1 //
   2 // Copyright 1998-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20 // CA 95054 USA or visit www.sun.com if you need additional information or
  21 // have any questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 // Macros to extract hi & lo halves from a long pair.
 464 // G0 is not part of any long pair, so assert on that.
 465 // Prevents accidentally using G1 instead of G0.
 466 #define LONG_HI_REG(x) (x)
 467 #define LONG_LO_REG(x) (x)
 468 
 469 %}
 470 
 471 source %{
 472 #define __ _masm.
 473 
 474 // tertiary op of a LoadP or StoreP encoding
 475 #define REGP_OP true
 476 
 477 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 478 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 479 static Register reg_to_register_object(int register_encoding);
 480 
 481 // Used by the DFA in dfa_sparc.cpp.
 482 // Check for being able to use a V9 branch-on-register.  Requires a
 483 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 484 // extended.  Doesn't work following an integer ADD, for example, because of
 485 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 486 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 487 // replace them with zero, which could become sign-extension in a different OS
 488 // release.  There's no obvious reason why an interrupt will ever fill these
 489 // bits with non-zero junk (the registers are reloaded with standard LD
 490 // instructions which either zero-fill or sign-fill).
 491 bool can_branch_register( Node *bol, Node *cmp ) {
 492   if( !BranchOnRegister ) return false;
 493 #ifdef _LP64
 494   if( cmp->Opcode() == Op_CmpP )
 495     return true;  // No problems with pointer compares
 496 #endif
 497   if( cmp->Opcode() == Op_CmpL )
 498     return true;  // No problems with long compares
 499 
 500   if( !SparcV9RegsHiBitsZero ) return false;
 501   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 502       bol->as_Bool()->_test._test != BoolTest::eq )
 503      return false;
 504 
 505   // Check for comparing against a 'safe' value.  Any operation which
 506   // clears out the high word is safe.  Thus, loads and certain shifts
 507   // are safe, as are non-negative constants.  Any operation which
 508   // preserves zero bits in the high word is safe as long as each of its
 509   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 510   // inputs are safe.  At present, the only important case to recognize
 511   // seems to be loads.  Constants should fold away, and shifts &
 512   // logicals can use the 'cc' forms.
 513   Node *x = cmp->in(1);
 514   if( x->is_Load() ) return true;
 515   if( x->is_Phi() ) {
 516     for( uint i = 1; i < x->req(); i++ )
 517       if( !x->in(i)->is_Load() )
 518         return false;
 519     return true;
 520   }
 521   return false;
 522 }
 523 
 524 // ****************************************************************************
 525 
 526 // REQUIRED FUNCTIONALITY
 527 
 528 // !!!!! Special hack to get all type of calls to specify the byte offset
 529 //       from the start of the call to the point where the return address
 530 //       will point.
 531 //       The "return address" is the address of the call instruction, plus 8.
 532 
 533 int MachCallStaticJavaNode::ret_addr_offset() {
 534   return NativeCall::instruction_size;  // call; delay slot
 535 }
 536 
 537 int MachCallDynamicJavaNode::ret_addr_offset() {
 538   int vtable_index = this->_vtable_index;
 539   if (vtable_index < 0) {
 540     // must be invalid_vtable_index, not nonvirtual_vtable_index
 541     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
 542     return (NativeMovConstReg::instruction_size +
 543            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 544   } else {
 545     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 546     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 547     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 548     int klass_load_size;
 549     if (UseCompressedOops) {
 550       assert(Universe::heap() != NULL, "java heap should be initialized");
 551       if (Universe::narrow_oop_base() == NULL)
 552         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
 553       else
 554         klass_load_size = 3*BytesPerInstWord;
 555     } else {
 556       klass_load_size = 1*BytesPerInstWord;
 557     }
 558     if( Assembler::is_simm13(v_off) ) {
 559       return klass_load_size +
 560              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 561              NativeCall::instruction_size);  // call; delay slot
 562     } else {
 563       return klass_load_size +
 564              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 565              NativeCall::instruction_size);  // call; delay slot
 566     }
 567   }
 568 }
 569 
 570 int MachCallRuntimeNode::ret_addr_offset() {
 571 #ifdef _LP64
 572   return NativeFarCall::instruction_size;  // farcall; delay slot
 573 #else
 574   return NativeCall::instruction_size;  // call; delay slot
 575 #endif
 576 }
 577 
 578 // Indicate if the safepoint node needs the polling page as an input.
 579 // Since Sparc does not have absolute addressing, it does.
 580 bool SafePointNode::needs_polling_address_input() {
 581   return true;
 582 }
 583 
 584 // emit an interrupt that is caught by the debugger (for debugging compiler)
 585 void emit_break(CodeBuffer &cbuf) {
 586   MacroAssembler _masm(&cbuf);
 587   __ breakpoint_trap();
 588 }
 589 
 590 #ifndef PRODUCT
 591 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 592   st->print("TA");
 593 }
 594 #endif
 595 
 596 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 597   emit_break(cbuf);
 598 }
 599 
 600 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 601   return MachNode::size(ra_);
 602 }
 603 
 604 // Traceable jump
 605 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 606   MacroAssembler _masm(&cbuf);
 607   Register rdest = reg_to_register_object(jump_target);
 608   __ JMP(rdest, 0);
 609   __ delayed()->nop();
 610 }
 611 
 612 // Traceable jump and set exception pc
 613 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 614   MacroAssembler _masm(&cbuf);
 615   Register rdest = reg_to_register_object(jump_target);
 616   __ JMP(rdest, 0);
 617   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 618 }
 619 
 620 void emit_nop(CodeBuffer &cbuf) {
 621   MacroAssembler _masm(&cbuf);
 622   __ nop();
 623 }
 624 
 625 void emit_illtrap(CodeBuffer &cbuf) {
 626   MacroAssembler _masm(&cbuf);
 627   __ illtrap(0);
 628 }
 629 
 630 
 631 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 632   assert(n->rule() != loadUB_rule, "");
 633 
 634   intptr_t offset = 0;
 635   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 636   const Node* addr = n->get_base_and_disp(offset, adr_type);
 637   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 638   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 639   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 640   atype = atype->add_offset(offset);
 641   assert(disp32 == offset, "wrong disp32");
 642   return atype->_offset;
 643 }
 644 
 645 
 646 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 647   assert(n->rule() != loadUB_rule, "");
 648 
 649   intptr_t offset = 0;
 650   Node* addr = n->in(2);
 651   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 652   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 653     Node* a = addr->in(2/*AddPNode::Address*/);
 654     Node* o = addr->in(3/*AddPNode::Offset*/);
 655     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 656     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 657     assert(atype->isa_oop_ptr(), "still an oop");
 658   }
 659   offset = atype->is_ptr()->_offset;
 660   if (offset != Type::OffsetBot)  offset += disp32;
 661   return offset;
 662 }
 663 
 664 // Standard Sparc opcode form2 field breakdown
 665 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 666   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 667   int op = (f30 << 30) |
 668            (f29 << 29) |
 669            (f25 << 25) |
 670            (f22 << 22) |
 671            (f20 << 20) |
 672            (f19 << 19) |
 673            (f0  <<  0);
 674   *((int*)(cbuf.code_end())) = op;
 675   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 676 }
 677 
 678 // Standard Sparc opcode form2 field breakdown
 679 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 680   f0 >>= 10;           // Drop 10 bits
 681   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 682   int op = (f30 << 30) |
 683            (f25 << 25) |
 684            (f22 << 22) |
 685            (f0  <<  0);
 686   *((int*)(cbuf.code_end())) = op;
 687   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 688 }
 689 
 690 // Standard Sparc opcode form3 field breakdown
 691 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 692   int op = (f30 << 30) |
 693            (f25 << 25) |
 694            (f19 << 19) |
 695            (f14 << 14) |
 696            (f5  <<  5) |
 697            (f0  <<  0);
 698   *((int*)(cbuf.code_end())) = op;
 699   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 700 }
 701 
 702 // Standard Sparc opcode form3 field breakdown
 703 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 704   simm13 &= (1<<13)-1; // Mask to 13 bits
 705   int op = (f30 << 30) |
 706            (f25 << 25) |
 707            (f19 << 19) |
 708            (f14 << 14) |
 709            (1   << 13) | // bit to indicate immediate-mode
 710            (simm13<<0);
 711   *((int*)(cbuf.code_end())) = op;
 712   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 713 }
 714 
 715 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 716   simm10 &= (1<<10)-1; // Mask to 10 bits
 717   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 718 }
 719 
 720 #ifdef ASSERT
 721 // Helper function for VerifyOops in emit_form3_mem_reg
 722 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 723   warning("VerifyOops encountered unexpected instruction:");
 724   n->dump(2);
 725   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 726 }
 727 #endif
 728 
 729 
 730 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 731                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 732 
 733 #ifdef ASSERT
 734   // The following code implements the +VerifyOops feature.
 735   // It verifies oop values which are loaded into or stored out of
 736   // the current method activation.  +VerifyOops complements techniques
 737   // like ScavengeALot, because it eagerly inspects oops in transit,
 738   // as they enter or leave the stack, as opposed to ScavengeALot,
 739   // which inspects oops "at rest", in the stack or heap, at safepoints.
 740   // For this reason, +VerifyOops can sometimes detect bugs very close
 741   // to their point of creation.  It can also serve as a cross-check
 742   // on the validity of oop maps, when used toegether with ScavengeALot.
 743 
 744   // It would be good to verify oops at other points, especially
 745   // when an oop is used as a base pointer for a load or store.
 746   // This is presently difficult, because it is hard to know when
 747   // a base address is biased or not.  (If we had such information,
 748   // it would be easy and useful to make a two-argument version of
 749   // verify_oop which unbiases the base, and performs verification.)
 750 
 751   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 752   bool is_verified_oop_base  = false;
 753   bool is_verified_oop_load  = false;
 754   bool is_verified_oop_store = false;
 755   int tmp_enc = -1;
 756   if (VerifyOops && src1_enc != R_SP_enc) {
 757     // classify the op, mainly for an assert check
 758     int st_op = 0, ld_op = 0;
 759     switch (primary) {
 760     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 761     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 762     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 763     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 764     case Assembler::std_op3:  st_op = Op_StoreL; break;
 765     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 766     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 767 
 768     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 769     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 770     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 771     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 772     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 773     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 774     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 775     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 776     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 777     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
 778     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 779 
 780     default: ShouldNotReachHere();
 781     }
 782     if (tertiary == REGP_OP) {
 783       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 784       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 785       else                          ShouldNotReachHere();
 786       if (st_op) {
 787         // a store
 788         // inputs are (0:control, 1:memory, 2:address, 3:value)
 789         Node* n2 = n->in(3);
 790         if (n2 != NULL) {
 791           const Type* t = n2->bottom_type();
 792           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 793         }
 794       } else {
 795         // a load
 796         const Type* t = n->bottom_type();
 797         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 798       }
 799     }
 800 
 801     if (ld_op) {
 802       // a Load
 803       // inputs are (0:control, 1:memory, 2:address)
 804       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 805           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
 806           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 807           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 808           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 809           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 810           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 811           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 812           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 813           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 814           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 815           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 816           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 817           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 818           !(n->rule() == loadUB_rule)) {
 819         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 820       }
 821     } else if (st_op) {
 822       // a Store
 823       // inputs are (0:control, 1:memory, 2:address, 3:value)
 824       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 825           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 826           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 827           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 828           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 829           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 830         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 831       }
 832     }
 833 
 834     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 835       Node* addr = n->in(2);
 836       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 837         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 838         if (atype != NULL) {
 839           intptr_t offset = get_offset_from_base(n, atype, disp32);
 840           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 841           if (offset != offset_2) {
 842             get_offset_from_base(n, atype, disp32);
 843             get_offset_from_base_2(n, atype, disp32);
 844           }
 845           assert(offset == offset_2, "different offsets");
 846           if (offset == disp32) {
 847             // we now know that src1 is a true oop pointer
 848             is_verified_oop_base = true;
 849             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 850               if( primary == Assembler::ldd_op3 ) {
 851                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 852               } else {
 853                 tmp_enc = dst_enc;
 854                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 855                 assert(src1_enc != dst_enc, "");
 856               }
 857             }
 858           }
 859           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 860                        || offset == oopDesc::mark_offset_in_bytes())) {
 861                       // loading the mark should not be allowed either, but
 862                       // we don't check this since it conflicts with InlineObjectHash
 863                       // usage of LoadINode to get the mark. We could keep the
 864                       // check if we create a new LoadMarkNode
 865             // but do not verify the object before its header is initialized
 866             ShouldNotReachHere();
 867           }
 868         }
 869       }
 870     }
 871   }
 872 #endif
 873 
 874   uint instr;
 875   instr = (Assembler::ldst_op << 30)
 876         | (dst_enc        << 25)
 877         | (primary        << 19)
 878         | (src1_enc       << 14);
 879 
 880   uint index = src2_enc;
 881   int disp = disp32;
 882 
 883   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 884     disp += STACK_BIAS;
 885 
 886   // We should have a compiler bailout here rather than a guarantee.
 887   // Better yet would be some mechanism to handle variable-size matches correctly.
 888   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 889 
 890   if( disp == 0 ) {
 891     // use reg-reg form
 892     // bit 13 is already zero
 893     instr |= index;
 894   } else {
 895     // use reg-imm form
 896     instr |= 0x00002000;          // set bit 13 to one
 897     instr |= disp & 0x1FFF;
 898   }
 899 
 900   uint *code = (uint*)cbuf.code_end();
 901   *code = instr;
 902   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 903 
 904 #ifdef ASSERT
 905   {
 906     MacroAssembler _masm(&cbuf);
 907     if (is_verified_oop_base) {
 908       __ verify_oop(reg_to_register_object(src1_enc));
 909     }
 910     if (is_verified_oop_store) {
 911       __ verify_oop(reg_to_register_object(dst_enc));
 912     }
 913     if (tmp_enc != -1) {
 914       __ mov(O7, reg_to_register_object(tmp_enc));
 915     }
 916     if (is_verified_oop_load) {
 917       __ verify_oop(reg_to_register_object(dst_enc));
 918     }
 919   }
 920 #endif
 921 }
 922 
 923 void emit_form3_mem_reg_asi(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 924                         int src1_enc, int disp32, int src2_enc, int dst_enc, int asi) {
 925 
 926   uint instr;
 927   instr = (Assembler::ldst_op << 30)
 928         | (dst_enc        << 25)
 929         | (primary        << 19)
 930         | (src1_enc       << 14);
 931 
 932   int disp = disp32;
 933   int index    = src2_enc;
 934 
 935   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 936     disp += STACK_BIAS;
 937 
 938   // We should have a compiler bailout here rather than a guarantee.
 939   // Better yet would be some mechanism to handle variable-size matches correctly.
 940   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 941 
 942   if( disp != 0 ) {
 943     // use reg-reg form
 944     // set src2=R_O7 contains offset
 945     index = R_O7_enc;
 946     emit3_simm13( cbuf, Assembler::arith_op, index, Assembler::or_op3, 0, disp);
 947   }
 948   instr |= (asi << 5);
 949   instr |= index;
 950   uint *code = (uint*)cbuf.code_end();
 951   *code = instr;
 952   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 953 }
 954 
 955 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
 956   // The method which records debug information at every safepoint
 957   // expects the call to be the first instruction in the snippet as
 958   // it creates a PcDesc structure which tracks the offset of a call
 959   // from the start of the codeBlob. This offset is computed as
 960   // code_end() - code_begin() of the code which has been emitted
 961   // so far.
 962   // In this particular case we have skirted around the problem by
 963   // putting the "mov" instruction in the delay slot but the problem
 964   // may bite us again at some other point and a cleaner/generic
 965   // solution using relocations would be needed.
 966   MacroAssembler _masm(&cbuf);
 967   __ set_inst_mark();
 968 
 969   // We flush the current window just so that there is a valid stack copy
 970   // the fact that the current window becomes active again instantly is
 971   // not a problem there is nothing live in it.
 972 
 973 #ifdef ASSERT
 974   int startpos = __ offset();
 975 #endif /* ASSERT */
 976 
 977 #ifdef _LP64
 978   // Calls to the runtime or native may not be reachable from compiled code,
 979   // so we generate the far call sequence on 64 bit sparc.
 980   // This code sequence is relocatable to any address, even on LP64.
 981   if ( force_far_call ) {
 982     __ relocate(rtype);
 983     AddressLiteral dest(entry_point);
 984     __ jumpl_to(dest, O7, O7);
 985   }
 986   else
 987 #endif
 988   {
 989      __ call((address)entry_point, rtype);
 990   }
 991 
 992   if (preserve_g2)   __ delayed()->mov(G2, L7);
 993   else __ delayed()->nop();
 994 
 995   if (preserve_g2)   __ mov(L7, G2);
 996 
 997 #ifdef ASSERT
 998   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 999 #ifdef _LP64
1000     // Trash argument dump slots.
1001     __ set(0xb0b8ac0db0b8ac0d, G1);
1002     __ mov(G1, G5);
1003     __ stx(G1, SP, STACK_BIAS + 0x80);
1004     __ stx(G1, SP, STACK_BIAS + 0x88);
1005     __ stx(G1, SP, STACK_BIAS + 0x90);
1006     __ stx(G1, SP, STACK_BIAS + 0x98);
1007     __ stx(G1, SP, STACK_BIAS + 0xA0);
1008     __ stx(G1, SP, STACK_BIAS + 0xA8);
1009 #else // _LP64
1010     // this is also a native call, so smash the first 7 stack locations,
1011     // and the various registers
1012 
1013     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1014     // while [SP+0x44..0x58] are the argument dump slots.
1015     __ set((intptr_t)0xbaadf00d, G1);
1016     __ mov(G1, G5);
1017     __ sllx(G1, 32, G1);
1018     __ or3(G1, G5, G1);
1019     __ mov(G1, G5);
1020     __ stx(G1, SP, 0x40);
1021     __ stx(G1, SP, 0x48);
1022     __ stx(G1, SP, 0x50);
1023     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1024 #endif // _LP64
1025   }
1026 #endif /*ASSERT*/
1027 }
1028 
1029 //=============================================================================
1030 // REQUIRED FUNCTIONALITY for encoding
1031 void emit_lo(CodeBuffer &cbuf, int val) {  }
1032 void emit_hi(CodeBuffer &cbuf, int val) {  }
1033 
1034 
1035 //=============================================================================
1036 
1037 #ifndef PRODUCT
1038 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1039   Compile* C = ra_->C;
1040 
1041   for (int i = 0; i < OptoPrologueNops; i++) {
1042     st->print_cr("NOP"); st->print("\t");
1043   }
1044 
1045   if( VerifyThread ) {
1046     st->print_cr("Verify_Thread"); st->print("\t");
1047   }
1048 
1049   size_t framesize = C->frame_slots() << LogBytesPerInt;
1050 
1051   // Calls to C2R adapters often do not accept exceptional returns.
1052   // We require that their callers must bang for them.  But be careful, because
1053   // some VM calls (such as call site linkage) can use several kilobytes of
1054   // stack.  But the stack safety zone should account for that.
1055   // See bugs 4446381, 4468289, 4497237.
1056   if (C->need_stack_bang(framesize)) {
1057     st->print_cr("! stack bang"); st->print("\t");
1058   }
1059 
1060   if (Assembler::is_simm13(-framesize)) {
1061     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1062   } else {
1063     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1064     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1065     st->print   ("SAVE   R_SP,R_G3,R_SP");
1066   }
1067 
1068 }
1069 #endif
1070 
1071 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1072   Compile* C = ra_->C;
1073   MacroAssembler _masm(&cbuf);
1074 
1075   for (int i = 0; i < OptoPrologueNops; i++) {
1076     __ nop();
1077   }
1078 
1079   __ verify_thread();
1080 
1081   size_t framesize = C->frame_slots() << LogBytesPerInt;
1082   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1083   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1084 
1085   // Calls to C2R adapters often do not accept exceptional returns.
1086   // We require that their callers must bang for them.  But be careful, because
1087   // some VM calls (such as call site linkage) can use several kilobytes of
1088   // stack.  But the stack safety zone should account for that.
1089   // See bugs 4446381, 4468289, 4497237.
1090   if (C->need_stack_bang(framesize)) {
1091     __ generate_stack_overflow_check(framesize);
1092   }
1093 
1094   if (Assembler::is_simm13(-framesize)) {
1095     __ save(SP, -framesize, SP);
1096   } else {
1097     __ sethi(-framesize & ~0x3ff, G3);
1098     __ add(G3, -framesize & 0x3ff, G3);
1099     __ save(SP, G3, SP);
1100   }
1101   C->set_frame_complete( __ offset() );
1102 }
1103 
1104 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1105   return MachNode::size(ra_);
1106 }
1107 
1108 int MachPrologNode::reloc() const {
1109   return 10; // a large enough number
1110 }
1111 
1112 //=============================================================================
1113 #ifndef PRODUCT
1114 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1115   Compile* C = ra_->C;
1116 
1117   if( do_polling() && ra_->C->is_method_compilation() ) {
1118     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1119 #ifdef _LP64
1120     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1121 #else
1122     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1123 #endif
1124   }
1125 
1126   if( do_polling() )
1127     st->print("RET\n\t");
1128 
1129   st->print("RESTORE");
1130 }
1131 #endif
1132 
1133 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1134   MacroAssembler _masm(&cbuf);
1135   Compile* C = ra_->C;
1136 
1137   __ verify_thread();
1138 
1139   // If this does safepoint polling, then do it here
1140   if( do_polling() && ra_->C->is_method_compilation() ) {
1141     AddressLiteral polling_page(os::get_polling_page());
1142     __ sethi(polling_page, L0);
1143     __ relocate(relocInfo::poll_return_type);
1144     __ ld_ptr( L0, 0, G0 );
1145   }
1146 
1147   // If this is a return, then stuff the restore in the delay slot
1148   if( do_polling() ) {
1149     __ ret();
1150     __ delayed()->restore();
1151   } else {
1152     __ restore();
1153   }
1154 }
1155 
1156 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1157   return MachNode::size(ra_);
1158 }
1159 
1160 int MachEpilogNode::reloc() const {
1161   return 16; // a large enough number
1162 }
1163 
1164 const Pipeline * MachEpilogNode::pipeline() const {
1165   return MachNode::pipeline_class();
1166 }
1167 
1168 int MachEpilogNode::safepoint_offset() const {
1169   assert( do_polling(), "no return for this epilog node");
1170   return MacroAssembler::size_of_sethi(os::get_polling_page());
1171 }
1172 
1173 //=============================================================================
1174 
1175 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1176 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1177 static enum RC rc_class( OptoReg::Name reg ) {
1178   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1179   if (OptoReg::is_stack(reg)) return rc_stack;
1180   VMReg r = OptoReg::as_VMReg(reg);
1181   if (r->is_Register()) return rc_int;
1182   assert(r->is_FloatRegister(), "must be");
1183   return rc_float;
1184 }
1185 
1186 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1187   if( cbuf ) {
1188     // Better yet would be some mechanism to handle variable-size matches correctly
1189     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1190       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1191     } else {
1192       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1193     }
1194   }
1195 #ifndef PRODUCT
1196   else if( !do_size ) {
1197     if( size != 0 ) st->print("\n\t");
1198     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1199     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1200   }
1201 #endif
1202   return size+4;
1203 }
1204 
1205 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1206   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1207 #ifndef PRODUCT
1208   else if( !do_size ) {
1209     if( size != 0 ) st->print("\n\t");
1210     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1211   }
1212 #endif
1213   return size+4;
1214 }
1215 
1216 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1217                                         PhaseRegAlloc *ra_,
1218                                         bool do_size,
1219                                         outputStream* st ) const {
1220   // Get registers to move
1221   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1222   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1223   OptoReg::Name dst_second = ra_->get_reg_second(this );
1224   OptoReg::Name dst_first = ra_->get_reg_first(this );
1225 
1226   enum RC src_second_rc = rc_class(src_second);
1227   enum RC src_first_rc = rc_class(src_first);
1228   enum RC dst_second_rc = rc_class(dst_second);
1229   enum RC dst_first_rc = rc_class(dst_first);
1230 
1231   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1232 
1233   // Generate spill code!
1234   int size = 0;
1235 
1236   if( src_first == dst_first && src_second == dst_second )
1237     return size;            // Self copy, no move
1238 
1239   // --------------------------------------
1240   // Check for mem-mem move.  Load into unused float registers and fall into
1241   // the float-store case.
1242   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1243     int offset = ra_->reg2offset(src_first);
1244     // Further check for aligned-adjacent pair, so we can use a double load
1245     if( (src_first&1)==0 && src_first+1 == src_second ) {
1246       src_second    = OptoReg::Name(R_F31_num);
1247       src_second_rc = rc_float;
1248       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1249     } else {
1250       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1251     }
1252     src_first    = OptoReg::Name(R_F30_num);
1253     src_first_rc = rc_float;
1254   }
1255 
1256   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1257     int offset = ra_->reg2offset(src_second);
1258     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1259     src_second    = OptoReg::Name(R_F31_num);
1260     src_second_rc = rc_float;
1261   }
1262 
1263   // --------------------------------------
1264   // Check for float->int copy; requires a trip through memory
1265   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
1266     int offset = frame::register_save_words*wordSize;
1267     if( cbuf ) {
1268       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1269       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1270       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1271       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1272     }
1273 #ifndef PRODUCT
1274     else if( !do_size ) {
1275       if( size != 0 ) st->print("\n\t");
1276       st->print(  "SUB    R_SP,16,R_SP\n");
1277       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1278       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1279       st->print("\tADD    R_SP,16,R_SP\n");
1280     }
1281 #endif
1282     size += 16;
1283   }
1284 
1285   // --------------------------------------
1286   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1287   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1288   // hardware does the flop for me.  Doubles are always aligned, so no problem
1289   // there.  Misaligned sources only come from native-long-returns (handled
1290   // special below).
1291 #ifndef _LP64
1292   if( src_first_rc == rc_int &&     // source is already big-endian
1293       src_second_rc != rc_bad &&    // 64-bit move
1294       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1295     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1296     // Do the big-endian flop.
1297     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1298     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1299   }
1300 #endif
1301 
1302   // --------------------------------------
1303   // Check for integer reg-reg copy
1304   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1305 #ifndef _LP64
1306     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1307       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1308       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1309       //       operand contains the least significant word of the 64-bit value and vice versa.
1310       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1311       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1312       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1313       if( cbuf ) {
1314         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1315         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1316         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1317 #ifndef PRODUCT
1318       } else if( !do_size ) {
1319         if( size != 0 ) st->print("\n\t");
1320         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1321         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1322         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1323 #endif
1324       }
1325       return size+12;
1326     }
1327     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1328       // returning a long value in I0/I1
1329       // a SpillCopy must be able to target a return instruction's reg_class
1330       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1331       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1332       //       operand contains the least significant word of the 64-bit value and vice versa.
1333       OptoReg::Name tdest = dst_first;
1334 
1335       if (src_first == dst_first) {
1336         tdest = OptoReg::Name(R_O7_num);
1337         size += 4;
1338       }
1339 
1340       if( cbuf ) {
1341         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1342         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1343         // ShrL_reg_imm6
1344         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1345         // ShrR_reg_imm6  src, 0, dst
1346         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1347         if (tdest != dst_first) {
1348           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1349         }
1350       }
1351 #ifndef PRODUCT
1352       else if( !do_size ) {
1353         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1354         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1355         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1356         if (tdest != dst_first) {
1357           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1358         }
1359       }
1360 #endif // PRODUCT
1361       return size+8;
1362     }
1363 #endif // !_LP64
1364     // Else normal reg-reg copy
1365     assert( src_second != dst_first, "smashed second before evacuating it" );
1366     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1367     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1368     // This moves an aligned adjacent pair.
1369     // See if we are done.
1370     if( src_first+1 == src_second && dst_first+1 == dst_second )
1371       return size;
1372   }
1373 
1374   // Check for integer store
1375   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1376     int offset = ra_->reg2offset(dst_first);
1377     // Further check for aligned-adjacent pair, so we can use a double store
1378     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1379       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1380     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1381   }
1382 
1383   // Check for integer load
1384   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1385     int offset = ra_->reg2offset(src_first);
1386     // Further check for aligned-adjacent pair, so we can use a double load
1387     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1388       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1389     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1390   }
1391 
1392   // Check for float reg-reg copy
1393   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1394     // Further check for aligned-adjacent pair, so we can use a double move
1395     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1396       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1397     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1398   }
1399 
1400   // Check for float store
1401   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1402     int offset = ra_->reg2offset(dst_first);
1403     // Further check for aligned-adjacent pair, so we can use a double store
1404     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1405       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1406     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1407   }
1408 
1409   // Check for float load
1410   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1411     int offset = ra_->reg2offset(src_first);
1412     // Further check for aligned-adjacent pair, so we can use a double load
1413     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1414       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1415     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1416   }
1417 
1418   // --------------------------------------------------------------------
1419   // Check for hi bits still needing moving.  Only happens for misaligned
1420   // arguments to native calls.
1421   if( src_second == dst_second )
1422     return size;               // Self copy; no move
1423   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1424 
1425 #ifndef _LP64
1426   // In the LP64 build, all registers can be moved as aligned/adjacent
1427   // pairs, so there's never any need to move the high bits separately.
1428   // The 32-bit builds have to deal with the 32-bit ABI which can force
1429   // all sorts of silly alignment problems.
1430 
1431   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1432   // 32-bits of a 64-bit register, but are needed in low bits of another
1433   // register (else it's a hi-bits-to-hi-bits copy which should have
1434   // happened already as part of a 64-bit move)
1435   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1436     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1437     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1438     // Shift src_second down to dst_second's low bits.
1439     if( cbuf ) {
1440       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1441 #ifndef PRODUCT
1442     } else if( !do_size ) {
1443       if( size != 0 ) st->print("\n\t");
1444       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1445 #endif
1446     }
1447     return size+4;
1448   }
1449 
1450   // Check for high word integer store.  Must down-shift the hi bits
1451   // into a temp register, then fall into the case of storing int bits.
1452   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1453     // Shift src_second down to dst_second's low bits.
1454     if( cbuf ) {
1455       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1456 #ifndef PRODUCT
1457     } else if( !do_size ) {
1458       if( size != 0 ) st->print("\n\t");
1459       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1460 #endif
1461     }
1462     size+=4;
1463     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1464   }
1465 
1466   // Check for high word integer load
1467   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1468     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1469 
1470   // Check for high word integer store
1471   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1472     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1473 
1474   // Check for high word float store
1475   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1476     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1477 
1478 #endif // !_LP64
1479 
1480   Unimplemented();
1481 }
1482 
1483 #ifndef PRODUCT
1484 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1485   implementation( NULL, ra_, false, st );
1486 }
1487 #endif
1488 
1489 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1490   implementation( &cbuf, ra_, false, NULL );
1491 }
1492 
1493 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1494   return implementation( NULL, ra_, true, NULL );
1495 }
1496 
1497 //=============================================================================
1498 #ifndef PRODUCT
1499 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1500   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1501 }
1502 #endif
1503 
1504 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1505   MacroAssembler _masm(&cbuf);
1506   for(int i = 0; i < _count; i += 1) {
1507     __ nop();
1508   }
1509 }
1510 
1511 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1512   return 4 * _count;
1513 }
1514 
1515 
1516 //=============================================================================
1517 #ifndef PRODUCT
1518 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1519   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1520   int reg = ra_->get_reg_first(this);
1521   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1522 }
1523 #endif
1524 
1525 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1526   MacroAssembler _masm(&cbuf);
1527   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1528   int reg = ra_->get_encode(this);
1529 
1530   if (Assembler::is_simm13(offset)) {
1531      __ add(SP, offset, reg_to_register_object(reg));
1532   } else {
1533      __ set(offset, O7);
1534      __ add(SP, O7, reg_to_register_object(reg));
1535   }
1536 }
1537 
1538 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1539   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1540   assert(ra_ == ra_->C->regalloc(), "sanity");
1541   return ra_->C->scratch_emit_size(this);
1542 }
1543 
1544 //=============================================================================
1545 
1546 // emit call stub, compiled java to interpretor
1547 void emit_java_to_interp(CodeBuffer &cbuf ) {
1548 
1549   // Stub is fixed up when the corresponding call is converted from calling
1550   // compiled code to calling interpreted code.
1551   // set (empty), G5
1552   // jmp -1
1553 
1554   address mark = cbuf.inst_mark();  // get mark within main instrs section
1555 
1556   MacroAssembler _masm(&cbuf);
1557 
1558   address base =
1559   __ start_a_stub(Compile::MAX_stubs_size);
1560   if (base == NULL)  return;  // CodeBuffer::expand failed
1561 
1562   // static stub relocation stores the instruction address of the call
1563   __ relocate(static_stub_Relocation::spec(mark));
1564 
1565   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1566 
1567   __ set_inst_mark();
1568   AddressLiteral addrlit(-1);
1569   __ JUMP(addrlit, G3, 0);
1570 
1571   __ delayed()->nop();
1572 
1573   // Update current stubs pointer and restore code_end.
1574   __ end_a_stub();
1575 }
1576 
1577 // size of call stub, compiled java to interpretor
1578 uint size_java_to_interp() {
1579   // This doesn't need to be accurate but it must be larger or equal to
1580   // the real size of the stub.
1581   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
1582           NativeJump::instruction_size + // sethi; jmp; nop
1583           (TraceJumps ? 20 * BytesPerInstWord : 0) );
1584 }
1585 // relocation entries for call stub, compiled java to interpretor
1586 uint reloc_java_to_interp() {
1587   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
1588 }
1589 
1590 
1591 //=============================================================================
1592 #ifndef PRODUCT
1593 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1594   st->print_cr("\nUEP:");
1595 #ifdef    _LP64
1596   if (UseCompressedOops) {
1597     assert(Universe::heap() != NULL, "java heap should be initialized");
1598     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1599     st->print_cr("\tSLL    R_G5,3,R_G5");
1600     if (Universe::narrow_oop_base() != NULL)
1601       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1602   } else {
1603     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1604   }
1605   st->print_cr("\tCMP    R_G5,R_G3" );
1606   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1607 #else  // _LP64
1608   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1609   st->print_cr("\tCMP    R_G5,R_G3" );
1610   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1611 #endif // _LP64
1612 }
1613 #endif
1614 
1615 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1616   MacroAssembler _masm(&cbuf);
1617   Label L;
1618   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1619   Register temp_reg   = G3;
1620   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1621 
1622   // Load klass from receiver
1623   __ load_klass(O0, temp_reg);
1624   // Compare against expected klass
1625   __ cmp(temp_reg, G5_ic_reg);
1626   // Branch to miss code, checks xcc or icc depending
1627   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1628 }
1629 
1630 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1631   return MachNode::size(ra_);
1632 }
1633 
1634 
1635 //=============================================================================
1636 
1637 uint size_exception_handler() {
1638   if (TraceJumps) {
1639     return (400); // just a guess
1640   }
1641   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1642 }
1643 
1644 uint size_deopt_handler() {
1645   if (TraceJumps) {
1646     return (400); // just a guess
1647   }
1648   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1649 }
1650 
1651 // Emit exception handler code.
1652 int emit_exception_handler(CodeBuffer& cbuf) {
1653   Register temp_reg = G3;
1654   AddressLiteral exception_blob(OptoRuntime::exception_blob()->instructions_begin());
1655   MacroAssembler _masm(&cbuf);
1656 
1657   address base =
1658   __ start_a_stub(size_exception_handler());
1659   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1660 
1661   int offset = __ offset();
1662 
1663   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1664   __ delayed()->nop();
1665 
1666   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1667 
1668   __ end_a_stub();
1669 
1670   return offset;
1671 }
1672 
1673 int emit_deopt_handler(CodeBuffer& cbuf) {
1674   // Can't use any of the current frame's registers as we may have deopted
1675   // at a poll and everything (including G3) can be live.
