1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_thread.cpp.incl"
  27 
  28 #ifdef DTRACE_ENABLED
  29 
  30 // Only bother with this argument setup if dtrace is available
  31 
  32 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
  33 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
  34 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
  35   intptr_t, intptr_t, bool);
  36 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
  37   intptr_t, intptr_t, bool);
  38 
  39 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
  40   {                                                                        \
  41     ResourceMark rm(this);                                                 \
  42     int len = 0;                                                           \
  43     const char* name = (javathread)->get_thread_name();                    \
  44     len = strlen(name);                                                    \
  45     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
  46       name, len,                                                           \
  47       java_lang_Thread::thread_id((javathread)->threadObj()),              \
  48       (javathread)->osthread()->thread_id(),                               \
  49       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
  50   }
  51 
  52 #else //  ndef DTRACE_ENABLED
  53 
  54 #define DTRACE_THREAD_PROBE(probe, javathread)
  55 
  56 #endif // ndef DTRACE_ENABLED
  57 
  58 // Class hierarchy
  59 // - Thread
  60 //   - VMThread
  61 //   - WatcherThread
  62 //   - ConcurrentMarkSweepThread
  63 //   - JavaThread
  64 //     - CompilerThread
  65 
  66 // ======= Thread ========
  67 
  68 // Support for forcing alignment of thread objects for biased locking
  69 void* Thread::operator new(size_t size) {
  70   if (UseBiasedLocking) {
  71     const int alignment = markOopDesc::biased_lock_alignment;
  72     size_t aligned_size = size + (alignment - sizeof(intptr_t));
  73     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
  74     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
  75     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
  76            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
  77            "JavaThread alignment code overflowed allocated storage");
  78     if (TraceBiasedLocking) {
  79       if (aligned_addr != real_malloc_addr)
  80         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
  81                       real_malloc_addr, aligned_addr);
  82     }
  83     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
  84     return aligned_addr;
  85   } else {
  86     return CHeapObj::operator new(size);
  87   }
  88 }
  89 
  90 void Thread::operator delete(void* p) {
  91   if (UseBiasedLocking) {
  92     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
  93     CHeapObj::operator delete(real_malloc_addr);
  94   } else {
  95     CHeapObj::operator delete(p);
  96   }
  97 }
  98 
  99 
 100 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 101 // JavaThread
 102 
 103 
 104 Thread::Thread() {
 105   // stack
 106   _stack_base   = NULL;
 107   _stack_size   = 0;
 108   _self_raw_id  = 0;
 109   _lgrp_id      = -1;
 110   _osthread     = NULL;
 111 
 112   // allocated data structures
 113   set_resource_area(new ResourceArea());
 114   set_handle_area(new HandleArea(NULL));
 115   set_active_handles(NULL);
 116   set_free_handle_block(NULL);
 117   set_last_handle_mark(NULL);
 118   set_osthread(NULL);
 119 
 120   // This initial value ==> never claimed.
 121   _oops_do_parity = 0;
 122 
 123   // the handle mark links itself to last_handle_mark
 124   new HandleMark(this);
 125 
 126   // plain initialization
 127   debug_only(_owned_locks = NULL;)
 128   debug_only(_allow_allocation_count = 0;)
 129   NOT_PRODUCT(_allow_safepoint_count = 0;)
 130   NOT_PRODUCT(_skip_gcalot = false;)
 131   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 132   _jvmti_env_iteration_count = 0;
 133   _vm_operation_started_count = 0;
 134   _vm_operation_completed_count = 0;
 135   _current_pending_monitor = NULL;
 136   _current_pending_monitor_is_from_java = true;
 137   _current_waiting_monitor = NULL;
 138   _num_nested_signal = 0;
 139   omFreeList = NULL ;
 140   omFreeCount = 0 ;
 141   omFreeProvision = 32 ;
 142 
 143   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 144   _suspend_flags = 0;
 145 
 146   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 147   _hashStateX = os::random() ;
 148   _hashStateY = 842502087 ;
 149   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 150   _hashStateW = 273326509 ;
 151 
 152   _OnTrap   = 0 ;
 153   _schedctl = NULL ;
 154   _Stalled  = 0 ;
 155   _TypeTag  = 0x2BAD ;
 156 
 157   // Many of the following fields are effectively final - immutable
 158   // Note that nascent threads can't use the Native Monitor-Mutex
 159   // construct until the _MutexEvent is initialized ...
 160   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 161   // we might instead use a stack of ParkEvents that we could provision on-demand.
 162   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 163   // and ::Release()
 164   _ParkEvent   = ParkEvent::Allocate (this) ;
 165   _SleepEvent  = ParkEvent::Allocate (this) ;
 166   _MutexEvent  = ParkEvent::Allocate (this) ;
 167   _MuxEvent    = ParkEvent::Allocate (this) ;
 168 
 169 #ifdef CHECK_UNHANDLED_OOPS
 170   if (CheckUnhandledOops) {
 171     _unhandled_oops = new UnhandledOops(this);
 172   }
 173 #endif // CHECK_UNHANDLED_OOPS
 174 #ifdef ASSERT
 175   if (UseBiasedLocking) {
 176     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 177     assert(this == _real_malloc_address ||
 178            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 179            "bug in forced alignment of thread objects");
 180   }
 181 #endif /* ASSERT */
 182 }
 183 
 184 void Thread::initialize_thread_local_storage() {
 185   // Note: Make sure this method only calls
 186   // non-blocking operations. Otherwise, it might not work
 187   // with the thread-startup/safepoint interaction.
 188 
 189   // During Java thread startup, safepoint code should allow this
 190   // method to complete because it may need to allocate memory to
 191   // store information for the new thread.
 192 
 193   // initialize structure dependent on thread local storage
 194   ThreadLocalStorage::set_thread(this);
 195 
 196   // set up any platform-specific state.
 197   os::initialize_thread();
 198 
 199 }
 200 
 201 void Thread::record_stack_base_and_size() {
 202   set_stack_base(os::current_stack_base());
 203   set_stack_size(os::current_stack_size());
 204 }
 205 
 206 
 207 Thread::~Thread() {
 208   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 209   ObjectSynchronizer::omFlush (this) ;
 210 
 211   // deallocate data structures
 212   delete resource_area();
 213   // since the handle marks are using the handle area, we have to deallocated the root
 214   // handle mark before deallocating the thread's handle area,
 215   assert(last_handle_mark() != NULL, "check we have an element");
 216   delete last_handle_mark();
 217   assert(last_handle_mark() == NULL, "check we have reached the end");
 218 
 219   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 220   // We NULL out the fields for good hygiene.
 221   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 222   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 223   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 224   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 225 
 226   delete handle_area();
 227 
 228   // osthread() can be NULL, if creation of thread failed.
 229   if (osthread() != NULL) os::free_thread(osthread());
 230 
 231   delete _SR_lock;
 232 
 233   // clear thread local storage if the Thread is deleting itself
 234   if (this == Thread::current()) {
 235     ThreadLocalStorage::set_thread(NULL);
 236   } else {
 237     // In the case where we're not the current thread, invalidate all the
 238     // caches in case some code tries to get the current thread or the
 239     // thread that was destroyed, and gets stale information.
 240     ThreadLocalStorage::invalidate_all();
 241   }
 242   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 243 }
 244 
 245 // NOTE: dummy function for assertion purpose.
 246 void Thread::run() {
 247   ShouldNotReachHere();
 248 }
 249 
 250 #ifdef ASSERT
 251 // Private method to check for dangling thread pointer
 252 void check_for_dangling_thread_pointer(Thread *thread) {
 253  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 254          "possibility of dangling Thread pointer");
 255 }
 256 #endif
 257 
 258 
 259 #ifndef PRODUCT
 260 // Tracing method for basic thread operations
 261 void Thread::trace(const char* msg, const Thread* const thread) {
 262   if (!TraceThreadEvents) return;
 263   ResourceMark rm;
 264   ThreadCritical tc;
 265   const char *name = "non-Java thread";
 266   int prio = -1;
 267   if (thread->is_Java_thread()
 268       && !thread->is_Compiler_thread()) {
 269     // The Threads_lock must be held to get information about
 270     // this thread but may not be in some situations when
 271     // tracing  thread events.
 272     bool release_Threads_lock = false;
 273     if (!Threads_lock->owned_by_self()) {
 274       Threads_lock->lock();
 275       release_Threads_lock = true;
 276     }
 277     JavaThread* jt = (JavaThread *)thread;
 278     name = (char *)jt->get_thread_name();
 279     oop thread_oop = jt->threadObj();
 280     if (thread_oop != NULL) {
 281       prio = java_lang_Thread::priority(thread_oop);
 282     }
 283     if (release_Threads_lock) {
 284       Threads_lock->unlock();
 285     }
 286   }
 287   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 288 }
 289 #endif
 290 
 291 
 292 ThreadPriority Thread::get_priority(const Thread* const thread) {
 293   trace("get priority", thread);
 294   ThreadPriority priority;
 295   // Can return an error!
 296   (void)os::get_priority(thread, priority);
 297   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 298   return priority;
 299 }
 300 
 301 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 302   trace("set priority", thread);
 303   debug_only(check_for_dangling_thread_pointer(thread);)
 304   // Can return an error!
 305   (void)os::set_priority(thread, priority);
 306 }
 307 
 308 
 309 void Thread::start(Thread* thread) {
 310   trace("start", thread);
 311   // Start is different from resume in that its safety is guaranteed by context or
 312   // being called from a Java method synchronized on the Thread object.
 313   if (!DisableStartThread) {
 314     if (thread->is_Java_thread()) {
 315       // Initialize the thread state to RUNNABLE before starting this thread.
 316       // Can not set it after the thread started because we do not know the
 317       // exact thread state at that time. It could be in MONITOR_WAIT or
 318       // in SLEEPING or some other state.
 319       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 320                                           java_lang_Thread::RUNNABLE);
 321     }
 322     os::start_thread(thread);
 323   }
 324 }
 325 
 326 // Enqueue a VM_Operation to do the job for us - sometime later
 327 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 328   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 329   VMThread::execute(vm_stop);
 330 }
 331 
 332 
 333 //
 334 // Check if an external suspend request has completed (or has been
 335 // cancelled). Returns true if the thread is externally suspended and
 336 // false otherwise.
 337 //
 338 // The bits parameter returns information about the code path through
 339 // the routine. Useful for debugging:
 340 //
 341 // set in is_ext_suspend_completed():
 342 // 0x00000001 - routine was entered
 343 // 0x00000010 - routine return false at end
 344 // 0x00000100 - thread exited (return false)
 345 // 0x00000200 - suspend request cancelled (return false)
 346 // 0x00000400 - thread suspended (return true)
 347 // 0x00001000 - thread is in a suspend equivalent state (return true)
 348 // 0x00002000 - thread is native and walkable (return true)
 349 // 0x00004000 - thread is native_trans and walkable (needed retry)
 350 //
 351 // set in wait_for_ext_suspend_completion():
 352 // 0x00010000 - routine was entered
 353 // 0x00020000 - suspend request cancelled before loop (return false)
 354 // 0x00040000 - thread suspended before loop (return true)
 355 // 0x00080000 - suspend request cancelled in loop (return false)
 356 // 0x00100000 - thread suspended in loop (return true)
 357 // 0x00200000 - suspend not completed during retry loop (return false)
 358 //
 359 
 360 // Helper class for tracing suspend wait debug bits.
 361 //
 362 // 0x00000100 indicates that the target thread exited before it could
 363 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 364 // 0x00080000 each indicate a cancelled suspend request so they don't
 365 // count as wait failures either.
 366 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 367 
 368 class TraceSuspendDebugBits : public StackObj {
 369  private:
 370   JavaThread * jt;
 371   bool         is_wait;
 372   bool         called_by_wait;  // meaningful when !is_wait
 373   uint32_t *   bits;
 374 
 375  public:
 376   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 377                         uint32_t *_bits) {
 378     jt             = _jt;
 379     is_wait        = _is_wait;
 380     called_by_wait = _called_by_wait;
 381     bits           = _bits;
 382   }
 383 
 384   ~TraceSuspendDebugBits() {
 385     if (!is_wait) {
 386 #if 1
 387       // By default, don't trace bits for is_ext_suspend_completed() calls.
 388       // That trace is very chatty.
 389       return;
 390 #else
 391       if (!called_by_wait) {
 392         // If tracing for is_ext_suspend_completed() is enabled, then only
 393         // trace calls to it from wait_for_ext_suspend_completion()
 394         return;
 395       }
 396 #endif
 397     }
 398 
 399     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 400       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 401         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 402         ResourceMark rm;
 403 
 404         tty->print_cr(
 405             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 406             jt->get_thread_name(), *bits);
 407 
 408         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 409       }
 410     }
 411   }
 412 };
 413 #undef DEBUG_FALSE_BITS
 414 
 415 
 416 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 417   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 418 
 419   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 420   bool do_trans_retry;           // flag to force the retry
 421 
 422   *bits |= 0x00000001;
 423 
 424   do {
 425     do_trans_retry = false;
 426 
 427     if (is_exiting()) {
 428       // Thread is in the process of exiting. This is always checked
 429       // first to reduce the risk of dereferencing a freed JavaThread.
 430       *bits |= 0x00000100;
 431       return false;
 432     }
 433 
 434     if (!is_external_suspend()) {
 435       // Suspend request is cancelled. This is always checked before
 436       // is_ext_suspended() to reduce the risk of a rogue resume
 437       // confusing the thread that made the suspend request.
 438       *bits |= 0x00000200;
 439       return false;
 440     }
 441 
 442     if (is_ext_suspended()) {
 443       // thread is suspended
 444       *bits |= 0x00000400;
 445       return true;
 446     }
 447 
 448     // Now that we no longer do hard suspends of threads running
 449     // native code, the target thread can be changing thread state
 450     // while we are in this routine:
 451     //
 452     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 453     //
 454     // We save a copy of the thread state as observed at this moment
 455     // and make our decision about suspend completeness based on the
 456     // copy. This closes the race where the thread state is seen as
 457     // _thread_in_native_trans in the if-thread_blocked check, but is
 458     // seen as _thread_blocked in if-thread_in_native_trans check.
 459     JavaThreadState save_state = thread_state();
 460 
 461     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 462       // If the thread's state is _thread_blocked and this blocking
 463       // condition is known to be equivalent to a suspend, then we can
 464       // consider the thread to be externally suspended. This means that
 465       // the code that sets _thread_blocked has been modified to do
 466       // self-suspension if the blocking condition releases. We also
 467       // used to check for CONDVAR_WAIT here, but that is now covered by
 468       // the _thread_blocked with self-suspension check.
 469       //
 470       // Return true since we wouldn't be here unless there was still an
 471       // external suspend request.
 472       *bits |= 0x00001000;
 473       return true;
 474     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 475       // Threads running native code will self-suspend on native==>VM/Java
 476       // transitions. If its stack is walkable (should always be the case
 477       // unless this function is called before the actual java_suspend()
 478       // call), then the wait is done.
 479       *bits |= 0x00002000;
 480       return true;
 481     } else if (!called_by_wait && !did_trans_retry &&
 482                save_state == _thread_in_native_trans &&
 483                frame_anchor()->walkable()) {
 484       // The thread is transitioning from thread_in_native to another
 485       // thread state. check_safepoint_and_suspend_for_native_trans()
 486       // will force the thread to self-suspend. If it hasn't gotten
 487       // there yet we may have caught the thread in-between the native
 488       // code check above and the self-suspend. Lucky us. If we were
 489       // called by wait_for_ext_suspend_completion(), then it
 490       // will be doing the retries so we don't have to.
 491       //
 492       // Since we use the saved thread state in the if-statement above,
 493       // there is a chance that the thread has already transitioned to
 494       // _thread_blocked by the time we get here. In that case, we will
 495       // make a single unnecessary pass through the logic below. This
 496       // doesn't hurt anything since we still do the trans retry.
 497 
 498       *bits |= 0x00004000;
 499 
 500       // Once the thread leaves thread_in_native_trans for another
 501       // thread state, we break out of this retry loop. We shouldn't
 502       // need this flag to prevent us from getting back here, but
 503       // sometimes paranoia is good.
 504       did_trans_retry = true;
 505 
 506       // We wait for the thread to transition to a more usable state.
 507       for (int i = 1; i <= SuspendRetryCount; i++) {
 508         // We used to do an "os::yield_all(i)" call here with the intention
 509         // that yielding would increase on each retry. However, the parameter
 510         // is ignored on Linux which means the yield didn't scale up. Waiting
 511         // on the SR_lock below provides a much more predictable scale up for
 512         // the delay. It also provides a simple/direct point to check for any
 513         // safepoint requests from the VMThread
 514 
 515         // temporarily drops SR_lock while doing wait with safepoint check
 516         // (if we're a JavaThread - the WatcherThread can also call this)
 517         // and increase delay with each retry
 518         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 519 
 520         // check the actual thread state instead of what we saved above
 521         if (thread_state() != _thread_in_native_trans) {
 522           // the thread has transitioned to another thread state so
 523           // try all the checks (except this one) one more time.
