rev 1081 : imported patch indy-cleanup-6893081.patch

   1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_sharedRuntime.cpp.incl"
  27 #include <math.h>
  28 
  29 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
  30 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
  31                       char*, int, char*, int, char*, int);
  32 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
  33                       char*, int, char*, int, char*, int);
  34 
  35 // Implementation of SharedRuntime
  36 
  37 #ifndef PRODUCT
  38 // For statistics
  39 int SharedRuntime::_ic_miss_ctr = 0;
  40 int SharedRuntime::_wrong_method_ctr = 0;
  41 int SharedRuntime::_resolve_static_ctr = 0;
  42 int SharedRuntime::_resolve_virtual_ctr = 0;
  43 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
  44 int SharedRuntime::_implicit_null_throws = 0;
  45 int SharedRuntime::_implicit_div0_throws = 0;
  46 int SharedRuntime::_throw_null_ctr = 0;
  47 
  48 int SharedRuntime::_nof_normal_calls = 0;
  49 int SharedRuntime::_nof_optimized_calls = 0;
  50 int SharedRuntime::_nof_inlined_calls = 0;
  51 int SharedRuntime::_nof_megamorphic_calls = 0;
  52 int SharedRuntime::_nof_static_calls = 0;
  53 int SharedRuntime::_nof_inlined_static_calls = 0;
  54 int SharedRuntime::_nof_interface_calls = 0;
  55 int SharedRuntime::_nof_optimized_interface_calls = 0;
  56 int SharedRuntime::_nof_inlined_interface_calls = 0;
  57 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
  58 int SharedRuntime::_nof_removable_exceptions = 0;
  59 
  60 int SharedRuntime::_new_instance_ctr=0;
  61 int SharedRuntime::_new_array_ctr=0;
  62 int SharedRuntime::_multi1_ctr=0;
  63 int SharedRuntime::_multi2_ctr=0;
  64 int SharedRuntime::_multi3_ctr=0;
  65 int SharedRuntime::_multi4_ctr=0;
  66 int SharedRuntime::_multi5_ctr=0;
  67 int SharedRuntime::_mon_enter_stub_ctr=0;
  68 int SharedRuntime::_mon_exit_stub_ctr=0;
  69 int SharedRuntime::_mon_enter_ctr=0;
  70 int SharedRuntime::_mon_exit_ctr=0;
  71 int SharedRuntime::_partial_subtype_ctr=0;
  72 int SharedRuntime::_jbyte_array_copy_ctr=0;
  73 int SharedRuntime::_jshort_array_copy_ctr=0;
  74 int SharedRuntime::_jint_array_copy_ctr=0;
  75 int SharedRuntime::_jlong_array_copy_ctr=0;
  76 int SharedRuntime::_oop_array_copy_ctr=0;
  77 int SharedRuntime::_checkcast_array_copy_ctr=0;
  78 int SharedRuntime::_unsafe_array_copy_ctr=0;
  79 int SharedRuntime::_generic_array_copy_ctr=0;
  80 int SharedRuntime::_slow_array_copy_ctr=0;
  81 int SharedRuntime::_find_handler_ctr=0;
  82 int SharedRuntime::_rethrow_ctr=0;
  83 
  84 int     SharedRuntime::_ICmiss_index                    = 0;
  85 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
  86 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
  87 
  88 void SharedRuntime::trace_ic_miss(address at) {
  89   for (int i = 0; i < _ICmiss_index; i++) {
  90     if (_ICmiss_at[i] == at) {
  91       _ICmiss_count[i]++;
  92       return;
  93     }
  94   }
  95   int index = _ICmiss_index++;
  96   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
  97   _ICmiss_at[index] = at;
  98   _ICmiss_count[index] = 1;
  99 }
 100 
 101 void SharedRuntime::print_ic_miss_histogram() {
 102   if (ICMissHistogram) {
 103     tty->print_cr ("IC Miss Histogram:");
 104     int tot_misses = 0;
 105     for (int i = 0; i < _ICmiss_index; i++) {
 106       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 107       tot_misses += _ICmiss_count[i];
 108     }
 109     tty->print_cr ("Total IC misses: %7d", tot_misses);
 110   }
 111 }
 112 #endif // PRODUCT
 113 
 114 #ifndef SERIALGC
 115 
 116 // G1 write-barrier pre: executed before a pointer store.
 117 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 118   if (orig == NULL) {
 119     assert(false, "should be optimized out");
 120     return;
 121   }
 122   assert(orig->is_oop(true /* ignore mark word */), "Error");
 123   // store the original value that was in the field reference
 124   thread->satb_mark_queue().enqueue(orig);
 125 JRT_END
 126 
 127 // G1 write-barrier post: executed after a pointer store.
 128 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 129   thread->dirty_card_queue().enqueue(card_addr);
 130 JRT_END
 131 
 132 #endif // !SERIALGC
 133 
 134 
 135 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 136   return x * y;
 137 JRT_END
 138 
 139 
 140 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 141   if (x == min_jlong && y == CONST64(-1)) {
 142     return x;
 143   } else {
 144     return x / y;
 145   }
 146 JRT_END
 147 
 148 
 149 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 150   if (x == min_jlong && y == CONST64(-1)) {
 151     return 0;
 152   } else {
 153     return x % y;
 154   }
 155 JRT_END
 156 
 157 
 158 const juint  float_sign_mask  = 0x7FFFFFFF;
 159 const juint  float_infinity   = 0x7F800000;
 160 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 161 const julong double_infinity  = CONST64(0x7FF0000000000000);
 162 
 163 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 164 #ifdef _WIN64
 165   // 64-bit Windows on amd64 returns the wrong values for
 166   // infinity operands.
 167   union { jfloat f; juint i; } xbits, ybits;
 168   xbits.f = x;
 169   ybits.f = y;
 170   // x Mod Infinity == x unless x is infinity
 171   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 172        ((ybits.i & float_sign_mask) == float_infinity) ) {
 173     return x;
 174   }
 175 #endif
 176   return ((jfloat)fmod((double)x,(double)y));
 177 JRT_END
 178 
 179 
 180 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 181 #ifdef _WIN64
 182   union { jdouble d; julong l; } xbits, ybits;
 183   xbits.d = x;
 184   ybits.d = y;
 185   // x Mod Infinity == x unless x is infinity
 186   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 187        ((ybits.l & double_sign_mask) == double_infinity) ) {
 188     return x;
 189   }
 190 #endif
 191   return ((jdouble)fmod((double)x,(double)y));
 192 JRT_END
 193 
 194 
 195 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 196   if (g_isnan(x))
 197     return 0;
 198   if (x >= (jfloat) max_jint)
 199     return max_jint;
 200   if (x <= (jfloat) min_jint)
 201     return min_jint;
 202   return (jint) x;
 203 JRT_END
 204 
 205 
 206 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 207   if (g_isnan(x))
 208     return 0;
 209   if (x >= (jfloat) max_jlong)
 210     return max_jlong;
 211   if (x <= (jfloat) min_jlong)
 212     return min_jlong;
 213   return (jlong) x;
 214 JRT_END
 215 
 216 
 217 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 218   if (g_isnan(x))
 219     return 0;
 220   if (x >= (jdouble) max_jint)
 221     return max_jint;
 222   if (x <= (jdouble) min_jint)
 223     return min_jint;
 224   return (jint) x;
 225 JRT_END
 226 
 227 
 228 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 229   if (g_isnan(x))
 230     return 0;
 231   if (x >= (jdouble) max_jlong)
 232     return max_jlong;
 233   if (x <= (jdouble) min_jlong)
 234     return min_jlong;
 235   return (jlong) x;
 236 JRT_END
 237 
 238 
 239 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 240   return (jfloat)x;
 241 JRT_END
 242 
 243 
 244 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 245   return (jfloat)x;
 246 JRT_END
 247 
 248 
 249 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 250   return (jdouble)x;
 251 JRT_END
 252 
 253 // Exception handling accross interpreter/compiler boundaries
 254 //
 255 // exception_handler_for_return_address(...) returns the continuation address.
 256 // The continuation address is the entry point of the exception handler of the
 257 // previous frame depending on the return address.
