ok ) {
 893   assert_not_delayed();
 894   brx(ok_condition, true, pt, ok);
 895   // DELAY SLOT
 896 }
 897 
 898 void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
 899                                                 Register Rscratch,
 900                                                 Label&   ok ) {
 901   assert(throw_entry_point != NULL, "entry point must be generated by now");
 902   AddressLiteral dest(throw_entry_point);
 903   jump_to(dest, Rscratch);
 904   delayed()->nop();
 905   bind(ok);
 906 }
 907 
 908 
 909 // And if you cannot use the delay slot, here is a shorthand:
 910 
 911 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
 912                                                   address   throw_entry_point,
 913                                                   Register  Rscratch ) {
 914   Label ok;
 915   if (ok_condition != never) {
 916     throw_if_not_1_icc( ok_condition, ok);
 917     delayed()->nop();
 918   }
 919   throw_if_not_2( throw_entry_point, Rscratch, ok);
 920 }
 921 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
 922                                                   address   throw_entry_point,
 923                                                   Register  Rscratch ) {
 924   Label ok;
 925   if (ok_condition != never) {
 926     throw_if_not_1_xcc( ok_condition, ok);
 927     delayed()->nop();
 928   }
 929   throw_if_not_2( throw_entry_point, Rscratch, ok);
 930 }
 931 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
 932                                                 address   throw_entry_point,
 933                                                 Register  Rscratch ) {
 934   Label ok;
 935   if (ok_condition != never) {
 936     throw_if_not_1_x( ok_condition, ok);
 937     delayed()->nop();
 938   }
 939   throw_if_not_2( throw_entry_point, Rscratch, ok);
 940 }
 941 
 942 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
 943 // Note: res is still shy of address by array offset into object.
 944 
 945 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
 946   assert_not_delayed();
 947 
 948   verify_oop(array);
 949 #ifdef _LP64
 950   // sign extend since tos (index) can be a 32bit value
 951   sra(index, G0, index);
 952 #endif // _LP64
 953 
 954   // check array
 955   Label ptr_ok;
 956   tst(array);
 957   throw_if_not_1_x( notZero, ptr_ok );
 958   delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
 959   throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
 960 
 961   Label index_ok;
 962   cmp(index, tmp);
 963   throw_if_not_1_icc( lessUnsigned, index_ok );
 964   if (index_shift > 0)  delayed()->sll(index, index_shift, index);
 965   else                  delayed()->add(array, index, res); // addr - const offset in index
 966   // convention: move aberrant index into G3_scratch for exception message
 967   mov(index, G3_scratch);
 968   throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
 969 
 970   // add offset if didn't do it in delay slot
 971   if (index_shift > 0)   add(array, index, res); // addr - const offset in index
 972 }
 973 
 974 
 975 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
 976   assert_not_delayed();
 977 
 978   // pop array
 979   pop_ptr(array);
 980 
 981   // check array
 982   index_check_without_pop(array, index, index_shift, tmp, res);
 983 }
 984 
 985 
 986 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
 987   ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
 988 }
 989 
 990 
 991 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
 992   get_constant_pool(Rdst);
 993   ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
 994 }
 995 
 996 
 997 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
 998   get_constant_pool(Rcpool);
 999   ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
1000 }
1001 
1002 
1003 // unlock if synchronized method
1004 //
1005 // Unlock the receiver if this is a synchronized method.
1006 // Unlock any Java monitors from syncronized blocks.
1007 //
1008 // If there are locked Java monitors
1009 //    If throw_monitor_exception
1010 //       throws IllegalMonitorStateException
1011 //    Else if install_monitor_exception
1012 //       installs IllegalMonitorStateException
1013 //    Else
1014 //       no error processing
1015 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
1016                                                               bool throw_monitor_exception,
1017                                                               bool install_monitor_exception) {
1018   Label unlocked, unlock, no_unlock;
1019 
1020   // get the value of _do_not_unlock_if_synchronized into G1_scratch
1021   const Address do_not_unlock_if_synchronized(G2_thread,
1022     JavaThread::do_not_unlock_if_synchronized_offset());
1023   ldbool(do_not_unlock_if_synchronized, G1_scratch);
1024   stbool(G0, do_not_unlock_if_synchronized); // reset the flag
1025 
1026   // check if synchronized method
1027   const Address access_flags(Lmethod, methodOopDesc::access_flags_offset());
1028   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1029   push(state); // save tos
1030   ld(access_flags, G3_scratch); // Load access flags.
1031   btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
1032   br(zero, false, pt, unlocked);
1033   delayed()->nop();
1034 
1035   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
1036   // is set.
1037   tstbool(G1_scratch);
1038   br(Assembler::notZero, false, pn, no_unlock);
1039   delayed()->nop();
1040 
1041   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
1042   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
1043 
1044   //Intel: if (throw_monitor_exception) ... else ...
1045   // Entry already unlocked, need to throw exception
1046   //...
1047 
1048   // pass top-most monitor elem
1049   add( top_most_monitor(), O1 );
1050 
1051   ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
1052   br_notnull(G3_scratch, false, pt, unlock);
1053   delayed()->nop();
1054 
1055   if (throw_monitor_exception) {
1056     // Entry already unlocked need to throw an exception
1057     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1058     should_not_reach_here();
1059   } else {
1060     // Monitor already unlocked during a stack unroll.
1061     // If requested, install an illegal_monitor_state_exception.
1062     // Continue with stack unrolling.
1063     if (install_monitor_exception) {
1064       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1065     }
1066     ba(false, unlocked);
1067     delayed()->nop();
1068   }
1069 
1070   bind(unlock);
1071 
1072   unlock_object(O1);
1073 
1074   bind(unlocked);
1075 
1076   // I0, I1: Might contain return value
1077 
1078   // Check that all monitors are unlocked
1079   { Label loop, exception, entry, restart;
1080 
1081     Register Rmptr   = O0;
1082     Register Rtemp   = O1;
1083     Register Rlimit  = Lmonitors;
1084     const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1085     assert( (delta & LongAlignmentMask) == 0,
1086             "sizeof BasicObjectLock must be even number of doublewords");
1087 
1088     #ifdef ASSERT
1089     add(top_most_monitor(), Rmptr, delta);
1090     { Label L;
1091       // ensure that Rmptr starts out above (or at) Rlimit
1092       cmp(Rmptr, Rlimit);
1093       brx(Assembler::greaterEqualUnsigned, false, pn, L);
1094       delayed()->nop();
1095       stop("monitor stack has negative size");
1096       bind(L);
1097     }
1098     #endif
1099     bind(restart);
1100     ba(false, entry);
1101     delayed()->
1102     add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
1103 
1104     // Entry is still locked, need to throw exception
1105     bind(exception);
1106     if (throw_monitor_exception) {
1107       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1108       should_not_reach_here();
1109     } else {
1110       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
1111       // Unlock does not block, so don't have to worry about the frame
1112       unlock_object(Rmptr);
1113       if (install_monitor_exception) {
1114         MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1115       }
1116       ba(false, restart);
1117       delayed()->nop();
1118     }
1119 
1120     bind(loop);
1121     cmp(Rtemp, G0);                             // check if current entry is used
1122     brx(Assembler::notEqual, false, pn, exception);
1123     delayed()->
1124     dec(Rmptr, delta);                          // otherwise advance to next entry
1125     #ifdef ASSERT
1126     { Label L;
1127       // ensure that Rmptr has not somehow stepped below Rlimit
1128       cmp(Rmptr, Rlimit);
1129       brx(Assembler::greaterEqualUnsigned, false, pn, L);
1130       delayed()->nop();
1131       stop("ran off the end of the monitor stack");
1132       bind(L);
1133     }
1134     #endif
1135     bind(entry);
1136     cmp(Rmptr, Rlimit);                         // check if bottom reached
1137     brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
1138     delayed()->
1139     ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
1140   }
1141 
1142   bind(no_unlock);
1143   pop(state);
1144   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1145 }
1146 
1147 
1148 // remove activation
1149 //
1150 // Unlock the receiver if this is a synchronized method.