 524           do_trans_retry = true;
 525           break;
 526         }
 527       } // end retry loop
 528 
 529 
 530     }
 531   } while (do_trans_retry);
 532 
 533   *bits |= 0x00000010;
 534   return false;
 535 }
 536 
 537 //
 538 // Wait for an external suspend request to complete (or be cancelled).
 539 // Returns true if the thread is externally suspended and false otherwise.
 540 //
 541 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 542        uint32_t *bits) {
 543   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 544                              false /* !called_by_wait */, bits);
 545 
 546   // local flag copies to minimize SR_lock hold time
 547   bool is_suspended;
 548   bool pending;
 549   uint32_t reset_bits;
 550 
 551   // set a marker so is_ext_suspend_completed() knows we are the caller
 552   *bits |= 0x00010000;
 553 
 554   // We use reset_bits to reinitialize the bits value at the top of
 555   // each retry loop. This allows the caller to make use of any
 556   // unused bits for their own marking purposes.
 557   reset_bits = *bits;
 558 
 559   {
 560     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 561     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 562                                             delay, bits);
 563     pending = is_external_suspend();
 564   }
 565   // must release SR_lock to allow suspension to complete
 566 
 567   if (!pending) {
 568     // A cancelled suspend request is the only false return from
 569     // is_ext_suspend_completed() that keeps us from entering the
 570     // retry loop.
 571     *bits |= 0x00020000;
 572     return false;
 573   }
 574 
 575   if (is_suspended) {
 576     *bits |= 0x00040000;
 577     return true;
 578   }
 579 
 580   for (int i = 1; i <= retries; i++) {
 581     *bits = reset_bits;  // reinit to only track last retry
 582 
 583     // We used to do an "os::yield_all(i)" call here with the intention
 584     // that yielding would increase on each retry. However, the parameter
 585     // is ignored on Linux which means the yield didn't scale up. Waiting
 586     // on the SR_lock below provides a much more predictable scale up for
 587     // the delay. It also provides a simple/direct point to check for any
 588     // safepoint requests from the VMThread
 589 
 590     {
 591       MutexLocker ml(SR_lock());
 592       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 593       // can also call this)  and increase delay with each retry
 594       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 595 
 596       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 597                                               delay, bits);
 598 
 599       // It is possible for the external suspend request to be cancelled
 600       // (by a resume) before the actual suspend operation is completed.
 601       // Refresh our local copy to see if we still need to wait.
 602       pending = is_external_suspend();
 603     }
 604 
 605     if (!pending) {
 606       // A cancelled suspend request is the only false return from
 607       // is_ext_suspend_completed() that keeps us from staying in the
 608       // retry loop.
 609       *bits |= 0x00080000;
 610       return false;
 611     }
 612 
 613     if (is_suspended) {
 614       *bits |= 0x00100000;
 615       return true;
 616     }
 617   } // end retry loop
 618 
 619   // thread did not suspend after all our retries
 620   *bits |= 0x00200000;
 621   return false;
 622 }
 623 
 624 #ifndef PRODUCT
 625 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 626 
 627   // This should not need to be atomic as the only way for simultaneous
 628   // updates is via interrupts. Even then this should be rare or non-existant
 629   // and we don't care that much anyway.
 630 
 631   int index = _jmp_ring_index;
 632   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 633   _jmp_ring[index]._target = (intptr_t) target;
 634   _jmp_ring[index]._instruction = (intptr_t) instr;
 635   _jmp_ring[index]._file = file;
 636   _jmp_ring[index]._line = line;
 637 }
 638 #endif /* PRODUCT */
 639 
 640 // Called by flat profiler
 641 // Callers have already called wait_for_ext_suspend_completion
 642 // The assertion for that is currently too complex to put here:
 643 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 644   bool gotframe = false;
 645   // self suspension saves needed state.
 646   if (has_last_Java_frame() && _anchor.walkable()) {
 647      *_fr = pd_last_frame();
 648      gotframe = true;
 649   }
 650   return gotframe;
 651 }
 652 
 653 void Thread::interrupt(Thread* thread) {
 654   trace("interrupt", thread);
 655   debug_only(check_for_dangling_thread_pointer(thread);)
 656   os::interrupt(thread);
 657 }
 658 
 659 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 660   trace("is_interrupted", thread);
 661   debug_only(check_for_dangling_thread_pointer(thread);)
 662   // Note:  If clear_interrupted==false, this simply fetches and
 663   // returns the value of the field osthread()->interrupted().
 664   return os::is_interrupted(thread, clear_interrupted);
 665 }
 666 
 667 
 668 // GC Support
 669 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 670   jint thread_parity = _oops_do_parity;
 671   if (thread_parity != strong_roots_parity) {
 672     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 673     if (res == thread_parity) return true;
 674     else {
 675       guarantee(res == strong_roots_parity, "Or else what?");
 676       assert(SharedHeap::heap()->n_par_threads() > 0,
 677              "Should only fail when parallel.");
 678       return false;
 679     }
 680   }
 681   assert(SharedHeap::heap()->n_par_threads() > 0,
 682          "Should only fail when parallel.");
 683   return false;
 684 }
 685 
 686 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 687   active_handles()->oops_do(f);
 688   // Do oop for ThreadShadow
 689   f->do_oop((oop*)&_pending_exception);
 690   handle_area()->oops_do(f);
 691 }
 692 
 693 void Thread::nmethods_do(CodeBlobClosure* cf) {
 694   // no nmethods in a generic thread...
 695 }
 696 
 697 void Thread::print_on(outputStream* st) const {
 698   // get_priority assumes osthread initialized
 699   if (osthread() != NULL) {
 700     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
 701     osthread()->print_on(st);
 702   }
 703   debug_only(if (WizardMode) print_owned_locks_on(st);)
 704 }
 705 
 706 // Thread::print_on_error() is called by fatal error handler. Don't use
 707 // any lock or allocate memory.
 708 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 709   if      (is_VM_thread())                  st->print("VMThread");
 710   else if (is_Compiler_thread())            st->print("CompilerThread");
 711   else if (is_Java_thread())                st->print("JavaThread");
 712   else if (is_GC_task_thread())             st->print("GCTaskThread");
 713   else if (is_Watcher_thread())             st->print("WatcherThread");
 714   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 715   else st->print("Thread");
 716 
 717   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 718             _stack_base - _stack_size, _stack_base);
 719 
 720   if (osthread()) {
 721     st->print(" [id=%d]", osthread()->thread_id());
 722   }
 723 }
 724 
 725 #ifdef ASSERT
 726 void Thread::print_owned_locks_on(outputStream* st) const {
 727   Monitor *cur = _owned_locks;
 728   if (cur == NULL) {
 729     st->print(" (no locks) ");
 730   } else {
 731     st->print_cr(" Locks owned:");
 732     while(cur) {
 733       cur->print_on(st);
 734       cur = cur->next();
 735     }
 736   }
 737 }
 738 
 739 static int ref_use_count  = 0;
 740 
 741 bool Thread::owns_locks_but_compiled_lock() const {
 742   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 743     if (cur != Compile_lock) return true;
 744   }
 745   return false;
 746 }
 747 
 748 
 749 #endif
 750 
 751 #ifndef PRODUCT
 752 
 753 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 754 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 755 // no threads which allow_vm_block's are held
 756 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 757     // Check if current thread is allowed to block at a safepoint
 758     if (!(_allow_safepoint_count == 0))
 759       fatal("Possible safepoint reached by thread that does not allow it");
 760     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 761       fatal("LEAF method calling lock?");
 762     }
 763 
 764 #ifdef ASSERT
 765     if (potential_vm_operation && is_Java_thread()
 766         && !Universe::is_bootstrapping()) {
 767       // Make sure we do not hold any locks that the VM thread also uses.
 768       // This could potentially lead to deadlocks
 769       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 770         // Threads_lock is special, since the safepoint synchronization will not start before this is
 771         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 772         // since it is used to transfer control between JavaThreads and the VMThread
 773         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 774         if ( (cur->allow_vm_block() &&
 775               cur != Threads_lock &&
 776               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 777               cur != VMOperationRequest_lock &&
 778               cur != VMOperationQueue_lock) ||
 779               cur->rank() == Mutex::special) {
 780           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 781         }
 782       }
 783     }
 784 
 785     if (GCALotAtAllSafepoints) {
 786       // We could enter a safepoint here and thus have a gc
 787       InterfaceSupport::check_gc_alot();
 788     }
 789 #endif
 790 }
 791 #endif
 792 
 793 bool Thread::is_in_stack(address adr) const {
 794   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 795   address end = os::current_stack_pointer();
 796   if (stack_base() >= adr && adr >= end) return true;
 797 
 798   return false;
 799 }
 800 
 801 
 802 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 803 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 804 // used for compilation in the future. If that change is made, the need for these methods
 805 // should be revisited, and they should be removed if possible.
 806 
 807 bool Thread::is_lock_owned(address adr) const {
 808   return (_stack_base >= adr && adr >= (_stack_base - _stack_size));
 809 }
 810 
 811 bool Thread::set_as_starting_thread() {
 812  // NOTE: this must be called inside the main thread.
 813   return os::create_main_thread((JavaThread*)this);
 814 }
 815 
 816 static void initialize_class(symbolHandle class_name, TRAPS) {
 817   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 818   instanceKlass::cast(klass)->initialize(CHECK);
 819 }
 820 
 821 
 822 // Creates the initial ThreadGroup
 823 static Handle create_initial_thread_group(TRAPS) {
 824   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ThreadGroup(), true, CHECK_NH);
 825   instanceKlassHandle klass (THREAD, k);
 826 
 827   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 828   {
 829     JavaValue result(T_VOID);
 830     JavaCalls::call_special(&result,
 831                             system_instance,
 832                             klass,
 833                             vmSymbolHandles::object_initializer_name(),
 834                             vmSymbolHandles::void_method_signature(),
 835                             CHECK_NH);
 836   }
 837   Universe::set_system_thread_group(system_instance());
 838 
 839   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 840   {
 841     JavaValue result(T_VOID);
 842     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 843     JavaCalls::call_special(&result,
 844                             main_instance,
 845                             klass,
 846                             vmSymbolHandles::object_initializer_name(),
 847                             vmSymbolHandles::threadgroup_string_void_signature(),
 848                             system_instance,
 849                             string,
 850                             CHECK_NH);
 851   }
 852   return main_instance;
 853 }
 854 
 855 // Creates the initial Thread
 856 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
 857   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_NULL);
 858   instanceKlassHandle klass (THREAD, k);
 859   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 860 
 861   java_lang_Thread::set_thread(thread_oop(), thread);
 862   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 863   thread->set_threadObj(thread_oop());
 864 
 865   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 866 
 867   JavaValue result(T_VOID);
 868   JavaCalls::call_special(&result, thread_oop,
 869                                    klass,
 870                                    vmSymbolHandles::object_initializer_name(),
 871                                    vmSymbolHandles::threadgroup_string_void_signature(),
 872                                    thread_group,
 873                                    string,
 874                                    CHECK_NULL);
 875   return thread_oop();
 876 }
 877 
 878 static void call_initializeSystemClass(TRAPS) {
 879   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
 880   instanceKlassHandle klass (THREAD, k);
 881 
 882   JavaValue result(T_VOID);
 883   JavaCalls::call_static(&result, klass, vmSymbolHandles::initializeSystemClass_name(),
 884                                          vmSymbolHandles::void_method_signature(), CHECK);
 885 }
 886 
 887 static void reset_vm_info_property(TRAPS) {
 888   // the vm info string
 889   ResourceMark rm(THREAD);
 890   const char *vm_info = VM_Version::vm_info_string();
 891 
 892   // java.lang.System class
 893   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
 894   instanceKlassHandle klass (THREAD, k);
 895 
 896   // setProperty arguments
 897   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
 898   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
 899 
 900   // return value
 901   JavaValue r(T_OBJECT);
 902 
 903   // public static String setProperty(String key, String value);
 904   JavaCalls::call_static(&r,
 905                          klass,
 906                          vmSymbolHandles::setProperty_name(),
 907                          vmSymbolHandles::string_string_string_signature(),
 908                          key_str,
 909                          value_str,
 910                          CHECK);
 911 }
 912 
 913 
 914 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
 915   assert(thread_group.not_null(), "thread group should be specified");
 916   assert(threadObj() == NULL, "should only create Java thread object once");
 917 
 918   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
 919   instanceKlassHandle klass (THREAD, k);
 920   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
 921 
 922   java_lang_Thread::set_thread(thread_oop(), this);
 923   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 924   set_threadObj(thread_oop());
 925 
 926   JavaValue result(T_VOID);
 927   if (thread_name != NULL) {
 928     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
 929     // Thread gets assigned specified name and null target
 930     JavaCalls::call_special(&result,
 931                             thread_oop,
 932                             klass,
 933                             vmSymbolHandles::object_initializer_name(),
 934                             vmSymbolHandles::threadgroup_string_void_signature(),
 935                             thread_group, // Argument 1
 936                             name,         // Argument 2
 937                             THREAD);
 938   } else {
 939     // Thread gets assigned name "Thread-nnn" and null target
 940     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
 941     JavaCalls::call_special(&result,
 942                             thread_oop,
 943                             klass,
 944                             vmSymbolHandles::object_initializer_name(),
 945                             vmSymbolHandles::threadgroup_runnable_void_signature(),
 946                             thread_group, // Argument 1
 947                             Handle(),     // Argument 2
 948                             THREAD);
 949   }
 950 
 951 
 952   if (daemon) {
 953       java_lang_Thread::set_daemon(thread_oop());
 954   }
 955 
 956   if (HAS_PENDING_EXCEPTION) {
 957     return;
 958   }
 959 
 960   KlassHandle group(this, SystemDictionary::threadGroup_klass());
 961   Handle threadObj(this, this->threadObj());
 962 
 963   JavaCalls::call_special(&result,
 964                          thread_group,
 965                          group,
 966                          vmSymbolHandles::add_method_name(),
 967                          vmSymbolHandles::thread_void_signature(),
 968                          threadObj,          // Arg 1
 969                          THREAD);
 970 
 971 
 972 }
 973 
 974 // NamedThread --  non-JavaThread subclasses with multiple
 975 // uniquely named instances should derive from this.
 976 NamedThread::NamedThread() : Thread() {
 977   _name = NULL;
 978 }
 979 
 980 NamedThread::~NamedThread() {
 981   if (_name != NULL) {
 982     FREE_C_HEAP_ARRAY(char, _name);
 983     _name = NULL;
 984   }
 985 }
 986 
 987 void NamedThread::set_name(const char* format, ...) {
 988   guarantee(_name == NULL, "Only get to set name once.");
 989   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
 990   guarantee(_name != NULL, "alloc failure");
 991   va_list ap;
 992   va_start(ap, format);
 993   jio_vsnprintf(_name, max_name_len, format, ap);
 994   va_end(ap);
 995 }
 996 
 997 // ======= WatcherThread ========
 998 
 999 // The watcher thread exists to simulate timer interrupts.  It should
1000 // be replaced by an abstraction over whatever native support for
1001 // timer interrupts exists on the platform.
1002 
1003 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1004 bool           WatcherThread::_should_terminate = false;
1005 
1006 WatcherThread::WatcherThread() : Thread() {
1007   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1008   if (os::create_thread(this, os::watcher_thread)) {
1009     _watcher_thread = this;
1010 
1011     // Set the watcher thread to the highest OS priority which should not be
1012     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1013     // is created. The only normal thread using this priority is the reference
1014     // handler thread, which runs for very short intervals only.
1015     // If the VMThread's priority is not lower than the WatcherThread profiling
1016     // will be inaccurate.
1017     os::set_priority(this, MaxPriority);
1018     if (!DisableStartThread) {
1019       os::start_thread(this);
1020     }
1021   }
1022 }
1023 
1024 void WatcherThread::run() {
1025   assert(this == watcher_thread(), "just checking");
1026 
1027   this->record_stack_base_and_size();
1028   this->initialize_thread_local_storage();
1029   this->set_active_handles(JNIHandleBlock::allocate_block());
1030   while(!_should_terminate) {
1031     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1032     assert(watcher_thread() == this,  "thread consistency check");
1033 
1034     // Calculate how long it'll be until the next PeriodicTask work
1035     // should be done, and sleep that amount of time.
1036     const size_t time_to_wait = PeriodicTask::time_to_wait();
1037     os::sleep(this, time_to_wait, false);
1038 
1039     if (is_error_reported()) {
1040       // A fatal error has happened, the error handler(VMError::report_and_die)
1041       // should abort JVM after creating an error log file. However in some
1042       // rare cases, the error handler itself might deadlock. Here we try to
1043       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1044       //
1045       // This code is in WatcherThread because WatcherThread wakes up
1046       // periodically so the fatal error handler doesn't need to do anything;
1047       // also because the WatcherThread is less likely to crash than other
1048       // threads.