1676   Register temp_reg = L0;
1677   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1678   MacroAssembler _masm(&cbuf);
1679 
1680   address base =
1681   __ start_a_stub(size_deopt_handler());
1682   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1683 
1684   int offset = __ offset();
1685   __ save_frame(0);
1686   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1687   __ delayed()->restore();
1688 
1689   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1690 
1691   __ end_a_stub();
1692   return offset;
1693 
1694 }
1695 
1696 // Given a register encoding, produce a Integer Register object
1697 static Register reg_to_register_object(int register_encoding) {
1698   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1699   return as_Register(register_encoding);
1700 }
1701 
1702 // Given a register encoding, produce a single-precision Float Register object
1703 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1704   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1705   return as_SingleFloatRegister(register_encoding);
1706 }
1707 
1708 // Given a register encoding, produce a double-precision Float Register object
1709 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1710   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1711   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1712   return as_DoubleFloatRegister(register_encoding);
1713 }
1714 
1715 const bool Matcher::match_rule_supported(int opcode) {
1716   if (!has_match_rule(opcode))
1717     return false;
1718 
1719   switch (opcode) {
1720   case Op_CountLeadingZerosI:
1721   case Op_CountLeadingZerosL:
1722   case Op_CountTrailingZerosI:
1723   case Op_CountTrailingZerosL:
1724     if (!UsePopCountInstruction)
1725       return false;
1726     break;
1727   }
1728 
1729   return true;  // Per default match rules are supported.
1730 }
1731 
1732 int Matcher::regnum_to_fpu_offset(int regnum) {
1733   return regnum - 32; // The FP registers are in the second chunk
1734 }
1735 
1736 #ifdef ASSERT
1737 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1738 #endif
1739 
1740 // Vector width in bytes
1741 const uint Matcher::vector_width_in_bytes(void) {
1742   return 8;
1743 }
1744 
1745 // Vector ideal reg
1746 const uint Matcher::vector_ideal_reg(void) {
1747   return Op_RegD;
1748 }
1749 
1750 // USII supports fxtof through the whole range of number, USIII doesn't
1751 const bool Matcher::convL2FSupported(void) {
1752   return VM_Version::has_fast_fxtof();
1753 }
1754 
1755 // Is this branch offset short enough that a short branch can be used?
1756 //
1757 // NOTE: If the platform does not provide any short branch variants, then
1758 //       this method should return false for offset 0.
1759 bool Matcher::is_short_branch_offset(int rule, int offset) {
1760   return false;
1761 }
1762 
1763 const bool Matcher::isSimpleConstant64(jlong value) {
1764   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1765   // Depends on optimizations in MacroAssembler::setx.
1766   int hi = (int)(value >> 32);
1767   int lo = (int)(value & ~0);
1768   return (hi == 0) || (hi == -1) || (lo == 0);
1769 }
1770 
1771 // No scaling for the parameter the ClearArray node.
1772 const bool Matcher::init_array_count_is_in_bytes = true;
1773 
1774 // Threshold size for cleararray.
1775 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1776 
1777 // Should the Matcher clone shifts on addressing modes, expecting them to
1778 // be subsumed into complex addressing expressions or compute them into
1779 // registers?  True for Intel but false for most RISCs
1780 const bool Matcher::clone_shift_expressions = false;
1781 
1782 // Is it better to copy float constants, or load them directly from memory?
1783 // Intel can load a float constant from a direct address, requiring no
1784 // extra registers.  Most RISCs will have to materialize an address into a
1785 // register first, so they would do better to copy the constant from stack.
1786 const bool Matcher::rematerialize_float_constants = false;
1787 
1788 // If CPU can load and store mis-aligned doubles directly then no fixup is
1789 // needed.  Else we split the double into 2 integer pieces and move it
1790 // piece-by-piece.  Only happens when passing doubles into C code as the
1791 // Java calling convention forces doubles to be aligned.
1792 #ifdef _LP64
1793 const bool Matcher::misaligned_doubles_ok = true;
1794 #else
1795 const bool Matcher::misaligned_doubles_ok = false;
1796 #endif
1797 
1798 // No-op on SPARC.
1799 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1800 }
1801 
1802 // Advertise here if the CPU requires explicit rounding operations
1803 // to implement the UseStrictFP mode.
1804 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1805 
1806 // Do floats take an entire double register or just half?
1807 const bool Matcher::float_in_double = false;
1808 
1809 // Do ints take an entire long register or just half?
1810 // Note that we if-def off of _LP64.
1811 // The relevant question is how the int is callee-saved.  In _LP64
1812 // the whole long is written but de-opt'ing will have to extract
1813 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1814 #ifdef _LP64
1815 const bool Matcher::int_in_long = true;
1816 #else
1817 const bool Matcher::int_in_long = false;
1818 #endif
1819 
1820 // Return whether or not this register is ever used as an argument.  This
1821 // function is used on startup to build the trampoline stubs in generateOptoStub.
1822 // Registers not mentioned will be killed by the VM call in the trampoline, and
1823 // arguments in those registers not be available to the callee.
1824 bool Matcher::can_be_java_arg( int reg ) {
1825   // Standard sparc 6 args in registers
1826   if( reg == R_I0_num ||
1827       reg == R_I1_num ||
1828       reg == R_I2_num ||
1829       reg == R_I3_num ||
1830       reg == R_I4_num ||
1831       reg == R_I5_num ) return true;
1832 #ifdef _LP64
1833   // 64-bit builds can pass 64-bit pointers and longs in
1834   // the high I registers
1835   if( reg == R_I0H_num ||
1836       reg == R_I1H_num ||
1837       reg == R_I2H_num ||
1838       reg == R_I3H_num ||
1839       reg == R_I4H_num ||
1840       reg == R_I5H_num ) return true;
1841 
1842   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1843     return true;
1844   }
1845 
1846 #else
1847   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1848   // Longs cannot be passed in O regs, because O regs become I regs
1849   // after a 'save' and I regs get their high bits chopped off on
1850   // interrupt.
1851   if( reg == R_G1H_num || reg == R_G1_num ) return true;
1852   if( reg == R_G4H_num || reg == R_G4_num ) return true;
1853 #endif
1854   // A few float args in registers
1855   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1856 
1857   return false;
1858 }
1859 
1860 bool Matcher::is_spillable_arg( int reg ) {
1861   return can_be_java_arg(reg);
1862 }
1863 
1864 // Register for DIVI projection of divmodI
1865 RegMask Matcher::divI_proj_mask() {
1866   ShouldNotReachHere();
1867   return RegMask();
1868 }
1869 
1870 // Register for MODI projection of divmodI
1871 RegMask Matcher::modI_proj_mask() {
1872   ShouldNotReachHere();
1873   return RegMask();
1874 }
1875 
1876 // Register for DIVL projection of divmodL
1877 RegMask Matcher::divL_proj_mask() {
1878   ShouldNotReachHere();
1879   return RegMask();
1880 }
1881 
1882 // Register for MODL projection of divmodL
1883 RegMask Matcher::modL_proj_mask() {
1884   ShouldNotReachHere();
1885   return RegMask();
1886 }
1887 
1888 %}
1889 
1890 
1891 // The intptr_t operand types, defined by textual substitution.
1892 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
1893 #ifdef _LP64
1894 #define immX      immL
1895 #define immX13    immL13
1896 #define immX13m7  immL13m7
1897 #define iRegX     iRegL
1898 #define g1RegX    g1RegL
1899 #else
1900 #define immX      immI
1901 #define immX13    immI13
1902 #define immX13m7  immI13m7
1903 #define iRegX     iRegI
1904 #define g1RegX    g1RegI
1905 #endif
1906 
1907 //----------ENCODING BLOCK-----------------------------------------------------
1908 // This block specifies the encoding classes used by the compiler to output
1909 // byte streams.  Encoding classes are parameterized macros used by
1910 // Machine Instruction Nodes in order to generate the bit encoding of the
1911 // instruction.  Operands specify their base encoding interface with the
1912 // interface keyword.  There are currently supported four interfaces,
1913 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1914 // operand to generate a function which returns its register number when
1915 // queried.   CONST_INTER causes an operand to generate a function which
1916 // returns the value of the constant when queried.  MEMORY_INTER causes an
1917 // operand to generate four functions which return the Base Register, the
1918 // Index Register, the Scale Value, and the Offset Value of the operand when
1919 // queried.  COND_INTER causes an operand to generate six functions which
1920 // return the encoding code (ie - encoding bits for the instruction)
1921 // associated with each basic boolean condition for a conditional instruction.
1922 //
1923 // Instructions specify two basic values for encoding.  Again, a function
1924 // is available to check if the constant displacement is an oop. They use the
1925 // ins_encode keyword to specify their encoding classes (which must be
1926 // a sequence of enc_class names, and their parameters, specified in
1927 // the encoding block), and they use the
1928 // opcode keyword to specify, in order, their primary, secondary, and
1929 // tertiary opcode.  Only the opcode sections which a particular instruction
1930 // needs for encoding need to be specified.
1931 encode %{
1932   enc_class enc_untested %{
1933 #ifdef ASSERT
1934     MacroAssembler _masm(&cbuf);
1935     __ untested("encoding");
1936 #endif
1937   %}
1938 
1939   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
1940     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
1941                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1942   %}
1943 
1944   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
1945     emit_form3_mem_reg(cbuf, this, $primary, -1,
1946                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1947   %}
1948 
1949   enc_class form3_mem_reg_little( memory mem, iRegI dst) %{
1950     emit_form3_mem_reg_asi(cbuf, this, $primary, -1,
1951                      $mem$$base, $mem$$disp, $mem$$index, $dst$$reg, Assembler::ASI_PRIMARY_LITTLE);
1952   %}
1953 
1954   enc_class form3_mem_prefetch_read( memory mem ) %{
1955     emit_form3_mem_reg(cbuf, this, $primary, -1,
1956                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
1957   %}
1958 
1959   enc_class form3_mem_prefetch_write( memory mem ) %{
1960     emit_form3_mem_reg(cbuf, this, $primary, -1,
1961                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
1962   %}
1963 
1964   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
1965     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
1966     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
1967     guarantee($mem$$index == R_G0_enc, "double index?");
1968     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
1969     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
1970     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
1971     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
1972   %}
1973 
1974   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
1975     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
1976     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
1977     guarantee($mem$$index == R_G0_enc, "double index?");
1978     // Load long with 2 instructions
1979     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
1980     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
1981   %}
1982 
1983   //%%% form3_mem_plus_4_reg is a hack--get rid of it
1984   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
1985     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
1986     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
1987   %}
1988 
1989   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
1990     // Encode a reg-reg copy.  If it is useless, then empty encoding.
1991     if( $rs2$$reg != $rd$$reg )
1992       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
1993   %}
1994 
1995   // Target lo half of long
1996   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
1997     // Encode a reg-reg copy.  If it is useless, then empty encoding.
1998     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
1999       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2000   %}
2001 
2002   // Source lo half of long
2003   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2004     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2005     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2006       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2007   %}
2008 
2009   // Target hi half of long
2010   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2011     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2012   %}
2013 
2014   // Source lo half of long, and leave it sign extended.
2015   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2016     // Sign extend low half
2017     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2018   %}
2019 
2020   // Source hi half of long, and leave it sign extended.
2021   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2022     // Shift high half to low half
2023     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2024   %}
2025 
2026   // Source hi half of long
2027   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2028     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2029     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2030       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2031   %}
2032 
2033   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2034     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2035   %}
2036 
2037   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2038     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2039     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2040   %}
2041 
2042   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2043     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2044     // clear if nothing else is happening
2045     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2046     // blt,a,pn done
2047     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2048     // mov dst,-1 in delay slot
2049     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2050   %}
2051 
2052   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2053     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2054   %}
2055 
2056   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2057     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2058   %}
2059 
2060   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2061     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2062   %}
2063 
2064   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2065     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2066   %}
2067 
2068   enc_class move_return_pc_to_o1() %{
2069     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2070   %}
2071 
2072 #ifdef _LP64
2073   /* %%% merge with enc_to_bool */
2074   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2075     MacroAssembler _masm(&cbuf);
2076 
2077     Register   src_reg = reg_to_register_object($src$$reg);
2078     Register   dst_reg = reg_to_register_object($dst$$reg);
2079     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2080   %}
2081 #endif
2082 
2083   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2084     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2085     MacroAssembler _masm(&cbuf);
2086 
2087     Register   p_reg = reg_to_register_object($p$$reg);
2088     Register   q_reg = reg_to_register_object($q$$reg);
2089     Register   y_reg = reg_to_register_object($y$$reg);
2090     Register tmp_reg = reg_to_register_object($tmp$$reg);
2091 
2092     __ subcc( p_reg, q_reg,   p_reg );
2093     __ add  ( p_reg, y_reg, tmp_reg );
2094     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2095   %}
2096 
2097   enc_class form_d2i_helper(regD src, regF dst) %{
2098     // fcmp %fcc0,$src,$src
2099     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2100     // branch %fcc0 not-nan, predict taken
2101     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2102     // fdtoi $src,$dst
2103     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2104     // fitos $dst,$dst (if nan)
2105     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2106     // clear $dst (if nan)
2107     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2108     // carry on here...
2109   %}
2110 
2111   enc_class form_d2l_helper(regD src, regD dst) %{
2112     // fcmp %fcc0,$src,$src  check for NAN
2113     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2114     // branch %fcc0 not-nan, predict taken
2115     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2116     // fdtox $src,$dst   convert in delay slot
2117     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2118     // fxtod $dst,$dst  (if nan)
2119     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2120     // clear $dst (if nan)
2121     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2122     // carry on here...
2123   %}
2124 
2125   enc_class form_f2i_helper(regF src, regF dst) %{
2126     // fcmps %fcc0,$src,$src
2127     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2128     // branch %fcc0 not-nan, predict taken
2129     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2130     // fstoi $src,$dst
2131     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2132     // fitos $dst,$dst (if nan)
2133     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2134     // clear $dst (if nan)
2135     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2136     // carry on here...
2137   %}
2138 
2139   enc_class form_f2l_helper(regF src, regD dst) %{
2140     // fcmps %fcc0,$src,$src
2141     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2142     // branch %fcc0 not-nan, predict taken
2143     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2144     // fstox $src,$dst
2145     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2146     // fxtod $dst,$dst (if nan)
2147     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2148     // clear $dst (if nan)
2149     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2150     // carry on here...
2151   %}
2152 
2153   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2154   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2155   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2156   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2157 
2158   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2159 
2160   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2161   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2162 
2163   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2164     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2165   %}
2166 
2167   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2168     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2169   %}
2170 
2171   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2172     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2173   %}
2174 
2175   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2176     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2177   %}
2178 
2179   enc_class form3_convI2F(regF rs2, regF rd) %{
2180     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2181   %}
2182 
2183   // Encloding class for traceable jumps
2184   enc_class form_jmpl(g3RegP dest) %{
2185     emit_jmpl(cbuf, $dest$$reg);
2186   %}
2187 
2188   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2189     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2190   %}
2191 
2192   enc_class form2_nop() %{
2193     emit_nop(cbuf);
2194   %}
2195 
2196   enc_class form2_illtrap() %{
2197     emit_illtrap(cbuf);
2198   %}
2199 
2200 
2201   // Compare longs and convert into -1, 0, 1.
2202   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2203     // CMP $src1,$src2
2204     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2205     // blt,a,pn done
2206     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2207     // mov dst,-1 in delay slot
2208     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2209     // bgt,a,pn done
2210     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2211     // mov dst,1 in delay slot
2212     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2213     // CLR    $dst
2214     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2215   %}
2216 
2217   enc_class enc_PartialSubtypeCheck() %{
2218     MacroAssembler _masm(&cbuf);
2219     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2220     __ delayed()->nop();
2221   %}
2222 
2223   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
2224     MacroAssembler _masm(&cbuf);
2225     Label &L = *($labl$$label);
2226     Assembler::Predict predict_taken =
2227       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2228 
2229     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
2230     __ delayed()->nop();
2231   %}
2232 
2233   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
2234     MacroAssembler _masm(&cbuf);
2235     Label &L = *($labl$$label);
2236     Assembler::Predict predict_taken =
2237       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2238 
2239     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
2240     __ delayed()->nop();
2241   %}
2242 
2243   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
2244     MacroAssembler _masm(&cbuf);
2245     Label &L = *($labl$$label);
2246     Assembler::Predict predict_taken =
2247       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2248 
2249     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
2250     __ delayed()->nop();
2251   %}
2252 
2253   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
2254     MacroAssembler _masm(&cbuf);
2255     Label &L = *($labl$$label);
2256     Assembler::Predict predict_taken =
2257       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2258 
2259     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
2260     __ delayed()->nop();
2261   %}
2262 
2263   enc_class jump_enc( iRegX switch_val, o7RegI table) %{
2264     MacroAssembler _masm(&cbuf);
2265 
2266     Register switch_reg       = as_Register($switch_val$$reg);
2267     Register table_reg        = O7;
2268 
2269     address table_base = __ address_table_constant(_index2label);
2270     RelocationHolder rspec = internal_word_Relocation::spec(table_base);
2271 
2272     // Move table address into a register.
2273     __ set(table_base, table_reg, rspec);
2274 
2275     // Jump to base address + switch value
2276     __ ld_ptr(table_reg, switch_reg, table_reg);
2277     __ jmp(table_reg, G0);
2278     __ delayed()->nop();
2279 
2280   %}
2281 
2282   enc_class enc_ba( Label labl ) %{
2283     MacroAssembler _masm(&cbuf);
2284     Label &L = *($labl$$label);
2285     __ ba(false, L);
2286     __ delayed()->nop();
2287   %}
2288 
2289   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
2290     MacroAssembler _masm(&cbuf);
2291     Label &L = *$labl$$label;
2292     Assembler::Predict predict_taken =
2293       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2294 
2295     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
2296     __ delayed()->nop();
2297   %}
2298 
2299   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2300     int op = (Assembler::arith_op << 30) |
2301              ($dst$$reg << 25) |
2302              (Assembler::movcc_op3 << 19) |
2303              (1 << 18) |                    // cc2 bit for 'icc'
2304              ($cmp$$cmpcode << 14) |
2305              (0 << 13) |                    // select register move
2306              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2307              ($src$$reg << 0);
2308     *((int*)(cbuf.code_end())) = op;
2309     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2310   %}
2311 
2312   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2313     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2314     int op = (Assembler::arith_op << 30) |
2315              ($dst$$reg << 25) |
2316              (Assembler::movcc_op3 << 19) |
2317              (1 << 18) |                    // cc2 bit for 'icc'
2318              ($cmp$$cmpcode << 14) |
2319              (1 << 13) |                    // select immediate move
2320              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2321              (simm11 << 0);
2322     *((int*)(cbuf.code_end())) = op;
2323     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2324   %}
2325 
2326   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2327     int op = (Assembler::arith_op << 30) |
2328              ($dst$$reg << 25) |
2329              (Assembler::movcc_op3 << 19) |
2330              (0 << 18) |                    // cc2 bit for 'fccX'
2331              ($cmp$$cmpcode << 14) |
2332              (0 << 13) |                    // select register move
2333              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2334              ($src$$reg << 0);
2335     *((int*)(cbuf.code_end())) = op;
2336     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2337   %}
2338 
2339   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2340     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2341     int op = (Assembler::arith_op << 30) |
2342              ($dst$$reg << 25) |
2343              (Assembler::movcc_op3 << 19) |
2344              (0 << 18) |                    // cc2 bit for 'fccX'
2345              ($cmp$$cmpcode << 14) |
2346              (1 << 13) |                    // select immediate move
2347              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2348              (simm11 << 0);
2349     *((int*)(cbuf.code_end())) = op;
2350     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2351   %}
2352 
2353   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2354     int op = (Assembler::arith_op << 30) |
2355              ($dst$$reg << 25) |
2356              (Assembler::fpop2_op3 << 19) |
2357              (0 << 18) |
2358              ($cmp$$cmpcode << 14) |
2359              (1 << 13) |                    // select register move
2360              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2361              ($primary << 5) |              // select single, double or quad
2362              ($src$$reg << 0);
2363     *((int*)(cbuf.code_end())) = op;
2364     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2365   %}
2366 
2367   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2368     int op = (Assembler::arith_op << 30) |
2369              ($dst$$reg << 25) |
2370              (Assembler::fpop2_op3 << 19) |
2371              (0 << 18) |
2372              ($cmp$$cmpcode << 14) |
2373              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2374              ($primary << 5) |              // select single, double or quad
2375              ($src$$reg << 0);
2376     *((int*)(cbuf.code_end())) = op;
2377     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2378   %}
2379 
2380   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2381   // the condition comes from opcode-field instead of an argument.
2382   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2383     int op = (Assembler::arith_op << 30) |
2384              ($dst$$reg << 25) |
2385              (Assembler::movcc_op3 << 19) |
2386              (1 << 18) |                    // cc2 bit for 'icc'
2387              ($primary << 14) |
2388              (0 << 13) |                    // select register move
2389              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2390              ($src$$reg << 0);
2391     *((int*)(cbuf.code_end())) = op;
2392     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2393   %}
2394 
2395   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2396     int op = (Assembler::arith_op << 30) |
2397              ($dst$$reg << 25) |
2398              (Assembler::movcc_op3 << 19) |
2399              (6 << 16) |                    // cc2 bit for 'xcc'
2400              ($primary << 14) |
2401              (0 << 13) |                    // select register move
2402              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2403              ($src$$reg << 0);
2404     *((int*)(cbuf.code_end())) = op;
2405     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2406   %}
2407 
2408   // Utility encoding for loading a 64 bit Pointer into a register
2409   // The 64 bit pointer is stored in the generated code stream
2410   enc_class SetPtr( immP src, iRegP rd ) %{
2411     Register dest = reg_to_register_object($rd$$reg);
2412     MacroAssembler _masm(&cbuf);
2413     // [RGV] This next line should be generated from ADLC
2414     if ( _opnds[1]->constant_is_oop() ) {
2415       intptr_t val = $src$$constant;
2416       __ set_oop_constant((jobject)val, dest);
2417     } else {          // non-oop pointers, e.g. card mark base, heap top
2418       __ set($src$$constant, dest);
2419     }
2420   %}
2421 
2422   enc_class Set13( immI13 src, iRegI rd ) %{
2423     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2424   %}
2425 
2426   enc_class SetHi22( immI src, iRegI rd ) %{
2427     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2428   %}
2429 
2430   enc_class Set32( immI src, iRegI rd ) %{
2431     MacroAssembler _masm(&cbuf);
2432     __ set($src$$constant, reg_to_register_object($rd$$reg));
2433   %}
2434 
2435   enc_class SetNull( iRegI rd ) %{
2436     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 );
2437   %}
2438 
2439   enc_class call_epilog %{
2440     if( VerifyStackAtCalls ) {
2441       MacroAssembler _masm(&cbuf);
2442       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2443       Register temp_reg = G3;
2444       __ add(SP, framesize, temp_reg);
2445       __ cmp(temp_reg, FP);
2446       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2447     }
2448   %}
2449 
2450   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2451   // to G1 so the register allocator will not have to deal with the misaligned register
2452   // pair.
2453   enc_class adjust_long_from_native_call %{
2454 #ifndef _LP64
2455     if (returns_long()) {
2456       //    sllx  O0,32,O0
2457       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2458       //    srl   O1,0,O1
2459       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2460       //    or    O0,O1,G1
2461       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2462     }
2463 #endif
2464   %}
2465 
2466   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2467     // CALL directly to the runtime
2468     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2469     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2470                     /*preserve_g2=*/true, /*force far call*/true);
2471   %}
2472 
2473   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2474     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2475     // who we intended to call.
2476     if ( !_method ) {
2477       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2478     } else if (_optimized_virtual) {
2479       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2480     } else {
2481       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2482     }
2483     if( _method ) {  // Emit stub for static call
2484       emit_java_to_interp(cbuf);
2485     }
2486   %}
2487 
2488   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2489     MacroAssembler _masm(&cbuf);
2490     __ set_inst_mark();
2491     int vtable_index = this->_vtable_index;
2492     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2493     if (vtable_index < 0) {
2494       // must be invalid_vtable_index, not nonvirtual_vtable_index
2495       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
2496       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2497       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2498       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2499       // !!!!!
2500       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
2501       // emit_call_dynamic_prologue( cbuf );
2502       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
2503 
2504       address  virtual_call_oop_addr = __ inst_mark();
2505       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2506       // who we intended to call.
2507       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
2508       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
2509     } else {
2510       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2511       // Just go thru the vtable
2512       // get receiver klass (receiver already checked for non-null)
2513       // If we end up going thru a c2i adapter interpreter expects method in G5
2514       int off = __ offset();
2515       __ load_klass(O0, G3_scratch);
2516       int klass_load_size;
2517       if (UseCompressedOops) {
2518         assert(Universe::heap() != NULL, "java heap should be initialized");
2519         if (Universe::narrow_oop_base() == NULL)
2520           klass_load_size = 2*BytesPerInstWord;
2521         else
2522           klass_load_size = 3*BytesPerInstWord;
2523       } else {
2524         klass_load_size = 1*BytesPerInstWord;
2525       }
2526       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2527       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2528       if( __ is_simm13(v_off) ) {
2529         __ ld_ptr(G3, v_off, G5_method);
2530       } else {
2531         // Generate 2 instructions
2532         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2533         __ or3(G5_method, v_off & 0x3ff, G5_method);
2534         // ld_ptr, set_hi, set
2535         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2536                "Unexpected instruction size(s)");
2537         __ ld_ptr(G3, G5_method, G5_method);
2538       }
2539       // NOTE: for vtable dispatches, the vtable entry will never be null.
2540       // However it may very well end up in handle_wrong_method if the
2541       // method is abstract for the particular class.
2542       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
2543       // jump to target (either compiled code or c2iadapter)
2544       __ jmpl(G3_scratch, G0, O7);
2545       __ delayed()->nop();
2546     }
2547   %}
2548 
2549   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2550     MacroAssembler _masm(&cbuf);
2551 
2552     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2553     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2554                               // we might be calling a C2I adapter which needs it.
2555 
2556     assert(temp_reg != G5_ic_reg, "conflicting registers");
2557     // Load nmethod
2558     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
2559 
2560     // CALL to compiled java, indirect the contents of G3
2561     __ set_inst_mark();
2562     __ callr(temp_reg, G0);
2563     __ delayed()->nop();
2564   %}
2565 
2566 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2567     MacroAssembler _masm(&cbuf);
2568     Register Rdividend = reg_to_register_object($src1$$reg);
2569     Register Rdivisor = reg_to_register_object($src2$$reg);
2570     Register Rresult = reg_to_register_object($dst$$reg);
2571 
2572     __ sra(Rdivisor, 0, Rdivisor);
2573     __ sra(Rdividend, 0, Rdividend);
2574     __ sdivx(Rdividend, Rdivisor, Rresult);
2575 %}
2576 
2577 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2578     MacroAssembler _masm(&cbuf);
2579 
2580     Register Rdividend = reg_to_register_object($src1$$reg);
2581     int divisor = $imm$$constant;
2582     Register Rresult = reg_to_register_object($dst$$reg);
2583 
2584     __ sra(Rdividend, 0, Rdividend);
2585     __ sdivx(Rdividend, divisor, Rresult);
2586 %}
2587 
2588 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2589     MacroAssembler _masm(&cbuf);
2590     Register Rsrc1 = reg_to_register_object($src1$$reg);
2591     Register Rsrc2 = reg_to_register_object($src2$$reg);
2592     Register Rdst  = reg_to_register_object($dst$$reg);
2593 
2594     __ sra( Rsrc1, 0, Rsrc1 );
2595     __ sra( Rsrc2, 0, Rsrc2 );
2596     __ mulx( Rsrc1, Rsrc2, Rdst );
2597     __ srlx( Rdst, 32, Rdst );
2598 %}
2599 
2600 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2601     MacroAssembler _masm(&cbuf);
2602     Register Rdividend = reg_to_register_object($src1$$reg);
2603     Register Rdivisor = reg_to_register_object($src2$$reg);
2604     Register Rresult = reg_to_register_object($dst$$reg);
2605     Register Rscratch = reg_to_register_object($scratch$$reg);
2606 
2607     assert(Rdividend != Rscratch, "");
2608     assert(Rdivisor  != Rscratch, "");
2609 
2610     __ sra(Rdividend, 0, Rdividend);
2611     __ sra(Rdivisor, 0, Rdivisor);
2612     __ sdivx(Rdividend, Rdivisor, Rscratch);
2613     __ mulx(Rscratch, Rdivisor, Rscratch);
2614     __ sub(Rdividend, Rscratch, Rresult);
2615 %}
2616 
2617 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2618     MacroAssembler _masm(&cbuf);
2619 
2620     Register Rdividend = reg_to_register_object($src1$$reg);
2621     int divisor = $imm$$constant;
2622     Register Rresult = reg_to_register_object($dst$$reg);
2623     Register Rscratch = reg_to_register_object($scratch$$reg);
2624 
2625     assert(Rdividend != Rscratch, "");
2626 
2627     __ sra(Rdividend, 0, Rdividend);
2628     __ sdivx(Rdividend, divisor, Rscratch);
2629     __ mulx(Rscratch, divisor, Rscratch);
2630     __ sub(Rdividend, Rscratch, Rresult);
2631 %}
2632 
2633 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2634     MacroAssembler _masm(&cbuf);
2635 
2636     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2637     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2638 
2639     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2640 %}
2641 
2642 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2643     MacroAssembler _masm(&cbuf);
2644 
2645     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2646     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2647 
2648     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2649 %}
2650 
2651 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2652     MacroAssembler _masm(&cbuf);
2653 
2654     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2655     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2656 
2657     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2658 %}
2659 
2660 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2661     MacroAssembler _masm(&cbuf);
2662 
2663     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2664     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2665 
2666     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2667 %}
2668 
2669 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2670     MacroAssembler _masm(&cbuf);
2671 
2672     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2673     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2674 
2675     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2676 %}
2677 
2678 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2679     MacroAssembler _masm(&cbuf);
2680 
2681     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2682     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2683 
2684     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2685 %}
2686 
2687 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2688     MacroAssembler _masm(&cbuf);
2689 
2690     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2691     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2692 
2693     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2694 %}
2695 
2696 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2697     MacroAssembler _masm(&cbuf);
2698 
2699     Register Roop  = reg_to_register_object($oop$$reg);
2700     Register Rbox  = reg_to_register_object($box$$reg);
2701     Register Rscratch = reg_to_register_object($scratch$$reg);
2702     Register Rmark =    reg_to_register_object($scratch2$$reg);
2703 
2704     assert(Roop  != Rscratch, "");
2705     assert(Roop  != Rmark, "");
2706     assert(Rbox  != Rscratch, "");
2707     assert(Rbox  != Rmark, "");
2708 
2709     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2710 %}
2711 
2712 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2713     MacroAssembler _masm(&cbuf);
2714 
2715     Register Roop  = reg_to_register_object($oop$$reg);
2716     Register Rbox  = reg_to_register_object($box$$reg);
2717     Register Rscratch = reg_to_register_object($scratch$$reg);
2718     Register Rmark =    reg_to_register_object($scratch2$$reg);
2719 
2720     assert(Roop  != Rscratch, "");
2721     assert(Roop  != Rmark, "");
2722     assert(Rbox  != Rscratch, "");
2723     assert(Rbox  != Rmark, "");
2724 
2725     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2726   %}
2727 
2728   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2729     MacroAssembler _masm(&cbuf);
2730     Register Rmem = reg_to_register_object($mem$$reg);
2731     Register Rold = reg_to_register_object($old$$reg);
2732     Register Rnew = reg_to_register_object($new$$reg);
2733 
2734     // casx_under_lock picks 1 of 3 encodings:
2735     // For 32-bit pointers you get a 32-bit CAS
2736     // For 64-bit pointers you get a 64-bit CASX
2737     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2738     __ cmp( Rold, Rnew );
2739   %}
2740 
2741   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2742     Register Rmem = reg_to_register_object($mem$$reg);
2743     Register Rold = reg_to_register_object($old$$reg);
2744     Register Rnew = reg_to_register_object($new$$reg);
2745 
2746     MacroAssembler _masm(&cbuf);
2747     __ mov(Rnew, O7);
2748     __ casx(Rmem, Rold, O7);
2749     __ cmp( Rold, O7 );
2750   %}
2751 
2752   // raw int cas, used for compareAndSwap
2753   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2754     Register Rmem = reg_to_register_object($mem$$reg);
2755     Register Rold = reg_to_register_object($old$$reg);
2756     Register Rnew = reg_to_register_object($new$$reg);
2757 
2758     MacroAssembler _masm(&cbuf);
2759     __ mov(Rnew, O7);
2760     __ cas(Rmem, Rold, O7);
2761     __ cmp( Rold, O7 );
2762   %}
2763 
2764   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2765     Register Rres = reg_to_register_object($res$$reg);
2766 
2767     MacroAssembler _masm(&cbuf);
2768     __ mov(1, Rres);
2769     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2770   %}
2771 
2772   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2773     Register Rres = reg_to_register_object($res$$reg);
2774 
2775     MacroAssembler _masm(&cbuf);
2776     __ mov(1, Rres);
2777     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2778   %}
2779 
2780   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2781     MacroAssembler _masm(&cbuf);
2782     Register Rdst = reg_to_register_object($dst$$reg);
2783     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2784                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2785     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2786                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2787 
2788     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2789     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2790   %}
2791 
2792   enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{   // Load Immediate
2793     MacroAssembler _masm(&cbuf);
2794     Register dest = reg_to_register_object($dst$$reg);
2795     Register temp = reg_to_register_object($tmp$$reg);
2796     __ set64( $src$$constant, dest, temp );
2797   %}
2798 
2799   enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{
2800     // Load a constant replicated "count" times with width "width"
2801     int bit_width = $width$$constant * 8;
2802     jlong elt_val = $src$$constant;
2803     elt_val  &= (((jlong)1) << bit_width) - 1; // mask off sign bits
2804     jlong val = elt_val;
2805     for (int i = 0; i < $count$$constant - 1; i++) {
2806         val <<= bit_width;
2807         val |= elt_val;
2808     }
2809     jdouble dval = *(jdouble*)&val; // coerce to double type
2810     MacroAssembler _masm(&cbuf);
2811     address double_address = __ double_constant(dval);
2812     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
2813     AddressLiteral addrlit(double_address, rspec);
2814 
2815     __ sethi(addrlit, $tmp$$Register);
2816     // XXX This is a quick fix for 6833573.
2817     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
2818     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
2819   %}
2820 
2821   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
2822   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
2823     MacroAssembler _masm(&cbuf);
2824     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
2825     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
2826     Register    base_pointer_arg = reg_to_register_object($base$$reg);
2827 
2828     Label loop;
2829     __ mov(nof_bytes_arg, nof_bytes_tmp);
2830 
2831     // Loop and clear, walking backwards through the array.
2832     // nof_bytes_tmp (if >0) is always the number of bytes to zero
2833     __ bind(loop);
2834     __ deccc(nof_bytes_tmp, 8);
2835     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
2836     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
2837     // %%%% this mini-loop must not cross a cache boundary!
