1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 #include "incls/_precompiled.incl"
  28 #include "incls/_mulnode.cpp.incl"
  29 
  30 
  31 //=============================================================================
  32 //------------------------------hash-------------------------------------------
  33 // Hash function over MulNodes.  Needs to be commutative; i.e., I swap
  34 // (commute) inputs to MulNodes willy-nilly so the hash function must return
  35 // the same value in the presence of edge swapping.
  36 uint MulNode::hash() const {
  37   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
  38 }
  39 
  40 //------------------------------Identity---------------------------------------
  41 // Multiplying a one preserves the other argument
  42 Node *MulNode::Identity( PhaseTransform *phase ) {
  43   register const Type *one = mul_id();  // The multiplicative identity
  44   if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
  45   if( phase->type( in(2) )->higher_equal( one ) ) return in(1);
  46 
  47   return this;
  48 }
  49 
  50 //------------------------------Ideal------------------------------------------
  51 // We also canonicalize the Node, moving constants to the right input,
  52 // and flatten expressions (so that 1+x+2 becomes x+3).
  53 Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  54   const Type *t1 = phase->type( in(1) );
  55   const Type *t2 = phase->type( in(2) );
  56   Node *progress = NULL;        // Progress flag
  57   // We are OK if right is a constant, or right is a load and
  58   // left is a non-constant.
  59   if( !(t2->singleton() ||
  60         (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
  61     if( t1->singleton() ||       // Left input is a constant?
  62         // Otherwise, sort inputs (commutativity) to help value numbering.
  63         (in(1)->_idx > in(2)->_idx) ) {
  64       swap_edges(1, 2);
  65       const Type *t = t1;
  66       t1 = t2;
  67       t2 = t;
  68       progress = this;            // Made progress
  69     }
  70   }
  71 
  72   // If the right input is a constant, and the left input is a product of a
  73   // constant, flatten the expression tree.
  74   uint op = Opcode();
  75   if( t2->singleton() &&        // Right input is a constant?
  76       op != Op_MulF &&          // Float & double cannot reassociate
  77       op != Op_MulD ) {
  78     if( t2 == Type::TOP ) return NULL;
  79     Node *mul1 = in(1);
  80 #ifdef ASSERT
  81     // Check for dead loop
  82     int   op1 = mul1->Opcode();
  83     if( phase->eqv( mul1, this ) || phase->eqv( in(2), this ) ||
  84         ( op1 == mul_opcode() || op1 == add_opcode() ) &&
  85         ( phase->eqv( mul1->in(1), this ) || phase->eqv( mul1->in(2), this ) ||
  86           phase->eqv( mul1->in(1), mul1 ) || phase->eqv( mul1->in(2), mul1 ) ) )
  87       assert(false, "dead loop in MulNode::Ideal");
  88 #endif
  89 
  90     if( mul1->Opcode() == mul_opcode() ) {  // Left input is a multiply?
  91       // Mul of a constant?
  92       const Type *t12 = phase->type( mul1->in(2) );
  93       if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
  94         // Compute new constant; check for overflow
  95         const Type *tcon01 = mul1->as_Mul()->mul_ring(t2,t12);
  96         if( tcon01->singleton() ) {
  97           // The Mul of the flattened expression
  98           set_req(1, mul1->in(1));
  99           set_req(2, phase->makecon( tcon01 ));
 100           t2 = tcon01;
 101           progress = this;      // Made progress
 102         }
 103       }
 104     }
 105     // If the right input is a constant, and the left input is an add of a
 106     // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
 107     const Node *add1 = in(1);
 108     if( add1->Opcode() == add_opcode() ) {      // Left input is an add?
 109       // Add of a constant?
 110       const Type *t12 = phase->type( add1->in(2) );
 111       if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
 112         assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
 113         // Compute new constant; check for overflow
 114         const Type *tcon01 = mul_ring(t2,t12);
 115         if( tcon01->singleton() ) {
 116 
 117         // Convert (X+con1)*con0 into X*con0
 118           Node *mul = clone();    // mul = ()*con0
 119           mul->set_req(1,add1->in(1));  // mul = X*con0
 120           mul = phase->transform(mul);
 121 
 122           Node *add2 = add1->clone();
 123           add2->set_req(1, mul);        // X*con0 + con0*con1
 124           add2->set_req(2, phase->makecon(tcon01) );
 125           progress = add2;
 126         }
 127       }
 128     } // End of is left input an add
 129   } // End of is right input a Mul
 130 
 131   return progress;
 132 }
 133 
 134 //------------------------------Value-----------------------------------------
 135 const Type *MulNode::Value( PhaseTransform *phase ) const {
 136   const Type *t1 = phase->type( in(1) );
 137   const Type *t2 = phase->type( in(2) );
 138   // Either input is TOP ==> the result is TOP
 139   if( t1 == Type::TOP ) return Type::TOP;
 140   if( t2 == Type::TOP ) return Type::TOP;
 141 
 142   // Either input is ZERO ==> the result is ZERO.
 143   // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
 144   int op = Opcode();
 145   if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
 146     const Type *zero = add_id();        // The multiplicative zero
 147     if( t1->higher_equal( zero ) ) return zero;
 148     if( t2->higher_equal( zero ) ) return zero;
 149   }
 150 
 151   // Either input is BOTTOM ==> the result is the local BOTTOM
 152   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
 153     return bottom_type();
 154 
 155 #if defined(IA32)
 156   // Can't trust native compilers to properly fold strict double
 157   // multiplication with round-to-zero on this platform.
 158   if (op == Op_MulD && phase->C->method()->is_strict()) {
 159     return TypeD::DOUBLE;
 160   }
 161 #endif
 162 
 163   return mul_ring(t1,t2);            // Local flavor of type multiplication
 164 }
 165 
 166 
 167 //=============================================================================
 168 //------------------------------Ideal------------------------------------------
 169 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
 170 Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 171   // Swap constant to right
 172   jint con;
 173   if ((con = in(1)->find_int_con(0)) != 0) {
 174     swap_edges(1, 2);
 175     // Finish rest of method to use info in 'con'
 176   } else if ((con = in(2)->find_int_con(0)) == 0) {
 177     return MulNode::Ideal(phase, can_reshape);
 178   }
 179 
 180   // Now we have a constant Node on the right and the constant in con
 181   if( con == 0 ) return NULL;   // By zero is handled by Value call
 182   if( con == 1 ) return NULL;   // By one  is handled by Identity call
 183 
 184   // Check for negative constant; if so negate the final result
 185   bool sign_flip = false;
 186   if( con < 0 ) {
 187     con = -con;
 188     sign_flip = true;
 189   }
 190 
 191   // Get low bit; check for being the only bit
 192   Node *res = NULL;
 193   jint bit1 = con & -con;       // Extract low bit
 194   if( bit1 == con ) {           // Found a power of 2?
 195     res = new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) );
 196   } else {
 197 
 198     // Check for constant with 2 bits set
 199     jint bit2 = con-bit1;
 200     bit2 = bit2 & -bit2;          // Extract 2nd bit
 201     if( bit2 + bit1 == con ) {    // Found all bits in con?