1151 // Unlock any Java monitors from syncronized blocks.
1152 // Remove the activation from the stack.
1153 //
1154 // If there are locked Java monitors
1155 //    If throw_monitor_exception
1156 //       throws IllegalMonitorStateException
1157 //    Else if install_monitor_exception
1158 //       installs IllegalMonitorStateException
1159 //    Else
1160 //       no error processing
1161 void InterpreterMacroAssembler::remove_activation(TosState state,
1162                                                   bool throw_monitor_exception,
1163                                                   bool install_monitor_exception) {
1164 
1165   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
1166 
1167   // save result (push state before jvmti call and pop it afterwards) and notify jvmti
1168   notify_method_exit(false, state, NotifyJVMTI);
1169 
1170   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1171   verify_oop(Lmethod);
1172   verify_thread();
1173 
1174   // return tos
1175   assert(Otos_l1 == Otos_i, "adjust code below");
1176   switch (state) {
1177 #ifdef _LP64
1178   case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
1179 #else
1180   case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through  // O1 -> I1
1181 #endif
1182   case btos:                                      // fall through
1183   case ctos:
1184   case stos:                                      // fall through
1185   case atos:                                      // fall through
1186   case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
1187   case ftos:                                      // fall through
1188   case dtos:                                      // fall through
1189   case vtos: /* nothing to do */                     break;
1190   default  : ShouldNotReachHere();
1191   }
1192 
1193 #if defined(COMPILER2) && !defined(_LP64)
1194   if (state == ltos) {
1195     // C2 expects long results in G1 we can't tell if we're returning to interpreted
1196     // or compiled so just be safe use G1 and O0/O1
1197 
1198     // Shift bits into high (msb) of G1
1199     sllx(Otos_l1->after_save(), 32, G1);
1200     // Zero extend low bits
1201     srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
1202     or3 (Otos_l2->after_save(), G1, G1);
1203   }
1204 #endif /* COMPILER2 */
1205 
1206 }
1207 #endif /* CC_INTERP */
1208 
1209 
1210 // Lock object
1211 //
1212 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
1213 //            it must be initialized with the object to lock
1214 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
1215   if (UseHeavyMonitors) {
1216     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1217   }
1218   else {
1219     Register obj_reg = Object;
1220     Register mark_reg = G4_scratch;
1221     Register temp_reg = G1_scratch;
1222     Address  lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
1223     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1224     Label    done;
1225 
1226     Label slow_case;
1227 
1228     assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
1229 
1230     // load markOop from object into mark_reg
1231     ld_ptr(mark_addr, mark_reg);
1232 
1233     if (UseBiasedLocking) {
1234       biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
1235     }
1236 
1237     // get the address of basicLock on stack that will be stored in the object
1238     // we need a temporary register here as we do not want to clobber lock_reg
1239     // (cas clobbers the destination register)
1240     mov(lock_reg, temp_reg);
1241     // set mark reg to be (markOop of object | UNLOCK_VALUE)
1242     or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
1243     // initialize the box  (Must happen before we update the object mark!)
1244     st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1245     // compare and exchange object_addr, markOop | 1, stack address of basicLock
1246     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1247     casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
1248       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1249 
1250     // if the compare and exchange succeeded we are done (we saw an unlocked object)
1251     cmp(mark_reg, temp_reg);
1252     brx(Assembler::equal, true, Assembler::pt, done);
1253     delayed()->nop();
1254 
1255     // We did not see an unlocked object so try the fast recursive case
1256 
1257     // Check if owner is self by comparing the value in the markOop of object
1258     // with the stack pointer
1259     sub(temp_reg, SP, temp_reg);
1260 #ifdef _LP64
1261     sub(temp_reg, STACK_BIAS, temp_reg);
1262 #endif
1263     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
1264 
1265     // Composite "andcc" test:
1266     // (a) %sp -vs- markword proximity check, and,
1267     // (b) verify mark word LSBs == 0 (Stack-locked).
1268     //
1269     // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
1270     // Note that the page size used for %sp proximity testing is arbitrary and is
1271     // unrelated to the actual MMU page size.  We use a 'logical' page size of
1272     // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
1273     // field of the andcc instruction.
1274     andcc (temp_reg, 0xFFFFF003, G0) ;
1275 
1276     // if condition is true we are done and hence we can store 0 in the displaced
1277     // header indicating it is a recursive lock and be done
1278     brx(Assembler::zero, true, Assembler::pt, done);
1279     delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1280 
1281     // none of the above fast optimizations worked so we have to get into the
1282     // slow case of monitor enter
1283     bind(slow_case);
1284     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1285 
1286     bind(done);
1287   }
1288 }
1289 
1290 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
1291 //
1292 // Argument - lock_reg points to the BasicObjectLock for lock
1293 // Throw IllegalMonitorException if object is not locked by current thread
1294 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1295   if (UseHeavyMonitors) {
1296     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1297   } else {
1298     Register obj_reg = G3_scratch;
1299     Register mark_reg = G4_scratch;
1300     Register displaced_header_reg = G1_scratch;
1301     Address  lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
1302     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1303     Label    done;
1304 
1305     if (UseBiasedLocking) {
1306       // load the object out of the BasicObjectLock
1307       ld_ptr(lockobj_addr, obj_reg);
1308       biased_locking_exit(mark_addr, mark_reg, done, true);
1309       st_ptr(G0, lockobj_addr);  // free entry
1310     }
1311 
1312     // Test first if we are in the fast recursive case
1313     Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
1314     ld_ptr(lock_addr, displaced_header_reg);
1315     br_null(displaced_header_reg, true, Assembler::pn, done);
1316     delayed()->st_ptr(G0, lockobj_addr);  // free entry
1317 
1318     // See if it is still a light weight lock, if so we just unlock
1319     // the object and we are done
1320 
1321     if (!UseBiasedLocking) {
1322       // load the object out of the BasicObjectLock
1323       ld_ptr(lockobj_addr, obj_reg);
1324     }
1325 
1326     // we have the displaced header in displaced_header_reg
1327     // we expect to see the stack address of the basicLock in case the
1328     // lock is still a light weight lock (lock_reg)
1329     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1330     casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
1331       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1332     cmp(lock_reg, displaced_header_reg);
1333     brx(Assembler::equal, true, Assembler::pn, done);
1334     delayed()->st_ptr(G0, lockobj_addr);  // free entry
1335 
1336     // The lock has been converted into a heavy lock and hence
1337     // we need to get into the slow case
1338 
1339     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1340 
1341     bind(done);
1342   }
1343 }
1344 
1345 #ifndef CC_INTERP
1346 
1347 // Get the method data pointer from the methodOop and set the
1348 // specified register to its value.