2838   %}
2839 
2840 
2841   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2842     Label Ldone, Lloop;
2843     MacroAssembler _masm(&cbuf);
2844 
2845     Register   str1_reg = reg_to_register_object($str1$$reg);
2846     Register   str2_reg = reg_to_register_object($str2$$reg);
2847     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2848     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2849     Register result_reg = reg_to_register_object($result$$reg);
2850 
2851     assert(result_reg != str1_reg &&
2852            result_reg != str2_reg &&
2853            result_reg != cnt1_reg &&
2854            result_reg != cnt2_reg ,
2855            "need different registers");
2856 
2857     // Compute the minimum of the string lengths(str1_reg) and the
2858     // difference of the string lengths (stack)
2859 
2860     // See if the lengths are different, and calculate min in str1_reg.
2861     // Stash diff in O7 in case we need it for a tie-breaker.
2862     Label Lskip;
2863     __ subcc(cnt1_reg, cnt2_reg, O7);
2864     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2865     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2866     // cnt2 is shorter, so use its count:
2867     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2868     __ bind(Lskip);
2869 
2870     // reallocate cnt1_reg, cnt2_reg, result_reg
2871     // Note:  limit_reg holds the string length pre-scaled by 2
2872     Register limit_reg =   cnt1_reg;
2873     Register  chr2_reg =   cnt2_reg;
2874     Register  chr1_reg = result_reg;
2875     // str{12} are the base pointers
2876 
2877     // Is the minimum length zero?
2878     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2879     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2880     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2881 
2882     // Load first characters
2883     __ lduh(str1_reg, 0, chr1_reg);
2884     __ lduh(str2_reg, 0, chr2_reg);
2885 
2886     // Compare first characters
2887     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2888     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2889     assert(chr1_reg == result_reg, "result must be pre-placed");
2890     __ delayed()->nop();
2891 
2892     {
2893       // Check after comparing first character to see if strings are equivalent
2894       Label LSkip2;
2895       // Check if the strings start at same location
2896       __ cmp(str1_reg, str2_reg);
2897       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2898       __ delayed()->nop();
2899 
2900       // Check if the length difference is zero (in O7)
2901       __ cmp(G0, O7);
2902       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2903       __ delayed()->mov(G0, result_reg);  // result is zero
2904 
2905       // Strings might not be equal
2906       __ bind(LSkip2);
2907     }
2908 
2909     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2910     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2911     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2912 
2913     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2914     __ add(str1_reg, limit_reg, str1_reg);
2915     __ add(str2_reg, limit_reg, str2_reg);
2916     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2917 
2918     // Compare the rest of the characters
2919     __ lduh(str1_reg, limit_reg, chr1_reg);
2920     __ bind(Lloop);
2921     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2922     __ lduh(str2_reg, limit_reg, chr2_reg);
2923     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2924     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2925     assert(chr1_reg == result_reg, "result must be pre-placed");
2926     __ delayed()->inccc(limit_reg, sizeof(jchar));
2927     // annul LDUH if branch is not taken to prevent access past end of string
2928     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2929     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2930 
2931     // If strings are equal up to min length, return the length difference.
2932     __ mov(O7, result_reg);
2933 
2934     // Otherwise, return the difference between the first mismatched chars.
2935     __ bind(Ldone);
2936   %}
2937 
2938 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2939     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2940     MacroAssembler _masm(&cbuf);
2941 
2942     Register   str1_reg = reg_to_register_object($str1$$reg);
2943     Register   str2_reg = reg_to_register_object($str2$$reg);
2944     Register    cnt_reg = reg_to_register_object($cnt$$reg);
2945     Register   tmp1_reg = O7;
2946     Register result_reg = reg_to_register_object($result$$reg);
2947 
2948     assert(result_reg != str1_reg &&
2949            result_reg != str2_reg &&
2950            result_reg !=  cnt_reg &&
2951            result_reg != tmp1_reg ,
2952            "need different registers");
2953 
2954     __ cmp(str1_reg, str2_reg); //same char[] ?
2955     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
2956     __ delayed()->add(G0, 1, result_reg);
2957 
2958     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, cnt_reg, Ldone);
2959     __ delayed()->add(G0, 1, result_reg); // count == 0
2960 
2961     //rename registers
2962     Register limit_reg =    cnt_reg;
2963     Register  chr1_reg = result_reg;
2964     Register  chr2_reg =   tmp1_reg;
2965 
2966     //check for alignment and position the pointers to the ends
2967     __ or3(str1_reg, str2_reg, chr1_reg);
2968     __ andcc(chr1_reg, 0x3, chr1_reg);
2969     // notZero means at least one not 4-byte aligned.
2970     // We could optimize the case when both arrays are not aligned
2971     // but it is not frequent case and it requires additional checks.
2972     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
2973     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
2974 
2975     // Compare char[] arrays aligned to 4 bytes.
2976     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
2977                           chr1_reg, chr2_reg, Ldone);
2978     __ ba(false,Ldone);
2979     __ delayed()->add(G0, 1, result_reg);
2980 
2981     // char by char compare
2982     __ bind(Lchar);
2983     __ add(str1_reg, limit_reg, str1_reg);
2984     __ add(str2_reg, limit_reg, str2_reg);
2985     __ neg(limit_reg); //negate count
2986 
2987     __ lduh(str1_reg, limit_reg, chr1_reg);
2988     // Lchar_loop
2989     __ bind(Lchar_loop);
2990     __ lduh(str2_reg, limit_reg, chr2_reg);
2991     __ cmp(chr1_reg, chr2_reg);
2992     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
2993     __ delayed()->mov(G0, result_reg); //not equal
2994     __ inccc(limit_reg, sizeof(jchar));
2995     // annul LDUH if branch is not taken to prevent access past end of string
2996     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
2997     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2998 
2999     __ add(G0, 1, result_reg);  //equal
3000 
3001     __ bind(Ldone);
3002   %}
3003 
3004 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
3005     Label Lvector, Ldone, Lloop;
3006     MacroAssembler _masm(&cbuf);
3007 
3008     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3009     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3010     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3011     Register   tmp2_reg = O7;
3012     Register result_reg = reg_to_register_object($result$$reg);
3013 
3014     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3015     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3016 
3017     // return true if the same array
3018     __ cmp(ary1_reg, ary2_reg);
3019     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3020     __ delayed()->add(G0, 1, result_reg); // equal
3021 
3022     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3023     __ delayed()->mov(G0, result_reg);    // not equal
3024 
3025     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3026     __ delayed()->mov(G0, result_reg);    // not equal
3027 
3028     //load the lengths of arrays
3029     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3030     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3031 
3032     // return false if the two arrays are not equal length
3033     __ cmp(tmp1_reg, tmp2_reg);
3034     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3035     __ delayed()->mov(G0, result_reg);     // not equal
3036 
3037     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, tmp1_reg, Ldone);
3038     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3039 
3040     // load array addresses
3041     __ add(ary1_reg, base_offset, ary1_reg);
3042     __ add(ary2_reg, base_offset, ary2_reg);
3043 
3044     // renaming registers
3045     Register chr1_reg  =  result_reg; // for characters in ary1
3046     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3047     Register limit_reg =  tmp1_reg;   // length
3048 
3049     // set byte count
3050     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3051 
3052     // Compare char[] arrays aligned to 4 bytes.
3053     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3054                           chr1_reg, chr2_reg, Ldone);
3055     __ add(G0, 1, result_reg); // equals
3056 
3057     __ bind(Ldone);
3058   %}
3059 
3060   enc_class enc_rethrow() %{
3061     cbuf.set_inst_mark();
3062     Register temp_reg = G3;
3063     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3064     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3065     MacroAssembler _masm(&cbuf);
3066 #ifdef ASSERT
3067     __ save_frame(0);
3068     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3069     __ sethi(last_rethrow_addrlit, L1);
3070     Address addr(L1, last_rethrow_addrlit.low10());
3071     __ get_pc(L2);
3072     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3073     __ st_ptr(L2, addr);
3074     __ restore();
3075 #endif
3076     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3077     __ delayed()->nop();
3078   %}
3079 
3080   enc_class emit_mem_nop() %{
3081     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3082     unsigned int *code = (unsigned int*)cbuf.code_end();
3083     *code = (unsigned int)0xc0839040;
3084     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3085   %}
3086 
3087   enc_class emit_fadd_nop() %{
3088     // Generates the instruction FMOVS f31,f31
3089     unsigned int *code = (unsigned int*)cbuf.code_end();
3090     *code = (unsigned int)0xbfa0003f;
3091     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3092   %}
3093 
3094   enc_class emit_br_nop() %{
3095     // Generates the instruction BPN,PN .
3096     unsigned int *code = (unsigned int*)cbuf.code_end();
3097     *code = (unsigned int)0x00400000;
3098     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3099   %}
3100 
3101   enc_class enc_membar_acquire %{
3102     MacroAssembler _masm(&cbuf);
3103     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3104   %}
3105 
3106   enc_class enc_membar_release %{
3107     MacroAssembler _masm(&cbuf);
3108     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3109   %}
3110 
3111   enc_class enc_membar_volatile %{
3112     MacroAssembler _masm(&cbuf);
3113     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3114   %}
3115 
3116   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
3117     MacroAssembler _masm(&cbuf);
3118     Register src_reg = reg_to_register_object($src$$reg);
3119     Register dst_reg = reg_to_register_object($dst$$reg);
3120     __ sllx(src_reg, 56, dst_reg);
3121     __ srlx(dst_reg,  8, O7);
3122     __ or3 (dst_reg, O7, dst_reg);
3123     __ srlx(dst_reg, 16, O7);
3124     __ or3 (dst_reg, O7, dst_reg);
3125     __ srlx(dst_reg, 32, O7);
3126     __ or3 (dst_reg, O7, dst_reg);
3127   %}
3128 
3129   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
3130     MacroAssembler _masm(&cbuf);
3131     Register src_reg = reg_to_register_object($src$$reg);
3132     Register dst_reg = reg_to_register_object($dst$$reg);
3133     __ sll(src_reg, 24, dst_reg);
3134     __ srl(dst_reg,  8, O7);
3135     __ or3(dst_reg, O7, dst_reg);
3136     __ srl(dst_reg, 16, O7);
3137     __ or3(dst_reg, O7, dst_reg);
3138   %}
3139 
3140   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
3141     MacroAssembler _masm(&cbuf);
3142     Register src_reg = reg_to_register_object($src$$reg);
3143     Register dst_reg = reg_to_register_object($dst$$reg);
3144     __ sllx(src_reg, 48, dst_reg);
3145     __ srlx(dst_reg, 16, O7);
3146     __ or3 (dst_reg, O7, dst_reg);
3147     __ srlx(dst_reg, 32, O7);
3148     __ or3 (dst_reg, O7, dst_reg);
3149   %}
3150 
3151   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
3152     MacroAssembler _masm(&cbuf);
3153     Register src_reg = reg_to_register_object($src$$reg);
3154     Register dst_reg = reg_to_register_object($dst$$reg);
3155     __ sllx(src_reg, 32, dst_reg);
3156     __ srlx(dst_reg, 32, O7);
3157     __ or3 (dst_reg, O7, dst_reg);
3158   %}
3159 
3160 %}
3161 
3162 //----------FRAME--------------------------------------------------------------
3163 // Definition of frame structure and management information.
3164 //
3165 //  S T A C K   L A Y O U T    Allocators stack-slot number
3166 //                             |   (to get allocators register number
3167 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3168 //  r   CALLER     |        |
3169 //  o     |        +--------+      pad to even-align allocators stack-slot
3170 //  w     V        |  pad0  |        numbers; owned by CALLER
3171 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3172 //  h     ^        |   in   |  5
3173 //        |        |  args  |  4   Holes in incoming args owned by SELF
3174 //  |     |        |        |  3
3175 //  |     |        +--------+
3176 //  V     |        | old out|      Empty on Intel, window on Sparc
3177 //        |    old |preserve|      Must be even aligned.
3178 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3179 //        |        |   in   |  3   area for Intel ret address
3180 //     Owned by    |preserve|      Empty on Sparc.
3181 //       SELF      +--------+
3182 //        |        |  pad2  |  2   pad to align old SP
3183 //        |        +--------+  1
3184 //        |        | locks  |  0
3185 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3186 //        |        |  pad1  | 11   pad to align new SP
3187 //        |        +--------+
3188 //        |        |        | 10
3189 //        |        | spills |  9   spills
3190 //        V        |        |  8   (pad0 slot for callee)
3191 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3192 //        ^        |  out   |  7
3193 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3194 //     Owned by    +--------+
3195 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3196 //        |    new |preserve|      Must be even-aligned.
3197 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3198 //        |        |        |
3199 //
3200 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3201 //         known from SELF's arguments and the Java calling convention.
3202 //         Region 6-7 is determined per call site.
3203 // Note 2: If the calling convention leaves holes in the incoming argument
3204 //         area, those holes are owned by SELF.  Holes in the outgoing area
3205 //         are owned by the CALLEE.  Holes should not be nessecary in the
3206 //         incoming area, as the Java calling convention is completely under
3207 //         the control of the AD file.  Doubles can be sorted and packed to
3208 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3209 //         varargs C calling conventions.
3210 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3211 //         even aligned with pad0 as needed.
3212 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3213 //         region 6-11 is even aligned; it may be padded out more so that
3214 //         the region from SP to FP meets the minimum stack alignment.
3215 
3216 frame %{
3217   // What direction does stack grow in (assumed to be same for native & Java)
3218   stack_direction(TOWARDS_LOW);
3219 
3220   // These two registers define part of the calling convention
3221   // between compiled code and the interpreter.
3222   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
3223   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3224 
3225   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3226   cisc_spilling_operand_name(indOffset);
3227 
3228   // Number of stack slots consumed by a Monitor enter
3229 #ifdef _LP64
3230   sync_stack_slots(2);
3231 #else
3232   sync_stack_slots(1);
3233 #endif
3234 
3235   // Compiled code's Frame Pointer
3236   frame_pointer(R_SP);
3237 
3238   // Stack alignment requirement
3239   stack_alignment(StackAlignmentInBytes);
3240   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3241   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3242 
3243   // Number of stack slots between incoming argument block and the start of
3244   // a new frame.  The PROLOG must add this many slots to the stack.  The
3245   // EPILOG must remove this many slots.
3246   in_preserve_stack_slots(0);
3247 
3248   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3249   // for calls to C.  Supports the var-args backing area for register parms.
3250   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3251 #ifdef _LP64
3252   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3253   varargs_C_out_slots_killed(12);
3254 #else
3255   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3256   varargs_C_out_slots_killed( 7);
3257 #endif
3258 
3259   // The after-PROLOG location of the return address.  Location of
3260   // return address specifies a type (REG or STACK) and a number
3261   // representing the register number (i.e. - use a register name) or
3262   // stack slot.
3263   return_addr(REG R_I7);          // Ret Addr is in register I7
3264 
3265   // Body of function which returns an OptoRegs array locating
3266   // arguments either in registers or in stack slots for calling
3267   // java
3268   calling_convention %{
3269     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3270 
3271   %}
3272 
3273   // Body of function which returns an OptoRegs array locating
3274   // arguments either in registers or in stack slots for callin
3275   // C.
3276   c_calling_convention %{
3277     // This is obviously always outgoing
3278     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3279   %}
3280 
3281   // Location of native (C/C++) and interpreter return values.  This is specified to
3282   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3283   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3284   // to and from the register pairs is done by the appropriate call and epilog
3285   // opcodes.  This simplifies the register allocator.
3286   c_return_value %{
3287     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3288 #ifdef     _LP64
3289     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3290     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3291     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3292     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3293 #else  // !_LP64
3294     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3295     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3296     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3297     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3298 #endif
3299     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3300                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3301   %}
3302 
3303   // Location of compiled Java return values.  Same as C
3304   return_value %{
3305     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3306 #ifdef     _LP64
3307     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3308     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3309     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3310     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3311 #else  // !_LP64
3312     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3313     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3314     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3315     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3316 #endif
3317     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3318                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3319   %}
3320 
3321 %}
3322 
3323 
3324 //----------ATTRIBUTES---------------------------------------------------------
3325 //----------Operand Attributes-------------------------------------------------
3326 op_attrib op_cost(1);          // Required cost attribute
3327 
3328 //----------Instruction Attributes---------------------------------------------
3329 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3330 ins_attrib ins_size(32);       // Required size attribute (in bits)
3331 ins_attrib ins_pc_relative(0); // Required PC Relative flag
3332 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3333                                 // non-matching short branch variant of some
3334                                                             // long branch?
3335 
3336 //----------OPERANDS-----------------------------------------------------------
3337 // Operand definitions must precede instruction definitions for correct parsing
3338 // in the ADLC because operands constitute user defined types which are used in
3339 // instruction definitions.
3340 
3341 //----------Simple Operands----------------------------------------------------
3342 // Immediate Operands
3343 // Integer Immediate: 32-bit
3344 operand immI() %{
3345   match(ConI);
3346 
3347   op_cost(0);
3348   // formats are generated automatically for constants and base registers
3349   format %{ %}
3350   interface(CONST_INTER);
3351 %}
3352 
3353 // Integer Immediate: 8-bit
3354 operand immI8() %{
3355   predicate(Assembler::is_simm(n->get_int(), 8));
3356   match(ConI);
3357   op_cost(0);
3358   format %{ %}
3359   interface(CONST_INTER);
3360 %}
3361 
3362 // Integer Immediate: 13-bit
3363 operand immI13() %{
3364   predicate(Assembler::is_simm13(n->get_int()));
3365   match(ConI);
3366   op_cost(0);
3367 
3368   format %{ %}
3369   interface(CONST_INTER);
3370 %}
3371 
3372 // Integer Immediate: 13-bit minus 7
3373 operand immI13m7() %{
3374   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3375   match(ConI);
3376   op_cost(0);
3377 
3378   format %{ %}
3379   interface(CONST_INTER);
3380 %}
3381 
3382 // Integer Immediate: 16-bit
3383 operand immI16() %{
3384   predicate(Assembler::is_simm(n->get_int(), 16));
3385   match(ConI);
3386   op_cost(0);
3387   format %{ %}
3388   interface(CONST_INTER);
3389 %}
3390 
3391 // Unsigned (positive) Integer Immediate: 13-bit
3392 operand immU13() %{
3393   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3394   match(ConI);
3395   op_cost(0);
3396 
3397   format %{ %}
3398   interface(CONST_INTER);
3399 %}
3400 
3401 // Integer Immediate: 6-bit
3402 operand immU6() %{
3403   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3404   match(ConI);
3405   op_cost(0);
3406   format %{ %}
3407   interface(CONST_INTER);
3408 %}
3409 
3410 // Integer Immediate: 11-bit
3411 operand immI11() %{
3412   predicate(Assembler::is_simm(n->get_int(),11));
3413   match(ConI);
3414   op_cost(0);
3415   format %{ %}
3416   interface(CONST_INTER);
3417 %}
3418 
3419 // Integer Immediate: 0-bit
3420 operand immI0() %{
3421   predicate(n->get_int() == 0);
3422   match(ConI);
3423   op_cost(0);
3424 
3425   format %{ %}
3426   interface(CONST_INTER);
3427 %}
3428 
3429 // Integer Immediate: the value 10
3430 operand immI10() %{
3431   predicate(n->get_int() == 10);
3432   match(ConI);
3433   op_cost(0);
3434 
3435   format %{ %}
3436   interface(CONST_INTER);
3437 %}
3438 
3439 // Integer Immediate: the values 0-31
3440 operand immU5() %{
3441   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3442   match(ConI);
3443   op_cost(0);
3444 
3445   format %{ %}
3446   interface(CONST_INTER);
3447 %}
3448 
3449 // Integer Immediate: the values 1-31
3450 operand immI_1_31() %{
3451   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3452   match(ConI);
3453   op_cost(0);
3454 
3455   format %{ %}
3456   interface(CONST_INTER);
3457 %}
3458 
3459 // Integer Immediate: the values 32-63
3460 operand immI_32_63() %{
3461   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3462   match(ConI);
3463   op_cost(0);
3464 
3465   format %{ %}
3466   interface(CONST_INTER);
3467 %}
3468 
3469 // Immediates for special shifts (sign extend)
3470 
3471 // Integer Immediate: the value 16
3472 operand immI_16() %{
3473   predicate(n->get_int() == 16);
3474   match(ConI);
3475   op_cost(0);
3476 
3477   format %{ %}
3478   interface(CONST_INTER);
3479 %}
3480 
3481 // Integer Immediate: the value 24
3482 operand immI_24() %{
3483   predicate(n->get_int() == 24);
3484   match(ConI);
3485   op_cost(0);
3486 
3487   format %{ %}
3488   interface(CONST_INTER);
3489 %}
3490 
3491 // Integer Immediate: the value 255
3492 operand immI_255() %{
3493   predicate( n->get_int() == 255 );
3494   match(ConI);
3495   op_cost(0);
3496 
3497   format %{ %}
3498   interface(CONST_INTER);
3499 %}
3500 
3501 // Integer Immediate: the value 65535
3502 operand immI_65535() %{
3503   predicate(n->get_int() == 65535);
3504   match(ConI);
3505   op_cost(0);
3506 
3507   format %{ %}
3508   interface(CONST_INTER);
3509 %}
3510 
3511 // Long Immediate: the value FF
3512 operand immL_FF() %{
3513   predicate( n->get_long() == 0xFFL );
3514   match(ConL);
3515   op_cost(0);
3516 
3517   format %{ %}
3518   interface(CONST_INTER);
3519 %}
3520 
3521 // Long Immediate: the value FFFF
3522 operand immL_FFFF() %{
3523   predicate( n->get_long() == 0xFFFFL );
3524   match(ConL);
3525   op_cost(0);
3526 
3527   format %{ %}
3528   interface(CONST_INTER);
3529 %}
3530 
3531 // Pointer Immediate: 32 or 64-bit
3532 operand immP() %{
3533   match(ConP);
3534 
3535   op_cost(5);
3536   // formats are generated automatically for constants and base registers
3537   format %{ %}
3538   interface(CONST_INTER);
3539 %}
3540 
3541 operand immP13() %{
3542   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3543   match(ConP);
3544   op_cost(0);
3545 
3546   format %{ %}
3547   interface(CONST_INTER);
3548 %}
3549 
3550 operand immP0() %{
3551   predicate(n->get_ptr() == 0);
3552   match(ConP);
3553   op_cost(0);
3554 
3555   format %{ %}
3556   interface(CONST_INTER);
3557 %}
3558 
3559 operand immP_poll() %{
3560   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3561   match(ConP);
3562 
3563   // formats are generated automatically for constants and base registers
3564   format %{ %}
3565   interface(CONST_INTER);
3566 %}
3567 
3568 // Pointer Immediate
3569 operand immN()
3570 %{
3571   match(ConN);
3572 
3573   op_cost(10);
3574   format %{ %}
3575   interface(CONST_INTER);
3576 %}
3577 
3578 // NULL Pointer Immediate
3579 operand immN0()
3580 %{
3581   predicate(n->get_narrowcon() == 0);
3582   match(ConN);
3583 
3584   op_cost(0);
3585   format %{ %}
3586   interface(CONST_INTER);
3587 %}
3588 
3589 operand immL() %{
3590   match(ConL);
3591   op_cost(40);
3592   // formats are generated automatically for constants and base registers
3593   format %{ %}
3594   interface(CONST_INTER);
3595 %}
3596 
3597 operand immL0() %{
3598   predicate(n->get_long() == 0L);
3599   match(ConL);
3600   op_cost(0);
3601   // formats are generated automatically for constants and base registers
3602   format %{ %}
3603   interface(CONST_INTER);
3604 %}
3605 
3606 // Long Immediate: 13-bit
3607 operand immL13() %{
3608   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3609   match(ConL);
3610   op_cost(0);
3611 
3612   format %{ %}
3613   interface(CONST_INTER);
3614 %}
3615 
3616 // Long Immediate: 13-bit minus 7
3617 operand immL13m7() %{
3618   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3619   match(ConL);
3620   op_cost(0);
3621 
3622   format %{ %}
3623   interface(CONST_INTER);
3624 %}
3625 
3626 // Long Immediate: low 32-bit mask
3627 operand immL_32bits() %{
3628   predicate(n->get_long() == 0xFFFFFFFFL);
3629   match(ConL);
3630   op_cost(0);
3631 
3632   format %{ %}
3633   interface(CONST_INTER);
3634 %}
3635 
3636 // Double Immediate
3637 operand immD() %{
3638   match(ConD);
3639 
3640   op_cost(40);
3641   format %{ %}
3642   interface(CONST_INTER);
3643 %}
3644 
3645 operand immD0() %{
3646 #ifdef _LP64
3647   // on 64-bit architectures this comparision is faster
3648   predicate(jlong_cast(n->getd()) == 0);
3649 #else
3650   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3651 #endif
3652   match(ConD);
3653 
3654   op_cost(0);
3655   format %{ %}
3656   interface(CONST_INTER);
3657 %}
3658 
3659 // Float Immediate
3660 operand immF() %{
3661   match(ConF);
3662 
3663   op_cost(20);
3664   format %{ %}
3665   interface(CONST_INTER);
3666 %}
3667 
3668 // Float Immediate: 0
3669 operand immF0() %{
3670   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3671   match(ConF);
3672 
3673   op_cost(0);
3674   format %{ %}
3675   interface(CONST_INTER);
3676 %}
3677 
3678 // Integer Register Operands
3679 // Integer Register
3680 operand iRegI() %{
3681   constraint(ALLOC_IN_RC(int_reg));
3682   match(RegI);
3683 
3684   match(notemp_iRegI);
3685   match(g1RegI);
3686   match(o0RegI);
3687   match(iRegIsafe);
3688 
3689   format %{ %}
3690   interface(REG_INTER);
3691 %}
3692 
3693 operand notemp_iRegI() %{
3694   constraint(ALLOC_IN_RC(notemp_int_reg));
3695   match(RegI);
3696 
3697   match(o0RegI);
3698 
3699   format %{ %}
3700   interface(REG_INTER);
3701 %}
3702 
3703 operand o0RegI() %{
3704   constraint(ALLOC_IN_RC(o0_regI));
3705   match(iRegI);
3706 
3707   format %{ %}
3708   interface(REG_INTER);
3709 %}
3710 
3711 // Pointer Register
3712 operand iRegP() %{
3713   constraint(ALLOC_IN_RC(ptr_reg));
3714   match(RegP);
3715 
3716   match(lock_ptr_RegP);
3717   match(g1RegP);
3718   match(g2RegP);
3719   match(g3RegP);
3720   match(g4RegP);
3721   match(i0RegP);
3722   match(o0RegP);
3723   match(o1RegP);
3724   match(l7RegP);
3725 
3726   format %{ %}
3727   interface(REG_INTER);
3728 %}
3729 
3730 operand sp_ptr_RegP() %{
3731   constraint(ALLOC_IN_RC(sp_ptr_reg));
3732   match(RegP);
3733   match(iRegP);
3734 
3735   format %{ %}
3736   interface(REG_INTER);
3737 %}
3738 
3739 operand lock_ptr_RegP() %{
3740   constraint(ALLOC_IN_RC(lock_ptr_reg));
3741   match(RegP);
3742   match(i0RegP);
3743   match(o0RegP);
3744   match(o1RegP);
3745   match(l7RegP);
3746 
3747   format %{ %}
3748   interface(REG_INTER);
3749 %}
3750 
3751 operand g1RegP() %{
3752   constraint(ALLOC_IN_RC(g1_regP));
3753   match(iRegP);
3754 
3755   format %{ %}
3756   interface(REG_INTER);
3757 %}
3758 
3759 operand g2RegP() %{
3760   constraint(ALLOC_IN_RC(g2_regP));
3761   match(iRegP);
3762 
3763   format %{ %}
3764   interface(REG_INTER);
3765 %}
3766 
3767 operand g3RegP() %{
3768   constraint(ALLOC_IN_RC(g3_regP));
3769   match(iRegP);
3770 
3771   format %{ %}
3772   interface(REG_INTER);
3773 %}
3774 
3775 operand g1RegI() %{
3776   constraint(ALLOC_IN_RC(g1_regI));
3777   match(iRegI);
3778 
3779   format %{ %}
3780   interface(REG_INTER);
3781 %}
3782 
3783 operand g3RegI() %{
3784   constraint(ALLOC_IN_RC(g3_regI));
3785   match(iRegI);
3786 
3787   format %{ %}
3788   interface(REG_INTER);
3789 %}
3790 
3791 operand g4RegI() %{
3792   constraint(ALLOC_IN_RC(g4_regI));
3793   match(iRegI);
3794 
3795   format %{ %}
3796   interface(REG_INTER);
3797 %}
3798 
3799 operand g4RegP() %{
3800   constraint(ALLOC_IN_RC(g4_regP));
3801   match(iRegP);
3802 
3803   format %{ %}
3804   interface(REG_INTER);
3805 %}
3806 
3807 operand i0RegP() %{
3808   constraint(ALLOC_IN_RC(i0_regP));
3809   match(iRegP);
3810 
3811   format %{ %}
3812   interface(REG_INTER);
3813 %}
3814 
3815 operand o0RegP() %{
3816   constraint(ALLOC_IN_RC(o0_regP));
3817   match(iRegP);
3818 
3819   format %{ %}
3820   interface(REG_INTER);
3821 %}
3822 
3823 operand o1RegP() %{
3824   constraint(ALLOC_IN_RC(o1_regP));
3825   match(iRegP);
3826 
3827   format %{ %}
3828   interface(REG_INTER);
3829 %}
3830 
3831 operand o2RegP() %{
3832   constraint(ALLOC_IN_RC(o2_regP));
3833   match(iRegP);
3834 
3835   format %{ %}
3836   interface(REG_INTER);
3837 %}
3838 
3839 operand o7RegP() %{
3840   constraint(ALLOC_IN_RC(o7_regP));
3841   match(iRegP);
3842 
3843   format %{ %}
3844   interface(REG_INTER);
3845 %}
3846 
3847 operand l7RegP() %{
3848   constraint(ALLOC_IN_RC(l7_regP));
3849   match(iRegP);
3850 
3851   format %{ %}
3852   interface(REG_INTER);
3853 %}
3854 
3855 operand o7RegI() %{
3856   constraint(ALLOC_IN_RC(o7_regI));
3857   match(iRegI);
3858 
3859   format %{ %}
3860   interface(REG_INTER);
3861 %}
3862 
3863 operand iRegN() %{
3864   constraint(ALLOC_IN_RC(int_reg));
3865   match(RegN);
3866 
3867   format %{ %}
3868   interface(REG_INTER);
3869 %}
3870 
3871 // Long Register
3872 operand iRegL() %{
3873   constraint(ALLOC_IN_RC(long_reg));
3874   match(RegL);
3875 
3876   format %{ %}
3877   interface(REG_INTER);
3878 %}
3879 
3880 operand o2RegL() %{
3881   constraint(ALLOC_IN_RC(o2_regL));
3882   match(iRegL);
3883 
3884   format %{ %}
3885   interface(REG_INTER);
3886 %}
3887 
3888 operand o7RegL() %{
3889   constraint(ALLOC_IN_RC(o7_regL));
3890   match(iRegL);
3891 
3892   format %{ %}
3893   interface(REG_INTER);
3894 %}
3895 
3896 operand g1RegL() %{
3897   constraint(ALLOC_IN_RC(g1_regL));
3898   match(iRegL);
3899 
3900   format %{ %}
3901   interface(REG_INTER);
3902 %}
3903 
3904 operand g3RegL() %{
3905   constraint(ALLOC_IN_RC(g3_regL));
3906   match(iRegL);
3907 
3908   format %{ %}
3909   interface(REG_INTER);
3910 %}
3911 
3912 // Int Register safe
3913 // This is 64bit safe
3914 operand iRegIsafe() %{
3915   constraint(ALLOC_IN_RC(long_reg));
3916 
3917   match(iRegI);
3918 
3919   format %{ %}
3920   interface(REG_INTER);
3921 %}
3922 
3923 // Condition Code Flag Register
3924 operand flagsReg() %{
3925   constraint(ALLOC_IN_RC(int_flags));
3926   match(RegFlags);
3927 
3928   format %{ "ccr" %} // both ICC and XCC
3929   interface(REG_INTER);
3930 %}
3931 
3932 // Condition Code Register, unsigned comparisons.
3933 operand flagsRegU() %{
3934   constraint(ALLOC_IN_RC(int_flags));
3935   match(RegFlags);
3936 
3937   format %{ "icc_U" %}
3938   interface(REG_INTER);
3939 %}
3940 
3941 // Condition Code Register, pointer comparisons.
3942 operand flagsRegP() %{
3943   constraint(ALLOC_IN_RC(int_flags));
3944   match(RegFlags);
3945 
3946 #ifdef _LP64
3947   format %{ "xcc_P" %}
3948 #else
3949   format %{ "icc_P" %}
3950 #endif
3951   interface(REG_INTER);
3952 %}
3953 
3954 // Condition Code Register, long comparisons.
3955 operand flagsRegL() %{
3956   constraint(ALLOC_IN_RC(int_flags));
3957   match(RegFlags);
3958 
3959   format %{ "xcc_L" %}
3960   interface(REG_INTER);
3961 %}
3962 
3963 // Condition Code Register, floating comparisons, unordered same as "less".
3964 operand flagsRegF() %{
3965   constraint(ALLOC_IN_RC(float_flags));
3966   match(RegFlags);
3967   match(flagsRegF0);
3968 
3969   format %{ %}
3970   interface(REG_INTER);
3971 %}
3972 
3973 operand flagsRegF0() %{
3974   constraint(ALLOC_IN_RC(float_flag0));
3975   match(RegFlags);
3976 
3977   format %{ %}
3978   interface(REG_INTER);
3979 %}
3980 
3981 
3982 // Condition Code Flag Register used by long compare
3983 operand flagsReg_long_LTGE() %{
3984   constraint(ALLOC_IN_RC(int_flags));
3985   match(RegFlags);
3986   format %{ "icc_LTGE" %}
3987   interface(REG_INTER);
3988 %}
3989 operand flagsReg_long_EQNE() %{
3990   constraint(ALLOC_IN_RC(int_flags));
3991   match(RegFlags);
3992   format %{ "icc_EQNE" %}
3993   interface(REG_INTER);
3994 %}
3995 operand flagsReg_long_LEGT() %{
3996   constraint(ALLOC_IN_RC(int_flags));
3997   match(RegFlags);
3998   format %{ "icc_LEGT" %}
3999   interface(REG_INTER);
4000 %}
4001 
4002 
4003 operand regD() %{
4004   constraint(ALLOC_IN_RC(dflt_reg));
4005   match(RegD);
4006 
4007   match(regD_low);
4008 
4009   format %{ %}
4010   interface(REG_INTER);
4011 %}
4012 
4013 operand regF() %{
4014   constraint(ALLOC_IN_RC(sflt_reg));
4015   match(RegF);
4016 
4017   format %{ %}
4018   interface(REG_INTER);
4019 %}
4020 
4021 operand regD_low() %{
4022   constraint(ALLOC_IN_RC(dflt_low_reg));
4023   match(regD);
4024 
4025   format %{ %}
4026   interface(REG_INTER);
4027 %}
4028 
4029 // Special Registers
4030 
4031 // Method Register
4032 operand inline_cache_regP(iRegP reg) %{
4033   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4034   match(reg);
4035   format %{ %}
4036   interface(REG_INTER);
4037 %}
4038 
4039 operand interpreter_method_oop_regP(iRegP reg) %{
4040   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4041   match(reg);
4042   format %{ %}
4043   interface(REG_INTER);
4044 %}
4045 
4046 
4047 //----------Complex Operands---------------------------------------------------
4048 // Indirect Memory Reference
4049 operand indirect(sp_ptr_RegP reg) %{
4050   constraint(ALLOC_IN_RC(sp_ptr_reg));
4051   match(reg);
4052 
4053   op_cost(100);
4054   format %{ "[$reg]" %}
4055   interface(MEMORY_INTER) %{
4056     base($reg);
4057     index(0x0);
4058     scale(0x0);
4059     disp(0x0);
4060   %}
4061 %}
4062 
4063 // Indirect with simm13 Offset
4064 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4065   constraint(ALLOC_IN_RC(sp_ptr_reg));
4066   match(AddP reg offset);
4067 
4068   op_cost(100);
4069   format %{ "[$reg + $offset]" %}
4070   interface(MEMORY_INTER) %{
4071     base($reg);
4072     index(0x0);
4073     scale(0x0);
4074     disp($offset);
4075   %}
4076 %}
4077 
4078 // Indirect with simm13 Offset minus 7
4079 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4080   constraint(ALLOC_IN_RC(sp_ptr_reg));
4081   match(AddP reg offset);
4082 
4083   op_cost(100);
4084   format %{ "[$reg + $offset]" %}
4085   interface(MEMORY_INTER) %{
4086     base($reg);
4087     index(0x0);
4088     scale(0x0);
4089     disp($offset);
4090   %}
4091 %}
4092 
4093 // Note:  Intel has a swapped version also, like this:
4094 //operand indOffsetX(iRegI reg, immP offset) %{
4095 //  constraint(ALLOC_IN_RC(int_reg));
4096 //  match(AddP offset reg);
4097 //
4098 //  op_cost(100);
4099 //  format %{ "[$reg + $offset]" %}
4100 //  interface(MEMORY_INTER) %{
4101 //    base($reg);
4102 //    index(0x0);
4103 //    scale(0x0);
4104 //    disp($offset);
4105 //  %}
4106 //%}
4107 //// However, it doesn't make sense for SPARC, since
4108 // we have no particularly good way to embed oops in
4109 // single instructions.
