1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_templateInterpreter.cpp.incl"
  27 
  28 #ifndef CC_INTERP
  29 
  30 # define __ _masm->
  31 
  32 void TemplateInterpreter::initialize() {
  33   if (_code != NULL) return;
  34   // assertions
  35   assert((int)Bytecodes::number_of_codes <= (int)DispatchTable::length,
  36          "dispatch table too small");
  37 
  38   AbstractInterpreter::initialize();
  39 
  40   TemplateTable::initialize();
  41 
  42   // generate interpreter
  43   { ResourceMark rm;
  44     TraceTime timer("Interpreter generation", TraceStartupTime);
  45     int code_size = InterpreterCodeSize;
  46     NOT_PRODUCT(code_size *= 4;)  // debug uses extra interpreter code space
  47     _code = new StubQueue(new InterpreterCodeletInterface, code_size, NULL,
  48                           "Interpreter");
  49     InterpreterGenerator g(_code);
  50     if (PrintInterpreter) print();
  51   }
  52 
  53   // initialize dispatch table
  54   _active_table = _normal_table;
  55 }
  56 
  57 //------------------------------------------------------------------------------------------------------------------------
  58 // Implementation of EntryPoint
  59 
  60 EntryPoint::EntryPoint() {
  61   assert(number_of_states == 9, "check the code below");
  62   _entry[btos] = NULL;
  63   _entry[ctos] = NULL;
  64   _entry[stos] = NULL;
  65   _entry[atos] = NULL;
  66   _entry[itos] = NULL;
  67   _entry[ltos] = NULL;
  68   _entry[ftos] = NULL;
  69   _entry[dtos] = NULL;
  70   _entry[vtos] = NULL;
  71 }
  72 
  73 
  74 EntryPoint::EntryPoint(address bentry, address centry, address sentry, address aentry, address ientry, address lentry, address fentry, address dentry, address ventry) {
  75   assert(number_of_states == 9, "check the code below");
  76   _entry[btos] = bentry;
  77   _entry[ctos] = centry;
  78   _entry[stos] = sentry;
  79   _entry[atos] = aentry;
  80   _entry[itos] = ientry;
  81   _entry[ltos] = lentry;
  82   _entry[ftos] = fentry;
  83   _entry[dtos] = dentry;
  84   _entry[vtos] = ventry;
  85 }
  86 
  87 
  88 void EntryPoint::set_entry(TosState state, address entry) {
  89   assert(0 <= state && state < number_of_states, "state out of bounds");
  90   _entry[state] = entry;
  91 }
  92 
  93 
  94 address EntryPoint::entry(TosState state) const {
  95   assert(0 <= state && state < number_of_states, "state out of bounds");
  96   return _entry[state];
  97 }
  98 
  99 
 100 void EntryPoint::print() {
 101   tty->print("[");
 102   for (int i = 0; i < number_of_states; i++) {
 103     if (i > 0) tty->print(", ");
 104     tty->print(INTPTR_FORMAT, _entry[i]);
 105   }
 106   tty->print("]");
 107 }
 108 
 109 
 110 bool EntryPoint::operator == (const EntryPoint& y) {
 111   int i = number_of_states;
 112   while (i-- > 0) {
 113     if (_entry[i] != y._entry[i]) return false;
 114   }
 115   return true;
 116 }
 117 
 118 
 119 //------------------------------------------------------------------------------------------------------------------------
 120 // Implementation of DispatchTable
 121 
 122 EntryPoint DispatchTable::entry(int i) const {
 123   assert(0 <= i && i < length, "index out of bounds");
 124   return
 125     EntryPoint(
 126       _table[btos][i],
 127       _table[ctos][i],
 128       _table[stos][i],
 129       _table[atos][i],
 130       _table[itos][i],
 131       _table[ltos][i],
 132       _table[ftos][i],
 133       _table[dtos][i],
 134       _table[vtos][i]
 135     );
 136 }
 137 
 138 
 139 void DispatchTable::set_entry(int i, EntryPoint& entry) {
 140   assert(0 <= i && i < length, "index out of bounds");
 141   assert(number_of_states == 9, "check the code below");
 142   _table[btos][i] = entry.entry(btos);
 143   _table[ctos][i] = entry.entry(ctos);
 144   _table[stos][i] = entry.entry(stos);
 145   _table[atos][i] = entry.entry(atos);
 146   _table[itos][i] = entry.entry(itos);
 147   _table[ltos][i] = entry.entry(ltos);
 148   _table[ftos][i] = entry.entry(ftos);
 149   _table[dtos][i] = entry.entry(dtos);
 150   _table[vtos][i] = entry.entry(vtos);
 151 }
 152 
 153 
 154 bool DispatchTable::operator == (DispatchTable& y) {
 155   int i = length;
 156   while (i-- > 0) {
