/* * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ inline void MacroAssembler::pd_patch_instruction(address branch, address target) { jint& stub_inst = *(jint*) branch; stub_inst = patched_branch(target - branch, stub_inst, 0); } #ifndef PRODUCT inline void MacroAssembler::pd_print_patched_instruction(address branch) { jint stub_inst = *(jint*) branch; print_instruction(stub_inst); ::tty->print("%s", " (unresolved)"); } #endif // PRODUCT inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); } inline int AddressLiteral::low10() const { return Assembler::low10(value()); } // inlines for SPARC assembler -- dmu 5/97 inline void Assembler::check_delay() { # ifdef CHECK_DELAY guarantee( delay_state != at_delay_slot, "must say delayed() when filling delay slot"); delay_state = no_delay; # endif } inline void Assembler::emit_long(int x) { check_delay(); AbstractAssembler::emit_long(x); } inline void Assembler::emit_data(int x, relocInfo::relocType rtype) { relocate(rtype); emit_long(x); } inline void Assembler::emit_data(int x, RelocationHolder const& rspec) { relocate(rspec); emit_long(x); } inline void Assembler::add(Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::add(Register s1, int simm13a, Register d, relocInfo::relocType rtype ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rtype ); } inline void Assembler::add(Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec ); } inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt ) { v9_only(); emit_data( op(branch_op) | annul(a) | cond(c) | op2(bpr_op2) | wdisp16(intptr_t(d), intptr_t(pc())) | predict(p) | rs1(s1), rt); has_delay_slot(); } inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, Label& L) { bpr( c, a, p, s1, target(L)); } inline void Assembler::fb( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep(); emit_data( op(branch_op) | annul(a) | cond(c) | op2(fb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt); has_delay_slot(); } inline void Assembler::fb( Condition c, bool a, Label& L ) { fb(c, a, target(L)); } inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only(); emit_data( op(branch_op) | annul(a) | cond(c) | op2(fbp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt); has_delay_slot(); } inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) { fbp(c, a, cc, p, target(L)); } inline void Assembler::cb( Condition c, bool a, address d, relocInfo::relocType rt ) { v8_only(); emit_data( op(branch_op) | annul(a) | cond(c) | op2(cb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt); has_delay_slot(); } inline void Assembler::cb( Condition c, bool a, Label& L ) { cb(c, a, target(L)); } inline void Assembler::br( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep(); emit_data( op(branch_op) | annul(a) | cond(c) | op2(br_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt); has_delay_slot(); } inline void Assembler::br( Condition c, bool a, Label& L ) { br(c, a, target(L)); } inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only(); emit_data( op(branch_op) | annul(a) | cond(c) | op2(bp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt); has_delay_slot(); } inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) { bp(c, a, cc, p, target(L)); } inline void Assembler::call( address d, relocInfo::relocType rt ) { emit_data( op(call_op) | wdisp(intptr_t(d), intptr_t(pc()), 30), rt); has_delay_slot(); assert(rt != relocInfo::virtual_call_type, "must use virtual_call_Relocation::spec"); } inline void Assembler::call( Label& L, relocInfo::relocType rt ) { call( target(L), rt); } inline void Assembler::flush( Register s1, Register s2) { emit_long( op(arith_op) | op3(flush_op3) | rs1(s1) | rs2(s2)); } inline void Assembler::flush( Register s1, int simm13a) { emit_data( op(arith_op) | op3(flush_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::jmpl( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | rs2(s2)); has_delay_slot(); } inline void Assembler::jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec); has_delay_slot(); } inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d) { if (s2.is_register()) ldf(w, s1, s2.as_register(), d); else ldf(w, s1, s2.as_constant(), d); } inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | rs2(s2) ); } inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec); } inline