 258 
 259 address SharedRuntime::raw_exception_handler_for_return_address(address return_address) {
 260   assert(frame::verify_return_pc(return_address), "must be a return pc");
 261 
 262   // the fastest case first
 263   CodeBlob* blob = CodeCache::find_blob(return_address);
 264   if (blob != NULL && blob->is_nmethod()) {
 265     nmethod* code = (nmethod*)blob;
 266     assert(code != NULL, "nmethod must be present");
 267     // native nmethods don't have exception handlers
 268     assert(!code->is_native_method(), "no exception handler");
 269     assert(code->header_begin() != code->exception_begin(), "no exception handler");
 270     if (code->is_deopt_pc(return_address)) {
 271       return SharedRuntime::deopt_blob()->unpack_with_exception();
 272     } else {
 273       return code->exception_begin();
 274     }
 275   }
 276 
 277   // Entry code
 278   if (StubRoutines::returns_to_call_stub(return_address)) {
 279     return StubRoutines::catch_exception_entry();
 280   }
 281   // Interpreted code
 282   if (Interpreter::contains(return_address)) {
 283     return Interpreter::rethrow_exception_entry();
 284   }
 285 
 286   // Compiled code
 287   if (CodeCache::contains(return_address)) {
 288     CodeBlob* blob = CodeCache::find_blob(return_address);
 289     if (blob->is_nmethod()) {
 290       nmethod* code = (nmethod*)blob;
 291       assert(code != NULL, "nmethod must be present");
 292       assert(code->header_begin() != code->exception_begin(), "no exception handler");
 293       return code->exception_begin();
 294     }
 295     if (blob->is_runtime_stub()) {
 296       ShouldNotReachHere();   // callers are responsible for skipping runtime stub frames
 297     }
 298   }
 299   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 300 #ifndef PRODUCT
 301   { ResourceMark rm;
 302     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 303     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 304     tty->print_cr("b) other problem");
 305   }
 306 #endif // PRODUCT
 307   ShouldNotReachHere();
 308   return NULL;
 309 }
 310 
 311 
 312 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(address return_address))
 313   return raw_exception_handler_for_return_address(return_address);
 314 JRT_END
 315 
 316 address SharedRuntime::get_poll_stub(address pc) {
 317   address stub;
 318   // Look up the code blob
 319   CodeBlob *cb = CodeCache::find_blob(pc);
 320 
 321   // Should be an nmethod
 322   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 323 
 324   // Look up the relocation information
 325   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 326     "safepoint polling: type must be poll" );
 327 
 328   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 329     "Only polling locations are used for safepoint");
 330 
 331   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 332   if (at_poll_return) {
 333     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 334            "polling page return stub not created yet");
 335     stub = SharedRuntime::polling_page_return_handler_blob()->instructions_begin();
 336   } else {
 337     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 338            "polling page safepoint stub not created yet");
 339     stub = SharedRuntime::polling_page_safepoint_handler_blob()->instructions_begin();
 340   }
 341 #ifndef PRODUCT
 342   if( TraceSafepoint ) {
 343     char buf[256];
 344     jio_snprintf(buf, sizeof(buf),
 345                  "... found polling page %s exception at pc = "
 346                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 347                  at_poll_return ? "return" : "loop",
 348                  (intptr_t)pc, (intptr_t)stub);
 349     tty->print_raw_cr(buf);
 350   }
 351 #endif // PRODUCT
 352   return stub;
 353 }
 354 
 355 
 356 oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
 357   assert(caller.is_interpreted_frame(), "");
 358   int args_size = ArgumentSizeComputer(sig).size() + 1;
 359   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 360   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
 361   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 362   return result;
 363 }
 364 
 365 
 366 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 367   if (JvmtiExport::can_post_exceptions()) {
 368     vframeStream vfst(thread, true);
 369     methodHandle method = methodHandle(thread, vfst.method());
 370     address bcp = method()->bcp_from(vfst.bci());
 371     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 372   }
 373   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 374 }
 375 
 376 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
 377   Handle h_exception = Exceptions::new_exception(thread, name, message);
 378   throw_and_post_jvmti_exception(thread, h_exception);
 379 }
 380 
 381 // The interpreter code to call this tracing function is only
 382 // called/generated when TraceRedefineClasses has the right bits
 383 // set. Since obsolete methods are never compiled, we don't have
 384 // to modify the compilers to generate calls to this function.
 385 //
 386 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 387     JavaThread* thread, methodOopDesc* method))
 388   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 389 
 390   if (method->is_obsolete()) {
 391     // We are calling an obsolete method, but this is not necessarily
 392     // an error. Our method could have been redefined just after we
 393     // fetched the methodOop from the constant pool.
 394 
 395     // RC_TRACE macro has an embedded ResourceMark
 396     RC_TRACE_WITH_THREAD(0x00001000, thread,
 397                          ("calling obsolete method '%s'",
 398                           method->name_and_sig_as_C_string()));
 399     if (RC_TRACE_ENABLED(0x00002000)) {
 400       // this option is provided to debug calls to obsolete methods
 401       guarantee(false, "faulting at call to an obsolete method.");
 402     }
 403   }
 404   return 0;
 405 JRT_END
 406 
 407 // ret_pc points into caller; we are returning caller's exception handler
 408 // for given exception
 409 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 410                                                     bool force_unwind, bool top_frame_only) {
 411   assert(nm != NULL, "must exist");
 412   ResourceMark rm;
 413 
 414   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 415   // determine handler bci, if any
 416   EXCEPTION_MARK;
 417 
 418   int handler_bci = -1;
 419   int scope_depth = 0;
 420   if (!force_unwind) {
 421     int bci = sd->bci();
 422     do {
 423       bool skip_scope_increment = false;
 424       // exception handler lookup
 425       KlassHandle ek (THREAD, exception->klass());
 426       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
 427       if (HAS_PENDING_EXCEPTION) {
 428         // We threw an exception while trying to find the exception handler.
 429         // Transfer the new exception to the exception handle which will
 430         // be set into thread local storage, and do another lookup for an
 431         // exception handler for this exception, this time starting at the
 432         // BCI of the exception handler which caused the exception to be
 433         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 434         // argument to ensure that the correct exception is thrown (4870175).
 435         exception = Handle(THREAD, PENDING_EXCEPTION);
 436         CLEAR_PENDING_EXCEPTION;
 437         if (handler_bci >= 0) {
 438           bci = handler_bci;
 439           handler_bci = -1;
 440           skip_scope_increment = true;
 441         }
 442       }
 443       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 444         sd = sd->sender();
 445         if (sd != NULL) {
 446           bci = sd->bci();
 447         }
 448         ++scope_depth;
 449       }
 450     } while (!top_frame_only && handler_bci < 0 && sd != NULL);
 451   }
 452 
 453   // found handling method => lookup exception handler
 454   int catch_pco = ret_pc - nm->instructions_begin();
 455 
 456   ExceptionHandlerTable table(nm);
 457   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 458   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 459     // Allow abbreviated catch tables.  The idea is to allow a method
 460     // to materialize its exceptions without committing to the exact
 461     // routing of exceptions.  In particular this is needed for adding
 462     // a synthethic handler to unlock monitors when inlining
 463     // synchonized methods since the unlock path isn't represented in
 464     // the bytecodes.
 465     t = table.entry_for(catch_pco, -1, 0);
 466   }
 467 
 468 #ifdef COMPILER1
 469   if (nm->is_compiled_by_c1() && t == NULL && handler_bci == -1) {
 470     // Exception is not handled by this frame so unwind.  Note that
 471     // this is not the same as how C2 does this.  C2 emits a table
 472     // entry that dispatches to the unwind code in the nmethod.
 473     return NULL;
 474   }
 475 #endif /* COMPILER1 */
 476 
 477 
 478   if (t == NULL) {
 479     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 480     tty->print_cr("   Exception:");
 481     exception->print();
 482     tty->cr();
 483     tty->print_cr(" Compiled exception table :");
 484     table.print();
 485     nm->print_code();
 486     guarantee(false, "missing exception handler");
 487     return NULL;
 488   }
 489 
 490   return nm->instructions_begin() + t->pco();
 491 }
 492 
 493 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 494   // These errors occur only at call sites
 495   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 496 JRT_END
 497 
 498 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 499   // These errors occur only at call sites
 500   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 501 JRT_END
 502 
 503 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 504   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 505 JRT_END
 506 
 507 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 508   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 509 JRT_END
 510 
 511 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 512   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 513   // cache sites (when the callee activation is not yet set up) so we are at a call site
 514   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 515 JRT_END
 516 
 517 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 518   // We avoid using the normal exception construction in this case because
 519   // it performs an upcall to Java, and we're already out of stack space.
 520   klassOop k = SystemDictionary::StackOverflowError_klass();
 521   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
 522   Handle exception (thread, exception_oop);
 523   if (StackTraceInThrowable) {
 524     java_lang_Throwable::fill_in_stack_trace(exception);
 525   }
 526   throw_and_post_jvmti_exception(thread, exception);
 527 JRT_END
 528 
 529 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 530                                                            address pc,
 531                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 532 {
 533   address target_pc = NULL;
 534 
 535   if (Interpreter::contains(pc)) {
 536 #ifdef CC_INTERP
 537     // C++ interpreter doesn't throw implicit exceptions
 538     ShouldNotReachHere();
 539 #else
 540     switch (exception_kind) {
 541       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 542       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 543       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 544       default:                      ShouldNotReachHere();
 545     }
 546 #endif // !CC_INTERP
 547   } else {
 548     switch (exception_kind) {
 549       case STACK_OVERFLOW: {
 550         // Stack overflow only occurs upon frame setup; the callee is
 551         // going to be unwound. Dispatch to a shared runtime stub
 552         // which will cause the StackOverflowError to be fabricated
 553         // and processed.
 554         // For stack overflow in deoptimization blob, cleanup thread.
 555         if (thread->deopt_mark() != NULL) {
 556           Deoptimization::cleanup_deopt_info(thread, NULL);
 557         }
 558         return StubRoutines::throw_StackOverflowError_entry();
 559       }
 560 
 561       case IMPLICIT_NULL: {
 562         if (VtableStubs::contains(pc)) {
 563           // We haven't yet entered the callee frame. Fabricate an
 564           // exception and begin dispatching it in the caller. Since
 565           // the caller was at a call site, it's safe to destroy all
 566           // caller-saved registers, as these entry points do.
 567           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 568 
 569           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 570           if (vt_stub == NULL) return NULL;
 571 
 572           if (vt_stub->is_abstract_method_error(pc)) {
 573             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 574             return StubRoutines::throw_AbstractMethodError_entry();
 575           } else {
 576             return StubRoutines::throw_NullPointerException_at_call_entry();
 577           }
 578         } else {
 579           CodeBlob* cb = CodeCache::find_blob(pc);
 580 
 581           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 582           if (cb == NULL) return NULL;
 583 
 584           // Exception happened in CodeCache. Must be either:
 585           // 1. Inline-cache check in C2I handler blob,
 586           // 2. Inline-cache check in nmethod, or
 587           // 3. Implict null exception in nmethod
 588 
 589           if (!cb->is_nmethod()) {
 590             guarantee(cb->is_adapter_blob(),
 591                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
 592             // There is no handler here, so we will simply unwind.
 593             return StubRoutines::throw_NullPointerException_at_call_entry();
 594           }
 595 
 596           // Otherwise, it's an nmethod.  Consult its exception handlers.
