1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
  26   jint& stub_inst = *(jint*) branch;
  27   stub_inst = patched_branch(target - branch, stub_inst, 0);
  28 }
  29 
  30 #ifndef PRODUCT
  31 inline void MacroAssembler::pd_print_patched_instruction(address branch) {
  32   jint stub_inst = *(jint*) branch;
  33   print_instruction(stub_inst);
  34   ::tty->print("%s", " (unresolved)");
  35 }
  36 #endif // PRODUCT
  37 
  38 inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
  39 
  40 
  41 inline int AddressLiteral::low10() const {
  42   return Assembler::low10(value());
  43 }
  44 
  45 
  46 // inlines for SPARC assembler -- dmu 5/97
  47 
  48 inline void Assembler::check_delay() {
  49 # ifdef CHECK_DELAY
  50   guarantee( delay_state != at_delay_slot, "must say delayed() when filling delay slot");
  51   delay_state = no_delay;
  52 # endif
  53 }
  54 
  55 inline void Assembler::emit_long(int x) {
  56   check_delay();
  57   AbstractAssembler::emit_long(x);
  58 }
  59 
  60 inline void Assembler::emit_data(int x, relocInfo::relocType rtype) {
  61   relocate(rtype);
  62   emit_long(x);
  63 }
  64 
  65 inline void Assembler::emit_data(int x, RelocationHolder const& rspec) {
  66   relocate(rspec);
  67   emit_long(x);
  68 }
  69 
  70 
  71 inline void Assembler::add(Register s1, Register s2, Register d )                             { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); }
  72 inline void Assembler::add(Register s1, int simm13a, Register d, relocInfo::relocType rtype ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rtype ); }
  73 inline void Assembler::add(Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec ); }
  74 
  75 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bpr_op2) | wdisp16(intptr_t(d), intptr_t(pc())) | predict(p) | rs1(s1), rt);  has_delay_slot(); }
  76 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, Label& L) { bpr( c, a, p, s1, target(L)); }
  77 
  78 inline void Assembler::fb( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
  79 inline void Assembler::fb( Condition c, bool a, Label& L ) { fb(c, a, target(L)); }
  80 
  81 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fbp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
  82 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) { fbp(c, a, cc, p, target(L)); }
  83 
  84 inline void Assembler::cb( Condition c, bool a, address d, relocInfo::relocType rt ) { v8_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(cb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
  85 inline void Assembler::cb( Condition c, bool a, Label& L ) { cb(c, a, target(L)); }
  86 
  87 inline void Assembler::br( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();   emit_data( op(branch_op) | annul(a) | cond(c) | op2(br_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
  88 inline void Assembler::br( Condition c, bool a, Label& L ) { br(c, a, target(L)); }
  89 
  90 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
  91 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) { bp(c, a, cc, p, target(L)); }
  92 
  93 inline void Assembler::call( address d,  relocInfo::relocType rt ) { emit_data( op(call_op) | wdisp(intptr_t(d), intptr_t(pc()), 30), rt);  has_delay_slot(); assert(rt != relocInfo::virtual_call_type, "must use virtual_call_Relocation::spec"); }
  94 inline void Assembler::call( Label& L,   relocInfo::relocType rt ) { call( target(L), rt); }
  95 
  96 inline void Assembler::flush( Register s1, Register s2) { emit_long( op(arith_op) | op3(flush_op3) | rs1(s1) | rs2(s2)); }
  97 inline void Assembler::flush( Register s1, int simm13a) { emit_data( op(arith_op) | op3(flush_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
  98 
  99 inline void Assembler::jmpl( Register s1, Register s2, Register d                          ) { emit_long( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
 100 inline void Assembler::jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec);  has_delay_slot(); }
 101 
 102 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | rs2(s2) ); }
 103 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec); }
 104 