void Assembler::ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) { relocate(a.rspec(offset)); ldf( w, a.base(), a.disp() + offset, d); } inline void Assembler::ldfsr( Register s1, Register s2) { v9_dep(); emit_long( op(ldst_op) | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::ldfsr( Register s1, int simm13a) { v9_dep(); emit_data( op(ldst_op) | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::ldxfsr( Register s1, Register s2) { v9_only(); emit_long( op(ldst_op) | rd(G1) | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::ldxfsr( Register s1, int simm13a) { v9_only(); emit_data( op(ldst_op) | rd(G1) | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::ldc( Register s1, Register s2, int crd) { v8_only(); emit_long( op(ldst_op) | fcn(crd) | op3(ldc_op3 ) | rs1(s1) | rs2(s2) ); } inline void Assembler::ldc( Register s1, int simm13a, int crd) { v8_only(); emit_data( op(ldst_op) | fcn(crd) | op3(ldc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::lddc( Register s1, Register s2, int crd) { v8_only(); emit_long( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | rs2(s2) ); } inline void Assembler::lddc( Register s1, int simm13a, int crd) { v8_only(); emit_data( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::ldcsr( Register s1, Register s2, int crd) { v8_only(); emit_long( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::ldcsr( Register s1, int simm13a, int crd) { v8_only(); emit_data( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::ldsb( Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::ldsb( Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::ldsh( Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::ldsh( Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::ldsw( Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::ldsw( Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::ldub( Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::ldub( Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::lduh( Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::lduh( Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::lduw( Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::lduw( Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::ldx( Register s1, Register s2, Register d) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::ldx( Register s1, int simm13a, Register d) { v9_only(); emit_data( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::ldd( Register s1, Register s2, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::ldd( Register s1, int simm13a, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } #ifdef _LP64 // Make all 32 bit loads signed so 64 bit registers maintain proper sign inline void Assembler::ld( Register s1, Register s2, Register d) { ldsw( s1, s2, d); } inline void Assembler::ld( Register s1, int simm13a, Register d) { ldsw( s1, simm13a, d); } #else inline void Assembler::ld( Register s1, Register s2, Register d) { lduw( s1, s2, d); } inline void Assembler::ld( Register s1, int simm13a, Register d) { lduw( s1, simm13a, d); } #endif #ifdef ASSERT // ByteSize is only a class when ASSERT is defined, otherwise it's an int. # ifdef _LP64 inline void Assembler::ld( Register s1, ByteSize simm13a, Register d) { ldsw( s1, in_bytes(simm13a), d); } # else inline void Assembler::ld( Register s1, ByteSize simm13a, Register d) { lduw( s1, in_bytes(simm13a), d); } # endif #endif inline void Assembler::ld( const Address& a, Register d, int offset) { if (a.has_index()) { assert(offset == 0, ""); ld( a.base(), a.index(), d); } else { ld( a.base(), a.disp() + offset, d); } } inline void Assembler::ldsb(const Address& a, Register d, int offset) { if (a.has_index()) { assert(offset == 0, ""); ldsb(a.base(), a.index(), d); } else { ldsb(a.base(), a.disp() + offset, d); } } inline void Assembler::ldsh(const Address& a, Register d, int offset) { if (a.has_index()) { assert(offset == 0, ""); ldsh(a.base(), a.index(), d); } else { ldsh(a.base(), a.disp() + offset, d); } } inline void Assembler::ldsw(const Address& a, Register d, int offset) { if (a.has_index()) { assert(offset == 0, ""); ldsw(a.base(), a.index(), d); } else { ldsw(a.base(), a.disp() + offset, d); } } inline void Assembler::ldub(const Address& a, Register d, int