4110 
4111 // Indirect with Register Index
4112 operand indIndex(iRegP addr, iRegX index) %{
4113   constraint(ALLOC_IN_RC(ptr_reg));
4114   match(AddP addr index);
4115 
4116   op_cost(100);
4117   format %{ "[$addr + $index]" %}
4118   interface(MEMORY_INTER) %{
4119     base($addr);
4120     index($index);
4121     scale(0x0);
4122     disp(0x0);
4123   %}
4124 %}
4125 
4126 //----------Special Memory Operands--------------------------------------------
4127 // Stack Slot Operand - This operand is used for loading and storing temporary
4128 //                      values on the stack where a match requires a value to
4129 //                      flow through memory.
4130 operand stackSlotI(sRegI reg) %{
4131   constraint(ALLOC_IN_RC(stack_slots));
4132   op_cost(100);
4133   //match(RegI);
4134   format %{ "[$reg]" %}
4135   interface(MEMORY_INTER) %{
4136     base(0xE);   // R_SP
4137     index(0x0);
4138     scale(0x0);
4139     disp($reg);  // Stack Offset
4140   %}
4141 %}
4142 
4143 operand stackSlotP(sRegP reg) %{
4144   constraint(ALLOC_IN_RC(stack_slots));
4145   op_cost(100);
4146   //match(RegP);
4147   format %{ "[$reg]" %}
4148   interface(MEMORY_INTER) %{
4149     base(0xE);   // R_SP
4150     index(0x0);
4151     scale(0x0);
4152     disp($reg);  // Stack Offset
4153   %}
4154 %}
4155 
4156 operand stackSlotF(sRegF reg) %{
4157   constraint(ALLOC_IN_RC(stack_slots));
4158   op_cost(100);
4159   //match(RegF);
4160   format %{ "[$reg]" %}
4161   interface(MEMORY_INTER) %{
4162     base(0xE);   // R_SP
4163     index(0x0);
4164     scale(0x0);
4165     disp($reg);  // Stack Offset
4166   %}
4167 %}
4168 operand stackSlotD(sRegD reg) %{
4169   constraint(ALLOC_IN_RC(stack_slots));
4170   op_cost(100);
4171   //match(RegD);
4172   format %{ "[$reg]" %}
4173   interface(MEMORY_INTER) %{
4174     base(0xE);   // R_SP
4175     index(0x0);
4176     scale(0x0);
4177     disp($reg);  // Stack Offset
4178   %}
4179 %}
4180 operand stackSlotL(sRegL reg) %{
4181   constraint(ALLOC_IN_RC(stack_slots));
4182   op_cost(100);
4183   //match(RegL);
4184   format %{ "[$reg]" %}
4185   interface(MEMORY_INTER) %{
4186     base(0xE);   // R_SP
4187     index(0x0);
4188     scale(0x0);
4189     disp($reg);  // Stack Offset
4190   %}
4191 %}
4192 
4193 // Operands for expressing Control Flow
4194 // NOTE:  Label is a predefined operand which should not be redefined in
4195 //        the AD file.  It is generically handled within the ADLC.
4196 
4197 //----------Conditional Branch Operands----------------------------------------
4198 // Comparison Op  - This is the operation of the comparison, and is limited to
4199 //                  the following set of codes:
4200 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4201 //
4202 // Other attributes of the comparison, such as unsignedness, are specified
4203 // by the comparison instruction that sets a condition code flags register.
4204 // That result is represented by a flags operand whose subtype is appropriate
4205 // to the unsignedness (etc.) of the comparison.
4206 //
4207 // Later, the instruction which matches both the Comparison Op (a Bool) and
4208 // the flags (produced by the Cmp) specifies the coding of the comparison op
4209 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4210 
4211 operand cmpOp() %{
4212   match(Bool);
4213 
4214   format %{ "" %}
4215   interface(COND_INTER) %{
4216     equal(0x1);
4217     not_equal(0x9);
4218     less(0x3);
4219     greater_equal(0xB);
4220     less_equal(0x2);
4221     greater(0xA);
4222   %}
4223 %}
4224 
4225 // Comparison Op, unsigned
4226 operand cmpOpU() %{
4227   match(Bool);
4228 
4229   format %{ "u" %}
4230   interface(COND_INTER) %{
4231     equal(0x1);
4232     not_equal(0x9);
4233     less(0x5);
4234     greater_equal(0xD);
4235     less_equal(0x4);
4236     greater(0xC);
4237   %}
4238 %}
4239 
4240 // Comparison Op, pointer (same as unsigned)
4241 operand cmpOpP() %{
4242   match(Bool);
4243 
4244   format %{ "p" %}
4245   interface(COND_INTER) %{
4246     equal(0x1);
4247     not_equal(0x9);
4248     less(0x5);
4249     greater_equal(0xD);
4250     less_equal(0x4);
4251     greater(0xC);
4252   %}
4253 %}
4254 
4255 // Comparison Op, branch-register encoding
4256 operand cmpOp_reg() %{
4257   match(Bool);
4258 
4259   format %{ "" %}
4260   interface(COND_INTER) %{
4261     equal        (0x1);
4262     not_equal    (0x5);
4263     less         (0x3);
4264     greater_equal(0x7);
4265     less_equal   (0x2);
4266     greater      (0x6);
4267   %}
4268 %}
4269 
4270 // Comparison Code, floating, unordered same as less
4271 operand cmpOpF() %{
4272   match(Bool);
4273 
4274   format %{ "fl" %}
4275   interface(COND_INTER) %{
4276     equal(0x9);
4277     not_equal(0x1);
4278     less(0x3);
4279     greater_equal(0xB);
4280     less_equal(0xE);
4281     greater(0x6);
4282   %}
4283 %}
4284 
4285 // Used by long compare
4286 operand cmpOp_commute() %{
4287   match(Bool);
4288 
4289   format %{ "" %}
4290   interface(COND_INTER) %{
4291     equal(0x1);
4292     not_equal(0x9);
4293     less(0xA);
4294     greater_equal(0x2);
4295     less_equal(0xB);
4296     greater(0x3);
4297   %}
4298 %}
4299 
4300 //----------OPERAND CLASSES----------------------------------------------------
4301 // Operand Classes are groups of operands that are used to simplify
4302 // instruction definitions by not requiring the AD writer to specify separate
4303 // instructions for every form of operand when the instruction accepts
4304 // multiple operand types with the same basic encoding and format.  The classic
4305 // case of this is memory operands.
4306 // Indirect is not included since its use is limited to Compare & Swap
4307 opclass memory( indirect, indOffset13, indIndex );
4308 
4309 //----------PIPELINE-----------------------------------------------------------
4310 pipeline %{
4311 
4312 //----------ATTRIBUTES---------------------------------------------------------
4313 attributes %{
4314   fixed_size_instructions;           // Fixed size instructions
4315   branch_has_delay_slot;             // Branch has delay slot following
4316   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4317   instruction_unit_size = 4;         // An instruction is 4 bytes long
4318   instruction_fetch_unit_size = 16;  // The processor fetches one line
4319   instruction_fetch_units = 1;       // of 16 bytes
4320 
4321   // List of nop instructions
4322   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4323 %}
4324 
4325 //----------RESOURCES----------------------------------------------------------
4326 // Resources are the functional units available to the machine
4327 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4328 
4329 //----------PIPELINE DESCRIPTION-----------------------------------------------
4330 // Pipeline Description specifies the stages in the machine's pipeline
4331 
4332 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4333 
4334 //----------PIPELINE CLASSES---------------------------------------------------
4335 // Pipeline Classes describe the stages in which input and output are
4336 // referenced by the hardware pipeline.
4337 
4338 // Integer ALU reg-reg operation
4339 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4340     single_instruction;
4341     dst   : E(write);
4342     src1  : R(read);
4343     src2  : R(read);
4344     IALU  : R;
4345 %}
4346 
4347 // Integer ALU reg-reg long operation
4348 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4349     instruction_count(2);
4350     dst   : E(write);
4351     src1  : R(read);
4352     src2  : R(read);
4353     IALU  : R;
4354     IALU  : R;
4355 %}
4356 
4357 // Integer ALU reg-reg long dependent operation
4358 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4359     instruction_count(1); multiple_bundles;
4360     dst   : E(write);
4361     src1  : R(read);
4362     src2  : R(read);
4363     cr    : E(write);
4364     IALU  : R(2);
4365 %}
4366 
4367 // Integer ALU reg-imm operaion
4368 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4369     single_instruction;
4370     dst   : E(write);
4371     src1  : R(read);
4372     IALU  : R;
4373 %}
4374 
4375 // Integer ALU reg-reg operation with condition code
4376 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4377     single_instruction;
4378     dst   : E(write);
4379     cr    : E(write);
4380     src1  : R(read);
4381     src2  : R(read);
4382     IALU  : R;
4383 %}
4384 
4385 // Integer ALU reg-imm operation with condition code
4386 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4387     single_instruction;
4388     dst   : E(write);
4389     cr    : E(write);
4390     src1  : R(read);
4391     IALU  : R;
4392 %}
4393 
4394 // Integer ALU zero-reg operation
4395 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4396     single_instruction;
4397     dst   : E(write);
4398     src2  : R(read);
4399     IALU  : R;
4400 %}
4401 
4402 // Integer ALU zero-reg operation with condition code only
4403 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4404     single_instruction;
4405     cr    : E(write);
4406     src   : R(read);
4407     IALU  : R;
4408 %}
4409 
4410 // Integer ALU reg-reg operation with condition code only
4411 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4412     single_instruction;
4413     cr    : E(write);
4414     src1  : R(read);
4415     src2  : R(read);
4416     IALU  : R;
4417 %}
4418 
4419 // Integer ALU reg-imm operation with condition code only
4420 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4421     single_instruction;
4422     cr    : E(write);
4423     src1  : R(read);
4424     IALU  : R;
4425 %}
4426 
4427 // Integer ALU reg-reg-zero operation with condition code only
4428 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4429     single_instruction;
4430     cr    : E(write);
4431     src1  : R(read);
4432     src2  : R(read);
4433     IALU  : R;
4434 %}
4435 
4436 // Integer ALU reg-imm-zero operation with condition code only
4437 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4438     single_instruction;
4439     cr    : E(write);
4440     src1  : R(read);
4441     IALU  : R;
4442 %}
4443 
4444 // Integer ALU reg-reg operation with condition code, src1 modified
4445 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4446     single_instruction;
4447     cr    : E(write);
4448     src1  : E(write);
4449     src1  : R(read);
4450     src2  : R(read);
4451     IALU  : R;
4452 %}
4453 
4454 // Integer ALU reg-imm operation with condition code, src1 modified
4455 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4456     single_instruction;
4457     cr    : E(write);
4458     src1  : E(write);
4459     src1  : R(read);
4460     IALU  : R;
4461 %}
4462 
4463 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4464     multiple_bundles;
4465     dst   : E(write)+4;
4466     cr    : E(write);
4467     src1  : R(read);
4468     src2  : R(read);
4469     IALU  : R(3);
4470     BR    : R(2);
4471 %}
4472 
4473 // Integer ALU operation
4474 pipe_class ialu_none(iRegI dst) %{
4475     single_instruction;
4476     dst   : E(write);
4477     IALU  : R;
4478 %}
4479 
4480 // Integer ALU reg operation
4481 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4482     single_instruction; may_have_no_code;
4483     dst   : E(write);
4484     src   : R(read);
4485     IALU  : R;
4486 %}
4487 
4488 // Integer ALU reg conditional operation
4489 // This instruction has a 1 cycle stall, and cannot execute
4490 // in the same cycle as the instruction setting the condition
4491 // code. We kludge this by pretending to read the condition code
4492 // 1 cycle earlier, and by marking the functional units as busy
4493 // for 2 cycles with the result available 1 cycle later than
4494 // is really the case.
4495 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4496     single_instruction;
4497     op2_out : C(write);
4498     op1     : R(read);
4499     cr      : R(read);       // This is really E, with a 1 cycle stall
4500     BR      : R(2);
4501     MS      : R(2);
4502 %}
4503 
4504 #ifdef _LP64
4505 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4506     instruction_count(1); multiple_bundles;
4507     dst     : C(write)+1;
4508     src     : R(read)+1;
4509     IALU    : R(1);
4510     BR      : E(2);
4511     MS      : E(2);
4512 %}
4513 #endif
4514 
4515 // Integer ALU reg operation
4516 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4517     single_instruction; may_have_no_code;
4518     dst   : E(write);
4519     src   : R(read);
4520     IALU  : R;
4521 %}
4522 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4523     single_instruction; may_have_no_code;
4524     dst   : E(write);
4525     src   : R(read);
4526     IALU  : R;
4527 %}
4528 
4529 // Two integer ALU reg operations
4530 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4531     instruction_count(2);
4532     dst   : E(write);
4533     src   : R(read);
4534     A0    : R;
4535     A1    : R;
4536 %}
4537 
4538 // Two integer ALU reg operations
4539 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4540     instruction_count(2); may_have_no_code;
4541     dst   : E(write);
4542     src   : R(read);
4543     A0    : R;
4544     A1    : R;
4545 %}
4546 
4547 // Integer ALU imm operation
4548 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4549     single_instruction;
4550     dst   : E(write);
4551     IALU  : R;
4552 %}
4553 
4554 // Integer ALU reg-reg with carry operation
4555 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4556     single_instruction;
4557     dst   : E(write);
4558     src1  : R(read);
4559     src2  : R(read);
4560     IALU  : R;
4561 %}
4562 
4563 // Integer ALU cc operation
4564 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4565     single_instruction;
4566     dst   : E(write);
4567     cc    : R(read);
4568     IALU  : R;
4569 %}
4570 
4571 // Integer ALU cc / second IALU operation
4572 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4573     instruction_count(1); multiple_bundles;
4574     dst   : E(write)+1;
4575     src   : R(read);
4576     IALU  : R;
4577 %}
4578 
4579 // Integer ALU cc / second IALU operation
4580 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4581     instruction_count(1); multiple_bundles;
4582     dst   : E(write)+1;
4583     p     : R(read);
4584     q     : R(read);
4585     IALU  : R;
4586 %}
4587 
4588 // Integer ALU hi-lo-reg operation
4589 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4590     instruction_count(1); multiple_bundles;
4591     dst   : E(write)+1;
4592     IALU  : R(2);
4593 %}
4594 
4595 // Float ALU hi-lo-reg operation (with temp)
4596 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4597     instruction_count(1); multiple_bundles;
4598     dst   : E(write)+1;
4599     IALU  : R(2);
4600 %}
4601 
4602 // Long Constant
4603 pipe_class loadConL( iRegL dst, immL src ) %{
4604     instruction_count(2); multiple_bundles;
4605     dst   : E(write)+1;
4606     IALU  : R(2);
4607     IALU  : R(2);
4608 %}
4609 
4610 // Pointer Constant
4611 pipe_class loadConP( iRegP dst, immP src ) %{
4612     instruction_count(0); multiple_bundles;
4613     fixed_latency(6);
4614 %}
4615 
4616 // Polling Address
4617 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4618 #ifdef _LP64
4619     instruction_count(0); multiple_bundles;
4620     fixed_latency(6);
4621 #else
4622     dst   : E(write);
4623     IALU  : R;
4624 #endif
4625 %}
4626 
4627 // Long Constant small
4628 pipe_class loadConLlo( iRegL dst, immL src ) %{
4629     instruction_count(2);
4630     dst   : E(write);
4631     IALU  : R;
4632     IALU  : R;
4633 %}
4634 
4635 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4636 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4637     instruction_count(1); multiple_bundles;
4638     src   : R(read);
4639     dst   : M(write)+1;
4640     IALU  : R;
4641     MS    : E;
4642 %}
4643 
4644 // Integer ALU nop operation
4645 pipe_class ialu_nop() %{
4646     single_instruction;
4647     IALU  : R;
4648 %}
4649 
4650 // Integer ALU nop operation
4651 pipe_class ialu_nop_A0() %{
4652     single_instruction;
4653     A0    : R;
4654 %}
4655 
4656 // Integer ALU nop operation
4657 pipe_class ialu_nop_A1() %{
4658     single_instruction;
4659     A1    : R;
4660 %}
4661 
4662 // Integer Multiply reg-reg operation
4663 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4664     single_instruction;
4665     dst   : E(write);
4666     src1  : R(read);
4667     src2  : R(read);
4668     MS    : R(5);
4669 %}
4670 
4671 // Integer Multiply reg-imm operation
4672 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4673     single_instruction;
4674     dst   : E(write);
4675     src1  : R(read);
4676     MS    : R(5);
4677 %}
4678 
4679 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4680     single_instruction;
4681     dst   : E(write)+4;
4682     src1  : R(read);
4683     src2  : R(read);
4684     MS    : R(6);
4685 %}
4686 
4687 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4688     single_instruction;
4689     dst   : E(write)+4;
4690     src1  : R(read);
4691     MS    : R(6);
4692 %}
4693 
4694 // Integer Divide reg-reg
4695 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4696     instruction_count(1); multiple_bundles;
4697     dst   : E(write);
4698     temp  : E(write);
4699     src1  : R(read);
4700     src2  : R(read);
4701     temp  : R(read);
4702     MS    : R(38);
4703 %}
4704 
4705 // Integer Divide reg-imm
4706 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4707     instruction_count(1); multiple_bundles;
4708     dst   : E(write);
4709     temp  : E(write);
4710     src1  : R(read);
4711     temp  : R(read);
4712     MS    : R(38);
4713 %}
4714 
4715 // Long Divide
4716 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4717     dst  : E(write)+71;
4718     src1 : R(read);
4719     src2 : R(read)+1;
4720     MS   : R(70);
4721 %}
4722 
4723 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4724     dst  : E(write)+71;
4725     src1 : R(read);
4726     MS   : R(70);
4727 %}
4728 
4729 // Floating Point Add Float
4730 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4731     single_instruction;
4732     dst   : X(write);
4733     src1  : E(read);
4734     src2  : E(read);
4735     FA    : R;
4736 %}
4737 
4738 // Floating Point Add Double
4739 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4740     single_instruction;
4741     dst   : X(write);
4742     src1  : E(read);
4743     src2  : E(read);
4744     FA    : R;
4745 %}
4746 
4747 // Floating Point Conditional Move based on integer flags
4748 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4749     single_instruction;
4750     dst   : X(write);
4751     src   : E(read);
4752     cr    : R(read);
4753     FA    : R(2);
4754     BR    : R(2);
4755 %}
4756 
4757 // Floating Point Conditional Move based on integer flags
4758 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4759     single_instruction;
4760     dst   : X(write);
4761     src   : E(read);
4762     cr    : R(read);
4763     FA    : R(2);
4764     BR    : R(2);
4765 %}
4766 
4767 // Floating Point Multiply Float
4768 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4769     single_instruction;
4770     dst   : X(write);
4771     src1  : E(read);
4772     src2  : E(read);
4773     FM    : R;
4774 %}
4775 
4776 // Floating Point Multiply Double
4777 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4778     single_instruction;
4779     dst   : X(write);
4780     src1  : E(read);
4781     src2  : E(read);
4782     FM    : R;
4783 %}
4784 
4785 // Floating Point Divide Float
4786 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4787     single_instruction;
4788     dst   : X(write);
4789     src1  : E(read);
4790     src2  : E(read);
4791     FM    : R;
4792     FDIV  : C(14);
4793 %}
4794 
4795 // Floating Point Divide Double
4796 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4797     single_instruction;
4798     dst   : X(write);
4799     src1  : E(read);
4800     src2  : E(read);
4801     FM    : R;
4802     FDIV  : C(17);
4803 %}
4804 
4805 // Floating Point Move/Negate/Abs Float
4806 pipe_class faddF_reg(regF dst, regF src) %{
4807     single_instruction;
4808     dst   : W(write);
4809     src   : E(read);
4810     FA    : R(1);
4811 %}
4812 
4813 // Floating Point Move/Negate/Abs Double
4814 pipe_class faddD_reg(regD dst, regD src) %{
4815     single_instruction;
4816     dst   : W(write);
4817     src   : E(read);
4818     FA    : R;
4819 %}
4820 
4821 // Floating Point Convert F->D
4822 pipe_class fcvtF2D(regD dst, regF src) %{
4823     single_instruction;
4824     dst   : X(write);
4825     src   : E(read);
4826     FA    : R;
4827 %}
4828 
4829 // Floating Point Convert I->D
4830 pipe_class fcvtI2D(regD dst, regF src) %{
4831     single_instruction;
4832     dst   : X(write);
4833     src   : E(read);
4834     FA    : R;
4835 %}
4836 
4837 // Floating Point Convert LHi->D
4838 pipe_class fcvtLHi2D(regD dst, regD src) %{
4839     single_instruction;
4840     dst   : X(write);
4841     src   : E(read);
4842     FA    : R;
4843 %}
4844 
4845 // Floating Point Convert L->D
4846 pipe_class fcvtL2D(regD dst, regF src) %{
4847     single_instruction;
4848     dst   : X(write);
4849     src   : E(read);
4850     FA    : R;
4851 %}
4852 
4853 // Floating Point Convert L->F
4854 pipe_class fcvtL2F(regD dst, regF src) %{
4855     single_instruction;
4856     dst   : X(write);
4857     src   : E(read);
4858     FA    : R;
4859 %}
4860 
4861 // Floating Point Convert D->F
4862 pipe_class fcvtD2F(regD dst, regF src) %{
4863     single_instruction;
4864     dst   : X(write);
4865     src   : E(read);
4866     FA    : R;
4867 %}
4868 
4869 // Floating Point Convert I->L
4870 pipe_class fcvtI2L(regD dst, regF src) %{
4871     single_instruction;
4872     dst   : X(write);
4873     src   : E(read);
4874     FA    : R;
4875 %}
4876 
4877 // Floating Point Convert D->F
4878 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4879     instruction_count(1); multiple_bundles;
4880     dst   : X(write)+6;
4881     src   : E(read);
4882     FA    : R;
4883 %}
4884 
4885 // Floating Point Convert D->L
4886 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4887     instruction_count(1); multiple_bundles;
4888     dst   : X(write)+6;
4889     src   : E(read);
4890     FA    : R;
4891 %}
4892 
4893 // Floating Point Convert F->I
4894 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4895     instruction_count(1); multiple_bundles;
4896     dst   : X(write)+6;
4897     src   : E(read);
4898     FA    : R;
4899 %}
4900 
4901 // Floating Point Convert F->L
4902 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4903     instruction_count(1); multiple_bundles;
4904     dst   : X(write)+6;
4905     src   : E(read);
4906     FA    : R;
4907 %}
4908 
4909 // Floating Point Convert I->F
4910 pipe_class fcvtI2F(regF dst, regF src) %{
4911     single_instruction;
4912     dst   : X(write);
4913     src   : E(read);
4914     FA    : R;
4915 %}
4916 
4917 // Floating Point Compare
4918 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4919     single_instruction;
4920     cr    : X(write);
4921     src1  : E(read);
4922     src2  : E(read);
4923     FA    : R;
4924 %}
4925 
4926 // Floating Point Compare
4927 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4928     single_instruction;
4929     cr    : X(write);
4930     src1  : E(read);
4931     src2  : E(read);
4932     FA    : R;
4933 %}
4934 
4935 // Floating Add Nop
4936 pipe_class fadd_nop() %{
4937     single_instruction;
4938     FA  : R;
4939 %}
4940 
4941 // Integer Store to Memory
4942 pipe_class istore_mem_reg(memory mem, iRegI src) %{
4943     single_instruction;
4944     mem   : R(read);
4945     src   : C(read);
4946     MS    : R;
4947 %}
4948 
4949 // Integer Store to Memory
4950 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
4951     single_instruction;
4952     mem   : R(read);
4953     src   : C(read);
4954     MS    : R;
4955 %}
4956 
4957 // Integer Store Zero to Memory
4958 pipe_class istore_mem_zero(memory mem, immI0 src) %{
4959     single_instruction;
4960     mem   : R(read);
4961     MS    : R;
4962 %}
4963 
4964 // Special Stack Slot Store
4965 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
4966     single_instruction;
4967     stkSlot : R(read);
4968     src     : C(read);
4969     MS      : R;
4970 %}
4971 
4972 // Special Stack Slot Store
4973 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
4974     instruction_count(2); multiple_bundles;
4975     stkSlot : R(read);
4976     src     : C(read);
4977     MS      : R(2);
4978 %}
4979 
4980 // Float Store
4981 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
4982     single_instruction;
4983     mem : R(read);
4984     src : C(read);
4985     MS  : R;
4986 %}
4987 
4988 // Float Store
4989 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
4990     single_instruction;
4991     mem : R(read);
4992     MS  : R;
4993 %}
4994 
4995 // Double Store
4996 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
4997     instruction_count(1);
4998     mem : R(read);
4999     src : C(read);
5000     MS  : R;
5001 %}
5002 
5003 // Double Store
5004 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5005     single_instruction;
5006     mem : R(read);
5007     MS  : R;
5008 %}
5009 
5010 // Special Stack Slot Float Store
5011 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5012     single_instruction;
5013     stkSlot : R(read);
5014     src     : C(read);
5015     MS      : R;
5016 %}
5017 
5018 // Special Stack Slot Double Store
5019 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5020     single_instruction;
5021     stkSlot : R(read);
5022     src     : C(read);
5023     MS      : R;
5024 %}
5025 
5026 // Integer Load (when sign bit propagation not needed)
5027 pipe_class iload_mem(iRegI dst, memory mem) %{
5028     single_instruction;
5029     mem : R(read);
5030     dst : C(write);
5031     MS  : R;
5032 %}
5033 
5034 // Integer Load from stack operand
5035 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5036     single_instruction;
5037     mem : R(read);
5038     dst : C(write);
5039     MS  : R;
5040 %}
5041 
5042 // Integer Load (when sign bit propagation or masking is needed)
5043 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5044     single_instruction;
5045     mem : R(read);
5046     dst : M(write);
5047     MS  : R;
5048 %}
5049 
5050 // Float Load
5051 pipe_class floadF_mem(regF dst, memory mem) %{
5052     single_instruction;
5053     mem : R(read);
5054     dst : M(write);
5055     MS  : R;
5056 %}
5057 
5058 // Float Load
5059 pipe_class floadD_mem(regD dst, memory mem) %{
5060     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5061     mem : R(read);
5062     dst : M(write);
5063     MS  : R;
5064 %}
5065 
5066 // Float Load
5067 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5068     single_instruction;
5069     stkSlot : R(read);
5070     dst : M(write);
5071     MS  : R;
5072 %}
5073 
5074 // Float Load
5075 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5076     single_instruction;
5077     stkSlot : R(read);
5078     dst : M(write);
5079     MS  : R;
5080 %}
5081 
5082 // Memory Nop
5083 pipe_class mem_nop() %{
5084     single_instruction;
5085     MS  : R;
5086 %}
5087 
5088 pipe_class sethi(iRegP dst, immI src) %{
5089     single_instruction;
5090     dst  : E(write);
5091     IALU : R;
5092 %}
5093 
5094 pipe_class loadPollP(iRegP poll) %{
5095     single_instruction;
5096     poll : R(read);
5097     MS   : R;
5098 %}
5099 
5100 pipe_class br(Universe br, label labl) %{
5101     single_instruction_with_delay_slot;
5102     BR  : R;
5103 %}
5104 
5105 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5106     single_instruction_with_delay_slot;
5107     cr    : E(read);
5108     BR    : R;
5109 %}
5110 
5111 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5112     single_instruction_with_delay_slot;
5113     op1 : E(read);
5114     BR  : R;
5115     MS  : R;
5116 %}
5117 
5118 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5119     single_instruction_with_delay_slot;
5120     cr    : E(read);
5121     BR    : R;
5122 %}
5123 
5124 pipe_class br_nop() %{
5125     single_instruction;
5126     BR  : R;
5127 %}
5128 
5129 pipe_class simple_call(method meth) %{
5130     instruction_count(2); multiple_bundles; force_serialization;
5131     fixed_latency(100);
5132     BR  : R(1);
5133     MS  : R(1);
5134     A0  : R(1);
5135 %}
5136 
5137 pipe_class compiled_call(method meth) %{
5138     instruction_count(1); multiple_bundles; force_serialization;
5139     fixed_latency(100);
5140     MS  : R(1);
5141 %}
5142 
5143 pipe_class call(method meth) %{
5144     instruction_count(0); multiple_bundles; force_serialization;
5145     fixed_latency(100);
5146 %}
5147 
5148 pipe_class tail_call(Universe ignore, label labl) %{
5149     single_instruction; has_delay_slot;
5150     fixed_latency(100);
5151     BR  : R(1);
5152     MS  : R(1);
5153 %}
5154 
5155 pipe_class ret(Universe ignore) %{
5156     single_instruction; has_delay_slot;
5157     BR  : R(1);
5158     MS  : R(1);
5159 %}
5160 
5161 pipe_class ret_poll(g3RegP poll) %{
5162     instruction_count(3); has_delay_slot;
5163     poll : E(read);
5164     MS   : R;
5165 %}
5166 
5167 // The real do-nothing guy
5168 pipe_class empty( ) %{
5169     instruction_count(0);
5170 %}
5171 
5172 pipe_class long_memory_op() %{
5173     instruction_count(0); multiple_bundles; force_serialization;
5174     fixed_latency(25);
5175     MS  : R(1);
5176 %}
5177 
5178 // Check-cast
5179 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5180     array : R(read);
5181     match  : R(read);
5182     IALU   : R(2);
5183     BR     : R(2);
5184     MS     : R;
5185 %}
5186 
5187 // Convert FPU flags into +1,0,-1
5188 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5189     src1  : E(read);
5190     src2  : E(read);
5191     dst   : E(write);
5192     FA    : R;
5193     MS    : R(2);
5194     BR    : R(2);
5195 %}
5196 
5197 // Compare for p < q, and conditionally add y
5198 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5199     p     : E(read);
5200     q     : E(read);
5201     y     : E(read);
5202     IALU  : R(3)
5203 %}
5204 
5205 // Perform a compare, then move conditionally in a branch delay slot.
5206 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5207     src2   : E(read);
5208     srcdst : E(read);
5209     IALU   : R;
5210     BR     : R;
5211 %}
5212 
5213 // Define the class for the Nop node
5214 define %{
5215    MachNop = ialu_nop;
5216 %}
5217 
5218 %}
5219 
5220 //----------INSTRUCTIONS-------------------------------------------------------
5221 
5222 //------------Special Stack Slot instructions - no match rules-----------------
5223 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5224   // No match rule to avoid chain rule match.
5225   effect(DEF dst, USE src);
5226   ins_cost(MEMORY_REF_COST);
5227   size(4);
5228   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5229   opcode(Assembler::ldf_op3);
5230   ins_encode(simple_form3_mem_reg(src, dst));
5231   ins_pipe(floadF_stk);
5232 %}
5233 
5234 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5235   // No match rule to avoid chain rule match.
5236   effect(DEF dst, USE src);
5237   ins_cost(MEMORY_REF_COST);
5238   size(4);
5239   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5240   opcode(Assembler::lddf_op3);
5241   ins_encode(simple_form3_mem_reg(src, dst));
5242   ins_pipe(floadD_stk);
5243 %}
5244 
5245 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5246   // No match rule to avoid chain rule match.
5247   effect(DEF dst, USE src);
5248   ins_cost(MEMORY_REF_COST);
5249   size(4);
5250   format %{ "STF    $src,$dst\t! regF to stkI" %}
5251   opcode(Assembler::stf_op3);
5252   ins_encode(simple_form3_mem_reg(dst, src));
5253   ins_pipe(fstoreF_stk_reg);
5254 %}
5255 
5256 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5257   // No match rule to avoid chain rule match.
5258   effect(DEF dst, USE src);
5259   ins_cost(MEMORY_REF_COST);
5260   size(4);
5261   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5262   opcode(Assembler::stdf_op3);
5263   ins_encode(simple_form3_mem_reg(dst, src));
5264   ins_pipe(fstoreD_stk_reg);
5265 %}
5266 
5267 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5268   effect(DEF dst, USE src);
5269   ins_cost(MEMORY_REF_COST*2);
5270   size(8);
5271   format %{ "STW    $src,$dst.hi\t! long\n\t"
5272             "STW    R_G0,$dst.lo" %}
5273   opcode(Assembler::stw_op3);
5274   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5275   ins_pipe(lstoreI_stk_reg);
5276 %}
5277 
5278 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5279   // No match rule to avoid chain rule match.