 105 inline void Assembler::ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) { relocate(a.rspec(offset)); ldf( w, a.base(), a.disp() + offset, d); }
 106 
 107 inline void Assembler::ldfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
 108 inline void Assembler::ldfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 109 inline void Assembler::ldxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
 110 inline void Assembler::ldxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 111 
 112 inline void Assembler::ldc(   Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | rs2(s2) ); }
 113 inline void Assembler::ldc(   Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 114 inline void Assembler::lddc(  Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | rs2(s2) ); }
 115 inline void Assembler::lddc(  Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 116 inline void Assembler::ldcsr( Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | rs2(s2) ); }
 117 inline void Assembler::ldcsr( Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 118 
 119 inline void Assembler::ldsb(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | rs2(s2) ); }
 120 inline void Assembler::ldsb(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 121 
 122 inline void Assembler::ldsh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | rs2(s2) ); }
 123 inline void Assembler::ldsh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 124 inline void Assembler::ldsw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | rs2(s2) ); }
 125 inline void Assembler::ldsw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 126 inline void Assembler::ldub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | rs2(s2) ); }
 127 inline void Assembler::ldub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 128 inline void Assembler::lduh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | rs2(s2) ); }
 129 inline void Assembler::lduh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 130 inline void Assembler::lduw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | rs2(s2) ); }
 131 inline void Assembler::lduw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 132 
 133 inline void Assembler::ldx(   Register s1, Register s2, Register d) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | rs2(s2) ); }
 134 inline void Assembler::ldx(   Register s1, int simm13a, Register d) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 135 inline void Assembler::ldd(   Register s1, Register s2, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | rs2(s2) ); }
 136 inline void Assembler::ldd(   Register s1, int simm13a, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 137 
 138 #ifdef _LP64
 139 // Make all 32 bit loads signed so 64 bit registers maintain proper sign
 140 inline void Assembler::ld(  Register s1, Register s2, Register d)      { ldsw( s1, s2, d); }
 141 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { ldsw( s1, simm13a, d); }
 142 #else
 143 inline void Assembler::ld(  Register s1, Register s2, Register d)      { lduw( s1, s2, d); }
 144 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { lduw( s1, simm13a, d); }
 145 #endif
 146 
 147 #ifdef ASSERT
 148   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 149 # ifdef _LP64
 150 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { ldsw( s1, in_bytes(simm13a), d); }
 151 # else
 152 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { lduw( s1, in_bytes(simm13a), d); }
 153 # endif
 154 #endif
 155 
 156 inline void Assembler::ld(  const Address& a, Register d, int offset) {
 157   if (a.has_index()) { assert(offset == 0, ""); ld(  a.base(), a.index(),         d); }
 158   else               {                          ld(  a.base(), a.disp() + offset, d); }
 159 }
 160 inline void Assembler::ldsb(const Address& a, Register d, int offset) {
 161   if (a.has_index()) { assert(offset == 0, ""); ldsb(a.base(), a.index(),         d); }
 162   else               {                          ldsb(a.base(), a.disp() + offset, d); }
 163 }
 164 inline void Assembler::ldsh(const Address& a, Register d, int offset) {
 165   if (a.has_index()) { assert(offset == 0, ""); ldsh(a.base(), a.index(),         d); }