offset) { if (a.has_index()) { assert(offset == 0, ""); ldub(a.base(), a.index(), d); } else { ldub(a.base(), a.disp() + offset, d); } } inline void Assembler::lduh(const Address& a, Register d, int offset) { if (a.has_index()) { assert(offset == 0, ""); lduh(a.base(), a.index(), d); } else { lduh(a.base(), a.disp() + offset, d); } } inline void Assembler::lduw(const Address& a, Register d, int offset) { if (a.has_index()) { assert(offset == 0, ""); lduw(a.base(), a.index(), d); } else { lduw(a.base(), a.disp() + offset, d); } } inline void Assembler::ldd( const Address& a, Register d, int offset) { if (a.has_index()) { assert(offset == 0, ""); ldd( a.base(), a.index(), d); } else { ldd( a.base(), a.disp() + offset, d); } } inline void Assembler::ldx( const Address& a, Register d, int offset) { if (a.has_index()) { assert(offset == 0, ""); ldx( a.base(), a.index(), d); } else { ldx( a.base(), a.disp() + offset, d); } } inline void Assembler::ldub(Register s1, RegisterOrConstant s2, Register d) { ldub(Address(s1, s2), d); } inline void Assembler::ldsb(Register s1, RegisterOrConstant s2, Register d) { ldsb(Address(s1, s2), d); } inline void Assembler::lduh(Register s1, RegisterOrConstant s2, Register d) { lduh(Address(s1, s2), d); } inline void Assembler::ldsh(Register s1, RegisterOrConstant s2, Register d) { ldsh(Address(s1, s2), d); } inline void Assembler::lduw(Register s1, RegisterOrConstant s2, Register d) { lduw(Address(s1, s2), d); } inline void Assembler::ldsw(Register s1, RegisterOrConstant s2, Register d) { ldsw(Address(s1, s2), d); } inline void Assembler::ldx( Register s1, RegisterOrConstant s2, Register d) { ldx( Address(s1, s2), d); } inline void Assembler::ld( Register s1, RegisterOrConstant s2, Register d) { ld( Address(s1, s2), d); } inline void Assembler::ldd( Register s1, RegisterOrConstant s2, Register d) { ldd( Address(s1, s2), d); } // form effective addresses this way: inline void Assembler::add( Register s1, RegisterOrConstant s2, Register d, int offset) { if (s2.is_register()) add(s1, s2.as_register(), d); else { add(s1, s2.as_constant() + offset, d); offset = 0; } if (offset != 0) add(d, offset, d); } inline void Assembler::ldstub( Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::ldstub( Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::prefetch(Register s1, Register s2, PrefetchFcn f) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::prefetch(Register s1, int simm13a, PrefetchFcn f) { v9_only(); emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::prefetch(const Address& a, PrefetchFcn f, int offset) { v9_only(); relocate(a.rspec(offset)); prefetch(a.base(), a.disp() + offset, f); } inline void Assembler::rett( Register s1, Register s2 ) { emit_long( op(arith_op) | op3(rett_op3) | rs1(s1) | rs2(s2)); has_delay_slot(); } inline void Assembler::rett( Register s1, int simm13a, relocInfo::relocType rt) { emit_data( op(arith_op) | op3(rett_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rt); has_delay_slot(); } inline void Assembler::sethi( int imm22a, Register d, RelocationHolder const& rspec ) { emit_data( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(imm22a), rspec); } // pp 222 inline void Assembler::stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2) { if (s2.is_register()) stf(w, d, s1, s2.as_register()); else stf(w, d, s1, s2.as_constant()); } inline void Assembler::stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); } inline void Assembler::stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::stf( FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) { relocate(a.rspec(offset)); stf(w, d, a.base(), a.disp() + offset); } inline void Assembler::stfsr( Register s1, Register s2) { v9_dep(); emit_long( op(ldst_op) | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::stfsr( Register s1, int simm13a) { v9_dep(); emit_data( op(ldst_op) | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::stxfsr( Register s1, Register s2) { v9_only(); emit_long( op(ldst_op) | rd(G1) | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::stxfsr( Register s1, int simm13a) { v9_only(); emit_data( op(ldst_op) | rd(G1) | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } // p 226 inline void