1 /*
   2  * Copyright 2003-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_sharedRuntime_sparc.cpp.incl"
  27 
  28 #define __ masm->
  29 
  30 #ifdef COMPILER2
  31 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  32 #endif // COMPILER2
  33 
  34 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  35 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  36 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  37 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  38 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  39 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  40 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  41 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  42 
  43 class RegisterSaver {
  44 
  45   // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
  46   // The Oregs are problematic. In the 32bit build the compiler can
  47   // have O registers live with 64 bit quantities. A window save will
  48   // cut the heads off of the registers. We have to do a very extensive
  49   // stack dance to save and restore these properly.
  50 
  51   // Note that the Oregs problem only exists if we block at either a polling
  52   // page exception a compiled code safepoint that was not originally a call
  53   // or deoptimize following one of these kinds of safepoints.
  54 
  55   // Lots of registers to save.  For all builds, a window save will preserve
  56   // the %i and %l registers.  For the 32-bit longs-in-two entries and 64-bit
  57   // builds a window-save will preserve the %o registers.  In the LION build
  58   // we need to save the 64-bit %o registers which requires we save them
  59   // before the window-save (as then they become %i registers and get their
  60   // heads chopped off on interrupt).  We have to save some %g registers here
  61   // as well.
  62   enum {
  63     // This frame's save area.  Includes extra space for the native call:
  64     // vararg's layout space and the like.  Briefly holds the caller's
  65     // register save area.
  66     call_args_area = frame::register_save_words_sp_offset +
  67                      frame::memory_parameter_word_sp_offset*wordSize,
  68     // Make sure save locations are always 8 byte aligned.
  69     // can't use round_to because it doesn't produce compile time constant
  70     start_of_extra_save_area = ((call_args_area + 7) & ~7),
  71     g1_offset = start_of_extra_save_area, // g-regs needing saving
  72     g3_offset = g1_offset+8,
  73     g4_offset = g3_offset+8,
  74     g5_offset = g4_offset+8,
  75     o0_offset = g5_offset+8,
  76     o1_offset = o0_offset+8,
  77     o2_offset = o1_offset+8,
  78     o3_offset = o2_offset+8,
  79     o4_offset = o3_offset+8,
  80     o5_offset = o4_offset+8,
  81     start_of_flags_save_area = o5_offset+8,
  82     ccr_offset = start_of_flags_save_area,
  83     fsr_offset = ccr_offset + 8,
  84     d00_offset = fsr_offset+8,  // Start of float save area
  85     register_save_size = d00_offset+8*32
  86   };
  87 
  88 
  89   public:
  90 
  91   static int Oexception_offset() { return o0_offset; };
  92   static int G3_offset() { return g3_offset; };
  93   static int G5_offset() { return g5_offset; };
  94   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
  95   static void restore_live_registers(MacroAssembler* masm);
  96 
  97   // During deoptimization only the result register need to be restored
  98   // all the other values have already been extracted.
  99 
 100   static void restore_result_registers(MacroAssembler* masm);
 101 };
 102 
 103 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
 104   // Record volatile registers as callee-save values in an OopMap so their save locations will be
 105   // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
 106   // deoptimization; see compiledVFrame::create_stack_value).  The caller's I, L and O registers
 107   // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
 108   // (as the stub's I's) when the runtime routine called by the stub creates its frame.
 109   int i;
 110   // Always make the frame size 16 bytr aligned.
 111   int frame_size = round_to(additional_frame_words + register_save_size, 16);
 112   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
 113   int frame_size_in_slots = frame_size / sizeof(jint);
 114   // CodeBlob frame size is in words.
 115   *total_frame_words = frame_size / wordSize;
 116   // OopMap* map = new OopMap(*total_frame_words, 0);
 117   OopMap* map = new OopMap(frame_size_in_slots, 0);
 118 
 119 #if !defined(_LP64)
 120 
 121   // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
 122   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
 123   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
 124   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
 125   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
 126   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
 127   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
 128 #endif /* _LP64 */
 129 
 130   __ save(SP, -frame_size, SP);
 131 
 132 #ifndef _LP64
 133   // Reload the 64 bit Oregs. Although they are now Iregs we load them
 134   // to Oregs here to avoid interrupts cutting off their heads
 135 
 136   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
 137   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
 138   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
 139   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
 140   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
 141   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
 142 
 143   __ stx(O0, SP, o0_offset+STACK_BIAS);
 144   map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
 145 
 146   __ stx(O1, SP, o1_offset+STACK_BIAS);
 147 
 148   map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
 149 
 150   __ stx(O2, SP, o2_offset+STACK_BIAS);
 151   map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
 152 
 153   __ stx(O3, SP, o3_offset+STACK_BIAS);
 154   map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
 155 
 156   __ stx(O4, SP, o4_offset+STACK_BIAS);
 157   map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
 158 
 159   __ stx(O5, SP, o5_offset+STACK_BIAS);
 160   map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
 161 #endif /* _LP64 */
 162 
 163 
 164 #ifdef _LP64
 165   int debug_offset = 0;
 166 #else
 167   int debug_offset = 4;
 168 #endif
 169   // Save the G's
 170   __ stx(G1, SP, g1_offset+STACK_BIAS);
 171   map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
 172 
 173   __ stx(G3, SP, g3_offset+STACK_BIAS);
 174   map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
 175 
 176   __ stx(G4, SP, g4_offset+STACK_BIAS);
 177   map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
 178 
 179   __ stx(G5, SP, g5_offset+STACK_BIAS);
 180   map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
 181 
 182   // This is really a waste but we'll keep things as they were for now
 183   if (true) {
 184 #ifndef _LP64
 185     map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
 186     map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
 187     map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
 188     map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
 189     map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
 190     map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
 191     map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
 192     map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
 193     map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
 194     map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
 195 #endif /* _LP64 */
 196   }
 197 
 198 
 199   // Save the flags
 200   __ rdccr( G5 );
 201   __ stx(G5, SP, ccr_offset+STACK_BIAS);
 202   __ stxfsr(SP, fsr_offset+STACK_BIAS);
 203 
 204   // Save all the FP registers
 205   int offset = d00_offset;
 206   for( int i=0; i<64; i+=2 ) {
 207     FloatRegister f = as_FloatRegister(i);
 208     __ stf(FloatRegisterImpl::D,  f, SP, offset+STACK_BIAS);
 209     map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
 210     if (true) {
 211       map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
 212     }
 213     offset += sizeof(double);
 214   }
 215 
 216   // And we're done.
 217 
 218   return map;
 219 }
 220 
 221 
 222 // Pop the current frame and restore all the registers that we
 223 // saved.
 224 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 225 
 226   // Restore all the FP registers
 227   for( int i=0; i<64; i+=2 ) {
 228     __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
 229   }
 230 
 231   __ ldx(SP, ccr_offset+STACK_BIAS, G1);
 232   __ wrccr (G1) ;
 233 
 234   // Restore the G's
 235   // Note that G2 (AKA GThread) must be saved and restored separately.
 236   // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
 237 
 238   __ ldx(SP, g1_offset+STACK_BIAS, G1);
 239   __ ldx(SP, g3_offset+STACK_BIAS, G3);
 240   __ ldx(SP, g4_offset+STACK_BIAS, G4);
 241   __ ldx(SP, g5_offset+STACK_BIAS, G5);
 242 
 243 
 244 #if !defined(_LP64)
 245   // Restore the 64-bit O's.
 246   __ ldx(SP, o0_offset+STACK_BIAS, O0);
 247   __ ldx(SP, o1_offset+STACK_BIAS, O1);
 248   __ ldx(SP, o2_offset+STACK_BIAS, O2);
 249   __ ldx(SP, o3_offset+STACK_BIAS, O3);
 250   __ ldx(SP, o4_offset+STACK_BIAS, O4);
 251   __ ldx(SP, o5_offset+STACK_BIAS, O5);
 252 
 253   // And temporarily place them in TLS
 254 
 255   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
 256   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
 257   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
 258   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
 259   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
 260   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
 261 #endif /* _LP64 */
 262 
 263   // Restore flags
 264 
 265   __ ldxfsr(SP, fsr_offset+STACK_BIAS);
 266 
 267   __ restore();
 268 
 269 #if !defined(_LP64)
 270   // Now reload the 64bit Oregs after we've restore the window.
 271   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
 272   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
 273   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
 274   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
 275   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
 276   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
 277 #endif /* _LP64 */
 278 
 279 }
 280 
 281 // Pop the current frame and restore the registers that might be holding
 282 // a result.
 283 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 284 
 285 #if !defined(_LP64)
 286   // 32bit build returns longs in G1
 287   __ ldx(SP, g1_offset+STACK_BIAS, G1);
 288 
 289   // Retrieve the 64-bit O's.
 290   __ ldx(SP, o0_offset+STACK_BIAS, O0);
 291   __ ldx(SP, o1_offset+STACK_BIAS, O1);
 292   // and save to TLS
 293   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
 294   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
 295 #endif /* _LP64 */
 296 
 297   __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
 298 
 299   __ restore();
 300 
 301 #if !defined(_LP64)
 302   // Now reload the 64bit Oregs after we've restore the window.
 303   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
 304   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
 305 #endif /* _LP64 */
 306 
 307 }
 308 
 309 // The java_calling_convention describes stack locations as ideal slots on
 310 // a frame with no abi restrictions. Since we must observe abi restrictions
 311 // (like the placement of the register window) the slots must be biased by
 312 // the following value.
 313 static int reg2offset(VMReg r) {
 314   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 315 }
 316 
 317 // ---------------------------------------------------------------------------
 318 // Read the array of BasicTypes from a signature, and compute where the
 319 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
 320 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 321 // refer to 4-byte stack slots.  All stack slots are based off of the window
 322 // top.  VMRegImpl::stack0 refers to the first slot past the 16-word window,
 323 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 324 // values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
 325 // integer registers.  Values 64-95 are the (32-bit only) float registers.
 326 // Each 32-bit quantity is given its own number, so the integer registers
 327 // (in either 32- or 64-bit builds) use 2 numbers.  For example, there is
 328 // an O0-low and an O0-high.  Essentially, all int register numbers are doubled.
 329 
 330 // Register results are passed in O0-O5, for outgoing call arguments.  To
 331 // convert to incoming arguments, convert all O's to I's.  The regs array
 332 // refer to the low and hi 32-bit words of 64-bit registers or stack slots.
 333 // If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
 334 // 32-bit value was passed).  If both are VMRegImpl::Bad(), it means no value was
 335 // passed (used as a placeholder for the other half of longs and doubles in
 336 // the 64-bit build).  regs[].second() is either VMRegImpl::Bad() or regs[].second() is
 337 // regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
 338 // Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
 339 // == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
 340 // same VMRegPair.
 341 
 342 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 343 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 344 // units regardless of build.
 345 
 346 
 347 // ---------------------------------------------------------------------------
 348 // The compiled Java calling convention.  The Java convention always passes
 349 // 64-bit values in adjacent aligned locations (either registers or stack),
 350 // floats in float registers and doubles in aligned float pairs.  Values are
 351 // packed in the registers.  There is no backing varargs store for values in
 352 // registers.  In the 32-bit build, longs are passed in G1 and G4 (cannot be
 353 // passed in I's, because longs in I's get their heads chopped off at
 354 // interrupt).
 355 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 356                                            VMRegPair *regs,
 357                                            int total_args_passed,
 358                                            int is_outgoing) {
 359   assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
 360 
 361   // Convention is to pack the first 6 int/oop args into the first 6 registers
 362   // (I0-I5), extras spill to the stack.  Then pack the first 8 float args
 363   // into F0-F7, extras spill to the stack.  Then pad all register sets to
 364   // align.  Then put longs and doubles into the same registers as they fit,
 365   // else spill to the stack.
 366   const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
 367   const int flt_reg_max = 8;
 368   //
 369   // Where 32-bit 1-reg longs start being passed
 370   // In tiered we must pass on stack because c1 can't use a "pair" in a single reg.
 371   // So make it look like we've filled all the G regs that c2 wants to use.
 372   Register g_reg = TieredCompilation ? noreg : G1;
 373 
 374   // Count int/oop and float args.  See how many stack slots we'll need and
 375   // where the longs & doubles will go.
 376   int int_reg_cnt   = 0;
 377   int flt_reg_cnt   = 0;
 378   // int stk_reg_pairs = frame::register_save_words*(wordSize>>2);
 379   // int stk_reg_pairs = SharedRuntime::out_preserve_stack_slots();
 380   int stk_reg_pairs = 0;
 381   for (int i = 0; i < total_args_passed; i++) {
 382     switch (sig_bt[i]) {
 383     case T_LONG:                // LP64, longs compete with int args
 384       assert(sig_bt[i+1] == T_VOID, "");
 385 #ifdef _LP64
 386       if (int_reg_cnt < int_reg_max) int_reg_cnt++;
 387 #endif
 388       break;
 389     case T_OBJECT:
 390     case T_ARRAY:
 391     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
 392       if (int_reg_cnt < int_reg_max) int_reg_cnt++;
 393 #ifndef _LP64
 394       else                            stk_reg_pairs++;
 395 #endif
 396       break;
 397     case T_INT:
 398     case T_SHORT:
 399     case T_CHAR:
 400     case T_BYTE:
 401     case T_BOOLEAN:
 402       if (int_reg_cnt < int_reg_max) int_reg_cnt++;
 403       else                            stk_reg_pairs++;
 404       break;
 405     case T_FLOAT:
 406       if (flt_reg_cnt < flt_reg_max) flt_reg_cnt++;
 407       else                            stk_reg_pairs++;
 408       break;
 409     case T_DOUBLE:
 410       assert(sig_bt[i+1] == T_VOID, "");
 411       break;
 412     case T_VOID:
 413       break;
 414     default:
 415       ShouldNotReachHere();
 416     }
 417   }
 418 
 419   // This is where the longs/doubles start on the stack.
 420   stk_reg_pairs = (stk_reg_pairs+1) & ~1; // Round
 421 
 422   int int_reg_pairs = (int_reg_cnt+1) & ~1; // 32-bit 2-reg longs only
 423   int flt_reg_pairs = (flt_reg_cnt+1) & ~1;
 424 
 425   // int stk_reg = frame::register_save_words*(wordSize>>2);
 426   // int stk_reg = SharedRuntime::out_preserve_stack_slots();
 427   int stk_reg = 0;
 428   int int_reg = 0;
 429   int flt_reg = 0;
 430 
 431   // Now do the signature layout
 432   for (int i = 0; i < total_args_passed; i++) {
 433     switch (sig_bt[i]) {
 434     case T_INT:
 435     case T_SHORT:
 436     case T_CHAR:
 437     case T_BYTE:
 438     case T_BOOLEAN:
 439 #ifndef _LP64
 440     case T_OBJECT:
 441     case T_ARRAY:
 442     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
 443 #endif // _LP64
 444       if (int_reg < int_reg_max) {
 445         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
 446         regs[i].set1(r->as_VMReg());
 447       } else {
 448         regs[i].set1(VMRegImpl::stack2reg(stk_reg++));
 449       }
 450       break;
 451 
 452 #ifdef _LP64
 453     case T_OBJECT:
 454     case T_ARRAY:
 455     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
 456       if (int_reg < int_reg_max) {
 457         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
 458         regs[i].set2(r->as_VMReg());
 459       } else {
 460         regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
 461         stk_reg_pairs += 2;
 462       }
 463       break;
 464 #endif // _LP64
 465 
 466     case T_LONG:
 467       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
 468 #ifdef _LP64
 469         if (int_reg < int_reg_max) {
 470           Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
 471           regs[i].set2(r->as_VMReg());
 472         } else {
 473           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
 474           stk_reg_pairs += 2;
 475         }
 476 #else
 477 #ifdef COMPILER2
 478         // For 32-bit build, can't pass longs in O-regs because they become
 479         // I-regs and get trashed.  Use G-regs instead.  G1 and G4 are almost
 480         // spare and available.  This convention isn't used by the Sparc ABI or
 481         // anywhere else. If we're tiered then we don't use G-regs because c1
 482         // can't deal with them as a "pair". (Tiered makes this code think g's are filled)
 483         // G0: zero
 484         // G1: 1st Long arg
 485         // G2: global allocated to TLS
 486         // G3: used in inline cache check
 487         // G4: 2nd Long arg
 488         // G5: used in inline cache check
 489         // G6: used by OS
 490         // G7: used by OS
 491 
 492         if (g_reg == G1) {
 493           regs[i].set2(G1->as_VMReg()); // This long arg in G1
 494           g_reg = G4;                  // Where the next arg goes
 495         } else if (g_reg == G4) {
 496           regs[i].set2(G4->as_VMReg()); // The 2nd long arg in G4
 497           g_reg = noreg;               // No more longs in registers
 498         } else {
 499           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
 500           stk_reg_pairs += 2;
 501         }
 502 #else // COMPILER2
 503         if (int_reg_pairs + 1 < int_reg_max) {
 504           if (is_outgoing) {
 505             regs[i].set_pair(as_oRegister(int_reg_pairs + 1)->as_VMReg(), as_oRegister(int_reg_pairs)->as_VMReg());
 506           } else {
 507             regs[i].set_pair(as_iRegister(int_reg_pairs + 1)->as_VMReg(), as_iRegister(int_reg_pairs)->as_VMReg());
 508           }
 509           int_reg_pairs += 2;
 510         } else {
 511           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
 512           stk_reg_pairs += 2;
 513         }
 514 #endif // COMPILER2
 515 #endif // _LP64
 516       break;
 517 
 518     case T_FLOAT:
 519       if (flt_reg < flt_reg_max) regs[i].set1(as_FloatRegister(flt_reg++)->as_VMReg());
 520       else                       regs[i].set1(    VMRegImpl::stack2reg(stk_reg++));
 521       break;
 522     case T_DOUBLE:
 523       assert(sig_bt[i+1] == T_VOID, "expecting half");
 524       if (flt_reg_pairs + 1 < flt_reg_max) {
 525         regs[i].set2(as_FloatRegister(flt_reg_pairs)->as_VMReg());
 526         flt_reg_pairs += 2;
 527       } else {
 528         regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
 529         stk_reg_pairs += 2;
 530       }
 531       break;
 532     case T_VOID: regs[i].set_bad();  break; // Halves of longs & doubles
 533     default:
 534       ShouldNotReachHere();
 535     }
 536   }
 537 
 538   // retun the amount of stack space these arguments will need.