5280   effect(DEF dst, USE src);
5281   ins_cost(MEMORY_REF_COST);
5282   size(4);
5283   format %{ "STX    $src,$dst\t! regL to stkD" %}
5284   opcode(Assembler::stx_op3);
5285   ins_encode(simple_form3_mem_reg( dst, src ) );
5286   ins_pipe(istore_stk_reg);
5287 %}
5288 
5289 //---------- Chain stack slots between similar types --------
5290 
5291 // Load integer from stack slot
5292 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5293   match(Set dst src);
5294   ins_cost(MEMORY_REF_COST);
5295 
5296   size(4);
5297   format %{ "LDUW   $src,$dst\t!stk" %}
5298   opcode(Assembler::lduw_op3);
5299   ins_encode(simple_form3_mem_reg( src, dst ) );
5300   ins_pipe(iload_mem);
5301 %}
5302 
5303 // Store integer to stack slot
5304 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5305   match(Set dst src);
5306   ins_cost(MEMORY_REF_COST);
5307 
5308   size(4);
5309   format %{ "STW    $src,$dst\t!stk" %}
5310   opcode(Assembler::stw_op3);
5311   ins_encode(simple_form3_mem_reg( dst, src ) );
5312   ins_pipe(istore_mem_reg);
5313 %}
5314 
5315 // Load long from stack slot
5316 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5317   match(Set dst src);
5318 
5319   ins_cost(MEMORY_REF_COST);
5320   size(4);
5321   format %{ "LDX    $src,$dst\t! long" %}
5322   opcode(Assembler::ldx_op3);
5323   ins_encode(simple_form3_mem_reg( src, dst ) );
5324   ins_pipe(iload_mem);
5325 %}
5326 
5327 // Store long to stack slot
5328 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5329   match(Set dst src);
5330 
5331   ins_cost(MEMORY_REF_COST);
5332   size(4);
5333   format %{ "STX    $src,$dst\t! long" %}
5334   opcode(Assembler::stx_op3);
5335   ins_encode(simple_form3_mem_reg( dst, src ) );
5336   ins_pipe(istore_mem_reg);
5337 %}
5338 
5339 #ifdef _LP64
5340 // Load pointer from stack slot, 64-bit encoding
5341 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5342   match(Set dst src);
5343   ins_cost(MEMORY_REF_COST);
5344   size(4);
5345   format %{ "LDX    $src,$dst\t!ptr" %}
5346   opcode(Assembler::ldx_op3);
5347   ins_encode(simple_form3_mem_reg( src, dst ) );
5348   ins_pipe(iload_mem);
5349 %}
5350 
5351 // Store pointer to stack slot
5352 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5353   match(Set dst src);
5354   ins_cost(MEMORY_REF_COST);
5355   size(4);
5356   format %{ "STX    $src,$dst\t!ptr" %}
5357   opcode(Assembler::stx_op3);
5358   ins_encode(simple_form3_mem_reg( dst, src ) );
5359   ins_pipe(istore_mem_reg);
5360 %}
5361 #else // _LP64
5362 // Load pointer from stack slot, 32-bit encoding
5363 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5364   match(Set dst src);
5365   ins_cost(MEMORY_REF_COST);
5366   format %{ "LDUW   $src,$dst\t!ptr" %}
5367   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5368   ins_encode(simple_form3_mem_reg( src, dst ) );
5369   ins_pipe(iload_mem);
5370 %}
5371 
5372 // Store pointer to stack slot
5373 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5374   match(Set dst src);
5375   ins_cost(MEMORY_REF_COST);
5376   format %{ "STW    $src,$dst\t!ptr" %}
5377   opcode(Assembler::stw_op3, Assembler::ldst_op);
5378   ins_encode(simple_form3_mem_reg( dst, src ) );
5379   ins_pipe(istore_mem_reg);
5380 %}
5381 #endif // _LP64
5382 
5383 //------------Special Nop instructions for bundling - no match rules-----------
5384 // Nop using the A0 functional unit
5385 instruct Nop_A0() %{
5386   ins_cost(0);
5387 
5388   format %{ "NOP    ! Alu Pipeline" %}
5389   opcode(Assembler::or_op3, Assembler::arith_op);
5390   ins_encode( form2_nop() );
5391   ins_pipe(ialu_nop_A0);
5392 %}
5393 
5394 // Nop using the A1 functional unit
5395 instruct Nop_A1( ) %{
5396   ins_cost(0);
5397 
5398   format %{ "NOP    ! Alu Pipeline" %}
5399   opcode(Assembler::or_op3, Assembler::arith_op);
5400   ins_encode( form2_nop() );
5401   ins_pipe(ialu_nop_A1);
5402 %}
5403 
5404 // Nop using the memory functional unit
5405 instruct Nop_MS( ) %{
5406   ins_cost(0);
5407 
5408   format %{ "NOP    ! Memory Pipeline" %}
5409   ins_encode( emit_mem_nop );
5410   ins_pipe(mem_nop);
5411 %}
5412 
5413 // Nop using the floating add functional unit
5414 instruct Nop_FA( ) %{
5415   ins_cost(0);
5416 
5417   format %{ "NOP    ! Floating Add Pipeline" %}
5418   ins_encode( emit_fadd_nop );
5419   ins_pipe(fadd_nop);
5420 %}
5421 
5422 // Nop using the branch functional unit
5423 instruct Nop_BR( ) %{
5424   ins_cost(0);
5425 
5426   format %{ "NOP    ! Branch Pipeline" %}
5427   ins_encode( emit_br_nop );
5428   ins_pipe(br_nop);
5429 %}
5430 
5431 //----------Load/Store/Move Instructions---------------------------------------
5432 //----------Load Instructions--------------------------------------------------
5433 // Load Byte (8bit signed)
5434 instruct loadB(iRegI dst, memory mem) %{
5435   match(Set dst (LoadB mem));
5436   ins_cost(MEMORY_REF_COST);
5437 
5438   size(4);
5439   format %{ "LDSB   $mem,$dst\t! byte" %}
5440   ins_encode %{
5441     __ ldsb($mem$$Address, $dst$$Register);
5442   %}
5443   ins_pipe(iload_mask_mem);
5444 %}
5445 
5446 // Load Byte (8bit signed) into a Long Register
5447 instruct loadB2L(iRegL dst, memory mem) %{
5448   match(Set dst (ConvI2L (LoadB mem)));
5449   ins_cost(MEMORY_REF_COST);
5450 
5451   size(4);
5452   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5453   ins_encode %{
5454     __ ldsb($mem$$Address, $dst$$Register);
5455   %}
5456   ins_pipe(iload_mask_mem);
5457 %}
5458 
5459 // Load Unsigned Byte (8bit UNsigned) into an int reg
5460 instruct loadUB(iRegI dst, memory mem) %{
5461   match(Set dst (LoadUB mem));
5462   ins_cost(MEMORY_REF_COST);
5463 
5464   size(4);
5465   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5466   ins_encode %{
5467     __ ldub($mem$$Address, $dst$$Register);
5468   %}
5469   ins_pipe(iload_mem);
5470 %}
5471 
5472 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5473 instruct loadUB2L(iRegL dst, memory mem) %{
5474   match(Set dst (ConvI2L (LoadUB mem)));
5475   ins_cost(MEMORY_REF_COST);
5476 
5477   size(4);
5478   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5479   ins_encode %{
5480     __ ldub($mem$$Address, $dst$$Register);
5481   %}
5482   ins_pipe(iload_mem);
5483 %}
5484 
5485 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5486 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5487   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5488   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5489 
5490   size(2*4);
5491   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5492             "AND    $dst,$mask,$dst" %}
5493   ins_encode %{
5494     __ ldub($mem$$Address, $dst$$Register);
5495     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5496   %}
5497   ins_pipe(iload_mem);
5498 %}
5499 
5500 // Load Short (16bit signed)
5501 instruct loadS(iRegI dst, memory mem) %{
5502   match(Set dst (LoadS mem));
5503   ins_cost(MEMORY_REF_COST);
5504 
5505   size(4);
5506   format %{ "LDSH   $mem,$dst\t! short" %}
5507   ins_encode %{
5508     __ ldsh($mem$$Address, $dst$$Register);
5509   %}
5510   ins_pipe(iload_mask_mem);
5511 %}
5512 
5513 // Load Short (16 bit signed) to Byte (8 bit signed)
5514 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5515   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5516   ins_cost(MEMORY_REF_COST);
5517 
5518   size(4);
5519 
5520   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5521   ins_encode %{
5522     __ ldsb($mem$$Address, $dst$$Register, 1);
5523   %}
5524   ins_pipe(iload_mask_mem);
5525 %}
5526 
5527 // Load Short (16bit signed) into a Long Register
5528 instruct loadS2L(iRegL dst, memory mem) %{
5529   match(Set dst (ConvI2L (LoadS mem)));
5530   ins_cost(MEMORY_REF_COST);
5531 
5532   size(4);
5533   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5534   ins_encode %{
5535     __ ldsh($mem$$Address, $dst$$Register);
5536   %}
5537   ins_pipe(iload_mask_mem);
5538 %}
5539 
5540 // Load Unsigned Short/Char (16bit UNsigned)
5541 instruct loadUS(iRegI dst, memory mem) %{
5542   match(Set dst (LoadUS mem));
5543   ins_cost(MEMORY_REF_COST);
5544 
5545   size(4);
5546   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5547   ins_encode %{
5548     __ lduh($mem$$Address, $dst$$Register);
5549   %}
5550   ins_pipe(iload_mem);
5551 %}
5552 
5553 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5554 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5555   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5556   ins_cost(MEMORY_REF_COST);
5557 
5558   size(4);
5559   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5560   ins_encode %{
5561     __ ldsb($mem$$Address, $dst$$Register, 1);
5562   %}
5563   ins_pipe(iload_mask_mem);
5564 %}
5565 
5566 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5567 instruct loadUS2L(iRegL dst, memory mem) %{
5568   match(Set dst (ConvI2L (LoadUS mem)));
5569   ins_cost(MEMORY_REF_COST);
5570 
5571   size(4);
5572   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5573   ins_encode %{
5574     __ lduh($mem$$Address, $dst$$Register);
5575   %}
5576   ins_pipe(iload_mem);
5577 %}
5578 
5579 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5580 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5581   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5582   ins_cost(MEMORY_REF_COST);
5583 
5584   size(4);
5585   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5586   ins_encode %{
5587     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5588   %}
5589   ins_pipe(iload_mem);
5590 %}
5591 
5592 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5593 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5594   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5595   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5596 
5597   size(2*4);
5598   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5599             "AND    $dst,$mask,$dst" %}
5600   ins_encode %{
5601     Register Rdst = $dst$$Register;
5602     __ lduh($mem$$Address, Rdst);
5603     __ and3(Rdst, $mask$$constant, Rdst);
5604   %}
5605   ins_pipe(iload_mem);
5606 %}
5607 
5608 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5609 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5610   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5611   effect(TEMP dst, TEMP tmp);
5612   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5613 
5614   size((3+1)*4);  // set may use two instructions.
5615   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5616             "SET    $mask,$tmp\n\t"
5617             "AND    $dst,$tmp,$dst" %}
5618   ins_encode %{
5619     Register Rdst = $dst$$Register;
5620     Register Rtmp = $tmp$$Register;
5621     __ lduh($mem$$Address, Rdst);
5622     __ set($mask$$constant, Rtmp);
5623     __ and3(Rdst, Rtmp, Rdst);
5624   %}
5625   ins_pipe(iload_mem);
5626 %}
5627 
5628 // Load Integer
5629 instruct loadI(iRegI dst, memory mem) %{
5630   match(Set dst (LoadI mem));
5631   ins_cost(MEMORY_REF_COST);
5632 
5633   size(4);
5634   format %{ "LDUW   $mem,$dst\t! int" %}
5635   ins_encode %{
5636     __ lduw($mem$$Address, $dst$$Register);
5637   %}
5638   ins_pipe(iload_mem);
5639 %}
5640 
5641 // Load Integer to Byte (8 bit signed)
5642 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5643   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5644   ins_cost(MEMORY_REF_COST);
5645 
5646   size(4);
5647 
5648   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5649   ins_encode %{
5650     __ ldsb($mem$$Address, $dst$$Register, 3);
5651   %}
5652   ins_pipe(iload_mask_mem);
5653 %}
5654 
5655 // Load Integer to Unsigned Byte (8 bit UNsigned)
5656 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5657   match(Set dst (AndI (LoadI mem) mask));
5658   ins_cost(MEMORY_REF_COST);
5659 
5660   size(4);
5661 
5662   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5663   ins_encode %{
5664     __ ldub($mem$$Address, $dst$$Register, 3);
5665   %}
5666   ins_pipe(iload_mask_mem);
5667 %}
5668 
5669 // Load Integer to Short (16 bit signed)
5670 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5671   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5672   ins_cost(MEMORY_REF_COST);
5673 
5674   size(4);
5675 
5676   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5677   ins_encode %{
5678     __ ldsh($mem$$Address, $dst$$Register, 2);
5679   %}
5680   ins_pipe(iload_mask_mem);
5681 %}
5682 
5683 // Load Integer to Unsigned Short (16 bit UNsigned)
5684 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5685   match(Set dst (AndI (LoadI mem) mask));
5686   ins_cost(MEMORY_REF_COST);
5687 
5688   size(4);
5689 
5690   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5691   ins_encode %{
5692     __ lduh($mem$$Address, $dst$$Register, 2);
5693   %}
5694   ins_pipe(iload_mask_mem);
5695 %}
5696 
5697 // Load Integer into a Long Register
5698 instruct loadI2L(iRegL dst, memory mem) %{
5699   match(Set dst (ConvI2L (LoadI mem)));
5700   ins_cost(MEMORY_REF_COST);
5701 
5702   size(4);
5703   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5704   ins_encode %{
5705     __ ldsw($mem$$Address, $dst$$Register);
5706   %}
5707   ins_pipe(iload_mask_mem);
5708 %}
5709 
5710 // Load Integer with mask 0xFF into a Long Register
5711 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5712   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5713   ins_cost(MEMORY_REF_COST);
5714 
5715   size(4);
5716   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5717   ins_encode %{
5718     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5719   %}
5720   ins_pipe(iload_mem);
5721 %}
5722 
5723 // Load Integer with mask 0xFFFF into a Long Register
5724 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5725   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5726   ins_cost(MEMORY_REF_COST);
5727 
5728   size(4);
5729   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5730   ins_encode %{
5731     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5732   %}
5733   ins_pipe(iload_mem);
5734 %}
5735 
5736 // Load Integer with a 13-bit mask into a Long Register
5737 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5738   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5739   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5740 
5741   size(2*4);
5742   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
5743             "AND    $dst,$mask,$dst" %}
5744   ins_encode %{
5745     Register Rdst = $dst$$Register;
5746     __ lduw($mem$$Address, Rdst);
5747     __ and3(Rdst, $mask$$constant, Rdst);
5748   %}
5749   ins_pipe(iload_mem);
5750 %}
5751 
5752 // Load Integer with a 32-bit mask into a Long Register
5753 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5754   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5755   effect(TEMP dst, TEMP tmp);
5756   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5757 
5758   size((3+1)*4);  // set may use two instructions.
5759   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
5760             "SET    $mask,$tmp\n\t"
5761             "AND    $dst,$tmp,$dst" %}
5762   ins_encode %{
5763     Register Rdst = $dst$$Register;
5764     Register Rtmp = $tmp$$Register;
5765     __ lduw($mem$$Address, Rdst);
5766     __ set($mask$$constant, Rtmp);
5767     __ and3(Rdst, Rtmp, Rdst);
5768   %}
5769   ins_pipe(iload_mem);
5770 %}
5771 
5772 // Load Unsigned Integer into a Long Register
5773 instruct loadUI2L(iRegL dst, memory mem) %{
5774   match(Set dst (LoadUI2L mem));
5775   ins_cost(MEMORY_REF_COST);
5776 
5777   size(4);
5778   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5779   ins_encode %{
5780     __ lduw($mem$$Address, $dst$$Register);
5781   %}
5782   ins_pipe(iload_mem);
5783 %}
5784 
5785 // Load Long - aligned
5786 instruct loadL(iRegL dst, memory mem ) %{
5787   match(Set dst (LoadL mem));
5788   ins_cost(MEMORY_REF_COST);
5789 
5790   size(4);
5791   format %{ "LDX    $mem,$dst\t! long" %}
5792   ins_encode %{
5793     __ ldx($mem$$Address, $dst$$Register);
5794   %}
5795   ins_pipe(iload_mem);
5796 %}
5797 
5798 // Load Long - UNaligned
5799 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5800   match(Set dst (LoadL_unaligned mem));
5801   effect(KILL tmp);
5802   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5803   size(16);
5804   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5805           "\tLDUW   $mem  ,$dst\n"
5806           "\tSLLX   #32, $dst, $dst\n"
5807           "\tOR     $dst, R_O7, $dst" %}
5808   opcode(Assembler::lduw_op3);
5809   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5810   ins_pipe(iload_mem);
5811 %}
5812 
5813 // Load Aligned Packed Byte into a Double Register
5814 instruct loadA8B(regD dst, memory mem) %{
5815   match(Set dst (Load8B mem));
5816   ins_cost(MEMORY_REF_COST);
5817   size(4);
5818   format %{ "LDDF   $mem,$dst\t! packed8B" %}
5819   opcode(Assembler::lddf_op3);
5820   ins_encode(simple_form3_mem_reg( mem, dst ) );
5821   ins_pipe(floadD_mem);
5822 %}
5823 
5824 // Load Aligned Packed Char into a Double Register
5825 instruct loadA4C(regD dst, memory mem) %{
5826   match(Set dst (Load4C mem));
5827   ins_cost(MEMORY_REF_COST);
5828   size(4);
5829   format %{ "LDDF   $mem,$dst\t! packed4C" %}
5830   opcode(Assembler::lddf_op3);
5831   ins_encode(simple_form3_mem_reg( mem, dst ) );
5832   ins_pipe(floadD_mem);
5833 %}
5834 
5835 // Load Aligned Packed Short into a Double Register
5836 instruct loadA4S(regD dst, memory mem) %{
5837   match(Set dst (Load4S mem));
5838   ins_cost(MEMORY_REF_COST);
5839   size(4);
5840   format %{ "LDDF   $mem,$dst\t! packed4S" %}
5841   opcode(Assembler::lddf_op3);
5842   ins_encode(simple_form3_mem_reg( mem, dst ) );
5843   ins_pipe(floadD_mem);
5844 %}
5845 
5846 // Load Aligned Packed Int into a Double Register
5847 instruct loadA2I(regD dst, memory mem) %{
5848   match(Set dst (Load2I mem));
5849   ins_cost(MEMORY_REF_COST);
5850   size(4);
5851   format %{ "LDDF   $mem,$dst\t! packed2I" %}
5852   opcode(Assembler::lddf_op3);
5853   ins_encode(simple_form3_mem_reg( mem, dst ) );
5854   ins_pipe(floadD_mem);
5855 %}
5856 
5857 // Load Range
5858 instruct loadRange(iRegI dst, memory mem) %{
5859   match(Set dst (LoadRange mem));
5860   ins_cost(MEMORY_REF_COST);
5861 
5862   size(4);
5863   format %{ "LDUW   $mem,$dst\t! range" %}
5864   opcode(Assembler::lduw_op3);
5865   ins_encode(simple_form3_mem_reg( mem, dst ) );
5866   ins_pipe(iload_mem);
5867 %}
5868 
5869 // Load Integer into %f register (for fitos/fitod)
5870 instruct loadI_freg(regF dst, memory mem) %{
5871   match(Set dst (LoadI mem));
5872   ins_cost(MEMORY_REF_COST);
5873   size(4);
5874 
5875   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5876   opcode(Assembler::ldf_op3);
5877   ins_encode(simple_form3_mem_reg( mem, dst ) );
5878   ins_pipe(floadF_mem);
5879 %}
5880 
5881 // Load Pointer
5882 instruct loadP(iRegP dst, memory mem) %{
5883   match(Set dst (LoadP mem));
5884   ins_cost(MEMORY_REF_COST);
5885   size(4);
5886 
5887 #ifndef _LP64
5888   format %{ "LDUW   $mem,$dst\t! ptr" %}
5889   ins_encode %{
5890     __ lduw($mem$$Address, $dst$$Register);
5891   %}
5892 #else
5893   format %{ "LDX    $mem,$dst\t! ptr" %}
5894   ins_encode %{
5895     __ ldx($mem$$Address, $dst$$Register);
5896   %}
5897 #endif
5898   ins_pipe(iload_mem);
5899 %}
5900 
5901 // Load Compressed Pointer
5902 instruct loadN(iRegN dst, memory mem) %{
5903   match(Set dst (LoadN mem));
5904   ins_cost(MEMORY_REF_COST);
5905   size(4);
5906 
5907   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5908   ins_encode %{
5909     __ lduw($mem$$Address, $dst$$Register);
5910   %}
5911   ins_pipe(iload_mem);
5912 %}
5913 
5914 // Load Klass Pointer
5915 instruct loadKlass(iRegP dst, memory mem) %{
5916   match(Set dst (LoadKlass mem));
5917   ins_cost(MEMORY_REF_COST);
5918   size(4);
5919 
5920 #ifndef _LP64
5921   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5922   ins_encode %{
5923     __ lduw($mem$$Address, $dst$$Register);
5924   %}
5925 #else
5926   format %{ "LDX    $mem,$dst\t! klass ptr" %}
5927   ins_encode %{
5928     __ ldx($mem$$Address, $dst$$Register);
5929   %}
5930 #endif
5931   ins_pipe(iload_mem);
5932 %}
5933 
5934 // Load narrow Klass Pointer
5935 instruct loadNKlass(iRegN dst, memory mem) %{
5936   match(Set dst (LoadNKlass mem));
5937   ins_cost(MEMORY_REF_COST);
5938   size(4);
5939 
5940   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
5941   ins_encode %{
5942     __ lduw($mem$$Address, $dst$$Register);
5943   %}
5944   ins_pipe(iload_mem);
5945 %}
5946 
5947 // Load Double
5948 instruct loadD(regD dst, memory mem) %{
5949   match(Set dst (LoadD mem));
5950   ins_cost(MEMORY_REF_COST);
5951 
5952   size(4);
5953   format %{ "LDDF   $mem,$dst" %}
5954   opcode(Assembler::lddf_op3);
5955   ins_encode(simple_form3_mem_reg( mem, dst ) );
5956   ins_pipe(floadD_mem);
5957 %}
5958 
5959 // Load Double - UNaligned
5960 instruct loadD_unaligned(regD_low dst, memory mem ) %{
5961   match(Set dst (LoadD_unaligned mem));
5962   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5963   size(8);
5964   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
5965           "\tLDF    $mem+4,$dst.lo\t!" %}
5966   opcode(Assembler::ldf_op3);
5967   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
5968   ins_pipe(iload_mem);
5969 %}
5970 
5971 // Load Float
5972 instruct loadF(regF dst, memory mem) %{
5973   match(Set dst (LoadF mem));
5974   ins_cost(MEMORY_REF_COST);
5975 
5976   size(4);
5977   format %{ "LDF    $mem,$dst" %}
5978   opcode(Assembler::ldf_op3);
5979   ins_encode(simple_form3_mem_reg( mem, dst ) );
5980   ins_pipe(floadF_mem);
5981 %}
5982 
5983 // Load Constant
5984 instruct loadConI( iRegI dst, immI src ) %{
5985   match(Set dst src);
5986   ins_cost(DEFAULT_COST * 3/2);
5987   format %{ "SET    $src,$dst" %}
5988   ins_encode( Set32(src, dst) );
5989   ins_pipe(ialu_hi_lo_reg);
5990 %}
5991 
5992 instruct loadConI13( iRegI dst, immI13 src ) %{
5993   match(Set dst src);
5994 
5995   size(4);
5996   format %{ "MOV    $src,$dst" %}
5997   ins_encode( Set13( src, dst ) );
5998   ins_pipe(ialu_imm);
5999 %}
6000 
6001 instruct loadConP(iRegP dst, immP src) %{
6002   match(Set dst src);
6003   ins_cost(DEFAULT_COST * 3/2);
6004   format %{ "SET    $src,$dst\t!ptr" %}
6005   // This rule does not use "expand" unlike loadConI because then
6006   // the result type is not known to be an Oop.  An ADLC
6007   // enhancement will be needed to make that work - not worth it!
6008 
6009   ins_encode( SetPtr( src, dst ) );
6010   ins_pipe(loadConP);
6011 
6012 %}
6013 
6014 instruct loadConP0(iRegP dst, immP0 src) %{
6015   match(Set dst src);
6016 
6017   size(4);
6018   format %{ "CLR    $dst\t!ptr" %}
6019   ins_encode( SetNull( dst ) );
6020   ins_pipe(ialu_imm);
6021 %}
6022 
6023 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6024   match(Set dst src);
6025   ins_cost(DEFAULT_COST);
6026   format %{ "SET    $src,$dst\t!ptr" %}
6027   ins_encode %{
6028     AddressLiteral polling_page(os::get_polling_page());
6029     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6030   %}
6031   ins_pipe(loadConP_poll);
6032 %}
6033 
6034 instruct loadConN0(iRegN dst, immN0 src) %{
6035   match(Set dst src);
6036 
6037   size(4);
6038   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6039   ins_encode( SetNull( dst ) );
6040   ins_pipe(ialu_imm);
6041 %}
6042 
6043 instruct loadConN(iRegN dst, immN src) %{
6044   match(Set dst src);
6045   ins_cost(DEFAULT_COST * 3/2);
6046   format %{ "SET    $src,$dst\t! compressed ptr" %}
6047   ins_encode %{
6048     Register dst = $dst$$Register;
6049     __ set_narrow_oop((jobject)$src$$constant, dst);
6050   %}
6051   ins_pipe(ialu_hi_lo_reg);
6052 %}
6053 
6054 instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{
6055   // %%% maybe this should work like loadConD
6056   match(Set dst src);
6057   effect(KILL tmp);
6058   ins_cost(DEFAULT_COST * 4);
6059   format %{ "SET64   $src,$dst KILL $tmp\t! long" %}
6060   ins_encode( LdImmL(src, dst, tmp) );
6061   ins_pipe(loadConL);
6062 %}
6063 
6064 instruct loadConL0( iRegL dst, immL0 src ) %{
6065   match(Set dst src);
6066   ins_cost(DEFAULT_COST);
6067   size(4);
6068   format %{ "CLR    $dst\t! long" %}
6069   ins_encode( Set13( src, dst ) );
6070   ins_pipe(ialu_imm);
6071 %}
6072 
6073 instruct loadConL13( iRegL dst, immL13 src ) %{
6074   match(Set dst src);
6075   ins_cost(DEFAULT_COST * 2);
6076 
6077   size(4);
6078   format %{ "MOV    $src,$dst\t! long" %}
6079   ins_encode( Set13( src, dst ) );
6080   ins_pipe(ialu_imm);
6081 %}
6082 
6083 instruct loadConF(regF dst, immF src, o7RegP tmp) %{
6084   match(Set dst src);
6085   effect(KILL tmp);
6086 
6087 #ifdef _LP64
6088   size(8*4);
6089 #else
6090   size(2*4);
6091 #endif
6092 
6093   format %{ "SETHI  hi(&$src),$tmp\t!get float $src from table\n\t"
6094             "LDF    [$tmp+lo(&$src)],$dst" %}
6095   ins_encode %{
6096     address float_address = __ float_constant($src$$constant);
6097     RelocationHolder rspec = internal_word_Relocation::spec(float_address);
6098     AddressLiteral addrlit(float_address, rspec);
6099 
6100     __ sethi(addrlit, $tmp$$Register);
6101     __ ldf(FloatRegisterImpl::S, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
6102   %}
6103   ins_pipe(loadConFD);
6104 %}
6105 
6106 instruct loadConD(regD dst, immD src, o7RegP tmp) %{
6107   match(Set dst src);
6108   effect(KILL tmp);
6109 
6110 #ifdef _LP64
6111   size(8*4);
6112 #else
6113   size(2*4);
6114 #endif
6115 
6116   format %{ "SETHI  hi(&$src),$tmp\t!get double $src from table\n\t"
6117             "LDDF   [$tmp+lo(&$src)],$dst" %}
6118   ins_encode %{
6119     address double_address = __ double_constant($src$$constant);
6120     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
6121     AddressLiteral addrlit(double_address, rspec);
6122 
6123     __ sethi(addrlit, $tmp$$Register);
6124     // XXX This is a quick fix for 6833573.
6125     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
6126     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
6127   %}
6128   ins_pipe(loadConFD);
6129 %}
6130 
6131 // Prefetch instructions.
6132 // Must be safe to execute with invalid address (cannot fault).