Assembler::stb( Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::stb( Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::sth( Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::sth( Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::stw( Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::stw( Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::stx( Register d, Register s1, Register s2) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::stx( Register d, Register s1, int simm13a) { v9_only(); emit_data( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::std( Register d, Register s1, Register s2) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::std( Register d, Register s1, int simm13a) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::st( Register d, Register s1, Register s2) { stw(d, s1, s2); } inline void Assembler::st( Register d, Register s1, int simm13a) { stw(d, s1, simm13a); } #ifdef ASSERT // ByteSize is only a class when ASSERT is defined, otherwise it's an int. inline void Assembler::st( Register d, Register s1, ByteSize simm13a) { stw(d, s1, in_bytes(simm13a)); } #endif inline void Assembler::stb(Register d, const Address& a, int offset) { if (a.has_index()) { assert(offset == 0, ""); stb(d, a.base(), a.index() ); } else { stb(d, a.base(), a.disp() + offset); } } inline void Assembler::sth(Register d, const Address& a, int offset) { if (a.has_index()) { assert(offset == 0, ""); sth(d, a.base(), a.index() ); } else { sth(d, a.base(), a.disp() + offset); } } inline void Assembler::stw(Register d, const Address& a, int offset) { if (a.has_index()) { assert(offset == 0, ""); stw(d, a.base(), a.index() ); } else { stw(d, a.base(), a.disp() + offset); } } inline void Assembler::st( Register d, const Address& a, int offset) { if (a.has_index()) { assert(offset == 0, ""); st( d, a.base(), a.index() ); } else { st( d, a.base(), a.disp() + offset); } } inline void Assembler::std(Register d, const Address& a, int offset) { if (a.has_index()) { assert(offset == 0, ""); std(d, a.base(), a.index() ); } else { std(d, a.base(), a.disp() + offset); } } inline void Assembler::stx(Register d, const Address& a, int offset) { if (a.has_index()) { assert(offset == 0, ""); stx(d, a.base(), a.index() ); } else { stx(d, a.base(), a.disp() + offset); } } inline void Assembler::stb(Register d, Register s1, RegisterOrConstant s2) { stb(d, Address(s1, s2)); } inline void Assembler::sth(Register d, Register s1, RegisterOrConstant s2) { sth(d, Address(s1, s2)); } inline void Assembler::stw(Register d, Register s1, RegisterOrConstant s2) { stw(d, Address(s1, s2)); } inline void Assembler::stx(Register d, Register s1, RegisterOrConstant s2) { stx(d, Address(s1, s2)); } inline void Assembler::std(Register d, Register s1, RegisterOrConstant s2) { std(d, Address(s1, s2)); } inline void Assembler::st( Register d, Register s1, RegisterOrConstant s2) { st( d, Address(s1, s2)); } // v8 p 99 inline void Assembler::stc( int crd, Register s1, Register s2) { v8_only(); emit_long( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | rs2(s2) ); } inline void Assembler::stc( int crd, Register s1, int simm13a) { v8_only(); emit_data( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::stdc( int crd, Register s1, Register s2) { v8_only(); emit_long( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::stdc( int crd, Register s1, int simm13a) { v8_only(); emit_data( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::stcsr( int crd, Register s1, Register s2) { v8_only(); emit_long( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::stcsr( int crd, Register s1, int simm13a) { v8_only(); emit_data( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::stdcq( int crd, Register s1, Register s2) { v8_only(); emit_long( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::stdcq( int crd, Register s1, int simm13a) { v8_only(); emit_data( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } // pp 231 inline void Assembler::swap( Register s1, Register s2, Register d) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | rs2(s2) ); } inline void Assembler::swap( Register s1, int simm13a, Register d) { v9_dep(); emit_data( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } inline void Assembler::swap( Address& a, Register d, int offset ) { relocate(a.rspec(offset)); swap( a.base(), a.disp() + offset, d ); } // Use the right loads/stores for the platform inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) { #ifdef _LP64 Assembler::ldx(s1, s2, d); #else Assembler::ld( s1, s2, d); #endif } inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) { #ifdef _LP64 Assembler::ldx(s1, simm13a, d); #else Assembler::ld( s1, simm13a, d); #endif } #ifdef ASSERT // ByteSize is only a class when ASSERT is defined, otherwise it's an int. inline void MacroAssembler::ld_ptr( Register s1, ByteSize simm13a, Register d ) { ld_ptr(s1, in_bytes(simm13a), d); } #endif inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) { #ifdef _LP64 Assembler::ldx(s1, s2, d); #else Assembler::ld( s1, s2, d); #endif } inline void MacroAssembler::ld_ptr(const Address& a, Register d, int offset) { #ifdef _LP64 Assembler::ldx(a, d, offset); #else Assembler::ld( a, d, offset); #endif } inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) { #ifdef _LP64 Assembler::stx(d, s1, s2); #else Assembler::st( d, s1, s2); #endif } inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) { #ifdef _LP64 Assembler::stx(d, s1, simm13a); #else Assembler::st( d, s1, simm13a); #endif } #ifdef ASSERT // ByteSize is only a class when ASSERT is defined, otherwise it's an int. inline void MacroAssembler::st_ptr( Register d, Register s1, ByteSize simm13a ) { st_ptr(d, s1, in_bytes(simm13a)); } #endif inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) { #ifdef _LP64 Assembler::stx(d, s1, s2); #else Assembler::st( d, s1, s2); #endif } inline void MacroAssembler::st_ptr(Register d, const Address& a, int offset) { #ifdef _LP64 Assembler::stx(d, a, offset); #else Assembler::st( d, a, offset); #endif } // Use the right loads/stores for the platform inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) { #ifdef _LP64 Assembler::ldx(s1, s2, d); #else Assembler::ldd(s1, s2, d); #endif } inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) { #ifdef _LP64 Assembler::ldx(s1, simm13a, d); #else Assembler::ldd(s1, simm13a, d); #endif } inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) { #ifdef _LP64 Assembler::ldx(s1, s2, d); #else Assembler::ldd(s1, s2, d); #endif } inline void MacroAssembler::ld_long(const Address& a, Register d, int offset) { #ifdef _LP64 Assembler::ldx(a, d, offset); #else Assembler::ldd(a, d, offset); #endif } inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) { #ifdef _LP64 Assembler::stx(d, s1, s2); #else Assembler::std(d, s1, s2); #endif } inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) { #ifdef _LP64 Assembler::stx(d, s1, simm13a); #else Assembler::std(d, s1, simm13a); #endif } inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) { #ifdef _LP64 Assembler::stx(d, s1, s2); #else Assembler::std(d, s1, s2); #endif } inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) { #ifdef _LP64 Assembler::stx(d, a, offset); #else Assembler::std(d, a, offset); #endif } // Functions for isolating 64 bit shifts for LP64 inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) { #ifdef _LP64 Assembler::sllx(s1, s2, d); #else Assembler::sll( s1, s2, d); #endif } inline void MacroAssembler::sll_ptr( Register s1, int imm6a, Register d ) { #ifdef _LP64 Assembler::sllx(s1, imm6a, d); #else Assembler::sll( s1, imm6a, d); #endif } inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) { #ifdef _LP64 Assembler::srlx(s1, s2, d); #else Assembler::srl( s1, s2, d); #endif } inline void MacroAssembler::srl_ptr( Register s1, int imm6a, Register d ) { #ifdef _LP64 Assembler::srlx(s1, imm6a, d); #else Assembler::srl( s1, imm6a, d); #endif } inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) { if (s2.is_register()) sll_ptr(s1, s2.as_register(), d); else sll_ptr(s1, s2.as_constant(), d); } // Use the right branch for the platform inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) { if (VM_Version::v9_instructions_work()) Assembler::bp(c, a, icc, p, d, rt); else Assembler::br(c, a, d, rt); } inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) { br(c, a, p, target(L)); } // Branch that tests either xcc or icc depending on the // architecture compiled (LP64 or not) inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) { #ifdef _LP64 Assembler::bp(c, a, xcc, p, d, rt); #else