 539   return stk_reg_pairs;
 540 
 541 }
 542 
 543 // Helper class mostly to avoid passing masm everywhere, and handle store
 544 // displacement overflow logic for LP64
 545 class AdapterGenerator {
 546   MacroAssembler *masm;
 547 #ifdef _LP64
 548   Register Rdisp;
 549   void set_Rdisp(Register r)  { Rdisp = r; }
 550 #endif // _LP64
 551 
 552   void patch_callers_callsite();
 553   void tag_c2i_arg(frame::Tag t, Register base, int st_off, Register scratch);
 554 
 555   // base+st_off points to top of argument
 556   int arg_offset(const int st_off) { return st_off + Interpreter::value_offset_in_bytes(); }
 557   int next_arg_offset(const int st_off) {
 558     return st_off - Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
 559   }
 560 
 561 #ifdef _LP64
 562   // On _LP64 argument slot values are loaded first into a register
 563   // because they might not fit into displacement.
 564   Register arg_slot(const int st_off);
 565   Register next_arg_slot(const int st_off);
 566 #else
 567   int arg_slot(const int st_off)      { return arg_offset(st_off); }
 568   int next_arg_slot(const int st_off) { return next_arg_offset(st_off); }
 569 #endif // _LP64
 570 
 571   // Stores long into offset pointed to by base
 572   void store_c2i_long(Register r, Register base,
 573                       const int st_off, bool is_stack);
 574   void store_c2i_object(Register r, Register base,
 575                         const int st_off);
 576   void store_c2i_int(Register r, Register base,
 577                      const int st_off);
 578   void store_c2i_double(VMReg r_2,
 579                         VMReg r_1, Register base, const int st_off);
 580   void store_c2i_float(FloatRegister f, Register base,
 581                        const int st_off);
 582 
 583  public:
 584   void gen_c2i_adapter(int total_args_passed,
 585                               // VMReg max_arg,
 586                               int comp_args_on_stack, // VMRegStackSlots
 587                               const BasicType *sig_bt,
 588                               const VMRegPair *regs,
 589                               Label& skip_fixup);
 590   void gen_i2c_adapter(int total_args_passed,
 591                               // VMReg max_arg,
 592                               int comp_args_on_stack, // VMRegStackSlots
 593                               const BasicType *sig_bt,
 594                               const VMRegPair *regs);
 595 
 596   AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
 597 };
 598 
 599 
 600 // Patch the callers callsite with entry to compiled code if it exists.
 601 void AdapterGenerator::patch_callers_callsite() {
 602   Label L;
 603   __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
 604   __ br_null(G3_scratch, false, __ pt, L);
 605   // Schedule the branch target address early.
 606   __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
 607   // Call into the VM to patch the caller, then jump to compiled callee
 608   __ save_frame(4);     // Args in compiled layout; do not blow them
 609 
 610   // Must save all the live Gregs the list is:
 611   // G1: 1st Long arg (32bit build)
 612   // G2: global allocated to TLS
 613   // G3: used in inline cache check (scratch)
 614   // G4: 2nd Long arg (32bit build);
 615   // G5: used in inline cache check (methodOop)
 616 
 617   // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
 618 
 619 #ifdef _LP64
 620   // mov(s,d)
 621   __ mov(G1, L1);
 622   __ mov(G4, L4);
 623   __ mov(G5_method, L5);
 624   __ mov(G5_method, O0);         // VM needs target method
 625   __ mov(I7, O1);                // VM needs caller's callsite
 626   // Must be a leaf call...
 627   // can be very far once the blob has been relocated
 628   AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
 629   __ relocate(relocInfo::runtime_call_type);
 630   __ jumpl_to(dest, O7, O7);
 631   __ delayed()->mov(G2_thread, L7_thread_cache);
 632   __ mov(L7_thread_cache, G2_thread);
 633   __ mov(L1, G1);
 634   __ mov(L4, G4);
 635   __ mov(L5, G5_method);
 636 #else
 637   __ stx(G1, FP, -8 + STACK_BIAS);
 638   __ stx(G4, FP, -16 + STACK_BIAS);
 639   __ mov(G5_method, L5);
 640   __ mov(G5_method, O0);         // VM needs target method
 641   __ mov(I7, O1);                // VM needs caller's callsite
 642   // Must be a leaf call...
 643   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
 644   __ delayed()->mov(G2_thread, L7_thread_cache);
 645   __ mov(L7_thread_cache, G2_thread);
 646   __ ldx(FP, -8 + STACK_BIAS, G1);
 647   __ ldx(FP, -16 + STACK_BIAS, G4);
 648   __ mov(L5, G5_method);
 649   __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
 650 #endif /* _LP64 */
 651 
 652   __ restore();      // Restore args
 653   __ bind(L);
 654 }
 655 
 656 void AdapterGenerator::tag_c2i_arg(frame::Tag t, Register base, int st_off,
 657                  Register scratch) {
 658   if (TaggedStackInterpreter) {
 659     int tag_off = st_off + Interpreter::tag_offset_in_bytes();
 660 #ifdef _LP64
 661     Register tag_slot = Rdisp;
 662     __ set(tag_off, tag_slot);
 663 #else
 664     int tag_slot = tag_off;
 665 #endif // _LP64
 666     // have to store zero because local slots can be reused (rats!)
 667     if (t == frame::TagValue) {
 668       __ st_ptr(G0, base, tag_slot);
 669     } else if (t == frame::TagCategory2) {
 670       __ st_ptr(G0, base, tag_slot);
 671       int next_tag_off  = st_off - Interpreter::stackElementSize() +
 672                                    Interpreter::tag_offset_in_bytes();
 673 #ifdef _LP64
 674       __ set(next_tag_off, tag_slot);
 675 #else
 676       tag_slot = next_tag_off;
 677 #endif // _LP64
 678       __ st_ptr(G0, base, tag_slot);
 679     } else {
 680       __ mov(t, scratch);
 681       __ st_ptr(scratch, base, tag_slot);
 682     }
 683   }
 684 }
 685 
 686 #ifdef _LP64
 687 Register AdapterGenerator::arg_slot(const int st_off) {
 688   __ set( arg_offset(st_off), Rdisp);
 689   return Rdisp;
 690 }
 691 
 692 Register AdapterGenerator::next_arg_slot(const int st_off){
 693   __ set( next_arg_offset(st_off), Rdisp);
 694   return Rdisp;
 695 }
 696 #endif // _LP64
 697 
 698 // Stores long into offset pointed to by base
 699 void AdapterGenerator::store_c2i_long(Register r, Register base,
 700                                       const int st_off, bool is_stack) {
 701 #ifdef _LP64
 702   // In V9, longs are given 2 64-bit slots in the interpreter, but the
 703   // data is passed in only 1 slot.
 704   __ stx(r, base, next_arg_slot(st_off));
 705 #else
 706 #ifdef COMPILER2
 707   // Misaligned store of 64-bit data
 708   __ stw(r, base, arg_slot(st_off));    // lo bits
 709   __ srlx(r, 32, r);
 710   __ stw(r, base, next_arg_slot(st_off));  // hi bits
 711 #else
 712   if (is_stack) {
 713     // Misaligned store of 64-bit data
 714     __ stw(r, base, arg_slot(st_off));    // lo bits
 715     __ srlx(r, 32, r);
 716     __ stw(r, base, next_arg_slot(st_off));  // hi bits
 717   } else {
 718     __ stw(r->successor(), base, arg_slot(st_off)     ); // lo bits
 719     __ stw(r             , base, next_arg_slot(st_off)); // hi bits
 720   }
 721 #endif // COMPILER2
 722 #endif // _LP64
 723   tag_c2i_arg(frame::TagCategory2, base, st_off, r);
 724 }
 725 
 726 void AdapterGenerator::store_c2i_object(Register r, Register base,
 727                       const int st_off) {
 728   __ st_ptr (r, base, arg_slot(st_off));
 729   tag_c2i_arg(frame::TagReference, base, st_off, r);
 730 }
 731 
 732 void AdapterGenerator::store_c2i_int(Register r, Register base,
 733                    const int st_off) {
 734   __ st (r, base, arg_slot(st_off));
 735   tag_c2i_arg(frame::TagValue, base, st_off, r);
 736 }
 737 
 738 // Stores into offset pointed to by base
 739 void AdapterGenerator::store_c2i_double(VMReg r_2,
 740                       VMReg r_1, Register base, const int st_off) {
 741 #ifdef _LP64
 742   // In V9, doubles are given 2 64-bit slots in the interpreter, but the
 743   // data is passed in only 1 slot.
 744   __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
 745 #else
 746   // Need to marshal 64-bit value from misaligned Lesp loads
 747   __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
 748   __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
 749 #endif
 750   tag_c2i_arg(frame::TagCategory2, base, st_off, G1_scratch);
 751 }
 752 
 753 void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
 754                                        const int st_off) {
 755   __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
 756   tag_c2i_arg(frame::TagValue, base, st_off, G1_scratch);
 757 }
 758 
 759 void AdapterGenerator::gen_c2i_adapter(
 760                             int total_args_passed,
 761                             // VMReg max_arg,
 762                             int comp_args_on_stack, // VMRegStackSlots
 763                             const BasicType *sig_bt,
 764                             const VMRegPair *regs,
 765                             Label& skip_fixup) {
 766 
 767   // Before we get into the guts of the C2I adapter, see if we should be here
 768   // at all.  We've come from compiled code and are attempting to jump to the
 769   // interpreter, which means the caller made a static call to get here
 770   // (vcalls always get a compiled target if there is one).  Check for a
 771   // compiled target.  If there is one, we need to patch the caller's call.
 772   // However we will run interpreted if we come thru here. The next pass
 773   // thru the call site will run compiled. If we ran compiled here then
 774   // we can (theorectically) do endless i2c->c2i->i2c transitions during
 775   // deopt/uncommon trap cycles. If we always go interpreted here then
 776   // we can have at most one and don't need to play any tricks to keep
 777   // from endlessly growing the stack.
 778   //
 779   // Actually if we detected that we had an i2c->c2i transition here we
 780   // ought to be able to reset the world back to the state of the interpreted
 781   // call and not bother building another interpreter arg area. We don't
 782   // do that at this point.
 783 
 784   patch_callers_callsite();
 785 
 786   __ bind(skip_fixup);
 787 
 788   // Since all args are passed on the stack, total_args_passed*wordSize is the
 789   // space we need.  Add in varargs area needed by the interpreter. Round up
 790   // to stack alignment.
 791   const int arg_size = total_args_passed * Interpreter::stackElementSize();
 792   const int varargs_area =
 793                  (frame::varargs_offset - frame::register_save_words)*wordSize;
 794   const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
 795 
 796   int bias = STACK_BIAS;
 797   const int interp_arg_offset = frame::varargs_offset*wordSize +
 798                         (total_args_passed-1)*Interpreter::stackElementSize();
 799 
 800   Register base = SP;
 801 
 802 #ifdef _LP64
 803   // In the 64bit build because of wider slots and STACKBIAS we can run
 804   // out of bits in the displacement to do loads and stores.  Use g3 as
 805   // temporary displacement.
 806   if (! __ is_simm13(extraspace)) {
 807     __ set(extraspace, G3_scratch);
 808     __ sub(SP, G3_scratch, SP);
 809   } else {
 810     __ sub(SP, extraspace, SP);
 811   }
 812   set_Rdisp(G3_scratch);
 813 #else
 814   __ sub(SP, extraspace, SP);
 815 #endif // _LP64
 816 
 817   // First write G1 (if used) to where ever it must go
 818   for (int i=0; i<total_args_passed; i++) {
 819     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize()) + bias;
 820     VMReg r_1 = regs[i].first();
 821     VMReg r_2 = regs[i].second();
 822     if (r_1 == G1_scratch->as_VMReg()) {
 823       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
 824         store_c2i_object(G1_scratch, base, st_off);
 825       } else if (sig_bt[i] == T_LONG) {
 826         assert(!TieredCompilation, "should not use register args for longs");
 827         store_c2i_long(G1_scratch, base, st_off, false);
 828       } else {
 829         store_c2i_int(G1_scratch, base, st_off);
 830       }
 831     }
 832   }
 833 
 834   // Now write the args into the outgoing interpreter space
 835   for (int i=0; i<total_args_passed; i++) {
 836     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize()) + bias;
 837     VMReg r_1 = regs[i].first();
 838     VMReg r_2 = regs[i].second();
 839     if (!r_1->is_valid()) {
 840       assert(!r_2->is_valid(), "");
 841       continue;
 842     }
 843     // Skip G1 if found as we did it first in order to free it up
 844     if (r_1 == G1_scratch->as_VMReg()) {
 845       continue;
 846     }
 847 #ifdef ASSERT
 848     bool G1_forced = false;
 849 #endif // ASSERT
 850     if (r_1->is_stack()) {        // Pretend stack targets are loaded into G1
 851 #ifdef _LP64
 852       Register ld_off = Rdisp;
 853       __ set(reg2offset(r_1) + extraspace + bias, ld_off);
 854 #else
 855       int ld_off = reg2offset(r_1) + extraspace + bias;
 856 #ifdef ASSERT
 857       G1_forced = true;
 858 #endif // ASSERT
 859 #endif // _LP64
 860       r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
 861       if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
 862       else                  __ ldx(base, ld_off, G1_scratch);
 863     }
 864 
 865     if (r_1->is_Register()) {
 866       Register r = r_1->as_Register()->after_restore();
 867       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
 868         store_c2i_object(r, base, st_off);
 869       } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 870         if (TieredCompilation) {
 871           assert(G1_forced || sig_bt[i] != T_LONG, "should not use register args for longs");
 872         }
 873         store_c2i_long(r, base, st_off, r_2->is_stack());
 874       } else {
 875         store_c2i_int(r, base, st_off);
 876       }
 877     } else {
 878       assert(r_1->is_FloatRegister(), "");
 879       if (sig_bt[i] == T_FLOAT) {
 880         store_c2i_float(r_1->as_FloatRegister(), base, st_off);
 881       } else {
 882         assert(sig_bt[i] == T_DOUBLE, "wrong type");
 883         store_c2i_double(r_2, r_1, base, st_off);
 884       }
 885     }
 886   }
 887 
 888 #ifdef _LP64
 889   // Need to reload G3_scratch, used for temporary displacements.
 890   __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
 891 
 892   // Pass O5_savedSP as an argument to the interpreter.
 893   // The interpreter will restore SP to this value before returning.
 894   __ set(extraspace, G1);
 895   __ add(SP, G1, O5_savedSP);
 896 #else
 897   // Pass O5_savedSP as an argument to the interpreter.
 898   // The interpreter will restore SP to this value before returning.
 899   __ add(SP, extraspace, O5_savedSP);
 900 #endif // _LP64
 901 
 902   __ mov((frame::varargs_offset)*wordSize -
 903          1*Interpreter::stackElementSize()+bias+BytesPerWord, G1);
 904   // Jump to the interpreter just as if interpreter was doing it.