 166   else               {                          ldsh(a.base(), a.disp() + offset, d); }
 167 }
 168 inline void Assembler::ldsw(const Address& a, Register d, int offset) {
 169   if (a.has_index()) { assert(offset == 0, ""); ldsw(a.base(), a.index(),         d); }
 170   else               {                          ldsw(a.base(), a.disp() + offset, d); }
 171 }
 172 inline void Assembler::ldub(const Address& a, Register d, int offset) {
 173   if (a.has_index()) { assert(offset == 0, ""); ldub(a.base(), a.index(),         d); }
 174   else               {                          ldub(a.base(), a.disp() + offset, d); }
 175 }
 176 inline void Assembler::lduh(const Address& a, Register d, int offset) {
 177   if (a.has_index()) { assert(offset == 0, ""); lduh(a.base(), a.index(),         d); }
 178   else               {                          lduh(a.base(), a.disp() + offset, d); }
 179 }
 180 inline void Assembler::lduw(const Address& a, Register d, int offset) {
 181   if (a.has_index()) { assert(offset == 0, ""); lduw(a.base(), a.index(),         d); }
 182   else               {                          lduw(a.base(), a.disp() + offset, d); }
 183 }
 184 inline void Assembler::ldd( const Address& a, Register d, int offset) {
 185   if (a.has_index()) { assert(offset == 0, ""); ldd( a.base(), a.index(),         d); }
 186   else               {                          ldd( a.base(), a.disp() + offset, d); }
 187 }
 188 inline void Assembler::ldx( const Address& a, Register d, int offset) {
 189   if (a.has_index()) { assert(offset == 0, ""); ldx( a.base(), a.index(),         d); }
 190   else               {                          ldx( a.base(), a.disp() + offset, d); }
 191 }
 192 
 193 inline void Assembler::ldub(Register s1, RegisterOrConstant s2, Register d) { ldub(Address(s1, s2), d); }
 194 inline void Assembler::ldsb(Register s1, RegisterOrConstant s2, Register d) { ldsb(Address(s1, s2), d); }
 195 inline void Assembler::lduh(Register s1, RegisterOrConstant s2, Register d) { lduh(Address(s1, s2), d); }
 196 inline void Assembler::ldsh(Register s1, RegisterOrConstant s2, Register d) { ldsh(Address(s1, s2), d); }
 197 inline void Assembler::lduw(Register s1, RegisterOrConstant s2, Register d) { lduw(Address(s1, s2), d); }
 198 inline void Assembler::ldsw(Register s1, RegisterOrConstant s2, Register d) { ldsw(Address(s1, s2), d); }
 199 inline void Assembler::ldx( Register s1, RegisterOrConstant s2, Register d) { ldx( Address(s1, s2), d); }
 200 inline void Assembler::ld(  Register s1, RegisterOrConstant s2, Register d) { ld(  Address(s1, s2), d); }
 201 inline void Assembler::ldd( Register s1, RegisterOrConstant s2, Register d) { ldd( Address(s1, s2), d); }
 202 
 203 // form effective addresses this way:
 204 inline void Assembler::add(   Register s1, RegisterOrConstant s2, Register d, int offset) {
 205   if (s2.is_register())  add(s1, s2.as_register(), d);
 206   else                 { add(s1, s2.as_constant() + offset, d); offset = 0; }
 207   if (offset != 0)       add(d,  offset,                    d);
 208 }
 209 
 210 inline void Assembler::ldstub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | rs2(s2) ); }
 211 inline void Assembler::ldstub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 212 
 213 
 214 inline void Assembler::prefetch(Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
 215 inline void Assembler::prefetch(Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 216 
 217 inline void Assembler::prefetch(const Address& a, PrefetchFcn f, int offset) { v9_only(); relocate(a.rspec(offset)); prefetch(a.base(), a.disp() + offset, f); }
 218 
 219 
 220 inline void Assembler::rett( Register s1, Register s2                         ) { emit_long( op(arith_op) | op3(rett_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
 221 inline void Assembler::rett( Register s1, int simm13a, relocInfo::relocType rt) { emit_data( op(arith_op) | op3(rett_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rt);  has_delay_slot(); }
 222 
 223 inline void Assembler::sethi( int imm22a, Register d, RelocationHolder const& rspec ) { emit_data( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(imm22a), rspec); }
 224 
 225   // pp 222