 597           nmethod* nm = (nmethod*)cb;
 598           if (nm->inlinecache_check_contains(pc)) {
 599             // exception happened inside inline-cache check code
 600             // => the nmethod is not yet active (i.e., the frame
 601             // is not set up yet) => use return address pushed by
 602             // caller => don't push another return address
 603             return StubRoutines::throw_NullPointerException_at_call_entry();
 604           }
 605 
 606 #ifndef PRODUCT
 607           _implicit_null_throws++;
 608 #endif
 609           target_pc = nm->continuation_for_implicit_exception(pc);
 610           guarantee(target_pc != 0, "must have a continuation point");
 611         }
 612 
 613         break; // fall through
 614       }
 615 
 616 
 617       case IMPLICIT_DIVIDE_BY_ZERO: {
 618         nmethod* nm = CodeCache::find_nmethod(pc);
 619         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 620 #ifndef PRODUCT
 621         _implicit_div0_throws++;
 622 #endif
 623         target_pc = nm->continuation_for_implicit_exception(pc);
 624         guarantee(target_pc != 0, "must have a continuation point");
 625         break; // fall through
 626       }
 627 
 628       default: ShouldNotReachHere();
 629     }
 630 
 631     guarantee(target_pc != NULL, "must have computed destination PC for implicit exception");
 632     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 633 
 634     // for AbortVMOnException flag
 635     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 636     if (exception_kind == IMPLICIT_NULL) {
 637       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 638     } else {
 639       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 640     }
 641     return target_pc;
 642   }
 643 
 644   ShouldNotReachHere();
 645   return NULL;
 646 }
 647 
 648 
 649 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
 650 {
 651   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
 652 }
 653 JNI_END
 654 
 655 
 656 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 657   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 658 }
 659 
 660 
 661 #ifndef PRODUCT
 662 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 663   const frame f = thread->last_frame();
 664   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 665 #ifndef PRODUCT
 666   methodHandle mh(THREAD, f.interpreter_frame_method());
 667   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 668 #endif // !PRODUCT
 669   return preserve_this_value;
 670 JRT_END
 671 #endif // !PRODUCT
 672 
 673 
 674 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 675   os::yield_all(attempts);
 676 JRT_END
 677 
 678 
 679 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 680   assert(obj->is_oop(), "must be a valid oop");
 681   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
 682   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
 683 JRT_END
 684 
 685 
 686 jlong SharedRuntime::get_java_tid(Thread* thread) {
 687   if (thread != NULL) {
 688     if (thread->is_Java_thread()) {
 689       oop obj = ((JavaThread*)thread)->threadObj();
 690       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 691     }
 692   }
 693   return 0;
 694 }
 695 
 696 /**
 697  * This function ought to be a void function, but cannot be because
 698  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 699  * 6254741.  Once that is fixed we can remove the dummy return value.
 700  */
 701 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 702   return dtrace_object_alloc_base(Thread::current(), o);
 703 }
 704 
 705 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 706   assert(DTraceAllocProbes, "wrong call");
 707   Klass* klass = o->blueprint();
 708   int size = o->size();
 709   symbolOop name = klass->name();
 710   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 711                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 712   return 0;
 713 }
 714 
 715 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 716     JavaThread* thread, methodOopDesc* method))
 717   assert(DTraceMethodProbes, "wrong call");
 718   symbolOop kname = method->klass_name();
 719   symbolOop name = method->name();
 720   symbolOop sig = method->signature();
 721   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 722       kname->bytes(), kname->utf8_length(),
 723       name->bytes(), name->utf8_length(),
 724       sig->bytes(), sig->utf8_length());
 725   return 0;
 726 JRT_END
 727 
 728 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 729     JavaThread* thread, methodOopDesc* method))
 730   assert(DTraceMethodProbes, "wrong call");
 731   symbolOop kname = method->klass_name();
 732   symbolOop name = method->name();
 733   symbolOop sig = method->signature();
 734   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
 735       kname->bytes(), kname->utf8_length(),
 736       name->bytes(), name->utf8_length(),
 737       sig->bytes(), sig->utf8_length());
 738   return 0;
 739 JRT_END
 740 
 741 
 742 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
 743 // for a call current in progress, i.e., arguments has been pushed on stack
 744 // put callee has not been invoked yet.  Used by: resolve virtual/static,
 745 // vtable updates, etc.  Caller frame must be compiled.
 746 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
 747   ResourceMark rm(THREAD);
 748 
 749   // last java frame on stack (which includes native call frames)
 750   vframeStream vfst(thread, true);  // Do not skip and javaCalls
 751 
 752   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
 753 }
 754 
 755 
 756 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
 757 // for a call current in progress, i.e., arguments has been pushed on stack
 758 // but callee has not been invoked yet.  Caller frame must be compiled.
 759 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
 760                                               vframeStream& vfst,
 761                                               Bytecodes::Code& bc,
 762                                               CallInfo& callinfo, TRAPS) {
 763   Handle receiver;
 764   Handle nullHandle;  //create a handy null handle for exception returns
 765 
 766   assert(!vfst.at_end(), "Java frame must exist");
 767 
 768   // Find caller and bci from vframe
 769   methodHandle caller (THREAD, vfst.method());
 770   int          bci    = vfst.bci();
 771 
 772   // Find bytecode
 773   Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
 774   bc = bytecode->adjusted_invoke_code();
 775   int bytecode_index = bytecode->index();
 776 
 777   // Find receiver for non-static call
 778   if (bc != Bytecodes::_invokestatic) {
 779     // This register map must be update since we need to find the receiver for
 780     // compiled frames. The receiver might be in a register.
 781     RegisterMap reg_map2(thread);
 782     frame stubFrame   = thread->last_frame();
 783     // Caller-frame is a compiled frame
 784     frame callerFrame = stubFrame.sender(&reg_map2);
 785 
 786     methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
 787     if (callee.is_null()) {
 788       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
 789     }
 790     // Retrieve from a compiled argument list
 791     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
 792 
 793     if (receiver.is_null()) {
 794       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
 795     }
 796   }
 797 
 798   // Resolve method. This is parameterized by bytecode.
 799   constantPoolHandle constants (THREAD, caller->constants());
 800   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
 801   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
 802 
 803 #ifdef ASSERT
 804   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
 805   if (bc != Bytecodes::_invokestatic) {
 806     assert(receiver.not_null(), "should have thrown exception");
 807     KlassHandle receiver_klass (THREAD, receiver->klass());
 808     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
 809                             // klass is already loaded
 810     KlassHandle static_receiver_klass (THREAD, rk);
 811     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
 812     if (receiver_klass->oop_is_instance()) {
 813       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
 814         tty->print_cr("ERROR: Klass not yet initialized!!");
 815         receiver_klass.print();
 816       }
 817       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
 818     }
 819   }
 820 #endif
 821 
 822   return receiver;
 823 }
 824 
 825 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
 826   ResourceMark rm(THREAD);
 827   // We need first to check if any Java activations (compiled, interpreted)
 828   // exist on the stack since last JavaCall.  If not, we need
 829   // to get the target method from the JavaCall wrapper.
 830   vframeStream vfst(thread, true);  // Do not skip any javaCalls
 831   methodHandle callee_method;
 832   if (vfst.at_end()) {
 833     // No Java frames were found on stack since we did the JavaCall.
 834     // Hence the stack can only contain an entry_frame.  We need to
 835     // find the target method from the stub frame.
 836     RegisterMap reg_map(thread, false);
 837     frame fr = thread->last_frame();
 838     assert(fr.is_runtime_frame(), "must be a runtimeStub");
 839     fr = fr.sender(&reg_map);
 840     assert(fr.is_entry_frame(), "must be");
 841     // fr is now pointing to the entry frame.
 842     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
 843     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
 844   } else {
 845     Bytecodes::Code bc;
 846     CallInfo callinfo;
 847     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
 848     callee_method = callinfo.selected_method();
 849   }
 850   assert(callee_method()->is_method(), "must be");
 851   return callee_method;
 852 }
 853 
 854 // Resolves a call.
 855 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
 856                                            bool is_virtual,
 857                                            bool is_optimized, TRAPS) {
 858   methodHandle callee_method;
 859   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
 860   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
 861     int retry_count = 0;
 862     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
 863            callee_method->method_holder() != SystemDictionary::object_klass()) {
 864       // If has a pending exception then there is no need to re-try to
 865       // resolve this method.
 866       // If the method has been redefined, we need to try again.
 867       // Hack: we have no way to update the vtables of arrays, so don't
 868       // require that java.lang.Object has been updated.
 869 
 870       // It is very unlikely that method is redefined more than 100 times
 871       // in the middle of resolve. If it is looping here more than 100 times
 872       // means then there could be a bug here.
 873       guarantee((retry_count++ < 100),
 874                 "Could not resolve to latest version of redefined method");
 875       // method is redefined in the middle of resolve so re-try.
 876       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
 877     }
 878   }
 879   return callee_method;
 880 }
 881 
 882 // Resolves a call.  The compilers generate code for calls that go here
 883 // and are patched with the real destination of the call.
 884 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
 885                                            bool is_virtual,
 886                                            bool is_optimized, TRAPS) {
 887 
 888   ResourceMark rm(thread);
 889   RegisterMap cbl_map(thread, false);
 890   frame caller_frame = thread->last_frame().sender(&cbl_map);
 891 
 892   CodeBlob* cb = caller_frame.cb();
 893   guarantee(cb != NULL && cb->is_nmethod(), "must be called from nmethod");
 894   // make sure caller is not getting deoptimized
 895   // and removed before we are done with it.