 202       Node *n1 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) ) );
 203       Node *n2 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit2)) ) );
 204       res = new (phase->C, 3) AddINode( n2, n1 );
 205 
 206     } else if (is_power_of_2(con+1)) {
 207       // Sleezy: power-of-2 -1.  Next time be generic.
 208       jint temp = (jint) (con + 1);
 209       Node *n1 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(temp)) ) );
 210       res = new (phase->C, 3) SubINode( n1, in(1) );
 211     } else {
 212       return MulNode::Ideal(phase, can_reshape);
 213     }
 214   }
 215 
 216   if( sign_flip ) {             // Need to negate result?
 217     res = phase->transform(res);// Transform, before making the zero con
 218     res = new (phase->C, 3) SubINode(phase->intcon(0),res);
 219   }
 220 
 221   return res;                   // Return final result
 222 }
 223 
 224 //------------------------------mul_ring---------------------------------------
 225 // Compute the product type of two integer ranges into this node.
 226 const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const {
 227   const TypeInt *r0 = t0->is_int(); // Handy access
 228   const TypeInt *r1 = t1->is_int();
 229 
 230   // Fetch endpoints of all ranges
 231   int32 lo0 = r0->_lo;
 232   double a = (double)lo0;
 233   int32 hi0 = r0->_hi;
 234   double b = (double)hi0;
 235   int32 lo1 = r1->_lo;
 236   double c = (double)lo1;
 237   int32 hi1 = r1->_hi;
 238   double d = (double)hi1;
 239 
 240   // Compute all endpoints & check for overflow
 241   int32 A = lo0*lo1;
 242   if( (double)A != a*c ) return TypeInt::INT; // Overflow?
 243   int32 B = lo0*hi1;
 244   if( (double)B != a*d ) return TypeInt::INT; // Overflow?
 245   int32 C = hi0*lo1;
 246   if( (double)C != b*c ) return TypeInt::INT; // Overflow?
 247   int32 D = hi0*hi1;
 248   if( (double)D != b*d ) return TypeInt::INT; // Overflow?
 249 
 250   if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
 251   else { lo0 = B; hi0 = A; }
 252   if( C < D ) {
 253     if( C < lo0 ) lo0 = C;
 254     if( D > hi0 ) hi0 = D;
 255   } else {
 256     if( D < lo0 ) lo0 = D;
 257     if( C > hi0 ) hi0 = C;
 258   }
 259   return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
 260 }
 261 
 262 
 263 //=============================================================================
 264 //------------------------------Ideal------------------------------------------
 265 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
 266 Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 267   // Swap constant to right
 268   jlong con;
 269   if ((con = in(1)->find_long_con(0)) != 0) {
 270     swap_edges(1, 2);
 271     // Finish rest of method to use info in 'con'
 272   } else if ((con = in(2)->find_long_con(0)) == 0) {
 273     return MulNode::Ideal(phase, can_reshape);
 274   }
 275 
 276   // Now we have a constant Node on the right and the constant in con
 277   if( con == CONST64(0) ) return NULL;  // By zero is handled by Value call
 278   if( con == CONST64(1) ) return NULL;  // By one  is handled by Identity call
 279 
 280   // Check for negative constant; if so negate the final result
 281   bool sign_flip = false;
 282   if( con < 0 ) {
 283     con = -con;
 284     sign_flip = true;
 285   }
 286 
 287   // Get low bit; check for being the only bit
 288   Node *res = NULL;
 289   jlong bit1 = con & -con;      // Extract low bit
 290   if( bit1 == con ) {           // Found a power of 2?
 291     res = new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit1)) );
 292   } else {
 293 
 294     // Check for constant with 2 bits set
 295     jlong bit2 = con-bit1;
 296     bit2 = bit2 & -bit2;          // Extract 2nd bit
 297     if( bit2 + bit1 == con ) {    // Found all bits in con?
 298       Node *n1 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit1)) ) );
 299       Node *n2 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit2)) ) );
 300       res = new (phase->C, 3) AddLNode( n2, n1 );
 301 
 302     } else if (is_power_of_2_long(con+1)) {
 303       // Sleezy: power-of-2 -1.  Next time be generic.
 304       jlong temp = (jlong) (con + 1);
 305       Node *n1 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(temp)) ) );
 306       res = new (phase->C, 3) SubLNode( n1, in(1) );
 307     } else {
 308       return MulNode::Ideal(phase, can_reshape);
 309     }
 310   }
 311 
 312   if( sign_flip ) {             // Need to negate result?
 313     res = phase->transform(res);// Transform, before making the zero con
 314     res = new (phase->C, 3) SubLNode(phase->longcon(0),res);
 315   }
 316 
 317   return res;                   // Return final result
 318 }
 319 
 320 //------------------------------mul_ring---------------------------------------
 321 // Compute the product type of two integer ranges into this node.
 322 const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const {
 323   const TypeLong *r0 = t0->is_long(); // Handy access
 324   const TypeLong *r1 = t1->is_long();
 325 
 326   // Fetch endpoints of all ranges
 327   jlong lo0 = r0->_lo;
 328   double a = (double)lo0;
 329   jlong hi0 = r0->_hi;
 330   double b = (double)hi0;
 331   jlong lo1 = r1->_lo;
 332   double c = (double)lo1;
 333   jlong hi1 = r1->_hi;
 334   double d = (double)hi1;
 335 
 336   // Compute all endpoints & check for overflow
 337   jlong A = lo0*lo1;
 338   if( (double)A != a*c ) return TypeLong::LONG; // Overflow?
 339   jlong B = lo0*hi1;
 340   if( (double)B != a*d ) return TypeLong::LONG; // Overflow?
 341   jlong C = hi0*lo1;
 342   if( (double)C != b*c ) return TypeLong::LONG; // Overflow?
 343   jlong D = hi0*hi1;
 344   if( (double)D != b*d ) return TypeLong::LONG; // Overflow?
 345 
 346   if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
 347   else { lo0 = B; hi0 = A; }
 348   if( C < D ) {
 349     if( C < lo0 ) lo0 = C;
 350     if( D > hi0 ) hi0 = D;
 351   } else {
 352     if( D < lo0 ) lo0 = D;
 353     if( C > hi0 ) hi0 = C;
 354   }
 355   return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
 356 }
 357 
 358 //=============================================================================
 359 //------------------------------mul_ring---------------------------------------
 360 // Compute the product type of two double ranges into this node.
 361 const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
 362   if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
 363   return TypeF::make( t0->getf() * t1->getf() );
 364 }
 365 
 366 //=============================================================================
 367 //------------------------------mul_ring---------------------------------------
 368 // Compute the product type of two double ranges into this node.
 369 const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
 370   if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
 371   // We must be multiplying 2 double constants.