 905   __ jmpl(G3_scratch, 0, G0);
 906   // Setup Lesp for the call.  Cannot actually set Lesp as the current Lesp
 907   // (really L0) is in use by the compiled frame as a generic temp.  However,
 908   // the interpreter does not know where its args are without some kind of
 909   // arg pointer being passed in.  Pass it in Gargs.
 910   __ delayed()->add(SP, G1, Gargs);
 911 }
 912 
 913 void AdapterGenerator::gen_i2c_adapter(
 914                             int total_args_passed,
 915                             // VMReg max_arg,
 916                             int comp_args_on_stack, // VMRegStackSlots
 917                             const BasicType *sig_bt,
 918                             const VMRegPair *regs) {
 919 
 920   // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
 921   // layout.  Lesp was saved by the calling I-frame and will be restored on
 922   // return.  Meanwhile, outgoing arg space is all owned by the callee
 923   // C-frame, so we can mangle it at will.  After adjusting the frame size,
 924   // hoist register arguments and repack other args according to the compiled
 925   // code convention.  Finally, end in a jump to the compiled code.  The entry
 926   // point address is the start of the buffer.
 927 
 928   // We will only enter here from an interpreted frame and never from after
 929   // passing thru a c2i. Azul allowed this but we do not. If we lose the
 930   // race and use a c2i we will remain interpreted for the race loser(s).
 931   // This removes all sorts of headaches on the x86 side and also eliminates
 932   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
 933 
 934   // As you can see from the list of inputs & outputs there are not a lot
 935   // of temp registers to work with: mostly G1, G3 & G4.
 936 
 937   // Inputs:
 938   // G2_thread      - TLS
 939   // G5_method      - Method oop
 940   // G4 (Gargs)     - Pointer to interpreter's args
 941   // O0..O4         - free for scratch
 942   // O5_savedSP     - Caller's saved SP, to be restored if needed
 943   // O6             - Current SP!
 944   // O7             - Valid return address
 945   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
 946 
 947   // Outputs:
 948   // G2_thread      - TLS
 949   // G1, G4         - Outgoing long args in 32-bit build
 950   // O0-O5          - Outgoing args in compiled layout
 951   // O6             - Adjusted or restored SP
 952   // O7             - Valid return address
 953   // L0-L7, I0-I7    - Caller's temps (no frame pushed yet)
 954   // F0-F7          - more outgoing args
 955 
 956 
 957   // Gargs is the incoming argument base, and also an outgoing argument.
 958   __ sub(Gargs, BytesPerWord, Gargs);
 959 
 960 #ifdef ASSERT
 961   {
 962     // on entry OsavedSP and SP should be equal
 963     Label ok;
 964     __ cmp(O5_savedSP, SP);
 965     __ br(Assembler::equal, false, Assembler::pt, ok);
 966     __ delayed()->nop();
 967     __ stop("I5_savedSP not set");
 968     __ should_not_reach_here();
 969     __ bind(ok);
 970   }
 971 #endif
 972 
 973   // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
 974   // WITH O7 HOLDING A VALID RETURN PC
 975   //
 976   // |              |
 977   // :  java stack  :
 978   // |              |
 979   // +--------------+ <--- start of outgoing args
 980   // |   receiver   |   |
 981   // : rest of args :   |---size is java-arg-words
 982   // |              |   |
 983   // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
 984   // |              |   |
 985   // :    unused    :   |---Space for max Java stack, plus stack alignment
 986   // |              |   |
 987   // +--------------+ <--- SP + 16*wordsize
 988   // |              |
 989   // :    window    :
 990   // |              |
 991   // +--------------+ <--- SP
 992 
 993   // WE REPACK THE STACK.  We use the common calling convention layout as
 994   // discovered by calling SharedRuntime::calling_convention.  We assume it
 995   // causes an arbitrary shuffle of memory, which may require some register
 996   // temps to do the shuffle.  We hope for (and optimize for) the case where
 997   // temps are not needed.  We may have to resize the stack slightly, in case
 998   // we need alignment padding (32-bit interpreter can pass longs & doubles
 999   // misaligned, but the compilers expect them aligned).
1000   //
1001   // |              |
1002   // :  java stack  :
1003   // |              |
1004   // +--------------+ <--- start of outgoing args
1005   // |  pad, align  |   |
1006   // +--------------+   |
1007   // | ints, floats |   |---Outgoing stack args, packed low.
1008   // +--------------+   |   First few args in registers.
1009   // :   doubles    :   |
1010   // |   longs      |   |
1011   // +--------------+ <--- SP' + 16*wordsize
1012   // |              |
1013   // :    window    :
1014   // |              |
1015   // +--------------+ <--- SP'
1016 
1017   // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
1018   // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
1019   // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
1020 
1021   // Cut-out for having no stack args.  Since up to 6 args are passed
1022   // in registers, we will commonly have no stack args.
1023   if (comp_args_on_stack > 0) {
1024 
1025     // Convert VMReg stack slots to words.
1026     int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
1027     // Round up to miminum stack alignment, in wordSize
1028     comp_words_on_stack = round_to(comp_words_on_stack, 2);
1029     // Now compute the distance from Lesp to SP.  This calculation does not
1030     // include the space for total_args_passed because Lesp has not yet popped
1031     // the arguments.
1032     __ sub(SP, (comp_words_on_stack)*wordSize, SP);
1033   }
1034 
1035   // Will jump to the compiled code just as if compiled code was doing it.
1036   // Pre-load the register-jump target early, to schedule it better.
1037   __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3);
1038 
1039   // Now generate the shuffle code.  Pick up all register args and move the
1040   // rest through G1_scratch.
1041   for (int i=0; i<total_args_passed; i++) {
1042     if (sig_bt[i] == T_VOID) {
1043       // Longs and doubles are passed in native word order, but misaligned
1044       // in the 32-bit build.
1045       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
1046       continue;
1047     }
1048 
1049     // Pick up 0, 1 or 2 words from Lesp+offset.  Assume mis-aligned in the
1050     // 32-bit build and aligned in the 64-bit build.  Look for the obvious
1051     // ldx/lddf optimizations.
1052 
1053     // Load in argument order going down.
1054     const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize();
1055 #ifdef _LP64
1056     set_Rdisp(G1_scratch);
1057 #endif // _LP64
1058 
1059     VMReg r_1 = regs[i].first();
1060     VMReg r_2 = regs[i].second();
1061     if (!r_1->is_valid()) {
1062       assert(!r_2->is_valid(), "");
1063       continue;
1064     }
1065     if (r_1->is_stack()) {        // Pretend stack targets are loaded into F8/F9
1066       r_1 = F8->as_VMReg();        // as part of the load/store shuffle
1067       if (r_2->is_valid()) r_2 = r_1->next();
1068     }
1069     if (r_1->is_Register()) {  // Register argument
1070       Register r = r_1->as_Register()->after_restore();
1071       if (!r_2->is_valid()) {
1072         __ ld(Gargs, arg_slot(ld_off), r);
1073       } else {
1074 #ifdef _LP64
1075         // In V9, longs are given 2 64-bit slots in the interpreter, but the
1076         // data is passed in only 1 slot.
1077         Register slot = (sig_bt[i]==T_LONG) ?
1078               next_arg_slot(ld_off) : arg_slot(ld_off);
1079         __ ldx(Gargs, slot, r);
1080 #else
1081         // Need to load a 64-bit value into G1/G4, but G1/G4 is being used in the
1082         // stack shuffle.  Load the first 2 longs into G1/G4 later.
1083 #endif
1084       }
1085     } else {
1086       assert(r_1->is_FloatRegister(), "");
1087       if (!r_2->is_valid()) {
1088         __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_1->as_FloatRegister());
1089       } else {
1090 #ifdef _LP64
1091         // In V9, doubles are given 2 64-bit slots in the interpreter, but the
1092         // data is passed in only 1 slot.  This code also handles longs that
1093         // are passed on the stack, but need a stack-to-stack move through a
1094         // spare float register.
1095         Register slot = (sig_bt[i]==T_LONG || sig_bt[i] == T_DOUBLE) ?
1096               next_arg_slot(ld_off) : arg_slot(ld_off);
1097         __ ldf(FloatRegisterImpl::D, Gargs, slot, r_1->as_FloatRegister());
1098 #else
1099         // Need to marshal 64-bit value from misaligned Lesp loads
1100         __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
1101         __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_2->as_FloatRegister());
1102 #endif
1103       }
1104     }
1105     // Was the argument really intended to be on the stack, but was loaded
1106     // into F8/F9?
1107     if (regs[i].first()->is_stack()) {
1108       assert(r_1->as_FloatRegister() == F8, "fix this code");
1109       // Convert stack slot to an SP offset
1110       int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
1111       // Store down the shuffled stack word.  Target address _is_ aligned.
1112       if (Assembler::is_simm13(st_off)) {
1113         if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, st_off);
1114         else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, st_off);
1115       } else {
1116         __ set(st_off, Rdisp);
1117         if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, Rdisp);
1118         else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, Rdisp);
1119       }
1120     }
1121   }
1122   bool made_space = false;
1123 #ifndef _LP64
1124   // May need to pick up a few long args in G1/G4
1125   bool g4_crushed = false;
1126   bool g3_crushed = false;
1127   for (int i=0; i<total_args_passed; i++) {
1128     if (regs[i].first()->is_Register() && regs[i].second()->is_valid()) {
1129       // Load in argument order going down
1130       int ld_off = (total_args_passed-i)*Interpreter::stackElementSize();
1131       // Need to marshal 64-bit value from misaligned Lesp loads
1132       Register r = regs[i].first()->as_Register()->after_restore();
1133       if (r == G1 || r == G4) {
1134         assert(!g4_crushed, "ordering problem");
1135         if (r == G4){
1136           g4_crushed = true;
1137           __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
1138           __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
1139         } else {
1140           // better schedule this way
1141           __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
1142           __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
1143         }
1144         g3_crushed = true;
1145         __ sllx(r, 32, r);
1146         __ or3(G3_scratch, r, r);
1147       } else {
1148         assert(r->is_out(), "longs passed in two O registers");
1149         __ ld  (Gargs, arg_slot(ld_off)     , r->successor()); // Load lo bits
1150         __ ld  (Gargs, next_arg_slot(ld_off), r);              // Load hi bits
1151       }
1152     }
1153   }
1154 #endif
1155 
1156   // Jump to the compiled code just as if compiled code was doing it.
1157   //
1158 #ifndef _LP64
1159     if (g3_crushed) {
1160       // Rats load was wasted, at least it is in cache...
1161       __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3);
1162     }
1163 #endif /* _LP64 */
1164 
1165     // 6243940 We might end up in handle_wrong_method if
1166     // the callee is deoptimized as we race thru here. If that
1167     // happens we don't want to take a safepoint because the
1168     // caller frame will look interpreted and arguments are now
1169     // "compiled" so it is much better to make this transition
1170     // invisible to the stack walking code. Unfortunately if
1171     // we try and find the callee by normal means a safepoint
1172     // is possible. So we stash the desired callee in the thread
1173     // and the vm will find there should this case occur.
1174     Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
1175     __ st_ptr(G5_method, callee_target_addr);
1176 
1177     if (StressNonEntrant) {
1178       // Open a big window for deopt failure
1179       __ save_frame(0);
1180       __ mov(G0, L0);
1181       Label loop;
1182       __ bind(loop);
1183       __ sub(L0, 1, L0);
1184       __ br_null(L0, false, Assembler::pt, loop);
1185       __ delayed()->nop();
1186 
1187       __ restore();
1188     }
1189 
1190 
1191     __ jmpl(G3, 0, G0);
1192     __ delayed()->nop();
1193 }
1194 
1195 // ---------------------------------------------------------------
1196 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
1197                                                             int total_args_passed,
1198                                                             // VMReg max_arg,
1199                                                             int comp_args_on_stack, // VMRegStackSlots
1200                                                             const BasicType *sig_bt,
1201                                                             const VMRegPair *regs) {
1202   address i2c_entry = __ pc();
1203 
1204   AdapterGenerator agen(masm);
1205 
1206   agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
1207 
1208 
1209   // -------------------------------------------------------------------------
1210   // Generate a C2I adapter.  On entry we know G5 holds the methodOop.  The
1211   // args start out packed in the compiled layout.  They need to be unpacked
1212   // into the interpreter layout.  This will almost always require some stack
1213   // space.  We grow the current (compiled) stack, then repack the args.  We
1214   // finally end in a jump to the generic interpreter entry point.  On exit
1215   // from the interpreter, the interpreter will restore our SP (lest the
1216   // compiled code, which relys solely on SP and not FP, get sick).
1217 
1218   address c2i_unverified_entry = __ pc();
1219   Label skip_fixup;
1220   {
1221 #if !defined(_LP64) && defined(COMPILER2)
1222     Register R_temp   = L0;   // another scratch register
1223 #else
1224     Register R_temp   = G1;   // another scratch register
1225 #endif
1226 
1227     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
1228 
1229     __ verify_oop(O0);
1230     __ verify_oop(G5_method);
1231     __ load_klass(O0, G3_scratch);
1232     __ verify_oop(G3_scratch);
1233 
1234 #if !defined(_LP64) && defined(COMPILER2)
1235     __ save(SP, -frame::register_save_words*wordSize, SP);
1236     __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
1237     __ verify_oop(R_temp);
1238     __ cmp(G3_scratch, R_temp);
1239     __ restore();
1240 #else
1241     __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
1242     __ verify_oop(R_temp);
1243     __ cmp(G3_scratch, R_temp);
1244 #endif
1245 
1246     Label ok, ok2;
1247     __ brx(Assembler::equal, false, Assembler::pt, ok);
1248     __ delayed()->ld_ptr(G5_method, compiledICHolderOopDesc::holder_method_offset(), G5_method);
1249     __ jump_to(ic_miss, G3_scratch);
1250     __ delayed()->nop();
1251 
1252     __ bind(ok);
1253     // Method might have been compiled since the call site was patched to
1254     // interpreted if that is the case treat it as a miss so we can get
1255     // the call site corrected.
1256     __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
1257     __ bind(ok2);
1258     __ br_null(G3_scratch, false, __ pt, skip_fixup);
1259     __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
1260     __ jump_to(ic_miss, G3_scratch);
1261     __ delayed()->nop();
1262 
1263   }
1264 
1265   address c2i_entry = __ pc();
1266 
1267   agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
1268 
1269   __ flush();
1270   return new AdapterHandlerEntry(i2c_entry, c2i_entry, c2i_unverified_entry);
1271 
1272 }
1273 
1274 // Helper function for native calling conventions
1275 static VMReg int_stk_helper( int i ) {
1276   // Bias any stack based VMReg we get by ignoring the window area
1277   // but not the register parameter save area.
1278   //
1279   // This is strange for the following reasons. We'd normally expect
1280   // the calling convention to return an VMReg for a stack slot
1281   // completely ignoring any abi reserved area. C2 thinks of that
1282   // abi area as only out_preserve_stack_slots. This does not include
1283   // the area allocated by the C abi to store down integer arguments
1284   // because the java calling convention does not use it. So
1285   // since c2 assumes that there are only out_preserve_stack_slots
1286   // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
1287   // location the c calling convention must add in this bias amount
1288   // to make up for the fact that the out_preserve_stack_slots is
1289   // insufficient for C calls. What a mess. I sure hope those 6
1290   // stack words were worth it on every java call!
1291 
1292   // Another way of cleaning this up would be for out_preserve_stack_slots
1293   // to take a parameter to say whether it was C or java calling conventions.
1294   // Then things might look a little better (but not much).
1295 
1296   int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
1297   if( mem_parm_offset < 0 ) {
1298     return as_oRegister(i)->as_VMReg();
1299   } else {
1300     int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
1301     // Now return a biased offset that will be correct when out_preserve_slots is added back in
1302     return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
1303   }
1304 }
1305 
1306 
1307 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1308                                          VMRegPair *regs,
1309                                          int total_args_passed) {
1310 
1311     // Return the number of VMReg stack_slots needed for the args.
1312     // This value does not include an abi space (like register window
1313     // save area).
1314 
1315     // The native convention is V8 if !LP64
1316     // The LP64 convention is the V9 convention which is slightly more sane.
1317 
1318     // We return the amount of VMReg stack slots we need to reserve for all
1319     // the arguments NOT counting out_preserve_stack_slots. Since we always
1320     // have space for storing at least 6 registers to memory we start with that.
1321     // See int_stk_helper for a further discussion.