1049 
1050       for (;;) {
1051         if (!ShowMessageBoxOnError
1052          && (OnError == NULL || OnError[0] == '\0')
1053          && Arguments::abort_hook() == NULL) {
1054              os::sleep(this, 2 * 60 * 1000, false);
1055              fdStream err(defaultStream::output_fd());
1056              err.print_raw_cr("# [ timer expired, abort... ]");
1057              // skip atexit/vm_exit/vm_abort hooks
1058              os::die();
1059         }
1060 
1061         // Wake up 5 seconds later, the fatal handler may reset OnError or
1062         // ShowMessageBoxOnError when it is ready to abort.
1063         os::sleep(this, 5 * 1000, false);
1064       }
1065     }
1066 
1067     PeriodicTask::real_time_tick(time_to_wait);
1068 
1069     // If we have no more tasks left due to dynamic disenrollment,
1070     // shut down the thread since we don't currently support dynamic enrollment
1071     if (PeriodicTask::num_tasks() == 0) {
1072       _should_terminate = true;
1073     }
1074   }
1075 
1076   // Signal that it is terminated
1077   {
1078     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1079     _watcher_thread = NULL;
1080     Terminator_lock->notify();
1081   }
1082 
1083   // Thread destructor usually does this..
1084   ThreadLocalStorage::set_thread(NULL);
1085 }
1086 
1087 void WatcherThread::start() {
1088   if (watcher_thread() == NULL) {
1089     _should_terminate = false;
1090     // Create the single instance of WatcherThread
1091     new WatcherThread();
1092   }
1093 }
1094 
1095 void WatcherThread::stop() {
1096   // it is ok to take late safepoints here, if needed
1097   MutexLocker mu(Terminator_lock);
1098   _should_terminate = true;
1099   while(watcher_thread() != NULL) {
1100     // This wait should make safepoint checks, wait without a timeout,
1101     // and wait as a suspend-equivalent condition.
1102     //
1103     // Note: If the FlatProfiler is running, then this thread is waiting
1104     // for the WatcherThread to terminate and the WatcherThread, via the
1105     // FlatProfiler task, is waiting for the external suspend request on
1106     // this thread to complete. wait_for_ext_suspend_completion() will
1107     // eventually timeout, but that takes time. Making this wait a
1108     // suspend-equivalent condition solves that timeout problem.
1109     //
1110     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1111                           Mutex::_as_suspend_equivalent_flag);
1112   }
1113 }
1114 
1115 void WatcherThread::print_on(outputStream* st) const {
1116   st->print("\"%s\" ", name());
1117   Thread::print_on(st);
1118   st->cr();
1119 }
1120 
1121 // ======= JavaThread ========
1122 
1123 // A JavaThread is a normal Java thread
1124 
1125 void JavaThread::initialize() {
1126   // Initialize fields
1127 
1128   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1129   set_claimed_par_id(-1);
1130 
1131   set_saved_exception_pc(NULL);
1132   set_threadObj(NULL);
1133   _anchor.clear();
1134   set_entry_point(NULL);
1135   set_jni_functions(jni_functions());
1136   set_callee_target(NULL);
1137   set_vm_result(NULL);
1138   set_vm_result_2(NULL);
1139   set_vframe_array_head(NULL);
1140   set_vframe_array_last(NULL);
1141   set_deferred_locals(NULL);
1142   set_deopt_mark(NULL);
1143   clear_must_deopt_id();
1144   set_monitor_chunks(NULL);
1145   set_next(NULL);
1146   set_thread_state(_thread_new);
1147   _terminated = _not_terminated;
1148   _privileged_stack_top = NULL;
1149   _array_for_gc = NULL;
1150   _suspend_equivalent = false;
1151   _in_deopt_handler = 0;
1152   _doing_unsafe_access = false;
1153   _stack_guard_state = stack_guard_unused;
1154   _exception_oop = NULL;
1155   _exception_pc  = 0;
1156   _exception_handler_pc = 0;
1157   _exception_stack_size = 0;
1158   _jvmti_thread_state= NULL;
1159   _jvmti_get_loaded_classes_closure = NULL;
1160   _interp_only_mode    = 0;
1161   _special_runtime_exit_condition = _no_async_condition;
1162   _pending_async_exception = NULL;
1163   _is_compiling = false;
1164   _thread_stat = NULL;
1165   _thread_stat = new ThreadStatistics();
1166   _blocked_on_compilation = false;
1167   _jni_active_critical = 0;
1168   _do_not_unlock_if_synchronized = false;
1169   _cached_monitor_info = NULL;
1170   _parker = Parker::Allocate(this) ;
1171 
1172 #ifndef PRODUCT
1173   _jmp_ring_index = 0;
1174   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1175     record_jump(NULL, NULL, NULL, 0);
1176   }
1177 #endif /* PRODUCT */
1178 
1179   set_thread_profiler(NULL);
1180   if (FlatProfiler::is_active()) {
1181     // This is where we would decide to either give each thread it's own profiler
1182     // or use one global one from FlatProfiler,
1183     // or up to some count of the number of profiled threads, etc.
1184     ThreadProfiler* pp = new ThreadProfiler();
1185     pp->engage();
1186     set_thread_profiler(pp);
1187   }
1188 
1189   // Setup safepoint state info for this thread
1190   ThreadSafepointState::create(this);
1191 
1192   debug_only(_java_call_counter = 0);
1193 
1194   // JVMTI PopFrame support
1195   _popframe_condition = popframe_inactive;
1196   _popframe_preserved_args = NULL;
1197   _popframe_preserved_args_size = 0;
1198 
1199   pd_initialize();
1200 }
1201 
1202 #ifndef SERIALGC
1203 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1204 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1205 #endif // !SERIALGC
1206 
1207 JavaThread::JavaThread(bool is_attaching) :
1208   Thread()
1209 #ifndef SERIALGC
1210   , _satb_mark_queue(&_satb_mark_queue_set),
1211   _dirty_card_queue(&_dirty_card_queue_set)
1212 #endif // !SERIALGC
1213 {
1214   initialize();
1215   _is_attaching = is_attaching;
1216 }
1217 
1218 bool JavaThread::reguard_stack(address cur_sp) {
1219   if (_stack_guard_state != stack_guard_yellow_disabled) {
1220     return true; // Stack already guarded or guard pages not needed.
1221   }
1222 
1223   if (register_stack_overflow()) {
1224     // For those architectures which have separate register and
1225     // memory stacks, we must check the register stack to see if
1226     // it has overflowed.
1227     return false;
1228   }
1229 
1230   // Java code never executes within the yellow zone: the latter is only
1231   // there to provoke an exception during stack banging.  If java code
1232   // is executing there, either StackShadowPages should be larger, or
1233   // some exception code in c1, c2 or the interpreter isn't unwinding
1234   // when it should.
1235   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1236 
1237   enable_stack_yellow_zone();
1238   return true;
1239 }
1240 
1241 bool JavaThread::reguard_stack(void) {
1242   return reguard_stack(os::current_stack_pointer());
1243 }
1244 
1245 
1246 void JavaThread::block_if_vm_exited() {
1247   if (_terminated == _vm_exited) {
1248     // _vm_exited is set at safepoint, and Threads_lock is never released
1249     // we will block here forever
1250     Threads_lock->lock_without_safepoint_check();
1251     ShouldNotReachHere();
1252   }
1253 }
1254 
1255 
1256 // Remove this ifdef when C1 is ported to the compiler interface.
1257 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1258 
1259 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1260   Thread()
1261 #ifndef SERIALGC
1262   , _satb_mark_queue(&_satb_mark_queue_set),
1263   _dirty_card_queue(&_dirty_card_queue_set)
1264 #endif // !SERIALGC
1265 {
1266   if (TraceThreadEvents) {
1267     tty->print_cr("creating thread %p", this);
1268   }
1269   initialize();
1270   _is_attaching = false;
1271   set_entry_point(entry_point);
1272   // Create the native thread itself.
1273   // %note runtime_23
1274   os::ThreadType thr_type = os::java_thread;
1275   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1276                                                      os::java_thread;
1277   os::create_thread(this, thr_type, stack_sz);
1278 
1279   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1280   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1281   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1282   // the exception consists of creating the exception object & initializing it, initialization
1283   // will leave the VM via a JavaCall and then all locks must be unlocked).
1284   //
1285   // The thread is still suspended when we reach here. Thread must be explicit started
1286   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1287   // by calling Threads:add. The reason why this is not done here, is because the thread
1288   // object must be fully initialized (take a look at JVM_Start)
1289 }
1290 
1291 JavaThread::~JavaThread() {
1292   if (TraceThreadEvents) {
1293       tty->print_cr("terminate thread %p", this);
1294   }
1295 
1296   // JSR166 -- return the parker to the free list
1297   Parker::Release(_parker);
1298   _parker = NULL ;
1299 
1300   // Free any remaining  previous UnrollBlock
1301   vframeArray* old_array = vframe_array_last();
1302 
1303   if (old_array != NULL) {
1304     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1305     old_array->set_unroll_block(NULL);
1306     delete old_info;
1307     delete old_array;
1308   }
1309 
1310   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1311   if (deferred != NULL) {
1312     // This can only happen if thread is destroyed before deoptimization occurs.
1313     assert(deferred->length() != 0, "empty array!");
1314     do {
1315       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1316       deferred->remove_at(0);
1317       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1318       delete dlv;
1319     } while (deferred->length() != 0);
1320     delete deferred;
1321   }
1322 
1323   // All Java related clean up happens in exit
1324   ThreadSafepointState::destroy(this);
1325   if (_thread_profiler != NULL) delete _thread_profiler;
1326   if (_thread_stat != NULL) delete _thread_stat;
1327 }
1328 
1329 
1330 // The first routine called by a new Java thread
1331 void JavaThread::run() {
1332   // initialize thread-local alloc buffer related fields
1333   this->initialize_tlab();
1334 
1335   // used to test validitity of stack trace backs
1336   this->record_base_of_stack_pointer();
1337 
1338   // Record real stack base and size.
1339   this->record_stack_base_and_size();
1340 
1341   // Initialize thread local storage; set before calling MutexLocker
1342   this->initialize_thread_local_storage();
1343 
1344   this->create_stack_guard_pages();
1345 
1346   // Thread is now sufficient initialized to be handled by the safepoint code as being
1347   // in the VM. Change thread state from _thread_new to _thread_in_vm
1348   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1349 
1350   assert(JavaThread::current() == this, "sanity check");
1351   assert(!Thread::current()->owns_locks(), "sanity check");
1352 
1353   DTRACE_THREAD_PROBE(start, this);
1354 
1355   // This operation might block. We call that after all safepoint checks for a new thread has
1356   // been completed.
1357   this->set_active_handles(JNIHandleBlock::allocate_block());
1358 
1359   if (JvmtiExport::should_post_thread_life()) {
1360     JvmtiExport::post_thread_start(this);
1361   }
1362 
1363   // We call another function to do the rest so we are sure that the stack addresses used
1364   // from there will be lower than the stack base just computed
1365   thread_main_inner();
1366 
1367   // Note, thread is no longer valid at this point!
1368 }
1369 
1370 
1371 void JavaThread::thread_main_inner() {
1372   assert(JavaThread::current() == this, "sanity check");
1373   assert(this->threadObj() != NULL, "just checking");
1374 
1375   // Execute thread entry point. If this thread is being asked to restart,
1376   // or has been stopped before starting, do not reexecute entry point.
1377   // Note: Due to JVM_StopThread we can have pending exceptions already!
1378   if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) {
1379     // enter the thread's entry point only if we have no pending exceptions
1380     HandleMark hm(this);
1381     this->entry_point()(this, this);
1382   }
1383 
1384   DTRACE_THREAD_PROBE(stop, this);
1385 
1386   this->exit(false);
1387   delete this;
1388 }
1389 
1390 
1391 static void ensure_join(JavaThread* thread) {
1392   // We do not need to grap the Threads_lock, since we are operating on ourself.
1393   Handle threadObj(thread, thread->threadObj());
1394   assert(threadObj.not_null(), "java thread object must exist");
1395   ObjectLocker lock(threadObj, thread);
1396   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1397   thread->clear_pending_exception();
1398   // It is of profound importance that we set the stillborn bit and reset the thread object,
1399   // before we do the notify. Since, changing these two variable will make JVM_IsAlive return
1400   // false. So in case another thread is doing a join on this thread , it will detect that the thread
1401   // is dead when it gets notified.
1402   java_lang_Thread::set_stillborn(threadObj());
1403   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1404   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1405   java_lang_Thread::set_thread(threadObj(), NULL);
1406   lock.notify_all(thread);
1407   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1408   thread->clear_pending_exception();
1409 }
1410 
1411 
1412 // For any new cleanup additions, please check to see if they need to be applied to
1413 // cleanup_failed_attach_current_thread as well.
1414 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1415   assert(this == JavaThread::current(),  "thread consistency check");
1416   if (!InitializeJavaLangSystem) return;
1417 
1418   HandleMark hm(this);
1419   Handle uncaught_exception(this, this->pending_exception());
1420   this->clear_pending_exception();
1421   Handle threadObj(this, this->threadObj());
1422   assert(threadObj.not_null(), "Java thread object should be created");
1423 
1424   if (get_thread_profiler() != NULL) {
1425     get_thread_profiler()->disengage();
1426     ResourceMark rm;
1427     get_thread_profiler()->print(get_thread_name());
1428   }
1429 
1430 
1431   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1432   {
1433     EXCEPTION_MARK;
1434 
1435     CLEAR_PENDING_EXCEPTION;
1436   }
1437   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1438   // has to be fixed by a runtime query method
1439   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1440     // JSR-166: change call from from ThreadGroup.uncaughtException to
1441     // java.lang.Thread.dispatchUncaughtException
1442     if (uncaught_exception.not_null()) {
1443       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1444       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
1445         (address)uncaught_exception(), (address)threadObj(), (address)group());
1446       {
1447         EXCEPTION_MARK;
1448         // Check if the method Thread.dispatchUncaughtException() exists. If so
1449         // call it.  Otherwise we have an older library without the JSR-166 changes,
1450         // so call ThreadGroup.uncaughtException()
1451         KlassHandle recvrKlass(THREAD, threadObj->klass());
1452         CallInfo callinfo;
1453         KlassHandle thread_klass(THREAD, SystemDictionary::thread_klass());
1454         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1455                                            vmSymbolHandles::dispatchUncaughtException_name(),
1456                                            vmSymbolHandles::throwable_void_signature(),
1457                                            KlassHandle(), false, false, THREAD);
1458         CLEAR_PENDING_EXCEPTION;
1459         methodHandle method = callinfo.selected_method();
1460         if (method.not_null()) {
1461           JavaValue result(T_VOID);
1462           JavaCalls::call_virtual(&result,
1463                                   threadObj, thread_klass,
1464                                   vmSymbolHandles::dispatchUncaughtException_name(),
1465                                   vmSymbolHandles::throwable_void_signature(),
1466                                   uncaught_exception,
1467                                   THREAD);
1468         } else {
1469           KlassHandle thread_group(THREAD, SystemDictionary::threadGroup_klass());
1470           JavaValue result(T_VOID);
1471           JavaCalls::call_virtual(&result,
1472                                   group, thread_group,
1473                                   vmSymbolHandles::uncaughtException_name(),
1474                                   vmSymbolHandles::thread_throwable_void_signature(),
1475                                   threadObj,           // Arg 1
1476                                   uncaught_exception,  // Arg 2
1477                                   THREAD);
1478         }
1479         CLEAR_PENDING_EXCEPTION;
1480       }
1481     }
1482 
1483     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1484     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1485     // is deprecated anyhow.
1486     { int count = 3;
1487       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1488         EXCEPTION_MARK;
1489         JavaValue result(T_VOID);
1490         KlassHandle thread_klass(THREAD, SystemDictionary::thread_klass());
1491         JavaCalls::call_virtual(&result,
1492                               threadObj, thread_klass,
1493                               vmSymbolHandles::exit_method_name(),
1494                               vmSymbolHandles::void_method_signature(),
1495                               THREAD);
1496         CLEAR_PENDING_EXCEPTION;
1497       }
1498     }
1499 
1500     // notify JVMTI
1501     if (JvmtiExport::should_post_thread_life()) {
1502       JvmtiExport::post_thread_end(this);
1503     }
1504 
1505     // We have notified the agents that we are exiting, before we go on,
1506     // we must check for a pending external suspend request and honor it
1507     // in order to not surprise the thread that made the suspend request.
1508     while (true) {
1509       {
1510         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1511         if (!is_external_suspend()) {
1512           set_terminated(_thread_exiting);
1513           ThreadService::current_thread_exiting(this);
1514           break;
1515         }
1516         // Implied else:
1517         // Things get a little tricky here. We have a pending external
1518         // suspend request, but we are holding the SR_lock so we
1519         // can't just self-suspend. So we temporarily drop the lock
1520         // and then self-suspend.
1521       }
1522 
1523       ThreadBlockInVM tbivm(this);
1524       java_suspend_self();
1525 
1526       // We're done with this suspend request, but we have to loop around
1527       // and check again. Eventually we will get SR_lock without a pending
1528       // external suspend request and will be able to mark ourselves as
1529       // exiting.
1530     }
1531     // no more external suspends are allowed at this point
1532   } else {
1533     // before_exit() has already posted JVMTI THREAD_END events
1534   }
1535 
1536   // Notify waiters on thread object. This has to be done after exit() is called
1537   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1538   // group should have the destroyed bit set before waiters are notified).