 157     EntryPoint t = y.entry(i); // for compiler compatibility (BugId 4150096)
 158     if (!(entry(i) == t)) return false;
 159   }
 160   return true;
 161 }
 162 
 163 address    TemplateInterpreter::_remove_activation_entry                    = NULL;
 164 address    TemplateInterpreter::_remove_activation_preserving_args_entry    = NULL;
 165 
 166 
 167 address    TemplateInterpreter::_throw_ArrayIndexOutOfBoundsException_entry = NULL;
 168 address    TemplateInterpreter::_throw_ArrayStoreException_entry            = NULL;
 169 address    TemplateInterpreter::_throw_ArithmeticException_entry            = NULL;
 170 address    TemplateInterpreter::_throw_ClassCastException_entry             = NULL;
 171 address    TemplateInterpreter::_throw_WrongMethodType_entry                = NULL;
 172 address    TemplateInterpreter::_throw_NullPointerException_entry           = NULL;
 173 address    TemplateInterpreter::_throw_StackOverflowError_entry             = NULL;
 174 address    TemplateInterpreter::_throw_exception_entry                      = NULL;
 175 
 176 #ifndef PRODUCT
 177 EntryPoint TemplateInterpreter::_trace_code;
 178 #endif // !PRODUCT
 179 EntryPoint TemplateInterpreter::_return_entry[TemplateInterpreter::number_of_return_entries];
 180 EntryPoint TemplateInterpreter::_earlyret_entry;
 181 EntryPoint TemplateInterpreter::_deopt_entry [TemplateInterpreter::number_of_deopt_entries ];
 182 EntryPoint TemplateInterpreter::_continuation_entry;
 183 EntryPoint TemplateInterpreter::_safept_entry;
 184 
 185 address    TemplateInterpreter::_return_3_addrs_by_index[TemplateInterpreter::number_of_return_addrs];
 186 address    TemplateInterpreter::_return_5_addrs_by_index[TemplateInterpreter::number_of_return_addrs];
 187 
 188 DispatchTable TemplateInterpreter::_active_table;
 189 DispatchTable TemplateInterpreter::_normal_table;
 190 DispatchTable TemplateInterpreter::_safept_table;
 191 address    TemplateInterpreter::_wentry_point[DispatchTable::length];
 192 
 193 TemplateInterpreterGenerator::TemplateInterpreterGenerator(StubQueue* _code): AbstractInterpreterGenerator(_code) {
 194   _unimplemented_bytecode    = NULL;
 195   _illegal_bytecode_sequence = NULL;
 196 }
 197 
 198 static const BasicType types[Interpreter::number_of_result_handlers] = {
 199   T_BOOLEAN,
 200   T_CHAR   ,
 201   T_BYTE   ,
 202   T_SHORT  ,
 203   T_INT    ,
 204   T_LONG   ,
 205   T_VOID   ,
 206   T_FLOAT  ,
 207   T_DOUBLE ,
 208   T_OBJECT
 209 };
 210 
 211 void TemplateInterpreterGenerator::generate_all() {
 212   AbstractInterpreterGenerator::generate_all();
 213 
 214   { CodeletMark cm(_masm, "error exits");
 215     _unimplemented_bytecode    = generate_error_exit("unimplemented bytecode");
 216     _illegal_bytecode_sequence = generate_error_exit("illegal bytecode sequence - method not verified");
 217   }
 218 
 219 #ifndef PRODUCT
 220   if (TraceBytecodes) {
 221     CodeletMark cm(_masm, "bytecode tracing support");
 222     Interpreter::_trace_code =
 223       EntryPoint(
 224         generate_trace_code(btos),
 225         generate_trace_code(ctos),
 226         generate_trace_code(stos),
 227         generate_trace_code(atos),
 228         generate_trace_code(itos),
 229         generate_trace_code(ltos),
 230         generate_trace_code(ftos),
 231         generate_trace_code(dtos),
 232         generate_trace_code(vtos)
 233       );
 234   }
 235 #endif // !PRODUCT
 236 
 237   { CodeletMark cm(_masm, "return entry points");
 238     for (int i = 0; i < Interpreter::number_of_return_entries; i++) {
 239       Interpreter::_return_entry[i] =
 240         EntryPoint(
 241           generate_return_entry_for(itos, i),
 242           generate_return_entry_for(itos, i),
 243           generate_return_entry_for(itos, i),
 244           generate_return_entry_for(atos, i),
 245           generate_return_entry_for(itos, i),
 246           generate_return_entry_for(ltos, i),
 247           generate_return_entry_for(ftos, i),
 248           generate_return_entry_for(dtos, i),
 249           generate_return_entry_for(vtos, i)
 250         );
 251     }
 252   }
 253 
 254   { CodeletMark cm(_masm, "earlyret entry points");
 255     Interpreter::_earlyret_entry =