1349 
1350 void InterpreterMacroAssembler::set_method_data_pointer_offset(Register Roff) {
1351   assert(ProfileInterpreter, "must be profiling interpreter");
1352   Label get_continue;
1353 
1354   ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
1355   test_method_data_pointer(get_continue);
1356   add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
1357   if (Roff != noreg)
1358     // Roff contains a method data index ("mdi").  It defaults to zero.
1359     add(ImethodDataPtr, Roff, ImethodDataPtr);
1360   bind(get_continue);
1361 }
1362 
1363 // Set the method data pointer for the current bcp.
1364 
1365 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1366   assert(ProfileInterpreter, "must be profiling interpreter");
1367   Label zero_continue;
1368 
1369   // Test MDO to avoid the call if it is NULL.
1370   ld_ptr(Lmethod, methodOopDesc::method_data_offset(), ImethodDataPtr);
1371   test_method_data_pointer(zero_continue);
1372   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
1373   set_method_data_pointer_offset(O0);
1374   bind(zero_continue);
1375 }
1376 
1377 // Test ImethodDataPtr.  If it is null, continue at the specified label
1378 
1379 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1380   assert(ProfileInterpreter, "must be profiling interpreter");
1381 #ifdef _LP64
1382   bpr(Assembler::rc_z, false, Assembler::pn, ImethodDataPtr, zero_continue);
1383 #else
1384   tst(ImethodDataPtr);
1385   br(Assembler::zero, false, Assembler::pn, zero_continue);
1386 #endif
1387   delayed()->nop();
1388 }
1389 
1390 void InterpreterMacroAssembler::verify_method_data_pointer() {
1391   assert(ProfileInterpreter, "must be profiling interpreter");
1392 #ifdef ASSERT
1393   Label verify_continue;
1394   test_method_data_pointer(verify_continue);
1395 
1396   // If the mdp is valid, it will point to a DataLayout header which is
1397   // consistent with the bcp.  The converse is highly probable also.
1398   lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
1399   ld_ptr(Lmethod, methodOopDesc::const_offset(), O5);
1400   add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
1401   add(G3_scratch, O5, G3_scratch);
1402   cmp(Lbcp, G3_scratch);
1403   brx(Assembler::equal, false, Assembler::pt, verify_continue);
1404 
1405   Register temp_reg = O5;
1406   delayed()->mov(ImethodDataPtr, temp_reg);
1407   // %%% should use call_VM_leaf here?
1408   //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
1409   save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
1410   Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
1411   stf(FloatRegisterImpl::D, Ftos_d, d_save);
1412   mov(temp_reg->after_save(), O2);
1413   save_thread(L7_thread_cache);
1414   call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
1415   delayed()->nop();
1416   restore_thread(L7_thread_cache);
1417   ldf(FloatRegisterImpl::D, d_save, Ftos_d);
1418   restore();
1419   bind(verify_continue);
1420 #endif // ASSERT
1421 }
1422 
1423 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1424                                                                 Register cur_bcp,
1425                                                                 Register Rtmp,
1426                                                                 Label &profile_continue) {
1427   assert(ProfileInterpreter, "must be profiling interpreter");
1428   // Control will flow to "profile_continue" if the counter is less than the
1429   // limit or if we call profile_method()
1430 
1431   Label done;
1432 
1433   // if no method data exists, and the counter is high enough, make one
1434 #ifdef _LP64
1435   bpr(Assembler::rc_nz, false, Assembler::pn, ImethodDataPtr, done);
1436 #else
1437   tst(ImethodDataPtr);
1438   br(Assembler::notZero, false, Assembler::pn, done);
1439 #endif
1440 
1441   // Test to see if we should create a method data oop
1442   AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
1443 #ifdef _LP64
1444   delayed()->nop();
1445   sethi(profile_limit, Rtmp);
1446 #else
1447   delayed()->sethi(profile_limit, Rtmp);
1448 #endif
1449   ld(Rtmp, profile_limit.low10(), Rtmp);
1450   cmp(invocation_count, Rtmp);
1451   br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
1452   delayed()->nop();
1453 
1454   // Build it now.
1455   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), cur_bcp);
1456   set_method_data_pointer_offset(O0);
1457   ba(false, profile_continue);
1458   delayed()->nop();
1459   bind(done);
1460 }
1461 
1462 // Store a value at some constant offset from the method data pointer.
1463 
1464 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1465   assert(ProfileInterpreter, "must be profiling interpreter");
1466   st_ptr(value, ImethodDataPtr, constant);
1467 }
1468 
1469 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
1470                                                       Register bumped_count,
1471                                                       bool decrement) {
1472   assert(ProfileInterpreter, "must be profiling interpreter");
1473 
1474   // Load the counter.
1475   ld_ptr(counter, bumped_count);
1476 
1477   if (decrement) {
1478     // Decrement the register.  Set condition codes.
1479     subcc(bumped_count, DataLayout::counter_increment, bumped_count);
1480 
1481     // If the decrement causes the counter to overflow, stay negative
1482     Label L;
1483     brx(Assembler::negative, true, Assembler::pn, L);
1484 
1485     // Store the decremented counter, if it is still negative.
1486     delayed()->st_ptr(bumped_count, counter);
1487     bind(L);
1488   } else {
1489     // Increment the register.  Set carry flag.
1490     addcc(bumped_count, DataLayout::counter_increment, bumped_count);
1491 
1492     // If the increment causes the counter to overflow, pull back by 1.
1493     assert(DataLayout::counter_increment == 1, "subc works");
1494     subc(bumped_count, G0, bumped_count);
1495 
1496     // Store the incremented counter.
1497     st_ptr(bumped_count, counter);
1498   }
1499 }
1500 
1501 // Increment the value at some constant offset from the method data pointer.