 226 
 227 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); }
 228 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 229 
 230 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) { relocate(a.rspec(offset)); stf(w, d, a.base(), a.disp() + offset); }
 231 
 232 inline void Assembler::stfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
 233 inline void Assembler::stfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 234 inline void Assembler::stxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
 235 inline void Assembler::stxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 236 
 237   // p 226
 238 
 239 inline void Assembler::stb(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | rs2(s2) ); }
 240 inline void Assembler::stb(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 241 inline void Assembler::sth(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | rs2(s2) ); }
 242 inline void Assembler::sth(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 243 inline void Assembler::stw(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | rs2(s2) ); }
 244 inline void Assembler::stw(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 245 
 246 
 247 inline void Assembler::stx(  Register d, Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | rs2(s2) ); }
 248 inline void Assembler::stx(  Register d, Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 249 inline void Assembler::std(  Register d, Register s1, Register s2) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | rs2(s2) ); }
 250 inline void Assembler::std(  Register d, Register s1, int simm13a) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 251 
 252 inline void Assembler::st( Register d, Register s1, Register s2)      { stw(d, s1, s2); }
 253 inline void Assembler::st( Register d, Register s1, int simm13a)      { stw(d, s1, simm13a); }
 254 
 255 #ifdef ASSERT
 256 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 257 inline void Assembler::st( Register d, Register s1, ByteSize simm13a) { stw(d, s1, in_bytes(simm13a)); }
 258 #endif
 259 
 260 inline void Assembler::stb(Register d, const Address& a, int offset) {
 261   if (a.has_index()) { assert(offset == 0, ""); stb(d, a.base(), a.index()        ); }
 262   else               {                          stb(d, a.base(), a.disp() + offset); }
 263 }
 264 inline void Assembler::sth(Register d, const Address& a, int offset) {
 265   if (a.has_index()) { assert(offset == 0, ""); sth(d, a.base(), a.index()        ); }
 266   else               {                          sth(d, a.base(), a.disp() + offset); }
 267 }
 268 inline void Assembler::stw(Register d, const Address& a, int offset) {
 269   if (a.has_index()) { assert(offset == 0, ""); stw(d, a.base(), a.index()        ); }
 270   else               {                          stw(d, a.base(), a.disp() + offset); }
 271 }
 272 inline void Assembler::st( Register d, const Address& a, int offset) {
 273   if (a.has_index()) { assert(offset == 0, ""); st( d, a.base(), a.index()        ); }
 274   else               {                          st( d, a.base(), a.disp() + offset); }
 275 }
 276 inline void Assembler::std(Register d, const Address& a, int offset) {
 277   if (a.has_index()) { assert(offset == 0, ""); std(d, a.base(), a.index()        ); }
 278   else               {                          std(d, a.base(), a.disp() + offset); }
 279 }
 280 inline void Assembler::stx(Register d, const Address& a, int offset) {
 281   if (a.has_index()) { assert(offset == 0, ""); stx(d, a.base(), a.index()        ); }
 282   else               {                          stx(d, a.base(), a.disp() + offset); }
 283 }
 284 
 285 inline void Assembler::stb(Register d, Register s1, RegisterOrConstant s2) { stb(d, Address(s1, s2)); }
 286 inline void Assembler::sth(Register d, Register s1, RegisterOrConstant s2) { sth(d, Address(s1, s2)); }
 287 inline void Assembler::stx(Register d, Register s1, RegisterOrConstant s2) { stx(d, Address(s1, s2)); }
 288 inline void Assembler::std(Register d, Register s1, RegisterOrConstant s2) { std(d, Address(s1, s2)); }
 289 inline void Assembler::st( Register d, Register s1, RegisterOrConstant s2) { st( d, Address(s1, s2)); }
