1 /*
   2  * Copyright 2000-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_c1_LIRAssembler_sparc.cpp.incl"
  27 
  28 #define __ _masm->
  29 
  30 
  31 //------------------------------------------------------------
  32 
  33 
  34 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
  35   if (opr->is_constant()) {
  36     LIR_Const* constant = opr->as_constant_ptr();
  37     switch (constant->type()) {
  38       case T_INT: {
  39         jint value = constant->as_jint();
  40         return Assembler::is_simm13(value);
  41       }
  42 
  43       default:
  44         return false;
  45     }
  46   }
  47   return false;
  48 }
  49 
  50 
  51 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
  52   switch (op->code()) {
  53     case lir_null_check:
  54     return true;
  55 
  56 
  57     case lir_add:
  58     case lir_ushr:
  59     case lir_shr:
  60     case lir_shl:
  61       // integer shifts and adds are always one instruction
  62       return op->result_opr()->is_single_cpu();
  63 
  64 
  65     case lir_move: {
  66       LIR_Op1* op1 = op->as_Op1();
  67       LIR_Opr src = op1->in_opr();
  68       LIR_Opr dst = op1->result_opr();
  69 
  70       if (src == dst) {
  71         NEEDS_CLEANUP;
  72         // this works around a problem where moves with the same src and dst
  73         // end up in the delay slot and then the assembler swallows the mov
  74         // since it has no effect and then it complains because the delay slot
  75         // is empty.  returning false stops the optimizer from putting this in
  76         // the delay slot
  77         return false;
  78       }
  79 
  80       // don't put moves involving oops into the delay slot since the VerifyOops code
  81       // will make it much larger than a single instruction.
  82       if (VerifyOops) {
  83         return false;
  84       }
  85 
  86       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
  87           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
  88         return false;
  89       }
  90 
  91       if (dst->is_register()) {
  92         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
  93           return !PatchALot;
  94         } else if (src->is_single_stack()) {
  95           return true;
  96         }
  97       }
  98 
  99       if (src->is_register()) {
 100         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
 101           return !PatchALot;
 102         } else if (dst->is_single_stack()) {
 103           return true;
 104         }
 105       }
 106 
 107       if (dst->is_register() &&
 108           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
 109            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
 110         return true;
 111       }
 112 
 113       return false;
 114     }
 115 
 116     default:
 117       return false;
 118   }
 119   ShouldNotReachHere();
 120 }
 121 
 122 
 123 LIR_Opr LIR_Assembler::receiverOpr() {
 124   return FrameMap::O0_oop_opr;
 125 }
 126 
 127 
 128 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
 129   return FrameMap::I0_oop_opr;
 130 }
 131 
 132 
 133 LIR_Opr LIR_Assembler::osrBufferPointer() {
 134   return FrameMap::I0_opr;
 135 }
 136 
 137 
 138 int LIR_Assembler::initial_frame_size_in_bytes() {
 139   return in_bytes(frame_map()->framesize_in_bytes());
 140 }
 141 
 142 
 143 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
 144 // we fetch the class of the receiver (O0) and compare it with the cached class.
 145 // If they do not match we jump to slow case.
 146 int LIR_Assembler::check_icache() {
 147   int offset = __ offset();
 148   __ inline_cache_check(O0, G5_inline_cache_reg);
 149   return offset;
 150 }
 151 
 152 
 153 void LIR_Assembler::osr_entry() {
 154   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
 155   //
 156   //   1. Create a new compiled activation.
 157   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
 158   //      at the osr_bci; it is not initialized.
 159   //   3. Jump to the continuation address in compiled code to resume execution.
 160 
 161   // OSR entry point
 162   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 163   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 164   ValueStack* entry_state = osr_entry->end()->state();
 165   int number_of_locks = entry_state->locks_size();
 166 
 167   // Create a frame for the compiled activation.