 256       EntryPoint(
 257         generate_earlyret_entry_for(btos),
 258         generate_earlyret_entry_for(ctos),
 259         generate_earlyret_entry_for(stos),
 260         generate_earlyret_entry_for(atos),
 261         generate_earlyret_entry_for(itos),
 262         generate_earlyret_entry_for(ltos),
 263         generate_earlyret_entry_for(ftos),
 264         generate_earlyret_entry_for(dtos),
 265         generate_earlyret_entry_for(vtos)
 266       );
 267   }
 268 
 269   { CodeletMark cm(_masm, "deoptimization entry points");
 270     for (int i = 0; i < Interpreter::number_of_deopt_entries; i++) {
 271       Interpreter::_deopt_entry[i] =
 272         EntryPoint(
 273           generate_deopt_entry_for(itos, i),
 274           generate_deopt_entry_for(itos, i),
 275           generate_deopt_entry_for(itos, i),
 276           generate_deopt_entry_for(atos, i),
 277           generate_deopt_entry_for(itos, i),
 278           generate_deopt_entry_for(ltos, i),
 279           generate_deopt_entry_for(ftos, i),
 280           generate_deopt_entry_for(dtos, i),
 281           generate_deopt_entry_for(vtos, i)
 282         );
 283     }
 284   }
 285 
 286   { CodeletMark cm(_masm, "result handlers for native calls");
 287     // The various result converter stublets.
 288     int is_generated[Interpreter::number_of_result_handlers];
 289     memset(is_generated, 0, sizeof(is_generated));
 290 
 291     for (int i = 0; i < Interpreter::number_of_result_handlers; i++) {
 292       BasicType type = types[i];
 293       if (!is_generated[Interpreter::BasicType_as_index(type)]++) {
 294         Interpreter::_native_abi_to_tosca[Interpreter::BasicType_as_index(type)] = generate_result_handler_for(type);
 295       }
 296     }
 297   }
 298 
 299   for (int j = 0; j < number_of_states; j++) {
 300     const TosState states[] = {btos, ctos, stos, itos, ltos, ftos, dtos, atos, vtos};
 301     int index = Interpreter::TosState_as_index(states[j]);
 302     Interpreter::_return_3_addrs_by_index[index] = Interpreter::return_entry(states[j], 3);
 303     Interpreter::_return_5_addrs_by_index[index] = Interpreter::return_entry(states[j], 5);
 304   }
 305 
 306   { CodeletMark cm(_masm, "continuation entry points");
 307     Interpreter::_continuation_entry =
 308       EntryPoint(
 309         generate_continuation_for(btos),
 310         generate_continuation_for(ctos),
 311         generate_continuation_for(stos),
 312         generate_continuation_for(atos),
 313         generate_continuation_for(itos),
 314         generate_continuation_for(ltos),
 315         generate_continuation_for(ftos),
 316         generate_continuation_for(dtos),
 317         generate_continuation_for(vtos)
 318       );
 319   }
 320 
 321   { CodeletMark cm(_masm, "safepoint entry points");
 322     Interpreter::_safept_entry =
 323       EntryPoint(
 324         generate_safept_entry_for(btos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 325         generate_safept_entry_for(ctos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 326         generate_safept_entry_for(stos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 327         generate_safept_entry_for(atos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 328         generate_safept_entry_for(itos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 329         generate_safept_entry_for(ltos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 330         generate_safept_entry_for(ftos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 331         generate_safept_entry_for(dtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 332         generate_safept_entry_for(vtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint))
 333       );
 334   }
 335 
 336   { CodeletMark cm(_masm, "exception handling");
 337     // (Note: this is not safepoint safe because thread may return to compiled code)
 338     generate_throw_exception();
 339   }
 340 
 341   { CodeletMark cm(_masm, "throw exception entrypoints");
 342     Interpreter::_throw_ArrayIndexOutOfBoundsException_entry = generate_ArrayIndexOutOfBounds_handler("java/lang/ArrayIndexOutOfBoundsException");