1322     int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
1323 
1324 #ifdef _LP64
1325     // V9 convention: All things "as-if" on double-wide stack slots.
1326     // Hoist any int/ptr/long's in the first 6 to int regs.
1327     // Hoist any flt/dbl's in the first 16 dbl regs.
1328     int j = 0;                  // Count of actual args, not HALVES
1329     for( int i=0; i<total_args_passed; i++, j++ ) {
1330       switch( sig_bt[i] ) {
1331       case T_BOOLEAN:
1332       case T_BYTE:
1333       case T_CHAR:
1334       case T_INT:
1335       case T_SHORT:
1336         regs[i].set1( int_stk_helper( j ) ); break;
1337       case T_LONG:
1338         assert( sig_bt[i+1] == T_VOID, "expecting half" );
1339       case T_ADDRESS: // raw pointers, like current thread, for VM calls
1340       case T_ARRAY:
1341       case T_OBJECT:
1342         regs[i].set2( int_stk_helper( j ) );
1343         break;
1344       case T_FLOAT:
1345         if ( j < 16 ) {
1346           // V9ism: floats go in ODD registers
1347           regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
1348         } else {
1349           // V9ism: floats go in ODD stack slot
1350           regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
1351         }
1352         break;
1353       case T_DOUBLE:
1354         assert( sig_bt[i+1] == T_VOID, "expecting half" );
1355         if ( j < 16 ) {
1356           // V9ism: doubles go in EVEN/ODD regs
1357           regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
1358         } else {
1359           // V9ism: doubles go in EVEN/ODD stack slots
1360           regs[i].set2(VMRegImpl::stack2reg(j<<1));
1361         }
1362         break;
1363       case T_VOID:  regs[i].set_bad(); j--; break; // Do not count HALVES
1364       default:
1365         ShouldNotReachHere();
1366       }
1367       if (regs[i].first()->is_stack()) {
1368         int off =  regs[i].first()->reg2stack();
1369         if (off > max_stack_slots) max_stack_slots = off;
1370       }
1371       if (regs[i].second()->is_stack()) {
1372         int off =  regs[i].second()->reg2stack();
1373         if (off > max_stack_slots) max_stack_slots = off;
1374       }
1375     }
1376 
1377 #else // _LP64
1378     // V8 convention: first 6 things in O-regs, rest on stack.
1379     // Alignment is willy-nilly.
1380     for( int i=0; i<total_args_passed; i++ ) {
1381       switch( sig_bt[i] ) {
1382       case T_ADDRESS: // raw pointers, like current thread, for VM calls
1383       case T_ARRAY:
1384       case T_BOOLEAN:
1385       case T_BYTE:
1386       case T_CHAR:
1387       case T_FLOAT:
1388       case T_INT:
1389       case T_OBJECT:
1390       case T_SHORT:
1391         regs[i].set1( int_stk_helper( i ) );
1392         break;
1393       case T_DOUBLE:
1394       case T_LONG:
1395         assert( sig_bt[i+1] == T_VOID, "expecting half" );
1396         regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
1397         break;
1398       case T_VOID: regs[i].set_bad(); break;
1399       default:
1400         ShouldNotReachHere();
1401       }
1402       if (regs[i].first()->is_stack()) {
1403         int off =  regs[i].first()->reg2stack();
1404         if (off > max_stack_slots) max_stack_slots = off;
1405       }
1406       if (regs[i].second()->is_stack()) {
1407         int off =  regs[i].second()->reg2stack();
1408         if (off > max_stack_slots) max_stack_slots = off;
1409       }
1410     }
1411 #endif // _LP64
1412 
1413   return round_to(max_stack_slots + 1, 2);
1414 
1415 }
1416 
1417 
1418 // ---------------------------------------------------------------------------
1419 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1420   switch (ret_type) {
1421   case T_FLOAT:
1422     __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
1423     break;
1424   case T_DOUBLE:
1425     __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
1426     break;
1427   }
1428 }
1429 
1430 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1431   switch (ret_type) {
1432   case T_FLOAT:
1433     __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
1434     break;
1435   case T_DOUBLE:
1436     __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
1437     break;
1438   }
1439 }
1440 
1441 // Check and forward and pending exception.  Thread is stored in
1442 // L7_thread_cache and possibly NOT in G2_thread.  Since this is a native call, there
1443 // is no exception handler.  We merely pop this frame off and throw the
1444 // exception in the caller's frame.
1445 static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
1446   Label L;
1447   __ br_null(Rex_oop, false, Assembler::pt, L);
1448   __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
1449   // Since this is a native call, we *know* the proper exception handler
1450   // without calling into the VM: it's the empty function.  Just pop this
1451   // frame and then jump to forward_exception_entry; O7 will contain the
1452   // native caller's return PC.
1453  AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
1454   __ jump_to(exception_entry, G3_scratch);
1455   __ delayed()->restore();      // Pop this frame off.
1456   __ bind(L);
1457 }
1458 
1459 // A simple move of integer like type
1460 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1461   if (src.first()->is_stack()) {
1462     if (dst.first()->is_stack()) {
1463       // stack to stack
1464       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1465       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1466     } else {
1467       // stack to reg
1468       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1469     }
1470   } else if (dst.first()->is_stack()) {
1471     // reg to stack
1472     __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1473   } else {
1474     __ mov(src.first()->as_Register(), dst.first()->as_Register());
1475   }
1476 }
1477 
1478 // On 64 bit we will store integer like items to the stack as
1479 // 64 bits items (sparc abi) even though java would only store
1480 // 32bits for a parameter. On 32bit it will simply be 32 bits
1481 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
1482 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1483   if (src.first()->is_stack()) {
1484     if (dst.first()->is_stack()) {
1485       // stack to stack
1486       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1487       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1488     } else {
1489       // stack to reg
1490       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1491     }
1492   } else if (dst.first()->is_stack()) {
1493     // reg to stack
1494     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1495   } else {
1496     __ mov(src.first()->as_Register(), dst.first()->as_Register());
1497   }
1498 }
1499 
1500 
1501 // An oop arg. Must pass a handle not the oop itself
1502 static void object_move(MacroAssembler* masm,
1503                         OopMap* map,
1504                         int oop_handle_offset,
1505                         int framesize_in_slots,
1506                         VMRegPair src,
1507                         VMRegPair dst,
1508                         bool is_receiver,
1509                         int* receiver_offset) {
1510 
1511   // must pass a handle. First figure out the location we use as a handle
1512 
1513   if (src.first()->is_stack()) {
1514     // Oop is already on the stack
1515     Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
1516     __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
1517     __ ld_ptr(rHandle, 0, L4);
1518 #ifdef _LP64
1519     __ movr( Assembler::rc_z, L4, G0, rHandle );
1520 #else
1521     __ tst( L4 );
1522     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1523 #endif
1524     if (dst.first()->is_stack()) {
1525       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1526     }
1527     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1528     if (is_receiver) {
1529       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1530     }
1531     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1532   } else {
1533     // Oop is in an input register pass we must flush it to the stack
1534     const Register rOop = src.first()->as_Register();
1535     const Register rHandle = L5;
1536     int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
1537     int offset = oop_slot*VMRegImpl::stack_slot_size;
1538     Label skip;
1539     __ st_ptr(rOop, SP, offset + STACK_BIAS);
1540     if (is_receiver) {
1541       *receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
1542     }
1543     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1544     __ add(SP, offset + STACK_BIAS, rHandle);
1545 #ifdef _LP64
1546     __ movr( Assembler::rc_z, rOop, G0, rHandle );
1547 #else
1548     __ tst( rOop );
1549     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1550 #endif
1551 
1552     if (dst.first()->is_stack()) {
1553       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1554     } else {
1555       __ mov(rHandle, dst.first()->as_Register());
1556     }
1557   }
1558 }
1559 
1560 // A float arg may have to do float reg int reg conversion
1561 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1562   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1563 
1564   if (src.first()->is_stack()) {
1565     if (dst.first()->is_stack()) {
1566       // stack to stack the easiest of the bunch
1567       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1568       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1569     } else {
1570       // stack to reg
1571       if (dst.first()->is_Register()) {
1572         __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1573       } else {
1574         __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1575       }
1576     }
1577   } else if (dst.first()->is_stack()) {
1578     // reg to stack
1579     if (src.first()->is_Register()) {
1580       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1581     } else {
1582       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1583     }
1584   } else {
1585     // reg to reg
1586     if (src.first()->is_Register()) {
1587       if (dst.first()->is_Register()) {
1588         // gpr -> gpr
1589         __ mov(src.first()->as_Register(), dst.first()->as_Register());
1590       } else {
1591         // gpr -> fpr
1592         __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
1593         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
1594       }
1595     } else if (dst.first()->is_Register()) {
1596       // fpr -> gpr
1597       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
1598       __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
1599     } else {
1600       // fpr -> fpr
1601       // In theory these overlap but the ordering is such that this is likely a nop
1602       if ( src.first() != dst.first()) {
1603         __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1604       }
1605     }
1606   }
1607 }
1608 
1609 static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1610   VMRegPair src_lo(src.first());
1611   VMRegPair src_hi(src.second());
1612   VMRegPair dst_lo(dst.first());
1613   VMRegPair dst_hi(dst.second());
1614   simple_move32(masm, src_lo, dst_lo);
1615   simple_move32(masm, src_hi, dst_hi);
1616 }
1617 
1618 // A long move
1619 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1620 
1621   // Do the simple ones here else do two int moves
1622   if (src.is_single_phys_reg() ) {
1623     if (dst.is_single_phys_reg()) {
1624       __ mov(src.first()->as_Register(), dst.first()->as_Register());
1625     } else {
1626       // split src into two separate registers
1627       // Remember hi means hi address or lsw on sparc
1628       // Move msw to lsw
1629       if (dst.second()->is_reg()) {
1630         // MSW -> MSW
1631         __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
1632         // Now LSW -> LSW
1633         // this will only move lo -> lo and ignore hi
1634         VMRegPair split(dst.second());
1635         simple_move32(masm, src, split);
1636       } else {
1637         VMRegPair split(src.first(), L4->as_VMReg());
1638         // MSW -> MSW (lo ie. first word)
1639         __ srax(src.first()->as_Register(), 32, L4);
1640         split_long_move(masm, split, dst);
1641       }
1642     }
1643   } else if (dst.is_single_phys_reg()) {
1644     if (src.is_adjacent_aligned_on_stack(2)) {
1645       __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1646     } else {
1647       // dst is a single reg.
1648       // Remember lo is low address not msb for stack slots
1649       // and lo is the "real" register for registers
1650       // src is
1651 
1652       VMRegPair split;
1653 
1654       if (src.first()->is_reg()) {
1655         // src.lo (msw) is a reg, src.hi is stk/reg
1656         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
1657         split.set_pair(dst.first(), src.first());
1658       } else {
1659         // msw is stack move to L5
1660         // lsw is stack move to dst.lo (real reg)
1661         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
1662         split.set_pair(dst.first(), L5->as_VMReg());
1663       }
1664 
1665       // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
1666       // msw   -> src.lo/L5,  lsw -> dst.lo
1667       split_long_move(masm, src, split);
1668 
1669       // So dst now has the low order correct position the
1670       // msw half
1671       __ sllx(split.first()->as_Register(), 32, L5);
1672 
1673       const Register d = dst.first()->as_Register();
1674       __ or3(L5, d, d);
1675     }
1676   } else {
1677     // For LP64 we can probably do better.
1678     split_long_move(masm, src, dst);
1679   }
1680 }
1681 
1682 // A double move
1683 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1684 
1685   // The painful thing here is that like long_move a VMRegPair might be
1686   // 1: a single physical register
1687   // 2: two physical registers (v8)
1688   // 3: a physical reg [lo] and a stack slot [hi] (v8)
1689   // 4: two stack slots
1690 
1691   // Since src is always a java calling convention we know that the src pair
1692   // is always either all registers or all stack (and aligned?)
1693 
1694   // in a register [lo] and a stack slot [hi]
1695   if (src.first()->is_stack()) {
1696     if (dst.first()->is_stack()) {
1697       // stack to stack the easiest of the bunch
1698       // ought to be a way to do this where if alignment is ok we use ldd/std when possible
1699       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1700       __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1701       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1702       __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1703     } else {
1704       // stack to reg
1705       if (dst.second()->is_stack()) {
1706         // stack -> reg, stack -> stack
1707         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1708         if (dst.first()->is_Register()) {
1709           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1710         } else {
1711           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1712         }
1713         // This was missing. (very rare case)
1714         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1715       } else {
1716         // stack -> reg
1717         // Eventually optimize for alignment QQQ
1718         if (dst.first()->is_Register()) {
1719           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1720           __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
1721         } else {
1722           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1723           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
1724         }
1725       }
1726     }
1727   } else if (dst.first()->is_stack()) {
1728     // reg to stack
1729     if (src.first()->is_Register()) {
1730       // Eventually optimize for alignment QQQ
1731       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1732       if (src.second()->is_stack()) {
1733         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1734         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1735       } else {
1736         __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
1737       }
1738     } else {
1739       // fpr to stack
1740       if (src.second()->is_stack()) {
1741         ShouldNotReachHere();
1742       } else {
1743         // Is the stack aligned?
1744         if (reg2offset(dst.first()) & 0x7) {
1745           // No do as pairs
1746           __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1747           __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
1748         } else {
1749           __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1750         }
1751       }
1752     }
1753   } else {
1754     // reg to reg
1755     if (src.first()->is_Register()) {
1756       if (dst.first()->is_Register()) {
1757         // gpr -> gpr
1758         __ mov(src.first()->as_Register(), dst.first()->as_Register());
1759         __ mov(src.second()->as_Register(), dst.second()->as_Register());
1760       } else {
1761         // gpr -> fpr
1762         // ought to be able to do a single store
1763         __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
1764         __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
1765         // ought to be able to do a single load
1766         __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
1767         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
1768       }
1769     } else if (dst.first()->is_Register()) {
1770       // fpr -> gpr
1771       // ought to be able to do a single store
1772       __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
1773       // ought to be able to do a single load
1774       // REMEMBER first() is low address not LSB
1775       __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
1776       if (dst.second()->is_Register()) {
1777         __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
1778       } else {
1779         __ ld(FP, -4 + STACK_BIAS, L4);
1780         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1781       }
1782     } else {
1783       // fpr -> fpr
1784       // In theory these overlap but the ordering is such that this is likely a nop
1785       if ( src.first() != dst.first()) {
1786         __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1787       }
1788     }
1789   }
1790 }
1791 
1792 // Creates an inner frame if one hasn't already been created, and
1793 // saves a copy of the thread in L7_thread_cache
1794 static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
1795   if (!*already_created) {
1796     __ save_frame(0);
1797     // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
1798     // Don't use save_thread because it smashes G2 and we merely want to save a
1799     // copy
1800     __ mov(G2_thread, L7_thread_cache);
1801     *already_created = true;
1802   }
1803 }
1804 
1805 // ---------------------------------------------------------------------------
1806 // Generate a native wrapper for a given method.  The method takes arguments
1807 // in the Java compiled code convention, marshals them to the native
1808 // convention (handlizes oops, etc), transitions to native, makes the call,
1809 // returns to java state (possibly blocking), unhandlizes any result and
1810 // returns.
1811 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1812                                                 methodHandle method,
1813                                                 int total_in_args,
1814                                                 int comp_args_on_stack, // in VMRegStackSlots
1815                                                 BasicType *in_sig_bt,
1816                                                 VMRegPair *in_regs,
1817                                                 BasicType ret_type) {
1818 
1819   // Native nmethod wrappers never take possesion of the oop arguments.
1820   // So the caller will gc the arguments. The only thing we need an
1821   // oopMap for is if the call is static
1822   //
1823   // An OopMap for lock (and class if static), and one for the VM call itself
1824   OopMapSet *oop_maps = new OopMapSet();
1825   intptr_t start = (intptr_t)__ pc();
1826 
1827   // First thing make an ic check to see if we should even be here
1828   {
1829     Label L;
1830     const Register temp_reg = G3_scratch;
1831     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
1832     __ verify_oop(O0);
1833     __ load_klass(O0, temp_reg);
1834     __ cmp(temp_reg, G5_inline_cache_reg);
1835     __ brx(Assembler::equal, true, Assembler::pt, L);
1836     __ delayed()->nop();
1837 
1838     __ jump_to(ic_miss, temp_reg);
1839     __ delayed()->nop();
1840     __ align(CodeEntryAlignment);
1841     __ bind(L);
1842   }
1843 
1844   int vep_offset = ((intptr_t)__ pc()) - start;
1845 
1846 #ifdef COMPILER1
1847   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
1848     // Object.hashCode can pull the hashCode from the header word
1849     // instead of doing a full VM transition once it's been computed.