 168   __ build_frame(initial_frame_size_in_bytes());
 169 
 170   // OSR buffer is
 171   //
 172   // locals[nlocals-1..0]
 173   // monitors[number_of_locks-1..0]
 174   //
 175   // locals is a direct copy of the interpreter frame so in the osr buffer
 176   // so first slot in the local array is the last local from the interpreter
 177   // and last slot is local[0] (receiver) from the interpreter
 178   //
 179   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 180   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 181   // in the interpreter frame (the method lock if a sync method)
 182 
 183   // Initialize monitors in the compiled activation.
 184   //   I0: pointer to osr buffer
 185   //
 186   // All other registers are dead at this point and the locals will be
 187   // copied into place by code emitted in the IR.
 188 
 189   Register OSR_buf = osrBufferPointer()->as_register();
 190   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 191     int monitor_offset = BytesPerWord * method()->max_locals() +
 192       (2 * BytesPerWord) * (number_of_locks - 1);
 193     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 194     // the OSR buffer using 2 word entries: first the lock and then
 195     // the oop.
 196     for (int i = 0; i < number_of_locks; i++) {
 197       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 198 #ifdef ASSERT
 199       // verify the interpreter's monitor has a non-null object
 200       {
 201         Label L;
 202         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 203         __ cmp(G0, O7);
 204         __ br(Assembler::notEqual, false, Assembler::pt, L);
 205         __ delayed()->nop();
 206         __ stop("locked object is NULL");
 207         __ bind(L);
 208       }
 209 #endif // ASSERT
 210       // Copy the lock field into the compiled activation.
 211       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
 212       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
 213       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 214       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
 215     }
 216   }
 217 }
 218 
 219 
 220 // Optimized Library calls
 221 // This is the fast version of java.lang.String.compare; it has not
 222 // OSR-entry and therefore, we generate a slow version for OSR's
 223 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
 224   Register str0 = left->as_register();
 225   Register str1 = right->as_register();
 226 
 227   Label Ldone;
 228 
 229   Register result = dst->as_register();
 230   {
 231     // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
 232     // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
 233     // Also, get string0.count-string1.count in o7 and get the condition code set
 234     // Note: some instructions have been hoisted for better instruction scheduling
 235 
 236     Register tmp0 = L0;
 237     Register tmp1 = L1;
 238     Register tmp2 = L2;
 239 
 240     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
 241     int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
 242     int  count_offset = java_lang_String:: count_offset_in_bytes();
 243 
 244     __ ld_ptr(str0, value_offset, tmp0);
 245     __ ld(str0, offset_offset, tmp2);
 246     __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
 247     __ ld(str0, count_offset, str0);
 248     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
 249 
 250     // str1 may be null
 251     add_debug_info_for_null_check_here(info);
 252 
 253     __ ld_ptr(str1, value_offset, tmp1);
 254     __ add(tmp0, tmp2, tmp0);
 255 
 256     __ ld(str1, offset_offset, tmp2);
 257     __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
 258     __ ld(str1, count_offset, str1);
 259     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
 260     __ subcc(str0, str1, O7);
 261     __ add(tmp1, tmp2, tmp1);
 262   }
 263 
 264   {
 265     // Compute the minimum of the string lengths, scale it and store it in limit
 266     Register count0 = I0;
 267     Register count1 = I1;
 268     Register limit  = L3;
 269 
 270     Label Lskip;
 271     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
 272     __ br(Assembler::greater, true, Assembler::pt, Lskip);
 273     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
 274     __ bind(Lskip);
 275 
 276     // If either string is empty (or both of them) the result is the difference in lengths
 277     __ cmp(limit, 0);
 278     __ br(Assembler::equal, true, Assembler::pn, Ldone);
 279     __ delayed()->mov(O7, result);  // result is difference in lengths
 280   }
 281 
 282   {
 283     // Neither string is empty
 284     Label Lloop;
 285 
 286     Register base0 = L0;
 287     Register base1 = L1;
 288     Register chr0  = I0;
 289     Register chr1  = I1;
 290     Register limit = L3;
 291 
 292     // Shift base0 and base1 to the end of the arrays, negate limit
 293     __ add(base0, limit, base0);
 294     __ add(base1, limit, base1);
 295     __ neg(limit);  // limit = -min{string0.count, strin1.count}
 296 
 297     __ lduh(base0, limit, chr0);
 298     __ bind(Lloop);
 299     __ lduh(base1, limit, chr1);
 300     __ subcc(chr0, chr1, chr0);
 301     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
 302     assert(chr0 == result, "result must be pre-placed");
 303     __ delayed()->inccc(limit, sizeof(jchar));
 304     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
 305     __ delayed()->lduh(base0, limit, chr0);
 306   }
 307 
 308   // If strings are equal up to min length, return the length difference.