6133 
6134 instruct prefetchr( memory mem ) %{
6135   match( PrefetchRead mem );
6136   ins_cost(MEMORY_REF_COST);
6137 
6138   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6139   opcode(Assembler::prefetch_op3);
6140   ins_encode( form3_mem_prefetch_read( mem ) );
6141   ins_pipe(iload_mem);
6142 %}
6143 
6144 instruct prefetchw( memory mem ) %{
6145   match( PrefetchWrite mem );
6146   ins_cost(MEMORY_REF_COST);
6147 
6148   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6149   opcode(Assembler::prefetch_op3);
6150   ins_encode( form3_mem_prefetch_write( mem ) );
6151   ins_pipe(iload_mem);
6152 %}
6153 
6154 
6155 //----------Store Instructions-------------------------------------------------
6156 // Store Byte
6157 instruct storeB(memory mem, iRegI src) %{
6158   match(Set mem (StoreB mem src));
6159   ins_cost(MEMORY_REF_COST);
6160 
6161   size(4);
6162   format %{ "STB    $src,$mem\t! byte" %}
6163   opcode(Assembler::stb_op3);
6164   ins_encode(simple_form3_mem_reg( mem, src ) );
6165   ins_pipe(istore_mem_reg);
6166 %}
6167 
6168 instruct storeB0(memory mem, immI0 src) %{
6169   match(Set mem (StoreB mem src));
6170   ins_cost(MEMORY_REF_COST);
6171 
6172   size(4);
6173   format %{ "STB    $src,$mem\t! byte" %}
6174   opcode(Assembler::stb_op3);
6175   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6176   ins_pipe(istore_mem_zero);
6177 %}
6178 
6179 instruct storeCM0(memory mem, immI0 src) %{
6180   match(Set mem (StoreCM mem src));
6181   ins_cost(MEMORY_REF_COST);
6182 
6183   size(4);
6184   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6185   opcode(Assembler::stb_op3);
6186   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6187   ins_pipe(istore_mem_zero);
6188 %}
6189 
6190 // Store Char/Short
6191 instruct storeC(memory mem, iRegI src) %{
6192   match(Set mem (StoreC mem src));
6193   ins_cost(MEMORY_REF_COST);
6194 
6195   size(4);
6196   format %{ "STH    $src,$mem\t! short" %}
6197   opcode(Assembler::sth_op3);
6198   ins_encode(simple_form3_mem_reg( mem, src ) );
6199   ins_pipe(istore_mem_reg);
6200 %}
6201 
6202 instruct storeC0(memory mem, immI0 src) %{
6203   match(Set mem (StoreC mem src));
6204   ins_cost(MEMORY_REF_COST);
6205 
6206   size(4);
6207   format %{ "STH    $src,$mem\t! short" %}
6208   opcode(Assembler::sth_op3);
6209   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6210   ins_pipe(istore_mem_zero);
6211 %}
6212 
6213 // Store Integer
6214 instruct storeI(memory mem, iRegI src) %{
6215   match(Set mem (StoreI mem src));
6216   ins_cost(MEMORY_REF_COST);
6217 
6218   size(4);
6219   format %{ "STW    $src,$mem" %}
6220   opcode(Assembler::stw_op3);
6221   ins_encode(simple_form3_mem_reg( mem, src ) );
6222   ins_pipe(istore_mem_reg);
6223 %}
6224 
6225 // Store Long
6226 instruct storeL(memory mem, iRegL src) %{
6227   match(Set mem (StoreL mem src));
6228   ins_cost(MEMORY_REF_COST);
6229   size(4);
6230   format %{ "STX    $src,$mem\t! long" %}
6231   opcode(Assembler::stx_op3);
6232   ins_encode(simple_form3_mem_reg( mem, src ) );
6233   ins_pipe(istore_mem_reg);
6234 %}
6235 
6236 instruct storeI0(memory mem, immI0 src) %{
6237   match(Set mem (StoreI mem src));
6238   ins_cost(MEMORY_REF_COST);
6239 
6240   size(4);
6241   format %{ "STW    $src,$mem" %}
6242   opcode(Assembler::stw_op3);
6243   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6244   ins_pipe(istore_mem_zero);
6245 %}
6246 
6247 instruct storeL0(memory mem, immL0 src) %{
6248   match(Set mem (StoreL mem src));
6249   ins_cost(MEMORY_REF_COST);
6250 
6251   size(4);
6252   format %{ "STX    $src,$mem" %}
6253   opcode(Assembler::stx_op3);
6254   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6255   ins_pipe(istore_mem_zero);
6256 %}
6257 
6258 // Store Integer from float register (used after fstoi)
6259 instruct storeI_Freg(memory mem, regF src) %{
6260   match(Set mem (StoreI mem src));
6261   ins_cost(MEMORY_REF_COST);
6262 
6263   size(4);
6264   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6265   opcode(Assembler::stf_op3);
6266   ins_encode(simple_form3_mem_reg( mem, src ) );
6267   ins_pipe(fstoreF_mem_reg);
6268 %}
6269 
6270 // Store Pointer
6271 instruct storeP(memory dst, sp_ptr_RegP src) %{
6272   match(Set dst (StoreP dst src));
6273   ins_cost(MEMORY_REF_COST);
6274   size(4);
6275 
6276 #ifndef _LP64
6277   format %{ "STW    $src,$dst\t! ptr" %}
6278   opcode(Assembler::stw_op3, 0, REGP_OP);
6279 #else
6280   format %{ "STX    $src,$dst\t! ptr" %}
6281   opcode(Assembler::stx_op3, 0, REGP_OP);
6282 #endif
6283   ins_encode( form3_mem_reg( dst, src ) );
6284   ins_pipe(istore_mem_spORreg);
6285 %}
6286 
6287 instruct storeP0(memory dst, immP0 src) %{
6288   match(Set dst (StoreP dst src));
6289   ins_cost(MEMORY_REF_COST);
6290   size(4);
6291 
6292 #ifndef _LP64
6293   format %{ "STW    $src,$dst\t! ptr" %}
6294   opcode(Assembler::stw_op3, 0, REGP_OP);
6295 #else
6296   format %{ "STX    $src,$dst\t! ptr" %}
6297   opcode(Assembler::stx_op3, 0, REGP_OP);
6298 #endif
6299   ins_encode( form3_mem_reg( dst, R_G0 ) );
6300   ins_pipe(istore_mem_zero);
6301 %}
6302 
6303 // Store Compressed Pointer
6304 instruct storeN(memory dst, iRegN src) %{
6305    match(Set dst (StoreN dst src));
6306    ins_cost(MEMORY_REF_COST);
6307    size(4);
6308 
6309    format %{ "STW    $src,$dst\t! compressed ptr" %}
6310    ins_encode %{
6311      Register base = as_Register($dst$$base);
6312      Register index = as_Register($dst$$index);
6313      Register src = $src$$Register;
6314      if (index != G0) {
6315        __ stw(src, base, index);
6316      } else {
6317        __ stw(src, base, $dst$$disp);
6318      }
6319    %}
6320    ins_pipe(istore_mem_spORreg);
6321 %}
6322 
6323 instruct storeN0(memory dst, immN0 src) %{
6324    match(Set dst (StoreN dst src));
6325    ins_cost(MEMORY_REF_COST);
6326    size(4);
6327 
6328    format %{ "STW    $src,$dst\t! compressed ptr" %}
6329    ins_encode %{
6330      Register base = as_Register($dst$$base);
6331      Register index = as_Register($dst$$index);
6332      if (index != G0) {
6333        __ stw(0, base, index);
6334      } else {
6335        __ stw(0, base, $dst$$disp);
6336      }
6337    %}
6338    ins_pipe(istore_mem_zero);
6339 %}
6340 
6341 // Store Double
6342 instruct storeD( memory mem, regD src) %{
6343   match(Set mem (StoreD mem src));
6344   ins_cost(MEMORY_REF_COST);
6345 
6346   size(4);
6347   format %{ "STDF   $src,$mem" %}
6348   opcode(Assembler::stdf_op3);
6349   ins_encode(simple_form3_mem_reg( mem, src ) );
6350   ins_pipe(fstoreD_mem_reg);
6351 %}
6352 
6353 instruct storeD0( memory mem, immD0 src) %{
6354   match(Set mem (StoreD mem src));
6355   ins_cost(MEMORY_REF_COST);
6356 
6357   size(4);
6358   format %{ "STX    $src,$mem" %}
6359   opcode(Assembler::stx_op3);
6360   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6361   ins_pipe(fstoreD_mem_zero);
6362 %}
6363 
6364 // Store Float
6365 instruct storeF( memory mem, regF src) %{
6366   match(Set mem (StoreF mem src));
6367   ins_cost(MEMORY_REF_COST);
6368 
6369   size(4);
6370   format %{ "STF    $src,$mem" %}
6371   opcode(Assembler::stf_op3);
6372   ins_encode(simple_form3_mem_reg( mem, src ) );
6373   ins_pipe(fstoreF_mem_reg);
6374 %}
6375 
6376 instruct storeF0( memory mem, immF0 src) %{
6377   match(Set mem (StoreF mem src));
6378   ins_cost(MEMORY_REF_COST);
6379 
6380   size(4);
6381   format %{ "STW    $src,$mem\t! storeF0" %}
6382   opcode(Assembler::stw_op3);
6383   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6384   ins_pipe(fstoreF_mem_zero);
6385 %}
6386 
6387 // Store Aligned Packed Bytes in Double register to memory
6388 instruct storeA8B(memory mem, regD src) %{
6389   match(Set mem (Store8B mem src));
6390   ins_cost(MEMORY_REF_COST);
6391   size(4);
6392   format %{ "STDF   $src,$mem\t! packed8B" %}
6393   opcode(Assembler::stdf_op3);
6394   ins_encode(simple_form3_mem_reg( mem, src ) );
6395   ins_pipe(fstoreD_mem_reg);
6396 %}
6397 
6398 // Convert oop pointer into compressed form
6399 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6400   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6401   match(Set dst (EncodeP src));
6402   format %{ "encode_heap_oop $src, $dst" %}
6403   ins_encode %{
6404     __ encode_heap_oop($src$$Register, $dst$$Register);
6405   %}
6406   ins_pipe(ialu_reg);
6407 %}
6408 
6409 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6410   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6411   match(Set dst (EncodeP src));
6412   format %{ "encode_heap_oop_not_null $src, $dst" %}
6413   ins_encode %{
6414     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6415   %}
6416   ins_pipe(ialu_reg);
6417 %}
6418 
6419 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6420   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6421             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6422   match(Set dst (DecodeN src));
6423   format %{ "decode_heap_oop $src, $dst" %}
6424   ins_encode %{
6425     __ decode_heap_oop($src$$Register, $dst$$Register);
6426   %}
6427   ins_pipe(ialu_reg);
6428 %}
6429 
6430 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6431   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6432             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6433   match(Set dst (DecodeN src));
6434   format %{ "decode_heap_oop_not_null $src, $dst" %}
6435   ins_encode %{
6436     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6437   %}
6438   ins_pipe(ialu_reg);
6439 %}
6440 
6441 
6442 // Store Zero into Aligned Packed Bytes
6443 instruct storeA8B0(memory mem, immI0 zero) %{
6444   match(Set mem (Store8B mem zero));
6445   ins_cost(MEMORY_REF_COST);
6446   size(4);
6447   format %{ "STX    $zero,$mem\t! packed8B" %}
6448   opcode(Assembler::stx_op3);
6449   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6450   ins_pipe(fstoreD_mem_zero);
6451 %}
6452 
6453 // Store Aligned Packed Chars/Shorts in Double register to memory
6454 instruct storeA4C(memory mem, regD src) %{
6455   match(Set mem (Store4C mem src));
6456   ins_cost(MEMORY_REF_COST);
6457   size(4);
6458   format %{ "STDF   $src,$mem\t! packed4C" %}
6459   opcode(Assembler::stdf_op3);
6460   ins_encode(simple_form3_mem_reg( mem, src ) );
6461   ins_pipe(fstoreD_mem_reg);
6462 %}
6463 
6464 // Store Zero into Aligned Packed Chars/Shorts
6465 instruct storeA4C0(memory mem, immI0 zero) %{
6466   match(Set mem (Store4C mem (Replicate4C zero)));
6467   ins_cost(MEMORY_REF_COST);
6468   size(4);
6469   format %{ "STX    $zero,$mem\t! packed4C" %}
6470   opcode(Assembler::stx_op3);
6471   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6472   ins_pipe(fstoreD_mem_zero);
6473 %}
6474 
6475 // Store Aligned Packed Ints in Double register to memory
6476 instruct storeA2I(memory mem, regD src) %{
6477   match(Set mem (Store2I mem src));
6478   ins_cost(MEMORY_REF_COST);
6479   size(4);
6480   format %{ "STDF   $src,$mem\t! packed2I" %}
6481   opcode(Assembler::stdf_op3);
6482   ins_encode(simple_form3_mem_reg( mem, src ) );
6483   ins_pipe(fstoreD_mem_reg);
6484 %}
6485 
6486 // Store Zero into Aligned Packed Ints
6487 instruct storeA2I0(memory mem, immI0 zero) %{
6488   match(Set mem (Store2I mem zero));
6489   ins_cost(MEMORY_REF_COST);
6490   size(4);
6491   format %{ "STX    $zero,$mem\t! packed2I" %}
6492   opcode(Assembler::stx_op3);
6493   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6494   ins_pipe(fstoreD_mem_zero);
6495 %}
6496 
6497 
6498 //----------MemBar Instructions-----------------------------------------------
6499 // Memory barrier flavors
6500 
6501 instruct membar_acquire() %{
6502   match(MemBarAcquire);
6503   ins_cost(4*MEMORY_REF_COST);
6504 
6505   size(0);
6506   format %{ "MEMBAR-acquire" %}
6507   ins_encode( enc_membar_acquire );
6508   ins_pipe(long_memory_op);
6509 %}
6510 
6511 instruct membar_acquire_lock() %{
6512   match(MemBarAcquire);
6513   predicate(Matcher::prior_fast_lock(n));
6514   ins_cost(0);
6515 
6516   size(0);
6517   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6518   ins_encode( );
6519   ins_pipe(empty);
6520 %}
6521 
6522 instruct membar_release() %{
6523   match(MemBarRelease);
6524   ins_cost(4*MEMORY_REF_COST);
6525 
6526   size(0);
6527   format %{ "MEMBAR-release" %}
6528   ins_encode( enc_membar_release );
6529   ins_pipe(long_memory_op);
6530 %}
6531 
6532 instruct membar_release_lock() %{
6533   match(MemBarRelease);
6534   predicate(Matcher::post_fast_unlock(n));
6535   ins_cost(0);
6536 
6537   size(0);
6538   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6539   ins_encode( );
6540   ins_pipe(empty);
6541 %}
6542 
6543 instruct membar_volatile() %{
6544   match(MemBarVolatile);
6545   ins_cost(4*MEMORY_REF_COST);
6546 
6547   size(4);
6548   format %{ "MEMBAR-volatile" %}
6549   ins_encode( enc_membar_volatile );
6550   ins_pipe(long_memory_op);
6551 %}
6552 
6553 instruct unnecessary_membar_volatile() %{
6554   match(MemBarVolatile);
6555   predicate(Matcher::post_store_load_barrier(n));
6556   ins_cost(0);
6557 
6558   size(0);
6559   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6560   ins_encode( );
6561   ins_pipe(empty);
6562 %}
6563 
6564 //----------Register Move Instructions-----------------------------------------
6565 instruct roundDouble_nop(regD dst) %{
6566   match(Set dst (RoundDouble dst));
6567   ins_cost(0);
6568   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6569   ins_encode( );
6570   ins_pipe(empty);
6571 %}
6572 
6573 
6574 instruct roundFloat_nop(regF dst) %{
6575   match(Set dst (RoundFloat dst));
6576   ins_cost(0);
6577   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6578   ins_encode( );
6579   ins_pipe(empty);
6580 %}
6581 
6582 
6583 // Cast Index to Pointer for unsafe natives
6584 instruct castX2P(iRegX src, iRegP dst) %{
6585   match(Set dst (CastX2P src));
6586 
6587   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6588   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6589   ins_pipe(ialu_reg);
6590 %}
6591 
6592 // Cast Pointer to Index for unsafe natives
6593 instruct castP2X(iRegP src, iRegX dst) %{
6594   match(Set dst (CastP2X src));
6595 
6596   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6597   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6598   ins_pipe(ialu_reg);
6599 %}
6600 
6601 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6602   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6603   match(Set stkSlot src);   // chain rule
6604   ins_cost(MEMORY_REF_COST);
6605   format %{ "STDF   $src,$stkSlot\t!stk" %}
6606   opcode(Assembler::stdf_op3);
6607   ins_encode(simple_form3_mem_reg(stkSlot, src));
6608   ins_pipe(fstoreD_stk_reg);
6609 %}
6610 
6611 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6612   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6613   match(Set dst stkSlot);   // chain rule
6614   ins_cost(MEMORY_REF_COST);
6615   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6616   opcode(Assembler::lddf_op3);
6617   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6618   ins_pipe(floadD_stk);
6619 %}
6620 
6621 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6622   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6623   match(Set stkSlot src);   // chain rule
6624   ins_cost(MEMORY_REF_COST);
6625   format %{ "STF   $src,$stkSlot\t!stk" %}
6626   opcode(Assembler::stf_op3);
6627   ins_encode(simple_form3_mem_reg(stkSlot, src));
6628   ins_pipe(fstoreF_stk_reg);
6629 %}
6630 
6631 //----------Conditional Move---------------------------------------------------
6632 // Conditional move
6633 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6634   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6635   ins_cost(150);
6636   format %{ "MOV$cmp $pcc,$src,$dst" %}
6637   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6638   ins_pipe(ialu_reg);
6639 %}
6640 
6641 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6642   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6643   ins_cost(140);
6644   format %{ "MOV$cmp $pcc,$src,$dst" %}
6645   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6646   ins_pipe(ialu_imm);
6647 %}
6648 
6649 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6650   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6651   ins_cost(150);
6652   size(4);
6653   format %{ "MOV$cmp  $icc,$src,$dst" %}
6654   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6655   ins_pipe(ialu_reg);
6656 %}
6657 
6658 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6659   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6660   ins_cost(140);
6661   size(4);
6662   format %{ "MOV$cmp  $icc,$src,$dst" %}
6663   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6664   ins_pipe(ialu_imm);
6665 %}
6666 
6667 instruct cmovII_U_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6668   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6669   ins_cost(150);
6670   size(4);
6671   format %{ "MOV$cmp  $icc,$src,$dst" %}
6672   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6673   ins_pipe(ialu_reg);
6674 %}
6675 
6676 instruct cmovII_U_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6677   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6678   ins_cost(140);
6679   size(4);
6680   format %{ "MOV$cmp  $icc,$src,$dst" %}
6681   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6682   ins_pipe(ialu_imm);
6683 %}
6684 
6685 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6686   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6687   ins_cost(150);
6688   size(4);
6689   format %{ "MOV$cmp $fcc,$src,$dst" %}
6690   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6691   ins_pipe(ialu_reg);
6692 %}
6693 
6694 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6695   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6696   ins_cost(140);
6697   size(4);
6698   format %{ "MOV$cmp $fcc,$src,$dst" %}
6699   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6700   ins_pipe(ialu_imm);
6701 %}
6702 
6703 // Conditional move for RegN. Only cmov(reg,reg).
6704 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6705   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6706   ins_cost(150);
6707   format %{ "MOV$cmp $pcc,$src,$dst" %}
6708   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6709   ins_pipe(ialu_reg);
6710 %}
6711 
6712 // This instruction also works with CmpN so we don't need cmovNN_reg.
6713 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6714   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6715   ins_cost(150);
6716   size(4);
6717   format %{ "MOV$cmp  $icc,$src,$dst" %}
6718   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6719   ins_pipe(ialu_reg);
6720 %}
6721 
6722 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6723   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6724   ins_cost(150);
6725   size(4);
6726   format %{ "MOV$cmp $fcc,$src,$dst" %}
6727   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6728   ins_pipe(ialu_reg);
6729 %}
6730 
6731 // Conditional move
6732 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6733   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6734   ins_cost(150);
6735   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6736   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6737   ins_pipe(ialu_reg);
6738 %}
6739 
6740 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6741   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6742   ins_cost(140);
6743   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6744   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6745   ins_pipe(ialu_imm);
6746 %}
6747 
6748 // This instruction also works with CmpN so we don't need cmovPN_reg.
6749 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6750   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6751   ins_cost(150);
6752 
6753   size(4);
6754   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6755   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6756   ins_pipe(ialu_reg);
6757 %}
6758 
6759 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6760   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6761   ins_cost(140);
6762 
6763   size(4);
6764   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6765   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6766   ins_pipe(ialu_imm);
6767 %}
6768 
6769 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6770   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6771   ins_cost(150);
6772   size(4);
6773   format %{ "MOV$cmp $fcc,$src,$dst" %}
6774   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6775   ins_pipe(ialu_imm);
6776 %}
6777 
6778 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6779   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6780   ins_cost(140);
6781   size(4);
6782   format %{ "MOV$cmp $fcc,$src,$dst" %}
6783   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6784   ins_pipe(ialu_imm);
6785 %}
6786 
6787 // Conditional move
6788 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6789   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6790   ins_cost(150);
6791   opcode(0x101);
6792   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6793   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6794   ins_pipe(int_conditional_float_move);
6795 %}
6796 
6797 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6798   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6799   ins_cost(150);
6800 
6801   size(4);
6802   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6803   opcode(0x101);
6804   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6805   ins_pipe(int_conditional_float_move);
6806 %}
6807 
6808 // Conditional move,
6809 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6810   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6811   ins_cost(150);
6812   size(4);
6813   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6814   opcode(0x1);
6815   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6816   ins_pipe(int_conditional_double_move);
6817 %}
6818 
6819 // Conditional move
6820 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6821   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6822   ins_cost(150);
6823   size(4);
6824   opcode(0x102);
6825   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6826   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6827   ins_pipe(int_conditional_double_move);
6828 %}
6829 
6830 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
6831   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6832   ins_cost(150);
6833 
6834   size(4);
6835   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6836   opcode(0x102);
6837   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6838   ins_pipe(int_conditional_double_move);
6839 %}
6840 
6841 // Conditional move,
6842 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
6843   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
6844   ins_cost(150);
6845   size(4);
6846   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
6847   opcode(0x2);
6848   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6849   ins_pipe(int_conditional_double_move);
6850 %}
6851 
6852 // Conditional move
6853 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
6854   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6855   ins_cost(150);
6856   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6857   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6858   ins_pipe(ialu_reg);
6859 %}
6860 
6861 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
6862   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6863   ins_cost(140);
6864   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6865   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6866   ins_pipe(ialu_imm);
6867 %}
6868 
6869 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
6870   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6871   ins_cost(150);
6872 
6873   size(4);
6874   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6875   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6876   ins_pipe(ialu_reg);
6877 %}
6878 
6879 
6880 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
6881   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
6882   ins_cost(150);
6883 
6884   size(4);
6885   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
6886   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6887   ins_pipe(ialu_reg);
6888 %}
6889 
6890 
6891 
6892 //----------OS and Locking Instructions----------------------------------------
6893 
6894 // This name is KNOWN by the ADLC and cannot be changed.
6895 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
6896 // for this guy.
6897 instruct tlsLoadP(g2RegP dst) %{
6898   match(Set dst (ThreadLocal));
6899 
6900   size(0);
6901   ins_cost(0);
6902   format %{ "# TLS is in G2" %}
6903   ins_encode( /*empty encoding*/ );
6904   ins_pipe(ialu_none);
6905 %}
6906 
6907 instruct checkCastPP( iRegP dst ) %{
6908   match(Set dst (CheckCastPP dst));
6909 
6910   size(0);
6911   format %{ "# checkcastPP of $dst" %}
6912   ins_encode( /*empty encoding*/ );
6913   ins_pipe(empty);
6914 %}
6915 
6916 
6917 instruct castPP( iRegP dst ) %{
6918   match(Set dst (CastPP dst));
6919   format %{ "# castPP of $dst" %}
6920   ins_encode( /*empty encoding*/ );
6921   ins_pipe(empty);
6922 %}
6923 
6924 instruct castII( iRegI dst ) %{
6925   match(Set dst (CastII dst));
6926   format %{ "# castII of $dst" %}
6927   ins_encode( /*empty encoding*/ );
6928   ins_cost(0);
6929   ins_pipe(empty);
6930 %}
6931 
6932 //----------Arithmetic Instructions--------------------------------------------
6933 // Addition Instructions
6934 // Register Addition
6935 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6936   match(Set dst (AddI src1 src2));
6937 
6938   size(4);
6939   format %{ "ADD    $src1,$src2,$dst" %}
6940   ins_encode %{
6941     __ add($src1$$Register, $src2$$Register, $dst$$Register);
6942   %}
6943   ins_pipe(ialu_reg_reg);
6944 %}
6945 
6946 // Immediate Addition
6947 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
6948   match(Set dst (AddI src1 src2));
6949 
6950   size(4);
6951   format %{ "ADD    $src1,$src2,$dst" %}
6952   opcode(Assembler::add_op3, Assembler::arith_op);
6953   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6954   ins_pipe(ialu_reg_imm);
6955 %}
6956 
6957 // Pointer Register Addition
6958 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
6959   match(Set dst (AddP src1 src2));
6960 
6961   size(4);
6962   format %{ "ADD    $src1,$src2,$dst" %}
6963   opcode(Assembler::add_op3, Assembler::arith_op);
6964   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6965   ins_pipe(ialu_reg_reg);
6966 %}
6967 
6968 // Pointer Immediate Addition
6969 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
6970   match(Set dst (AddP src1 src2));
6971 
6972   size(4);
6973   format %{ "ADD    $src1,$src2,$dst" %}
6974   opcode(Assembler::add_op3, Assembler::arith_op);
6975   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6976   ins_pipe(ialu_reg_imm);
6977 %}
6978 
6979 // Long Addition
6980 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
6981   match(Set dst (AddL src1 src2));
6982 
6983   size(4);
6984   format %{ "ADD    $src1,$src2,$dst\t! long" %}
6985   opcode(Assembler::add_op3, Assembler::arith_op);
6986   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6987   ins_pipe(ialu_reg_reg);
6988 %}
6989 
6990 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
6991   match(Set dst (AddL src1 con));
6992 
6993   size(4);
6994   format %{ "ADD    $src1,$con,$dst" %}
6995   opcode(Assembler::add_op3, Assembler::arith_op);
6996   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
6997   ins_pipe(ialu_reg_imm);
6998 %}
6999 
7000 //----------Conditional_store--------------------------------------------------
7001 // Conditional-store of the updated heap-top.
7002 // Used during allocation of the shared heap.
7003 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7004 
7005 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7006 instruct loadPLocked(iRegP dst, memory mem) %{
7007   match(Set dst (LoadPLocked mem));
7008   ins_cost(MEMORY_REF_COST);
7009 
7010 #ifndef _LP64
7011   size(4);
7012   format %{ "LDUW   $mem,$dst\t! ptr" %}
7013   opcode(Assembler::lduw_op3, 0, REGP_OP);
7014 #else
7015   format %{ "LDX    $mem,$dst\t! ptr" %}
7016   opcode(Assembler::ldx_op3, 0, REGP_OP);
7017 #endif
7018   ins_encode( form3_mem_reg( mem, dst ) );
7019   ins_pipe(iload_mem);
7020 %}
7021 
7022 // LoadL-locked.  Same as a regular long load when used with a compare-swap
7023 instruct loadLLocked(iRegL dst, memory mem) %{
7024   match(Set dst (LoadLLocked mem));
7025   ins_cost(MEMORY_REF_COST);
7026   size(4);
7027   format %{ "LDX    $mem,$dst\t! long" %}
7028   opcode(Assembler::ldx_op3);
7029   ins_encode(simple_form3_mem_reg( mem, dst ) );
7030   ins_pipe(iload_mem);
7031 %}
7032 
7033 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7034   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7035   effect( KILL newval );
7036   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7037             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7038   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7039   ins_pipe( long_memory_op );
7040 %}
7041 
7042 // Conditional-store of an int value.
7043 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7044   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7045   effect( KILL newval );
7046   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7047             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7048   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7049   ins_pipe( long_memory_op );
7050 %}
7051 
7052 // Conditional-store of a long value.
7053 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7054   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7055   effect( KILL newval );
7056   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7057             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7058   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7059   ins_pipe( long_memory_op );
7060 %}
7061 
7062 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7063 
7064 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7065   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7066   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7067   format %{
7068             "MOV    $newval,O7\n\t"
7069             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7070             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7071             "MOV    1,$res\n\t"
7072             "MOVne  xcc,R_G0,$res"
7073   %}
7074   ins_encode( enc_casx(mem_ptr, oldval, newval),
7075               enc_lflags_ne_to_boolean(res) );
7076   ins_pipe( long_memory_op );
7077 %}
7078 
7079 
7080 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7081   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7082   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7083   format %{
7084             "MOV    $newval,O7\n\t"
7085             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7086             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7087             "MOV    1,$res\n\t"
7088             "MOVne  icc,R_G0,$res"
7089   %}
7090   ins_encode( enc_casi(mem_ptr, oldval, newval),
7091               enc_iflags_ne_to_boolean(res) );
7092   ins_pipe( long_memory_op );
7093 %}
7094 
7095 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7096   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7097   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7098   format %{
7099             "MOV    $newval,O7\n\t"
7100             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7101             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7102             "MOV    1,$res\n\t"
7103             "MOVne  xcc,R_G0,$res"
7104   %}
7105 #ifdef _LP64
7106   ins_encode( enc_casx(mem_ptr, oldval, newval),
7107               enc_lflags_ne_to_boolean(res) );
7108 #else
7109   ins_encode( enc_casi(mem_ptr, oldval, newval),
7110               enc_iflags_ne_to_boolean(res) );
7111 #endif
7112   ins_pipe( long_memory_op );
7113 %}
7114 
7115 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7116   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7117   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7118   format %{
7119             "MOV    $newval,O7\n\t"
7120             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7121             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7122             "MOV    1,$res\n\t"
7123             "MOVne  icc,R_G0,$res"
7124   %}
7125   ins_encode( enc_casi(mem_ptr, oldval, newval),
7126               enc_iflags_ne_to_boolean(res) );
7127   ins_pipe( long_memory_op );
7128 %}
7129 
7130 //---------------------
7131 // Subtraction Instructions
7132 // Register Subtraction
7133 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7134   match(Set dst (SubI src1 src2));
7135 
7136   size(4);
7137   format %{ "SUB    $src1,$src2,$dst" %}
7138   opcode(Assembler::sub_op3, Assembler::arith_op);
7139   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7140   ins_pipe(ialu_reg_reg);
7141 %}
7142 
7143 // Immediate Subtraction
7144 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7145   match(Set dst (SubI src1 src2));
7146 
7147   size(4);
7148   format %{ "SUB    $src1,$src2,$dst" %}
7149   opcode(Assembler::sub_op3, Assembler::arith_op);
7150   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7151   ins_pipe(ialu_reg_imm);
7152 %}
7153 
7154 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7155   match(Set dst (SubI zero src2));
7156 
7157   size(4);
7158   format %{ "NEG    $src2,$dst" %}
7159   opcode(Assembler::sub_op3, Assembler::arith_op);
7160   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7161   ins_pipe(ialu_zero_reg);
7162 %}
7163 
7164 // Long subtraction
7165 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7166   match(Set dst (SubL src1 src2));
7167 
7168   size(4);
7169   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7170   opcode(Assembler::sub_op3, Assembler::arith_op);
7171   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7172   ins_pipe(ialu_reg_reg);
7173 %}
7174 
7175 // Immediate Subtraction
7176 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7177   match(Set dst (SubL src1 con));
7178 
7179   size(4);
7180   format %{ "SUB    $src1,$con,$dst\t! long" %}
7181   opcode(Assembler::sub_op3, Assembler::arith_op);
7182   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7183   ins_pipe(ialu_reg_imm);
7184 %}
7185 
7186 // Long negation
7187 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7188   match(Set dst (SubL zero src2));
7189 
7190   size(4);
7191   format %{ "NEG    $src2,$dst\t! long" %}
7192   opcode(Assembler::sub_op3, Assembler::arith_op);
7193   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7194   ins_pipe(ialu_zero_reg);
7195 %}
7196 
7197 // Multiplication Instructions
7198 // Integer Multiplication
7199 // Register Multiplication
7200 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7201   match(Set dst (MulI src1 src2));
7202 
7203   size(4);
7204   format %{ "MULX   $src1,$src2,$dst" %}
7205   opcode(Assembler::mulx_op3, Assembler::arith_op);
7206   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7207   ins_pipe(imul_reg_reg);
7208 %}
7209 
7210 // Immediate Multiplication
7211 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7212   match(Set dst (MulI src1 src2));
7213 
7214   size(4);
7215   format %{ "MULX   $src1,$src2,$dst" %}
7216   opcode(Assembler::mulx_op3, Assembler::arith_op);
7217   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7218   ins_pipe(imul_reg_imm);
7219 %}
7220 
7221 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7222   match(Set dst (MulL src1 src2));
7223   ins_cost(DEFAULT_COST * 5);
7224   size(4);
7225   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7226   opcode(Assembler::mulx_op3, Assembler::arith_op);
7227   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7228   ins_pipe(mulL_reg_reg);
7229 %}
7230 
7231 // Immediate Multiplication
7232 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7233   match(Set dst (MulL src1 src2));
7234   ins_cost(DEFAULT_COST * 5);
7235   size(4);
7236   format %{ "MULX   $src1,$src2,$dst" %}
7237   opcode(Assembler::mulx_op3, Assembler::arith_op);
7238   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7239   ins_pipe(mulL_reg_imm);
7240 %}
7241 
7242 // Integer Division
7243 // Register Division
7244 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7245   match(Set dst (DivI src1 src2));
7246   ins_cost((2+71)*DEFAULT_COST);
7247 
7248   format %{ "SRA     $src2,0,$src2\n\t"
7249             "SRA     $src1,0,$src1\n\t"
7250             "SDIVX   $src1,$src2,$dst" %}
7251   ins_encode( idiv_reg( src1, src2, dst ) );
7252   ins_pipe(sdiv_reg_reg);
7253 %}
7254 
7255 // Immediate Division
7256 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7257   match(Set dst (DivI src1 src2));
7258   ins_cost((2+71)*DEFAULT_COST);
7259 
7260   format %{ "SRA     $src1,0,$src1\n\t"
7261             "SDIVX   $src1,$src2,$dst" %}
7262   ins_encode( idiv_imm( src1, src2, dst ) );
7263   ins_pipe(sdiv_reg_imm);
7264 %}
7265 
7266 //----------Div-By-10-Expansion------------------------------------------------
7267 // Extract hi bits of a 32x32->64 bit multiply.