 372   return TypeD::make( t0->getd() * t1->getd() );
 373 }
 374 
 375 //=============================================================================
 376 //------------------------------Value------------------------------------------
 377 const Type *MulHiLNode::Value( PhaseTransform *phase ) const {
 378   // Either input is TOP ==> the result is TOP
 379   const Type *t1 = phase->type( in(1) );
 380   const Type *t2 = phase->type( in(2) );
 381   if( t1 == Type::TOP ) return Type::TOP;
 382   if( t2 == Type::TOP ) return Type::TOP;
 383 
 384   // Either input is BOTTOM ==> the result is the local BOTTOM
 385   const Type *bot = bottom_type();
 386   if( (t1 == bot) || (t2 == bot) ||
 387       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 388     return bot;
 389 
 390   // It is not worth trying to constant fold this stuff!
 391   return TypeLong::LONG;
 392 }
 393 
 394 //=============================================================================
 395 //------------------------------mul_ring---------------------------------------
 396 // Supplied function returns the product of the inputs IN THE CURRENT RING.
 397 // For the logical operations the ring's MUL is really a logical AND function.
 398 // This also type-checks the inputs for sanity.  Guaranteed never to
 399 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 400 const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
 401   const TypeInt *r0 = t0->is_int(); // Handy access
 402   const TypeInt *r1 = t1->is_int();
 403   int widen = MAX2(r0->_widen,r1->_widen);
 404 
 405   // If either input is a constant, might be able to trim cases
 406   if( !r0->is_con() && !r1->is_con() )
 407     return TypeInt::INT;        // No constants to be had
 408 
 409   // Both constants?  Return bits
 410   if( r0->is_con() && r1->is_con() )
 411     return TypeInt::make( r0->get_con() & r1->get_con() );
 412 
 413   if( r0->is_con() && r0->get_con() > 0 )
 414     return TypeInt::make(0, r0->get_con(), widen);
 415 
 416   if( r1->is_con() && r1->get_con() > 0 )
 417     return TypeInt::make(0, r1->get_con(), widen);
 418 
 419   if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) {
 420     return TypeInt::BOOL;
 421   }
 422 
 423   return TypeInt::INT;          // No constants to be had
 424 }
 425 
 426 //------------------------------Identity---------------------------------------
 427 // Masking off the high bits of an unsigned load is not required
 428 Node *AndINode::Identity( PhaseTransform *phase ) {
 429 
 430   // x & x => x
 431   if (phase->eqv(in(1), in(2))) return in(1);
 432 
 433   Node* in1 = in(1);
 434   uint op = in1->Opcode();
 435   const TypeInt* t2 = phase->type(in(2))->isa_int();
 436   if (t2 && t2->is_con()) {
 437     int con = t2->get_con();
 438     // Masking off high bits which are always zero is useless.
 439     const TypeInt* t1 = phase->type( in(1) )->isa_int();
 440     if (t1 != NULL && t1->_lo >= 0) {
 441       jint t1_support = right_n_bits(1 + log2_intptr(t1->_hi));
 442       if ((t1_support & con) == t1_support)
 443         return in1;
 444     }
 445     // Masking off the high bits of a unsigned-shift-right is not
 446     // needed either.
 447     if (op == Op_URShiftI) {
 448       const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
 449       if (t12 && t12->is_con()) {  // Shift is by a constant
 450         int shift = t12->get_con();
 451         shift &= BitsPerJavaInteger - 1;  // semantics of Java shifts
 452         int mask = max_juint >> shift;
 453         if ((mask & con) == mask)  // If AND is useless, skip it
 454           return in1;
 455       }
 456     }
 457   }
 458   return MulNode::Identity(phase);
 459 }
 460 
 461 //------------------------------Ideal------------------------------------------
 462 Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 463   // Special case constant AND mask
 464   const TypeInt *t2 = phase->type( in(2) )->isa_int();
 465   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
 466   const int mask = t2->get_con();
 467   Node *load = in(1);
 468   uint lop = load->Opcode();
 469 
 470   // Masking bits off of a Character?  Hi bits are already zero.
 471   if( lop == Op_LoadUS &&
 472       (mask & 0xFFFF0000) )     // Can we make a smaller mask?
 473     return new (phase->C, 3) AndINode(load,phase->intcon(mask&0xFFFF));
 474 
 475   // Masking bits off of a Short?  Loading a Character does some masking
 476   if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) {
 477     Node *ldus = new (phase->C, 3) LoadUSNode(load->in(MemNode::Control),
 478                                               load->in(MemNode::Memory),
 479                                               load->in(MemNode::Address),
 480                                               load->adr_type());
 481     ldus = phase->transform(ldus);
 482     return new (phase->C, 3) AndINode(ldus, phase->intcon(mask & 0xFFFF));
 483   }
 484 
 485   // Masking sign bits off of a Byte?  Do an unsigned byte load plus
 486   // an and.
 487   if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0) {
 488     Node* ldub = new (phase->C, 3) LoadUBNode(load->in(MemNode::Control),
 489                                               load->in(MemNode::Memory),
 490                                               load->in(MemNode::Address),
 491                                               load->adr_type());
 492     ldub = phase->transform(ldub);
 493     return new (phase->C, 3) AndINode(ldub, phase->intcon(mask));
 494   }
 495 
 496   // Masking off sign bits?  Dont make them!
 497   if( lop == Op_RShiftI ) {
 498     const TypeInt *t12 = phase->type(load->in(2))->isa_int();
 499     if( t12 && t12->is_con() ) { // Shift is by a constant
 500       int shift = t12->get_con();
 501       shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 502       const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
 503       // If the AND'ing of the 2 masks has no bits, then only original shifted
 504       // bits survive.  NO sign-extension bits survive the maskings.
 505       if( (sign_bits_mask & mask) == 0 ) {
 506         // Use zero-fill shift instead
 507         Node *zshift = phase->transform(new (phase->C, 3) URShiftINode(load->in(1),load->in(2)));
 508         return new (phase->C, 3) AndINode( zshift, in(2) );
 509       }
 510     }
 511   }
 512 
 513   // Check for 'negate/and-1', a pattern emitted when someone asks for
 514   // 'mod 2'.  Negate leaves the low order bit unchanged (think: complement
 515   // plus 1) and the mask is of the low order bit.  Skip the negate.
 516   if( lop == Op_SubI && mask == 1 && load->in(1) &&
 517       phase->type(load->in(1)) == TypeInt::ZERO )
 518     return new (phase->C, 3) AndINode( load->in(2), in(2) );
 519 
 520   return MulNode::Ideal(phase, can_reshape);
 521 }
 522 
 523 //=============================================================================
 524 //------------------------------mul_ring---------------------------------------
 525 // Supplied function returns the product of the inputs IN THE CURRENT RING.
 526 // For the logical operations the ring's MUL is really a logical AND function.