 343     Interpreter::_throw_ArrayStoreException_entry            = generate_klass_exception_handler("java/lang/ArrayStoreException"                 );
 344     Interpreter::_throw_ArithmeticException_entry            = generate_exception_handler("java/lang/ArithmeticException"           , "/ by zero");
 345     Interpreter::_throw_ClassCastException_entry             = generate_ClassCastException_handler();
 346     Interpreter::_throw_WrongMethodType_entry                = generate_WrongMethodType_handler();
 347     Interpreter::_throw_NullPointerException_entry           = generate_exception_handler("java/lang/NullPointerException"          , NULL       );
 348     Interpreter::_throw_StackOverflowError_entry             = generate_StackOverflowError_handler();
 349   }
 350 
 351 
 352 
 353 #define method_entry(kind)                                                                    \
 354   { CodeletMark cm(_masm, "method entry point (kind = " #kind ")");                    \
 355     Interpreter::_entry_table[Interpreter::kind] = generate_method_entry(Interpreter::kind);  \
 356   }
 357 
 358   // all non-native method kinds
 359   method_entry(zerolocals)
 360   method_entry(zerolocals_synchronized)
 361   method_entry(empty)
 362   method_entry(accessor)
 363   method_entry(abstract)
 364   method_entry(method_handle)
 365   method_entry(java_lang_math_sin  )
 366   method_entry(java_lang_math_cos  )
 367   method_entry(java_lang_math_tan  )
 368   method_entry(java_lang_math_abs  )
 369   method_entry(java_lang_math_sqrt )
 370   method_entry(java_lang_math_log  )
 371   method_entry(java_lang_math_log10)
 372 
 373   // all native method kinds (must be one contiguous block)
 374   Interpreter::_native_entry_begin = Interpreter::code()->code_end();
 375   method_entry(native)
 376   method_entry(native_synchronized)
 377   Interpreter::_native_entry_end = Interpreter::code()->code_end();
 378 
 379 #undef method_entry
 380 
 381   // Bytecodes
 382   set_entry_points_for_all_bytes();
 383   set_safepoints_for_all_bytes();
 384 }
 385 
 386 //------------------------------------------------------------------------------------------------------------------------
 387 
 388 address TemplateInterpreterGenerator::generate_error_exit(const char* msg) {
 389   address entry = __ pc();
 390   __ stop(msg);
 391   return entry;
 392 }
 393 
 394 
 395 //------------------------------------------------------------------------------------------------------------------------
 396 
 397 void TemplateInterpreterGenerator::set_entry_points_for_all_bytes() {
 398   for (int i = 0; i < DispatchTable::length; i++) {
 399     Bytecodes::Code code = (Bytecodes::Code)i;
 400     if (Bytecodes::is_defined(code)) {
 401       set_entry_points(code);
 402     } else {
 403       set_unimplemented(i);
 404     }
 405   }
 406 }
 407 
 408 
 409 void TemplateInterpreterGenerator::set_safepoints_for_all_bytes() {
 410   for (int i = 0; i < DispatchTable::length; i++) {
 411     Bytecodes::Code code = (Bytecodes::Code)i;
 412     if (Bytecodes::is_defined(code)) Interpreter::_safept_table.set_entry(code, Interpreter::_safept_entry);
 413   }
 414 }
 415 
 416 
 417 void TemplateInterpreterGenerator::set_unimplemented(int i) {
 418   address e = _unimplemented_bytecode;
 419   EntryPoint entry(e, e, e, e, e, e, e, e, e);
 420   Interpreter::_normal_table.set_entry(i, entry);
 421   Interpreter::_wentry_point[i] = _unimplemented_bytecode;
 422 }
 423 
 424 
 425 void TemplateInterpreterGenerator::set_entry_points(Bytecodes::Code code) {
 426   CodeletMark cm(_masm, Bytecodes::name(code), code);
 427   // initialize entry points
 428   assert(_unimplemented_bytecode    != NULL, "should have been generated before");
 429   assert(_illegal_bytecode_sequence != NULL, "should have been generated before");
 430   address bep = _illegal_bytecode_sequence;
 431   address cep = _illegal_bytecode_sequence;
 432   address sep = _illegal_bytecode_sequence;
 433   address aep = _illegal_bytecode_sequence;
 434   address iep = _illegal_bytecode_sequence;
 435   address lep = _illegal_bytecode_sequence;
 436   address fep = _illegal_bytecode_sequence;
 437   address dep = _illegal_bytecode_sequence;