 896   // CLEANUP - with lazy deopt shouldn't need this lock
 897   nmethodLocker caller_lock((nmethod*)cb);
 898 
 899 
 900   // determine call info & receiver
 901   // note: a) receiver is NULL for static calls
 902   //       b) an exception is thrown if receiver is NULL for non-static calls
 903   CallInfo call_info;
 904   Bytecodes::Code invoke_code = Bytecodes::_illegal;
 905   Handle receiver = find_callee_info(thread, invoke_code,
 906                                      call_info, CHECK_(methodHandle()));
 907   methodHandle callee_method = call_info.selected_method();
 908 
 909   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
 910          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
 911 
 912 #ifndef PRODUCT
 913   // tracing/debugging/statistics
 914   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
 915                 (is_virtual) ? (&_resolve_virtual_ctr) :
 916                                (&_resolve_static_ctr);
 917   Atomic::inc(addr);
 918 
 919   if (TraceCallFixup) {
 920     ResourceMark rm(thread);
 921     tty->print("resolving %s%s (%s) call to",
 922       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
 923       Bytecodes::name(invoke_code));
 924     callee_method->print_short_name(tty);
 925     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
 926   }
 927 #endif
 928 
 929   // Compute entry points. This might require generation of C2I converter
 930   // frames, so we cannot be holding any locks here. Furthermore, the
 931   // computation of the entry points is independent of patching the call.  We
 932   // always return the entry-point, but we only patch the stub if the call has
 933   // not been deoptimized.  Return values: For a virtual call this is an
 934   // (cached_oop, destination address) pair. For a static call/optimized
 935   // virtual this is just a destination address.
 936 
 937   StaticCallInfo static_call_info;
 938   CompiledICInfo virtual_call_info;
 939 
 940 
 941   // Make sure the callee nmethod does not get deoptimized and removed before
 942   // we are done patching the code.
 943   nmethod* nm = callee_method->code();
 944   nmethodLocker nl_callee(nm);
 945 #ifdef ASSERT
 946   address dest_entry_point = nm == NULL ? 0 : nm->entry_point(); // used below
 947 #endif
 948 
 949   if (is_virtual) {
 950     assert(receiver.not_null(), "sanity check");
 951     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
 952     KlassHandle h_klass(THREAD, receiver->klass());
 953     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
 954                      is_optimized, static_bound, virtual_call_info,
 955                      CHECK_(methodHandle()));
 956   } else {
 957     // static call
 958     CompiledStaticCall::compute_entry(callee_method, static_call_info);
 959   }
 960 
 961   // grab lock, check for deoptimization and potentially patch caller
 962   {
 963     MutexLocker ml_patch(CompiledIC_lock);
 964 
 965     // Now that we are ready to patch if the methodOop was redefined then
 966     // don't update call site and let the caller retry.
 967 
 968     if (!callee_method->is_old()) {
 969 #ifdef ASSERT
 970       // We must not try to patch to jump to an already unloaded method.
 971       if (dest_entry_point != 0) {
 972         assert(CodeCache::find_blob(dest_entry_point) != NULL,
 973                "should not unload nmethod while locked");
 974       }
 975 #endif
 976       if (is_virtual) {
 977         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
 978         if (inline_cache->is_clean()) {
 979           inline_cache->set_to_monomorphic(virtual_call_info);
 980         }
 981       } else {
 982         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
 983         if (ssc->is_clean()) ssc->set(static_call_info);
 984       }
 985     }
 986 
 987   } // unlock CompiledIC_lock
 988 
 989   return callee_method;
 990 }
 991 
 992 
 993 // Inline caches exist only in compiled code
 994 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
 995 #ifdef ASSERT
 996   RegisterMap reg_map(thread, false);
 997   frame stub_frame = thread->last_frame();
 998   assert(stub_frame.is_runtime_frame(), "sanity check");
 999   frame caller_frame = stub_frame.sender(&reg_map);
1000   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1001 #endif /* ASSERT */
1002 
1003   methodHandle callee_method;
1004   JRT_BLOCK
1005     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1006     // Return methodOop through TLS
1007     thread->set_vm_result(callee_method());
1008   JRT_BLOCK_END
1009   // return compiled code entry point after potential safepoints
1010   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1011   return callee_method->verified_code_entry();
1012 JRT_END
1013 
1014 
1015 // Handle call site that has been made non-entrant
1016 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1017   // 6243940 We might end up in here if the callee is deoptimized
1018   // as we race to call it.  We don't want to take a safepoint if
1019   // the caller was interpreted because the caller frame will look
1020   // interpreted to the stack walkers and arguments are now
1021   // "compiled" so it is much better to make this transition
1022   // invisible to the stack walking code. The i2c path will
1023   // place the callee method in the callee_target. It is stashed
1024   // there because if we try and find the callee by normal means a
1025   // safepoint is possible and have trouble gc'ing the compiled args.
1026   RegisterMap reg_map(thread, false);
1027   frame stub_frame = thread->last_frame();
1028   assert(stub_frame.is_runtime_frame(), "sanity check");
1029   frame caller_frame = stub_frame.sender(&reg_map);
1030   if (caller_frame.is_interpreted_frame() || caller_frame.is_entry_frame() ) {









1031     methodOop callee = thread->callee_target();
1032     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1033     thread->set_vm_result(callee);
1034     thread->set_callee_target(NULL);
1035     return callee->get_c2i_entry();
1036   }
1037 
1038   // Must be compiled to compiled path which is safe to stackwalk
1039   methodHandle callee_method;
1040   JRT_BLOCK
1041     // Force resolving of caller (if we called from compiled frame)
1042     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1043     thread->set_vm_result(callee_method());
1044   JRT_BLOCK_END
1045   // return compiled code entry point after potential safepoints
1046   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1047   return callee_method->verified_code_entry();
1048 JRT_END
1049 
1050 
1051 // resolve a static call and patch code
1052 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1053   methodHandle callee_method;
1054   JRT_BLOCK
1055     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1056     thread->set_vm_result(callee_method());
1057   JRT_BLOCK_END
1058   // return compiled code entry point after potential safepoints
1059   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1060   return callee_method->verified_code_entry();
1061 JRT_END
1062 
1063 
1064 // resolve virtual call and update inline cache to monomorphic
1065 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1066   methodHandle callee_method;
1067   JRT_BLOCK
1068     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1069     thread->set_vm_result(callee_method());
1070   JRT_BLOCK_END
1071   // return compiled code entry point after potential safepoints
1072   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1073   return callee_method->verified_code_entry();
1074 JRT_END
1075 
1076 
1077 // Resolve a virtual call that can be statically bound (e.g., always
1078 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1079 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1080   methodHandle callee_method;
1081   JRT_BLOCK
1082     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1083     thread->set_vm_result(callee_method());
1084   JRT_BLOCK_END
1085   // return compiled code entry point after potential safepoints
1086   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1087   return callee_method->verified_code_entry();
1088 JRT_END
1089 
1090 
1091 
1092 
1093 
1094 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1095   ResourceMark rm(thread);
1096   CallInfo call_info;
1097   Bytecodes::Code bc;
1098 
1099   // receiver is NULL for static calls. An exception is thrown for NULL
1100   // receivers for non-static calls
1101   Handle receiver = find_callee_info(thread, bc, call_info,
1102                                      CHECK_(methodHandle()));
1103   // Compiler1 can produce virtual call sites that can actually be statically bound
1104   // If we fell thru to below we would think that the site was going megamorphic
1105   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1106   // we'd try and do a vtable dispatch however methods that can be statically bound
1107   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1108   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1109   // plain ic_miss) and the site will be converted to an optimized virtual call site
1110   // never to miss again. I don't believe C2 will produce code like this but if it
1111   // did this would still be the correct thing to do for it too, hence no ifdef.
1112   //
1113   if (call_info.resolved_method()->can_be_statically_bound()) {
1114     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1115     if (TraceCallFixup) {
1116       RegisterMap reg_map(thread, false);
1117       frame caller_frame = thread->last_frame().sender(&reg_map);
1118       ResourceMark rm(thread);
1119       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1120       callee_method->print_short_name(tty);
1121       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1122       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1123     }
1124     return callee_method;
1125   }
1126 
1127   methodHandle callee_method = call_info.selected_method();
1128 
1129   bool should_be_mono = false;
1130 
1131 #ifndef PRODUCT
1132   Atomic::inc(&_ic_miss_ctr);
1133 
1134   // Statistics & Tracing
1135   if (TraceCallFixup) {
1136     ResourceMark rm(thread);
1137     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1138     callee_method->print_short_name(tty);
1139     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1140   }
1141 
1142   if (ICMissHistogram) {
1143     MutexLocker m(VMStatistic_lock);
1144     RegisterMap reg_map(thread, false);
1145     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1146     // produce statistics under the lock
1147     trace_ic_miss(f.pc());
1148   }
1149 #endif
1150 
1151   // install an event collector so that when a vtable stub is created the
1152   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1153   // event can't be posted when the stub is created as locks are held
1154   // - instead the event will be deferred until the event collector goes
1155   // out of scope.
1156   JvmtiDynamicCodeEventCollector event_collector;
1157 
1158   // Update inline cache to megamorphic. Skip update if caller has been
1159   // made non-entrant or we are called from interpreted.
1160   { MutexLocker ml_patch (CompiledIC_lock);
1161     RegisterMap reg_map(thread, false);
1162     frame caller_frame = thread->last_frame().sender(&reg_map);
1163     CodeBlob* cb = caller_frame.cb();
1164     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1165       // Not a non-entrant nmethod, so find inline_cache
1166       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1167       bool should_be_mono = false;
1168       if (inline_cache->is_optimized()) {
1169         if (TraceCallFixup) {
1170           ResourceMark rm(thread);
1171           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1172           callee_method->print_short_name(tty);
1173           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1174         }
1175         should_be_mono = true;
1176       } else {
1177         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
1178         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
1179 
1180           if (receiver()->klass() == ic_oop->holder_klass()) {
1181             // This isn't a real miss. We must have seen that compiled code
1182             // is now available and we want the call site converted to a
1183             // monomorphic compiled call site.