MacroAssembler::br(c, a, p, d, rt); #endif } inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) { brx(c, a, p, target(L)); } inline void MacroAssembler::ba( bool a, Label& L ) { br(always, a, pt, L); } // Warning: V9 only functions inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { Assembler::bp(c, a, cc, p, d, rt); } inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) { Assembler::bp(c, a, cc, p, L); } inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) { if (VM_Version::v9_instructions_work()) fbp(c, a, fcc0, p, d, rt); else Assembler::fb(c, a, d, rt); } inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) { fb(c, a, p, target(L)); } inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { Assembler::fbp(c, a, cc, p, d, rt); } inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) { Assembler::fbp(c, a, cc, p, L); } inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); } inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); } // Call with a check to see if we need to deal with the added // expense of relocation and if we overflow the displacement // of the quick call instruction./ // Check to see if we have to deal with relocations inline void MacroAssembler::call( address d, relocInfo::relocType rt ) { #ifdef _LP64 intptr_t disp; // NULL is ok because it will be relocated later. // Must change NULL to a reachable address in order to // pass asserts here and in wdisp. if ( d == NULL ) d = pc(); // Is this address within range of the call instruction? // If not, use the expensive instruction sequence disp = (intptr_t)d - (intptr_t)pc(); if ( disp != (intptr_t)(int32_t)disp ) { relocate(rt); AddressLiteral dest(d); jumpl_to(dest, O7, O7); } else { Assembler::call( d, rt ); } #else Assembler::call( d, rt ); #endif } inline void MacroAssembler::call( Label& L, relocInfo::relocType rt ) { MacroAssembler::call( target(L), rt); } inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); } inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); } // prefetch instruction inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) { if (VM_Version::v9_instructions_work()) Assembler::bp( never, true, xcc, pt, d, rt ); } inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); } // clobbers o7 on V8!! // returns delta from gotten pc to addr after inline int MacroAssembler::get_pc( Register d ) { int x = offset(); if (VM_Version::v9_instructions_work()) rdpc(d); else { Label lbl; Assembler::call(lbl, relocInfo::none); // No relocation as this is call to pc+0x8 if (d == O7) delayed()->nop(); else delayed()->mov(O7, d); bind(lbl); } return offset() - x; } // Note: All MacroAssembler::set_foo functions are defined out-of-line. // Loads the current PC of the following instruction as an immediate value in // 2 instructions. All PCs in the CodeCache are within 2 Gig of each other. inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) { intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip; #ifdef _LP64 Unimplemented(); #else Assembler::sethi( thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc)); Assembler::add(reg,thepc & 0x3ff, reg, internal_word_Relocation::spec((address)thepc)); #endif return thepc; } inline void MacroAssembler::load_contents(AddressLiteral& addrlit, Register d, int offset) { assert_not_delayed(); sethi(addrlit, d); ld(d, addrlit.low10() + offset, d); } inline void MacroAssembler::load_ptr_contents(AddressLiteral& addrlit, Register d, int offset) { assert_not_delayed(); sethi(addrlit, d); ld_ptr(d, addrlit.low10() + offset, d); } inline void MacroAssembler::store_contents(Register s, AddressLiteral& addrlit, Register temp, int offset) { assert_not_delayed(); sethi(addrlit, temp); st(s, temp, addrlit.low10() + offset); } inline void MacroAssembler::store_ptr_contents(Register s, AddressLiteral& addrlit, Register temp, int offset) { assert_not_delayed(); sethi(addrlit, temp); st_ptr(s, temp, addrlit.low10() + offset); } // This code sequence is relocatable to any address, even on LP64. inline void MacroAssembler::jumpl_to(AddressLiteral& addrlit, Register temp, Register d, int offset) { assert_not_delayed(); // Force fixed length sethi because NativeJump and NativeFarCall don't handle // variable length instruction streams. patchable_sethi(addrlit, temp); jmpl(temp, addrlit.low10() + offset, d); } inline