7268 // Expand rule only, not matched
7269 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7270   effect( DEF dst, USE src1, USE src2 );
7271   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7272             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7273   ins_encode( enc_mul_hi(dst,src1,src2));
7274   ins_pipe(sdiv_reg_reg);
7275 %}
7276 
7277 // Magic constant, reciprocal of 10
7278 instruct loadConI_x66666667(iRegIsafe dst) %{
7279   effect( DEF dst );
7280 
7281   size(8);
7282   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7283   ins_encode( Set32(0x66666667, dst) );
7284   ins_pipe(ialu_hi_lo_reg);
7285 %}
7286 
7287 // Register Shift Right Arithmetic Long by 32-63
7288 instruct sra_31( iRegI dst, iRegI src ) %{
7289   effect( DEF dst, USE src );
7290   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7291   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7292   ins_pipe(ialu_reg_reg);
7293 %}
7294 
7295 // Arithmetic Shift Right by 8-bit immediate
7296 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7297   effect( DEF dst, USE src );
7298   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7299   opcode(Assembler::sra_op3, Assembler::arith_op);
7300   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7301   ins_pipe(ialu_reg_imm);
7302 %}
7303 
7304 // Integer DIV with 10
7305 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7306   match(Set dst (DivI src div));
7307   ins_cost((6+6)*DEFAULT_COST);
7308   expand %{
7309     iRegIsafe tmp1;               // Killed temps;
7310     iRegIsafe tmp2;               // Killed temps;
7311     iRegI tmp3;                   // Killed temps;
7312     iRegI tmp4;                   // Killed temps;
7313     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7314     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7315     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7316     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7317     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7318   %}
7319 %}
7320 
7321 // Register Long Division
7322 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7323   match(Set dst (DivL src1 src2));
7324   ins_cost(DEFAULT_COST*71);
7325   size(4);
7326   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7327   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7328   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7329   ins_pipe(divL_reg_reg);
7330 %}
7331 
7332 // Register Long Division
7333 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7334   match(Set dst (DivL src1 src2));
7335   ins_cost(DEFAULT_COST*71);
7336   size(4);
7337   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7338   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7339   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7340   ins_pipe(divL_reg_imm);
7341 %}
7342 
7343 // Integer Remainder
7344 // Register Remainder
7345 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7346   match(Set dst (ModI src1 src2));
7347   effect( KILL ccr, KILL temp);
7348 
7349   format %{ "SREM   $src1,$src2,$dst" %}
7350   ins_encode( irem_reg(src1, src2, dst, temp) );
7351   ins_pipe(sdiv_reg_reg);
7352 %}
7353 
7354 // Immediate Remainder
7355 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7356   match(Set dst (ModI src1 src2));
7357   effect( KILL ccr, KILL temp);
7358 
7359   format %{ "SREM   $src1,$src2,$dst" %}
7360   ins_encode( irem_imm(src1, src2, dst, temp) );
7361   ins_pipe(sdiv_reg_imm);
7362 %}
7363 
7364 // Register Long Remainder
7365 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7366   effect(DEF dst, USE src1, USE src2);
7367   size(4);
7368   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7369   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7370   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7371   ins_pipe(divL_reg_reg);
7372 %}
7373 
7374 // Register Long Division
7375 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7376   effect(DEF dst, USE src1, USE src2);
7377   size(4);
7378   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7379   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7380   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7381   ins_pipe(divL_reg_imm);
7382 %}
7383 
7384 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7385   effect(DEF dst, USE src1, USE src2);
7386   size(4);
7387   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7388   opcode(Assembler::mulx_op3, Assembler::arith_op);
7389   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7390   ins_pipe(mulL_reg_reg);
7391 %}
7392 
7393 // Immediate Multiplication
7394 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7395   effect(DEF dst, USE src1, USE src2);
7396   size(4);
7397   format %{ "MULX   $src1,$src2,$dst" %}
7398   opcode(Assembler::mulx_op3, Assembler::arith_op);
7399   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7400   ins_pipe(mulL_reg_imm);
7401 %}
7402 
7403 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7404   effect(DEF dst, USE src1, USE src2);
7405   size(4);
7406   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7407   opcode(Assembler::sub_op3, Assembler::arith_op);
7408   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7409   ins_pipe(ialu_reg_reg);
7410 %}
7411 
7412 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7413   effect(DEF dst, USE src1, USE src2);
7414   size(4);
7415   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7416   opcode(Assembler::sub_op3, Assembler::arith_op);
7417   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7418   ins_pipe(ialu_reg_reg);
7419 %}
7420 
7421 // Register Long Remainder
7422 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7423   match(Set dst (ModL src1 src2));
7424   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7425   expand %{
7426     iRegL tmp1;
7427     iRegL tmp2;
7428     divL_reg_reg_1(tmp1, src1, src2);
7429     mulL_reg_reg_1(tmp2, tmp1, src2);
7430     subL_reg_reg_1(dst,  src1, tmp2);
7431   %}
7432 %}
7433 
7434 // Register Long Remainder
7435 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7436   match(Set dst (ModL src1 src2));
7437   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7438   expand %{
7439     iRegL tmp1;
7440     iRegL tmp2;
7441     divL_reg_imm13_1(tmp1, src1, src2);
7442     mulL_reg_imm13_1(tmp2, tmp1, src2);
7443     subL_reg_reg_2  (dst,  src1, tmp2);
7444   %}
7445 %}
7446 
7447 // Integer Shift Instructions
7448 // Register Shift Left
7449 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7450   match(Set dst (LShiftI src1 src2));
7451 
7452   size(4);
7453   format %{ "SLL    $src1,$src2,$dst" %}
7454   opcode(Assembler::sll_op3, Assembler::arith_op);
7455   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7456   ins_pipe(ialu_reg_reg);
7457 %}
7458 
7459 // Register Shift Left Immediate
7460 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7461   match(Set dst (LShiftI src1 src2));
7462 
7463   size(4);
7464   format %{ "SLL    $src1,$src2,$dst" %}
7465   opcode(Assembler::sll_op3, Assembler::arith_op);
7466   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7467   ins_pipe(ialu_reg_imm);
7468 %}
7469 
7470 // Register Shift Left
7471 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7472   match(Set dst (LShiftL src1 src2));
7473 
7474   size(4);
7475   format %{ "SLLX   $src1,$src2,$dst" %}
7476   opcode(Assembler::sllx_op3, Assembler::arith_op);
7477   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7478   ins_pipe(ialu_reg_reg);
7479 %}
7480 
7481 // Register Shift Left Immediate
7482 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7483   match(Set dst (LShiftL src1 src2));
7484 
7485   size(4);
7486   format %{ "SLLX   $src1,$src2,$dst" %}
7487   opcode(Assembler::sllx_op3, Assembler::arith_op);
7488   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7489   ins_pipe(ialu_reg_imm);
7490 %}
7491 
7492 // Register Arithmetic Shift Right
7493 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7494   match(Set dst (RShiftI src1 src2));
7495   size(4);
7496   format %{ "SRA    $src1,$src2,$dst" %}
7497   opcode(Assembler::sra_op3, Assembler::arith_op);
7498   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7499   ins_pipe(ialu_reg_reg);
7500 %}
7501 
7502 // Register Arithmetic Shift Right Immediate
7503 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7504   match(Set dst (RShiftI src1 src2));
7505 
7506   size(4);
7507   format %{ "SRA    $src1,$src2,$dst" %}
7508   opcode(Assembler::sra_op3, Assembler::arith_op);
7509   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7510   ins_pipe(ialu_reg_imm);
7511 %}
7512 
7513 // Register Shift Right Arithmatic Long
7514 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7515   match(Set dst (RShiftL src1 src2));
7516 
7517   size(4);
7518   format %{ "SRAX   $src1,$src2,$dst" %}
7519   opcode(Assembler::srax_op3, Assembler::arith_op);
7520   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7521   ins_pipe(ialu_reg_reg);
7522 %}
7523 
7524 // Register Shift Left Immediate
7525 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7526   match(Set dst (RShiftL src1 src2));
7527 
7528   size(4);
7529   format %{ "SRAX   $src1,$src2,$dst" %}
7530   opcode(Assembler::srax_op3, Assembler::arith_op);
7531   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7532   ins_pipe(ialu_reg_imm);
7533 %}
7534 
7535 // Register Shift Right
7536 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7537   match(Set dst (URShiftI src1 src2));
7538 
7539   size(4);
7540   format %{ "SRL    $src1,$src2,$dst" %}
7541   opcode(Assembler::srl_op3, Assembler::arith_op);
7542   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7543   ins_pipe(ialu_reg_reg);
7544 %}
7545 
7546 // Register Shift Right Immediate
7547 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7548   match(Set dst (URShiftI src1 src2));
7549 
7550   size(4);
7551   format %{ "SRL    $src1,$src2,$dst" %}
7552   opcode(Assembler::srl_op3, Assembler::arith_op);
7553   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7554   ins_pipe(ialu_reg_imm);
7555 %}
7556 
7557 // Register Shift Right
7558 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7559   match(Set dst (URShiftL src1 src2));
7560 
7561   size(4);
7562   format %{ "SRLX   $src1,$src2,$dst" %}
7563   opcode(Assembler::srlx_op3, Assembler::arith_op);
7564   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7565   ins_pipe(ialu_reg_reg);
7566 %}
7567 
7568 // Register Shift Right Immediate
7569 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7570   match(Set dst (URShiftL src1 src2));
7571 
7572   size(4);
7573   format %{ "SRLX   $src1,$src2,$dst" %}
7574   opcode(Assembler::srlx_op3, Assembler::arith_op);
7575   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7576   ins_pipe(ialu_reg_imm);
7577 %}
7578 
7579 // Register Shift Right Immediate with a CastP2X
7580 #ifdef _LP64
7581 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7582   match(Set dst (URShiftL (CastP2X src1) src2));
7583   size(4);
7584   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7585   opcode(Assembler::srlx_op3, Assembler::arith_op);
7586   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7587   ins_pipe(ialu_reg_imm);
7588 %}
7589 #else
7590 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7591   match(Set dst (URShiftI (CastP2X src1) src2));
7592   size(4);
7593   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7594   opcode(Assembler::srl_op3, Assembler::arith_op);
7595   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7596   ins_pipe(ialu_reg_imm);
7597 %}
7598 #endif
7599 
7600 
7601 //----------Floating Point Arithmetic Instructions-----------------------------
7602 
7603 //  Add float single precision
7604 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7605   match(Set dst (AddF src1 src2));
7606 
7607   size(4);
7608   format %{ "FADDS  $src1,$src2,$dst" %}
7609   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7610   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7611   ins_pipe(faddF_reg_reg);
7612 %}
7613 
7614 //  Add float double precision
7615 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7616   match(Set dst (AddD src1 src2));
7617 
7618   size(4);
7619   format %{ "FADDD  $src1,$src2,$dst" %}
7620   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7621   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7622   ins_pipe(faddD_reg_reg);
7623 %}
7624 
7625 //  Sub float single precision
7626 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7627   match(Set dst (SubF src1 src2));
7628 
7629   size(4);
7630   format %{ "FSUBS  $src1,$src2,$dst" %}
7631   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7632   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7633   ins_pipe(faddF_reg_reg);
7634 %}
7635 
7636 //  Sub float double precision
7637 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7638   match(Set dst (SubD src1 src2));
7639 
7640   size(4);
7641   format %{ "FSUBD  $src1,$src2,$dst" %}
7642   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7643   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7644   ins_pipe(faddD_reg_reg);
7645 %}
7646 
7647 //  Mul float single precision
7648 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7649   match(Set dst (MulF src1 src2));
7650 
7651   size(4);
7652   format %{ "FMULS  $src1,$src2,$dst" %}
7653   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7654   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7655   ins_pipe(fmulF_reg_reg);
7656 %}
7657 
7658 //  Mul float double precision
7659 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7660   match(Set dst (MulD src1 src2));
7661 
7662   size(4);
7663   format %{ "FMULD  $src1,$src2,$dst" %}
7664   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7665   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7666   ins_pipe(fmulD_reg_reg);
7667 %}
7668 
7669 //  Div float single precision
7670 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7671   match(Set dst (DivF src1 src2));
7672 
7673   size(4);
7674   format %{ "FDIVS  $src1,$src2,$dst" %}
7675   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7676   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7677   ins_pipe(fdivF_reg_reg);
7678 %}
7679 
7680 //  Div float double precision
7681 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7682   match(Set dst (DivD src1 src2));
7683 
7684   size(4);
7685   format %{ "FDIVD  $src1,$src2,$dst" %}
7686   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7687   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7688   ins_pipe(fdivD_reg_reg);
7689 %}
7690 
7691 //  Absolute float double precision
7692 instruct absD_reg(regD dst, regD src) %{
7693   match(Set dst (AbsD src));
7694 
7695   format %{ "FABSd  $src,$dst" %}
7696   ins_encode(fabsd(dst, src));
7697   ins_pipe(faddD_reg);
7698 %}
7699 
7700 //  Absolute float single precision
7701 instruct absF_reg(regF dst, regF src) %{
7702   match(Set dst (AbsF src));
7703 
7704   format %{ "FABSs  $src,$dst" %}
7705   ins_encode(fabss(dst, src));
7706   ins_pipe(faddF_reg);
7707 %}
7708 
7709 instruct negF_reg(regF dst, regF src) %{
7710   match(Set dst (NegF src));
7711 
7712   size(4);
7713   format %{ "FNEGs  $src,$dst" %}
7714   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7715   ins_encode(form3_opf_rs2F_rdF(src, dst));
7716   ins_pipe(faddF_reg);
7717 %}
7718 
7719 instruct negD_reg(regD dst, regD src) %{
7720   match(Set dst (NegD src));
7721 
7722   format %{ "FNEGd  $src,$dst" %}
7723   ins_encode(fnegd(dst, src));
7724   ins_pipe(faddD_reg);
7725 %}
7726 
7727 //  Sqrt float double precision
7728 instruct sqrtF_reg_reg(regF dst, regF src) %{
7729   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7730 
7731   size(4);
7732   format %{ "FSQRTS $src,$dst" %}
7733   ins_encode(fsqrts(dst, src));
7734   ins_pipe(fdivF_reg_reg);
7735 %}
7736 
7737 //  Sqrt float double precision
7738 instruct sqrtD_reg_reg(regD dst, regD src) %{
7739   match(Set dst (SqrtD src));
7740 
7741   size(4);
7742   format %{ "FSQRTD $src,$dst" %}
7743   ins_encode(fsqrtd(dst, src));
7744   ins_pipe(fdivD_reg_reg);
7745 %}
7746 
7747 //----------Logical Instructions-----------------------------------------------
7748 // And Instructions
7749 // Register And
7750 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7751   match(Set dst (AndI src1 src2));
7752 
7753   size(4);
7754   format %{ "AND    $src1,$src2,$dst" %}
7755   opcode(Assembler::and_op3, Assembler::arith_op);
7756   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7757   ins_pipe(ialu_reg_reg);
7758 %}
7759 
7760 // Immediate And
7761 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7762   match(Set dst (AndI src1 src2));
7763 
7764   size(4);
7765   format %{ "AND    $src1,$src2,$dst" %}
7766   opcode(Assembler::and_op3, Assembler::arith_op);
7767   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7768   ins_pipe(ialu_reg_imm);
7769 %}
7770 
7771 // Register And Long
7772 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7773   match(Set dst (AndL src1 src2));
7774 
7775   ins_cost(DEFAULT_COST);
7776   size(4);
7777   format %{ "AND    $src1,$src2,$dst\t! long" %}
7778   opcode(Assembler::and_op3, Assembler::arith_op);
7779   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7780   ins_pipe(ialu_reg_reg);
7781 %}
7782 
7783 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7784   match(Set dst (AndL src1 con));
7785 
7786   ins_cost(DEFAULT_COST);
7787   size(4);
7788   format %{ "AND    $src1,$con,$dst\t! long" %}
7789   opcode(Assembler::and_op3, Assembler::arith_op);
7790   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7791   ins_pipe(ialu_reg_imm);
7792 %}
7793 
7794 // Or Instructions
7795 // Register Or
7796 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7797   match(Set dst (OrI src1 src2));
7798 
7799   size(4);
7800   format %{ "OR     $src1,$src2,$dst" %}
7801   opcode(Assembler::or_op3, Assembler::arith_op);
7802   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7803   ins_pipe(ialu_reg_reg);
7804 %}
7805 
7806 // Immediate Or
7807 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7808   match(Set dst (OrI src1 src2));
7809 
7810   size(4);
7811   format %{ "OR     $src1,$src2,$dst" %}
7812   opcode(Assembler::or_op3, Assembler::arith_op);
7813   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7814   ins_pipe(ialu_reg_imm);
7815 %}
7816 
7817 // Register Or Long
7818 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7819   match(Set dst (OrL src1 src2));
7820 
7821   ins_cost(DEFAULT_COST);
7822   size(4);
7823   format %{ "OR     $src1,$src2,$dst\t! long" %}
7824   opcode(Assembler::or_op3, Assembler::arith_op);
7825   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7826   ins_pipe(ialu_reg_reg);
7827 %}
7828 
7829 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7830   match(Set dst (OrL src1 con));
7831   ins_cost(DEFAULT_COST*2);
7832 
7833   ins_cost(DEFAULT_COST);
7834   size(4);
7835   format %{ "OR     $src1,$con,$dst\t! long" %}
7836   opcode(Assembler::or_op3, Assembler::arith_op);
7837   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7838   ins_pipe(ialu_reg_imm);
7839 %}
7840 
7841 #ifndef _LP64
7842 
7843 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
7844 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
7845   match(Set dst (OrI src1 (CastP2X src2)));
7846 
7847   size(4);
7848   format %{ "OR     $src1,$src2,$dst" %}
7849   opcode(Assembler::or_op3, Assembler::arith_op);
7850   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7851   ins_pipe(ialu_reg_reg);
7852 %}
7853 
7854 #else
7855 
7856 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
7857   match(Set dst (OrL src1 (CastP2X src2)));
7858 
7859   ins_cost(DEFAULT_COST);
7860   size(4);
7861   format %{ "OR     $src1,$src2,$dst\t! long" %}
7862   opcode(Assembler::or_op3, Assembler::arith_op);
7863   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7864   ins_pipe(ialu_reg_reg);
7865 %}
7866 
7867 #endif
7868 
7869 // Xor Instructions
7870 // Register Xor
7871 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7872   match(Set dst (XorI src1 src2));
7873 
7874   size(4);
7875   format %{ "XOR    $src1,$src2,$dst" %}
7876   opcode(Assembler::xor_op3, Assembler::arith_op);
7877   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7878   ins_pipe(ialu_reg_reg);
7879 %}
7880 
7881 // Immediate Xor
7882 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7883   match(Set dst (XorI src1 src2));
7884 
7885   size(4);
7886   format %{ "XOR    $src1,$src2,$dst" %}
7887   opcode(Assembler::xor_op3, Assembler::arith_op);
7888   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7889   ins_pipe(ialu_reg_imm);
7890 %}
7891 
7892 // Register Xor Long
7893 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7894   match(Set dst (XorL src1 src2));
7895 
7896   ins_cost(DEFAULT_COST);
7897   size(4);
7898   format %{ "XOR    $src1,$src2,$dst\t! long" %}
7899   opcode(Assembler::xor_op3, Assembler::arith_op);
7900   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7901   ins_pipe(ialu_reg_reg);
7902 %}
7903 
7904 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7905   match(Set dst (XorL src1 con));
7906 
7907   ins_cost(DEFAULT_COST);
7908   size(4);
7909   format %{ "XOR    $src1,$con,$dst\t! long" %}
7910   opcode(Assembler::xor_op3, Assembler::arith_op);
7911   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7912   ins_pipe(ialu_reg_imm);
7913 %}
7914 
7915 //----------Convert to Boolean-------------------------------------------------
7916 // Nice hack for 32-bit tests but doesn't work for
7917 // 64-bit pointers.
7918 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
7919   match(Set dst (Conv2B src));
7920   effect( KILL ccr );
7921   ins_cost(DEFAULT_COST*2);
7922   format %{ "CMP    R_G0,$src\n\t"
7923             "ADDX   R_G0,0,$dst" %}
7924   ins_encode( enc_to_bool( src, dst ) );
7925   ins_pipe(ialu_reg_ialu);
7926 %}
7927 
7928 #ifndef _LP64
7929 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
7930   match(Set dst (Conv2B src));
7931   effect( KILL ccr );
7932   ins_cost(DEFAULT_COST*2);
7933   format %{ "CMP    R_G0,$src\n\t"
7934             "ADDX   R_G0,0,$dst" %}
7935   ins_encode( enc_to_bool( src, dst ) );
7936   ins_pipe(ialu_reg_ialu);
7937 %}
7938 #else
7939 instruct convP2B( iRegI dst, iRegP src ) %{
7940   match(Set dst (Conv2B src));
7941   ins_cost(DEFAULT_COST*2);
7942   format %{ "MOV    $src,$dst\n\t"
7943             "MOVRNZ $src,1,$dst" %}
7944   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
7945   ins_pipe(ialu_clr_and_mover);
7946 %}
7947 #endif
7948 
7949 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
7950   match(Set dst (CmpLTMask p q));
7951   effect( KILL ccr );
7952   ins_cost(DEFAULT_COST*4);
7953   format %{ "CMP    $p,$q\n\t"
7954             "MOV    #0,$dst\n\t"
7955             "BLT,a  .+8\n\t"
7956             "MOV    #-1,$dst" %}
7957   ins_encode( enc_ltmask(p,q,dst) );
7958   ins_pipe(ialu_reg_reg_ialu);
7959 %}
7960 
7961 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
7962   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
7963   effect(KILL ccr, TEMP tmp);
7964   ins_cost(DEFAULT_COST*3);
7965 
7966   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
7967             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
7968             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
7969   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
7970   ins_pipe( cadd_cmpltmask );
7971 %}
7972 
7973 instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
7974   match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
7975   effect( KILL ccr, TEMP tmp);
7976   ins_cost(DEFAULT_COST*3);
7977 
7978   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
7979             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
7980             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
7981   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
7982   ins_pipe( cadd_cmpltmask );
7983 %}
7984 
7985 //----------Arithmetic Conversion Instructions---------------------------------
7986 // The conversions operations are all Alpha sorted.  Please keep it that way!
7987 
7988 instruct convD2F_reg(regF dst, regD src) %{
7989   match(Set dst (ConvD2F src));
7990   size(4);
7991   format %{ "FDTOS  $src,$dst" %}
7992   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
7993   ins_encode(form3_opf_rs2D_rdF(src, dst));
7994   ins_pipe(fcvtD2F);
7995 %}
7996 
7997 
7998 // Convert a double to an int in a float register.
7999 // If the double is a NAN, stuff a zero in instead.
8000 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8001   effect(DEF dst, USE src, KILL fcc0);
8002   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8003             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8004             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8005             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8006             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8007       "skip:" %}
8008   ins_encode(form_d2i_helper(src,dst));
8009   ins_pipe(fcvtD2I);
8010 %}
8011 
8012 instruct convD2I_reg(stackSlotI dst, regD src) %{
8013   match(Set dst (ConvD2I src));
8014   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8015   expand %{
8016     regF tmp;
8017     convD2I_helper(tmp, src);
8018     regF_to_stkI(dst, tmp);
8019   %}
8020 %}
8021 
8022 // Convert a double to a long in a double register.
8023 // If the double is a NAN, stuff a zero in instead.
8024 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8025   effect(DEF dst, USE src, KILL fcc0);
8026   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8027             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8028             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8029             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8030             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8031       "skip:" %}
8032   ins_encode(form_d2l_helper(src,dst));
8033   ins_pipe(fcvtD2L);
8034 %}
8035 
8036 
8037 // Double to Long conversion
8038 instruct convD2L_reg(stackSlotL dst, regD src) %{
8039   match(Set dst (ConvD2L src));
8040   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8041   expand %{
8042     regD tmp;
8043     convD2L_helper(tmp, src);
8044     regD_to_stkL(dst, tmp);
8045   %}
8046 %}
8047 
8048 
8049 instruct convF2D_reg(regD dst, regF src) %{
8050   match(Set dst (ConvF2D src));
8051   format %{ "FSTOD  $src,$dst" %}
8052   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8053   ins_encode(form3_opf_rs2F_rdD(src, dst));
8054   ins_pipe(fcvtF2D);
8055 %}
8056 
8057 
8058 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8059   effect(DEF dst, USE src, KILL fcc0);
8060   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8061             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8062             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8063             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8064             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8065       "skip:" %}
8066   ins_encode(form_f2i_helper(src,dst));
8067   ins_pipe(fcvtF2I);
8068 %}
8069 
8070 instruct convF2I_reg(stackSlotI dst, regF src) %{
8071   match(Set dst (ConvF2I src));
8072   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8073   expand %{
8074     regF tmp;
8075     convF2I_helper(tmp, src);
8076     regF_to_stkI(dst, tmp);
8077   %}
8078 %}
8079 
8080 
8081 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8082   effect(DEF dst, USE src, KILL fcc0);
8083   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8084             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8085             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8086             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8087             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8088       "skip:" %}
8089   ins_encode(form_f2l_helper(src,dst));
8090   ins_pipe(fcvtF2L);
8091 %}
8092 
8093 // Float to Long conversion
8094 instruct convF2L_reg(stackSlotL dst, regF src) %{
8095   match(Set dst (ConvF2L src));
8096   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8097   expand %{
8098     regD tmp;
8099     convF2L_helper(tmp, src);
8100     regD_to_stkL(dst, tmp);
8101   %}
8102 %}
8103 
8104 
8105 instruct convI2D_helper(regD dst, regF tmp) %{
8106   effect(USE tmp, DEF dst);
8107   format %{ "FITOD  $tmp,$dst" %}
8108   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8109   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8110   ins_pipe(fcvtI2D);
8111 %}
8112 
8113 instruct convI2D_reg(stackSlotI src, regD dst) %{
8114   match(Set dst (ConvI2D src));
8115   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8116   expand %{
8117     regF tmp;
8118     stkI_to_regF( tmp, src);
8119     convI2D_helper( dst, tmp);
8120   %}
8121 %}
8122 
8123 instruct convI2D_mem( regD_low dst, memory mem ) %{
8124   match(Set dst (ConvI2D (LoadI mem)));
8125   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8126   size(8);
8127   format %{ "LDF    $mem,$dst\n\t"
8128             "FITOD  $dst,$dst" %}
8129   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8130   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8131   ins_pipe(floadF_mem);
8132 %}
8133 
8134 
8135 instruct convI2F_helper(regF dst, regF tmp) %{
8136   effect(DEF dst, USE tmp);
8137   format %{ "FITOS  $tmp,$dst" %}
8138   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8139   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8140   ins_pipe(fcvtI2F);
8141 %}
8142 
8143 instruct convI2F_reg( regF dst, stackSlotI src ) %{
8144   match(Set dst (ConvI2F src));
8145   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8146   expand %{
8147     regF tmp;
8148     stkI_to_regF(tmp,src);
8149     convI2F_helper(dst, tmp);
8150   %}
8151 %}
8152 
8153 instruct convI2F_mem( regF dst, memory mem ) %{
8154   match(Set dst (ConvI2F (LoadI mem)));
8155   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8156   size(8);
8157   format %{ "LDF    $mem,$dst\n\t"
8158             "FITOS  $dst,$dst" %}
8159   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8160   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8161   ins_pipe(floadF_mem);
8162 %}
8163 
8164 
8165 instruct convI2L_reg(iRegL dst, iRegI src) %{
8166   match(Set dst (ConvI2L src));
8167   size(4);
8168   format %{ "SRA    $src,0,$dst\t! int->long" %}
8169   opcode(Assembler::sra_op3, Assembler::arith_op);
8170   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8171   ins_pipe(ialu_reg_reg);
8172 %}
8173 
8174 // Zero-extend convert int to long
8175 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8176   match(Set dst (AndL (ConvI2L src) mask) );
8177   size(4);
8178   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8179   opcode(Assembler::srl_op3, Assembler::arith_op);
8180   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8181   ins_pipe(ialu_reg_reg);
8182 %}
8183 
8184 // Zero-extend long
8185 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8186   match(Set dst (AndL src mask) );
8187   size(4);
8188   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8189   opcode(Assembler::srl_op3, Assembler::arith_op);
8190   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8191   ins_pipe(ialu_reg_reg);
8192 %}
8193 
8194 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8195   match(Set dst (MoveF2I src));
8196   effect(DEF dst, USE src);
8197   ins_cost(MEMORY_REF_COST);
8198 
8199   size(4);
8200   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8201   opcode(Assembler::lduw_op3);
8202   ins_encode(simple_form3_mem_reg( src, dst ) );
8203   ins_pipe(iload_mem);
8204 %}
8205 
8206 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8207   match(Set dst (MoveI2F src));
8208   effect(DEF dst, USE src);
8209   ins_cost(MEMORY_REF_COST);
8210 
8211   size(4);
8212   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8213   opcode(Assembler::ldf_op3);
8214   ins_encode(simple_form3_mem_reg(src, dst));
8215   ins_pipe(floadF_stk);
8216 %}
8217 
8218 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8219   match(Set dst (MoveD2L src));
8220   effect(DEF dst, USE src);
8221   ins_cost(MEMORY_REF_COST);
8222 
8223   size(4);
8224   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8225   opcode(Assembler::ldx_op3);
8226   ins_encode(simple_form3_mem_reg( src, dst ) );
8227   ins_pipe(iload_mem);
8228 %}
8229 
8230 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8231   match(Set dst (MoveL2D src));
8232   effect(DEF dst, USE src);
8233   ins_cost(MEMORY_REF_COST);
8234 
8235   size(4);
8236   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8237   opcode(Assembler::lddf_op3);
8238   ins_encode(simple_form3_mem_reg(src, dst));
8239   ins_pipe(floadD_stk);
8240 %}
8241 
8242 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8243   match(Set dst (MoveF2I src));
8244   effect(DEF dst, USE src);
8245   ins_cost(MEMORY_REF_COST);
8246 
8247   size(4);
8248   format %{ "STF   $src,$dst\t!MoveF2I" %}
8249   opcode(Assembler::stf_op3);
8250   ins_encode(simple_form3_mem_reg(dst, src));
8251   ins_pipe(fstoreF_stk_reg);
8252 %}
8253 
8254 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8255   match(Set dst (MoveI2F src));
8256   effect(DEF dst, USE src);
8257   ins_cost(MEMORY_REF_COST);
8258 
8259   size(4);
8260   format %{ "STW    $src,$dst\t!MoveI2F" %}
8261   opcode(Assembler::stw_op3);
8262   ins_encode(simple_form3_mem_reg( dst, src ) );
8263   ins_pipe(istore_mem_reg);
8264 %}
8265 
8266 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8267   match(Set dst (MoveD2L src));
8268   effect(DEF dst, USE src);
8269   ins_cost(MEMORY_REF_COST);
8270 
8271   size(4);
8272   format %{ "STDF   $src,$dst\t!MoveD2L" %}
8273   opcode(Assembler::stdf_op3);
8274   ins_encode(simple_form3_mem_reg(dst, src));
8275   ins_pipe(fstoreD_stk_reg);
8276 %}
8277 
8278 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8279   match(Set dst (MoveL2D src));
8280   effect(DEF dst, USE src);
8281   ins_cost(MEMORY_REF_COST);
8282 
8283   size(4);
8284   format %{ "STX    $src,$dst\t!MoveL2D" %}
8285   opcode(Assembler::stx_op3);
8286   ins_encode(simple_form3_mem_reg( dst, src ) );
8287   ins_pipe(istore_mem_reg);
8288 %}
8289 
8290 
8291 //-----------
8292 // Long to Double conversion using V8 opcodes.
8293 // Still useful because cheetah traps and becomes
8294 // amazingly slow for some common numbers.
8295 
8296 // Magic constant, 0x43300000
8297 instruct loadConI_x43300000(iRegI dst) %{
8298   effect(DEF dst);
8299   size(4);
8300   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8301   ins_encode(SetHi22(0x43300000, dst));
8302   ins_pipe(ialu_none);
8303 %}
8304 
8305 // Magic constant, 0x41f00000
8306 instruct loadConI_x41f00000(iRegI dst) %{
8307   effect(DEF dst);
8308   size(4);
8309   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8310   ins_encode(SetHi22(0x41f00000, dst));
8311   ins_pipe(ialu_none);
8312 %}
8313 
8314 // Construct a double from two float halves
8315 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8316   effect(DEF dst, USE src1, USE src2);
8317   size(8);
8318   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8319             "FMOVS  $src2.lo,$dst.lo" %}
8320   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8321   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8322   ins_pipe(faddD_reg_reg);
8323 %}
8324 
8325 // Convert integer in high half of a double register (in the lower half of
8326 // the double register file) to double
8327 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8328   effect(DEF dst, USE src);
8329   size(4);
8330   format %{ "FITOD  $src,$dst" %}
8331   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8332   ins_encode(form3_opf_rs2D_rdD(src, dst));
8333   ins_pipe(fcvtLHi2D);
8334 %}
8335 
8336 // Add float double precision
8337 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8338   effect(DEF dst, USE src1, USE src2);
8339   size(4);
8340   format %{ "FADDD  $src1,$src2,$dst" %}
8341   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8342   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8343   ins_pipe(faddD_reg_reg);
8344 %}
8345 
8346 // Sub float double precision
8347 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8348   effect(DEF dst, USE src1, USE src2);
8349   size(4);
8350   format %{ "FSUBD  $src1,$src2,$dst" %}
8351   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8352   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8353   ins_pipe(faddD_reg_reg);
8354 %}
8355 
8356 // Mul float double precision
8357 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8358   effect(DEF dst, USE src1, USE src2);
8359   size(4);
8360   format %{ "FMULD  $src1,$src2,$dst" %}
8361   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8362   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8363   ins_pipe(fmulD_reg_reg);
8364 %}
8365 
8366 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8367   match(Set dst (ConvL2D src));
8368   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8369 
8370   expand %{
8371     regD_low   tmpsrc;
8372     iRegI      ix43300000;
8373     iRegI      ix41f00000;
8374     stackSlotL lx43300000;
8375     stackSlotL lx41f00000;
8376     regD_low   dx43300000;
8377     regD       dx41f00000;
8378     regD       tmp1;
8379     regD_low   tmp2;
8380     regD       tmp3;
8381     regD       tmp4;
8382 
8383     stkL_to_regD(tmpsrc, src);
8384 
8385     loadConI_x43300000(ix43300000);
8386     loadConI_x41f00000(ix41f00000);
8387     regI_to_stkLHi(lx43300000, ix43300000);
8388     regI_to_stkLHi(lx41f00000, ix41f00000);
8389     stkL_to_regD(dx43300000, lx43300000);
8390     stkL_to_regD(dx41f00000, lx41f00000);
8391 
8392     convI2D_regDHi_regD(tmp1, tmpsrc);
8393     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8394     subD_regD_regD(tmp3, tmp2, dx43300000);
8395     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8396     addD_regD_regD(dst, tmp3, tmp4);
8397   %}
8398 %}
8399 
8400 // Long to Double conversion using fast fxtof
8401 instruct convL2D_helper(regD dst, regD tmp) %{
8402   effect(DEF dst, USE tmp);
8403   size(4);
8404   format %{ "FXTOD  $tmp,$dst" %}
8405   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8406   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8407   ins_pipe(fcvtL2D);
8408 %}
8409 
8410 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
8411   predicate(VM_Version::has_fast_fxtof());
8412   match(Set dst (ConvL2D src));
8413   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8414   expand %{
8415     regD tmp;
8416     stkL_to_regD(tmp, src);
8417     convL2D_helper(dst, tmp);
8418   %}
8419 %}
8420 
8421 //-----------
8422 // Long to Float conversion using V8 opcodes.
8423 // Still useful because cheetah traps and becomes
8424 // amazingly slow for some common numbers.
8425 
8426 // Long to Float conversion using fast fxtof
8427 instruct convL2F_helper(regF dst, regD tmp) %{
8428   effect(DEF dst, USE tmp);
8429   size(4);
8430   format %{ "FXTOS  $tmp,$dst" %}
8431   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8432   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8433   ins_pipe(fcvtL2F);
8434 %}
8435 
8436 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
8437   match(Set dst (ConvL2F src));
8438   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8439   expand %{
8440     regD tmp;
8441     stkL_to_regD(tmp, src);
8442     convL2F_helper(dst, tmp);
8443   %}
8444 %}
8445 //-----------
8446 
8447 instruct convL2I_reg(iRegI dst, iRegL src) %{
8448   match(Set dst (ConvL2I src));
8449 #ifndef _LP64
8450   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8451   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8452   ins_pipe(ialu_move_reg_I_to_L);
8453 #else
8454   size(4);
8455   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8456   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8457   ins_pipe(ialu_reg);
8458 #endif
8459 %}
8460 
8461 // Register Shift Right Immediate
8462 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8463   match(Set dst (ConvL2I (RShiftL src cnt)));
8464 
8465   size(4);
8466   format %{ "SRAX   $src,$cnt,$dst" %}
8467   opcode(Assembler::srax_op3, Assembler::arith_op);
8468   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8469   ins_pipe(ialu_reg_imm);
8470 %}
8471 
8472 // Replicate scalar to packed byte values in Double register
8473 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
8474   effect(DEF dst, USE src);
8475   format %{ "SLLX  $src,56,$dst\n\t"
8476             "SRLX  $dst, 8,O7\n\t"
8477             "OR    $dst,O7,$dst\n\t"
8478             "SRLX  $dst,16,O7\n\t"
8479             "OR    $dst,O7,$dst\n\t"
8480             "SRLX  $dst,32,O7\n\t"
8481             "OR    $dst,O7,$dst\t! replicate8B" %}
8482   ins_encode( enc_repl8b(src, dst));
8483   ins_pipe(ialu_reg);
8484 %}
8485 
8486 // Replicate scalar to packed byte values in Double register
8487 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
8488   match(Set dst (Replicate8B src));
8489   expand %{
8490     iRegL tmp;
8491     Repl8B_reg_helper(tmp, src);
8492     regL_to_stkD(dst, tmp);
8493   %}
8494 %}
8495 
8496 // Replicate scalar constant to packed byte values in Double register
8497 instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{
8498   match(Set dst (Replicate8B src));
8499 #ifdef _LP64
8500   size(36);
8501 #else
8502   size(8);
8503 #endif
8504   format %{ "SETHI  hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t"
8505             "LDDF   [$tmp+lo(&Repl8($src))],$dst" %}
8506   ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) );
8507   ins_pipe(loadConFD);
8508 %}
8509 
8510 // Replicate scalar to packed char values into stack slot
8511 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
8512   effect(DEF dst, USE src);
8513   format %{ "SLLX  $src,48,$dst\n\t"
8514             "SRLX  $dst,16,O7\n\t"
8515             "OR    $dst,O7,$dst\n\t"
8516             "SRLX  $dst,32,O7\n\t"
8517             "OR    $dst,O7,$dst\t! replicate4C" %}
8518   ins_encode( enc_repl4s(src, dst) );
8519   ins_pipe(ialu_reg);
8520 %}
8521 
8522 // Replicate scalar to packed char values into stack slot
8523 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
8524   match(Set dst (Replicate4C src));
8525   expand %{
8526     iRegL tmp;
8527     Repl4C_reg_helper(tmp, src);
8528     regL_to_stkD(dst, tmp);
8529   %}
8530 %}
8531 
8532 // Replicate scalar constant to packed char values in Double register
8533 instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{
8534   match(Set dst (Replicate4C src));
8535 #ifdef _LP64
8536   size(36);
8537 #else
8538   size(8);
8539 #endif
8540   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t"
8541             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
8542   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
8543   ins_pipe(loadConFD);
8544 %}
8545 
8546 // Replicate scalar to packed short values into stack slot
8547 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
8548   effect(DEF dst, USE src);
8549   format %{ "SLLX  $src,48,$dst\n\t"
8550             "SRLX  $dst,16,O7\n\t"
8551             "OR    $dst,O7,$dst\n\t"
8552             "SRLX  $dst,32,O7\n\t"
8553             "OR    $dst,O7,$dst\t! replicate4S" %}
8554   ins_encode( enc_repl4s(src, dst) );
8555   ins_pipe(ialu_reg);
8556 %}
8557 
8558 // Replicate scalar to packed short values into stack slot
8559 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
8560   match(Set dst (Replicate4S src));
8561   expand %{
8562     iRegL tmp;
8563     Repl4S_reg_helper(tmp, src);
8564     regL_to_stkD(dst, tmp);
8565   %}
8566 %}
8567 
8568 // Replicate scalar constant to packed short values in Double register
8569 instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{
8570   match(Set dst (Replicate4S src));
8571 #ifdef _LP64
8572   size(36);
8573 #else
8574   size(8);
8575 #endif
8576   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t"
8577             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
8578   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
8579   ins_pipe(loadConFD);
8580 %}
8581 
8582 // Replicate scalar to packed int values in Double register
8583 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
8584   effect(DEF dst, USE src);
8585   format %{ "SLLX  $src,32,$dst\n\t"
8586             "SRLX  $dst,32,O7\n\t"
8587             "OR    $dst,O7,$dst\t! replicate2I" %}
8588   ins_encode( enc_repl2i(src, dst));
8589   ins_pipe(ialu_reg);
8590 %}
8591 
8592 // Replicate scalar to packed int values in Double register
8593 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
8594   match(Set dst (Replicate2I src));
8595   expand %{
8596     iRegL tmp;
8597     Repl2I_reg_helper(tmp, src);
8598     regL_to_stkD(dst, tmp);
8599   %}
8600 %}
8601 
8602 // Replicate scalar zero constant to packed int values in Double register
8603 instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{
8604   match(Set dst (Replicate2I src));
8605 #ifdef _LP64
8606   size(36);
8607 #else
8608   size(8);
8609 #endif
8610   format %{ "SETHI  hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t"
8611             "LDDF   [$tmp+lo(&Repl2($src))],$dst" %}
8612   ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) );
8613   ins_pipe(loadConFD);
8614 %}
8615 
8616 //----------Control Flow Instructions------------------------------------------
8617 // Compare Instructions
8618 // Compare Integers
8619 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8620   match(Set icc (CmpI op1 op2));
8621   effect( DEF icc, USE op1, USE op2 );
8622 
8623   size(4);
8624   format %{ "CMP    $op1,$op2" %}
8625   opcode(Assembler::subcc_op3, Assembler::arith_op);
8626   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8627   ins_pipe(ialu_cconly_reg_reg);
8628 %}
8629 
8630 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8631   match(Set icc (CmpU op1 op2));
8632 
8633   size(4);
8634   format %{ "CMP    $op1,$op2\t! unsigned" %}
8635   opcode(Assembler::subcc_op3, Assembler::arith_op);
8636   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8637   ins_pipe(ialu_cconly_reg_reg);
8638 %}
8639 
8640 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8641   match(Set icc (CmpI op1 op2));
8642   effect( DEF icc, USE op1 );
8643 
8644   size(4);
8645   format %{ "CMP    $op1,$op2" %}
8646   opcode(Assembler::subcc_op3, Assembler::arith_op);
8647   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8648   ins_pipe(ialu_cconly_reg_imm);
8649 %}
8650 
8651 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8652   match(Set icc (CmpI (AndI op1 op2) zero));
8653 
8654   size(4);
8655   format %{ "BTST   $op2,$op1" %}
8656   opcode(Assembler::andcc_op3, Assembler::arith_op);
8657   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8658   ins_pipe(ialu_cconly_reg_reg_zero);
8659 %}
8660 
8661 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8662   match(Set icc (CmpI (AndI op1 op2) zero));
8663 
8664   size(4);
8665   format %{ "BTST   $op2,$op1" %}
8666   opcode(Assembler::andcc_op3, Assembler::arith_op);
8667   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8668   ins_pipe(ialu_cconly_reg_imm_zero);
8669 %}
8670 
8671 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8672   match(Set xcc (CmpL op1 op2));
8673   effect( DEF xcc, USE op1, USE op2 );
8674 
8675   size(4);
8676   format %{ "CMP    $op1,$op2\t\t! long" %}
8677   opcode(Assembler::subcc_op3, Assembler::arith_op);
8678   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8679   ins_pipe(ialu_cconly_reg_reg);
8680 %}
8681 
8682 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8683   match(Set xcc (CmpL op1 con));
8684   effect( DEF xcc, USE op1, USE con );
8685 
8686   size(4);
8687   format %{ "CMP    $op1,$con\t\t! long" %}
8688   opcode(Assembler::subcc_op3, Assembler::arith_op);
8689   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8690   ins_pipe(ialu_cconly_reg_reg);
8691 %}
8692 
8693 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8694   match(Set xcc (CmpL (AndL op1 op2) zero));
8695   effect( DEF xcc, USE op1, USE op2 );
8696 
8697   size(4);
8698   format %{ "BTST   $op1,$op2\t\t! long" %}
8699   opcode(Assembler::andcc_op3, Assembler::arith_op);
8700   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8701   ins_pipe(ialu_cconly_reg_reg);
8702 %}
8703 
8704 // useful for checking the alignment of a pointer:
8705 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8706   match(Set xcc (CmpL (AndL op1 con) zero));
8707   effect( DEF xcc, USE op1, USE con );
8708 
8709   size(4);
8710   format %{ "BTST   $op1,$con\t\t! long" %}
8711   opcode(Assembler::andcc_op3, Assembler::arith_op);
8712   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8713   ins_pipe(ialu_cconly_reg_reg);
8714 %}
8715 
8716 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
8717   match(Set icc (CmpU op1 op2));
8718 
8719   size(4);
8720   format %{ "CMP    $op1,$op2\t! unsigned" %}
8721   opcode(Assembler::subcc_op3, Assembler::arith_op);
8722   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8723   ins_pipe(ialu_cconly_reg_imm);
8724 %}
8725 
8726 // Compare Pointers
8727 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8728   match(Set pcc (CmpP op1 op2));
8729 
8730   size(4);
8731   format %{ "CMP    $op1,$op2\t! ptr" %}
8732   opcode(Assembler::subcc_op3, Assembler::arith_op);
8733   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8734   ins_pipe(ialu_cconly_reg_reg);
8735 %}
8736 
8737 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8738   match(Set pcc (CmpP op1 op2));
8739 
8740   size(4);
8741   format %{ "CMP    $op1,$op2\t! ptr" %}
8742   opcode(Assembler::subcc_op3, Assembler::arith_op);
8743   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8744   ins_pipe(ialu_cconly_reg_imm);
8745 %}
8746 
8747 // Compare Narrow oops
8748 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
8749   match(Set icc (CmpN op1 op2));
8750 
8751   size(4);
8752   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8753   opcode(Assembler::subcc_op3, Assembler::arith_op);
8754   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8755   ins_pipe(ialu_cconly_reg_reg);
8756 %}
8757 
8758 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
8759   match(Set icc (CmpN op1 op2));
8760 
8761   size(4);
8762   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8763   opcode(Assembler::subcc_op3, Assembler::arith_op);
8764   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8765   ins_pipe(ialu_cconly_reg_imm);
8766 %}
8767 
8768 //----------Max and Min--------------------------------------------------------
8769 // Min Instructions
8770 // Conditional move for min
8771 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
8772   effect( USE_DEF op2, USE op1, USE icc );
8773 
8774   size(4);
8775   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
8776   opcode(Assembler::less);
8777   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8778   ins_pipe(ialu_reg_flags);
8779 %}
8780 
8781 // Min Register with Register.