1539   ensure_join(this);
1540   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1541 
1542   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1543   // held by this thread must be released.  A detach operation must only
1544   // get here if there are no Java frames on the stack.  Therefore, any
1545   // owned monitors at this point MUST be JNI-acquired monitors which are
1546   // pre-inflated and in the monitor cache.
1547   //
1548   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1549   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1550     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1551     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1552     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1553   }
1554 
1555   // These things needs to be done while we are still a Java Thread. Make sure that thread
1556   // is in a consistent state, in case GC happens
1557   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1558 
1559   if (active_handles() != NULL) {
1560     JNIHandleBlock* block = active_handles();
1561     set_active_handles(NULL);
1562     JNIHandleBlock::release_block(block);
1563   }
1564 
1565   if (free_handle_block() != NULL) {
1566     JNIHandleBlock* block = free_handle_block();
1567     set_free_handle_block(NULL);
1568     JNIHandleBlock::release_block(block);
1569   }
1570 
1571   // These have to be removed while this is still a valid thread.
1572   remove_stack_guard_pages();
1573 
1574   if (UseTLAB) {
1575     tlab().make_parsable(true);  // retire TLAB
1576   }
1577 
1578   if (jvmti_thread_state() != NULL) {
1579     JvmtiExport::cleanup_thread(this);
1580   }
1581 
1582 #ifndef SERIALGC
1583   // We must flush G1-related buffers before removing a thread from
1584   // the list of active threads.
1585   if (UseG1GC) {
1586     flush_barrier_queues();
1587   }
1588 #endif
1589 
1590   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1591   Threads::remove(this);
1592 }
1593 
1594 #ifndef SERIALGC
1595 // Flush G1-related queues.
1596 void JavaThread::flush_barrier_queues() {
1597   satb_mark_queue().flush();
1598   dirty_card_queue().flush();
1599 }
1600 #endif
1601 
1602 void JavaThread::cleanup_failed_attach_current_thread() {
1603   if (get_thread_profiler() != NULL) {
1604     get_thread_profiler()->disengage();
1605     ResourceMark rm;
1606     get_thread_profiler()->print(get_thread_name());
1607   }
1608 
1609   if (active_handles() != NULL) {
1610     JNIHandleBlock* block = active_handles();
1611     set_active_handles(NULL);
1612     JNIHandleBlock::release_block(block);
1613   }
1614 
1615   if (free_handle_block() != NULL) {
1616     JNIHandleBlock* block = free_handle_block();
1617     set_free_handle_block(NULL);
1618     JNIHandleBlock::release_block(block);
1619   }
1620 
1621   if (UseTLAB) {
1622     tlab().make_parsable(true);  // retire TLAB, if any
1623   }
1624 
1625 #ifndef SERIALGC
1626   if (UseG1GC) {
1627     flush_barrier_queues();
1628   }
1629 #endif
1630 
1631   Threads::remove(this);
1632   delete this;
1633 }
1634 
1635 
1636 
1637 
1638 JavaThread* JavaThread::active() {
1639   Thread* thread = ThreadLocalStorage::thread();
1640   assert(thread != NULL, "just checking");
1641   if (thread->is_Java_thread()) {
1642     return (JavaThread*) thread;
1643   } else {
1644     assert(thread->is_VM_thread(), "this must be a vm thread");
1645     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1646     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1647     assert(ret->is_Java_thread(), "must be a Java thread");
1648     return ret;
1649   }
1650 }
1651 
1652 bool JavaThread::is_lock_owned(address adr) const {
1653   if (Thread::is_lock_owned(adr)) return true;
1654 
1655   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1656     if (chunk->contains(adr)) return true;
1657   }
1658 
1659   return false;
1660 }
1661 
1662 
1663 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1664   chunk->set_next(monitor_chunks());
1665   set_monitor_chunks(chunk);
1666 }
1667 
1668 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1669   guarantee(monitor_chunks() != NULL, "must be non empty");
1670   if (monitor_chunks() == chunk) {
1671     set_monitor_chunks(chunk->next());
1672   } else {
1673     MonitorChunk* prev = monitor_chunks();
1674     while (prev->next() != chunk) prev = prev->next();
1675     prev->set_next(chunk->next());
1676   }
1677 }
1678 
1679 // JVM support.
1680 
1681 // Note: this function shouldn't block if it's called in
1682 // _thread_in_native_trans state (such as from
1683 // check_special_condition_for_native_trans()).
1684 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1685 
1686   if (has_last_Java_frame() && has_async_condition()) {
1687     // If we are at a polling page safepoint (not a poll return)
1688     // then we must defer async exception because live registers
1689     // will be clobbered by the exception path. Poll return is
1690     // ok because the call we a returning from already collides
1691     // with exception handling registers and so there is no issue.
1692     // (The exception handling path kills call result registers but
1693     //  this is ok since the exception kills the result anyway).
1694 
1695     if (is_at_poll_safepoint()) {
1696       // if the code we are returning to has deoptimized we must defer
1697       // the exception otherwise live registers get clobbered on the
1698       // exception path before deoptimization is able to retrieve them.
1699       //
1700       RegisterMap map(this, false);
1701       frame caller_fr = last_frame().sender(&map);
1702       assert(caller_fr.is_compiled_frame(), "what?");
1703       if (caller_fr.is_deoptimized_frame()) {
1704         if (TraceExceptions) {
1705           ResourceMark rm;
1706           tty->print_cr("deferred async exception at compiled safepoint");
1707         }
1708         return;
1709       }
1710     }
1711   }
1712 
1713   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1714   if (condition == _no_async_condition) {
1715     // Conditions have changed since has_special_runtime_exit_condition()
1716     // was called:
1717     // - if we were here only because of an external suspend request,
1718     //   then that was taken care of above (or cancelled) so we are done
1719     // - if we were here because of another async request, then it has
1720     //   been cleared between the has_special_runtime_exit_condition()
1721     //   and now so again we are done
1722     return;
1723   }
1724 
1725   // Check for pending async. exception
1726   if (_pending_async_exception != NULL) {
1727     // Only overwrite an already pending exception, if it is not a threadDeath.
1728     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::threaddeath_klass())) {
1729 
1730       // We cannot call Exceptions::_throw(...) here because we cannot block
1731       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1732 
1733       if (TraceExceptions) {
1734         ResourceMark rm;
1735         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
1736         if (has_last_Java_frame() ) {
1737           frame f = last_frame();
1738           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
1739         }
1740         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1741       }
1742       _pending_async_exception = NULL;
1743       clear_has_async_exception();
1744     }
1745   }
1746 
1747   if (check_unsafe_error &&
1748       condition == _async_unsafe_access_error && !has_pending_exception()) {
1749     condition = _no_async_condition;  // done
1750     switch (thread_state()) {
1751     case _thread_in_vm:
1752       {
1753         JavaThread* THREAD = this;
1754         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1755       }
1756     case _thread_in_native:
1757       {
1758         ThreadInVMfromNative tiv(this);
1759         JavaThread* THREAD = this;
1760         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1761       }
1762     case _thread_in_Java:
1763       {
1764         ThreadInVMfromJava tiv(this);
1765         JavaThread* THREAD = this;
1766         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1767       }
1768     default:
1769       ShouldNotReachHere();
1770     }
1771   }
1772 
1773   assert(condition == _no_async_condition || has_pending_exception() ||
1774          (!check_unsafe_error && condition == _async_unsafe_access_error),
1775          "must have handled the async condition, if no exception");
1776 }
1777 
1778 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1779   //
1780   // Check for pending external suspend. Internal suspend requests do
1781   // not use handle_special_runtime_exit_condition().
1782   // If JNIEnv proxies are allowed, don't self-suspend if the target
1783   // thread is not the current thread. In older versions of jdbx, jdbx
1784   // threads could call into the VM with another thread's JNIEnv so we
1785   // can be here operating on behalf of a suspended thread (4432884).
1786   bool do_self_suspend = is_external_suspend_with_lock();
1787   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
1788     //
1789     // Because thread is external suspended the safepoint code will count
1790     // thread as at a safepoint. This can be odd because we can be here
1791     // as _thread_in_Java which would normally transition to _thread_blocked
1792     // at a safepoint. We would like to mark the thread as _thread_blocked
1793     // before calling java_suspend_self like all other callers of it but
1794     // we must then observe proper safepoint protocol. (We can't leave
1795     // _thread_blocked with a safepoint in progress). However we can be
1796     // here as _thread_in_native_trans so we can't use a normal transition
1797     // constructor/destructor pair because they assert on that type of
1798     // transition. We could do something like:
1799     //
1800     // JavaThreadState state = thread_state();
1801     // set_thread_state(_thread_in_vm);
1802     // {
1803     //   ThreadBlockInVM tbivm(this);
1804     //   java_suspend_self()
1805     // }
1806     // set_thread_state(_thread_in_vm_trans);
1807     // if (safepoint) block;
1808     // set_thread_state(state);
1809     //
1810     // but that is pretty messy. Instead we just go with the way the
1811     // code has worked before and note that this is the only path to
1812     // java_suspend_self that doesn't put the thread in _thread_blocked
1813     // mode.
1814 
1815     frame_anchor()->make_walkable(this);
1816     java_suspend_self();
1817 
1818     // We might be here for reasons in addition to the self-suspend request
1819     // so check for other async requests.
1820   }
1821 
1822   if (check_asyncs) {
1823     check_and_handle_async_exceptions();
1824   }
1825 }
1826 
1827 void JavaThread::send_thread_stop(oop java_throwable)  {
1828   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
1829   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
1830   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
1831 
1832   // Do not throw asynchronous exceptions against the compiler thread
1833   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
1834   if (is_Compiler_thread()) return;
1835 
1836   // This is a change from JDK 1.1, but JDK 1.2 will also do it:
1837   if (java_throwable->is_a(SystemDictionary::threaddeath_klass())) {
1838     java_lang_Thread::set_stillborn(threadObj());
1839   }
1840 
1841   {
1842     // Actually throw the Throwable against the target Thread - however
1843     // only if there is no thread death exception installed already.
1844     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::threaddeath_klass())) {
1845       // If the topmost frame is a runtime stub, then we are calling into
1846       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
1847       // must deoptimize the caller before continuing, as the compiled  exception handler table
1848       // may not be valid
1849       if (has_last_Java_frame()) {
1850         frame f = last_frame();
1851         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
1852           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
1853           RegisterMap reg_map(this, UseBiasedLocking);
1854           frame compiled_frame = f.sender(&reg_map);
1855           if (compiled_frame.can_be_deoptimized()) {
1856             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
1857           }
1858         }
1859       }
1860 
1861       // Set async. pending exception in thread.
1862       set_pending_async_exception(java_throwable);
1863 
1864       if (TraceExceptions) {
1865        ResourceMark rm;
1866        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1867       }
1868       // for AbortVMOnException flag
1869       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
1870     }
1871   }
1872 
1873 
1874   // Interrupt thread so it will wake up from a potential wait()
1875   Thread::interrupt(this);
1876 }
1877 
1878 // External suspension mechanism.
1879 //
1880 // Tell the VM to suspend a thread when ever it knows that it does not hold on
1881 // to any VM_locks and it is at a transition
1882 // Self-suspension will happen on the transition out of the vm.
1883 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
1884 //
1885 // Guarantees on return:
1886 //   + Target thread will not execute any new bytecode (that's why we need to
1887 //     force a safepoint)
1888 //   + Target thread will not enter any new monitors
1889 //
1890 void JavaThread::java_suspend() {
1891   { MutexLocker mu(Threads_lock);
1892     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
1893        return;
1894     }
1895   }
1896 
1897   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1898     if (!is_external_suspend()) {
1899       // a racing resume has cancelled us; bail out now
1900       return;
1901     }
1902 
1903     // suspend is done
1904     uint32_t debug_bits = 0;
1905     // Warning: is_ext_suspend_completed() may temporarily drop the
1906     // SR_lock to allow the thread to reach a stable thread state if
1907     // it is currently in a transient thread state.
1908     if (is_ext_suspend_completed(false /* !called_by_wait */,
1909                                  SuspendRetryDelay, &debug_bits) ) {
1910       return;
1911     }
1912   }
1913 
1914   VM_ForceSafepoint vm_suspend;
1915   VMThread::execute(&vm_suspend);
1916 }
1917 
1918 // Part II of external suspension.
1919 // A JavaThread self suspends when it detects a pending external suspend
1920 // request. This is usually on transitions. It is also done in places
1921 // where continuing to the next transition would surprise the caller,
1922 // e.g., monitor entry.
1923 //
1924 // Returns the number of times that the thread self-suspended.
1925 //
1926 // Note: DO NOT call java_suspend_self() when you just want to block current
1927 //       thread. java_suspend_self() is the second stage of cooperative
1928 //       suspension for external suspend requests and should only be used
1929 //       to complete an external suspend request.
1930 //
1931 int JavaThread::java_suspend_self() {
1932   int ret = 0;
1933 
1934   // we are in the process of exiting so don't suspend
1935   if (is_exiting()) {
1936      clear_external_suspend();
1937      return ret;
1938   }
1939 
1940   assert(_anchor.walkable() ||
1941     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
1942     "must have walkable stack");
1943 
1944   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1945 
1946   assert(!this->is_ext_suspended(),
1947     "a thread trying to self-suspend should not already be suspended");
1948 
1949   if (this->is_suspend_equivalent()) {
1950     // If we are self-suspending as a result of the lifting of a
1951     // suspend equivalent condition, then the suspend_equivalent
1952     // flag is not cleared until we set the ext_suspended flag so
1953     // that wait_for_ext_suspend_completion() returns consistent
1954     // results.
1955     this->clear_suspend_equivalent();
1956   }
1957 
1958   // A racing resume may have cancelled us before we grabbed SR_lock
1959   // above. Or another external suspend request could be waiting for us
1960   // by the time we return from SR_lock()->wait(). The thread
1961   // that requested the suspension may already be trying to walk our
1962   // stack and if we return now, we can change the stack out from under
1963   // it. This would be a "bad thing (TM)" and cause the stack walker
1964   // to crash. We stay self-suspended until there are no more pending
1965   // external suspend requests.
1966   while (is_external_suspend()) {
1967     ret++;
1968     this->set_ext_suspended();
1969 
1970     // _ext_suspended flag is cleared by java_resume()
1971     while (is_ext_suspended()) {
1972       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
1973     }
1974   }
1975 
1976   return ret;
1977 }
1978 
1979 #ifdef ASSERT
1980 // verify the JavaThread has not yet been published in the Threads::list, and
1981 // hence doesn't need protection from concurrent access at this stage
1982 void JavaThread::verify_not_published() {
1983   if (!Threads_lock->owned_by_self()) {
1984    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
1985    assert( !Threads::includes(this),
1986            "java thread shouldn't have been published yet!");
1987   }
1988   else {
1989    assert( !Threads::includes(this),
1990            "java thread shouldn't have been published yet!");
1991   }
1992 }
1993 #endif
1994 
1995 // Slow path when the native==>VM/Java barriers detect a safepoint is in
1996 // progress or when _suspend_flags is non-zero.
1997 // Current thread needs to self-suspend if there is a suspend request and/or
1998 // block if a safepoint is in progress.
1999 // Async exception ISN'T checked.
2000 // Note only the ThreadInVMfromNative transition can call this function
2001 // directly and when thread state is _thread_in_native_trans
2002 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2003   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2004 
2005   JavaThread *curJT = JavaThread::current();
2006   bool do_self_suspend = thread->is_external_suspend();
2007 
2008   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2009 
2010   // If JNIEnv proxies are allowed, don't self-suspend if the target
2011   // thread is not the current thread. In older versions of jdbx, jdbx
2012   // threads could call into the VM with another thread's JNIEnv so we
2013   // can be here operating on behalf of a suspended thread (4432884).
2014   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2015     JavaThreadState state = thread->thread_state();
2016 
2017     // We mark this thread_blocked state as a suspend-equivalent so
2018     // that a caller to is_ext_suspend_completed() won't be confused.
2019     // The suspend-equivalent state is cleared by java_suspend_self().
2020     thread->set_suspend_equivalent();
2021 
2022     // If the safepoint code sees the _thread_in_native_trans state, it will
2023     // wait until the thread changes to other thread state. There is no
2024     // guarantee on how soon we can obtain the SR_lock and complete the
2025     // self-suspend request. It would be a bad idea to let safepoint wait for
2026     // too long. Temporarily change the state to _thread_blocked to
2027     // let the VM thread know that this thread is ready for GC. The problem
2028     // of changing thread state is that safepoint could happen just after
2029     // java_suspend_self() returns after being resumed, and VM thread will
2030     // see the _thread_blocked state. We must check for safepoint
2031     // after restoring the state and make sure we won't leave while a safepoint
2032     // is in progress.