 309   __ mov(O7, result);
 310 
 311   // Otherwise, return the difference between the first mismatched chars.
 312   __ bind(Ldone);
 313 }
 314 
 315 
 316 // --------------------------------------------------------------------------------------------
 317 
 318 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
 319   if (!GenerateSynchronizationCode) return;
 320 
 321   Register obj_reg = obj_opr->as_register();
 322   Register lock_reg = lock_opr->as_register();
 323 
 324   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
 325   Register reg = mon_addr.base();
 326   int offset = mon_addr.disp();
 327   // compute pointer to BasicLock
 328   if (mon_addr.is_simm13()) {
 329     __ add(reg, offset, lock_reg);
 330   }
 331   else {
 332     __ set(offset, lock_reg);
 333     __ add(reg, lock_reg, lock_reg);
 334   }
 335   // unlock object
 336   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
 337   // _slow_case_stubs->append(slow_case);
 338   // temporary fix: must be created after exceptionhandler, therefore as call stub
 339   _slow_case_stubs->append(slow_case);
 340   if (UseFastLocking) {
 341     // try inlined fast unlocking first, revert to slow locking if it fails
 342     // note: lock_reg points to the displaced header since the displaced header offset is 0!
 343     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
 344     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
 345   } else {
 346     // always do slow unlocking
 347     // note: the slow unlocking code could be inlined here, however if we use
 348     //       slow unlocking, speed doesn't matter anyway and this solution is
 349     //       simpler and requires less duplicated code - additionally, the
 350     //       slow unlocking code is the same in either case which simplifies
 351     //       debugging
 352     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
 353     __ delayed()->nop();
 354   }
 355   // done
 356   __ bind(*slow_case->continuation());
 357 }
 358 
 359 
 360 int LIR_Assembler::emit_exception_handler() {
 361   // if the last instruction is a call (typically to do a throw which
 362   // is coming at the end after block reordering) the return address
 363   // must still point into the code area in order to avoid assertion
 364   // failures when searching for the corresponding bci => add a nop
 365   // (was bug 5/14/1999 - gri)
 366   __ nop();
 367 
 368   // generate code for exception handler
 369   ciMethod* method = compilation()->method();
 370 
 371   address handler_base = __ start_a_stub(exception_handler_size);
 372 
 373   if (handler_base == NULL) {
 374     // not enough space left for the handler
 375     bailout("exception handler overflow");
 376     return -1;
 377   }
 378 
 379   int offset = code_offset();
 380 
 381   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
 382   __ delayed()->nop();
 383   debug_only(__ stop("should have gone to the caller");)
 384   assert(code_offset() - offset <= exception_handler_size, "overflow");
 385   __ end_a_stub();
 386 
 387   return offset;
 388 }
 389 
 390 
 391 int LIR_Assembler::emit_deopt_handler() {
 392   // if the last instruction is a call (typically to do a throw which
 393   // is coming at the end after block reordering) the return address
 394   // must still point into the code area in order to avoid assertion
 395   // failures when searching for the corresponding bci => add a nop
 396   // (was bug 5/14/1999 - gri)
 397   __ nop();
 398 
 399   // generate code for deopt handler
 400   ciMethod* method = compilation()->method();
 401   address handler_base = __ start_a_stub(deopt_handler_size);
 402   if (handler_base == NULL) {
 403     // not enough space left for the handler
 404     bailout("deopt handler overflow");
 405     return -1;
 406   }
 407 
 408   int offset = code_offset();
 409   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
 410   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
 411   __ delayed()->nop();
 412   assert(code_offset() - offset <= deopt_handler_size, "overflow");
 413   debug_only(__ stop("should have gone to the caller");)
 414   __ end_a_stub();
 415 
 416   return offset;
 417 }
 418 
 419 
 420 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 421   if (o == NULL) {
 422     __ set(NULL_WORD, reg);
 423   } else {
 424     int oop_index = __ oop_recorder()->find_index(o);
 425     RelocationHolder rspec = oop_Relocation::spec(oop_index);
 426     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