 527 // This also type-checks the inputs for sanity.  Guaranteed never to
 528 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 529 const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
 530   const TypeLong *r0 = t0->is_long(); // Handy access
 531   const TypeLong *r1 = t1->is_long();
 532   int widen = MAX2(r0->_widen,r1->_widen);
 533 
 534   // If either input is a constant, might be able to trim cases
 535   if( !r0->is_con() && !r1->is_con() )
 536     return TypeLong::LONG;      // No constants to be had
 537 
 538   // Both constants?  Return bits
 539   if( r0->is_con() && r1->is_con() )
 540     return TypeLong::make( r0->get_con() & r1->get_con() );
 541 
 542   if( r0->is_con() && r0->get_con() > 0 )
 543     return TypeLong::make(CONST64(0), r0->get_con(), widen);
 544 
 545   if( r1->is_con() && r1->get_con() > 0 )
 546     return TypeLong::make(CONST64(0), r1->get_con(), widen);
 547 
 548   return TypeLong::LONG;        // No constants to be had
 549 }
 550 
 551 //------------------------------Identity---------------------------------------
 552 // Masking off the high bits of an unsigned load is not required
 553 Node *AndLNode::Identity( PhaseTransform *phase ) {
 554 
 555   // x & x => x
 556   if (phase->eqv(in(1), in(2))) return in(1);
 557 
 558   Node *usr = in(1);
 559   const TypeLong *t2 = phase->type( in(2) )->isa_long();
 560   if( t2 && t2->is_con() ) {
 561     jlong con = t2->get_con();
 562     // Masking off high bits which are always zero is useless.
 563     const TypeLong* t1 = phase->type( in(1) )->isa_long();
 564     if (t1 != NULL && t1->_lo >= 0) {
 565       jlong t1_support = ((jlong)1 << (1 + log2_long(t1->_hi))) - 1;
 566       if ((t1_support & con) == t1_support)
 567         return usr;
 568     }
 569     uint lop = usr->Opcode();
 570     // Masking off the high bits of a unsigned-shift-right is not
 571     // needed either.
 572     if( lop == Op_URShiftL ) {
 573       const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
 574       if( t12 && t12->is_con() ) {  // Shift is by a constant
 575         int shift = t12->get_con();
 576         shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 577         jlong mask = max_julong >> shift;
 578         if( (mask&con) == mask )  // If AND is useless, skip it
 579           return usr;
 580       }
 581     }
 582   }
 583   return MulNode::Identity(phase);
 584 }
 585 
 586 //------------------------------Ideal------------------------------------------
 587 Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 588   // Special case constant AND mask
 589   const TypeLong *t2 = phase->type( in(2) )->isa_long();
 590   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
 591   const jlong mask = t2->get_con();
 592 
 593   Node* in1 = in(1);
 594   uint op = in1->Opcode();
 595 
 596   // Masking sign bits off of an integer?  Do an unsigned integer to
 597   // long load.
 598   // NOTE: This check must be *before* we try to convert the AndLNode
 599   // to an AndINode and commute it with ConvI2LNode because
 600   // 0xFFFFFFFFL masks the whole integer and we get a sign extension,
 601   // which is wrong.
 602   if (op == Op_ConvI2L && in1->in(1)->Opcode() == Op_LoadI && mask == CONST64(0x00000000FFFFFFFF)) {
 603     Node* load = in1->in(1);
 604     return new (phase->C, 3) LoadUI2LNode(load->in(MemNode::Control),
 605                                           load->in(MemNode::Memory),
 606                                           load->in(MemNode::Address),
 607                                           load->adr_type());
 608   }
 609 
 610   // Are we masking a long that was converted from an int with a mask
 611   // that fits in 32-bits?  Commute them and use an AndINode.  Don't
 612   // convert masks which would cause a sign extension of the integer
 613   // value.  This check includes UI2L masks (0x00000000FFFFFFFF) which
 614   // would be optimized away later in Identity.
 615   if (op == Op_ConvI2L && (mask & CONST64(0xFFFFFFFF80000000)) == 0) {
 616     Node* andi = new (phase->C, 3) AndINode(in1->in(1), phase->intcon(mask));
 617     andi = phase->transform(andi);
 618     return new (phase->C, 2) ConvI2LNode(andi);
 619   }
 620 
 621   // Masking off sign bits?  Dont make them!
 622   if (op == Op_RShiftL) {
 623     const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
 624     if( t12 && t12->is_con() ) { // Shift is by a constant
 625       int shift = t12->get_con();
 626       shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 627       const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - shift)) -1);
 628       // If the AND'ing of the 2 masks has no bits, then only original shifted
 629       // bits survive.  NO sign-extension bits survive the maskings.
 630       if( (sign_bits_mask & mask) == 0 ) {
 631         // Use zero-fill shift instead
 632         Node *zshift = phase->transform(new (phase->C, 3) URShiftLNode(in1->in(1), in1->in(2)));
 633         return new (phase->C, 3) AndLNode(zshift, in(2));
 634       }
 635     }
 636   }
 637 
 638   return MulNode::Ideal(phase, can_reshape);
 639 }
 640 
 641 //=============================================================================
 642 //------------------------------Identity---------------------------------------
 643 Node *LShiftINode::Identity( PhaseTransform *phase ) {
 644   const TypeInt *ti = phase->type( in(2) )->isa_int();  // shift count is an int
 645   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) ? in(1) : this;
 646 }
 647 
 648 //------------------------------Ideal------------------------------------------
 649 // If the right input is a constant, and the left input is an add of a
 650 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
 651 Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 652   const Type *t  = phase->type( in(2) );
 653   if( t == Type::TOP ) return NULL;       // Right input is dead
 654   const TypeInt *t2 = t->isa_int();
 655   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
 656   const int con = t2->get_con() & ( BitsPerInt - 1 );  // masked shift count
 657 
 658   if ( con == 0 )  return NULL; // let Identity() handle 0 shift count
 659 
 660   // Left input is an add of a constant?
 661   Node *add1 = in(1);
 662   int add1_op = add1->Opcode();
 663   if( add1_op == Op_AddI ) {    // Left input is an add?
 664     assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" );
 665     const TypeInt *t12 = phase->type(add1->in(2))->isa_int();
 666     if( t12 && t12->is_con() ){ // Left input is an add of a con?
 667       // Transform is legal, but check for profit.  Avoid breaking 'i2s'
 668       // and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
 669       if( con < 16 ) {
 670         // Compute X << con0
 671         Node *lsh = phase->transform( new (phase->C, 3) LShiftINode( add1->in(1), in(2) ) );
 672         // Compute X<<con0 + (con1<<con0)
 673         return new (phase->C, 3) AddINode( lsh, phase->intcon(t12->get_con() << con));
 674       }
 675     }
 676   }
 677 
 678   // Check for "(x>>c0)<<c0" which just masks off low bits
 679   if( (add1_op == Op_RShiftI || add1_op == Op_URShiftI ) &&
 680       add1->in(2) == in(2) )
 681     // Convert to "(x & -(1<<c0))"
 682     return new (phase->C, 3) AndINode(add1->in(1),phase->intcon( -(1<<con)));
 683 
 684   // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
 685   if( add1_op == Op_AndI ) {
 686     Node *add2 = add1->in(1);
 687     int add2_op = add2->Opcode();
 688     if( (add2_op == Op_RShiftI || add2_op == Op_URShiftI ) &&
 689         add2->in(2) == in(2) ) {
 690       // Convert to "(x & (Y<<c0))"
 691       Node *y_sh = phase->transform( new (phase->C, 3) LShiftINode( add1->in(2), in(2) ) );
 692       return new (phase->C, 3) AndINode( add2->in(1), y_sh );
 693     }
 694   }
 695 
 696   // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
 697   // before shifting them away.