 438   address vep = _unimplemented_bytecode;
 439   address wep = _unimplemented_bytecode;
 440   // code for short & wide version of bytecode
 441   if (Bytecodes::is_defined(code)) {
 442     Template* t = TemplateTable::template_for(code);
 443     assert(t->is_valid(), "just checking");
 444     set_short_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);
 445   }
 446   if (Bytecodes::wide_is_defined(code)) {
 447     Template* t = TemplateTable::template_for_wide(code);
 448     assert(t->is_valid(), "just checking");
 449     set_wide_entry_point(t, wep);
 450   }
 451   // set entry points
 452   EntryPoint entry(bep, cep, sep, aep, iep, lep, fep, dep, vep);
 453   Interpreter::_normal_table.set_entry(code, entry);
 454   Interpreter::_wentry_point[code] = wep;
 455 }
 456 
 457 
 458 void TemplateInterpreterGenerator::set_wide_entry_point(Template* t, address& wep) {
 459   assert(t->is_valid(), "template must exist");
 460   assert(t->tos_in() == vtos, "only vtos tos_in supported for wide instructions")
 461   wep = __ pc(); generate_and_dispatch(t);
 462 }
 463 
 464 
 465 void TemplateInterpreterGenerator::set_short_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
 466   assert(t->is_valid(), "template must exist");
 467   switch (t->tos_in()) {
 468     case btos:
 469     case ctos:
 470     case stos: 
 471       ShouldNotReachHere();  // btos/ctos/stos should use itos.
 472       break;
 473     case atos: vep = __ pc(); __ pop(atos); aep = __ pc(); generate_and_dispatch(t); break;
 474     case itos: vep = __ pc(); __ pop(itos); iep = __ pc(); generate_and_dispatch(t); break;
 475     case ltos: vep = __ pc(); __ pop(ltos); lep = __ pc(); generate_and_dispatch(t); break;
 476     case ftos: vep = __ pc(); __ pop(ftos); fep = __ pc(); generate_and_dispatch(t); break;
 477     case dtos: vep = __ pc(); __ pop(dtos); dep = __ pc(); generate_and_dispatch(t); break;
 478     case vtos: set_vtos_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);     break;
 479     default  : ShouldNotReachHere();                                                 break;
 480   }
 481 }
 482 
 483 
 484 //------------------------------------------------------------------------------------------------------------------------
 485 
 486 void TemplateInterpreterGenerator::generate_and_dispatch(Template* t, TosState tos_out) {
 487   if (PrintBytecodeHistogram)                                    histogram_bytecode(t);
 488 #ifndef PRODUCT
 489   // debugging code
 490   if (CountBytecodes || TraceBytecodes || StopInterpreterAt > 0) count_bytecode();
 491   if (PrintBytecodePairHistogram)                                histogram_bytecode_pair(t);
 492   if (TraceBytecodes)                                            trace_bytecode(t);
 493   if (StopInterpreterAt > 0)                                     stop_interpreter_at();
 494   __ verify_FPU(1, t->tos_in());
 495 #endif // !PRODUCT
 496   int step;
 497   if (!t->does_dispatch()) {
 498     step = t->is_wide() ? Bytecodes::wide_length_for(t->bytecode()) : Bytecodes::length_for(t->bytecode());
 499     if (tos_out == ilgl) tos_out = t->tos_out();
 500     // compute bytecode size
 501     assert(step > 0, "just checkin'");
 502     // setup stuff for dispatching next bytecode
 503     if (ProfileInterpreter && VerifyDataPointer
 504         && methodDataOopDesc::bytecode_has_profile(t->bytecode())) {
 505       __ verify_method_data_pointer();
 506     }
 507     __ dispatch_prolog(tos_out, step);
 508   }
 509   // generate template
 510   t->generate(_masm);
 511   // advance
 512   if (t->does_dispatch()) {
 513 #ifdef ASSERT
 514     // make sure execution doesn't go beyond this point if code is broken
 515     __ should_not_reach_here();
 516 #endif // ASSERT
 517   } else {
 518     // dispatch to next bytecode
 519     __ dispatch_epilog(tos_out, step);
 520   }
 521 }
 522 
 523 //------------------------------------------------------------------------------------------------------------------------
 524 // Entry points
 525 
 526 address TemplateInterpreter::return_entry(TosState state, int length) {
 527   guarantee(0 <= length && length < Interpreter::number_of_return_entries, "illegal length");