 290 
 291 // v8 p 99
 292 
 293 inline void Assembler::stc(    int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | rs2(s2) ); }
 294 inline void Assembler::stc(    int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 295 inline void Assembler::stdc(   int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | rs2(s2) ); }
 296 inline void Assembler::stdc(   int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 297 inline void Assembler::stcsr(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | rs2(s2) ); }
 298 inline void Assembler::stcsr(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 299 inline void Assembler::stdcq(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | rs2(s2) ); }
 300 inline void Assembler::stdcq(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 301 
 302 
 303 // pp 231
 304 
 305 inline void Assembler::swap(    Register s1, Register s2, Register d) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | rs2(s2) ); }
 306 inline void Assembler::swap(    Register s1, int simm13a, Register d) { v9_dep();  emit_data( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 307 
 308 inline void Assembler::swap(    Address& a, Register d, int offset ) { relocate(a.rspec(offset)); swap(  a.base(), a.disp() + offset, d ); }
 309 
 310 
 311 // Use the right loads/stores for the platform
 312 inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
 313 #ifdef _LP64
 314   Assembler::ldx(s1, s2, d);
 315 #else
 316   Assembler::ld( s1, s2, d);
 317 #endif
 318 }
 319 
 320 inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
 321 #ifdef _LP64
 322   Assembler::ldx(s1, simm13a, d);
 323 #else
 324   Assembler::ld( s1, simm13a, d);
 325 #endif
 326 }
 327 
 328 #ifdef ASSERT
 329 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 330 inline void MacroAssembler::ld_ptr( Register s1, ByteSize simm13a, Register d ) {
 331   ld_ptr(s1, in_bytes(simm13a), d);
 332 }
 333 #endif
 334 
 335 inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) {
 336 #ifdef _LP64
 337   Assembler::ldx(s1, s2, d);
 338 #else
 339   Assembler::ld( s1, s2, d);
 340 #endif
 341 }
 342 
 343 inline void MacroAssembler::ld_ptr(const Address& a, Register d, int offset) {
 344 #ifdef _LP64
 345   Assembler::ldx(a, d, offset);
 346 #else
 347   Assembler::ld( a, d, offset);
 348 #endif
 349 }
 350 
 351 inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
 352 #ifdef _LP64
 353   Assembler::stx(d, s1, s2);
 354 #else
 355   Assembler::st( d, s1, s2);
 356 #endif
 357 }
 358 
 359 inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
 360 #ifdef _LP64
 361   Assembler::stx(d, s1, simm13a);
 362 #else
 363   Assembler::st( d, s1, simm13a);
 364 #endif
 365 }
 366 
 367 #ifdef ASSERT
 368 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 369 inline void MacroAssembler::st_ptr( Register d, Register s1, ByteSize simm13a ) {
 370   st_ptr(d, s1, in_bytes(simm13a));
 371 }
 372 #endif
 373 
 374 inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) {
 375 #ifdef _LP64
 376   Assembler::stx(d, s1, s2);
 377 #else
 378   Assembler::st( d, s1, s2);
 379 #endif
 380 }
 381 
 382 inline void MacroAssembler::st_ptr(Register d, const Address& a, int offset) {
 383 #ifdef _LP64
 384   Assembler::stx(d, a, offset);
 385 #else
 386   Assembler::st( d, a, offset);
 387 #endif
 388 }
 389 
 390 // Use the right loads/stores for the platform
 391 inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
 392 #ifdef _LP64
 393   Assembler::ldx(s1, s2, d);
 394 #else
 395   Assembler::ldd(s1, s2, d);
 396 #endif
 397 }
 398 
 399 inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
 400 #ifdef _LP64
 401   Assembler::ldx(s1, simm13a, d);
 402 #else
 403   Assembler::ldd(s1, simm13a, d);
 404 #endif
 405 }
 406 
 407 inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) {
 408 #ifdef _LP64
 409   Assembler::ldx(s1, s2, d);
 410 #else
 411   Assembler::ldd(s1, s2, d);
 412 #endif
 413 }
 414 
 415 inline void MacroAssembler::ld_long(const Address& a, Register d, int offset) {
 416 #ifdef _LP64
 417   Assembler::ldx(a, d, offset);
 418 #else
 419   Assembler::ldd(a, d, offset);
 420 #endif
 421 }
 422 