 698   const jint bits_mask = right_n_bits(BitsPerJavaInteger-con);
 699   if( add1_op == Op_AndI &&
 700       phase->type(add1->in(2)) == TypeInt::make( bits_mask ) )
 701     return new (phase->C, 3) LShiftINode( add1->in(1), in(2) );
 702 
 703   return NULL;
 704 }
 705 
 706 //------------------------------Value------------------------------------------
 707 // A LShiftINode shifts its input2 left by input1 amount.
 708 const Type *LShiftINode::Value( PhaseTransform *phase ) const {
 709   const Type *t1 = phase->type( in(1) );
 710   const Type *t2 = phase->type( in(2) );
 711   // Either input is TOP ==> the result is TOP
 712   if( t1 == Type::TOP ) return Type::TOP;
 713   if( t2 == Type::TOP ) return Type::TOP;
 714 
 715   // Left input is ZERO ==> the result is ZERO.
 716   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
 717   // Shift by zero does nothing
 718   if( t2 == TypeInt::ZERO ) return t1;
 719 
 720   // Either input is BOTTOM ==> the result is BOTTOM
 721   if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) ||
 722       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 723     return TypeInt::INT;
 724 
 725   const TypeInt *r1 = t1->is_int(); // Handy access
 726   const TypeInt *r2 = t2->is_int(); // Handy access
 727 
 728   if (!r2->is_con())
 729     return TypeInt::INT;
 730 
 731   uint shift = r2->get_con();
 732   shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 733   // Shift by a multiple of 32 does nothing:
 734   if (shift == 0)  return t1;
 735 
 736   // If the shift is a constant, shift the bounds of the type,
 737   // unless this could lead to an overflow.
 738   if (!r1->is_con()) {
 739     jint lo = r1->_lo, hi = r1->_hi;
 740     if (((lo << shift) >> shift) == lo &&
 741         ((hi << shift) >> shift) == hi) {
 742       // No overflow.  The range shifts up cleanly.
 743       return TypeInt::make((jint)lo << (jint)shift,
 744                            (jint)hi << (jint)shift,
 745                            MAX2(r1->_widen,r2->_widen));
 746     }
 747     return TypeInt::INT;
 748   }
 749 
 750   return TypeInt::make( (jint)r1->get_con() << (jint)shift );
 751 }
 752 
 753 //=============================================================================
 754 //------------------------------Identity---------------------------------------
 755 Node *LShiftLNode::Identity( PhaseTransform *phase ) {
 756   const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
 757   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
 758 }
 759 
 760 //------------------------------Ideal------------------------------------------
 761 // If the right input is a constant, and the left input is an add of a
 762 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
 763 Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 764   const Type *t  = phase->type( in(2) );
 765   if( t == Type::TOP ) return NULL;       // Right input is dead
 766   const TypeInt *t2 = t->isa_int();
 767   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
 768   const int con = t2->get_con() & ( BitsPerLong - 1 );  // masked shift count
 769 
 770   if ( con == 0 ) return NULL;  // let Identity() handle 0 shift count
 771 
 772   // Left input is an add of a constant?
 773   Node *add1 = in(1);
 774   int add1_op = add1->Opcode();
 775   if( add1_op == Op_AddL ) {    // Left input is an add?
 776     // Avoid dead data cycles from dead loops
 777     assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" );
 778     const TypeLong *t12 = phase->type(add1->in(2))->isa_long();
 779     if( t12 && t12->is_con() ){ // Left input is an add of a con?
 780       // Compute X << con0
 781       Node *lsh = phase->transform( new (phase->C, 3) LShiftLNode( add1->in(1), in(2) ) );
 782       // Compute X<<con0 + (con1<<con0)
 783       return new (phase->C, 3) AddLNode( lsh, phase->longcon(t12->get_con() << con));
 784     }
 785   }
 786 
 787   // Check for "(x>>c0)<<c0" which just masks off low bits
 788   if( (add1_op == Op_RShiftL || add1_op == Op_URShiftL ) &&
 789       add1->in(2) == in(2) )
 790     // Convert to "(x & -(1<<c0))"
 791     return new (phase->C, 3) AndLNode(add1->in(1),phase->longcon( -(CONST64(1)<<con)));
 792 
 793   // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
 794   if( add1_op == Op_AndL ) {
 795     Node *add2 = add1->in(1);
 796     int add2_op = add2->Opcode();
 797     if( (add2_op == Op_RShiftL || add2_op == Op_URShiftL ) &&
 798         add2->in(2) == in(2) ) {
 799       // Convert to "(x & (Y<<c0))"
 800       Node *y_sh = phase->transform( new (phase->C, 3) LShiftLNode( add1->in(2), in(2) ) );
 801       return new (phase->C, 3) AndLNode( add2->in(1), y_sh );
 802     }
 803   }
 804 
 805   // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
 806   // before shifting them away.
 807   const jlong bits_mask = ((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - con)) - CONST64(1);
 808   if( add1_op == Op_AndL &&
 809       phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
 810     return new (phase->C, 3) LShiftLNode( add1->in(1), in(2) );
 811 
 812   return NULL;
 813 }
 814 
 815 //------------------------------Value------------------------------------------
 816 // A LShiftLNode shifts its input2 left by input1 amount.
 817 const Type *LShiftLNode::Value( PhaseTransform *phase ) const {
 818   const Type *t1 = phase->type( in(1) );
 819   const Type *t2 = phase->type( in(2) );
 820   // Either input is TOP ==> the result is TOP
 821   if( t1 == Type::TOP ) return Type::TOP;
 822   if( t2 == Type::TOP ) return Type::TOP;
 823 
 824   // Left input is ZERO ==> the result is ZERO.
 825   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
 826   // Shift by zero does nothing
 827   if( t2 == TypeInt::ZERO ) return t1;
 828 
 829   // Either input is BOTTOM ==> the result is BOTTOM
 830   if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) ||
 831       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 832     return TypeLong::LONG;
 833 
 834   const TypeLong *r1 = t1->is_long(); // Handy access
 835   const TypeInt  *r2 = t2->is_int();  // Handy access
 836 
 837   if (!r2->is_con())
 838     return TypeLong::LONG;
 839 
 840   uint shift = r2->get_con();
 841   shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 842   // Shift by a multiple of 64 does nothing:
 843   if (shift == 0)  return t1;
 844 
 845   // If the shift is a constant, shift the bounds of the type,
 846   // unless this could lead to an overflow.
 847   if (!r1->is_con()) {
 848     jlong lo = r1->_lo, hi = r1->_hi;
 849     if (((lo << shift) >> shift) == lo &&
 850         ((hi << shift) >> shift) == hi) {
 851       // No overflow.  The range shifts up cleanly.