 427   }
 428 }
 429 
 430 
 431 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 432   // Allocate a new index in oop table to hold the oop once it's been patched
 433   int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
 434   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
 435 
 436   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
 437   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
 438   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
 439   // NULL will be dynamically patched later and the patched value may be large.  We must
 440   // therefore generate the sethi/add as a placeholders
 441   __ patchable_set(addrlit, reg);
 442 
 443   patching_epilog(patch, lir_patch_normal, reg, info);
 444 }
 445 
 446 
 447 void LIR_Assembler::emit_op3(LIR_Op3* op) {
 448   Register Rdividend = op->in_opr1()->as_register();
 449   Register Rdivisor  = noreg;
 450   Register Rscratch  = op->in_opr3()->as_register();
 451   Register Rresult   = op->result_opr()->as_register();
 452   int divisor = -1;
 453 
 454   if (op->in_opr2()->is_register()) {
 455     Rdivisor = op->in_opr2()->as_register();
 456   } else {
 457     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
 458     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 459   }
 460 
 461   assert(Rdividend != Rscratch, "");
 462   assert(Rdivisor  != Rscratch, "");
 463   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
 464 
 465   if (Rdivisor == noreg && is_power_of_2(divisor)) {
 466     // convert division by a power of two into some shifts and logical operations
 467     if (op->code() == lir_idiv) {
 468       if (divisor == 2) {
 469         __ srl(Rdividend, 31, Rscratch);
 470       } else {
 471         __ sra(Rdividend, 31, Rscratch);
 472         __ and3(Rscratch, divisor - 1, Rscratch);
 473       }
 474       __ add(Rdividend, Rscratch, Rscratch);
 475       __ sra(Rscratch, log2_intptr(divisor), Rresult);
 476       return;
 477     } else {
 478       if (divisor == 2) {
 479         __ srl(Rdividend, 31, Rscratch);
 480       } else {
 481         __ sra(Rdividend, 31, Rscratch);
 482         __ and3(Rscratch, divisor - 1,Rscratch);
 483       }
 484       __ add(Rdividend, Rscratch, Rscratch);
 485       __ andn(Rscratch, divisor - 1,Rscratch);
 486       __ sub(Rdividend, Rscratch, Rresult);
 487       return;
 488     }
 489   }
 490 
 491   __ sra(Rdividend, 31, Rscratch);
 492   __ wry(Rscratch);
 493   if (!VM_Version::v9_instructions_work()) {
 494     // v9 doesn't require these nops
 495     __ nop();
 496     __ nop();
 497     __ nop();
 498     __ nop();
 499   }
 500 
 501   add_debug_info_for_div0_here(op->info());
 502 
 503   if (Rdivisor != noreg) {
 504     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 505   } else {
 506     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 507     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 508   }
 509 
 510   Label skip;
 511   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
 512   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
 513   __ bind(skip);
 514 
 515   if (op->code() == lir_irem) {
 516     if (Rdivisor != noreg) {
 517       __ smul(Rscratch, Rdivisor, Rscratch);
 518     } else {
 519       __ smul(Rscratch, divisor, Rscratch);
 520     }
 521     __ sub(Rdividend, Rscratch, Rresult);
 522   }
 523 }
 524 
 525 
 526 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
 527 #ifdef ASSERT
 528   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
 529   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
 530   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
 531 #endif
 532   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
 533 
 534   if (op->cond() == lir_cond_always) {
 535     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
 536   } else if (op->code() == lir_cond_float_branch) {
 537     assert(op->ublock() != NULL, "must have unordered successor");
 538     bool is_unordered = (op->ublock() == op->block());
 539     Assembler::Condition acond;
 540     switch (op->cond()) {
 541       case lir_cond_equal:         acond = Assembler::f_equal;    break;
 542       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
 543       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
 544       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
 545       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
 546       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