1502 
1503 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1504                                                       Register bumped_count,
1505                                                       bool decrement) {
1506   // Locate the counter at a fixed offset from the mdp:
1507   Address counter(ImethodDataPtr, constant);
1508   increment_mdp_data_at(counter, bumped_count, decrement);
1509 }
1510 
1511 // Increment the value at some non-fixed (reg + constant) offset from
1512 // the method data pointer.
1513 
1514 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1515                                                       int constant,
1516                                                       Register bumped_count,
1517                                                       Register scratch2,
1518                                                       bool decrement) {
1519   // Add the constant to reg to get the offset.
1520   add(ImethodDataPtr, reg, scratch2);
1521   Address counter(scratch2, constant);
1522   increment_mdp_data_at(counter, bumped_count, decrement);
1523 }
1524 
1525 // Set a flag value at the current method data pointer position.
1526 // Updates a single byte of the header, to avoid races with other header bits.
1527 
1528 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1529                                                 Register scratch) {
1530   assert(ProfileInterpreter, "must be profiling interpreter");
1531   // Load the data header
1532   ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
1533 
1534   // Set the flag
1535   or3(scratch, flag_constant, scratch);
1536 
1537   // Store the modified header.
1538   stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
1539 }
1540 
1541 // Test the location at some offset from the method data pointer.
1542 // If it is not equal to value, branch to the not_equal_continue Label.
1543 // Set condition codes to match the nullness of the loaded value.
1544 
1545 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1546                                                  Register value,
1547                                                  Label& not_equal_continue,
1548                                                  Register scratch) {
1549   assert(ProfileInterpreter, "must be profiling interpreter");
1550   ld_ptr(ImethodDataPtr, offset, scratch);
1551   cmp(value, scratch);
1552   brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
1553   delayed()->tst(scratch);
1554 }
1555 
1556 // Update the method data pointer by the displacement located at some fixed
1557 // offset from the method data pointer.
1558 
1559 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1560                                                      Register scratch) {
1561   assert(ProfileInterpreter, "must be profiling interpreter");
1562   ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
1563   add(ImethodDataPtr, scratch, ImethodDataPtr);
1564 }
1565 
1566 // Update the method data pointer by the displacement located at the
1567 // offset (reg + offset_of_disp).
1568 
1569 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1570                                                      int offset_of_disp,
1571                                                      Register scratch) {
1572   assert(ProfileInterpreter, "must be profiling interpreter");
1573   add(reg, offset_of_disp, scratch);
1574   ld_ptr(ImethodDataPtr, scratch, scratch);
1575   add(ImethodDataPtr, scratch, ImethodDataPtr);
1576 }
1577 
1578 // Update the method data pointer by a simple constant displacement.
1579 
1580 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1581   assert(ProfileInterpreter, "must be profiling interpreter");
1582   add(ImethodDataPtr, constant, ImethodDataPtr);
1583 }
1584 
1585 // Update the method data pointer for a _ret bytecode whose target
1586 // was not among our cached targets.
1587 
1588 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1589                                                    Register return_bci) {
1590   assert(ProfileInterpreter, "must be profiling interpreter");
1591   push(state);
1592   st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
1593   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1594   ld_ptr(l_tmp, return_bci);
1595   pop(state);
1596 }
1597 
1598 // Count a taken branch in the bytecodes.
1599 
1600 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1601   if (ProfileInterpreter) {
1602     Label profile_continue;
1603 
1604     // If no method data exists, go to profile_continue.
1605     test_method_data_pointer(profile_continue);
1606 
1607     // We are taking a branch.  Increment the taken count.
1608     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
1609 
1610     // The method data pointer needs to be updated to reflect the new target.
1611     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1612     bind (profile_continue);
1613   }
1614 }
1615 
1616 
1617 // Count a not-taken branch in the bytecodes.
1618 
1619 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
1620   if (ProfileInterpreter) {
1621     Label profile_continue;
1622 
1623     // If no method data exists, go to profile_continue.
1624     test_method_data_pointer(profile_continue);
1625 
1626     // We are taking a branch.  Increment the not taken count.
1627     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
1628 
1629     // The method data pointer needs to be updated to correspond to the
1630     // next bytecode.
1631     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1632     bind (profile_continue);
1633   }
1634 }
1635 
1636 
1637 // Count a non-virtual call in the bytecodes.
1638 
1639 void InterpreterMacroAssembler::profile_call(Register scratch) {
1640   if (ProfileInterpreter) {
1641     Label profile_continue;
1642 
1643     // If no method data exists, go to profile_continue.
1644     test_method_data_pointer(profile_continue);
1645 
1646     // We are making a call.  Increment the count.
1647     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1648 
1649     // The method data pointer needs to be updated to reflect the new target.
1650     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1651     bind (profile_continue);
1652   }
1653 }
1654 
1655 
1656 // Count a final call in the bytecodes.
1657 
1658 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
1659   if (ProfileInterpreter) {
1660     Label profile_continue;
1661 
1662     // If no method data exists, go to profile_continue.
1663     test_method_data_pointer(profile_continue);
1664 
1665     // We are making a call.  Increment the count.
1666     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1667 
1668     // The method data pointer needs to be updated to reflect the new target.
1669     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1670     bind (profile_continue);
1671   }
1672 }
1673 
1674 
1675 // Count a virtual call in the bytecodes.
1676 
1677 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1678                                                      Register scratch) {
1679   if (ProfileInterpreter) {
1680     Label profile_continue;
1681 
1682     // If no method data exists, go to profile_continue.
1683     test_method_data_pointer(profile_continue);
1684 
1685     // Record the receiver type.
1686     record_klass_in_profile(receiver, scratch, true);
1687 
1688     // The method data pointer needs to be updated to reflect the new target.
1689     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1690     bind (profile_continue);
1691   }
1692 }
1693 
1694 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1695                                         Register receiver, Register scratch,
1696                                         int start_row, Label& done, bool is_virtual_call) {
1697   if (TypeProfileWidth == 0) {
1698     if (is_virtual_call) {
1699       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1700     }
1701     return;
1702   }
1703 
1704   int last_row = VirtualCallData::row_limit() - 1;
1705   assert(start_row <= last_row, "must be work left to do");
1706   // Test this row for both the receiver and for null.
1707   // Take any of three different outcomes:
1708   //   1. found receiver => increment count and goto done
1709   //   2. found null => keep looking for case 1, maybe allocate this cell
1710   //   3. found something else => keep looking for cases 1 and 2
1711   // Case 3 is handled by a recursive call.
1712   for (int row = start_row; row <= last_row; row++) {
1713     Label next_test;
1714     bool test_for_null_also = (row == start_row);
1715 
1716     // See if the receiver is receiver[n].
1717     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1718     test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
1719     // delayed()->tst(scratch);
1720 
1721     // The receiver is receiver[n].  Increment count[n].