 852       return TypeLong::make((jlong)lo << (jint)shift,
 853                             (jlong)hi << (jint)shift,
 854                             MAX2(r1->_widen,r2->_widen));
 855     }
 856     return TypeLong::LONG;
 857   }
 858 
 859   return TypeLong::make( (jlong)r1->get_con() << (jint)shift );
 860 }
 861 
 862 //=============================================================================
 863 //------------------------------Identity---------------------------------------
 864 Node *RShiftINode::Identity( PhaseTransform *phase ) {
 865   const TypeInt *t2 = phase->type(in(2))->isa_int();
 866   if( !t2 ) return this;
 867   if ( t2->is_con() && ( t2->get_con() & ( BitsPerInt - 1 ) ) == 0 )
 868     return in(1);
 869 
 870   // Check for useless sign-masking
 871   if( in(1)->Opcode() == Op_LShiftI &&
 872       in(1)->req() == 3 &&
 873       in(1)->in(2) == in(2) &&
 874       t2->is_con() ) {
 875     uint shift = t2->get_con();
 876     shift &= BitsPerJavaInteger-1; // semantics of Java shifts
 877     // Compute masks for which this shifting doesn't change
 878     int lo = (-1 << (BitsPerJavaInteger - shift-1)); // FFFF8000
 879     int hi = ~lo;               // 00007FFF
 880     const TypeInt *t11 = phase->type(in(1)->in(1))->isa_int();
 881     if( !t11 ) return this;
 882     // Does actual value fit inside of mask?
 883     if( lo <= t11->_lo && t11->_hi <= hi )
 884       return in(1)->in(1);      // Then shifting is a nop
 885   }
 886 
 887   return this;
 888 }
 889 
 890 //------------------------------Ideal------------------------------------------
 891 Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 892   // Inputs may be TOP if they are dead.
 893   const TypeInt *t1 = phase->type( in(1) )->isa_int();
 894   if( !t1 ) return NULL;        // Left input is an integer
 895   const TypeInt *t2 = phase->type( in(2) )->isa_int();
 896   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
 897   const TypeInt *t3;  // type of in(1).in(2)
 898   int shift = t2->get_con();
 899   shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 900 
 901   if ( shift == 0 ) return NULL;  // let Identity() handle 0 shift count
 902 
 903   // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
 904   // Such expressions arise normally from shift chains like (byte)(x >> 24).
 905   const Node *mask = in(1);
 906   if( mask->Opcode() == Op_AndI &&
 907       (t3 = phase->type(mask->in(2))->isa_int()) &&
 908       t3->is_con() ) {
 909     Node *x = mask->in(1);
 910     jint maskbits = t3->get_con();
 911     // Convert to "(x >> shift) & (mask >> shift)"
 912     Node *shr_nomask = phase->transform( new (phase->C, 3) RShiftINode(mask->in(1), in(2)) );
 913     return new (phase->C, 3) AndINode(shr_nomask, phase->intcon( maskbits >> shift));
 914   }
 915 
 916   // Check for "(short[i] <<16)>>16" which simply sign-extends
 917   const Node *shl = in(1);
 918   if( shl->Opcode() != Op_LShiftI ) return NULL;
 919 
 920   if( shift == 16 &&
 921       (t3 = phase->type(shl->in(2))->isa_int()) &&
 922       t3->is_con(16) ) {
 923     Node *ld = shl->in(1);
 924     if( ld->Opcode() == Op_LoadS ) {
 925       // Sign extension is just useless here.  Return a RShiftI of zero instead
 926       // returning 'ld' directly.  We cannot return an old Node directly as
 927       // that is the job of 'Identity' calls and Identity calls only work on
 928       // direct inputs ('ld' is an extra Node removed from 'this').  The
 929       // combined optimization requires Identity only return direct inputs.
 930       set_req(1, ld);
 931       set_req(2, phase->intcon(0));
 932       return this;
 933     }
 934     else if( ld->Opcode() == Op_LoadUS )
 935       // Replace zero-extension-load with sign-extension-load
 936       return new (phase->C, 3) LoadSNode( ld->in(MemNode::Control),
 937                                 ld->in(MemNode::Memory),
 938                                 ld->in(MemNode::Address),
 939                                 ld->adr_type());
 940   }
 941 
 942   // Check for "(byte[i] <<24)>>24" which simply sign-extends
 943   if( shift == 24 &&
 944       (t3 = phase->type(shl->in(2))->isa_int()) &&
 945       t3->is_con(24) ) {
 946     Node *ld = shl->in(1);
 947     if( ld->Opcode() == Op_LoadB ) {
 948       // Sign extension is just useless here
 949       set_req(1, ld);
 950       set_req(2, phase->intcon(0));
 951       return this;
 952     }
 953   }
 954 
 955   return NULL;
 956 }
 957 
 958 //------------------------------Value------------------------------------------
 959 // A RShiftINode shifts its input2 right by input1 amount.
 960 const Type *RShiftINode::Value( PhaseTransform *phase ) const {
 961   const Type *t1 = phase->type( in(1) );
 962   const Type *t2 = phase->type( in(2) );
 963   // Either input is TOP ==> the result is TOP
 964   if( t1 == Type::TOP ) return Type::TOP;
 965   if( t2 == Type::TOP ) return Type::TOP;
 966 
 967   // Left input is ZERO ==> the result is ZERO.
 968   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
 969   // Shift by zero does nothing
 970   if( t2 == TypeInt::ZERO ) return t1;
 971 
 972   // Either input is BOTTOM ==> the result is BOTTOM
 973   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
 974     return TypeInt::INT;
 975 
 976   if (t2 == TypeInt::INT)
 977     return TypeInt::INT;
 978 
 979   const TypeInt *r1 = t1->is_int(); // Handy access
 980   const TypeInt *r2 = t2->is_int(); // Handy access
 981 
 982   // If the shift is a constant, just shift the bounds of the type.
 983   // For example, if the shift is 31, we just propagate sign bits.
 984   if (r2->is_con()) {
 985     uint shift = r2->get_con();
 986     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 987     // Shift by a multiple of 32 does nothing:
 988     if (shift == 0)  return t1;
 989     // Calculate reasonably aggressive bounds for the result.
 990     // This is necessary if we are to correctly type things
 991     // like (x<<24>>24) == ((byte)x).
 992     jint lo = (jint)r1->_lo >> (jint)shift;
 993     jint hi = (jint)r1->_hi >> (jint)shift;
 994     assert(lo <= hi, "must have valid bounds");
 995     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
 996 #ifdef ASSERT
 997     // Make sure we get the sign-capture idiom correct.
 998     if (shift == BitsPerJavaInteger-1) {
 999       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO,    ">>31 of + is  0");
1000       if (r1->_hi <  0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1");
1001     }
1002 #endif
1003     return ti;
1004   }
1005 
1006   if( !r1->is_con() || !r2->is_con() )
1007     return TypeInt::INT;
1008 
1009   // Signed shift right
1010   return TypeInt::make( r1->get_con() >> (r2->get_con()&31) );
1011 }
1012 
1013 //=============================================================================
1014 //------------------------------Identity---------------------------------------
1015 Node *RShiftLNode::Identity( PhaseTransform *phase ) {
1016   const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
1017   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
1018 }
1019 
1020 //------------------------------Value------------------------------------------
1021 // A RShiftLNode shifts its input2 right by input1 amount.