void MacroAssembler::jump_to(AddressLiteral& addrlit, Register temp, int offset) { jumpl_to(addrlit, temp, G0, offset); } inline void MacroAssembler::jump_indirect_to(Address& a, Register temp, int ld_offset, int jmp_offset) { assert_not_delayed(); //sethi(al); // sethi is caller responsibility for this one ld_ptr(a, temp, ld_offset); jmp(temp, jmp_offset); } inline void MacroAssembler::set_oop(jobject obj, Register d) { set_oop(allocate_oop_address(obj), d); } inline void MacroAssembler::set_oop_constant(jobject obj, Register d) { set_oop(constant_oop_address(obj), d); } inline void MacroAssembler::set_oop(AddressLiteral& obj_addr, Register d) { assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc"); set(obj_addr, d); } inline void MacroAssembler::load_argument( Argument& a, Register d ) { if (a.is_register()) mov(a.as_register(), d); else ld (a.as_address(), d); } inline void MacroAssembler::store_argument( Register s, Argument& a ) { if (a.is_register()) mov(s, a.as_register()); else st_ptr (s, a.as_address()); // ABI says everything is right justified. } inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) { if (a.is_register()) mov(s, a.as_register()); else st_ptr (s, a.as_address()); } #ifdef _LP64 inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) { if (a.is_float_register()) // V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2 fmov(FloatRegisterImpl::S, s, a.as_float_register() ); else // Floats are stored in the high half of the stack entry // The low half is undefined per the ABI. stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat)); } inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) { if (a.is_float_register()) // V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2 fmov(FloatRegisterImpl::D, s, a.as_double_register() ); else stf(FloatRegisterImpl::D, s, a.as_address()); } inline void MacroAssembler::store_long_argument( Register s, Argument& a ) { if (a.is_register()) mov(s, a.as_register()); else stx(s, a.as_address()); } #endif inline void MacroAssembler::clrb( Register s1, Register s2) { stb( G0, s1, s2 ); } inline void MacroAssembler::clrh( Register s1, Register s2) { sth( G0, s1, s2 ); } inline void MacroAssembler::clr( Register s1, Register s2) { stw( G0, s1, s2 ); } inline void MacroAssembler::clrx( Register s1, Register s2) { stx( G0, s1, s2 ); } inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); } inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); } inline void MacroAssembler::clr( Register s1, int simm13a) { stw( G0, s1, simm13a); } inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); } // returns if membar generates anything, obviously this code should mirror // membar below. inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) { if( !os::is_MP() ) return false; // Not needed on single CPU if( VM_Version::v9_instructions_work() ) { const Membar_mask_bits effective_mask = Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore)); return (effective_mask != 0); } else { return true; } } inline void MacroAssembler::membar( Membar_mask_bits const7a ) { // Uniprocessors do not need memory barriers if (!os::is_MP()) return; // Weakened for current Sparcs and TSO. See the v9 manual, sections 8.4.3, // 8.4.4.3, a.31 and a.50. if( VM_Version::v9_instructions_work() ) { // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value // of the mmask subfield of const7a that does anything that isn't done // implicitly is StoreLoad. const Membar_mask_bits effective_mask = Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore)); if ( effective_mask != 0 ) { Assembler::membar( effective_mask ); } } else { // stbar is the closest there is on v8. Equivalent to membar(StoreStore). We // do not issue the stbar because to my knowledge all v8 machines implement TSO, // which guarantees that all stores behave as if an stbar were issued just after // each one of them. On these machines, stbar ought to be a nop. There doesn't // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it, // it can't be specified by stbar, nor have I come up with a way to simulate it. // // Addendum. Dave says that ldstub guarantees a write buffer flush to coherent // space. Put one here to be on the safe side. Assembler::ldstub(SP, 0, G0); } }