 547       default :                         ShouldNotReachHere();
 548     };
 549 
 550     if (!VM_Version::v9_instructions_work()) {
 551       __ nop();
 552     }
 553     __ fb( acond, false, Assembler::pn, *(op->label()));
 554   } else {
 555     assert (op->code() == lir_branch, "just checking");
 556 
 557     Assembler::Condition acond;
 558     switch (op->cond()) {
 559       case lir_cond_equal:        acond = Assembler::equal;                break;
 560       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
 561       case lir_cond_less:         acond = Assembler::less;                 break;
 562       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
 563       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
 564       case lir_cond_greater:      acond = Assembler::greater;              break;
 565       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
 566       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
 567       default:                         ShouldNotReachHere();
 568     };
 569 
 570     // sparc has different condition codes for testing 32-bit
 571     // vs. 64-bit values.  We could always test xcc is we could
 572     // guarantee that 32-bit loads always sign extended but that isn't
 573     // true and since sign extension isn't free, it would impose a
 574     // slight cost.
 575 #ifdef _LP64
 576     if  (op->type() == T_INT) {
 577       __ br(acond, false, Assembler::pn, *(op->label()));
 578     } else
 579 #endif
 580       __ brx(acond, false, Assembler::pn, *(op->label()));
 581   }
 582   // The peephole pass fills the delay slot
 583 }
 584 
 585 
 586 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
 587   Bytecodes::Code code = op->bytecode();
 588   LIR_Opr dst = op->result_opr();
 589 
 590   switch(code) {
 591     case Bytecodes::_i2l: {
 592       Register rlo  = dst->as_register_lo();
 593       Register rhi  = dst->as_register_hi();
 594       Register rval = op->in_opr()->as_register();
 595 #ifdef _LP64
 596       __ sra(rval, 0, rlo);
 597 #else
 598       __ mov(rval, rlo);
 599       __ sra(rval, BitsPerInt-1, rhi);
 600 #endif
 601       break;
 602     }
 603     case Bytecodes::_i2d:
 604     case Bytecodes::_i2f: {
 605       bool is_double = (code == Bytecodes::_i2d);
 606       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 607       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 608       FloatRegister rsrc = op->in_opr()->as_float_reg();
 609       if (rsrc != rdst) {
 610         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
 611       }
 612       __ fitof(w, rdst, rdst);
 613       break;
 614     }
 615     case Bytecodes::_f2i:{
 616       FloatRegister rsrc = op->in_opr()->as_float_reg();
 617       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
 618       Label L;
 619       // result must be 0 if value is NaN; test by comparing value to itself
 620       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
 621       if (!VM_Version::v9_instructions_work()) {
 622         __ nop();
 623       }
 624       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
 625       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
 626       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
 627       // move integer result from float register to int register
 628       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
 629       __ bind (L);
 630       break;
 631     }
 632     case Bytecodes::_l2i: {
 633       Register rlo  = op->in_opr()->as_register_lo();
 634       Register rhi  = op->in_opr()->as_register_hi();
 635       Register rdst = dst->as_register();
 636 #ifdef _LP64
 637       __ sra(rlo, 0, rdst);
 638 #else
 639       __ mov(rlo, rdst);
 640 #endif
 641       break;
 642     }
 643     case Bytecodes::_d2f:
 644     case Bytecodes::_f2d: {
 645       bool is_double = (code == Bytecodes::_f2d);
 646       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
 647       LIR_Opr val = op->in_opr();
 648       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
 649       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 650       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
 651       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 652       __ ftof(vw, dw, rval, rdst);
 653       break;
 654     }
 655     case Bytecodes::_i2s:
 656     case Bytecodes::_i2b: {
 657       Register rval = op->in_opr()->as_register();
 658       Register rdst = dst->as_register();