1022 const Type *RShiftLNode::Value( PhaseTransform *phase ) const {
1023   const Type *t1 = phase->type( in(1) );
1024   const Type *t2 = phase->type( in(2) );
1025   // Either input is TOP ==> the result is TOP
1026   if( t1 == Type::TOP ) return Type::TOP;
1027   if( t2 == Type::TOP ) return Type::TOP;
1028 
1029   // Left input is ZERO ==> the result is ZERO.
1030   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1031   // Shift by zero does nothing
1032   if( t2 == TypeInt::ZERO ) return t1;
1033 
1034   // Either input is BOTTOM ==> the result is BOTTOM
1035   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1036     return TypeLong::LONG;
1037 
1038   if (t2 == TypeInt::INT)
1039     return TypeLong::LONG;
1040 
1041   const TypeLong *r1 = t1->is_long(); // Handy access
1042   const TypeInt  *r2 = t2->is_int (); // Handy access
1043 
1044   // If the shift is a constant, just shift the bounds of the type.
1045   // For example, if the shift is 63, we just propagate sign bits.
1046   if (r2->is_con()) {
1047     uint shift = r2->get_con();
1048     shift &= (2*BitsPerJavaInteger)-1;  // semantics of Java shifts
1049     // Shift by a multiple of 64 does nothing:
1050     if (shift == 0)  return t1;
1051     // Calculate reasonably aggressive bounds for the result.
1052     // This is necessary if we are to correctly type things
1053     // like (x<<24>>24) == ((byte)x).
1054     jlong lo = (jlong)r1->_lo >> (jlong)shift;
1055     jlong hi = (jlong)r1->_hi >> (jlong)shift;
1056     assert(lo <= hi, "must have valid bounds");
1057     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1058     #ifdef ASSERT
1059     // Make sure we get the sign-capture idiom correct.
1060     if (shift == (2*BitsPerJavaInteger)-1) {
1061       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO,    ">>63 of + is 0");
1062       if (r1->_hi < 0)  assert(tl == TypeLong::MINUS_1, ">>63 of - is -1");
1063     }
1064     #endif
1065     return tl;
1066   }
1067 
1068   return TypeLong::LONG;                // Give up
1069 }
1070 
1071 //=============================================================================
1072 //------------------------------Identity---------------------------------------
1073 Node *URShiftINode::Identity( PhaseTransform *phase ) {
1074   const TypeInt *ti = phase->type( in(2) )->isa_int();
1075   if ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) return in(1);
1076 
1077   // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
1078   // Happens during new-array length computation.
1079   // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
1080   Node *add = in(1);
1081   if( add->Opcode() == Op_AddI ) {
1082     const TypeInt *t2  = phase->type(add->in(2))->isa_int();
1083     if( t2 && t2->is_con(wordSize - 1) &&
1084         add->in(1)->Opcode() == Op_LShiftI ) {
1085       // Check that shift_counts are LogBytesPerWord
1086       Node          *lshift_count   = add->in(1)->in(2);
1087       const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
1088       if( t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
1089           t_lshift_count == phase->type(in(2)) ) {
1090         Node          *x   = add->in(1)->in(1);
1091         const TypeInt *t_x = phase->type(x)->isa_int();
1092         if( t_x != NULL && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord) ) {
1093           return x;
1094         }
1095       }
1096     }
1097   }
1098 
1099   return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
1100 }
1101 
1102 //------------------------------Ideal------------------------------------------
1103 Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1104   const TypeInt *t2 = phase->type( in(2) )->isa_int();
1105   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
1106   const int con = t2->get_con() & 31; // Shift count is always masked
1107   if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
1108   // We'll be wanting the right-shift amount as a mask of that many bits
1109   const int mask = right_n_bits(BitsPerJavaInteger - con);
1110 
1111   int in1_op = in(1)->Opcode();
1112 
1113   // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
1114   if( in1_op == Op_URShiftI ) {
1115     const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
1116     if( t12 && t12->is_con() ) { // Right input is a constant
1117       assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
1118       const int con2 = t12->get_con() & 31; // Shift count is always masked
1119       const int con3 = con+con2;
1120       if( con3 < 32 )           // Only merge shifts if total is < 32
1121         return new (phase->C, 3) URShiftINode( in(1)->in(1), phase->intcon(con3) );
1122     }
1123   }
1124 
1125   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1126   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1127   // If Q is "X << z" the rounding is useless.  Look for patterns like
1128   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1129   Node *add = in(1);
1130   if( in1_op == Op_AddI ) {
1131     Node *lshl = add->in(1);
1132     if( lshl->Opcode() == Op_LShiftI &&
1133         phase->type(lshl->in(2)) == t2 ) {
1134       Node *y_z = phase->transform( new (phase->C, 3) URShiftINode(add->in(2),in(2)) );
1135       Node *sum = phase->transform( new (phase->C, 3) AddINode( lshl->in(1), y_z ) );
1136       return new (phase->C, 3) AndINode( sum, phase->intcon(mask) );
1137     }
1138   }
1139 
1140   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1141   // This shortens the mask.  Also, if we are extracting a high byte and
1142   // storing it to a buffer, the mask will be removed completely.
1143   Node *andi = in(1);
1144   if( in1_op == Op_AndI ) {
1145     const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
1146     if( t3 && t3->is_con() ) { // Right input is a constant
1147       jint mask2 = t3->get_con();
1148       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1149       Node *newshr = phase->transform( new (phase->C, 3) URShiftINode(andi->in(1), in(2)) );
1150       return new (phase->C, 3) AndINode(newshr, phase->intcon(mask2));
1151       // The negative values are easier to materialize than positive ones.
1152       // A typical case from address arithmetic is ((x & ~15) >> 4).
1153       // It's better to change that to ((x >> 4) & ~0) versus
1154       // ((x >> 4) & 0x0FFFFFFF).  The difference is greatest in LP64.
1155     }
1156   }
1157 
1158   // Check for "(X << z ) >>> z" which simply zero-extends
1159   Node *shl = in(1);
1160   if( in1_op == Op_LShiftI &&
1161       phase->type(shl->in(2)) == t2 )
1162     return new (phase->C, 3) AndINode( shl->in(1), phase->intcon(mask) );
1163 
1164   return NULL;
1165 }
1166 
1167 //------------------------------Value------------------------------------------
1168 // A URShiftINode shifts its input2 right by input1 amount.
1169 const Type *URShiftINode::Value( PhaseTransform *phase ) const {
1170   // (This is a near clone of RShiftINode::Value.)
1171   const Type *t1 = phase->type( in(1) );
1172   const Type *t2 = phase->type( in(2) );
1173   // Either input is TOP ==> the result is TOP
1174   if( t1 == Type::TOP ) return Type::TOP;
1175   if( t2 == Type::TOP ) return Type::TOP;
1176 
1177   // Left input is ZERO ==> the result is ZERO.