1850     // Since hashCode is usually polymorphic at call sites we can't do
1851     // this optimization at the call site without a lot of work.
1852     Label slowCase;
1853     Register receiver             = O0;
1854     Register result               = O0;
1855     Register header               = G3_scratch;
1856     Register hash                 = G3_scratch; // overwrite header value with hash value
1857     Register mask                 = G1;         // to get hash field from header
1858 
1859     // Read the header and build a mask to get its hash field.  Give up if the object is not unlocked.
1860     // We depend on hash_mask being at most 32 bits and avoid the use of
1861     // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
1862     // vm: see markOop.hpp.
1863     __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
1864     __ sethi(markOopDesc::hash_mask, mask);
1865     __ btst(markOopDesc::unlocked_value, header);
1866     __ br(Assembler::zero, false, Assembler::pn, slowCase);
1867     if (UseBiasedLocking) {
1868       // Check if biased and fall through to runtime if so
1869       __ delayed()->nop();
1870       __ btst(markOopDesc::biased_lock_bit_in_place, header);
1871       __ br(Assembler::notZero, false, Assembler::pn, slowCase);
1872     }
1873     __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
1874 
1875     // Check for a valid (non-zero) hash code and get its value.
1876 #ifdef _LP64
1877     __ srlx(header, markOopDesc::hash_shift, hash);
1878 #else
1879     __ srl(header, markOopDesc::hash_shift, hash);
1880 #endif
1881     __ andcc(hash, mask, hash);
1882     __ br(Assembler::equal, false, Assembler::pn, slowCase);
1883     __ delayed()->nop();
1884 
1885     // leaf return.
1886     __ retl();
1887     __ delayed()->mov(hash, result);
1888     __ bind(slowCase);
1889   }
1890 #endif // COMPILER1
1891 
1892 
1893   // We have received a description of where all the java arg are located
1894   // on entry to the wrapper. We need to convert these args to where
1895   // the jni function will expect them. To figure out where they go
1896   // we convert the java signature to a C signature by inserting
1897   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1898 
1899   int total_c_args = total_in_args + 1;
1900   if (method->is_static()) {
1901     total_c_args++;
1902   }
1903 
1904   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1905   VMRegPair  * out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
1906 
1907   int argc = 0;
1908   out_sig_bt[argc++] = T_ADDRESS;
1909   if (method->is_static()) {
1910     out_sig_bt[argc++] = T_OBJECT;
1911   }
1912 
1913   for (int i = 0; i < total_in_args ; i++ ) {
1914     out_sig_bt[argc++] = in_sig_bt[i];
1915   }
1916 
1917   // Now figure out where the args must be stored and how much stack space
1918   // they require (neglecting out_preserve_stack_slots but space for storing
1919   // the 1st six register arguments). It's weird see int_stk_helper.
1920   //
1921   int out_arg_slots;
1922   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1923 
1924   // Compute framesize for the wrapper.  We need to handlize all oops in
1925   // registers. We must create space for them here that is disjoint from
1926   // the windowed save area because we have no control over when we might
1927   // flush the window again and overwrite values that gc has since modified.
1928   // (The live window race)
1929   //
1930   // We always just allocate 6 word for storing down these object. This allow
1931   // us to simply record the base and use the Ireg number to decide which
1932   // slot to use. (Note that the reg number is the inbound number not the
1933   // outbound number).
1934   // We must shuffle args to match the native convention, and include var-args space.
1935 
1936   // Calculate the total number of stack slots we will need.
1937 
1938   // First count the abi requirement plus all of the outgoing args
1939   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1940 
1941   // Now the space for the inbound oop handle area
1942 
1943   int oop_handle_offset = stack_slots;
1944   stack_slots += 6*VMRegImpl::slots_per_word;
1945 
1946   // Now any space we need for handlizing a klass if static method
1947 
1948   int oop_temp_slot_offset = 0;
1949   int klass_slot_offset = 0;
1950   int klass_offset = -1;
1951   int lock_slot_offset = 0;
1952   bool is_static = false;
1953 
1954   if (method->is_static()) {
1955     klass_slot_offset = stack_slots;
1956     stack_slots += VMRegImpl::slots_per_word;
1957     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1958     is_static = true;
1959   }
1960 
1961   // Plus a lock if needed
1962 
1963   if (method->is_synchronized()) {
1964     lock_slot_offset = stack_slots;
1965     stack_slots += VMRegImpl::slots_per_word;
1966   }
1967 
1968   // Now a place to save return value or as a temporary for any gpr -> fpr moves
1969   stack_slots += 2;
1970 
1971   // Ok The space we have allocated will look like:
1972   //
1973   //
1974   // FP-> |                     |
1975   //      |---------------------|
1976   //      | 2 slots for moves   |
1977   //      |---------------------|
1978   //      | lock box (if sync)  |
1979   //      |---------------------| <- lock_slot_offset
1980   //      | klass (if static)   |
1981   //      |---------------------| <- klass_slot_offset
1982   //      | oopHandle area      |
1983   //      |---------------------| <- oop_handle_offset
1984   //      | outbound memory     |
1985   //      | based arguments     |
1986   //      |                     |
1987   //      |---------------------|
1988   //      | vararg area         |
1989   //      |---------------------|
1990   //      |                     |
1991   // SP-> | out_preserved_slots |
1992   //
1993   //
1994 
1995 
1996   // Now compute actual number of stack words we need rounding to make
1997   // stack properly aligned.
1998   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
1999 
2000   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2001 
2002   // Generate stack overflow check before creating frame
2003   __ generate_stack_overflow_check(stack_size);
2004 
2005   // Generate a new frame for the wrapper.
2006   __ save(SP, -stack_size, SP);
2007 
2008   int frame_complete = ((intptr_t)__ pc()) - start;
2009 
2010   __ verify_thread();
2011 
2012 
2013   //
2014   // We immediately shuffle the arguments so that any vm call we have to
2015   // make from here on out (sync slow path, jvmti, etc.) we will have
2016   // captured the oops from our caller and have a valid oopMap for
2017   // them.
2018 
2019   // -----------------
2020   // The Grand Shuffle
2021   //
2022   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
2023   // (derived from JavaThread* which is in L7_thread_cache) and, if static,
2024   // the class mirror instead of a receiver.  This pretty much guarantees that
2025   // register layout will not match.  We ignore these extra arguments during
2026   // the shuffle. The shuffle is described by the two calling convention
2027   // vectors we have in our possession. We simply walk the java vector to
2028   // get the source locations and the c vector to get the destinations.
2029   // Because we have a new window and the argument registers are completely
2030   // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
2031   // here.
2032 
2033   // This is a trick. We double the stack slots so we can claim
2034   // the oops in the caller's frame. Since we are sure to have
2035   // more args than the caller doubling is enough to make
2036   // sure we can capture all the incoming oop args from the
2037   // caller.
2038   //
2039   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2040   int c_arg = total_c_args - 1;
2041   // Record sp-based slot for receiver on stack for non-static methods
2042   int receiver_offset = -1;
2043 
2044   // We move the arguments backward because the floating point registers
2045   // destination will always be to a register with a greater or equal register
2046   // number or the stack.
2047 
2048 #ifdef ASSERT
2049   bool reg_destroyed[RegisterImpl::number_of_registers];
2050   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2051   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2052     reg_destroyed[r] = false;
2053   }
2054   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
2055     freg_destroyed[f] = false;
2056   }
2057 
2058 #endif /* ASSERT */
2059 
2060   for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
2061 
2062 #ifdef ASSERT
2063     if (in_regs[i].first()->is_Register()) {
2064       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
2065     } else if (in_regs[i].first()->is_FloatRegister()) {
2066       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
2067     }
2068     if (out_regs[c_arg].first()->is_Register()) {
2069       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2070     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
2071       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
2072     }
2073 #endif /* ASSERT */
2074 
2075     switch (in_sig_bt[i]) {
2076       case T_ARRAY:
2077       case T_OBJECT:
2078         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2079                     ((i == 0) && (!is_static)),
2080                     &receiver_offset);
2081         break;
2082       case T_VOID:
2083         break;
2084 
2085       case T_FLOAT:
2086         float_move(masm, in_regs[i], out_regs[c_arg]);
2087           break;
2088 
2089       case T_DOUBLE:
2090         assert( i + 1 < total_in_args &&
2091                 in_sig_bt[i + 1] == T_VOID &&
2092                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2093         double_move(masm, in_regs[i], out_regs[c_arg]);
2094         break;
2095 
2096       case T_LONG :
2097         long_move(masm, in_regs[i], out_regs[c_arg]);
2098         break;
2099 
2100       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2101 
2102       default:
2103         move32_64(masm, in_regs[i], out_regs[c_arg]);
2104     }
2105   }
2106 
2107   // Pre-load a static method's oop into O1.  Used both by locking code and
2108   // the normal JNI call code.
2109   if (method->is_static()) {
2110     __ set_oop_constant(JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()), O1);
2111 
2112     // Now handlize the static class mirror in O1.  It's known not-null.
2113     __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
2114     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2115     __ add(SP, klass_offset + STACK_BIAS, O1);
2116   }
2117 
2118 
2119   const Register L6_handle = L6;
2120 
2121   if (method->is_synchronized()) {
2122     __ mov(O1, L6_handle);
2123   }
2124 
2125   // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
2126   // except O6/O7. So if we must call out we must push a new frame. We immediately
2127   // push a new frame and flush the windows.
2128 
2129 #ifdef _LP64
2130   intptr_t thepc = (intptr_t) __ pc();
2131   {
2132     address here = __ pc();
2133     // Call the next instruction
2134     __ call(here + 8, relocInfo::none);
2135     __ delayed()->nop();
2136   }
2137 #else
2138   intptr_t thepc = __ load_pc_address(O7, 0);
2139 #endif /* _LP64 */
2140 
2141   // We use the same pc/oopMap repeatedly when we call out
2142   oop_maps->add_gc_map(thepc - start, map);
2143 
2144   // O7 now has the pc loaded that we will use when we finally call to native.
2145 
2146   // Save thread in L7; it crosses a bunch of VM calls below
2147   // Don't use save_thread because it smashes G2 and we merely
2148   // want to save a copy
2149   __ mov(G2_thread, L7_thread_cache);
2150 
2151 
2152   // If we create an inner frame once is plenty
2153   // when we create it we must also save G2_thread
2154   bool inner_frame_created = false;
2155 
2156   // dtrace method entry support
2157   {
2158     SkipIfEqual skip_if(
2159       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2160     // create inner frame
2161     __ save_frame(0);
2162     __ mov(G2_thread, L7_thread_cache);
2163     __ set_oop_constant(JNIHandles::make_local(method()), O1);
2164     __ call_VM_leaf(L7_thread_cache,
2165          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2166          G2_thread, O1);
2167     __ restore();
2168   }
2169 
2170   // RedefineClasses() tracing support for obsolete method entry
2171   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2172     // create inner frame
2173     __ save_frame(0);
2174     __ mov(G2_thread, L7_thread_cache);
2175     __ set_oop_constant(JNIHandles::make_local(method()), O1);
2176     __ call_VM_leaf(L7_thread_cache,
2177          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2178          G2_thread, O1);
2179     __ restore();
2180   }
2181 
2182   // We are in the jni frame unless saved_frame is true in which case
2183   // we are in one frame deeper (the "inner" frame). If we are in the
2184   // "inner" frames the args are in the Iregs and if the jni frame then
2185   // they are in the Oregs.
2186   // If we ever need to go to the VM (for locking, jvmti) then
2187   // we will always be in the "inner" frame.
2188 
2189   // Lock a synchronized method
2190   int lock_offset = -1;         // Set if locked
2191   if (method->is_synchronized()) {
2192     Register Roop = O1;
2193     const Register L3_box = L3;
2194 
2195     create_inner_frame(masm, &inner_frame_created);
2196 
2197     __ ld_ptr(I1, 0, O1);
2198     Label done;
2199 
2200     lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
2201     __ add(FP, lock_offset+STACK_BIAS, L3_box);
2202 #ifdef ASSERT
2203     if (UseBiasedLocking) {
2204       // making the box point to itself will make it clear it went unused
2205       // but also be obviously invalid
2206       __ st_ptr(L3_box, L3_box, 0);
2207     }
2208 #endif // ASSERT
2209     //
2210     // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
2211     //
2212     __ compiler_lock_object(Roop, L1,    L3_box, L2);
2213     __ br(Assembler::equal, false, Assembler::pt, done);
2214     __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
2215 
2216 
2217     // None of the above fast optimizations worked so we have to get into the
2218     // slow case of monitor enter.  Inline a special case of call_VM that
2219     // disallows any pending_exception.
2220     __ mov(Roop, O0);            // Need oop in O0
2221     __ mov(L3_box, O1);
2222 
2223     // Record last_Java_sp, in case the VM code releases the JVM lock.
2224 
2225     __ set_last_Java_frame(FP, I7);
2226 
2227     // do the call
2228     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
2229     __ delayed()->mov(L7_thread_cache, O2);
2230 
2231     __ restore_thread(L7_thread_cache); // restore G2_thread
2232     __ reset_last_Java_frame();
2233 
2234 #ifdef ASSERT
2235     { Label L;
2236     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2237     __ br_null(O0, false, Assembler::pt, L);
2238     __ delayed()->nop();
2239     __ stop("no pending exception allowed on exit from IR::monitorenter");
2240     __ bind(L);
2241     }
2242 #endif
2243     __ bind(done);
2244   }
2245 
2246 
2247   // Finally just about ready to make the JNI call
2248 
2249   __ flush_windows();
2250   if (inner_frame_created) {
2251     __ restore();
2252   } else {
2253     // Store only what we need from this frame
2254     // QQQ I think that non-v9 (like we care) we don't need these saves
2255     // either as the flush traps and the current window goes too.
2256     __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2257     __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2258   }
2259 
2260   // get JNIEnv* which is first argument to native
2261 
2262   __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
2263 
2264   // Use that pc we placed in O7 a while back as the current frame anchor
2265 
2266   __ set_last_Java_frame(SP, O7);
2267 
2268   // Transition from _thread_in_Java to _thread_in_native.
2269   __ set(_thread_in_native, G3_scratch);
2270   __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2271 
2272   // We flushed the windows ages ago now mark them as flushed
2273 
2274   // mark windows as flushed
2275   __ set(JavaFrameAnchor::flushed, G3_scratch);
2276 
2277   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
2278 
2279 #ifdef _LP64
2280   AddressLiteral dest(method->native_function());
2281   __ relocate(relocInfo::runtime_call_type);
2282   __ jumpl_to(dest, O7, O7);
2283 #else
2284   __ call(method->native_function(), relocInfo::runtime_call_type);
2285 #endif
2286   __ delayed()->st(G3_scratch, flags);
2287 
2288   __ restore_thread(L7_thread_cache); // restore G2_thread
2289 
2290   // Unpack native results.  For int-types, we do any needed sign-extension
2291   // and move things into I0.  The return value there will survive any VM
2292   // calls for blocking or unlocking.  An FP or OOP result (handle) is done
2293   // specially in the slow-path code.
2294   switch (ret_type) {
2295   case T_VOID:    break;        // Nothing to do!
2296   case T_FLOAT:   break;        // Got it where we want it (unless slow-path)
2297   case T_DOUBLE:  break;        // Got it where we want it (unless slow-path)
2298   // In 64 bits build result is in O0, in O0, O1 in 32bit build
2299   case T_LONG:
2300 #ifndef _LP64
2301                   __ mov(O1, I1);
2302 #endif
2303                   // Fall thru
2304   case T_OBJECT:                // Really a handle
2305   case T_ARRAY:
2306   case T_INT:
2307                   __ mov(O0, I0);
2308                   break;
2309   case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
2310   case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, I0);   break;
2311   case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, I0);   break; // cannot use and3, 0xFFFF too big as immediate value!
2312   case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, I0);   break;
2313     break;                      // Cannot de-handlize until after reclaiming jvm_lock
2314   default:
2315     ShouldNotReachHere();
2316   }
2317 
2318   // must we block?
2319 
2320   // Block, if necessary, before resuming in _thread_in_Java state.
2321   // In order for GC to work, don't clear the last_Java_sp until after blocking.
2322   { Label no_block;
2323     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
2324 
2325     // Switch thread to "native transition" state before reading the synchronization state.
2326     // This additional state is necessary because reading and testing the synchronization
2327     // state is not atomic w.r.t. GC, as this scenario demonstrates:
2328     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2329     //     VM thread changes sync state to synchronizing and suspends threads for GC.