1184             // We can't assert for callee_method->code() != NULL because it
1185             // could have been deoptimized in the meantime
1186             if (TraceCallFixup) {
1187               ResourceMark rm(thread);
1188               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1189               callee_method->print_short_name(tty);
1190               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1191             }
1192             should_be_mono = true;
1193           }
1194         }
1195       }
1196 
1197       if (should_be_mono) {
1198 
1199         // We have a path that was monomorphic but was going interpreted
1200         // and now we have (or had) a compiled entry. We correct the IC
1201         // by using a new icBuffer.
1202         CompiledICInfo info;
1203         KlassHandle receiver_klass(THREAD, receiver()->klass());
1204         inline_cache->compute_monomorphic_entry(callee_method,
1205                                                 receiver_klass,
1206                                                 inline_cache->is_optimized(),
1207                                                 false,
1208                                                 info, CHECK_(methodHandle()));
1209         inline_cache->set_to_monomorphic(info);
1210       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1211         // Change to megamorphic
1212         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1213       } else {
1214         // Either clean or megamorphic
1215       }
1216     }
1217   } // Release CompiledIC_lock
1218 
1219   return callee_method;
1220 }
1221 
1222 //
1223 // Resets a call-site in compiled code so it will get resolved again.
1224 // This routines handles both virtual call sites, optimized virtual call
1225 // sites, and static call sites. Typically used to change a call sites
1226 // destination from compiled to interpreted.
1227 //
1228 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1229   ResourceMark rm(thread);
1230   RegisterMap reg_map(thread, false);
1231   frame stub_frame = thread->last_frame();
1232   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1233   frame caller = stub_frame.sender(&reg_map);
1234 
1235   // Do nothing if the frame isn't a live compiled frame.
1236   // nmethod could be deoptimized by the time we get here
1237   // so no update to the caller is needed.
1238 
1239   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1240 
1241     address pc = caller.pc();
1242     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
1243 
1244     // Default call_addr is the location of the "basic" call.
1245     // Determine the address of the call we a reresolving. With
1246     // Inline Caches we will always find a recognizable call.
1247     // With Inline Caches disabled we may or may not find a
1248     // recognizable call. We will always find a call for static
1249     // calls and for optimized virtual calls. For vanilla virtual
1250     // calls it depends on the state of the UseInlineCaches switch.
1251     //
1252     // With Inline Caches disabled we can get here for a virtual call
1253     // for two reasons:
1254     //   1 - calling an abstract method. The vtable for abstract methods
1255     //       will run us thru handle_wrong_method and we will eventually
1256     //       end up in the interpreter to throw the ame.
1257     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1258     //       call and between the time we fetch the entry address and
1259     //       we jump to it the target gets deoptimized. Similar to 1
1260     //       we will wind up in the interprter (thru a c2i with c2).
1261     //
1262     address call_addr = NULL;
1263     {
1264       // Get call instruction under lock because another thread may be
1265       // busy patching it.
1266       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1267       // Location of call instruction
1268       if (NativeCall::is_call_before(pc)) {
1269         NativeCall *ncall = nativeCall_before(pc);
1270         call_addr = ncall->instruction_address();
1271       }
1272     }
1273 
1274     // Check for static or virtual call
1275     bool is_static_call = false;
1276     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1277     // Make sure nmethod doesn't get deoptimized and removed until
1278     // this is done with it.
1279     // CLEANUP - with lazy deopt shouldn't need this lock
1280     nmethodLocker nmlock(caller_nm);
1281 
1282     if (call_addr != NULL) {
1283       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1284       int ret = iter.next(); // Get item
1285       if (ret) {
1286         assert(iter.addr() == call_addr, "must find call");
1287         if (iter.type() == relocInfo::static_call_type) {
1288           is_static_call = true;
1289         } else {
1290           assert(iter.type() == relocInfo::virtual_call_type ||
1291                  iter.type() == relocInfo::opt_virtual_call_type
1292                 , "unexpected relocInfo. type");
1293         }
1294       } else {
1295         assert(!UseInlineCaches, "relocation info. must exist for this address");
1296       }
1297 
1298       // Cleaning the inline cache will force a new resolve. This is more robust
1299       // than directly setting it to the new destination, since resolving of calls
1300       // is always done through the same code path. (experience shows that it
1301       // leads to very hard to track down bugs, if an inline cache gets updated
1302       // to a wrong method). It should not be performance critical, since the
1303       // resolve is only done once.
1304 
1305       MutexLocker ml(CompiledIC_lock);
1306       //
1307       // We do not patch the call site if the nmethod has been made non-entrant
1308       // as it is a waste of time
1309       //
1310       if (caller_nm->is_in_use()) {
1311         if (is_static_call) {
1312           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1313           ssc->set_to_clean();
1314         } else {
1315           // compiled, dispatched call (which used to call an interpreted method)
1316           CompiledIC* inline_cache = CompiledIC_at(call_addr);
1317           inline_cache->set_to_clean();
1318         }
1319       }
1320     }
1321 
1322   }
1323 
1324   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1325 
1326 
1327 #ifndef PRODUCT
1328   Atomic::inc(&_wrong_method_ctr);
1329 
1330   if (TraceCallFixup) {
1331     ResourceMark rm(thread);
1332     tty->print("handle_wrong_method reresolving call to");
1333     callee_method->print_short_name(tty);
1334     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1335   }
1336 #endif
1337 
1338   return callee_method;
1339 }
1340 
1341 // ---------------------------------------------------------------------------
1342 // We are calling the interpreter via a c2i. Normally this would mean that
1343 // we were called by a compiled method. However we could have lost a race
1344 // where we went int -> i2c -> c2i and so the caller could in fact be
1345 // interpreted. If the caller is compiled we attampt to patch the caller
1346 // so he no longer calls into the interpreter.
1347 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
1348   methodOop moop(method);
1349 
1350   address entry_point = moop->from_compiled_entry();
1351 
1352   // It's possible that deoptimization can occur at a call site which hasn't
1353   // been resolved yet, in which case this function will be called from
1354   // an nmethod that has been patched for deopt and we can ignore the
1355   // request for a fixup.
1356   // Also it is possible that we lost a race in that from_compiled_entry
1357   // is now back to the i2c in that case we don't need to patch and if
1358   // we did we'd leap into space because the callsite needs to use
1359   // "to interpreter" stub in order to load up the methodOop. Don't
1360   // ask me how I know this...
1361   //
1362 
1363   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1364   if ( !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1365     return;
1366   }
1367 
1368   // There is a benign race here. We could be attempting to patch to a compiled
1369   // entry point at the same time the callee is being deoptimized. If that is
1370   // the case then entry_point may in fact point to a c2i and we'd patch the
1371   // call site with the same old data. clear_code will set code() to NULL
1372   // at the end of it. If we happen to see that NULL then we can skip trying
1373   // to patch. If we hit the window where the callee has a c2i in the
1374   // from_compiled_entry and the NULL isn't present yet then we lose the race
1375   // and patch the code with the same old data. Asi es la vida.
1376 
1377   if (moop->code() == NULL) return;
1378 
1379   if (((nmethod*)cb)->is_in_use()) {
1380 
1381     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1382     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1383     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
1384       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
1385       //
1386       // bug 6281185. We might get here after resolving a call site to a vanilla
1387       // virtual call. Because the resolvee uses the verified entry it may then
1388       // see compiled code and attempt to patch the site by calling us. This would
1389       // then incorrectly convert the call site to optimized and its downhill from
1390       // there. If you're lucky you'll get the assert in the bugid, if not you've
1391       // just made a call site that could be megamorphic into a monomorphic site
1392       // for the rest of its life! Just another racing bug in the life of
1393       // fixup_callers_callsite ...
1394       //
1395       RelocIterator iter(cb, call->instruction_address(), call->next_instruction_address());
1396       iter.next();
1397       assert(iter.has_current(), "must have a reloc at java call site");
1398       relocInfo::relocType typ = iter.reloc()->type();
1399       if ( typ != relocInfo::static_call_type &&
1400            typ != relocInfo::opt_virtual_call_type &&
1401            typ != relocInfo::static_stub_type) {
1402         return;
1403       }
1404       address destination = call->destination();
1405       if (destination != entry_point) {
1406         CodeBlob* callee = CodeCache::find_blob(destination);
1407         // callee == cb seems weird. It means calling interpreter thru stub.
1408         if (callee == cb || callee->is_adapter_blob()) {
1409           // static call or optimized virtual
1410           if (TraceCallFixup) {
1411             tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1412             moop->print_short_name(tty);
1413             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1414           }
1415           call->set_destination_mt_safe(entry_point);
1416         } else {
1417           if (TraceCallFixup) {
1418             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1419             moop->print_short_name(tty);
1420             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1421           }
1422           // assert is too strong could also be resolve destinations.
1423           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1424         }
1425       } else {
1426           if (TraceCallFixup) {
1427             tty->print("already patched  callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1428             moop->print_short_name(tty);
1429             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1430           }
1431       }
1432     }
1433   }
1434 
1435 IRT_END
1436 
1437 
1438 // same as JVM_Arraycopy, but called directly from compiled code
1439 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1440                                                 oopDesc* dest, jint dest_pos,
1441                                                 jint length,
1442                                                 JavaThread* thread)) {
1443 #ifndef PRODUCT
1444   _slow_array_copy_ctr++;
1445 #endif
1446   // Check if we have null pointers
1447   if (src == NULL || dest == NULL) {
1448     THROW(vmSymbols::java_lang_NullPointerException());
1449   }
1450   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1451   // even though the copy_array API also performs dynamic checks to ensure
1452   // that src and dest are truly arrays (and are conformable).
1453   // The copy_array mechanism is awkward and could be removed, but
1454   // the compilers don't call this function except as a last resort,
1455   // so it probably doesn't matter.