1722     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1723     increment_mdp_data_at(count_offset, scratch);
1724     ba(false, done);
1725     delayed()->nop();
1726     bind(next_test);
1727 
1728     if (test_for_null_also) {
1729       Label found_null;
1730       // Failed the equality check on receiver[n]...  Test for null.
1731       if (start_row == last_row) {
1732         // The only thing left to do is handle the null case.
1733         if (is_virtual_call) {
1734           brx(Assembler::zero, false, Assembler::pn, found_null);
1735           delayed()->nop();
1736           // Receiver did not match any saved receiver and there is no empty row for it.
1737           // Increment total counter to indicate polymorphic case.
1738           increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1739           ba(false, done);
1740           delayed()->nop();
1741           bind(found_null);
1742         } else {
1743           brx(Assembler::notZero, false, Assembler::pt, done);
1744           delayed()->nop();
1745         }
1746         break;
1747       }
1748       // Since null is rare, make it be the branch-taken case.
1749       brx(Assembler::zero, false, Assembler::pn, found_null);
1750       delayed()->nop();
1751 
1752       // Put all the "Case 3" tests here.
1753       record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
1754 
1755       // Found a null.  Keep searching for a matching receiver,
1756       // but remember that this is an empty (unused) slot.
1757       bind(found_null);
1758     }
1759   }
1760 
1761   // In the fall-through case, we found no matching receiver, but we
1762   // observed the receiver[start_row] is NULL.
1763 
1764   // Fill in the receiver field and increment the count.
1765   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1766   set_mdp_data_at(recvr_offset, receiver);
1767   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1768   mov(DataLayout::counter_increment, scratch);
1769   set_mdp_data_at(count_offset, scratch);
1770   if (start_row > 0) {
1771     ba(false, done);
1772     delayed()->nop();
1773   }
1774 }
1775 
1776 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1777                                                         Register scratch, bool is_virtual_call) {
1778   assert(ProfileInterpreter, "must be profiling");
1779   Label done;
1780 
1781   record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
1782 
1783   bind (done);
1784 }
1785 
1786 
1787 // Count a ret in the bytecodes.
1788 
1789 void InterpreterMacroAssembler::profile_ret(TosState state,
1790                                             Register return_bci,
1791                                             Register scratch) {
1792   if (ProfileInterpreter) {
1793     Label profile_continue;
1794     uint row;
1795 
1796     // If no method data exists, go to profile_continue.
1797     test_method_data_pointer(profile_continue);
1798 
1799     // Update the total ret count.
1800     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1801 
1802     for (row = 0; row < RetData::row_limit(); row++) {
1803       Label next_test;
1804 
1805       // See if return_bci is equal to bci[n]:
1806       test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
1807                        return_bci, next_test, scratch);
1808 
1809       // return_bci is equal to bci[n].  Increment the count.
1810       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
1811 
1812       // The method data pointer needs to be updated to reflect the new target.
1813       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
1814       ba(false, profile_continue);
1815       delayed()->nop();
1816       bind(next_test);
1817     }
1818 
1819     update_mdp_for_ret(state, return_bci);
1820 
1821     bind (profile_continue);
1822   }
1823 }
1824 
1825 // Profile an unexpected null in the bytecodes.
1826 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
1827   if (ProfileInterpreter) {
1828     Label profile_continue;
1829 
1830     // If no method data exists, go to profile_continue.
1831     test_method_data_pointer(profile_continue);
1832 
1833     set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
1834 
1835     // The method data pointer needs to be updated.
1836     int mdp_delta = in_bytes(BitData::bit_data_size());
1837     if (TypeProfileCasts) {
1838       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1839     }
1840     update_mdp_by_constant(mdp_delta);
1841 
1842     bind (profile_continue);
1843   }
1844 }
1845 
1846 void InterpreterMacroAssembler::profile_typecheck(Register klass,
1847                                                   Register scratch) {
1848   if (ProfileInterpreter) {
1849     Label profile_continue;
1850 
1851     // If no method data exists, go to profile_continue.
1852     test_method_data_pointer(profile_continue);
1853 
1854     int mdp_delta = in_bytes(BitData::bit_data_size());
1855     if (TypeProfileCasts) {
1856       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1857 
1858       // Record the object type.
1859       record_klass_in_profile(klass, scratch, false);
1860     }
1861 
1862     // The method data pointer needs to be updated.
1863     update_mdp_by_constant(mdp_delta);
1864 
1865     bind (profile_continue);
1866   }
1867 }
1868 
1869 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
1870   if (ProfileInterpreter && TypeProfileCasts) {
1871     Label profile_continue;
1872 
1873     // If no method data exists, go to profile_continue.
1874     test_method_data_pointer(profile_continue);
1875 
1876     int count_offset = in_bytes(CounterData::count_offset());
1877     // Back up the address, since we have already bumped the mdp.
1878     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1879 
1880     // *Decrement* the counter.  We expect to see zero or small negatives.
1881     increment_mdp_data_at(count_offset, scratch, true);
1882 
1883     bind (profile_continue);
1884   }
1885 }
1886 
1887 // Count the default case of a switch construct.
1888 
1889 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
1890   if (ProfileInterpreter) {
1891     Label profile_continue;
1892 
1893     // If no method data exists, go to profile_continue.
1894     test_method_data_pointer(profile_continue);
1895 
1896     // Update the default case count
1897     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1898                           scratch);
1899 
1900     // The method data pointer needs to be updated.
1901     update_mdp_by_offset(
1902                     in_bytes(MultiBranchData::default_displacement_offset()),
1903                     scratch);
1904 
1905     bind (profile_continue);
1906   }
1907 }
1908 
1909 // Count the index'th case of a switch construct.
1910 
1911 void InterpreterMacroAssembler::profile_switch_case(Register index,
1912                                                     Register scratch,
1913                                                     Register scratch2,
1914                                                     Register scratch3) {
1915   if (ProfileInterpreter) {
1916     Label profile_continue;
1917 
1918     // If no method data exists, go to profile_continue.
1919     test_method_data_pointer(profile_continue);
1920 
1921     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1922     set(in_bytes(MultiBranchData::per_case_size()), scratch);
1923     smul(index, scratch, scratch);
1924     add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
1925 
1926     // Update the case count
1927     increment_mdp_data_at(scratch,
1928                           in_bytes(MultiBranchData::relative_count_offset()),
1929                           scratch2,
1930                           scratch3);
1931 
1932     // The method data pointer needs to be updated.