 659       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
 660       __ sll (rval, shift, rdst);
 661       __ sra (rdst, shift, rdst);
 662       break;
 663     }
 664     case Bytecodes::_i2c: {
 665       Register rval = op->in_opr()->as_register();
 666       Register rdst = dst->as_register();
 667       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
 668       __ sll (rval, shift, rdst);
 669       __ srl (rdst, shift, rdst);
 670       break;
 671     }
 672 
 673     default: ShouldNotReachHere();
 674   }
 675 }
 676 
 677 
 678 void LIR_Assembler::align_call(LIR_Code) {
 679   // do nothing since all instructions are word aligned on sparc
 680 }
 681 
 682 
 683 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
 684   __ call(op->addr(), rtype);
 685   // the peephole pass fills the delay slot
 686 }
 687 
 688 
 689 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
 690   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
 691   __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
 692   __ relocate(rspec);
 693   __ call(op->addr(), relocInfo::none);
 694   // the peephole pass fills the delay slot
 695 }
 696 
 697 
 698 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
 699   add_debug_info_for_null_check_here(op->info());
 700   __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
 701   if (__ is_simm13(op->vtable_offset())) {
 702     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
 703   } else {
 704     // This will generate 2 instructions
 705     __ set(op->vtable_offset(), G5_method);
 706     // ld_ptr, set_hi, set
 707     __ ld_ptr(G3_scratch, G5_method, G5_method);
 708   }
 709   __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
 710   __ callr(G3_scratch, G0);
 711   // the peephole pass fills the delay slot
 712 }
 713 
 714 
 715 void LIR_Assembler::preserve_SP() {
 716   // XXX I'm not sure yet if these are required on SPARC.
 717 }
 718 
 719 
 720 void LIR_Assembler::restore_SP() {
 721   // XXX I'm not sure yet if these are required on SPARC.
 722 }
 723 
 724 
 725 // load with 32-bit displacement
 726 int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
 727   int load_offset = code_offset();
 728   if (Assembler::is_simm13(disp)) {
 729     if (info != NULL) add_debug_info_for_null_check_here(info);
 730     switch(ld_type) {
 731       case T_BOOLEAN: // fall through
 732       case T_BYTE  : __ ldsb(s, disp, d); break;
 733       case T_CHAR  : __ lduh(s, disp, d); break;
 734       case T_SHORT : __ ldsh(s, disp, d); break;
 735       case T_INT   : __ ld(s, disp, d); break;
 736       case T_ADDRESS:// fall through
 737       case T_ARRAY : // fall through
 738       case T_OBJECT: __ ld_ptr(s, disp, d); break;
 739       default      : ShouldNotReachHere();
 740     }
 741   } else {
 742     __ set(disp, O7);
 743     if (info != NULL) add_debug_info_for_null_check_here(info);
 744     load_offset = code_offset();
 745     switch(ld_type) {
 746       case T_BOOLEAN: // fall through
 747       case T_BYTE  : __ ldsb(s, O7, d); break;
 748       case T_CHAR  : __ lduh(s, O7, d); break;
 749       case T_SHORT : __ ldsh(s, O7, d); break;
 750       case T_INT   : __ ld(s, O7, d); break;
 751       case T_ADDRESS:// fall through
 752       case T_ARRAY : // fall through
 753       case T_OBJECT: __ ld_ptr(s, O7, d); break;
 754       default      : ShouldNotReachHere();
 755     }
 756   }
 757   if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
 758   return load_offset;
 759 }
 760 
 761 
 762 // store with 32-bit displacement
 763 void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
 764   if (Assembler::is_simm13(offset)) {
 765     if (info != NULL)  add_debug_info_for_null_check_here(info);
 766     switch (type) {
 767       case T_BOOLEAN: // fall through
 768       case T_BYTE  : __ stb(value, base, offset); break;
 769       case T_CHAR  : __ sth(value, base, offset); break;
 770       case T_SHORT : __ sth(value, base, offset); break;
 771       case T_INT   : __ stw(value, base, offset); break;
 772       case T_ADDRESS:// fall through
 773       case T_ARRAY : // fall through
 774       case T_OBJECT: __ st_ptr(value, base, offset); break;
 775       default      : ShouldNotReachHere();
 776     }
 777   } else {
 778     __ set(offset, O7);
 779     if (info != NULL) add_debug_info_for_null_check_here(info);
 780     switch (type) {
 781       case T_BOOLEAN: // fall through
 782       case T_BYTE  : __ stb(value, base, O7); break;