1456   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
1457                                         (arrayOopDesc*)dest, dest_pos,
1458                                         length, thread);
1459 }
1460 JRT_END
1461 
1462 char* SharedRuntime::generate_class_cast_message(
1463     JavaThread* thread, const char* objName) {
1464 
1465   // Get target class name from the checkcast instruction
1466   vframeStream vfst(thread, true);
1467   assert(!vfst.at_end(), "Java frame must exist");
1468   Bytecode_checkcast* cc = Bytecode_checkcast_at(
1469     vfst.method()->bcp_from(vfst.bci()));
1470   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
1471     cc->index(), thread));
1472   return generate_class_cast_message(objName, targetKlass->external_name());
1473 }
1474 
1475 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
1476                                                         oopDesc* required,
1477                                                         oopDesc* actual) {
1478   assert(EnableMethodHandles, "");
1479   oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
1480   if (singleKlass != NULL) {
1481     const char* objName = "argument or return value";
1482     if (actual != NULL) {
1483       // be flexible about the junk passed in:
1484       klassOop ak = (actual->is_klass()
1485                      ? (klassOop)actual
1486                      : actual->klass());
1487       objName = Klass::cast(ak)->external_name();
1488     }
1489     Klass* targetKlass = Klass::cast(required->is_klass()
1490                                      ? (klassOop)required
1491                                      : java_lang_Class::as_klassOop(required));
1492     return generate_class_cast_message(objName, targetKlass->external_name());
1493   } else {
1494     // %%% need to get the MethodType string, without messing around too much
1495     // Get a signature from the invoke instruction
1496     const char* mhName = "method handle";
1497     const char* targetType = "the required signature";
1498     vframeStream vfst(thread, true);
1499     if (!vfst.at_end()) {
1500       Bytecode_invoke* call = Bytecode_invoke_at(vfst.method(), vfst.bci());
1501       methodHandle target;
1502       {
1503         EXCEPTION_MARK;
1504         target = call->static_target(THREAD);
1505         if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
1506       }
1507       if (target.not_null()
1508           && target->is_method_handle_invoke()
1509           && required == target->method_handle_type()) {
1510         targetType = target->signature()->as_C_string();
1511       }
1512     }
1513     klassOop kignore; int fignore;
1514     methodOop actual_method = MethodHandles::decode_method(actual,
1515                                                           kignore, fignore);
1516     if (actual_method != NULL) {
1517       if (actual_method->name() == vmSymbols::invoke_name())
1518         mhName = "$";
1519       else
1520         mhName = actual_method->signature()->as_C_string();
1521       if (mhName[0] == '$')
1522         mhName = actual_method->signature()->as_C_string();
1523     }
1524     return generate_class_cast_message(mhName, targetType,
1525                                        " cannot be called as ");
1526   }
1527 }
1528 
1529 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
1530                                                             oopDesc* required) {
1531   if (required == NULL)  return NULL;
1532   if (required->klass() == SystemDictionary::class_klass())
1533     return required;
1534   if (required->is_klass())
1535     return Klass::cast(klassOop(required))->java_mirror();
1536   return NULL;
1537 }
1538 
1539 
1540 char* SharedRuntime::generate_class_cast_message(
1541     const char* objName, const char* targetKlassName, const char* desc) {
1542   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1543 
1544   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1545   if (NULL == message) {
1546     // Shouldn't happen, but don't cause even more problems if it does
1547     message = const_cast<char*>(objName);
1548   } else {
1549     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1550   }
1551   return message;
1552 }
1553 
1554 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1555   (void) JavaThread::current()->reguard_stack();
1556 JRT_END
1557 
1558 
1559 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1560 #ifndef PRODUCT
1561 int SharedRuntime::_monitor_enter_ctr=0;
1562 #endif
1563 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1564   oop obj(_obj);
1565 #ifndef PRODUCT
1566   _monitor_enter_ctr++;             // monitor enter slow
1567 #endif
1568   if (PrintBiasedLockingStatistics) {
1569     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1570   }
1571   Handle h_obj(THREAD, obj);
1572   if (UseBiasedLocking) {
1573     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1574     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1575   } else {
1576     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1577   }
1578   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1579 JRT_END
1580 
1581 #ifndef PRODUCT
1582 int SharedRuntime::_monitor_exit_ctr=0;
1583 #endif
1584 // Handles the uncommon cases of monitor unlocking in compiled code
1585 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1586    oop obj(_obj);
1587 #ifndef PRODUCT
1588   _monitor_exit_ctr++;              // monitor exit slow
1589 #endif
1590   Thread* THREAD = JavaThread::current();
1591   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1592   // testing was unable to ever fire the assert that guarded it so I have removed it.
1593   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1594 #undef MIGHT_HAVE_PENDING
1595 #ifdef MIGHT_HAVE_PENDING
1596   // Save and restore any pending_exception around the exception mark.
1597   // While the slow_exit must not throw an exception, we could come into
1598   // this routine with one set.
1599   oop pending_excep = NULL;
1600   const char* pending_file;
1601   int pending_line;
1602   if (HAS_PENDING_EXCEPTION) {
1603     pending_excep = PENDING_EXCEPTION;
1604     pending_file  = THREAD->exception_file();
1605     pending_line  = THREAD->exception_line();
1606     CLEAR_PENDING_EXCEPTION;
1607   }
1608 #endif /* MIGHT_HAVE_PENDING */
1609 
1610   {
1611     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1612     EXCEPTION_MARK;
1613     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1614   }
1615 
1616 #ifdef MIGHT_HAVE_PENDING
1617   if (pending_excep != NULL) {
1618     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1619   }
1620 #endif /* MIGHT_HAVE_PENDING */
1621 JRT_END
1622 
1623 #ifndef PRODUCT
1624 
1625 void SharedRuntime::print_statistics() {
1626   ttyLocker ttyl;
1627   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1628 
1629   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1630   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1631   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1632 
1633   SharedRuntime::print_ic_miss_histogram();
1634 
1635   if (CountRemovableExceptions) {
1636     if (_nof_removable_exceptions > 0) {
1637       Unimplemented(); // this counter is not yet incremented
1638       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1639     }
1640   }
1641 
1642   // Dump the JRT_ENTRY counters
1643   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1644   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1645   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1646   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1647   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1648   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1649   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1650 
1651   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1652   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1653   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1654   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1655   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1656 
1657   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1658   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1659   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1660   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1661   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1662   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1663   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1664   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1665   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1666   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1667   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1668   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1669   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1670   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1671   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1672   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1673 
1674   if (xtty != NULL)  xtty->tail("statistics");
1675 }
1676 
1677 inline double percent(int x, int y) {
1678   return 100.0 * x / MAX2(y, 1);
1679 }
1680 
1681 class MethodArityHistogram {
1682  public:
1683   enum { MAX_ARITY = 256 };
1684  private:
1685   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1686   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1687   static int _max_arity;                      // max. arity seen
1688   static int _max_size;                       // max. arg size seen
1689 
1690   static void add_method_to_histogram(nmethod* nm) {
1691     methodOop m = nm->method();
1692     ArgumentCount args(m->signature());
1693     int arity   = args.size() + (m->is_static() ? 0 : 1);
1694     int argsize = m->size_of_parameters();
1695     arity   = MIN2(arity, MAX_ARITY-1);
1696     argsize = MIN2(argsize, MAX_ARITY-1);
1697     int count = nm->method()->compiled_invocation_count();
1698     _arity_histogram[arity]  += count;
1699     _size_histogram[argsize] += count;
1700     _max_arity = MAX2(_max_arity, arity);
1701     _max_size  = MAX2(_max_size, argsize);
1702   }
1703 
1704   void print_histogram_helper(int n, int* histo, const char* name) {
1705     const int N = MIN2(5, n);
1706     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1707     double sum = 0;
1708     double weighted_sum = 0;
1709     int i;
1710     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1711     double rest = sum;
1712     double percent = sum / 100;
1713     for (i = 0; i <= N; i++) {
1714       rest -= histo[i];
1715       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1716     }
1717     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1718     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1719   }
1720 
1721   void print_histogram() {
1722     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1723     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1724     tty->print_cr("\nSame for parameter size (in words):");
1725     print_histogram_helper(_max_size, _size_histogram, "size");
1726     tty->cr();
1727   }
1728 
1729  public:
1730   MethodArityHistogram() {
1731     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1732     _max_arity = _max_size = 0;
1733     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
1734     CodeCache::nmethods_do(add_method_to_histogram);
1735     print_histogram();
1736   }
1737 };
1738 
1739 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
1740 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
1741 int MethodArityHistogram::_max_arity;
1742 int MethodArityHistogram::_max_size;
1743 
1744 void SharedRuntime::print_call_statistics(int comp_total) {
1745   tty->print_cr("Calls from compiled code:");
1746   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
1747   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
1748   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
1749   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
1750   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
1751   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
1752   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
1753   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
1754   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
1755   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
1756   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
1757   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
1758   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
1759   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
1760   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
1761   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
1762   tty->cr();
1763   tty->print_cr("Note 1: counter updates are not MT-safe.");
1764   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
1765   tty->print_cr("        %% in nested categories are relative to their category");
1766   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
1767   tty->cr();
1768 
1769   MethodArityHistogram h;
1770 }
1771 #endif
1772 
1773 
1774 // ---------------------------------------------------------------------------
1775 // Implementation of AdapterHandlerLibrary
1776 const char* AdapterHandlerEntry::name = "I2C/C2I adapters";
1777 GrowableArray<uint64_t>* AdapterHandlerLibrary::_fingerprints = NULL;
1778 GrowableArray<AdapterHandlerEntry* >* AdapterHandlerLibrary::_handlers = NULL;
1779 const int AdapterHandlerLibrary_size = 16*K;
1780 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
1781 
1782 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
1783   // Should be called only when AdapterHandlerLibrary_lock is active.