1933     update_mdp_by_offset(scratch,
1934                      in_bytes(MultiBranchData::relative_displacement_offset()),
1935                      scratch2);
1936 
1937     bind (profile_continue);
1938   }
1939 }
1940 
1941 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
1942 
1943 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
1944                                                       Register Rtemp,
1945                                                       Register Rtemp2 ) {
1946 
1947   Register Rlimit = Lmonitors;
1948   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1949   assert( (delta & LongAlignmentMask) == 0,
1950           "sizeof BasicObjectLock must be even number of doublewords");
1951 
1952   sub( SP,        delta, SP);
1953   sub( Lesp,      delta, Lesp);
1954   sub( Lmonitors, delta, Lmonitors);
1955 
1956   if (!stack_is_empty) {
1957 
1958     // must copy stack contents down
1959 
1960     Label start_copying, next;
1961 
1962     // untested("monitor stack expansion");
1963     compute_stack_base(Rtemp);
1964     ba( false, start_copying );
1965     delayed()->cmp( Rtemp, Rlimit); // done? duplicated below
1966 
1967     // note: must copy from low memory upwards
1968     // On entry to loop,
1969     // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
1970     // Loop mutates Rtemp
1971 
1972     bind( next);
1973 
1974     st_ptr(Rtemp2, Rtemp, 0);
1975     inc(Rtemp, wordSize);
1976     cmp(Rtemp, Rlimit); // are we done? (duplicated above)
1977 
1978     bind( start_copying );
1979 
1980     brx( notEqual, true, pn, next );
1981     delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
1982 
1983     // done copying stack
1984   }
1985 }
1986 
1987 // Locals
1988 #ifdef ASSERT
1989 void InterpreterMacroAssembler::verify_local_tag(frame::Tag t,
1990                                                  Register base,
1991                                                  Register scratch,
1992                                                  int n) {
1993   if (TaggedStackInterpreter) {
1994     Label ok, long_ok;
1995     // Use dst for scratch
1996     assert_different_registers(base, scratch);
1997     ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n), scratch);
1998     if (t == frame::TagCategory2) {
1999       cmp(scratch, G0);
2000       brx(Assembler::equal, false, Assembler::pt, long_ok);
2001       delayed()->ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n+1), scratch);
2002       stop("local long/double tag value bad");
2003       bind(long_ok);
2004       // compare second half tag
2005       cmp(scratch, G0);
2006     } else if (t == frame::TagValue) {
2007       cmp(scratch, G0);
2008     } else {
2009       assert_different_registers(O3, base, scratch);
2010       mov(t, O3);
2011       cmp(scratch, O3);
2012     }
2013     brx(Assembler::equal, false, Assembler::pt, ok);
2014     delayed()->nop();
2015     // Also compare if the local value is zero, then the tag might
2016     // not have been set coming from deopt.
2017     ld_ptr(base, Interpreter::local_offset_in_bytes(n), scratch);
2018     cmp(scratch, G0);
2019     brx(Assembler::equal, false, Assembler::pt, ok);
2020     delayed()->nop();
2021     stop("Local tag value is bad");
2022     bind(ok);
2023   }
2024 }
2025 #endif // ASSERT
2026 
2027 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
2028   assert_not_delayed();
2029   sll(index, Interpreter::logStackElementSize(), index);
2030   sub(Llocals, index, index);
2031   debug_only(verify_local_tag(frame::TagReference, index, dst));
2032   ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
2033   // Note:  index must hold the effective address--the iinc template uses it
2034 }
2035 
2036 // Just like access_local_ptr but the tag is a returnAddress
2037 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
2038                                                            Register dst ) {
2039   assert_not_delayed();
2040   sll(index, Interpreter::logStackElementSize(), index);
2041   sub(Llocals, index, index);
2042   debug_only(verify_local_tag(frame::TagValue, index, dst));
2043   ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
2044 }
2045 
2046 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
2047   assert_not_delayed();
2048   sll(index, Interpreter::logStackElementSize(), index);
2049   sub(Llocals, index, index);
2050   debug_only(verify_local_tag(frame::TagValue, index, dst));
2051   ld(index, Interpreter::value_offset_in_bytes(), dst);
2052   // Note:  index must hold the effective address--the iinc template uses it
2053 }
2054 
2055 
2056 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
2057   assert_not_delayed();
2058   sll(index, Interpreter::logStackElementSize(), index);
2059   sub(Llocals, index, index);
2060   debug_only(verify_local_tag(frame::TagCategory2, index, dst));
2061   // First half stored at index n+1 (which grows down from Llocals[n])
2062   load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
2063 }
2064 
2065 
2066 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
2067   assert_not_delayed();
2068   sll(index, Interpreter::logStackElementSize(), index);
2069   sub(Llocals, index, index);
2070   debug_only(verify_local_tag(frame::TagValue, index, G1_scratch));
2071   ldf(FloatRegisterImpl::S, index, Interpreter::value_offset_in_bytes(), dst);
2072 }
2073 
2074 
2075 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
2076   assert_not_delayed();
2077   sll(index, Interpreter::logStackElementSize(), index);
2078   sub(Llocals, index, index);
2079   debug_only(verify_local_tag(frame::TagCategory2, index, G1_scratch));
2080   load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
2081 }
2082 
2083 
2084 #ifdef ASSERT
2085 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
2086   Label L;
2087 
2088   assert(Rindex != Rscratch, "Registers cannot be same");
2089   assert(Rindex != Rscratch1, "Registers cannot be same");
2090   assert(Rlimit != Rscratch, "Registers cannot be same");
2091   assert(Rlimit != Rscratch1, "Registers cannot be same");
2092   assert(Rscratch1 != Rscratch, "Registers cannot be same");
2093 
2094   // untested("reg area corruption");
2095   add(Rindex, offset, Rscratch);
2096   add(Rlimit, 64 + STACK_BIAS, Rscratch1);
2097   cmp(Rscratch, Rscratch1);
2098   brx(Assembler::greaterEqualUnsigned, false, pn, L);
2099   delayed()->nop();
2100   stop("regsave area is being clobbered");
2101   bind(L);
2102 }
2103 #endif // ASSERT
2104 
2105 void InterpreterMacroAssembler::tag_local(frame::Tag t,
2106                                           Register base,
2107                                           Register src,
2108                                           int n) {
2109   if (TaggedStackInterpreter) {
2110     // have to store zero because local slots can be reused (rats!)
2111     if (t == frame::TagValue) {
2112       st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
2113     } else if (t == frame::TagCategory2) {
2114       st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
2115       st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n+1));
2116     } else {
2117       // assert that we don't stomp the value in 'src'
2118       // O3 is arbitrary because it's not used.