 783       case T_CHAR  : __ sth(value, base, O7); break;
 784       case T_SHORT : __ sth(value, base, O7); break;
 785       case T_INT   : __ stw(value, base, O7); break;
 786       case T_ADDRESS:// fall through
 787       case T_ARRAY : //fall through
 788       case T_OBJECT: __ st_ptr(value, base, O7); break;
 789       default      : ShouldNotReachHere();
 790     }
 791   }
 792   // Note: Do the store before verification as the code might be patched!
 793   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
 794 }
 795 
 796 
 797 // load float with 32-bit displacement
 798 void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
 799   FloatRegisterImpl::Width w;
 800   switch(ld_type) {
 801     case T_FLOAT : w = FloatRegisterImpl::S; break;
 802     case T_DOUBLE: w = FloatRegisterImpl::D; break;
 803     default      : ShouldNotReachHere();
 804   }
 805 
 806   if (Assembler::is_simm13(disp)) {
 807     if (info != NULL) add_debug_info_for_null_check_here(info);
 808     if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
 809       __ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
 810       __ ldf(FloatRegisterImpl::S, s, disp               , d);
 811     } else {
 812       __ ldf(w, s, disp, d);
 813     }
 814   } else {
 815     __ set(disp, O7);
 816     if (info != NULL) add_debug_info_for_null_check_here(info);
 817     __ ldf(w, s, O7, d);
 818   }
 819 }
 820 
 821 
 822 // store float with 32-bit displacement
 823 void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
 824   FloatRegisterImpl::Width w;
 825   switch(type) {
 826     case T_FLOAT : w = FloatRegisterImpl::S; break;
 827     case T_DOUBLE: w = FloatRegisterImpl::D; break;
 828     default      : ShouldNotReachHere();
 829   }
 830 
 831   if (Assembler::is_simm13(offset)) {
 832     if (info != NULL) add_debug_info_for_null_check_here(info);
 833     if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
 834       __ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
 835       __ stf(FloatRegisterImpl::S, value             , base, offset);
 836     } else {
 837       __ stf(w, value, base, offset);
 838     }
 839   } else {
 840     __ set(offset, O7);
 841     if (info != NULL) add_debug_info_for_null_check_here(info);
 842     __ stf(w, value, O7, base);
 843   }
 844 }
 845 
 846 
 847 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
 848   int store_offset;
 849   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 850     assert(!unaligned, "can't handle this");
 851     // for offsets larger than a simm13 we setup the offset in O7
 852     __ set(offset, O7);
 853     store_offset = store(from_reg, base, O7, type);
 854   } else {
 855     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
 856     store_offset = code_offset();
 857     switch (type) {
 858       case T_BOOLEAN: // fall through
 859       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
 860       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
 861       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
 862       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
 863       case T_LONG  :
 864 #ifdef _LP64
 865         if (unaligned || PatchALot) {
 866           __ srax(from_reg->as_register_lo(), 32, O7);
 867           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 868           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
 869         } else {
 870           __ stx(from_reg->as_register_lo(), base, offset);
 871         }
 872 #else
 873         assert(Assembler::is_simm13(offset + 4), "must be");
 874         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 875         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
 876 #endif
 877         break;
 878       case T_ADDRESS:// fall through
 879       case T_ARRAY : // fall through
 880       case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;
 881       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
 882       case T_DOUBLE:
 883         {
 884           FloatRegister reg = from_reg->as_double_reg();
 885           // split unaligned stores
 886           if (unaligned || PatchALot) {
 887             assert(Assembler::is_simm13(offset + 4), "must be");
 888             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
 889             __ stf(FloatRegisterImpl::S, reg,              base, offset);
 890           } else {
 891             __ stf(FloatRegisterImpl::D, reg, base, offset);
 892           }
 893           break;
 894         }