 423 inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
 424 #ifdef _LP64
 425   Assembler::stx(d, s1, s2);
 426 #else
 427   Assembler::std(d, s1, s2);
 428 #endif
 429 }
 430 
 431 inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
 432 #ifdef _LP64
 433   Assembler::stx(d, s1, simm13a);
 434 #else
 435   Assembler::std(d, s1, simm13a);
 436 #endif
 437 }
 438 
 439 inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) {
 440 #ifdef _LP64
 441   Assembler::stx(d, s1, s2);
 442 #else
 443   Assembler::std(d, s1, s2);
 444 #endif
 445 }
 446 
 447 inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
 448 #ifdef _LP64
 449   Assembler::stx(d, a, offset);
 450 #else
 451   Assembler::std(d, a, offset);
 452 #endif
 453 }
 454 
 455 // Functions for isolating 64 bit shifts for LP64
 456 
 457 inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
 458 #ifdef _LP64
 459   Assembler::sllx(s1, s2, d);
 460 #else
 461   Assembler::sll( s1, s2, d);
 462 #endif
 463 }
 464 
 465 inline void MacroAssembler::sll_ptr( Register s1, int imm6a,   Register d ) {
 466 #ifdef _LP64
 467   Assembler::sllx(s1, imm6a, d);
 468 #else
 469   Assembler::sll( s1, imm6a, d);
 470 #endif
 471 }
 472 
 473 inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
 474 #ifdef _LP64
 475   Assembler::srlx(s1, s2, d);
 476 #else
 477   Assembler::srl( s1, s2, d);
 478 #endif
 479 }
 480 
 481 inline void MacroAssembler::srl_ptr( Register s1, int imm6a,   Register d ) {
 482 #ifdef _LP64
 483   Assembler::srlx(s1, imm6a, d);
 484 #else
 485   Assembler::srl( s1, imm6a, d);
 486 #endif
 487 }
 488 
 489 inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) {
 490   if (s2.is_register())  sll_ptr(s1, s2.as_register(), d);
 491   else                   sll_ptr(s1, s2.as_constant(), d);
 492 }
 493 
 494 // Use the right branch for the platform
 495 
 496 inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
 497   if (VM_Version::v9_instructions_work())
 498     Assembler::bp(c, a, icc, p, d, rt);
 499   else
 500     Assembler::br(c, a, d, rt);
 501 }
 502 
 503 inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
 504   br(c, a, p, target(L));
 505 }
 506 
 507 
 508 // Branch that tests either xcc or icc depending on the
 509 // architecture compiled (LP64 or not)
 510 inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
 511 #ifdef _LP64
 512     Assembler::bp(c, a, xcc, p, d, rt);
 513 #else
 514     MacroAssembler::br(c, a, p, d, rt);
 515 #endif
 516 }
 517 
 518 inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
 519   brx(c, a, p, target(L));
 520 }
 521 
 522 inline void MacroAssembler::ba( bool a, Label& L ) {
 523   br(always, a, pt, L);
 524 }
 525 
 526 // Warning: V9 only functions
 527 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
 528   Assembler::bp(c, a, cc, p, d, rt);
 529 }
 530 
 531 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
 532   Assembler::bp(c, a, cc, p, L);
 533 }
 534 
 535 inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
 536   if (VM_Version::v9_instructions_work())
 537     fbp(c, a, fcc0, p, d, rt);
 538   else
 539     Assembler::fb(c, a, d, rt);
 540 }
 541 
 542 inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
 543   fb(c, a, p, target(L));
 544 }
 545 
 546 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
 547   Assembler::fbp(c, a, cc, p, d, rt);
 548 }
 549 
 550 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
 551   Assembler::fbp(c, a, cc, p, L);
 552 }
 553 
 554 inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
 555 inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
 556 
 557 // Call with a check to see if we need to deal with the added
 558 // expense of relocation and if we overflow the displacement
 559 // of the quick call instruction./
 560 // Check to see if we have to deal with relocations
 561 inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
 562 #ifdef _LP64
 563   intptr_t disp;
 564   // NULL is ok because it will be relocated later.
 565   // Must change NULL to a reachable address in order to
 566   // pass asserts here and in wdisp.
 567   if ( d == NULL )
 568     d = pc();
 569 
 570   // Is this address within range of the call instruction?