2033     thread->set_thread_state(_thread_blocked);
2034     thread->java_suspend_self();
2035     thread->set_thread_state(state);
2036     // Make sure new state is seen by VM thread
2037     if (os::is_MP()) {
2038       if (UseMembar) {
2039         // Force a fence between the write above and read below
2040         OrderAccess::fence();
2041       } else {
2042         // Must use this rather than serialization page in particular on Windows
2043         InterfaceSupport::serialize_memory(thread);
2044       }
2045     }
2046   }
2047 
2048   if (SafepointSynchronize::do_call_back()) {
2049     // If we are safepointing, then block the caller which may not be
2050     // the same as the target thread (see above).
2051     SafepointSynchronize::block(curJT);
2052   }
2053 
2054   if (thread->is_deopt_suspend()) {
2055     thread->clear_deopt_suspend();
2056     RegisterMap map(thread, false);
2057     frame f = thread->last_frame();
2058     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2059       f = f.sender(&map);
2060     }
2061     if (f.id() == thread->must_deopt_id()) {
2062       thread->clear_must_deopt_id();
2063       // Since we know we're safe to deopt the current state is a safe state
2064       f.deoptimize(thread, true);
2065     } else {
2066       fatal("missed deoptimization!");
2067     }
2068   }
2069 }
2070 
2071 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2072 // progress or when _suspend_flags is non-zero.
2073 // Current thread needs to self-suspend if there is a suspend request and/or
2074 // block if a safepoint is in progress.
2075 // Also check for pending async exception (not including unsafe access error).
2076 // Note only the native==>VM/Java barriers can call this function and when
2077 // thread state is _thread_in_native_trans.
2078 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2079   check_safepoint_and_suspend_for_native_trans(thread);
2080 
2081   if (thread->has_async_exception()) {
2082     // We are in _thread_in_native_trans state, don't handle unsafe
2083     // access error since that may block.
2084     thread->check_and_handle_async_exceptions(false);
2085   }
2086 }
2087 
2088 // We need to guarantee the Threads_lock here, since resumes are not
2089 // allowed during safepoint synchronization
2090 // Can only resume from an external suspension
2091 void JavaThread::java_resume() {
2092   assert_locked_or_safepoint(Threads_lock);
2093 
2094   // Sanity check: thread is gone, has started exiting or the thread
2095   // was not externally suspended.
2096   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2097     return;
2098   }
2099 
2100   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2101 
2102   clear_external_suspend();
2103 
2104   if (is_ext_suspended()) {
2105     clear_ext_suspended();
2106     SR_lock()->notify_all();
2107   }
2108 }
2109 
2110 void JavaThread::create_stack_guard_pages() {
2111   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2112   address low_addr = stack_base() - stack_size();
2113   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2114 
2115   int allocate = os::allocate_stack_guard_pages();
2116   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2117 
2118   if (allocate && !os::commit_memory((char *) low_addr, len)) {
2119     warning("Attempt to allocate stack guard pages failed.");
2120     return;
2121   }
2122 
2123   if (os::guard_memory((char *) low_addr, len)) {
2124     _stack_guard_state = stack_guard_enabled;
2125   } else {
2126     warning("Attempt to protect stack guard pages failed.");
2127     if (os::uncommit_memory((char *) low_addr, len)) {
2128       warning("Attempt to deallocate stack guard pages failed.");
2129     }
2130   }
2131 }
2132 
2133 void JavaThread::remove_stack_guard_pages() {
2134   if (_stack_guard_state == stack_guard_unused) return;
2135   address low_addr = stack_base() - stack_size();
2136   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2137 
2138   if (os::allocate_stack_guard_pages()) {
2139     if (os::uncommit_memory((char *) low_addr, len)) {
2140       _stack_guard_state = stack_guard_unused;
2141     } else {
2142       warning("Attempt to deallocate stack guard pages failed.");
2143     }
2144   } else {
2145     if (_stack_guard_state == stack_guard_unused) return;
2146     if (os::unguard_memory((char *) low_addr, len)) {
2147       _stack_guard_state = stack_guard_unused;
2148     } else {
2149         warning("Attempt to unprotect stack guard pages failed.");
2150     }
2151   }
2152 }
2153 
2154 void JavaThread::enable_stack_yellow_zone() {
2155   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2156   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2157 
2158   // The base notation is from the stacks point of view, growing downward.
2159   // We need to adjust it to work correctly with guard_memory()
2160   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2161 
2162   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2163   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2164 
2165   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2166     _stack_guard_state = stack_guard_enabled;
2167   } else {
2168     warning("Attempt to guard stack yellow zone failed.");
2169   }
2170   enable_register_stack_guard();
2171 }
2172 
2173 void JavaThread::disable_stack_yellow_zone() {
2174   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2175   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2176 
2177   // Simply return if called for a thread that does not use guard pages.
2178   if (_stack_guard_state == stack_guard_unused) return;
2179 
2180   // The base notation is from the stacks point of view, growing downward.
2181   // We need to adjust it to work correctly with guard_memory()
2182   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2183 
2184   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2185     _stack_guard_state = stack_guard_yellow_disabled;
2186   } else {
2187     warning("Attempt to unguard stack yellow zone failed.");
2188   }
2189   disable_register_stack_guard();
2190 }
2191 
2192 void JavaThread::enable_stack_red_zone() {
2193   // The base notation is from the stacks point of view, growing downward.
2194   // We need to adjust it to work correctly with guard_memory()
2195   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2196   address base = stack_red_zone_base() - stack_red_zone_size();
2197 
2198   guarantee(base < stack_base(),"Error calculating stack red zone");
2199   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2200 
2201   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2202     warning("Attempt to guard stack red zone failed.");
2203   }
2204 }
2205 
2206 void JavaThread::disable_stack_red_zone() {
2207   // The base notation is from the stacks point of view, growing downward.
2208   // We need to adjust it to work correctly with guard_memory()
2209   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2210   address base = stack_red_zone_base() - stack_red_zone_size();
2211   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2212     warning("Attempt to unguard stack red zone failed.");
2213   }
2214 }
2215 
2216 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2217   // ignore is there is no stack
2218   if (!has_last_Java_frame()) return;
2219   // traverse the stack frames. Starts from top frame.
2220   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2221     frame* fr = fst.current();
2222     f(fr, fst.register_map());
2223   }
2224 }
2225 
2226 
2227 #ifndef PRODUCT
2228 // Deoptimization
2229 // Function for testing deoptimization
2230 void JavaThread::deoptimize() {
2231   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2232   StackFrameStream fst(this, UseBiasedLocking);
2233   bool deopt = false;           // Dump stack only if a deopt actually happens.
2234   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2235   // Iterate over all frames in the thread and deoptimize
2236   for(; !fst.is_done(); fst.next()) {
2237     if(fst.current()->can_be_deoptimized()) {
2238 
2239       if (only_at) {
2240         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2241         // consists of comma or carriage return separated numbers so
2242         // search for the current bci in that string.
2243         address pc = fst.current()->pc();
2244         nmethod* nm =  (nmethod*) fst.current()->cb();
2245         ScopeDesc* sd = nm->scope_desc_at( pc);
2246         char buffer[8];
2247         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2248         size_t len = strlen(buffer);
2249         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2250         while (found != NULL) {
2251           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2252               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2253             // Check that the bci found is bracketed by terminators.
2254             break;
2255           }
2256           found = strstr(found + 1, buffer);
2257         }
2258         if (!found) {
2259           continue;
2260         }
2261       }
2262 
2263       if (DebugDeoptimization && !deopt) {
2264         deopt = true; // One-time only print before deopt
2265         tty->print_cr("[BEFORE Deoptimization]");
2266         trace_frames();
2267         trace_stack();
2268       }
2269       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2270     }
2271   }
2272 
2273   if (DebugDeoptimization && deopt) {
2274     tty->print_cr("[AFTER Deoptimization]");
2275     trace_frames();
2276   }
2277 }
2278 
2279 
2280 // Make zombies
2281 void JavaThread::make_zombies() {
2282   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2283     if (fst.current()->can_be_deoptimized()) {
2284       // it is a Java nmethod
2285       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2286       nm->make_not_entrant();
2287     }
2288   }
2289 }
2290 #endif // PRODUCT
2291 
2292 
2293 void JavaThread::deoptimized_wrt_marked_nmethods() {
2294   if (!has_last_Java_frame()) return;
2295   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2296   StackFrameStream fst(this, UseBiasedLocking);
2297   for(; !fst.is_done(); fst.next()) {
2298     if (fst.current()->should_be_deoptimized()) {
2299       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2300     }
2301   }
2302 }
2303 
2304 
2305 // GC support
2306 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2307 
2308 void JavaThread::gc_epilogue() {
2309   frames_do(frame_gc_epilogue);
2310 }
2311 
2312 
2313 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2314 
2315 void JavaThread::gc_prologue() {
2316   frames_do(frame_gc_prologue);
2317 }
2318 
2319 
2320 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2321   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2322   // since there may be more than one thread using each ThreadProfiler.
2323 
2324   // Traverse the GCHandles
2325   Thread::oops_do(f, cf);
2326 
2327   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2328           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2329 
2330   if (has_last_Java_frame()) {
2331 
2332     // Traverse the privileged stack
2333     if (_privileged_stack_top != NULL) {
2334       _privileged_stack_top->oops_do(f);
2335     }
2336 
2337     // traverse the registered growable array
2338     if (_array_for_gc != NULL) {
2339       for (int index = 0; index < _array_for_gc->length(); index++) {
2340         f->do_oop(_array_for_gc->adr_at(index));
2341       }
2342     }
2343 
2344     // Traverse the monitor chunks
2345     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2346       chunk->oops_do(f);
2347     }
2348 
2349     // Traverse the execution stack
2350     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2351       fst.current()->oops_do(f, cf, fst.register_map());
2352     }
2353   }
2354 
2355   // callee_target is never live across a gc point so NULL it here should
2356   // it still contain a methdOop.
2357 
2358   set_callee_target(NULL);
2359 
2360   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2361   // If we have deferred set_locals there might be oops waiting to be
2362   // written
2363   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2364   if (list != NULL) {
2365     for (int i = 0; i < list->length(); i++) {
2366       list->at(i)->oops_do(f);
2367     }
2368   }
2369 
2370   // Traverse instance variables at the end since the GC may be moving things
2371   // around using this function
2372   f->do_oop((oop*) &_threadObj);
2373   f->do_oop((oop*) &_vm_result);
2374   f->do_oop((oop*) &_vm_result_2);
2375   f->do_oop((oop*) &_exception_oop);
2376   f->do_oop((oop*) &_pending_async_exception);
2377 
2378   if (jvmti_thread_state() != NULL) {
2379     jvmti_thread_state()->oops_do(f);
2380   }
2381 }
2382 
2383 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2384   Thread::nmethods_do(cf);  // (super method is a no-op)
2385 
2386   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2387           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2388 
2389   if (has_last_Java_frame()) {
2390     // Traverse the execution stack
2391     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2392       fst.current()->nmethods_do(cf);
2393     }
2394   }
2395 }
2396 
2397 // Printing
2398 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2399   switch (_thread_state) {
2400   case _thread_uninitialized:     return "_thread_uninitialized";
2401   case _thread_new:               return "_thread_new";
2402   case _thread_new_trans:         return "_thread_new_trans";
2403   case _thread_in_native:         return "_thread_in_native";
2404   case _thread_in_native_trans:   return "_thread_in_native_trans";
2405   case _thread_in_vm:             return "_thread_in_vm";
2406   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2407   case _thread_in_Java:           return "_thread_in_Java";
2408   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2409   case _thread_blocked:           return "_thread_blocked";
2410   case _thread_blocked_trans:     return "_thread_blocked_trans";
2411   default:                        return "unknown thread state";
2412   }
2413 }
2414 
2415 #ifndef PRODUCT
2416 void JavaThread::print_thread_state_on(outputStream *st) const {
2417   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2418 };
2419 void JavaThread::print_thread_state() const {
2420   print_thread_state_on(tty);
2421 };
2422 #endif // PRODUCT
2423 
2424 // Called by Threads::print() for VM_PrintThreads operation
2425 void JavaThread::print_on(outputStream *st) const {
2426   st->print("\"%s\" ", get_thread_name());
2427   oop thread_oop = threadObj();
2428   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2429   Thread::print_on(st);
2430   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2431   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2432   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2433     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2434   }
2435 #ifndef PRODUCT
2436   print_thread_state_on(st);
2437   _safepoint_state->print_on(st);
2438 #endif // PRODUCT
2439 }
2440 
2441 // Called by fatal error handler. The difference between this and
2442 // JavaThread::print() is that we can't grab lock or allocate memory.
2443 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2444   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2445   oop thread_obj = threadObj();
2446   if (thread_obj != NULL) {
2447      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2448   }
2449   st->print(" [");
2450   st->print("%s", _get_thread_state_name(_thread_state));
2451   if (osthread()) {
2452     st->print(", id=%d", osthread()->thread_id());
2453   }
2454   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2455             _stack_base - _stack_size, _stack_base);
2456   st->print("]");
2457   return;
2458 }
2459 
2460 // Verification
2461 
2462 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2463 
2464 void JavaThread::verify() {
2465   // Verify oops in the thread.
2466   oops_do(&VerifyOopClosure::verify_oop, NULL);
2467 
2468   // Verify the stack frames.
2469   frames_do(frame_verify);
2470 }
2471 
2472 // CR 6300358 (sub-CR 2137150)
2473 // Most callers of this method assume that it can't return NULL but a
2474 // thread may not have a name whilst it is in the process of attaching to
2475 // the VM - see CR 6412693, and there are places where a JavaThread can be
2476 // seen prior to having it's threadObj set (eg JNI attaching threads and
2477 // if vm exit occurs during initialization). These cases can all be accounted
2478 // for such that this method never returns NULL.
2479 const char* JavaThread::get_thread_name() const {
2480 #ifdef ASSERT
2481   // early safepoints can hit while current thread does not yet have TLS
2482   if (!SafepointSynchronize::is_at_safepoint()) {
2483     Thread *cur = Thread::current();
2484     if (!(cur->is_Java_thread() && cur == this)) {
2485       // Current JavaThreads are allowed to get their own name without
2486       // the Threads_lock.
2487       assert_locked_or_safepoint(Threads_lock);
2488     }
2489   }
2490 #endif // ASSERT
2491     return get_thread_name_string();
2492 }
2493 
2494 // Returns a non-NULL representation of this thread's name, or a suitable
2495 // descriptive string if there is no set name
2496 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2497   const char* name_str;
2498   oop thread_obj = threadObj();
2499   if (thread_obj != NULL) {
2500     typeArrayOop name = java_lang_Thread::name(thread_obj);
2501     if (name != NULL) {
2502       if (buf == NULL) {
2503         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2504       }
2505       else {
2506         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2507       }
2508     }
2509     else if (is_attaching()) { // workaround for 6412693 - see 6404306
2510       name_str = "<no-name - thread is attaching>";
2511     }
2512     else {
2513       name_str = Thread::name();
2514     }
2515   }
2516   else {
2517     name_str = Thread::name();
2518   }
2519   assert(name_str != NULL, "unexpected NULL thread name");
2520   return name_str;
2521 }
2522 
2523 
2524 const char* JavaThread::get_threadgroup_name() const {
2525   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2526   oop thread_obj = threadObj();
2527   if (thread_obj != NULL) {
2528     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2529     if (thread_group != NULL) {
2530       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2531       // ThreadGroup.name can be null
2532       if (name != NULL) {
2533         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2534         return str;
2535       }
2536     }
2537   }
2538   return NULL;
2539 }
2540 
2541 const char* JavaThread::get_parent_name() const {
2542   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2543   oop thread_obj = threadObj();
2544   if (thread_obj != NULL) {
2545     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2546     if (thread_group != NULL) {
2547       oop parent = java_lang_ThreadGroup::parent(thread_group);
2548       if (parent != NULL) {
2549         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2550         // ThreadGroup.name can be null
2551         if (name != NULL) {
2552           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2553           return str;
2554         }
2555       }
2556     }
2557   }
2558   return NULL;
2559 }
2560 
2561 ThreadPriority JavaThread::java_priority() const {
2562   oop thr_oop = threadObj();
2563   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2564   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2565   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2566   return priority;
2567 }
2568 
2569 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2570 
2571   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2572   // Link Java Thread object <-> C++ Thread
2573 
2574   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2575   // and put it into a new Handle.  The Handle "thread_oop" can then
2576   // be used to pass the C++ thread object to other methods.
2577 
2578   // Set the Java level thread object (jthread) field of the
2579   // new thread (a JavaThread *) to C++ thread object using the
2580   // "thread_oop" handle.
2581 
2582   // Set the thread field (a JavaThread *) of the
2583   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2584 
2585   Handle thread_oop(Thread::current(),
2586                     JNIHandles::resolve_non_null(jni_thread));
2587   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
2588     "must be initialized");
2589   set_threadObj(thread_oop());
2590   java_lang_Thread::set_thread(thread_oop(), this);
2591 
2592   if (prio == NoPriority) {
2593     prio = java_lang_Thread::priority(thread_oop());
2594     assert(prio != NoPriority, "A valid priority should be present");
2595   }
2596 
2597   // Push the Java priority down to the native thread; needs Threads_lock
2598   Thread::set_priority(this, prio);
2599 
2600   // Add the new thread to the Threads list and set it in motion.