2330     //     Thread A is resumed to finish this native method, but doesn't block here since it
2331     //     didn't see any synchronization is progress, and escapes.
2332     __ set(_thread_in_native_trans, G3_scratch);
2333     __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2334     if(os::is_MP()) {
2335       if (UseMembar) {
2336         // Force this write out before the read below
2337         __ membar(Assembler::StoreLoad);
2338       } else {
2339         // Write serialization page so VM thread can do a pseudo remote membar.
2340         // We use the current thread pointer to calculate a thread specific
2341         // offset to write to within the page. This minimizes bus traffic
2342         // due to cache line collision.
2343         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
2344       }
2345     }
2346     __ load_contents(sync_state, G3_scratch);
2347     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
2348 
2349     Label L;
2350     Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
2351     __ br(Assembler::notEqual, false, Assembler::pn, L);
2352     __ delayed()->ld(suspend_state, G3_scratch);
2353     __ cmp(G3_scratch, 0);
2354     __ br(Assembler::equal, false, Assembler::pt, no_block);
2355     __ delayed()->nop();
2356     __ bind(L);
2357 
2358     // Block.  Save any potential method result value before the operation and
2359     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
2360     // lets us share the oopMap we used when we went native rather the create
2361     // a distinct one for this pc
2362     //
2363     save_native_result(masm, ret_type, stack_slots);
2364     __ call_VM_leaf(L7_thread_cache,
2365                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
2366                     G2_thread);
2367 
2368     // Restore any method result value
2369     restore_native_result(masm, ret_type, stack_slots);
2370     __ bind(no_block);
2371   }
2372 
2373   // thread state is thread_in_native_trans. Any safepoint blocking has already
2374   // happened so we can now change state to _thread_in_Java.
2375 
2376 
2377   __ set(_thread_in_Java, G3_scratch);
2378   __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2379 
2380 
2381   Label no_reguard;
2382   __ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
2383   __ cmp(G3_scratch, JavaThread::stack_guard_yellow_disabled);
2384   __ br(Assembler::notEqual, false, Assembler::pt, no_reguard);
2385   __ delayed()->nop();
2386 
2387     save_native_result(masm, ret_type, stack_slots);
2388   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
2389   __ delayed()->nop();
2390 
2391   __ restore_thread(L7_thread_cache); // restore G2_thread
2392     restore_native_result(masm, ret_type, stack_slots);
2393 
2394   __ bind(no_reguard);
2395 
2396   // Handle possible exception (will unlock if necessary)
2397 
2398   // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
2399 
2400   // Unlock
2401   if (method->is_synchronized()) {
2402     Label done;
2403     Register I2_ex_oop = I2;
2404     const Register L3_box = L3;
2405     // Get locked oop from the handle we passed to jni
2406     __ ld_ptr(L6_handle, 0, L4);
2407     __ add(SP, lock_offset+STACK_BIAS, L3_box);
2408     // Must save pending exception around the slow-path VM call.  Since it's a
2409     // leaf call, the pending exception (if any) can be kept in a register.
2410     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
2411     // Now unlock
2412     //                       (Roop, Rmark, Rbox,   Rscratch)
2413     __ compiler_unlock_object(L4,   L1,    L3_box, L2);
2414     __ br(Assembler::equal, false, Assembler::pt, done);
2415     __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
2416 
2417     // save and restore any potential method result value around the unlocking
2418     // operation.  Will save in I0 (or stack for FP returns).
2419     save_native_result(masm, ret_type, stack_slots);
2420 
2421     // Must clear pending-exception before re-entering the VM.  Since this is
2422     // a leaf call, pending-exception-oop can be safely kept in a register.
2423     __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
2424 
2425     // slow case of monitor enter.  Inline a special case of call_VM that
2426     // disallows any pending_exception.
2427     __ mov(L3_box, O1);
2428 
2429     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
2430     __ delayed()->mov(L4, O0);              // Need oop in O0
2431 
2432     __ restore_thread(L7_thread_cache); // restore G2_thread
2433 
2434 #ifdef ASSERT
2435     { Label L;
2436     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2437     __ br_null(O0, false, Assembler::pt, L);
2438     __ delayed()->nop();
2439     __ stop("no pending exception allowed on exit from IR::monitorexit");
2440     __ bind(L);
2441     }
2442 #endif
2443     restore_native_result(masm, ret_type, stack_slots);
2444     // check_forward_pending_exception jump to forward_exception if any pending
2445     // exception is set.  The forward_exception routine expects to see the
2446     // exception in pending_exception and not in a register.  Kind of clumsy,
2447     // since all folks who branch to forward_exception must have tested
2448     // pending_exception first and hence have it in a register already.
2449     __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
2450     __ bind(done);
2451   }
2452 
2453   // Tell dtrace about this method exit
2454   {
2455     SkipIfEqual skip_if(
2456       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2457     save_native_result(masm, ret_type, stack_slots);
2458     __ set_oop_constant(JNIHandles::make_local(method()), O1);
2459     __ call_VM_leaf(L7_thread_cache,
2460        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2461        G2_thread, O1);
2462     restore_native_result(masm, ret_type, stack_slots);
2463   }
2464 
2465   // Clear "last Java frame" SP and PC.
2466   __ verify_thread(); // G2_thread must be correct
2467   __ reset_last_Java_frame();
2468 
2469   // Unpack oop result
2470   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2471       Label L;
2472       __ addcc(G0, I0, G0);
2473       __ brx(Assembler::notZero, true, Assembler::pt, L);
2474       __ delayed()->ld_ptr(I0, 0, I0);
2475       __ mov(G0, I0);
2476       __ bind(L);
2477       __ verify_oop(I0);
2478   }
2479 
2480   // reset handle block
2481   __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
2482   __ st_ptr(G0, L5, JNIHandleBlock::top_offset_in_bytes());
2483 
2484   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
2485   check_forward_pending_exception(masm, G3_scratch);
2486 
2487 
2488   // Return
2489 
2490 #ifndef _LP64
2491   if (ret_type == T_LONG) {
2492 
2493     // Must leave proper result in O0,O1 and G1 (c2/tiered only)
2494     __ sllx(I0, 32, G1);          // Shift bits into high G1
2495     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
2496     __ or3 (I1, G1, G1);          // OR 64 bits into G1
2497   }
2498 #endif
2499 
2500   __ ret();
2501   __ delayed()->restore();
2502 
2503   __ flush();
2504 
2505   nmethod *nm = nmethod::new_native_nmethod(method,
2506                                             masm->code(),
2507                                             vep_offset,
2508                                             frame_complete,
2509                                             stack_slots / VMRegImpl::slots_per_word,
2510                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2511                                             in_ByteSize(lock_offset),
2512                                             oop_maps);
2513   return nm;
2514 
2515 }
2516 
2517 #ifdef HAVE_DTRACE_H
2518 // ---------------------------------------------------------------------------
2519 // Generate a dtrace nmethod for a given signature.  The method takes arguments
2520 // in the Java compiled code convention, marshals them to the native
2521 // abi and then leaves nops at the position you would expect to call a native
2522 // function. When the probe is enabled the nops are replaced with a trap
2523 // instruction that dtrace inserts and the trace will cause a notification
2524 // to dtrace.
2525 //
2526 // The probes are only able to take primitive types and java/lang/String as
2527 // arguments.  No other java types are allowed. Strings are converted to utf8
2528 // strings so that from dtrace point of view java strings are converted to C
2529 // strings. There is an arbitrary fixed limit on the total space that a method
2530 // can use for converting the strings. (256 chars per string in the signature).
2531 // So any java string larger then this is truncated.
2532 
2533 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
2534 static bool offsets_initialized = false;
2535 
2536 static VMRegPair reg64_to_VMRegPair(Register r) {
2537   VMRegPair ret;
2538   if (wordSize == 8) {
2539     ret.set2(r->as_VMReg());
2540   } else {
2541     ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
2542   }
2543   return ret;
2544 }
2545 
2546 
2547 nmethod *SharedRuntime::generate_dtrace_nmethod(
2548     MacroAssembler *masm, methodHandle method) {
2549 
2550 
2551   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
2552   // be single threaded in this method.
2553   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
2554 
2555   // Fill in the signature array, for the calling-convention call.
2556   int total_args_passed = method->size_of_parameters();
2557 
2558   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2559   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2560 
2561   // The signature we are going to use for the trap that dtrace will see
2562   // java/lang/String is converted. We drop "this" and any other object
2563   // is converted to NULL.  (A one-slot java/lang/Long object reference
2564   // is converted to a two-slot long, which is why we double the allocation).
2565   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
2566   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
2567 
2568   int i=0;
2569   int total_strings = 0;
2570   int first_arg_to_pass = 0;
2571   int total_c_args = 0;
2572 
2573   // Skip the receiver as dtrace doesn't want to see it
2574   if( !method->is_static() ) {
2575     in_sig_bt[i++] = T_OBJECT;
2576     first_arg_to_pass = 1;
2577   }
2578 
2579   SignatureStream ss(method->signature());
2580   for ( ; !ss.at_return_type(); ss.next()) {
2581     BasicType bt = ss.type();
2582     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
2583     out_sig_bt[total_c_args++] = bt;
2584     if( bt == T_OBJECT) {
2585       symbolOop s = ss.as_symbol_or_null();
2586       if (s == vmSymbols::java_lang_String()) {
2587         total_strings++;
2588         out_sig_bt[total_c_args-1] = T_ADDRESS;
2589       } else if (s == vmSymbols::java_lang_Boolean() ||
2590                  s == vmSymbols::java_lang_Byte()) {
2591         out_sig_bt[total_c_args-1] = T_BYTE;
2592       } else if (s == vmSymbols::java_lang_Character() ||
2593                  s == vmSymbols::java_lang_Short()) {
2594         out_sig_bt[total_c_args-1] = T_SHORT;
2595       } else if (s == vmSymbols::java_lang_Integer() ||
2596                  s == vmSymbols::java_lang_Float()) {
2597         out_sig_bt[total_c_args-1] = T_INT;
2598       } else if (s == vmSymbols::java_lang_Long() ||
2599                  s == vmSymbols::java_lang_Double()) {
2600         out_sig_bt[total_c_args-1] = T_LONG;
2601         out_sig_bt[total_c_args++] = T_VOID;
2602       }
2603     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
2604       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2605       // We convert double to long
2606       out_sig_bt[total_c_args-1] = T_LONG;
2607       out_sig_bt[total_c_args++] = T_VOID;
2608     } else if ( bt == T_FLOAT) {
2609       // We convert float to int
2610       out_sig_bt[total_c_args-1] = T_INT;
2611     }
2612   }
2613 
2614   assert(i==total_args_passed, "validly parsed signature");
2615 
2616   // Now get the compiled-Java layout as input arguments
2617   int comp_args_on_stack;
2618   comp_args_on_stack = SharedRuntime::java_calling_convention(
2619       in_sig_bt, in_regs, total_args_passed, false);
2620 
2621   // We have received a description of where all the java arg are located
2622   // on entry to the wrapper. We need to convert these args to where
2623   // the a  native (non-jni) function would expect them. To figure out
2624   // where they go we convert the java signature to a C signature and remove
2625   // T_VOID for any long/double we might have received.
2626 
2627 
2628   // Now figure out where the args must be stored and how much stack space
2629   // they require (neglecting out_preserve_stack_slots but space for storing
2630   // the 1st six register arguments). It's weird see int_stk_helper.
2631   //
2632   int out_arg_slots;
2633   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
2634 
2635   // Calculate the total number of stack slots we will need.
2636 
2637   // First count the abi requirement plus all of the outgoing args
2638   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2639 
2640   // Plus a temp for possible converion of float/double/long register args
2641 
2642   int conversion_temp = stack_slots;
2643   stack_slots += 2;
2644 
2645 
2646   // Now space for the string(s) we must convert
2647 
2648   int string_locs = stack_slots;
2649   stack_slots += total_strings *
2650                    (max_dtrace_string_size / VMRegImpl::stack_slot_size);
2651 
2652   // Ok The space we have allocated will look like:
2653   //
2654   //
2655   // FP-> |                     |
2656   //      |---------------------|
2657   //      | string[n]           |
2658   //      |---------------------| <- string_locs[n]
2659   //      | string[n-1]         |
2660   //      |---------------------| <- string_locs[n-1]
2661   //      | ...                 |
2662   //      | ...                 |
2663   //      |---------------------| <- string_locs[1]
2664   //      | string[0]           |
2665   //      |---------------------| <- string_locs[0]
2666   //      | temp                |
2667   //      |---------------------| <- conversion_temp
2668   //      | outbound memory     |
2669   //      | based arguments     |
2670   //      |                     |
2671   //      |---------------------|
2672   //      |                     |
2673   // SP-> | out_preserved_slots |
2674   //
2675   //
2676 
2677   // Now compute actual number of stack words we need rounding to make
2678   // stack properly aligned.
2679   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
2680 
2681   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2682 
2683   intptr_t start = (intptr_t)__ pc();
2684 
2685   // First thing make an ic check to see if we should even be here
2686 
2687   {
2688     Label L;
2689     const Register temp_reg = G3_scratch;
2690     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
2691     __ verify_oop(O0);
2692     __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
2693     __ cmp(temp_reg, G5_inline_cache_reg);
2694     __ brx(Assembler::equal, true, Assembler::pt, L);
2695     __ delayed()->nop();
2696 
2697     __ jump_to(ic_miss, temp_reg);
2698     __ delayed()->nop();
2699     __ align(CodeEntryAlignment);
2700     __ bind(L);
2701   }
2702 
2703   int vep_offset = ((intptr_t)__ pc()) - start;
2704 
2705 
2706   // The instruction at the verified entry point must be 5 bytes or longer
2707   // because it can be patched on the fly by make_non_entrant. The stack bang
2708   // instruction fits that requirement.
2709 
2710   // Generate stack overflow check before creating frame
2711   __ generate_stack_overflow_check(stack_size);
2712 
2713   assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
2714          "valid size for make_non_entrant");
2715 
2716   // Generate a new frame for the wrapper.
2717   __ save(SP, -stack_size, SP);
2718 
2719   // Frame is now completed as far a size and linkage.
2720 
2721   int frame_complete = ((intptr_t)__ pc()) - start;
2722 
2723 #ifdef ASSERT
2724   bool reg_destroyed[RegisterImpl::number_of_registers];
2725   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2726   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2727     reg_destroyed[r] = false;
2728   }
2729   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
2730     freg_destroyed[f] = false;
2731   }
2732 
2733 #endif /* ASSERT */
2734 
2735   VMRegPair zero;
2736   const Register g0 = G0; // without this we get a compiler warning (why??)
2737   zero.set2(g0->as_VMReg());
2738 
2739   int c_arg, j_arg;
2740 
2741   Register conversion_off = noreg;
2742 
2743   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2744        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2745 
2746     VMRegPair src = in_regs[j_arg];
2747     VMRegPair dst = out_regs[c_arg];
2748 
2749 #ifdef ASSERT
2750     if (src.first()->is_Register()) {
2751       assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
2752     } else if (src.first()->is_FloatRegister()) {
2753       assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
2754                                                FloatRegisterImpl::S)], "ack!");
2755     }
2756     if (dst.first()->is_Register()) {
2757       reg_destroyed[dst.first()->as_Register()->encoding()] = true;
2758     } else if (dst.first()->is_FloatRegister()) {
2759       freg_destroyed[dst.first()->as_FloatRegister()->encoding(
2760                                                  FloatRegisterImpl::S)] = true;
2761     }
2762 #endif /* ASSERT */
2763 
2764     switch (in_sig_bt[j_arg]) {
2765       case T_ARRAY:
2766       case T_OBJECT:
2767         {
2768           if (out_sig_bt[c_arg] == T_BYTE  || out_sig_bt[c_arg] == T_SHORT ||
2769               out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2770             // need to unbox a one-slot value
2771             Register in_reg = L0;
2772             Register tmp = L2;
2773             if ( src.first()->is_reg() ) {
2774               in_reg = src.first()->as_Register();
2775             } else {
2776               assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
2777                      "must be");
2778               __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
2779             }
2780             // If the final destination is an acceptable register
2781             if ( dst.first()->is_reg() ) {
2782               if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
2783                 tmp = dst.first()->as_Register();
2784               }
2785             }
2786 
2787             Label skipUnbox;
2788             if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
2789               __ mov(G0, tmp->successor());
2790             }
2791             __ br_null(in_reg, true, Assembler::pn, skipUnbox);
2792             __ delayed()->mov(G0, tmp);
2793 
2794             BasicType bt = out_sig_bt[c_arg];
2795             int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2796             switch (bt) {
2797                 case T_BYTE:
2798                   __ ldub(in_reg, box_offset, tmp); break;
2799                 case T_SHORT:
2800                   __ lduh(in_reg, box_offset, tmp); break;
2801                 case T_INT:
2802                   __ ld(in_reg, box_offset, tmp); break;
2803                 case T_LONG:
2804                   __ ld_long(in_reg, box_offset, tmp); break;
2805                 default: ShouldNotReachHere();
2806             }
2807 
2808             __ bind(skipUnbox);
2809             // If tmp wasn't final destination copy to final destination
2810             if (tmp == L2) {
2811               VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
2812               if (out_sig_bt[c_arg] == T_LONG) {
2813                 long_move(masm, tmp_as_VM, dst);
2814               } else {
2815                 move32_64(masm, tmp_as_VM, out_regs[c_arg]);
2816               }
2817             }
2818             if (out_sig_bt[c_arg] == T_LONG) {
2819               assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2820               ++c_arg; // move over the T_VOID to keep the loop indices in sync
2821             }
2822           } else if (out_sig_bt[c_arg] == T_ADDRESS) {
2823             Register s =
2824                 src.first()->is_reg() ? src.first()->as_Register() : L2;
2825             Register d =
2826                 dst.first()->is_reg() ? dst.first()->as_Register() : L2;
2827 
2828             // We store the oop now so that the conversion pass can reach
2829             // while in the inner frame. This will be the only store if
2830             // the oop is NULL.