2119       assert_different_registers(src, base, O3);
2120       mov( t, O3);
2121       st_ptr(O3, base, Interpreter::local_tag_offset_in_bytes(n));
2122     }
2123   }
2124 }
2125 
2126 
2127 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
2128   assert_not_delayed();
2129   sll(index, Interpreter::logStackElementSize(), index);
2130   sub(Llocals, index, index);
2131   debug_only(check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);)
2132   tag_local(frame::TagValue, index, src);
2133   st(src, index, Interpreter::value_offset_in_bytes());
2134 }
2135 
2136 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src,
2137                                                  Register tag ) {
2138   assert_not_delayed();
2139   sll(index, Interpreter::logStackElementSize(), index);
2140   sub(Llocals, index, index);
2141   #ifdef ASSERT
2142   check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
2143   #endif
2144   st_ptr(src, index, Interpreter::value_offset_in_bytes());
2145   // Store tag register directly
2146   if (TaggedStackInterpreter) {
2147     st_ptr(tag, index, Interpreter::tag_offset_in_bytes());
2148   }
2149 }
2150 
2151 
2152 
2153 void InterpreterMacroAssembler::store_local_ptr( int n, Register src,
2154                                                  Register tag ) {
2155   st_ptr(src,  Llocals, Interpreter::local_offset_in_bytes(n));
2156   if (TaggedStackInterpreter) {
2157     st_ptr(tag, Llocals, Interpreter::local_tag_offset_in_bytes(n));
2158   }
2159 }
2160 
2161 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
2162   assert_not_delayed();
2163   sll(index, Interpreter::logStackElementSize(), index);
2164   sub(Llocals, index, index);
2165   #ifdef ASSERT
2166   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2167   #endif
2168   tag_local(frame::TagCategory2, index, src);
2169   store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
2170 }
2171 
2172 
2173 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
2174   assert_not_delayed();
2175   sll(index, Interpreter::logStackElementSize(), index);
2176   sub(Llocals, index, index);
2177   #ifdef ASSERT
2178   check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
2179   #endif
2180   tag_local(frame::TagValue, index, G1_scratch);
2181   stf(FloatRegisterImpl::S, src, index, Interpreter::value_offset_in_bytes());
2182 }
2183 
2184 
2185 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
2186   assert_not_delayed();
2187   sll(index, Interpreter::logStackElementSize(), index);
2188   sub(Llocals, index, index);
2189   #ifdef ASSERT
2190   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2191   #endif
2192   tag_local(frame::TagCategory2, index, G1_scratch);
2193   store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
2194 }
2195 
2196 
2197 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
2198   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2199   int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
2200   return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
2201 }
2202 
2203 
2204 Address InterpreterMacroAssembler::top_most_monitor() {
2205   return Address(FP, top_most_monitor_byte_offset());
2206 }
2207 
2208 
2209 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
2210   add( Lesp,      wordSize,                                    Rdest );
2211 }
2212 
2213 #endif /* CC_INTERP */
2214 
2215 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
2216   assert(UseCompiler, "incrementing must be useful");
2217 #ifdef CC_INTERP
2218   Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
2219                                  InvocationCounter::counter_offset());
2220   Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
2221                                  InvocationCounter::counter_offset());
2222 #else
2223   Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
2224                                InvocationCounter::counter_offset());
2225   Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
2226                                InvocationCounter::counter_offset());
2227 #endif /* CC_INTERP */
2228   int delta = InvocationCounter::count_increment;
2229 
2230   // Load each counter in a register
2231   ld( inv_counter, Rtmp );
2232   ld( be_counter, Rtmp2 );
2233 
2234   assert( is_simm13( delta ), " delta too large.");
2235 
2236   // Add the delta to the invocation counter and store the result
2237   add( Rtmp, delta, Rtmp );
2238 
2239   // Mask the backedge counter
2240   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2241 
2242   // Store value
2243   st( Rtmp, inv_counter);
2244 
2245   // Add invocation counter + backedge counter
2246   add( Rtmp, Rtmp2, Rtmp);
2247 
2248   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2249 }
2250 
2251 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
2252   assert(UseCompiler, "incrementing must be useful");
2253 #ifdef CC_INTERP
2254   Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
2255                                  InvocationCounter::counter_offset());
2256   Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
2257                                  InvocationCounter::counter_offset());
2258 #else
2259   Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
2260                                InvocationCounter::counter_offset());
2261   Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
2262                                InvocationCounter::counter_offset());
2263 #endif /* CC_INTERP */
2264   int delta = InvocationCounter::count_increment;
2265   // Load each counter in a register
2266   ld( be_counter, Rtmp );
2267   ld( inv_counter, Rtmp2 );
2268 
2269   // Add the delta to the backedge counter
2270   add( Rtmp, delta, Rtmp );
2271 
2272   // Mask the invocation counter, add to backedge counter
2273   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2274 
2275   // and store the result to memory
2276   st( Rtmp, be_counter );
2277 
2278   // Add backedge + invocation counter
2279   add( Rtmp, Rtmp2, Rtmp );
2280 
2281   // Note that this macro must leave backedge_count + invocation_count in Rtmp!
2282 }
2283 
2284 #ifndef CC_INTERP
2285 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
2286                                                              Register branch_bcp,
2287                                                              Register Rtmp ) {
2288   Label did_not_overflow;
2289   Label overflow_with_error;
2290   assert_different_registers(backedge_count, Rtmp, branch_bcp);
2291   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
2292 
2293   AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
2294   load_contents(limit, Rtmp);
2295   cmp(backedge_count, Rtmp);
2296   br(Assembler::lessUnsigned, false, Assembler::pt, did_not_overflow);
2297   delayed()->nop();
2298 
2299   // When ProfileInterpreter is on, the backedge_count comes from the
2300   // methodDataOop, which value does not get reset on the call to
2301   // frequency_counter_overflow().  To avoid excessive calls to the overflow
2302   // routine while the method is being compiled, add a second test to make sure
2303   // the overflow function is called only once every overflow_frequency.
2304   if (ProfileInterpreter) {
2305     const int overflow_frequency = 1024;
2306     andcc(backedge_count, overflow_frequency-1, Rtmp);
2307     brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
2308     delayed()->nop();
2309   }
2310 
2311   // overflow in loop, pass branch bytecode
2312   set(6,Rtmp);
2313   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
2314 
2315   // Was an OSR adapter generated?
2316   // O0 = osr nmethod
2317   tst(O0);
2318   brx(Assembler::zero, false, Assembler::pn, overflow_with_error);
2319   delayed()->nop();
2320 
2321   // Has the nmethod been invalidated already?
2322   ld(O0, nmethod::entry_bci_offset(), O2);
2323   cmp(O2, InvalidOSREntryBci);
2324   br(Assembler::equal, false, Assembler::pn, overflow_with_error);
2325   delayed()->nop();
2326 
2327   // migrate the interpreter frame off of the stack
2328 
2329   mov(G2_thread, L7);
2330   // save nmethod
2331   mov(O0, L6);
2332   set_last_Java_frame(SP, noreg);
2333   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
2334   reset_last_Java_frame();
2335   mov(L7, G2_thread);
2336 
2337   // move OSR nmethod to I1
2338   mov(L6, I1);
2339 
2340   // OSR buffer to I0
2341   mov(O0, I0);
2342 
2343   // remove the interpreter frame
2344   restore(I5_savedSP, 0, SP);
2345 
2346   // Jump to the osr code.