2601   // We must have threads lock in order to call Threads::add.
2602   // It is crucial that we do not block before the thread is
2603   // added to the Threads list for if a GC happens, then the java_thread oop
2604   // will not be visited by GC.
2605   Threads::add(this);
2606 }
2607 
2608 oop JavaThread::current_park_blocker() {
2609   // Support for JSR-166 locks
2610   oop thread_oop = threadObj();
2611   if (thread_oop != NULL &&
2612       JDK_Version::current().supports_thread_park_blocker()) {
2613     return java_lang_Thread::park_blocker(thread_oop);
2614   }
2615   return NULL;
2616 }
2617 
2618 
2619 void JavaThread::print_stack_on(outputStream* st) {
2620   if (!has_last_Java_frame()) return;
2621   ResourceMark rm;
2622   HandleMark   hm;
2623 
2624   RegisterMap reg_map(this);
2625   vframe* start_vf = last_java_vframe(&reg_map);
2626   int count = 0;
2627   for (vframe* f = start_vf; f; f = f->sender() ) {
2628     if (f->is_java_frame()) {
2629       javaVFrame* jvf = javaVFrame::cast(f);
2630       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2631 
2632       // Print out lock information
2633       if (JavaMonitorsInStackTrace) {
2634         jvf->print_lock_info_on(st, count);
2635       }
2636     } else {
2637       // Ignore non-Java frames
2638     }
2639 
2640     // Bail-out case for too deep stacks
2641     count++;
2642     if (MaxJavaStackTraceDepth == count) return;
2643   }
2644 }
2645 
2646 
2647 // JVMTI PopFrame support
2648 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2649   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2650   if (in_bytes(size_in_bytes) != 0) {
2651     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
2652     _popframe_preserved_args_size = in_bytes(size_in_bytes);
2653     Copy::conjoint_bytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2654   }
2655 }
2656 
2657 void* JavaThread::popframe_preserved_args() {
2658   return _popframe_preserved_args;
2659 }
2660 
2661 ByteSize JavaThread::popframe_preserved_args_size() {
2662   return in_ByteSize(_popframe_preserved_args_size);
2663 }
2664 
2665 WordSize JavaThread::popframe_preserved_args_size_in_words() {
2666   int sz = in_bytes(popframe_preserved_args_size());
2667   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2668   return in_WordSize(sz / wordSize);
2669 }
2670 
2671 void JavaThread::popframe_free_preserved_args() {
2672   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2673   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
2674   _popframe_preserved_args = NULL;
2675   _popframe_preserved_args_size = 0;
2676 }
2677 
2678 #ifndef PRODUCT
2679 
2680 void JavaThread::trace_frames() {
2681   tty->print_cr("[Describe stack]");
2682   int frame_no = 1;
2683   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2684     tty->print("  %d. ", frame_no++);
2685     fst.current()->print_value_on(tty,this);
2686     tty->cr();
2687   }
2688 }
2689 
2690 
2691 void JavaThread::trace_stack_from(vframe* start_vf) {
2692   ResourceMark rm;
2693   int vframe_no = 1;
2694   for (vframe* f = start_vf; f; f = f->sender() ) {
2695     if (f->is_java_frame()) {
2696       javaVFrame::cast(f)->print_activation(vframe_no++);
2697     } else {
2698       f->print();
2699     }
2700     if (vframe_no > StackPrintLimit) {
2701       tty->print_cr("...<more frames>...");
2702       return;
2703     }
2704   }
2705 }
2706 
2707 
2708 void JavaThread::trace_stack() {
2709   if (!has_last_Java_frame()) return;
2710   ResourceMark rm;
2711   HandleMark   hm;
2712   RegisterMap reg_map(this);
2713   trace_stack_from(last_java_vframe(&reg_map));
2714 }
2715 
2716 
2717 #endif // PRODUCT
2718 
2719 
2720 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
2721   assert(reg_map != NULL, "a map must be given");
2722   frame f = last_frame();
2723   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
2724     if (vf->is_java_frame()) return javaVFrame::cast(vf);
2725   }
2726   return NULL;
2727 }
2728 
2729 
2730 klassOop JavaThread::security_get_caller_class(int depth) {
2731   vframeStream vfst(this);
2732   vfst.security_get_caller_frame(depth);
2733   if (!vfst.at_end()) {
2734     return vfst.method()->method_holder();
2735   }
2736   return NULL;
2737 }
2738 
2739 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
2740   assert(thread->is_Compiler_thread(), "must be compiler thread");
2741   CompileBroker::compiler_thread_loop();
2742 }
2743 
2744 // Create a CompilerThread
2745 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
2746 : JavaThread(&compiler_thread_entry) {
2747   _env   = NULL;
2748   _log   = NULL;
2749   _task  = NULL;
2750   _queue = queue;
2751   _counters = counters;
2752 
2753 #ifndef PRODUCT
2754   _ideal_graph_printer = NULL;
2755 #endif
2756 }
2757 
2758 
2759 // ======= Threads ========
2760 
2761 // The Threads class links together all active threads, and provides
2762 // operations over all threads.  It is protected by its own Mutex
2763 // lock, which is also used in other contexts to protect thread
2764 // operations from having the thread being operated on from exiting
2765 // and going away unexpectedly (e.g., safepoint synchronization)
2766 
2767 JavaThread* Threads::_thread_list = NULL;
2768 int         Threads::_number_of_threads = 0;
2769 int         Threads::_number_of_non_daemon_threads = 0;
2770 int         Threads::_return_code = 0;
2771 size_t      JavaThread::_stack_size_at_create = 0;
2772 
2773 // All JavaThreads
2774 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
2775 
2776 void os_stream();
2777 
2778 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
2779 void Threads::threads_do(ThreadClosure* tc) {
2780   assert_locked_or_safepoint(Threads_lock);
2781   // ALL_JAVA_THREADS iterates through all JavaThreads
2782   ALL_JAVA_THREADS(p) {
2783     tc->do_thread(p);
2784   }
2785   // Someday we could have a table or list of all non-JavaThreads.
2786   // For now, just manually iterate through them.
2787   tc->do_thread(VMThread::vm_thread());
2788   Universe::heap()->gc_threads_do(tc);
2789   WatcherThread *wt = WatcherThread::watcher_thread();
2790   // Strictly speaking, the following NULL check isn't sufficient to make sure
2791   // the data for WatcherThread is still valid upon being examined. However,
2792   // considering that WatchThread terminates when the VM is on the way to
2793   // exit at safepoint, the chance of the above is extremely small. The right
2794   // way to prevent termination of WatcherThread would be to acquire
2795   // Terminator_lock, but we can't do that without violating the lock rank
2796   // checking in some cases.
2797   if (wt != NULL)
2798     tc->do_thread(wt);
2799 
2800   // If CompilerThreads ever become non-JavaThreads, add them here
2801 }
2802 
2803 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
2804 
2805   extern void JDK_Version_init();
2806 
2807   // Check version
2808   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
2809 
2810   // Initialize the output stream module
2811   ostream_init();
2812 
2813   // Process java launcher properties.
2814   Arguments::process_sun_java_launcher_properties(args);
2815 
2816   // Initialize the os module before using TLS
2817   os::init();
2818 
2819   // Initialize system properties.
2820   Arguments::init_system_properties();
2821 
2822   // So that JDK version can be used as a discrimintor when parsing arguments
2823   JDK_Version_init();
2824 
2825   // Parse arguments
2826   jint parse_result = Arguments::parse(args);
2827   if (parse_result != JNI_OK) return parse_result;
2828 
2829   if (PauseAtStartup) {
2830     os::pause();
2831   }
2832 
2833   HS_DTRACE_PROBE(hotspot, vm__init__begin);
2834 
2835   // Record VM creation timing statistics
2836   TraceVmCreationTime create_vm_timer;
2837   create_vm_timer.start();
2838 
2839   // Timing (must come after argument parsing)
2840   TraceTime timer("Create VM", TraceStartupTime);
2841 
2842   // Initialize the os module after parsing the args
2843   jint os_init_2_result = os::init_2();
2844   if (os_init_2_result != JNI_OK) return os_init_2_result;
2845 
2846   // Initialize output stream logging
2847   ostream_init_log();
2848 
2849   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
2850   // Must be before create_vm_init_agents()
2851   if (Arguments::init_libraries_at_startup()) {
2852     convert_vm_init_libraries_to_agents();
2853   }
2854 
2855   // Launch -agentlib/-agentpath and converted -Xrun agents
2856   if (Arguments::init_agents_at_startup()) {
2857     create_vm_init_agents();
2858   }
2859 
2860   // Initialize Threads state
2861   _thread_list = NULL;
2862   _number_of_threads = 0;
2863   _number_of_non_daemon_threads = 0;
2864 
2865   // Initialize TLS
2866   ThreadLocalStorage::init();
2867 
2868   // Initialize global data structures and create system classes in heap
2869   vm_init_globals();
2870 
2871   // Attach the main thread to this os thread
2872   JavaThread* main_thread = new JavaThread();
2873   main_thread->set_thread_state(_thread_in_vm);
2874   // must do this before set_active_handles and initialize_thread_local_storage
2875   // Note: on solaris initialize_thread_local_storage() will (indirectly)
2876   // change the stack size recorded here to one based on the java thread
2877   // stacksize. This adjusted size is what is used to figure the placement
2878   // of the guard pages.
2879   main_thread->record_stack_base_and_size();
2880   main_thread->initialize_thread_local_storage();
2881 
2882   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
2883 
2884   if (!main_thread->set_as_starting_thread()) {
2885     vm_shutdown_during_initialization(
2886       "Failed necessary internal allocation. Out of swap space");
2887     delete main_thread;
2888     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2889     return JNI_ENOMEM;
2890   }
2891 
2892   // Enable guard page *after* os::create_main_thread(), otherwise it would
2893   // crash Linux VM, see notes in os_linux.cpp.
2894   main_thread->create_stack_guard_pages();
2895 
2896   // Initialize Java-Leve synchronization subsystem
2897   ObjectSynchronizer::Initialize() ;
2898 
2899   // Initialize global modules
2900   jint status = init_globals();
2901   if (status != JNI_OK) {
2902     delete main_thread;
2903     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2904     return status;
2905   }
2906 
2907   HandleMark hm;
2908 
2909   { MutexLocker mu(Threads_lock);
2910     Threads::add(main_thread);
2911   }
2912 
2913   // Any JVMTI raw monitors entered in onload will transition into
2914   // real raw monitor. VM is setup enough here for raw monitor enter.
2915   JvmtiExport::transition_pending_onload_raw_monitors();
2916 
2917   if (VerifyBeforeGC &&
2918       Universe::heap()->total_collections() >= VerifyGCStartAt) {
2919     Universe::heap()->prepare_for_verify();
2920     Universe::verify();   // make sure we're starting with a clean slate
2921   }
2922 
2923   // Create the VMThread
2924   { TraceTime timer("Start VMThread", TraceStartupTime);
2925     VMThread::create();
2926     Thread* vmthread = VMThread::vm_thread();
2927 
2928     if (!os::create_thread(vmthread, os::vm_thread))
2929       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
2930 
2931     // Wait for the VM thread to become ready, and VMThread::run to initialize
2932     // Monitors can have spurious returns, must always check another state flag
2933     {
2934       MutexLocker ml(Notify_lock);
2935       os::start_thread(vmthread);
2936       while (vmthread->active_handles() == NULL) {
2937         Notify_lock->wait();
2938       }
2939     }
2940   }
2941 
2942   assert (Universe::is_fully_initialized(), "not initialized");
2943   EXCEPTION_MARK;
2944 
2945   // At this point, the Universe is initialized, but we have not executed
2946   // any byte code.  Now is a good time (the only time) to dump out the
2947   // internal state of the JVM for sharing.
2948 
2949   if (DumpSharedSpaces) {
2950     Universe::heap()->preload_and_dump(CHECK_0);
2951     ShouldNotReachHere();
2952   }
2953 
2954   // Always call even when there are not JVMTI environments yet, since environments
2955   // may be attached late and JVMTI must track phases of VM execution
2956   JvmtiExport::enter_start_phase();
2957 
2958   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
2959   JvmtiExport::post_vm_start();
2960 
2961   {
2962     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
2963 
2964     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
2965       create_vm_init_libraries();
2966     }
2967 
2968     if (InitializeJavaLangString) {
2969       initialize_class(vmSymbolHandles::java_lang_String(), CHECK_0);
2970     } else {
2971       warning("java.lang.String not initialized");
2972     }
2973 
2974     if (AggressiveOpts) {
2975       {
2976         // Forcibly initialize java/util/HashMap and mutate the private
2977         // static final "frontCacheEnabled" field before we start creating instances
2978 #ifdef ASSERT
2979         klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
2980         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
2981 #endif
2982         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
2983         KlassHandle k = KlassHandle(THREAD, k_o);
2984         guarantee(k.not_null(), "Must find java/util/HashMap");
2985         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
2986         ik->initialize(CHECK_0);
2987         fieldDescriptor fd;
2988         // Possible we might not find this field; if so, don't break
2989         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
2990           k()->bool_field_put(fd.offset(), true);
2991         }
2992       }
2993 
2994       if (UseStringCache) {
2995         // Forcibly initialize java/lang/StringValue and mutate the private
2996         // static final "stringCacheEnabled" field before we start creating instances
2997         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
2998         // Possible that StringValue isn't present: if so, silently don't break
2999         if (k_o != NULL) {
3000           KlassHandle k = KlassHandle(THREAD, k_o);
3001           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3002           ik->initialize(CHECK_0);
3003           fieldDescriptor fd;
3004           // Possible we might not find this field: if so, silently don't break
3005           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3006             k()->bool_field_put(fd.offset(), true);
3007           }
3008         }
3009       }
3010     }
3011 
3012     // Initialize java_lang.System (needed before creating the thread)
3013     if (InitializeJavaLangSystem) {
3014       initialize_class(vmSymbolHandles::java_lang_System(), CHECK_0);
3015       initialize_class(vmSymbolHandles::java_lang_ThreadGroup(), CHECK_0);
3016       Handle thread_group = create_initial_thread_group(CHECK_0);
3017       Universe::set_main_thread_group(thread_group());
3018       initialize_class(vmSymbolHandles::java_lang_Thread(), CHECK_0);
3019       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3020       main_thread->set_threadObj(thread_object);
3021       // Set thread status to running since main thread has
3022       // been started and running.
3023       java_lang_Thread::set_thread_status(thread_object,
3024                                           java_lang_Thread::RUNNABLE);
3025 
3026       // The VM preresolve methods to these classes. Make sure that get initialized
3027       initialize_class(vmSymbolHandles::java_lang_reflect_Method(), CHECK_0);
3028       initialize_class(vmSymbolHandles::java_lang_ref_Finalizer(),  CHECK_0);
3029       // The VM creates & returns objects of this class. Make sure it's initialized.
3030       initialize_class(vmSymbolHandles::java_lang_Class(), CHECK_0);
3031       call_initializeSystemClass(CHECK_0);
3032     } else {
3033       warning("java.lang.System not initialized");
3034     }
3035 
3036     // an instance of OutOfMemory exception has been allocated earlier
3037     if (InitializeJavaLangExceptionsErrors) {
3038       initialize_class(vmSymbolHandles::java_lang_OutOfMemoryError(), CHECK_0);
3039       initialize_class(vmSymbolHandles::java_lang_NullPointerException(), CHECK_0);
3040       initialize_class(vmSymbolHandles::java_lang_ClassCastException(), CHECK_0);
3041       initialize_class(vmSymbolHandles::java_lang_ArrayStoreException(), CHECK_0);
3042       initialize_class(vmSymbolHandles::java_lang_ArithmeticException(), CHECK_0);
3043       initialize_class(vmSymbolHandles::java_lang_StackOverflowError(), CHECK_0);
3044       initialize_class(vmSymbolHandles::java_lang_IllegalMonitorStateException(), CHECK_0);
3045     } else {
3046       warning("java.lang.OutOfMemoryError has not been initialized");
3047       warning("java.lang.NullPointerException has not been initialized");
3048       warning("java.lang.ClassCastException has not been initialized");
3049       warning("java.lang.ArrayStoreException has not been initialized");
3050       warning("java.lang.ArithmeticException has not been initialized");
3051       warning("java.lang.StackOverflowError has not been initialized");
3052     }
3053   }
3054 
3055   // See        : bugid 4211085.
3056   // Background : the static initializer of java.lang.Compiler tries to read
3057   //              property"java.compiler" and read & write property "java.vm.info".
3058   //              When a security manager is installed through the command line
3059   //              option "-Djava.security.manager", the above properties are not
3060   //              readable and the static initializer for java.lang.Compiler fails
3061   //              resulting in a NoClassDefFoundError.  This can happen in any
3062   //              user code which calls methods in java.lang.Compiler.
3063   // Hack :       the hack is to pre-load and initialize this class, so that only
3064   //              system domains are on the stack when the properties are read.
3065   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3066   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3067   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3068   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3069   //              Once that is done, we should remove this hack.