1784   if (_buffer == NULL) // Initialize lazily
1785       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
1786   return _buffer;
1787 }
1788 
1789 void AdapterHandlerLibrary::initialize() {
1790   if (_fingerprints != NULL) return;
1791   _fingerprints = new(ResourceObj::C_HEAP)GrowableArray<uint64_t>(32, true);
1792   _handlers = new(ResourceObj::C_HEAP)GrowableArray<AdapterHandlerEntry*>(32, true);
1793   // Index 0 reserved for the slow path handler
1794   _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
1795   _handlers->append(NULL);
1796 
1797   // Create a special handler for abstract methods.  Abstract methods
1798   // are never compiled so an i2c entry is somewhat meaningless, but
1799   // fill it in with something appropriate just in case.  Pass handle
1800   // wrong method for the c2i transitions.
1801   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
1802   _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
1803   assert(_handlers->length() == AbstractMethodHandler, "in wrong slot");
1804   _handlers->append(new AdapterHandlerEntry(StubRoutines::throw_AbstractMethodError_entry(),
1805                                             wrong_method, wrong_method));
1806 }
1807 
1808 int AdapterHandlerLibrary::get_create_adapter_index(methodHandle method) {
1809   // Use customized signature handler.  Need to lock around updates to the
1810   // _fingerprints array (it is not safe for concurrent readers and a single
1811   // writer: this can be fixed if it becomes a problem).
1812 
1813   // Get the address of the ic_miss handlers before we grab the
1814   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
1815   // was caused by the initialization of the stubs happening
1816   // while we held the lock and then notifying jvmti while
1817   // holding it. This just forces the initialization to be a little
1818   // earlier.
1819   address ic_miss = SharedRuntime::get_ic_miss_stub();
1820   assert(ic_miss != NULL, "must have handler");
1821 
1822   int result;
1823   NOT_PRODUCT(int code_size);
1824   BufferBlob *B = NULL;
1825   AdapterHandlerEntry* entry = NULL;
1826   uint64_t fingerprint;
1827   {
1828     MutexLocker mu(AdapterHandlerLibrary_lock);
1829     // make sure data structure is initialized
1830     initialize();
1831 
1832     if (method->is_abstract()) {
1833       return AbstractMethodHandler;
1834     }
1835 
1836     // Lookup method signature's fingerprint
1837     fingerprint = Fingerprinter(method).fingerprint();
1838     assert( fingerprint != CONST64( 0), "no zero fingerprints allowed" );
1839     // Fingerprints are small fixed-size condensed representations of
1840     // signatures.  If the signature is too large, it won't fit in a
1841     // fingerprint.  Signatures which cannot support a fingerprint get a new i2c
1842     // adapter gen'd each time, instead of searching the cache for one.  This -1
1843     // game can be avoided if I compared signatures instead of using
1844     // fingerprints.  However, -1 fingerprints are very rare.
1845     if( fingerprint != UCONST64(-1) ) { // If this is a cache-able fingerprint
1846       // Turns out i2c adapters do not care what the return value is.  Mask it
1847       // out so signatures that only differ in return type will share the same
1848       // adapter.
1849       fingerprint &= ~(SignatureIterator::result_feature_mask << SignatureIterator::static_feature_size);
1850       // Search for a prior existing i2c/c2i adapter
1851       int index = _fingerprints->find(fingerprint);
1852       if( index >= 0 ) return index; // Found existing handlers?
1853     } else {
1854       // Annoyingly, I end up adding -1 fingerprints to the array of handlers,
1855       // because I need a unique handler index.  It cannot be scanned for
1856       // because all -1's look alike.  Instead, the matching index is passed out
1857       // and immediately used to collect the 2 return values (the c2i and i2c
1858       // adapters).
1859     }
1860 
1861     // Create I2C & C2I handlers
1862     ResourceMark rm;
1863 
1864     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
1865     if (buf != NULL) {
1866       CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
1867       short buffer_locs[20];
1868       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
1869                                              sizeof(buffer_locs)/sizeof(relocInfo));
1870       MacroAssembler _masm(&buffer);
1871 
1872       // Fill in the signature array, for the calling-convention call.
1873       int total_args_passed = method->size_of_parameters(); // All args on stack
1874 
1875       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
1876       VMRegPair  * regs   = NEW_RESOURCE_ARRAY(VMRegPair  ,total_args_passed);
1877       int i=0;
1878       if( !method->is_static() )  // Pass in receiver first
1879         sig_bt[i++] = T_OBJECT;
1880       for( SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
1881         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
1882         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
1883           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
1884       }
1885       assert( i==total_args_passed, "" );
1886 
1887       // Now get the re-packed compiled-Java layout.
1888       int comp_args_on_stack;
1889 
1890       // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
1891       comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
1892 
1893       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
1894                                                      total_args_passed,
1895                                                      comp_args_on_stack,
1896                                                      sig_bt,
1897                                                      regs);
1898 
1899       B = BufferBlob::create(AdapterHandlerEntry::name, &buffer);
1900       NOT_PRODUCT(code_size = buffer.code_size());
1901     }
1902     if (B == NULL) {
1903       // CodeCache is full, disable compilation
1904       // Ought to log this but compile log is only per compile thread
1905       // and we're some non descript Java thread.
1906       UseInterpreter = true;
1907       if (UseCompiler || AlwaysCompileLoopMethods ) {
1908 #ifndef PRODUCT
1909         warning("CodeCache is full. Compiler has been disabled");
1910         if (CompileTheWorld || ExitOnFullCodeCache) {
1911           before_exit(JavaThread::current());
1912           exit_globals(); // will delete tty
1913           vm_direct_exit(CompileTheWorld ? 0 : 1);
1914         }
1915 #endif
1916         UseCompiler               = false;
1917         AlwaysCompileLoopMethods  = false;
1918       }
1919       return 0; // Out of CodeCache space (_handlers[0] == NULL)
1920     }
1921     entry->relocate(B->instructions_begin());
1922 #ifndef PRODUCT
1923     // debugging suppport
1924     if (PrintAdapterHandlers) {
1925       tty->cr();
1926       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = 0x%llx, %d bytes generated)",
1927                     _handlers->length(), (method->is_static() ? "static" : "receiver"),
1928                     method->signature()->as_C_string(), fingerprint, code_size );
1929       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
1930       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + code_size);
1931     }
1932 #endif
1933 
1934     // add handlers to library
1935     _fingerprints->append(fingerprint);
1936     _handlers->append(entry);
1937     // set handler index
1938     assert(_fingerprints->length() == _handlers->length(), "sanity check");
1939     result = _fingerprints->length() - 1;
1940   }
1941   // Outside of the lock
1942   if (B != NULL) {
1943     char blob_id[256];
1944     jio_snprintf(blob_id,
1945                  sizeof(blob_id),
1946                  "%s(" PTR64_FORMAT ")@" PTR_FORMAT,
1947                  AdapterHandlerEntry::name,
1948                  fingerprint,
1949                  B->instructions_begin());
1950     VTune::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
1951     Forte::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
1952 
1953     if (JvmtiExport::should_post_dynamic_code_generated()) {
1954       JvmtiExport::post_dynamic_code_generated(blob_id,
1955                                                B->instructions_begin(),
1956                                                B->instructions_end());
1957     }
1958   }
1959   return result;
1960 }
1961 
1962 void AdapterHandlerEntry::relocate(address new_base) {
1963     ptrdiff_t delta = new_base - _i2c_entry;
1964     _i2c_entry += delta;
1965     _c2i_entry += delta;
1966     _c2i_unverified_entry += delta;
1967 }
1968 
1969 // Create a native wrapper for this native method.  The wrapper converts the
1970 // java compiled calling convention to the native convention, handlizes
1971 // arguments, and transitions to native.  On return from the native we transition
1972 // back to java blocking if a safepoint is in progress.
1973 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
1974   ResourceMark rm;
1975   nmethod* nm = NULL;
1976 
1977   if (PrintCompilation) {
1978     ttyLocker ttyl;
1979     tty->print("---   n%s ", (method->is_synchronized() ? "s" : " "));
1980     method->print_short_name(tty);
1981     if (method->is_static()) {
1982       tty->print(" (static)");
1983     }
1984     tty->cr();
1985   }
1986 
1987   assert(method->has_native_function(), "must have something valid to call!");
1988 
1989   {
1990     // perform the work while holding the lock, but perform any printing outside the lock
1991     MutexLocker mu(AdapterHandlerLibrary_lock);
1992     // See if somebody beat us to it
1993     nm = method->code();
1994     if (nm) {
1995       return nm;
1996     }
1997 
1998     ResourceMark rm;
1999 
2000     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2001     if (buf != NULL) {
2002       CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
2003       double locs_buf[20];
2004       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2005       MacroAssembler _masm(&buffer);
2006 
2007       // Fill in the signature array, for the calling-convention call.
2008       int total_args_passed = method->size_of_parameters();
2009 
2010       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
2011       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
2012       int i=0;
2013       if( !method->is_static() )  // Pass in receiver first
2014         sig_bt[i++] = T_OBJECT;
2015       SignatureStream ss(method->signature());
2016       for( ; !ss.at_return_type(); ss.next()) {
2017         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2018         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2019           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2020       }
2021       assert( i==total_args_passed, "" );
2022       BasicType ret_type = ss.type();
2023 
2024       // Now get the compiled-Java layout as input arguments
2025       int comp_args_on_stack;
2026       comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2027 
2028       // Generate the compiled-to-native wrapper code
2029       nm = SharedRuntime::generate_native_wrapper(&_masm,
2030                                                   method,
2031                                                   total_args_passed,
2032                                                   comp_args_on_stack,
2033                                                   sig_bt,regs,
2034                                                   ret_type);
2035     }
2036   }
2037 
2038   // Must unlock before calling set_code
2039   // Install the generated code.