2831             if (s != L2) {
2832               // src is register
2833               if (d != L2) {
2834                 // dst is register
2835                 __ mov(s, d);
2836               } else {
2837                 assert(Assembler::is_simm13(reg2offset(dst.first()) +
2838                           STACK_BIAS), "must be");
2839                 __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
2840               }
2841             } else {
2842                 // src not a register
2843                 assert(Assembler::is_simm13(reg2offset(src.first()) +
2844                            STACK_BIAS), "must be");
2845                 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
2846                 if (d == L2) {
2847                   assert(Assembler::is_simm13(reg2offset(dst.first()) +
2848                              STACK_BIAS), "must be");
2849                   __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
2850                 }
2851             }
2852           } else if (out_sig_bt[c_arg] != T_VOID) {
2853             // Convert the arg to NULL
2854             if (dst.first()->is_reg()) {
2855               __ mov(G0, dst.first()->as_Register());
2856             } else {
2857               assert(Assembler::is_simm13(reg2offset(dst.first()) +
2858                          STACK_BIAS), "must be");
2859               __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
2860             }
2861           }
2862         }
2863         break;
2864       case T_VOID:
2865         break;
2866 
2867       case T_FLOAT:
2868         if (src.first()->is_stack()) {
2869           // Stack to stack/reg is simple
2870           move32_64(masm, src, dst);
2871         } else {
2872           if (dst.first()->is_reg()) {
2873             // freg -> reg
2874             int off =
2875               STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
2876             Register d = dst.first()->as_Register();
2877             if (Assembler::is_simm13(off)) {
2878               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2879                      SP, off);
2880               __ ld(SP, off, d);
2881             } else {
2882               if (conversion_off == noreg) {
2883                 __ set(off, L6);
2884                 conversion_off = L6;
2885               }
2886               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2887                      SP, conversion_off);
2888               __ ld(SP, conversion_off , d);
2889             }
2890           } else {
2891             // freg -> mem
2892             int off = STACK_BIAS + reg2offset(dst.first());
2893             if (Assembler::is_simm13(off)) {
2894               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2895                      SP, off);
2896             } else {
2897               if (conversion_off == noreg) {
2898                 __ set(off, L6);
2899                 conversion_off = L6;
2900               }
2901               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2902                      SP, conversion_off);
2903             }
2904           }
2905         }
2906         break;
2907 
2908       case T_DOUBLE:
2909         assert( j_arg + 1 < total_args_passed &&
2910                 in_sig_bt[j_arg + 1] == T_VOID &&
2911                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2912         if (src.first()->is_stack()) {
2913           // Stack to stack/reg is simple
2914           long_move(masm, src, dst);
2915         } else {
2916           Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
2917 
2918           // Destination could be an odd reg on 32bit in which case
2919           // we can't load direct to the destination.
2920 
2921           if (!d->is_even() && wordSize == 4) {
2922             d = L2;
2923           }
2924           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
2925           if (Assembler::is_simm13(off)) {
2926             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
2927                    SP, off);
2928             __ ld_long(SP, off, d);
2929           } else {
2930             if (conversion_off == noreg) {
2931               __ set(off, L6);
2932               conversion_off = L6;
2933             }
2934             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
2935                    SP, conversion_off);
2936             __ ld_long(SP, conversion_off, d);
2937           }
2938           if (d == L2) {
2939             long_move(masm, reg64_to_VMRegPair(L2), dst);
2940           }
2941         }
2942         break;
2943 
2944       case T_LONG :
2945         // 32bit can't do a split move of something like g1 -> O0, O1
2946         // so use a memory temp
2947         if (src.is_single_phys_reg() && wordSize == 4) {
2948           Register tmp = L2;
2949           if (dst.first()->is_reg() &&
2950               (wordSize == 8 || dst.first()->as_Register()->is_even())) {
2951             tmp = dst.first()->as_Register();
2952           }
2953 
2954           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
2955           if (Assembler::is_simm13(off)) {
2956             __ stx(src.first()->as_Register(), SP, off);
2957             __ ld_long(SP, off, tmp);
2958           } else {
2959             if (conversion_off == noreg) {
2960               __ set(off, L6);
2961               conversion_off = L6;
2962             }
2963             __ stx(src.first()->as_Register(), SP, conversion_off);
2964             __ ld_long(SP, conversion_off, tmp);
2965           }
2966 
2967           if (tmp == L2) {
2968             long_move(masm, reg64_to_VMRegPair(L2), dst);
2969           }
2970         } else {
2971           long_move(masm, src, dst);
2972         }
2973         break;
2974 
2975       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2976 
2977       default:
2978         move32_64(masm, src, dst);
2979     }
2980   }
2981 
2982 
2983   // If we have any strings we must store any register based arg to the stack
2984   // This includes any still live xmm registers too.
2985 
2986   if (total_strings > 0 ) {
2987 
2988     // protect all the arg registers
2989     __ save_frame(0);
2990     __ mov(G2_thread, L7_thread_cache);
2991     const Register L2_string_off = L2;
2992 
2993     // Get first string offset
2994     __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
2995 
2996     for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
2997       if (out_sig_bt[c_arg] == T_ADDRESS) {
2998 
2999         VMRegPair dst = out_regs[c_arg];
3000         const Register d = dst.first()->is_reg() ?
3001             dst.first()->as_Register()->after_save() : noreg;
3002 
3003         // It's a string the oop and it was already copied to the out arg
3004         // position
3005         if (d != noreg) {
3006           __ mov(d, O0);
3007         } else {
3008           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
3009                  "must be");
3010           __ ld_ptr(FP,  reg2offset(dst.first()) + STACK_BIAS, O0);
3011         }
3012         Label skip;
3013 
3014         __ br_null(O0, false, Assembler::pn, skip);
3015         __ delayed()->add(FP, L2_string_off, O1);
3016 
3017         if (d != noreg) {
3018           __ mov(O1, d);
3019         } else {
3020           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
3021                  "must be");
3022           __ st_ptr(O1, FP,  reg2offset(dst.first()) + STACK_BIAS);
3023         }
3024 
3025         __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
3026                 relocInfo::runtime_call_type);
3027         __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
3028 
3029         __ bind(skip);
3030 
3031       }
3032 
3033     }
3034     __ mov(L7_thread_cache, G2_thread);
3035     __ restore();
3036 
3037   }
3038 
3039 
3040   // Ok now we are done. Need to place the nop that dtrace wants in order to
3041   // patch in the trap
3042 
3043   int patch_offset = ((intptr_t)__ pc()) - start;
3044 
3045   __ nop();
3046 
3047 
3048   // Return
3049 
3050   __ ret();
3051   __ delayed()->restore();
3052 
3053   __ flush();
3054 
3055   nmethod *nm = nmethod::new_dtrace_nmethod(
3056       method, masm->code(), vep_offset, patch_offset, frame_complete,
3057       stack_slots / VMRegImpl::slots_per_word);
3058   return nm;
3059 
3060 }
3061 
3062 #endif // HAVE_DTRACE_H
3063 
3064 // this function returns the adjust size (in number of words) to a c2i adapter
3065 // activation for use during deoptimization
3066 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
3067   assert(callee_locals >= callee_parameters,
3068           "test and remove; got more parms than locals");
3069   if (callee_locals < callee_parameters)
3070     return 0;                   // No adjustment for negative locals
3071   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords();
3072   return round_to(diff, WordsPerLong);
3073 }
3074 
3075 // "Top of Stack" slots that may be unused by the calling convention but must
3076 // otherwise be preserved.
3077 // On Intel these are not necessary and the value can be zero.
3078 // On Sparc this describes the words reserved for storing a register window
3079 // when an interrupt occurs.
3080 uint SharedRuntime::out_preserve_stack_slots() {
3081   return frame::register_save_words * VMRegImpl::slots_per_word;
3082 }
3083 
3084 static void gen_new_frame(MacroAssembler* masm, bool deopt) {
3085 //
3086 // Common out the new frame generation for deopt and uncommon trap
3087 //
3088   Register        G3pcs              = G3_scratch; // Array of new pcs (input)
3089   Register        Oreturn0           = O0;
3090   Register        Oreturn1           = O1;
3091   Register        O2UnrollBlock      = O2;
3092   Register        O3array            = O3;         // Array of frame sizes (input)
3093   Register        O4array_size       = O4;         // number of frames (input)
3094   Register        O7frame_size       = O7;         // number of frames (input)
3095 
3096   __ ld_ptr(O3array, 0, O7frame_size);
3097   __ sub(G0, O7frame_size, O7frame_size);
3098   __ save(SP, O7frame_size, SP);
3099   __ ld_ptr(G3pcs, 0, I7);                      // load frame's new pc
3100 
3101   #ifdef ASSERT
3102   // make sure that the frames are aligned properly
3103 #ifndef _LP64
3104   __ btst(wordSize*2-1, SP);
3105   __ breakpoint_trap(Assembler::notZero);
3106 #endif
3107   #endif
3108 
3109   // Deopt needs to pass some extra live values from frame to frame
3110 
3111   if (deopt) {
3112     __ mov(Oreturn0->after_save(), Oreturn0);
3113     __ mov(Oreturn1->after_save(), Oreturn1);
3114   }
3115 
3116   __ mov(O4array_size->after_save(), O4array_size);
3117   __ sub(O4array_size, 1, O4array_size);
3118   __ mov(O3array->after_save(), O3array);
3119   __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
3120   __ add(G3pcs, wordSize, G3pcs);               // point to next pc value
3121 
3122   #ifdef ASSERT
3123   // trash registers to show a clear pattern in backtraces
3124   __ set(0xDEAD0000, I0);
3125   __ add(I0,  2, I1);
3126   __ add(I0,  4, I2);
3127   __ add(I0,  6, I3);
3128   __ add(I0,  8, I4);
3129   // Don't touch I5 could have valuable savedSP
3130   __ set(0xDEADBEEF, L0);
3131   __ mov(L0, L1);
3132   __ mov(L0, L2);
3133   __ mov(L0, L3);
3134   __ mov(L0, L4);
3135   __ mov(L0, L5);
3136 
3137   // trash the return value as there is nothing to return yet
3138   __ set(0xDEAD0001, O7);
3139   #endif
3140 
3141   __ mov(SP, O5_savedSP);
3142 }
3143 
3144 
3145 static void make_new_frames(MacroAssembler* masm, bool deopt) {
3146   //
3147   // loop through the UnrollBlock info and create new frames
3148   //
3149   Register        G3pcs              = G3_scratch;
3150   Register        Oreturn0           = O0;
3151   Register        Oreturn1           = O1;
3152   Register        O2UnrollBlock      = O2;
3153   Register        O3array            = O3;
3154   Register        O4array_size       = O4;
3155   Label           loop;
3156 
3157   // Before we make new frames, check to see if stack is available.
3158   // Do this after the caller's return address is on top of stack
3159   if (UseStackBanging) {
3160     // Get total frame size for interpreted frames
3161     __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
3162     __ bang_stack_size(O4, O3, G3_scratch);
3163   }
3164 
3165   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
3166   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
3167   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
3168 
3169   // Adjust old interpreter frame to make space for new frame's extra java locals
3170   //
3171   // We capture the original sp for the transition frame only because it is needed in
3172   // order to properly calculate interpreter_sp_adjustment. Even though in real life
3173   // every interpreter frame captures a savedSP it is only needed at the transition
3174   // (fortunately). If we had to have it correct everywhere then we would need to
3175   // be told the sp_adjustment for each frame we create. If the frame size array
3176   // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
3177   // for each frame we create and keep up the illusion every where.
3178   //
3179 
3180   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
3181   __ mov(SP, O5_savedSP);       // remember initial sender's original sp before adjustment
3182   __ sub(SP, O7, SP);
3183 
3184 #ifdef ASSERT
3185   // make sure that there is at least one entry in the array
3186   __ tst(O4array_size);
3187   __ breakpoint_trap(Assembler::zero);
3188 #endif
3189 
3190   // Now push the new interpreter frames
3191   __ bind(loop);
3192 
3193   // allocate a new frame, filling the registers
3194 
3195   gen_new_frame(masm, deopt);        // allocate an interpreter frame
3196 
3197   __ tst(O4array_size);
3198   __ br(Assembler::notZero, false, Assembler::pn, loop);
3199   __ delayed()->add(O3array, wordSize, O3array);
3200   __ ld_ptr(G3pcs, 0, O7);                      // load final frame new pc
3201 
3202 }
3203 
3204 //------------------------------generate_deopt_blob----------------------------
3205 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
3206 // instead.
3207 void SharedRuntime::generate_deopt_blob() {
3208   // allocate space for the code
3209   ResourceMark rm;
3210   // setup code generation tools
3211   int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
3212 #ifdef _LP64
3213   CodeBuffer buffer("deopt_blob", 2100+pad, 512);
3214 #else
3215   // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
3216   // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
3217   CodeBuffer buffer("deopt_blob", 1600+pad, 512);
3218 #endif /* _LP64 */
3219   MacroAssembler* masm               = new MacroAssembler(&buffer);
3220   FloatRegister   Freturn0           = F0;
3221   Register        Greturn1           = G1;
3222   Register        Oreturn0           = O0;
3223   Register        Oreturn1           = O1;
3224   Register        O2UnrollBlock      = O2;
3225   Register        O3tmp              = O3;
3226   Register        I5exception_tmp    = I5;
3227   Register        G4exception_tmp    = G4_scratch;
3228   int             frame_size_words;
3229   Address         saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
3230 #if !defined(_LP64) && defined(COMPILER2)
3231   Address         saved_Greturn1_addr(FP, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
3232 #endif
3233   Label           cont;
3234 
3235   OopMapSet *oop_maps = new OopMapSet();
3236 
3237   //
3238   // This is the entry point for code which is returning to a de-optimized
3239   // frame.
3240   // The steps taken by this frame are as follows:
3241   //   - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
3242   //     and all potentially live registers (at a pollpoint many registers can be live).
3243   //
3244   //   - call the C routine: Deoptimization::fetch_unroll_info (this function
3245   //     returns information about the number and size of interpreter frames
3246   //     which are equivalent to the frame which is being deoptimized)
3247   //   - deallocate the unpack frame, restoring only results values. Other
3248   //     volatile registers will now be captured in the vframeArray as needed.
3249   //   - deallocate the deoptimization frame
3250   //   - in a loop using the information returned in the previous step
3251   //     push new interpreter frames (take care to propagate the return
3252   //     values through each new frame pushed)
3253   //   - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
3254   //   - call the C routine: Deoptimization::unpack_frames (this function
3255   //     lays out values on the interpreter frame which was just created)
3256   //   - deallocate the dummy unpack_frame
3257   //   - ensure that all the return values are correctly set and then do
3258   //     a return to the interpreter entry point
3259   //
3260   // Refer to the following methods for more information:
3261   //   - Deoptimization::fetch_unroll_info
3262   //   - Deoptimization::unpack_frames
3263 
3264   OopMap* map = NULL;
3265 
3266   int start = __ offset();
3267 
3268   // restore G2, the trampoline destroyed it
3269   __ get_thread();
3270 
3271   // On entry we have been called by the deoptimized nmethod with a call that
3272   // replaced the original call (or safepoint polling location) so the deoptimizing
3273   // pc is now in O7. Return values are still in the expected places
3274 
3275   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3276   __ ba(false, cont);
3277   __ delayed()->mov(Deoptimization::Unpack_deopt, I5exception_tmp);
3278 
3279   int exception_offset = __ offset() - start;
3280 
3281   // restore G2, the trampoline destroyed it
3282   __ get_thread();
3283 
3284   // On entry we have been jumped to by the exception handler (or exception_blob
3285   // for server).  O0 contains the exception oop and O7 contains the original
3286   // exception pc.  So if we push a frame here it will look to the
3287   // stack walking code (fetch_unroll_info) just like a normal call so
3288   // state will be extracted normally.