3070   initialize_class(vmSymbolHandles::java_lang_Compiler(), CHECK_0);
3071 
3072   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3073   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3074   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3075   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3076   // This should also be taken out as soon as 4211383 gets fixed.
3077   reset_vm_info_property(CHECK_0);
3078 
3079   quicken_jni_functions();
3080 
3081   // Set flag that basic initialization has completed. Used by exceptions and various
3082   // debug stuff, that does not work until all basic classes have been initialized.
3083   set_init_completed();
3084 
3085   HS_DTRACE_PROBE(hotspot, vm__init__end);
3086 
3087   // record VM initialization completion time
3088   Management::record_vm_init_completed();
3089 
3090   // Compute system loader. Note that this has to occur after set_init_completed, since
3091   // valid exceptions may be thrown in the process.
3092   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3093   // set_init_completed has just been called, causing exceptions not to be shortcut
3094   // anymore. We call vm_exit_during_initialization directly instead.
3095   SystemDictionary::compute_java_system_loader(THREAD);
3096   if (HAS_PENDING_EXCEPTION) {
3097     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3098   }
3099 
3100 #ifndef SERIALGC
3101   // Support for ConcurrentMarkSweep. This should be cleaned up
3102   // and better encapsulated. The ugly nested if test would go away
3103   // once things are properly refactored. XXX YSR
3104   if (UseConcMarkSweepGC || UseG1GC) {
3105     if (UseConcMarkSweepGC) {
3106       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3107     } else {
3108       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3109     }
3110     if (HAS_PENDING_EXCEPTION) {
3111       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3112     }
3113   }
3114 #endif // SERIALGC
3115 
3116   // Always call even when there are not JVMTI environments yet, since environments
3117   // may be attached late and JVMTI must track phases of VM execution
3118   JvmtiExport::enter_live_phase();
3119 
3120   // Signal Dispatcher needs to be started before VMInit event is posted
3121   os::signal_init();
3122 
3123   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3124   if (!DisableAttachMechanism) {
3125     if (StartAttachListener || AttachListener::init_at_startup()) {
3126       AttachListener::init();
3127     }
3128   }
3129 
3130   // Launch -Xrun agents
3131   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3132   // back-end can launch with -Xdebug -Xrunjdwp.
3133   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3134     create_vm_init_libraries();
3135   }
3136 
3137   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3138   JvmtiExport::post_vm_initialized();
3139 
3140   Chunk::start_chunk_pool_cleaner_task();
3141 
3142   // initialize compiler(s)
3143   CompileBroker::compilation_init();
3144 
3145   Management::initialize(THREAD);
3146   if (HAS_PENDING_EXCEPTION) {
3147     // management agent fails to start possibly due to
3148     // configuration problem and is responsible for printing
3149     // stack trace if appropriate. Simply exit VM.
3150     vm_exit(1);
3151   }
3152 
3153   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3154   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3155   if (MemProfiling)                   MemProfiler::engage();
3156   StatSampler::engage();
3157   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3158 
3159   BiasedLocking::init();
3160 
3161 
3162   // Start up the WatcherThread if there are any periodic tasks
3163   // NOTE:  All PeriodicTasks should be registered by now. If they
3164   //   aren't, late joiners might appear to start slowly (we might
3165   //   take a while to process their first tick).
3166   if (PeriodicTask::num_tasks() > 0) {
3167     WatcherThread::start();
3168   }
3169 
3170   create_vm_timer.end();
3171   return JNI_OK;
3172 }
3173 
3174 // type for the Agent_OnLoad and JVM_OnLoad entry points
3175 extern "C" {
3176   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3177 }
3178 // Find a command line agent library and return its entry point for
3179 //         -agentlib:  -agentpath:   -Xrun
3180 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3181 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3182   OnLoadEntry_t on_load_entry = NULL;
3183   void *library = agent->os_lib();  // check if we have looked it up before
3184 
3185   if (library == NULL) {
3186     char buffer[JVM_MAXPATHLEN];
3187     char ebuf[1024];
3188     const char *name = agent->name();
3189 
3190     if (agent->is_absolute_path()) {
3191       library = hpi::dll_load(name, ebuf, sizeof ebuf);
3192       if (library == NULL) {
3193         // If we can't find the agent, exit.
3194         vm_exit_during_initialization("Could not find agent library in absolute path", name);
3195       }
3196     } else {
3197       // Try to load the agent from the standard dll directory
3198       hpi::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3199       library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3200 #ifdef KERNEL
3201       // Download instrument dll
3202       if (library == NULL && strcmp(name, "instrument") == 0) {
3203         char *props = Arguments::get_kernel_properties();
3204         char *home  = Arguments::get_java_home();
3205         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3206                       " sun.jkernel.DownloadManager -download client_jvm";
3207         int length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3208         char *cmd = AllocateHeap(length);
3209         jio_snprintf(cmd, length, fmt, home, props);
3210         int status = os::fork_and_exec(cmd);
3211         FreeHeap(props);
3212         FreeHeap(cmd);
3213         if (status == -1) {
3214           warning(cmd);
3215           vm_exit_during_initialization("fork_and_exec failed: %s",
3216                                          strerror(errno));
3217         }
3218         // when this comes back the instrument.dll should be where it belongs.
3219         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3220       }
3221 #endif // KERNEL
3222       if (library == NULL) { // Try the local directory
3223         char ns[1] = {0};
3224         hpi::dll_build_name(buffer, sizeof(buffer), ns, name);
3225         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3226         if (library == NULL) {
3227           // If we can't find the agent, exit.
3228           vm_exit_during_initialization("Could not find agent library on the library path or in the local directory", name);
3229         }
3230       }
3231     }
3232     agent->set_os_lib(library);
3233   }
3234 
3235   // Find the OnLoad function.
3236   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3237     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, hpi::dll_lookup(library, on_load_symbols[symbol_index]));
3238     if (on_load_entry != NULL) break;
3239   }
3240   return on_load_entry;
3241 }
3242 
3243 // Find the JVM_OnLoad entry point
3244 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3245   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3246   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3247 }
3248 
3249 // Find the Agent_OnLoad entry point
3250 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3251   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3252   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3253 }
3254 
3255 // For backwards compatibility with -Xrun
3256 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3257 // treated like -agentpath:
3258 // Must be called before agent libraries are created
3259 void Threads::convert_vm_init_libraries_to_agents() {
3260   AgentLibrary* agent;
3261   AgentLibrary* next;
3262 
3263   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3264     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3265     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3266 
3267     // If there is an JVM_OnLoad function it will get called later,
3268     // otherwise see if there is an Agent_OnLoad
3269     if (on_load_entry == NULL) {
3270       on_load_entry = lookup_agent_on_load(agent);
3271       if (on_load_entry != NULL) {
3272         // switch it to the agent list -- so that Agent_OnLoad will be called,
3273         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3274         Arguments::convert_library_to_agent(agent);
3275       } else {
3276         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3277       }
3278     }
3279   }
3280 }
3281 
3282 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3283 // Invokes Agent_OnLoad
3284 // Called very early -- before JavaThreads exist
3285 void Threads::create_vm_init_agents() {
3286   extern struct JavaVM_ main_vm;
3287   AgentLibrary* agent;
3288 
3289   JvmtiExport::enter_onload_phase();
3290   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3291     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3292 
3293     if (on_load_entry != NULL) {
3294       // Invoke the Agent_OnLoad function
3295       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3296       if (err != JNI_OK) {
3297         vm_exit_during_initialization("agent library failed to init", agent->name());
3298       }
3299     } else {
3300       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3301     }
3302   }
3303   JvmtiExport::enter_primordial_phase();
3304 }
3305 
3306 extern "C" {
3307   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3308 }
3309 
3310 void Threads::shutdown_vm_agents() {
3311   // Send any Agent_OnUnload notifications
3312   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3313   extern struct JavaVM_ main_vm;
3314   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3315 
3316     // Find the Agent_OnUnload function.
3317     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3318       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3319                hpi::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3320 
3321       // Invoke the Agent_OnUnload function
3322       if (unload_entry != NULL) {
3323         JavaThread* thread = JavaThread::current();
3324         ThreadToNativeFromVM ttn(thread);
3325         HandleMark hm(thread);
3326         (*unload_entry)(&main_vm);
3327         break;
3328       }
3329     }
3330   }
3331 }
3332 
3333 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3334 // Invokes JVM_OnLoad
3335 void Threads::create_vm_init_libraries() {
3336   extern struct JavaVM_ main_vm;
3337   AgentLibrary* agent;
3338 
3339   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3340     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3341 
3342     if (on_load_entry != NULL) {
3343       // Invoke the JVM_OnLoad function
3344       JavaThread* thread = JavaThread::current();
3345       ThreadToNativeFromVM ttn(thread);
3346       HandleMark hm(thread);
3347       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3348       if (err != JNI_OK) {
3349         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3350       }
3351     } else {
3352       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3353     }
3354   }
3355 }
3356 
3357 // Last thread running calls java.lang.Shutdown.shutdown()
3358 void JavaThread::invoke_shutdown_hooks() {
3359   HandleMark hm(this);
3360 
3361   // We could get here with a pending exception, if so clear it now.
3362   if (this->has_pending_exception()) {
3363     this->clear_pending_exception();
3364   }
3365 
3366   EXCEPTION_MARK;
3367   klassOop k =
3368     SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(),
3369                                       THREAD);
3370   if (k != NULL) {
3371     // SystemDictionary::resolve_or_null will return null if there was
3372     // an exception.  If we cannot load the Shutdown class, just don't
3373     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3374     // and finalizers (if runFinalizersOnExit is set) won't be run.
3375     // Note that if a shutdown hook was registered or runFinalizersOnExit
3376     // was called, the Shutdown class would have already been loaded
3377     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3378     instanceKlassHandle shutdown_klass (THREAD, k);
3379     JavaValue result(T_VOID);
3380     JavaCalls::call_static(&result,
3381                            shutdown_klass,
3382                            vmSymbolHandles::shutdown_method_name(),
3383                            vmSymbolHandles::void_method_signature(),
3384                            THREAD);
3385   }
3386   CLEAR_PENDING_EXCEPTION;
3387 }
3388 
3389 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3390 // the program falls off the end of main(). Another VM exit path is through
3391 // vm_exit() when the program calls System.exit() to return a value or when
3392 // there is a serious error in VM. The two shutdown paths are not exactly
3393 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3394 // and VM_Exit op at VM level.
3395 //
3396 // Shutdown sequence:
3397 //   + Wait until we are the last non-daemon thread to execute
3398 //     <-- every thing is still working at this moment -->
3399 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3400 //        shutdown hooks, run finalizers if finalization-on-exit
3401 //   + Call before_exit(), prepare for VM exit
3402 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3403 //        currently the only user of this mechanism is File.deleteOnExit())
3404 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3405 //        post thread end and vm death events to JVMTI,
3406 //        stop signal thread
3407 //   + Call JavaThread::exit(), it will:
3408 //      > release JNI handle blocks, remove stack guard pages
3409 //      > remove this thread from Threads list
3410 //     <-- no more Java code from this thread after this point -->
3411 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3412 //     the compiler threads at safepoint
3413 //     <-- do not use anything that could get blocked by Safepoint -->
3414 //   + Disable tracing at JNI/JVM barriers
3415 //   + Set _vm_exited flag for threads that are still running native code
3416 //   + Delete this thread
3417 //   + Call exit_globals()
3418 //      > deletes tty
3419 //      > deletes PerfMemory resources
3420 //   + Return to caller
3421 
3422 bool Threads::destroy_vm() {
3423   JavaThread* thread = JavaThread::current();
3424 
3425   // Wait until we are the last non-daemon thread to execute
3426   { MutexLocker nu(Threads_lock);
3427     while (Threads::number_of_non_daemon_threads() > 1 )
3428       // This wait should make safepoint checks, wait without a timeout,
3429       // and wait as a suspend-equivalent condition.
3430       //
3431       // Note: If the FlatProfiler is running and this thread is waiting
3432       // for another non-daemon thread to finish, then the FlatProfiler
3433       // is waiting for the external suspend request on this thread to
3434       // complete. wait_for_ext_suspend_completion() will eventually
3435       // timeout, but that takes time. Making this wait a suspend-
3436       // equivalent condition solves that timeout problem.
3437       //
3438       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3439                          Mutex::_as_suspend_equivalent_flag);
3440   }
3441 
3442   // Hang forever on exit if we are reporting an error.
3443   if (ShowMessageBoxOnError && is_error_reported()) {
3444     os::infinite_sleep();
3445   }
3446 
3447   if (JDK_Version::is_jdk12x_version()) {
3448     // We are the last thread running, so check if finalizers should be run.
3449     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3450     HandleMark rm(thread);
3451     Universe::run_finalizers_on_exit();
3452   } else {
3453     // run Java level shutdown hooks
3454     thread->invoke_shutdown_hooks();
3455   }
3456 
3457   before_exit(thread);
3458 
3459   thread->exit(true);
3460 
3461   // Stop VM thread.
3462   {
3463     // 4945125 The vm thread comes to a safepoint during exit.
3464     // GC vm_operations can get caught at the safepoint, and the
3465     // heap is unparseable if they are caught. Grab the Heap_lock
3466     // to prevent this. The GC vm_operations will not be able to
3467     // queue until after the vm thread is dead.
3468     MutexLocker ml(Heap_lock);
3469 
3470     VMThread::wait_for_vm_thread_exit();
3471     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3472     VMThread::destroy();
3473   }
3474 
3475   // clean up ideal graph printers
3476 #if defined(COMPILER2) && !defined(PRODUCT)
3477   IdealGraphPrinter::clean_up();
3478 #endif
3479 
3480   // Now, all Java threads are gone except daemon threads. Daemon threads
3481   // running Java code or in VM are stopped by the Safepoint. However,
3482   // daemon threads executing native code are still running.  But they
3483   // will be stopped at native=>Java/VM barriers. Note that we can't
3484   // simply kill or suspend them, as it is inherently deadlock-prone.
3485 
3486 #ifndef PRODUCT
3487   // disable function tracing at JNI/JVM barriers
3488   TraceHPI = false;
3489   TraceJNICalls = false;
3490   TraceJVMCalls = false;
3491   TraceRuntimeCalls = false;
3492 #endif
3493 
3494   VM_Exit::set_vm_exited();
3495 
3496   notify_vm_shutdown();
3497 
3498   delete thread;
3499 
3500   // exit_globals() will delete tty
3501   exit_globals();
3502 
3503   return true;
3504 }
3505 
3506 
3507 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3508   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3509   return is_supported_jni_version(version);
3510 }
3511 
3512 
3513 jboolean Threads::is_supported_jni_version(jint version) {
3514   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3515   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3516   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3517   return JNI_FALSE;
3518 }
3519 
3520 
3521 void Threads::add(JavaThread* p, bool force_daemon) {
3522   // The threads lock must be owned at this point
3523   assert_locked_or_safepoint(Threads_lock);
3524   p->set_next(_thread_list);
3525   _thread_list = p;
3526   _number_of_threads++;
3527   oop threadObj = p->threadObj();
3528   bool daemon = true;
3529   // Bootstrapping problem: threadObj can be null for initial
3530   // JavaThread (or for threads attached via JNI)
3531   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3532     _number_of_non_daemon_threads++;
3533     daemon = false;
3534   }
3535 
3536   ThreadService::add_thread(p, daemon);
3537 
3538   // Possible GC point.
3539   Events::log("Thread added: " INTPTR_FORMAT, p);
3540 }
3541 
3542 void Threads::remove(JavaThread* p) {
3543   // Extra scope needed for Thread_lock, so we can check
3544   // that we do not remove thread without safepoint code notice
3545   { MutexLocker ml(Threads_lock);
3546 
3547     assert(includes(p), "p must be present");
3548 
3549     JavaThread* current = _thread_list;
3550     JavaThread* prev    = NULL;
3551 
3552     while (current != p) {
3553       prev    = current;
3554       current = current->next();
3555     }
3556 
3557     if (prev) {
3558       prev->set_next(current->next());
3559     } else {
3560       _thread_list = p->next();
3561     }
3562     _number_of_threads--;
3563     oop threadObj = p->threadObj();
3564     bool daemon = true;
3565     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
3566       _number_of_non_daemon_threads--;
3567       daemon = false;
3568 
3569       // Only one thread left, do a notify on the Threads_lock so a thread waiting
3570       // on destroy_vm will wake up.
3571       if (number_of_non_daemon_threads() == 1)
3572         Threads_lock->notify_all();
3573     }
3574     ThreadService::remove_thread(p, daemon);
3575 
3576     // Make sure that safepoint code disregard this thread. This is needed since
3577     // the thread might mess around with locks after this point. This can cause it
3578     // to do callbacks into the safepoint code. However, the safepoint code is not aware
3579     // of this thread since it is removed from the queue.
3580     p->set_terminated_value();
3581   } // unlock Threads_lock
3582 
3583   // Since Events::log uses a lock, we grab it outside the Threads_lock
3584   Events::log("Thread exited: " INTPTR_FORMAT, p);
3585 }
3586 
3587 // Threads_lock must be held when this is called (or must be called during a safepoint)
3588 bool Threads::includes(JavaThread* p) {
3589   assert(Threads_lock->is_locked(), "sanity check");
3590   ALL_JAVA_THREADS(q) {
3591     if (q == p ) {
3592       return true;
3593     }
3594   }
3595   return false;
3596 }
3597 
3598 // Operations on the Threads list for GC.  These are not explicitly locked,
3599 // but the garbage collector must provide a safe context for them to run.