1178   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1179   // Shift by zero does nothing
1180   if( t2 == TypeInt::ZERO ) return t1;
1181 
1182   // Either input is BOTTOM ==> the result is BOTTOM
1183   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1184     return TypeInt::INT;
1185 
1186   if (t2 == TypeInt::INT)
1187     return TypeInt::INT;
1188 
1189   const TypeInt *r1 = t1->is_int();     // Handy access
1190   const TypeInt *r2 = t2->is_int();     // Handy access
1191 
1192   if (r2->is_con()) {
1193     uint shift = r2->get_con();
1194     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
1195     // Shift by a multiple of 32 does nothing:
1196     if (shift == 0)  return t1;
1197     // Calculate reasonably aggressive bounds for the result.
1198     jint lo = (juint)r1->_lo >> (juint)shift;
1199     jint hi = (juint)r1->_hi >> (juint)shift;
1200     if (r1->_hi >= 0 && r1->_lo < 0) {
1201       // If the type has both negative and positive values,
1202       // there are two separate sub-domains to worry about:
1203       // The positive half and the negative half.
1204       jint neg_lo = lo;
1205       jint neg_hi = (juint)-1 >> (juint)shift;
1206       jint pos_lo = (juint) 0 >> (juint)shift;
1207       jint pos_hi = hi;
1208       lo = MIN2(neg_lo, pos_lo);  // == 0
1209       hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1210     }
1211     assert(lo <= hi, "must have valid bounds");
1212     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1213     #ifdef ASSERT
1214     // Make sure we get the sign-capture idiom correct.
1215     if (shift == BitsPerJavaInteger-1) {
1216       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
1217       if (r1->_hi < 0)  assert(ti == TypeInt::ONE,  ">>>31 of - is +1");
1218     }
1219     #endif
1220     return ti;
1221   }
1222 
1223   //
1224   // Do not support shifted oops in info for GC
1225   //
1226   // else if( t1->base() == Type::InstPtr ) {
1227   //
1228   //   const TypeInstPtr *o = t1->is_instptr();
1229   //   if( t1->singleton() )
1230   //     return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift );
1231   // }
1232   // else if( t1->base() == Type::KlassPtr ) {
1233   //   const TypeKlassPtr *o = t1->is_klassptr();
1234   //   if( t1->singleton() )
1235   //     return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift );
1236   // }
1237 
1238   return TypeInt::INT;
1239 }
1240 
1241 //=============================================================================
1242 //------------------------------Identity---------------------------------------
1243 Node *URShiftLNode::Identity( PhaseTransform *phase ) {
1244   const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
1245   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
1246 }
1247 
1248 //------------------------------Ideal------------------------------------------
1249 Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1250   const TypeInt *t2 = phase->type( in(2) )->isa_int();
1251   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
1252   const int con = t2->get_con() & ( BitsPerLong - 1 ); // Shift count is always masked
1253   if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
1254                               // note: mask computation below does not work for 0 shift count
1255   // We'll be wanting the right-shift amount as a mask of that many bits
1256   const jlong mask = (((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - con)) -1);
1257 
1258   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1259   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1260   // If Q is "X << z" the rounding is useless.  Look for patterns like
1261   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1262   Node *add = in(1);
1263   if( add->Opcode() == Op_AddL ) {
1264     Node *lshl = add->in(1);
1265     if( lshl->Opcode() == Op_LShiftL &&
1266         phase->type(lshl->in(2)) == t2 ) {
1267       Node *y_z = phase->transform( new (phase->C, 3) URShiftLNode(add->in(2),in(2)) );
1268       Node *sum = phase->transform( new (phase->C, 3) AddLNode( lshl->in(1), y_z ) );
1269       return new (phase->C, 3) AndLNode( sum, phase->longcon(mask) );
1270     }
1271   }
1272 
1273   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1274   // This shortens the mask.  Also, if we are extracting a high byte and
1275   // storing it to a buffer, the mask will be removed completely.
1276   Node *andi = in(1);
1277   if( andi->Opcode() == Op_AndL ) {
1278     const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
1279     if( t3 && t3->is_con() ) { // Right input is a constant
1280       jlong mask2 = t3->get_con();
1281       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1282       Node *newshr = phase->transform( new (phase->C, 3) URShiftLNode(andi->in(1), in(2)) );
1283       return new (phase->C, 3) AndLNode(newshr, phase->longcon(mask2));
1284     }
1285   }
1286 
1287   // Check for "(X << z ) >>> z" which simply zero-extends
1288   Node *shl = in(1);
1289   if( shl->Opcode() == Op_LShiftL &&
1290       phase->type(shl->in(2)) == t2 )
1291     return new (phase->C, 3) AndLNode( shl->in(1), phase->longcon(mask) );
1292 
1293   return NULL;
1294 }
1295 
1296 //------------------------------Value------------------------------------------
1297 // A URShiftINode shifts its input2 right by input1 amount.
1298 const Type *URShiftLNode::Value( PhaseTransform *phase ) const {
1299   // (This is a near clone of RShiftLNode::Value.)
1300   const Type *t1 = phase->type( in(1) );
1301   const Type *t2 = phase->type( in(2) );
1302   // Either input is TOP ==> the result is TOP
1303   if( t1 == Type::TOP ) return Type::TOP;
1304   if( t2 == Type::TOP ) return Type::TOP;
1305 
1306   // Left input is ZERO ==> the result is ZERO.
1307   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1308   // Shift by zero does nothing
1309   if( t2 == TypeInt::ZERO ) return t1;
1310 
1311   // Either input is BOTTOM ==> the result is BOTTOM
1312   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1313     return TypeLong::LONG;
1314 
1315   if (t2 == TypeInt::INT)
1316     return TypeLong::LONG;
1317 
1318   const TypeLong *r1 = t1->is_long(); // Handy access
1319   const TypeInt  *r2 = t2->is_int (); // Handy access
1320 
1321   if (r2->is_con()) {
1322     uint shift = r2->get_con();
1323     shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
1324     // Shift by a multiple of 64 does nothing:
1325     if (shift == 0)  return t1;
1326     // Calculate reasonably aggressive bounds for the result.
1327     jlong lo = (julong)r1->_lo >> (juint)shift;
1328     jlong hi = (julong)r1->_hi >> (juint)shift;
1329     if (r1->_hi >= 0 && r1->_lo < 0) {
1330       // If the type has both negative and positive values,
1331       // there are two separate sub-domains to worry about:
1332       // The positive half and the negative half.
1333       jlong neg_lo = lo;
1334       jlong neg_hi = (julong)-1 >> (juint)shift;
1335       jlong pos_lo = (julong) 0 >> (juint)shift;
1336       jlong pos_hi = hi;
1337       //lo = MIN2(neg_lo, pos_lo);  // == 0
1338       lo = neg_lo < pos_lo ? neg_lo : pos_lo;
1339       //hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1340       hi = neg_hi > pos_hi ? neg_hi : pos_hi;
1341     }
1342     assert(lo <= hi, "must have valid bounds");
1343     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1344     #ifdef ASSERT
1345     // Make sure we get the sign-capture idiom correct.
1346     if (shift == BitsPerJavaLong - 1) {
1347       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
1348       if (r1->_hi < 0)  assert(tl == TypeLong::ONE,  ">>>63 of - is +1");
1349     }
1350     #endif
1351     return tl;
1352   }
1353 
1354   return TypeLong::LONG;                // Give up
1355 }