 571   // If not, use the expensive instruction sequence
 572   disp = (intptr_t)d - (intptr_t)pc();
 573   if ( disp != (intptr_t)(int32_t)disp ) {
 574     relocate(rt);
 575     AddressLiteral dest(d);
 576     jumpl_to(dest, O7, O7);
 577   }
 578   else {
 579     Assembler::call( d, rt );
 580   }
 581 #else
 582   Assembler::call( d, rt );
 583 #endif
 584 }
 585 
 586 inline void MacroAssembler::call( Label& L,   relocInfo::relocType rt ) {
 587   MacroAssembler::call( target(L), rt);
 588 }
 589 
 590 
 591 
 592 inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
 593 inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
 594 
 595 // prefetch instruction
 596 inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
 597   if (VM_Version::v9_instructions_work())
 598     Assembler::bp( never, true, xcc, pt, d, rt );
 599 }
 600 inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
 601 
 602 
 603 // clobbers o7 on V8!!
 604 // returns delta from gotten pc to addr after
 605 inline int MacroAssembler::get_pc( Register d ) {
 606   int x = offset();
 607   if (VM_Version::v9_instructions_work())
 608     rdpc(d);
 609   else {
 610     Label lbl;
 611     Assembler::call(lbl, relocInfo::none);  // No relocation as this is call to pc+0x8
 612     if (d == O7)  delayed()->nop();
 613     else          delayed()->mov(O7, d);
 614     bind(lbl);
 615   }
 616   return offset() - x;
 617 }
 618 
 619 
 620 // Note:  All MacroAssembler::set_foo functions are defined out-of-line.
 621 
 622 
 623 // Loads the current PC of the following instruction as an immediate value in
 624 // 2 instructions.  All PCs in the CodeCache are within 2 Gig of each other.
 625 inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
 626   intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
 627 #ifdef _LP64
 628   Unimplemented();
 629 #else
 630   Assembler::sethi(  thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
 631   Assembler::add(reg,thepc &  0x3ff, reg, internal_word_Relocation::spec((address)thepc));
 632 #endif
 633   return thepc;
 634 }
 635 
 636 
 637 inline void MacroAssembler::load_contents(AddressLiteral& addrlit, Register d, int offset) {
 638   assert_not_delayed();
 639   sethi(addrlit, d);
 640   ld(d, addrlit.low10() + offset, d);
 641 }
 642 
 643 
 644 inline void MacroAssembler::load_ptr_contents(AddressLiteral& addrlit, Register d, int offset) {
 645   assert_not_delayed();
 646   sethi(addrlit, d);
 647   ld_ptr(d, addrlit.low10() + offset, d);
 648 }
 649 
 650 
 651 inline void MacroAssembler::store_contents(Register s, AddressLiteral& addrlit, Register temp, int offset) {
 652   assert_not_delayed();
 653   sethi(addrlit, temp);
 654   st(s, temp, addrlit.low10() + offset);
 655 }
 656 
 657 
 658 inline void MacroAssembler::store_ptr_contents(Register s, AddressLiteral& addrlit, Register temp, int offset) {
 659   assert_not_delayed();
 660   sethi(addrlit, temp);
 661   st_ptr(s, temp, addrlit.low10() + offset);
 662 }
 663 
 664 
 665 // This code sequence is relocatable to any address, even on LP64.
 666 inline void MacroAssembler::jumpl_to(AddressLiteral& addrlit, Register temp, Register d, int offset) {
 667   assert_not_delayed();
 668   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
 669   // variable length instruction streams.
 670   patchable_sethi(addrlit, temp);
 671   jmpl(temp, addrlit.low10() + offset, d);
 672 }
 673 
 674 
 675 inline void MacroAssembler::jump_to(AddressLiteral& addrlit, Register temp, int offset) {
 676   jumpl_to(addrlit, temp, G0, offset);
 677 }
 678 
 679 
 680 inline void MacroAssembler::jump_indirect_to(Address& a, Register temp,
 681                                              int ld_offset, int jmp_offset) {
 682   assert_not_delayed();
 683   //sethi(al);                   // sethi is caller responsibility for this one
 684   ld_ptr(a, temp, ld_offset);
 685   jmp(temp, jmp_offset);
 686 }
 687 
 688 
 689 inline void MacroAssembler::set_oop(jobject obj, Register d) {
 690   set_oop(allocate_oop_address(obj), d);
 691 }
 692 
 693 
 694 inline void MacroAssembler::set_oop_constant(jobject obj, Register d) {
 695   set_oop(constant_oop_address(obj), d);
 696 }
 697 
 698 
 699 inline void MacroAssembler::set_oop(AddressLiteral& obj_addr, Register d) {
 700   assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
 701   set(obj_addr, d);
 702 }
 703 
 704 
 705 inline void MacroAssembler::load_argument( Argument& a, Register  d ) {
 706   if (a.is_register())
 707     mov(a.as_register(), d);
 708   else
 709     ld (a.as_address(),  d);
 710 }
 711 
 712 inline void MacroAssembler::store_argument( Register s, Argument& a ) {
 713   if (a.is_register())
 714     mov(s, a.as_register());
 715   else
 716     st_ptr (s, a.as_address());         // ABI says everything is right justified.