 528   return _return_entry[length].entry(state);
 529 }
 530 
 531 
 532 address TemplateInterpreter::deopt_entry(TosState state, int length) {
 533   guarantee(0 <= length && length < Interpreter::number_of_deopt_entries, "illegal length");
 534   return _deopt_entry[length].entry(state);
 535 }
 536 
 537 //------------------------------------------------------------------------------------------------------------------------
 538 // Suport for invokes
 539 
 540 int TemplateInterpreter::TosState_as_index(TosState state) {
 541   assert( state < number_of_states , "Invalid state in TosState_as_index");
 542   assert(0 <= (int)state && (int)state < TemplateInterpreter::number_of_return_addrs, "index out of bounds");
 543   return (int)state;
 544 }
 545 
 546 
 547 //------------------------------------------------------------------------------------------------------------------------
 548 // Safepoint suppport
 549 
 550 static inline void copy_table(address* from, address* to, int size) {
 551   // Copy non-overlapping tables. The copy has to occur word wise for MT safety.
 552   while (size-- > 0) *to++ = *from++;
 553 }
 554 
 555 void TemplateInterpreter::notice_safepoints() {
 556   if (!_notice_safepoints) {
 557     // switch to safepoint dispatch table
 558     _notice_safepoints = true;
 559     copy_table((address*)&_safept_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
 560   }
 561 }
 562 
 563 // switch from the dispatch table which notices safepoints back to the
 564 // normal dispatch table.  So that we can notice single stepping points,
 565 // keep the safepoint dispatch table if we are single stepping in JVMTI.
 566 // Note that the should_post_single_step test is exactly as fast as the
 567 // JvmtiExport::_enabled test and covers both cases.
 568 void TemplateInterpreter::ignore_safepoints() {
 569   if (_notice_safepoints) {
 570     if (!JvmtiExport::should_post_single_step()) {
 571       // switch to normal dispatch table
 572       _notice_safepoints = false;
 573       copy_table((address*)&_normal_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
 574     }
 575   }
 576 }
 577 
 578 //------------------------------------------------------------------------------------------------------------------------
 579 // Deoptimization support
 580 
 581 // If deoptimization happens, this function returns the point of next bytecode to continue execution
 582 address TemplateInterpreter::deopt_continue_after_entry(methodOop method, address bcp, int callee_parameters, bool is_top_frame) {
 583   return AbstractInterpreter::deopt_continue_after_entry(method, bcp, callee_parameters, is_top_frame);
 584 }
 585 
 586 // If deoptimization happens, this function returns the point where the interpreter reexecutes
 587 // the bytecode.
 588 // Note: Bytecodes::_athrow (C1 only) and Bytecodes::_return are the special cases
 589 //       that do not return "Interpreter::deopt_entry(vtos, 0)"
 590 address TemplateInterpreter::deopt_reexecute_entry(methodOop method, address bcp) {
 591   assert(method->contains(bcp), "just checkin'");
 592   Bytecodes::Code code   = Bytecodes::java_code_at(bcp);
 593   if (code == Bytecodes::_return) {
 594     // This is used for deopt during registration of finalizers
 595     // during Object.<init>.  We simply need to resume execution at
 596     // the standard return vtos bytecode to pop the frame normally.
 597     // reexecuting the real bytecode would cause double registration
 598     // of the finalizable object.
 599     return _normal_table.entry(Bytecodes::_return).entry(vtos);
 600   } else {
 601     return AbstractInterpreter::deopt_reexecute_entry(method, bcp);
 602   }
 603 }
 604 
 605 // If deoptimization happens, the interpreter should reexecute this bytecode.
 606 // This function mainly helps the compilers to set up the reexecute bit.
 607 bool TemplateInterpreter::bytecode_should_reexecute(Bytecodes::Code code) {
 608   if (code == Bytecodes::_return) {
 609     //Yes, we consider Bytecodes::_return as a special case of reexecution
 610     return true;
 611   } else {
 612     return AbstractInterpreter::bytecode_should_reexecute(code);
 613   }
 614 }
 615 
 616 #endif // !CC_INTERP