2347   ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
2348   jmp(O2, G0);
2349   delayed()->nop();
2350 
2351   bind(overflow_with_error);
2352 
2353   bind(did_not_overflow);
2354 }
2355 
2356 
2357 
2358 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
2359   if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
2360 }
2361 
2362 
2363 // local helper function for the verify_oop_or_return_address macro
2364 static bool verify_return_address(methodOopDesc* m, int bci) {
2365 #ifndef PRODUCT
2366   address pc = (address)(m->constMethod())
2367              + in_bytes(constMethodOopDesc::codes_offset()) + bci;
2368   // assume it is a valid return address if it is inside m and is preceded by a jsr
2369   if (!m->contains(pc))                                          return false;
2370   address jsr_pc;
2371   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2372   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2373   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2374   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2375 #endif // PRODUCT
2376   return false;
2377 }
2378 
2379 
2380 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2381   if (!VerifyOops)  return;
2382   // the VM documentation for the astore[_wide] bytecode allows
2383   // the TOS to be not only an oop but also a return address
2384   Label test;
2385   Label skip;
2386   // See if it is an address (in the current method):
2387 
2388   mov(reg, Rtmp);
2389   const int log2_bytecode_size_limit = 16;
2390   srl(Rtmp, log2_bytecode_size_limit, Rtmp);
2391   br_notnull( Rtmp, false, pt, test );
2392   delayed()->nop();
2393 
2394   // %%% should use call_VM_leaf here?
2395   save_frame_and_mov(0, Lmethod, O0, reg, O1);
2396   save_thread(L7_thread_cache);
2397   call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
2398   delayed()->nop();
2399   restore_thread(L7_thread_cache);
2400   br_notnull( O0, false, pt, skip );
2401   delayed()->restore();
2402 
2403   // Perform a more elaborate out-of-line call
2404   // Not an address; verify it:
2405   bind(test);
2406   verify_oop(reg);
2407   bind(skip);
2408 }
2409 
2410 
2411 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2412   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
2413 }
2414 #endif /* CC_INTERP */
2415 
2416 // Inline assembly for:
2417 //
2418 // if (thread is in interp_only_mode) {
2419 //   InterpreterRuntime::post_method_entry();
2420 // }
2421 // if (DTraceMethodProbes) {
2422 //   SharedRuntime::dtrace_method_entry(method, receiver);
2423 // }
2424 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2425 //   SharedRuntime::rc_trace_method_entry(method, receiver);
2426 // }
2427 
2428 void InterpreterMacroAssembler::notify_method_entry() {
2429 
2430   // C++ interpreter only uses this for native methods.
2431 
2432   // Whenever JVMTI puts a thread in interp_only_mode, method
2433   // entry/exit events are sent for that thread to track stack
2434   // depth.  If it is possible to enter interp_only_mode we add
2435   // the code to check if the event should be sent.
2436   if (JvmtiExport::can_post_interpreter_events()) {
2437     Label L;
2438     Register temp_reg = O5;
2439     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2440     ld(interp_only, temp_reg);
2441     tst(temp_reg);
2442     br(zero, false, pt, L);
2443     delayed()->nop();
2444     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
2445     bind(L);
2446   }
2447 
2448   {
2449     Register temp_reg = O5;
2450     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2451     call_VM_leaf(noreg,
2452       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2453       G2_thread, Lmethod);
2454   }
2455 
2456   // RedefineClasses() tracing support for obsolete method entry
2457   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2458     call_VM_leaf(noreg,
2459       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2460       G2_thread, Lmethod);
2461   }
2462 }
2463 
2464 
2465 // Inline assembly for:
2466 //
2467 // if (thread is in interp_only_mode) {
2468 //   // save result
2469 //   InterpreterRuntime::post_method_exit();
2470 //   // restore result
2471 // }
2472 // if (DTraceMethodProbes) {
2473 //   SharedRuntime::dtrace_method_exit(thread, method);
2474 // }
2475 //
2476 // Native methods have their result stored in d_tmp and l_tmp
2477 // Java methods have their result stored in the expression stack
2478 
2479 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
2480                                                    TosState state,
2481                                                    NotifyMethodExitMode mode) {
2482   // C++ interpreter only uses this for native methods.
2483 
2484   // Whenever JVMTI puts a thread in interp_only_mode, method
2485   // entry/exit events are sent for that thread to track stack
2486   // depth.  If it is possible to enter interp_only_mode we add
2487   // the code to check if the event should be sent.
2488   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2489     Label L;
2490     Register temp_reg = O5;
2491     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2492     ld(interp_only, temp_reg);
2493     tst(temp_reg);
2494     br(zero, false, pt, L);
2495     delayed()->nop();
2496 
2497     // Note: frame::interpreter_frame_result has a dependency on how the
2498     // method result is saved across the call to post_method_exit. For
2499     // native methods it assumes the result registers are saved to
2500     // l_scratch and d_scratch. If this changes then the interpreter_frame_result
2501     // implementation will need to be updated too.
2502 
2503     save_return_value(state, is_native_method);
2504     call_VM(noreg,
2505             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2506     restore_return_value(state, is_native_method);
2507     bind(L);
2508   }
2509 
2510   {
2511     Register temp_reg = O5;
2512     // Dtrace notification
2513     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2514     save_return_value(state, is_native_method);
2515     call_VM_leaf(
2516       noreg,
2517       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2518       G2_thread, Lmethod);
2519     restore_return_value(state, is_native_method);
2520   }
2521 }
2522 
2523 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
2524 #ifdef CC_INTERP
2525   // result potentially in O0/O1: save it across calls
2526   stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
2527 #ifdef _LP64
2528   stx(O0, STATE(_native_lresult));
2529 #else
2530   std(O0, STATE(_native_lresult));
2531 #endif
2532 #else // CC_INTERP
2533   if (is_native_call) {
2534     stf(FloatRegisterImpl::D, F0, d_tmp);
2535 #ifdef _LP64
2536     stx(O0, l_tmp);
2537 #else
2538     std(O0, l_tmp);
2539 #endif
2540   } else {
2541     push(state);
2542   }
2543 #endif // CC_INTERP
2544 }
2545 
2546 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
2547 #ifdef CC_INTERP
2548   ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
2549 #ifdef _LP64
2550   ldx(STATE(_native_lresult), O0);
2551 #else
2552   ldd(STATE(_native_lresult), O0);
2553 #endif
2554 #else // CC_INTERP
2555   if (is_native_call) {
2556     ldf(FloatRegisterImpl::D, d_tmp, F0);
2557 #ifdef _LP64
2558     ldx(l_tmp, O0);
2559 #else
2560     ldd(l_tmp, O0);
2561 #endif
2562   } else {
2563     pop(state);
2564   }
2565 #endif // CC_INTERP
2566 }