 717 }
 718 
 719 inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
 720   if (a.is_register())
 721     mov(s, a.as_register());
 722   else
 723     st_ptr (s, a.as_address());
 724 }
 725 
 726 
 727 #ifdef _LP64
 728 inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
 729   if (a.is_float_register())
 730 // V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
 731     fmov(FloatRegisterImpl::S, s, a.as_float_register() );
 732   else
 733     // Floats are stored in the high half of the stack entry
 734     // The low half is undefined per the ABI.
 735     stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
 736 }
 737 
 738 inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
 739   if (a.is_float_register())
 740 // V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
 741     fmov(FloatRegisterImpl::D, s, a.as_double_register() );
 742   else
 743     stf(FloatRegisterImpl::D, s, a.as_address());
 744 }
 745 
 746 inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
 747   if (a.is_register())
 748     mov(s, a.as_register());
 749   else
 750     stx(s, a.as_address());
 751 }
 752 #endif
 753 
 754 inline void MacroAssembler::clrb( Register s1, Register s2) {  stb( G0, s1, s2 ); }
 755 inline void MacroAssembler::clrh( Register s1, Register s2) {  sth( G0, s1, s2 ); }
 756 inline void MacroAssembler::clr(  Register s1, Register s2) {  stw( G0, s1, s2 ); }
 757 inline void MacroAssembler::clrx( Register s1, Register s2) {  stx( G0, s1, s2 ); }
 758 
 759 inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
 760 inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
 761 inline void MacroAssembler::clr(  Register s1, int simm13a) { stw( G0, s1, simm13a); }
 762 inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
 763 
 764 // returns if membar generates anything, obviously this code should mirror
 765 // membar below.
 766 inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
 767   if( !os::is_MP() ) return false;  // Not needed on single CPU
 768   if( VM_Version::v9_instructions_work() ) {
 769     const Membar_mask_bits effective_mask =
 770         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
 771     return (effective_mask != 0);
 772   } else {
 773     return true;
 774   }
 775 }
 776 
 777 inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
 778   // Uniprocessors do not need memory barriers
 779   if (!os::is_MP()) return;
 780   // Weakened for current Sparcs and TSO.  See the v9 manual, sections 8.4.3,
 781   // 8.4.4.3, a.31 and a.50.
 782   if( VM_Version::v9_instructions_work() ) {
 783     // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
 784     // of the mmask subfield of const7a that does anything that isn't done
 785     // implicitly is StoreLoad.
 786     const Membar_mask_bits effective_mask =
 787         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
 788     if ( effective_mask != 0 ) {
 789       Assembler::membar( effective_mask );
 790     }
 791   } else {
 792     // stbar is the closest there is on v8.  Equivalent to membar(StoreStore).  We
 793     // do not issue the stbar because to my knowledge all v8 machines implement TSO,
 794     // which guarantees that all stores behave as if an stbar were issued just after
 795     // each one of them.  On these machines, stbar ought to be a nop.  There doesn't
 796     // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
 797     // it can't be specified by stbar, nor have I come up with a way to simulate it.
 798     //
 799     // Addendum.  Dave says that ldstub guarantees a write buffer flush to coherent
 800     // space.  Put one here to be on the safe side.
 801     Assembler::ldstub(SP, 0, G0);
 802   }
 803 }