8782 instruct minI_eReg(iRegI op1, iRegI op2) %{
8783   match(Set op2 (MinI op1 op2));
8784   ins_cost(DEFAULT_COST*2);
8785   expand %{
8786     flagsReg icc;
8787     compI_iReg(icc,op1,op2);
8788     cmovI_reg_lt(op2,op1,icc);
8789   %}
8790 %}
8791 
8792 // Max Instructions
8793 // Conditional move for max
8794 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
8795   effect( USE_DEF op2, USE op1, USE icc );
8796   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
8797   opcode(Assembler::greater);
8798   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8799   ins_pipe(ialu_reg_flags);
8800 %}
8801 
8802 // Max Register with Register
8803 instruct maxI_eReg(iRegI op1, iRegI op2) %{
8804   match(Set op2 (MaxI op1 op2));
8805   ins_cost(DEFAULT_COST*2);
8806   expand %{
8807     flagsReg icc;
8808     compI_iReg(icc,op1,op2);
8809     cmovI_reg_gt(op2,op1,icc);
8810   %}
8811 %}
8812 
8813 
8814 //----------Float Compares----------------------------------------------------
8815 // Compare floating, generate condition code
8816 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
8817   match(Set fcc (CmpF src1 src2));
8818 
8819   size(4);
8820   format %{ "FCMPs  $fcc,$src1,$src2" %}
8821   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
8822   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
8823   ins_pipe(faddF_fcc_reg_reg_zero);
8824 %}
8825 
8826 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
8827   match(Set fcc (CmpD src1 src2));
8828 
8829   size(4);
8830   format %{ "FCMPd  $fcc,$src1,$src2" %}
8831   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
8832   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
8833   ins_pipe(faddD_fcc_reg_reg_zero);
8834 %}
8835 
8836 
8837 // Compare floating, generate -1,0,1
8838 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
8839   match(Set dst (CmpF3 src1 src2));
8840   effect(KILL fcc0);
8841   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8842   format %{ "fcmpl  $dst,$src1,$src2" %}
8843   // Primary = float
8844   opcode( true );
8845   ins_encode( floating_cmp( dst, src1, src2 ) );
8846   ins_pipe( floating_cmp );
8847 %}
8848 
8849 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
8850   match(Set dst (CmpD3 src1 src2));
8851   effect(KILL fcc0);
8852   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8853   format %{ "dcmpl  $dst,$src1,$src2" %}
8854   // Primary = double (not float)
8855   opcode( false );
8856   ins_encode( floating_cmp( dst, src1, src2 ) );
8857   ins_pipe( floating_cmp );
8858 %}
8859 
8860 //----------Branches---------------------------------------------------------
8861 // Jump
8862 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
8863 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
8864   match(Jump switch_val);
8865 
8866   ins_cost(350);
8867 
8868   format %{  "SETHI  [hi(table_base)],O7\n\t"
8869              "ADD    O7, lo(table_base), O7\n\t"
8870              "LD     [O7+$switch_val], O7\n\t"
8871              "JUMP   O7"
8872          %}
8873   ins_encode( jump_enc( switch_val, table) );
8874   ins_pc_relative(1);
8875   ins_pipe(ialu_reg_reg);
8876 %}
8877 
8878 // Direct Branch.  Use V8 version with longer range.
8879 instruct branch(label labl) %{
8880   match(Goto);
8881   effect(USE labl);
8882 
8883   size(8);
8884   ins_cost(BRANCH_COST);
8885   format %{ "BA     $labl" %}
8886   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
8887   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
8888   ins_encode( enc_ba( labl ) );
8889   ins_pc_relative(1);
8890   ins_pipe(br);
8891 %}
8892 
8893 // Conditional Direct Branch
8894 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
8895   match(If cmp icc);
8896   effect(USE labl);
8897 
8898   size(8);
8899   ins_cost(BRANCH_COST);
8900   format %{ "BP$cmp   $icc,$labl" %}
8901   // Prim = bits 24-22, Secnd = bits 31-30
8902   ins_encode( enc_bp( labl, cmp, icc ) );
8903   ins_pc_relative(1);
8904   ins_pipe(br_cc);
8905 %}
8906 
8907 // Branch-on-register tests all 64 bits.  We assume that values
8908 // in 64-bit registers always remains zero or sign extended
8909 // unless our code munges the high bits.  Interrupts can chop
8910 // the high order bits to zero or sign at any time.
8911 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
8912   match(If cmp (CmpI op1 zero));
8913   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8914   effect(USE labl);
8915 
8916   size(8);
8917   ins_cost(BRANCH_COST);
8918   format %{ "BR$cmp   $op1,$labl" %}
8919   ins_encode( enc_bpr( labl, cmp, op1 ) );
8920   ins_pc_relative(1);
8921   ins_pipe(br_reg);
8922 %}
8923 
8924 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
8925   match(If cmp (CmpP op1 null));
8926   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8927   effect(USE labl);
8928 
8929   size(8);
8930   ins_cost(BRANCH_COST);
8931   format %{ "BR$cmp   $op1,$labl" %}
8932   ins_encode( enc_bpr( labl, cmp, op1 ) );
8933   ins_pc_relative(1);
8934   ins_pipe(br_reg);
8935 %}
8936 
8937 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
8938   match(If cmp (CmpL op1 zero));
8939   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8940   effect(USE labl);
8941 
8942   size(8);
8943   ins_cost(BRANCH_COST);
8944   format %{ "BR$cmp   $op1,$labl" %}
8945   ins_encode( enc_bpr( labl, cmp, op1 ) );
8946   ins_pc_relative(1);
8947   ins_pipe(br_reg);
8948 %}
8949 
8950 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
8951   match(If cmp icc);
8952   effect(USE labl);
8953 
8954   format %{ "BP$cmp  $icc,$labl" %}
8955   // Prim = bits 24-22, Secnd = bits 31-30
8956   ins_encode( enc_bp( labl, cmp, icc ) );
8957   ins_pc_relative(1);
8958   ins_pipe(br_cc);
8959 %}
8960 
8961 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
8962   match(If cmp pcc);
8963   effect(USE labl);
8964 
8965   size(8);
8966   ins_cost(BRANCH_COST);
8967   format %{ "BP$cmp  $pcc,$labl" %}
8968   // Prim = bits 24-22, Secnd = bits 31-30
8969   ins_encode( enc_bpx( labl, cmp, pcc ) );
8970   ins_pc_relative(1);
8971   ins_pipe(br_cc);
8972 %}
8973 
8974 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
8975   match(If cmp fcc);
8976   effect(USE labl);
8977 
8978   size(8);
8979   ins_cost(BRANCH_COST);
8980   format %{ "FBP$cmp $fcc,$labl" %}
8981   // Prim = bits 24-22, Secnd = bits 31-30
8982   ins_encode( enc_fbp( labl, cmp, fcc ) );
8983   ins_pc_relative(1);
8984   ins_pipe(br_fcc);
8985 %}
8986 
8987 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
8988   match(CountedLoopEnd cmp icc);
8989   effect(USE labl);
8990 
8991   size(8);
8992   ins_cost(BRANCH_COST);
8993   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
8994   // Prim = bits 24-22, Secnd = bits 31-30
8995   ins_encode( enc_bp( labl, cmp, icc ) );
8996   ins_pc_relative(1);
8997   ins_pipe(br_cc);
8998 %}
8999 
9000 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9001   match(CountedLoopEnd cmp icc);
9002   effect(USE labl);
9003 
9004   size(8);
9005   ins_cost(BRANCH_COST);
9006   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9007   // Prim = bits 24-22, Secnd = bits 31-30
9008   ins_encode( enc_bp( labl, cmp, icc ) );
9009   ins_pc_relative(1);
9010   ins_pipe(br_cc);
9011 %}
9012 
9013 // ============================================================================
9014 // Long Compare
9015 //
9016 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9017 // is tricky.  The flavor of compare used depends on whether we are testing
9018 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9019 // The GE test is the negated LT test.  The LE test can be had by commuting
9020 // the operands (yielding a GE test) and then negating; negate again for the
9021 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9022 // NE test is negated from that.
9023 
9024 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9025 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9026 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9027 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9028 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9029 // foo match ends up with the wrong leaf.  One fix is to not match both
9030 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9031 // both forms beat the trinary form of long-compare and both are very useful
9032 // on Intel which has so few registers.
9033 
9034 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9035   match(If cmp xcc);
9036   effect(USE labl);
9037 
9038   size(8);
9039   ins_cost(BRANCH_COST);
9040   format %{ "BP$cmp   $xcc,$labl" %}
9041   // Prim = bits 24-22, Secnd = bits 31-30
9042   ins_encode( enc_bpl( labl, cmp, xcc ) );
9043   ins_pc_relative(1);
9044   ins_pipe(br_cc);
9045 %}
9046 
9047 // Manifest a CmpL3 result in an integer register.  Very painful.
9048 // This is the test to avoid.
9049 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9050   match(Set dst (CmpL3 src1 src2) );
9051   effect( KILL ccr );
9052   ins_cost(6*DEFAULT_COST);
9053   size(24);
9054   format %{ "CMP    $src1,$src2\t\t! long\n"
9055           "\tBLT,a,pn done\n"
9056           "\tMOV    -1,$dst\t! delay slot\n"
9057           "\tBGT,a,pn done\n"
9058           "\tMOV    1,$dst\t! delay slot\n"
9059           "\tCLR    $dst\n"
9060     "done:"     %}
9061   ins_encode( cmpl_flag(src1,src2,dst) );
9062   ins_pipe(cmpL_reg);
9063 %}
9064 
9065 // Conditional move
9066 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9067   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9068   ins_cost(150);
9069   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9070   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9071   ins_pipe(ialu_reg);
9072 %}
9073 
9074 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9075   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9076   ins_cost(140);
9077   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9078   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9079   ins_pipe(ialu_imm);
9080 %}
9081 
9082 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9083   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9084   ins_cost(150);
9085   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9086   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9087   ins_pipe(ialu_reg);
9088 %}
9089 
9090 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9091   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9092   ins_cost(140);
9093   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9094   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9095   ins_pipe(ialu_imm);
9096 %}
9097 
9098 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9099   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9100   ins_cost(150);
9101   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9102   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9103   ins_pipe(ialu_reg);
9104 %}
9105 
9106 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9107   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9108   ins_cost(150);
9109   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9110   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9111   ins_pipe(ialu_reg);
9112 %}
9113 
9114 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9115   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9116   ins_cost(140);
9117   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9118   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9119   ins_pipe(ialu_imm);
9120 %}
9121 
9122 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9123   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9124   ins_cost(150);
9125   opcode(0x101);
9126   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9127   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9128   ins_pipe(int_conditional_float_move);
9129 %}
9130 
9131 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9132   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9133   ins_cost(150);
9134   opcode(0x102);
9135   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9136   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9137   ins_pipe(int_conditional_float_move);
9138 %}
9139 
9140 // ============================================================================
9141 // Safepoint Instruction
9142 instruct safePoint_poll(iRegP poll) %{
9143   match(SafePoint poll);
9144   effect(USE poll);
9145 
9146   size(4);
9147 #ifdef _LP64
9148   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9149 #else
9150   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9151 #endif
9152   ins_encode %{
9153     __ relocate(relocInfo::poll_type);
9154     __ ld_ptr($poll$$Register, 0, G0);
9155   %}
9156   ins_pipe(loadPollP);
9157 %}
9158 
9159 // ============================================================================
9160 // Call Instructions
9161 // Call Java Static Instruction
9162 instruct CallStaticJavaDirect( method meth ) %{
9163   match(CallStaticJava);
9164   effect(USE meth);
9165 
9166   size(8);
9167   ins_cost(CALL_COST);
9168   format %{ "CALL,static  ; NOP ==> " %}
9169   ins_encode( Java_Static_Call( meth ), call_epilog );
9170   ins_pc_relative(1);
9171   ins_pipe(simple_call);
9172 %}
9173 
9174 // Call Java Dynamic Instruction
9175 instruct CallDynamicJavaDirect( method meth ) %{
9176   match(CallDynamicJava);
9177   effect(USE meth);
9178 
9179   ins_cost(CALL_COST);
9180   format %{ "SET    (empty),R_G5\n\t"
9181             "CALL,dynamic  ; NOP ==> " %}
9182   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9183   ins_pc_relative(1);
9184   ins_pipe(call);
9185 %}
9186 
9187 // Call Runtime Instruction
9188 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9189   match(CallRuntime);
9190   effect(USE meth, KILL l7);
9191   ins_cost(CALL_COST);
9192   format %{ "CALL,runtime" %}
9193   ins_encode( Java_To_Runtime( meth ),
9194               call_epilog, adjust_long_from_native_call );
9195   ins_pc_relative(1);
9196   ins_pipe(simple_call);
9197 %}
9198 
9199 // Call runtime without safepoint - same as CallRuntime
9200 instruct CallLeafDirect(method meth, l7RegP l7) %{
9201   match(CallLeaf);
9202   effect(USE meth, KILL l7);
9203   ins_cost(CALL_COST);
9204   format %{ "CALL,runtime leaf" %}
9205   ins_encode( Java_To_Runtime( meth ),
9206               call_epilog,
9207               adjust_long_from_native_call );
9208   ins_pc_relative(1);
9209   ins_pipe(simple_call);
9210 %}
9211 
9212 // Call runtime without safepoint - same as CallLeaf
9213 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9214   match(CallLeafNoFP);
9215   effect(USE meth, KILL l7);
9216   ins_cost(CALL_COST);
9217   format %{ "CALL,runtime leaf nofp" %}
9218   ins_encode( Java_To_Runtime( meth ),
9219               call_epilog,
9220               adjust_long_from_native_call );
9221   ins_pc_relative(1);
9222   ins_pipe(simple_call);
9223 %}
9224 
9225 // Tail Call; Jump from runtime stub to Java code.
9226 // Also known as an 'interprocedural jump'.
9227 // Target of jump will eventually return to caller.
9228 // TailJump below removes the return address.
9229 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9230   match(TailCall jump_target method_oop );
9231 
9232   ins_cost(CALL_COST);
9233   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9234   ins_encode(form_jmpl(jump_target));
9235   ins_pipe(tail_call);
9236 %}
9237 
9238 
9239 // Return Instruction
9240 instruct Ret() %{
9241   match(Return);
9242 
9243   // The epilogue node did the ret already.
9244   size(0);
9245   format %{ "! return" %}
9246   ins_encode();
9247   ins_pipe(empty);
9248 %}
9249 
9250 
9251 // Tail Jump; remove the return address; jump to target.
9252 // TailCall above leaves the return address around.
9253 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
9254 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
9255 // "restore" before this instruction (in Epilogue), we need to materialize it
9256 // in %i0.
9257 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
9258   match( TailJump jump_target ex_oop );
9259   ins_cost(CALL_COST);
9260   format %{ "! discard R_O7\n\t"
9261             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
9262   ins_encode(form_jmpl_set_exception_pc(jump_target));
9263   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
9264   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
9265   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
9266   ins_pipe(tail_call);
9267 %}
9268 
9269 // Create exception oop: created by stack-crawling runtime code.
9270 // Created exception is now available to this handler, and is setup
9271 // just prior to jumping to this handler.  No code emitted.
9272 instruct CreateException( o0RegP ex_oop )
9273 %{
9274   match(Set ex_oop (CreateEx));
9275   ins_cost(0);
9276 
9277   size(0);
9278   // use the following format syntax
9279   format %{ "! exception oop is in R_O0; no code emitted" %}
9280   ins_encode();
9281   ins_pipe(empty);
9282 %}
9283 
9284 
9285 // Rethrow exception:
9286 // The exception oop will come in the first argument position.
9287 // Then JUMP (not call) to the rethrow stub code.
9288 instruct RethrowException()
9289 %{
9290   match(Rethrow);
9291   ins_cost(CALL_COST);
9292 
9293   // use the following format syntax
9294   format %{ "Jmp    rethrow_stub" %}
9295   ins_encode(enc_rethrow);
9296   ins_pipe(tail_call);
9297 %}
9298 
9299 
9300 // Die now
9301 instruct ShouldNotReachHere( )
9302 %{
9303   match(Halt);
9304   ins_cost(CALL_COST);
9305 
9306   size(4);
9307   // Use the following format syntax
9308   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
9309   ins_encode( form2_illtrap() );
9310   ins_pipe(tail_call);
9311 %}
9312 
9313 // ============================================================================
9314 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
9315 // array for an instance of the superklass.  Set a hidden internal cache on a
9316 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
9317 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
9318 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
9319   match(Set index (PartialSubtypeCheck sub super));
9320   effect( KILL pcc, KILL o7 );
9321   ins_cost(DEFAULT_COST*10);
9322   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
9323   ins_encode( enc_PartialSubtypeCheck() );
9324   ins_pipe(partial_subtype_check_pipe);
9325 %}
9326 
9327 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
9328   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
9329   effect( KILL idx, KILL o7 );
9330   ins_cost(DEFAULT_COST*10);
9331   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
9332   ins_encode( enc_PartialSubtypeCheck() );
9333   ins_pipe(partial_subtype_check_pipe);
9334 %}
9335 
9336 
9337 // ============================================================================
9338 // inlined locking and unlocking
9339 
9340 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9341   match(Set pcc (FastLock object box));
9342 
9343   effect(KILL scratch, TEMP scratch2);
9344   ins_cost(100);
9345 
9346   size(4*112);       // conservative overestimation ...
9347   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9348   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
9349   ins_pipe(long_memory_op);
9350 %}
9351 
9352 
9353 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9354   match(Set pcc (FastUnlock object box));
9355   effect(KILL scratch, TEMP scratch2);
9356   ins_cost(100);
9357 
9358   size(4*120);       // conservative overestimation ...
9359   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9360   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
9361   ins_pipe(long_memory_op);
9362 %}
9363 
9364 // Count and Base registers are fixed because the allocator cannot
9365 // kill unknown registers.  The encodings are generic.
9366 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
9367   match(Set dummy (ClearArray cnt base));
9368   effect(TEMP temp, KILL ccr);
9369   ins_cost(300);
9370   format %{ "MOV    $cnt,$temp\n"
9371     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
9372     "        BRge   loop\t\t! Clearing loop\n"
9373     "        STX    G0,[$base+$temp]\t! delay slot" %}
9374   ins_encode( enc_Clear_Array(cnt, base, temp) );
9375   ins_pipe(long_memory_op);
9376 %}
9377 
9378 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
9379                         o7RegI tmp, flagsReg ccr) %{
9380   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
9381   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
9382   ins_cost(300);
9383   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
9384   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
9385   ins_pipe(long_memory_op);
9386 %}
9387 
9388 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
9389                        o7RegI tmp, flagsReg ccr) %{
9390   match(Set result (StrEquals (Binary str1 str2) cnt));
9391   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
9392   ins_cost(300);
9393   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
9394   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
9395   ins_pipe(long_memory_op);
9396 %}
9397 
9398 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
9399                       o7RegI tmp2, flagsReg ccr) %{
9400   match(Set result (AryEq ary1 ary2));
9401   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
9402   ins_cost(300);
9403   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
9404   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
9405   ins_pipe(long_memory_op);
9406 %}
9407 
9408 
9409 //---------- Zeros Count Instructions ------------------------------------------
9410 
9411 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
9412   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9413   match(Set dst (CountLeadingZerosI src));
9414   effect(TEMP dst, TEMP tmp, KILL cr);
9415 
9416   // x |= (x >> 1);
9417   // x |= (x >> 2);
9418   // x |= (x >> 4);
9419   // x |= (x >> 8);
9420   // x |= (x >> 16);
9421   // return (WORDBITS - popc(x));
9422   format %{ "SRL     $src,1,$dst\t! count leading zeros (int)\n\t"
9423             "OR      $src,$tmp,$dst\n\t"
9424             "SRL     $dst,2,$tmp\n\t"
9425             "OR      $dst,$tmp,$dst\n\t"
9426             "SRL     $dst,4,$tmp\n\t"
9427             "OR      $dst,$tmp,$dst\n\t"
9428             "SRL     $dst,8,$tmp\n\t"
9429             "OR      $dst,$tmp,$dst\n\t"
9430             "SRL     $dst,16,$tmp\n\t"
9431             "OR      $dst,$tmp,$dst\n\t"
9432             "POPC    $dst,$dst\n\t"
9433             "MOV     32,$tmp\n\t"
9434             "SUB     $tmp,$dst,$dst" %}
9435   ins_encode %{
9436     Register Rdst = $dst$$Register;
9437     Register Rsrc = $src$$Register;
9438     Register Rtmp = $tmp$$Register;
9439     __ srl(Rsrc, 1, Rtmp);
9440     __ or3(Rsrc, Rtmp, Rdst);
9441     __ srl(Rdst, 2, Rtmp);
9442     __ or3(Rdst, Rtmp, Rdst);
9443     __ srl(Rdst, 4, Rtmp);
9444     __ or3(Rdst, Rtmp, Rdst);
9445     __ srl(Rdst, 8, Rtmp);
9446     __ or3(Rdst, Rtmp, Rdst);
9447     __ srl(Rdst, 16, Rtmp);
9448     __ or3(Rdst, Rtmp, Rdst);
9449     __ popc(Rdst, Rdst);
9450     __ mov(BitsPerInt, Rtmp);
9451     __ sub(Rtmp, Rdst, Rdst);
9452   %}
9453   ins_pipe(ialu_reg);
9454 %}
9455 
9456 instruct countLeadingZerosL(iRegI dst, iRegL src, iRegL tmp, flagsReg cr) %{
9457   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9458   match(Set dst (CountLeadingZerosL src));
9459   effect(TEMP dst, TEMP tmp, KILL cr);
9460 
9461   // x |= (x >> 1);
9462   // x |= (x >> 2);
9463   // x |= (x >> 4);
9464   // x |= (x >> 8);
9465   // x |= (x >> 16);
9466   // x |= (x >> 32);
9467   // return (WORDBITS - popc(x));
9468   format %{ "SRLX    $src,1,$dst\t! count leading zeros (long)\n\t"
9469             "OR      $src,$tmp,$dst\n\t"
9470             "SRLX    $dst,2,$tmp\n\t"
9471             "OR      $dst,$tmp,$dst\n\t"
9472             "SRLX    $dst,4,$tmp\n\t"
9473             "OR      $dst,$tmp,$dst\n\t"
9474             "SRLX    $dst,8,$tmp\n\t"
9475             "OR      $dst,$tmp,$dst\n\t"
9476             "SRLX    $dst,16,$tmp\n\t"
9477             "OR      $dst,$tmp,$dst\n\t"
9478             "SRLX    $dst,32,$tmp\n\t"
9479             "OR      $dst,$tmp,$dst\n\t"
9480             "POPC    $dst,$dst\n\t"
9481             "MOV     64,$tmp\n\t"
9482             "SUB     $tmp,$dst,$dst" %}
9483   ins_encode %{
9484     Register Rdst = $dst$$Register;
9485     Register Rsrc = $src$$Register;
9486     Register Rtmp = $tmp$$Register;
9487     __ srlx(Rsrc, 1, Rtmp);
9488     __ or3(Rsrc, Rtmp, Rdst);
9489     __ srlx(Rdst, 2, Rtmp);
9490     __ or3(Rdst, Rtmp, Rdst);
9491     __ srlx(Rdst, 4, Rtmp);
9492     __ or3(Rdst, Rtmp, Rdst);
9493     __ srlx(Rdst, 8, Rtmp);
9494     __ or3(Rdst, Rtmp, Rdst);
9495     __ srlx(Rdst, 16, Rtmp);
9496     __ or3(Rdst, Rtmp, Rdst);
9497     __ srlx(Rdst, 32, Rtmp);
9498     __ or3(Rdst, Rtmp, Rdst);
9499     __ popc(Rdst, Rdst);
9500     __ mov(BitsPerLong, Rtmp);
9501     __ sub(Rtmp, Rdst, Rdst);
9502   %}
9503   ins_pipe(ialu_reg);
9504 %}
9505 
9506 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
9507   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9508   match(Set dst (CountTrailingZerosI src));
9509   effect(TEMP dst, KILL cr);
9510 
9511   // return popc(~x & (x - 1));
9512   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
9513             "ANDN    $dst,$src,$dst\n\t"
9514             "SRL     $dst,R_G0,$dst\n\t"
9515             "POPC    $dst,$dst" %}
9516   ins_encode %{
9517     Register Rdst = $dst$$Register;
9518     Register Rsrc = $src$$Register;
9519     __ sub(Rsrc, 1, Rdst);
9520     __ andn(Rdst, Rsrc, Rdst);
9521     __ srl(Rdst, G0, Rdst);
9522     __ popc(Rdst, Rdst);
9523   %}
9524   ins_pipe(ialu_reg);
9525 %}
9526 
9527 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
9528   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9529   match(Set dst (CountTrailingZerosL src));
9530   effect(TEMP dst, KILL cr);
9531 
9532   // return popc(~x & (x - 1));
9533   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
9534             "ANDN    $dst,$src,$dst\n\t"
9535             "POPC    $dst,$dst" %}
9536   ins_encode %{
9537     Register Rdst = $dst$$Register;
9538     Register Rsrc = $src$$Register;
9539     __ sub(Rsrc, 1, Rdst);
9540     __ andn(Rdst, Rsrc, Rdst);
9541     __ popc(Rdst, Rdst);
9542   %}
9543   ins_pipe(ialu_reg);
9544 %}
9545 
9546 
9547 //---------- Population Count Instructions -------------------------------------
9548 
9549 instruct popCountI(iRegI dst, iRegI src) %{
9550   predicate(UsePopCountInstruction);
9551   match(Set dst (PopCountI src));
9552 
9553   format %{ "POPC   $src, $dst" %}
9554   ins_encode %{
9555     __ popc($src$$Register, $dst$$Register);
9556   %}
9557   ins_pipe(ialu_reg);
9558 %}
9559 
9560 // Note: Long.bitCount(long) returns an int.
9561 instruct popCountL(iRegI dst, iRegL src) %{
9562   predicate(UsePopCountInstruction);
9563   match(Set dst (PopCountL src));
9564 
9565   format %{ "POPC   $src, $dst" %}
9566   ins_encode %{
9567     __ popc($src$$Register, $dst$$Register);
9568   %}
9569   ins_pipe(ialu_reg);
9570 %}
9571 
9572 
9573 // ============================================================================
9574 //------------Bytes reverse--------------------------------------------------
9575 
9576 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
9577   match(Set dst (ReverseBytesI src));
9578   effect(DEF dst, USE src);
9579 
9580   // Op cost is artificially doubled to make sure that load or store
9581   // instructions are preferred over this one which requires a spill
9582   // onto a stack slot.
9583   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9584   size(8);
9585   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9586   opcode(Assembler::lduwa_op3);
9587   ins_encode( form3_mem_reg_little(src, dst) );
9588   ins_pipe( iload_mem );
9589 %}
9590 
9591 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
9592   match(Set dst (ReverseBytesL src));
9593   effect(DEF dst, USE src);
9594 
9595   // Op cost is artificially doubled to make sure that load or store
9596   // instructions are preferred over this one which requires a spill
9597   // onto a stack slot.
9598   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9599   size(8);
9600   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9601 
9602   opcode(Assembler::ldxa_op3);
9603   ins_encode( form3_mem_reg_little(src, dst) );
9604   ins_pipe( iload_mem );
9605 %}
9606 
9607 // Load Integer reversed byte order
9608 instruct loadI_reversed(iRegI dst, memory src) %{
9609   match(Set dst (ReverseBytesI (LoadI src)));
9610 
9611   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
9612   size(8);
9613   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9614 
9615   opcode(Assembler::lduwa_op3);
9616   ins_encode( form3_mem_reg_little( src, dst) );
9617   ins_pipe(iload_mem);
9618 %}
9619 
9620 // Load Long - aligned and reversed
9621 instruct loadL_reversed(iRegL dst, memory src) %{
9622   match(Set dst (ReverseBytesL (LoadL src)));
9623 
9624   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
9625   size(8);
9626   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9627 
9628   opcode(Assembler::ldxa_op3);
9629   ins_encode( form3_mem_reg_little( src, dst ) );
9630   ins_pipe(iload_mem);
9631 %}
9632 
9633 // Store Integer reversed byte order
9634 instruct storeI_reversed(memory dst, iRegI src) %{
9635   match(Set dst (StoreI dst (ReverseBytesI src)));
9636 
9637   ins_cost(MEMORY_REF_COST);
9638   size(8);
9639   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
9640 
9641   opcode(Assembler::stwa_op3);
9642   ins_encode( form3_mem_reg_little( dst, src) );
9643   ins_pipe(istore_mem_reg);
9644 %}
9645 
9646 // Store Long reversed byte order
9647 instruct storeL_reversed(memory dst, iRegL src) %{
9648   match(Set dst (StoreL dst (ReverseBytesL src)));
9649 
9650   ins_cost(MEMORY_REF_COST);
9651   size(8);
9652   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
9653 
9654   opcode(Assembler::stxa_op3);
9655   ins_encode( form3_mem_reg_little( dst, src) );
9656   ins_pipe(istore_mem_reg);
9657 %}
9658 
9659 //----------PEEPHOLE RULES-----------------------------------------------------
9660 // These must follow all instruction definitions as they use the names
9661 // defined in the instructions definitions.
9662 //
9663 // peepmatch ( root_instr_name [preceding_instruction]* );
9664 //
9665 // peepconstraint %{
9666 // (instruction_number.operand_name relational_op instruction_number.operand_name
9667 //  [, ...] );
9668 // // instruction numbers are zero-based using left to right order in peepmatch
9669 //
9670 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
9671 // // provide an instruction_number.operand_name for each operand that appears
9672 // // in the replacement instruction's match rule
9673 //
9674 // ---------VM FLAGS---------------------------------------------------------
9675 //
9676 // All peephole optimizations can be turned off using -XX:-OptoPeephole
9677 //
9678 // Each peephole rule is given an identifying number starting with zero and
9679 // increasing by one in the order seen by the parser.  An individual peephole
9680 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
9681 // on the command-line.
9682 //
9683 // ---------CURRENT LIMITATIONS----------------------------------------------
9684 //
9685 // Only match adjacent instructions in same basic block
9686 // Only equality constraints
9687 // Only constraints between operands, not (0.dest_reg == EAX_enc)
9688 // Only one replacement instruction
9689 //
9690 // ---------EXAMPLE----------------------------------------------------------
9691 //
9692 // // pertinent parts of existing instructions in architecture description
9693 // instruct movI(eRegI dst, eRegI src) %{
9694 //   match(Set dst (CopyI src));
9695 // %}
9696 //
9697 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
9698 //   match(Set dst (AddI dst src));
9699 //   effect(KILL cr);
9700 // %}
9701 //
9702 // // Change (inc mov) to lea
9703 // peephole %{
9704 //   // increment preceeded by register-register move
9705 //   peepmatch ( incI_eReg movI );
9706 //   // require that the destination register of the increment
9707 //   // match the destination register of the move
9708 //   peepconstraint ( 0.dst == 1.dst );
9709 //   // construct a replacement instruction that sets
9710 //   // the destination to ( move's source register + one )
9711 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
9712 // %}
9713 //
9714 
9715 // // Change load of spilled value to only a spill
9716 // instruct storeI(memory mem, eRegI src) %{
9717 //   match(Set mem (StoreI mem src));
9718 // %}
9719 //
9720 // instruct loadI(eRegI dst, memory mem) %{
9721 //   match(Set dst (LoadI mem));
9722 // %}
9723 //
9724 // peephole %{
9725 //   peepmatch ( loadI storeI );
9726 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
9727 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
9728 // %}
9729 
9730 //----------SMARTSPILL RULES---------------------------------------------------
9731 // These must follow all instruction definitions as they use the names
9732 // defined in the instructions definitions.
9733 //
9734 // SPARC will probably not have any of these rules due to RISC instruction set.
9735 
9736 //----------PIPELINE-----------------------------------------------------------
9737 // Rules which define the behavior of the target architectures pipeline.