2040   if (nm != NULL) {
2041     method->set_code(method, nm);
2042     nm->post_compiled_method_load_event();
2043   } else {
2044     // CodeCache is full, disable compilation
2045     // Ought to log this but compile log is only per compile thread
2046     // and we're some non descript Java thread.
2047     UseInterpreter = true;
2048     if (UseCompiler || AlwaysCompileLoopMethods ) {
2049 #ifndef PRODUCT
2050       warning("CodeCache is full. Compiler has been disabled");
2051       if (CompileTheWorld || ExitOnFullCodeCache) {
2052         before_exit(JavaThread::current());
2053         exit_globals(); // will delete tty
2054         vm_direct_exit(CompileTheWorld ? 0 : 1);
2055       }
2056 #endif
2057       UseCompiler               = false;
2058       AlwaysCompileLoopMethods  = false;
2059     }
2060   }
2061   return nm;
2062 }
2063 
2064 #ifdef HAVE_DTRACE_H
2065 // Create a dtrace nmethod for this method.  The wrapper converts the
2066 // java compiled calling convention to the native convention, makes a dummy call
2067 // (actually nops for the size of the call instruction, which become a trap if
2068 // probe is enabled). The returns to the caller. Since this all looks like a
2069 // leaf no thread transition is needed.
2070 
2071 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2072   ResourceMark rm;
2073   nmethod* nm = NULL;
2074 
2075   if (PrintCompilation) {
2076     ttyLocker ttyl;
2077     tty->print("---   n%s  ");
2078     method->print_short_name(tty);
2079     if (method->is_static()) {
2080       tty->print(" (static)");
2081     }
2082     tty->cr();
2083   }
2084 
2085   {
2086     // perform the work while holding the lock, but perform any printing
2087     // outside the lock
2088     MutexLocker mu(AdapterHandlerLibrary_lock);
2089     // See if somebody beat us to it
2090     nm = method->code();
2091     if (nm) {
2092       return nm;
2093     }
2094 
2095     ResourceMark rm;
2096 
2097     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2098     if (buf != NULL) {
2099       CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
2100       // Need a few relocation entries
2101       double locs_buf[20];
2102       buffer.insts()->initialize_shared_locs(
2103         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2104       MacroAssembler _masm(&buffer);
2105 
2106       // Generate the compiled-to-native wrapper code
2107       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2108     }
2109   }
2110   return nm;
2111 }
2112 
2113 // the dtrace method needs to convert java lang string to utf8 string.
2114 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2115   typeArrayOop jlsValue  = java_lang_String::value(src);
2116   int          jlsOffset = java_lang_String::offset(src);
2117   int          jlsLen    = java_lang_String::length(src);
2118   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2119                                            jlsValue->char_at_addr(jlsOffset);
2120   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2121 }
2122 #endif // ndef HAVE_DTRACE_H
2123 
2124 // -------------------------------------------------------------------------
2125 // Java-Java calling convention
2126 // (what you use when Java calls Java)
2127 
2128 //------------------------------name_for_receiver----------------------------------
2129 // For a given signature, return the VMReg for parameter 0.
2130 VMReg SharedRuntime::name_for_receiver() {
2131   VMRegPair regs;
2132   BasicType sig_bt = T_OBJECT;
2133   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2134   // Return argument 0 register.  In the LP64 build pointers
2135   // take 2 registers, but the VM wants only the 'main' name.
2136   return regs.first();
2137 }
2138 
2139 VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool is_static, int* arg_size) {
2140   // This method is returning a data structure allocating as a
2141   // ResourceObject, so do not put any ResourceMarks in here.
2142   char *s = sig->as_C_string();
2143   int len = (int)strlen(s);
2144   *s++; len--;                  // Skip opening paren
2145   char *t = s+len;
2146   while( *(--t) != ')' ) ;      // Find close paren
2147 
2148   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2149   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2150   int cnt = 0;
2151   if (!is_static) {
2152     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2153   }
2154 
2155   while( s < t ) {
2156     switch( *s++ ) {            // Switch on signature character
2157     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2158     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2159     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2160     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2161     case 'I': sig_bt[cnt++] = T_INT;     break;
2162     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2163     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2164     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2165     case 'V': sig_bt[cnt++] = T_VOID;    break;
2166     case 'L':                   // Oop
2167       while( *s++ != ';'  ) ;   // Skip signature
2168       sig_bt[cnt++] = T_OBJECT;
2169       break;
2170     case '[': {                 // Array
2171       do {                      // Skip optional size
2172         while( *s >= '0' && *s <= '9' ) s++;
2173       } while( *s++ == '[' );   // Nested arrays?
2174       // Skip element type
2175       if( s[-1] == 'L' )
2176         while( *s++ != ';'  ) ; // Skip signature
2177       sig_bt[cnt++] = T_ARRAY;
2178       break;
2179     }
2180     default : ShouldNotReachHere();
2181     }
2182   }
2183   assert( cnt < 256, "grow table size" );
2184 
2185   int comp_args_on_stack;
2186   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2187 
2188   // the calling convention doesn't count out_preserve_stack_slots so
2189   // we must add that in to get "true" stack offsets.
2190 
2191   if (comp_args_on_stack) {
2192     for (int i = 0; i < cnt; i++) {
2193       VMReg reg1 = regs[i].first();
2194       if( reg1->is_stack()) {
2195         // Yuck
2196         reg1 = reg1->bias(out_preserve_stack_slots());
2197       }
2198       VMReg reg2 = regs[i].second();
2199       if( reg2->is_stack()) {
2200         // Yuck
2201         reg2 = reg2->bias(out_preserve_stack_slots());
2202       }
2203       regs[i].set_pair(reg2, reg1);
2204     }
2205   }
2206 
2207   // results
2208   *arg_size = cnt;
2209   return regs;
2210 }
2211 
2212 // OSR Migration Code
2213 //
2214 // This code is used convert interpreter frames into compiled frames.  It is
2215 // called from very start of a compiled OSR nmethod.  A temp array is
2216 // allocated to hold the interesting bits of the interpreter frame.  All
2217 // active locks are inflated to allow them to move.  The displaced headers and
2218 // active interpeter locals are copied into the temp buffer.  Then we return
2219 // back to the compiled code.  The compiled code then pops the current
2220 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2221 // copies the interpreter locals and displaced headers where it wants.
2222 // Finally it calls back to free the temp buffer.
2223 //
2224 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2225 
2226 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2227 
2228 #ifdef IA64
2229   ShouldNotReachHere(); // NYI
2230 #endif /* IA64 */
2231 
2232   //
2233   // This code is dependent on the memory layout of the interpreter local
2234   // array and the monitors. On all of our platforms the layout is identical
2235   // so this code is shared. If some platform lays the their arrays out
2236   // differently then this code could move to platform specific code or
2237   // the code here could be modified to copy items one at a time using
2238   // frame accessor methods and be platform independent.
2239 
2240   frame fr = thread->last_frame();
2241   assert( fr.is_interpreted_frame(), "" );
2242   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2243 
2244   // Figure out how many monitors are active.
2245   int active_monitor_count = 0;
2246   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2247        kptr < fr.interpreter_frame_monitor_begin();
2248        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2249     if( kptr->obj() != NULL ) active_monitor_count++;
2250   }
2251 
2252   // QQQ we could place number of active monitors in the array so that compiled code
2253   // could double check it.
2254 
2255   methodOop moop = fr.interpreter_frame_method();
2256   int max_locals = moop->max_locals();
2257   // Allocate temp buffer, 1 word per local & 2 per active monitor
2258   int buf_size_words = max_locals + active_monitor_count*2;
2259   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
2260 
2261   // Copy the locals.  Order is preserved so that loading of longs works.
2262   // Since there's no GC I can copy the oops blindly.
2263   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2264   if (TaggedStackInterpreter) {
2265     for (int i = 0; i < max_locals; i++) {
2266       // copy only each local separately to the buffer avoiding the tag
2267       buf[i] = *fr.interpreter_frame_local_at(max_locals-i-1);
2268     }
2269   } else {
2270     Copy::disjoint_words(
2271                        (HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2272                        (HeapWord*)&buf[0],
2273                        max_locals);
2274   }
2275 
2276   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2277   int i = max_locals;
2278   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2279        kptr2 < fr.interpreter_frame_monitor_begin();
2280        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2281     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2282       BasicLock *lock = kptr2->lock();
2283       // Inflate so the displaced header becomes position-independent
2284       if (lock->displaced_header()->is_unlocked())
2285         ObjectSynchronizer::inflate_helper(kptr2->obj());
2286       // Now the displaced header is free to move
2287       buf[i++] = (intptr_t)lock->displaced_header();
2288       buf[i++] = (intptr_t)kptr2->obj();
2289     }
2290   }
2291   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2292 
2293   return buf;
2294 JRT_END
2295 
2296 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2297   FREE_C_HEAP_ARRAY(intptr_t,buf);
2298 JRT_END
2299 
2300 #ifndef PRODUCT
2301 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2302 
2303   if (_handlers == NULL) return false;
2304 
2305   for (int i = 0 ; i < _handlers->length() ; i++) {
2306     AdapterHandlerEntry* a = get_entry(i);
2307     if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2308   }
2309   return false;
2310 }
2311 
2312 void AdapterHandlerLibrary::print_handler(CodeBlob* b) {
2313 
2314   for (int i = 0 ; i < _handlers->length() ; i++) {
2315     AdapterHandlerEntry* a = get_entry(i);
2316     if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) {
2317       tty->print("Adapter for signature: ");
2318       // Fingerprinter::print(_fingerprints->at(i));
2319       tty->print("0x%" FORMAT64_MODIFIER "x", _fingerprints->at(i));
2320       tty->print_cr(" i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2321                     a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
2322 
2323       return;
2324     }
2325   }
2326   assert(false, "Should have found handler");
2327 }
2328 #endif /* PRODUCT */
--- EOF ---