3600 // In particular, these things should never be called when the Threads_lock
3601 // is held by some other thread. (Note: the Safepoint abstraction also
3602 // uses the Threads_lock to gurantee this property. It also makes sure that
3603 // all threads gets blocked when exiting or starting).
3604 
3605 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3606   ALL_JAVA_THREADS(p) {
3607     p->oops_do(f, cf);
3608   }
3609   VMThread::vm_thread()->oops_do(f, cf);
3610 }
3611 
3612 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
3613   // Introduce a mechanism allowing parallel threads to claim threads as
3614   // root groups.  Overhead should be small enough to use all the time,
3615   // even in sequential code.
3616   SharedHeap* sh = SharedHeap::heap();
3617   bool is_par = (sh->n_par_threads() > 0);
3618   int cp = SharedHeap::heap()->strong_roots_parity();
3619   ALL_JAVA_THREADS(p) {
3620     if (p->claim_oops_do(is_par, cp)) {
3621       p->oops_do(f, cf);
3622     }
3623   }
3624   VMThread* vmt = VMThread::vm_thread();
3625   if (vmt->claim_oops_do(is_par, cp))
3626     vmt->oops_do(f, cf);
3627 }
3628 
3629 #ifndef SERIALGC
3630 // Used by ParallelScavenge
3631 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
3632   ALL_JAVA_THREADS(p) {
3633     q->enqueue(new ThreadRootsTask(p));
3634   }
3635   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
3636 }
3637 
3638 // Used by Parallel Old
3639 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
3640   ALL_JAVA_THREADS(p) {
3641     q->enqueue(new ThreadRootsMarkingTask(p));
3642   }
3643   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
3644 }
3645 #endif // SERIALGC
3646 
3647 void Threads::nmethods_do(CodeBlobClosure* cf) {
3648   ALL_JAVA_THREADS(p) {
3649     p->nmethods_do(cf);
3650   }
3651   VMThread::vm_thread()->nmethods_do(cf);
3652 }
3653 
3654 void Threads::gc_epilogue() {
3655   ALL_JAVA_THREADS(p) {
3656     p->gc_epilogue();
3657   }
3658 }
3659 
3660 void Threads::gc_prologue() {
3661   ALL_JAVA_THREADS(p) {
3662     p->gc_prologue();
3663   }
3664 }
3665 
3666 void Threads::deoptimized_wrt_marked_nmethods() {
3667   ALL_JAVA_THREADS(p) {
3668     p->deoptimized_wrt_marked_nmethods();
3669   }
3670 }
3671 
3672 
3673 // Get count Java threads that are waiting to enter the specified monitor.
3674 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
3675   address monitor, bool doLock) {
3676   assert(doLock || SafepointSynchronize::is_at_safepoint(),
3677     "must grab Threads_lock or be at safepoint");
3678   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
3679 
3680   int i = 0;
3681   {
3682     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3683     ALL_JAVA_THREADS(p) {
3684       if (p->is_Compiler_thread()) continue;
3685 
3686       address pending = (address)p->current_pending_monitor();
3687       if (pending == monitor) {             // found a match
3688         if (i < count) result->append(p);   // save the first count matches
3689         i++;
3690       }
3691     }
3692   }
3693   return result;
3694 }
3695 
3696 
3697 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
3698   assert(doLock ||
3699          Threads_lock->owned_by_self() ||
3700          SafepointSynchronize::is_at_safepoint(),
3701          "must grab Threads_lock or be at safepoint");
3702 
3703   // NULL owner means not locked so we can skip the search
3704   if (owner == NULL) return NULL;
3705 
3706   {
3707     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3708     ALL_JAVA_THREADS(p) {
3709       // first, see if owner is the address of a Java thread
3710       if (owner == (address)p) return p;
3711     }
3712   }
3713   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
3714   if (UseHeavyMonitors) return NULL;
3715 
3716   //
3717   // If we didn't find a matching Java thread and we didn't force use of
3718   // heavyweight monitors, then the owner is the stack address of the
3719   // Lock Word in the owning Java thread's stack.
3720   //
3721   JavaThread* the_owner = NULL;
3722   {
3723     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3724     ALL_JAVA_THREADS(q) {
3725       if (q->is_lock_owned(owner)) {
3726         the_owner = q;
3727         break;
3728       }
3729     }
3730   }
3731   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
3732   return the_owner;
3733 }
3734 
3735 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
3736 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
3737   char buf[32];
3738   st->print_cr(os::local_time_string(buf, sizeof(buf)));
3739 
3740   st->print_cr("Full thread dump %s (%s %s):",
3741                 Abstract_VM_Version::vm_name(),
3742                 Abstract_VM_Version::vm_release(),
3743                 Abstract_VM_Version::vm_info_string()
3744                );
3745   st->cr();
3746 
3747 #ifndef SERIALGC
3748   // Dump concurrent locks
3749   ConcurrentLocksDump concurrent_locks;
3750   if (print_concurrent_locks) {
3751     concurrent_locks.dump_at_safepoint();
3752   }
3753 #endif // SERIALGC
3754 
3755   ALL_JAVA_THREADS(p) {
3756     ResourceMark rm;
3757     p->print_on(st);
3758     if (print_stacks) {
3759       if (internal_format) {
3760         p->trace_stack();
3761       } else {
3762         p->print_stack_on(st);
3763       }
3764     }
3765     st->cr();
3766 #ifndef SERIALGC
3767     if (print_concurrent_locks) {
3768       concurrent_locks.print_locks_on(p, st);
3769     }
3770 #endif // SERIALGC
3771   }
3772 
3773   VMThread::vm_thread()->print_on(st);
3774   st->cr();
3775   Universe::heap()->print_gc_threads_on(st);
3776   WatcherThread* wt = WatcherThread::watcher_thread();
3777   if (wt != NULL) wt->print_on(st);
3778   st->cr();
3779   CompileBroker::print_compiler_threads_on(st);
3780   st->flush();
3781 }
3782 
3783 // Threads::print_on_error() is called by fatal error handler. It's possible
3784 // that VM is not at safepoint and/or current thread is inside signal handler.
3785 // Don't print stack trace, as the stack may not be walkable. Don't allocate
3786 // memory (even in resource area), it might deadlock the error handler.
3787 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
3788   bool found_current = false;
3789   st->print_cr("Java Threads: ( => current thread )");
3790   ALL_JAVA_THREADS(thread) {
3791     bool is_current = (current == thread);
3792     found_current = found_current || is_current;
3793 
3794     st->print("%s", is_current ? "=>" : "  ");
3795 
3796     st->print(PTR_FORMAT, thread);
3797     st->print(" ");
3798     thread->print_on_error(st, buf, buflen);
3799     st->cr();
3800   }
3801   st->cr();
3802 
3803   st->print_cr("Other Threads:");
3804   if (VMThread::vm_thread()) {
3805     bool is_current = (current == VMThread::vm_thread());
3806     found_current = found_current || is_current;
3807     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
3808 
3809     st->print(PTR_FORMAT, VMThread::vm_thread());
3810     st->print(" ");
3811     VMThread::vm_thread()->print_on_error(st, buf, buflen);
3812     st->cr();
3813   }
3814   WatcherThread* wt = WatcherThread::watcher_thread();
3815   if (wt != NULL) {
3816     bool is_current = (current == wt);
3817     found_current = found_current || is_current;
3818     st->print("%s", is_current ? "=>" : "  ");
3819 
3820     st->print(PTR_FORMAT, wt);
3821     st->print(" ");
3822     wt->print_on_error(st, buf, buflen);
3823     st->cr();
3824   }
3825   if (!found_current) {
3826     st->cr();
3827     st->print("=>" PTR_FORMAT " (exited) ", current);
3828     current->print_on_error(st, buf, buflen);
3829     st->cr();
3830   }
3831 }
3832 
3833 
3834 // Lifecycle management for TSM ParkEvents.
3835 // ParkEvents are type-stable (TSM).
3836 // In our particular implementation they happen to be immortal.
3837 //
3838 // We manage concurrency on the FreeList with a CAS-based
3839 // detach-modify-reattach idiom that avoids the ABA problems
3840 // that would otherwise be present in a simple CAS-based
3841 // push-pop implementation.   (push-one and pop-all)
3842 //
3843 // Caveat: Allocate() and Release() may be called from threads
3844 // other than the thread associated with the Event!
3845 // If we need to call Allocate() when running as the thread in
3846 // question then look for the PD calls to initialize native TLS.
3847 // Native TLS (Win32/Linux/Solaris) can only be initialized or
3848 // accessed by the associated thread.
3849 // See also pd_initialize().
3850 //
3851 // Note that we could defer associating a ParkEvent with a thread
3852 // until the 1st time the thread calls park().  unpark() calls to
3853 // an unprovisioned thread would be ignored.  The first park() call
3854 // for a thread would allocate and associate a ParkEvent and return
3855 // immediately.
3856 
3857 volatile int ParkEvent::ListLock = 0 ;
3858 ParkEvent * volatile ParkEvent::FreeList = NULL ;
3859 
3860 ParkEvent * ParkEvent::Allocate (Thread * t) {
3861   // In rare cases -- JVM_RawMonitor* operations -- we can find t == null.
3862   ParkEvent * ev ;
3863 
3864   // Start by trying to recycle an existing but unassociated
3865   // ParkEvent from the global free list.
3866   for (;;) {
3867     ev = FreeList ;
3868     if (ev == NULL) break ;
3869     // 1: Detach - sequester or privatize the list
3870     // Tantamount to ev = Swap (&FreeList, NULL)
3871     if (Atomic::cmpxchg_ptr (NULL, &FreeList, ev) != ev) {
3872        continue ;
3873     }
3874 
3875     // We've detached the list.  The list in-hand is now
3876     // local to this thread.   This thread can operate on the
3877     // list without risk of interference from other threads.
3878     // 2: Extract -- pop the 1st element from the list.
3879     ParkEvent * List = ev->FreeNext ;
3880     if (List == NULL) break ;
3881     for (;;) {
3882         // 3: Try to reattach the residual list
3883         guarantee (List != NULL, "invariant") ;
3884         ParkEvent * Arv =  (ParkEvent *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
3885         if (Arv == NULL) break ;
3886 
3887         // New nodes arrived.  Try to detach the recent arrivals.
3888         if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
3889             continue ;
3890         }
3891         guarantee (Arv != NULL, "invariant") ;
3892         // 4: Merge Arv into List
3893         ParkEvent * Tail = List ;
3894         while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
3895         Tail->FreeNext = Arv ;
3896     }
3897     break ;
3898   }
3899 
3900   if (ev != NULL) {
3901     guarantee (ev->AssociatedWith == NULL, "invariant") ;
3902   } else {
3903     // Do this the hard way -- materialize a new ParkEvent.
3904     // In rare cases an allocating thread might detach a long list --
3905     // installing null into FreeList -- and then stall or be obstructed.
3906     // A 2nd thread calling Allocate() would see FreeList == null.
3907     // The list held privately by the 1st thread is unavailable to the 2nd thread.
3908     // In that case the 2nd thread would have to materialize a new ParkEvent,
3909     // even though free ParkEvents existed in the system.  In this case we end up
3910     // with more ParkEvents in circulation than we need, but the race is
3911     // rare and the outcome is benign.  Ideally, the # of extant ParkEvents
3912     // is equal to the maximum # of threads that existed at any one time.
3913     // Because of the race mentioned above, segments of the freelist
3914     // can be transiently inaccessible.  At worst we may end up with the
3915     // # of ParkEvents in circulation slightly above the ideal.
3916     // Note that if we didn't have the TSM/immortal constraint, then
3917     // when reattaching, above, we could trim the list.
3918     ev = new ParkEvent () ;
3919     guarantee ((intptr_t(ev) & 0xFF) == 0, "invariant") ;
3920   }
3921   ev->reset() ;                     // courtesy to caller
3922   ev->AssociatedWith = t ;          // Associate ev with t
3923   ev->FreeNext       = NULL ;
3924   return ev ;
3925 }
3926 
3927 void ParkEvent::Release (ParkEvent * ev) {
3928   if (ev == NULL) return ;
3929   guarantee (ev->FreeNext == NULL      , "invariant") ;
3930   ev->AssociatedWith = NULL ;
3931   for (;;) {
3932     // Push ev onto FreeList
3933     // The mechanism is "half" lock-free.
3934     ParkEvent * List = FreeList ;
3935     ev->FreeNext = List ;
3936     if (Atomic::cmpxchg_ptr (ev, &FreeList, List) == List) break ;
3937   }
3938 }
3939 
3940 // Override operator new and delete so we can ensure that the
3941 // least significant byte of ParkEvent addresses is 0.
3942 // Beware that excessive address alignment is undesirable
3943 // as it can result in D$ index usage imbalance as
3944 // well as bank access imbalance on Niagara-like platforms,
3945 // although Niagara's hash function should help.
3946 
3947 void * ParkEvent::operator new (size_t sz) {
3948   return (void *) ((intptr_t (CHeapObj::operator new (sz + 256)) + 256) & -256) ;
3949 }
3950 
3951 void ParkEvent::operator delete (void * a) {
3952   // ParkEvents are type-stable and immortal ...
3953   ShouldNotReachHere();
3954 }
3955 
3956 
3957 // 6399321 As a temporary measure we copied & modified the ParkEvent::
3958 // allocate() and release() code for use by Parkers.  The Parker:: forms
3959 // will eventually be removed as we consolide and shift over to ParkEvents
3960 // for both builtin synchronization and JSR166 operations.
3961 
3962 volatile int Parker::ListLock = 0 ;
3963 Parker * volatile Parker::FreeList = NULL ;
3964 
3965 Parker * Parker::Allocate (JavaThread * t) {
3966   guarantee (t != NULL, "invariant") ;
3967   Parker * p ;
3968 
3969   // Start by trying to recycle an existing but unassociated
3970   // Parker from the global free list.
3971   for (;;) {
3972     p = FreeList ;
3973     if (p  == NULL) break ;
3974     // 1: Detach
3975     // Tantamount to p = Swap (&FreeList, NULL)
3976     if (Atomic::cmpxchg_ptr (NULL, &FreeList, p) != p) {
3977        continue ;
3978     }
3979 
3980     // We've detached the list.  The list in-hand is now
3981     // local to this thread.   This thread can operate on the
3982     // list without risk of interference from other threads.
3983     // 2: Extract -- pop the 1st element from the list.
3984     Parker * List = p->FreeNext ;
3985     if (List == NULL) break ;
3986     for (;;) {
3987         // 3: Try to reattach the residual list
3988         guarantee (List != NULL, "invariant") ;
3989         Parker * Arv =  (Parker *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
3990         if (Arv == NULL) break ;
3991 
3992         // New nodes arrived.  Try to detach the recent arrivals.
3993         if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
3994             continue ;
3995         }
3996         guarantee (Arv != NULL, "invariant") ;
3997         // 4: Merge Arv into List
3998         Parker * Tail = List ;
3999         while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
4000         Tail->FreeNext = Arv ;
4001     }
4002     break ;
4003   }
4004 
4005   if (p != NULL) {
4006     guarantee (p->AssociatedWith == NULL, "invariant") ;
4007   } else {
4008     // Do this the hard way -- materialize a new Parker..
4009     // In rare cases an allocating thread might detach
4010     // a long list -- installing null into FreeList --and
4011     // then stall.  Another thread calling Allocate() would see
4012     // FreeList == null and then invoke the ctor.  In this case we
4013     // end up with more Parkers in circulation than we need, but
4014     // the race is rare and the outcome is benign.
4015     // Ideally, the # of extant Parkers is equal to the
4016     // maximum # of threads that existed at any one time.
4017     // Because of the race mentioned above, segments of the
4018     // freelist can be transiently inaccessible.  At worst
4019     // we may end up with the # of Parkers in circulation
4020     // slightly above the ideal.
4021     p = new Parker() ;
4022   }
4023   p->AssociatedWith = t ;          // Associate p with t
4024   p->FreeNext       = NULL ;
4025   return p ;
4026 }
4027 
4028 
4029 void Parker::Release (Parker * p) {
4030   if (p == NULL) return ;
4031   guarantee (p->AssociatedWith != NULL, "invariant") ;
4032   guarantee (p->FreeNext == NULL      , "invariant") ;
4033   p->AssociatedWith = NULL ;
4034   for (;;) {
4035     // Push p onto FreeList
4036     Parker * List = FreeList ;
4037     p->FreeNext = List ;
4038     if (Atomic::cmpxchg_ptr (p, &FreeList, List) == List) break ;
4039   }
4040 }
4041 
4042 void Threads::verify() {
4043   ALL_JAVA_THREADS(p) {
4044     p->verify();
4045   }
4046   VMThread* thread = VMThread::vm_thread();
4047   if (thread != NULL) thread->verify();
4048 }