3289 
3290   // save exception oop in JavaThread and fall through into the
3291   // exception_in_tls case since they are handled in same way except
3292   // for where the pending exception is kept.
3293   __ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
3294 
3295   //
3296   // Vanilla deoptimization with an exception pending in exception_oop
3297   //
3298   int exception_in_tls_offset = __ offset() - start;
3299 
3300   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3301   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3302 
3303   // Restore G2_thread
3304   __ get_thread();
3305 
3306 #ifdef ASSERT
3307   {
3308     // verify that there is really an exception oop in exception_oop
3309     Label has_exception;
3310     __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
3311     __ br_notnull(Oexception, false, Assembler::pt, has_exception);
3312     __ delayed()-> nop();
3313     __ stop("no exception in thread");
3314     __ bind(has_exception);
3315 
3316     // verify that there is no pending exception
3317     Label no_pending_exception;
3318     Address exception_addr(G2_thread, Thread::pending_exception_offset());
3319     __ ld_ptr(exception_addr, Oexception);
3320     __ br_null(Oexception, false, Assembler::pt, no_pending_exception);
3321     __ delayed()->nop();
3322     __ stop("must not have pending exception here");
3323     __ bind(no_pending_exception);
3324   }
3325 #endif
3326 
3327   __ ba(false, cont);
3328   __ delayed()->mov(Deoptimization::Unpack_exception, I5exception_tmp);;
3329 
3330   //
3331   // Reexecute entry, similar to c2 uncommon trap
3332   //
3333   int reexecute_offset = __ offset() - start;
3334 
3335   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3336   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3337 
3338   __ mov(Deoptimization::Unpack_reexecute, I5exception_tmp);
3339 
3340   __ bind(cont);
3341 
3342   __ set_last_Java_frame(SP, noreg);
3343 
3344   // do the call by hand so we can get the oopmap
3345 
3346   __ mov(G2_thread, L7_thread_cache);
3347   __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
3348   __ delayed()->mov(G2_thread, O0);
3349 
3350   // Set an oopmap for the call site this describes all our saved volatile registers
3351 
3352   oop_maps->add_gc_map( __ offset()-start, map);
3353 
3354   __ mov(L7_thread_cache, G2_thread);
3355 
3356   __ reset_last_Java_frame();
3357 
3358   // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
3359   // so this move will survive
3360 
3361   __ mov(I5exception_tmp, G4exception_tmp);
3362 
3363   __ mov(O0, O2UnrollBlock->after_save());
3364 
3365   RegisterSaver::restore_result_registers(masm);
3366 
3367   Label noException;
3368   __ cmp(G4exception_tmp, Deoptimization::Unpack_exception);   // Was exception pending?
3369   __ br(Assembler::notEqual, false, Assembler::pt, noException);
3370   __ delayed()->nop();
3371 
3372   // Move the pending exception from exception_oop to Oexception so
3373   // the pending exception will be picked up the interpreter.
3374   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
3375   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
3376   __ bind(noException);
3377 
3378   // deallocate the deoptimization frame taking care to preserve the return values
3379   __ mov(Oreturn0,     Oreturn0->after_save());
3380   __ mov(Oreturn1,     Oreturn1->after_save());
3381   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3382   __ restore();
3383 
3384   // Allocate new interpreter frame(s) and possible c2i adapter frame
3385 
3386   make_new_frames(masm, true);
3387 
3388   // push a dummy "unpack_frame" taking care of float return values and
3389   // call Deoptimization::unpack_frames to have the unpacker layout
3390   // information in the interpreter frames just created and then return
3391   // to the interpreter entry point
3392   __ save(SP, -frame_size_words*wordSize, SP);
3393   __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
3394 #if !defined(_LP64)
3395 #if defined(COMPILER2)
3396   if (!TieredCompilation) {
3397     // 32-bit 1-register longs return longs in G1
3398     __ stx(Greturn1, saved_Greturn1_addr);
3399   }
3400 #endif
3401   __ set_last_Java_frame(SP, noreg);
3402   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4exception_tmp);
3403 #else
3404   // LP64 uses g4 in set_last_Java_frame
3405   __ mov(G4exception_tmp, O1);
3406   __ set_last_Java_frame(SP, G0);
3407   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
3408 #endif
3409   __ reset_last_Java_frame();
3410   __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
3411 
3412   // In tiered we never use C2 to compile methods returning longs so
3413   // the result is where we expect it already.
3414 
3415 #if !defined(_LP64) && defined(COMPILER2)
3416   // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
3417   // I0/I1 if the return value is long.  In the tiered world there is
3418   // a mismatch between how C1 and C2 return longs compiles and so
3419   // currently compilation of methods which return longs is disabled
3420   // for C2 and so is this code.  Eventually C1 and C2 will do the
3421   // same thing for longs in the tiered world.
3422   if (!TieredCompilation) {
3423     Label not_long;
3424     __ cmp(O0,T_LONG);
3425     __ br(Assembler::notEqual, false, Assembler::pt, not_long);
3426     __ delayed()->nop();
3427     __ ldd(saved_Greturn1_addr,I0);
3428     __ bind(not_long);
3429   }
3430 #endif
3431   __ ret();
3432   __ delayed()->restore();
3433 
3434   masm->flush();
3435   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
3436   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3437 }
3438 
3439 #ifdef COMPILER2
3440 
3441 //------------------------------generate_uncommon_trap_blob--------------------
3442 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
3443 // instead.
3444 void SharedRuntime::generate_uncommon_trap_blob() {
3445   // allocate space for the code
3446   ResourceMark rm;
3447   // setup code generation tools
3448   int pad = VerifyThread ? 512 : 0;
3449 #ifdef _LP64
3450   CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
3451 #else
3452   // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
3453   // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
3454   CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
3455 #endif
3456   MacroAssembler* masm               = new MacroAssembler(&buffer);
3457   Register        O2UnrollBlock      = O2;
3458   Register        O3tmp              = O3;
3459   Register        O2klass_index      = O2;
3460 
3461   //
3462   // This is the entry point for all traps the compiler takes when it thinks
3463   // it cannot handle further execution of compilation code. The frame is
3464   // deoptimized in these cases and converted into interpreter frames for
3465   // execution
3466   // The steps taken by this frame are as follows:
3467   //   - push a fake "unpack_frame"
3468   //   - call the C routine Deoptimization::uncommon_trap (this function
3469   //     packs the current compiled frame into vframe arrays and returns
3470   //     information about the number and size of interpreter frames which
3471   //     are equivalent to the frame which is being deoptimized)
3472   //   - deallocate the "unpack_frame"
3473   //   - deallocate the deoptimization frame
3474   //   - in a loop using the information returned in the previous step
3475   //     push interpreter frames;
3476   //   - create a dummy "unpack_frame"
3477   //   - call the C routine: Deoptimization::unpack_frames (this function
3478   //     lays out values on the interpreter frame which was just created)
3479   //   - deallocate the dummy unpack_frame
3480   //   - return to the interpreter entry point
3481   //
3482   //  Refer to the following methods for more information:
3483   //   - Deoptimization::uncommon_trap
3484   //   - Deoptimization::unpack_frame
3485 
3486   // the unloaded class index is in O0 (first parameter to this blob)
3487 
3488   // push a dummy "unpack_frame"
3489   // and call Deoptimization::uncommon_trap to pack the compiled frame into
3490   // vframe array and return the UnrollBlock information
3491   __ save_frame(0);
3492   __ set_last_Java_frame(SP, noreg);
3493   __ mov(I0, O2klass_index);
3494   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
3495   __ reset_last_Java_frame();
3496   __ mov(O0, O2UnrollBlock->after_save());
3497   __ restore();
3498 
3499   // deallocate the deoptimized frame taking care to preserve the return values
3500   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3501   __ restore();
3502 
3503   // Allocate new interpreter frame(s) and possible c2i adapter frame
3504 
3505   make_new_frames(masm, false);
3506 
3507   // push a dummy "unpack_frame" taking care of float return values and
3508   // call Deoptimization::unpack_frames to have the unpacker layout
3509   // information in the interpreter frames just created and then return
3510   // to the interpreter entry point
3511   __ save_frame(0);
3512   __ set_last_Java_frame(SP, noreg);
3513   __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
3514   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
3515   __ reset_last_Java_frame();
3516   __ ret();
3517   __ delayed()->restore();
3518 
3519   masm->flush();
3520   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
3521 }
3522 
3523 #endif // COMPILER2
3524 
3525 //------------------------------generate_handler_blob-------------------
3526 //
3527 // Generate a special Compile2Runtime blob that saves all registers, and sets
3528 // up an OopMap.
3529 //
3530 // This blob is jumped to (via a breakpoint and the signal handler) from a
3531 // safepoint in compiled code.  On entry to this blob, O7 contains the
3532 // address in the original nmethod at which we should resume normal execution.
3533 // Thus, this blob looks like a subroutine which must preserve lots of
3534 // registers and return normally.  Note that O7 is never register-allocated,
3535 // so it is guaranteed to be free here.
3536 //
3537 
3538 // The hardest part of what this blob must do is to save the 64-bit %o
3539 // registers in the 32-bit build.  A simple 'save' turn the %o's to %i's and
3540 // an interrupt will chop off their heads.  Making space in the caller's frame
3541 // first will let us save the 64-bit %o's before save'ing, but we cannot hand
3542 // the adjusted FP off to the GC stack-crawler: this will modify the caller's
3543 // SP and mess up HIS OopMaps.  So we first adjust the caller's SP, then save
3544 // the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
3545 // Tricky, tricky, tricky...
3546 
3547 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
3548   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3549 
3550   // allocate space for the code
3551   ResourceMark rm;
3552   // setup code generation tools
3553   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3554   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3555   // even larger with TraceJumps
3556   int pad = TraceJumps ? 512 : 0;
3557   CodeBuffer buffer("handler_blob", 1600 + pad, 512);
3558   MacroAssembler* masm                = new MacroAssembler(&buffer);
3559   int             frame_size_words;
3560   OopMapSet *oop_maps = new OopMapSet();
3561   OopMap* map = NULL;
3562 
3563   int start = __ offset();
3564 
3565   // If this causes a return before the processing, then do a "restore"
3566   if (cause_return) {
3567     __ restore();
3568   } else {
3569     // Make it look like we were called via the poll
3570     // so that frame constructor always sees a valid return address
3571     __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
3572     __ sub(O7, frame::pc_return_offset, O7);
3573   }
3574 
3575   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3576 
3577   // setup last_Java_sp (blows G4)
3578   __ set_last_Java_frame(SP, noreg);
3579 
3580   // call into the runtime to handle illegal instructions exception
3581   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3582   __ mov(G2_thread, O0);
3583   __ save_thread(L7_thread_cache);
3584   __ call(call_ptr);
3585   __ delayed()->nop();
3586 
3587   // Set an oopmap for the call site.
3588   // We need this not only for callee-saved registers, but also for volatile
3589   // registers that the compiler might be keeping live across a safepoint.
3590 
3591   oop_maps->add_gc_map( __ offset() - start, map);
3592 
3593   __ restore_thread(L7_thread_cache);
3594   // clear last_Java_sp
3595   __ reset_last_Java_frame();
3596 
3597   // Check for exceptions
3598   Label pending;
3599 
3600   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3601   __ tst(O1);
3602   __ brx(Assembler::notEqual, true, Assembler::pn, pending);
3603   __ delayed()->nop();
3604 
3605   RegisterSaver::restore_live_registers(masm);
3606 
3607   // We are back the the original state on entry and ready to go.
3608 
3609   __ retl();
3610   __ delayed()->nop();
3611 
3612   // Pending exception after the safepoint
3613 
3614   __ bind(pending);
3615 
3616   RegisterSaver::restore_live_registers(masm);
3617 
3618   // We are back the the original state on entry.
3619 
3620   // Tail-call forward_exception_entry, with the issuing PC in O7,
3621   // so it looks like the original nmethod called forward_exception_entry.
3622   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3623   __ JMP(O0, 0);
3624   __ delayed()->nop();
3625 
3626   // -------------
3627   // make sure all code is generated
3628   masm->flush();
3629 
3630   // return exception blob
3631   return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
3632 }
3633 
3634 //
3635 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3636 //
3637 // Generate a stub that calls into vm to find out the proper destination
3638 // of a java call. All the argument registers are live at this point
3639 // but since this is generic code we don't know what they are and the caller
3640 // must do any gc of the args.
3641 //
3642 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
3643   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3644 
3645   // allocate space for the code
3646   ResourceMark rm;
3647   // setup code generation tools
3648   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3649   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3650   // even larger with TraceJumps
3651   int pad = TraceJumps ? 512 : 0;
3652   CodeBuffer buffer(name, 1600 + pad, 512);
3653   MacroAssembler* masm                = new MacroAssembler(&buffer);
3654   int             frame_size_words;
3655   OopMapSet *oop_maps = new OopMapSet();
3656   OopMap* map = NULL;
3657 
3658   int start = __ offset();
3659 
3660   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3661 
3662   int frame_complete = __ offset();
3663 
3664   // setup last_Java_sp (blows G4)
3665   __ set_last_Java_frame(SP, noreg);
3666 
3667   // call into the runtime to handle illegal instructions exception
3668   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3669   __ mov(G2_thread, O0);
3670   __ save_thread(L7_thread_cache);
3671   __ call(destination, relocInfo::runtime_call_type);
3672   __ delayed()->nop();
3673 
3674   // O0 contains the address we are going to jump to assuming no exception got installed
3675 
3676   // Set an oopmap for the call site.
3677   // We need this not only for callee-saved registers, but also for volatile
3678   // registers that the compiler might be keeping live across a safepoint.
3679 
3680   oop_maps->add_gc_map( __ offset() - start, map);
3681 
3682   __ restore_thread(L7_thread_cache);
3683   // clear last_Java_sp
3684   __ reset_last_Java_frame();
3685 
3686   // Check for exceptions
3687   Label pending;
3688 
3689   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3690   __ tst(O1);
3691   __ brx(Assembler::notEqual, true, Assembler::pn, pending);
3692   __ delayed()->nop();
3693 
3694   // get the returned methodOop
3695 
3696   __ get_vm_result(G5_method);
3697   __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
3698 
3699   // O0 is where we want to jump, overwrite G3 which is saved and scratch
3700 
3701   __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
3702 
3703   RegisterSaver::restore_live_registers(masm);
3704 
3705   // We are back the the original state on entry and ready to go.
3706 
3707   __ JMP(G3, 0);
3708   __ delayed()->nop();
3709 
3710   // Pending exception after the safepoint
3711 
3712   __ bind(pending);
3713 
3714   RegisterSaver::restore_live_registers(masm);
3715 
3716   // We are back the the original state on entry.
3717 
3718   // Tail-call forward_exception_entry, with the issuing PC in O7,
3719   // so it looks like the original nmethod called forward_exception_entry.
3720   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3721   __ JMP(O0, 0);
3722   __ delayed()->nop();
3723 
3724   // -------------
3725   // make sure all code is generated
3726   masm->flush();
3727 
3728   // return the  blob
3729   // frame_size_words or bytes??
3730   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3731 }
3732 
3733 void SharedRuntime::generate_stubs() {
3734 
3735   _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
3736                                              "wrong_method_stub");
3737 
3738   _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
3739                                         "ic_miss_stub");
3740 
3741   _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
3742                                         "resolve_opt_virtual_call");
3743 
3744   _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
3745                                         "resolve_virtual_call");
3746 
3747   _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
3748                                         "resolve_static_call");
3749 
3750   _polling_page_safepoint_handler_blob =
3751     generate_handler_blob(CAST_FROM_FN_PTR(address,
3752                    SafepointSynchronize::handle_polling_page_exception), false);
3753 
3754   _polling_page_return_handler_blob =
3755     generate_handler_blob(CAST_FROM_FN_PTR(address,
3756                    SafepointSynchronize::handle_polling_page_exception), true);
3757 
3758   generate_deopt_blob();
3759 
3760 #ifdef COMPILER2
3761   generate_uncommon_trap_blob();
3762 #endif // COMPILER2
3763 }