 895       default      : ShouldNotReachHere();
 896     }
 897   }
 898   return store_offset;
 899 }
 900 
 901 
 902 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
 903   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
 904   int store_offset = code_offset();
 905   switch (type) {
 906     case T_BOOLEAN: // fall through
 907     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
 908     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
 909     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
 910     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
 911     case T_LONG  :
 912 #ifdef _LP64
 913       __ stx(from_reg->as_register_lo(), base, disp);
 914 #else
 915       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
 916       __ std(from_reg->as_register_hi(), base, disp);
 917 #endif
 918       break;
 919     case T_ADDRESS:// fall through
 920     case T_ARRAY : // fall through
 921     case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;
 922     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
 923     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
 924     default      : ShouldNotReachHere();
 925   }
 926   return store_offset;
 927 }
 928 
 929 
 930 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
 931   int load_offset;
 932   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 933     assert(base != O7, "destroying register");
 934     assert(!unaligned, "can't handle this");
 935     // for offsets larger than a simm13 we setup the offset in O7
 936     __ set(offset, O7);
 937     load_offset = load(base, O7, to_reg, type);
 938   } else {
 939     load_offset = code_offset();
 940     switch(type) {
 941       case T_BOOLEAN: // fall through
 942       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
 943       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
 944       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
 945       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
 946       case T_LONG  :
 947         if (!unaligned) {
 948 #ifdef _LP64
 949           __ ldx(base, offset, to_reg->as_register_lo());
 950 #else
 951           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
 952                  "must be sequential");
 953           __ ldd(base, offset, to_reg->as_register_hi());
 954 #endif
 955         } else {
 956 #ifdef _LP64
 957           assert(base != to_reg->as_register_lo(), "can't handle this");
 958           assert(O7 != to_reg->as_register_lo(), "can't handle this");
 959           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
 960           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
 961           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
 962           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
 963 #else
 964           if (base == to_reg->as_register_lo()) {
 965             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
 966             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
 967           } else {
 968             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
 969             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
 970           }
 971 #endif
 972         }
 973         break;
 974       case T_ADDRESS:// fall through
 975       case T_ARRAY : // fall through
 976       case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;
 977       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
 978       case T_DOUBLE:
 979         {
 980           FloatRegister reg = to_reg->as_double_reg();
 981           // split unaligned loads
 982           if (unaligned || PatchALot) {
 983             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
 984             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
 985           } else {
 986             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
 987           }
 988           break;
 989         }
 990       default      : ShouldNotReachHere();
 991     }
 992     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
 993   }
 994   return load_offset;
 995 }
 996 
 997 
 998 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
 999   int load_offset = code_offset();
1000   switch(type) {
1001     case T_BOOLEAN: // fall through
1002     case T_BYTE  : __ ldsb(base, disp, to_reg->as_register()); break;
1003     case T_CHAR  : __ lduh(base, disp, to_reg->as_register()); break;
1004     case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
1005     case T_INT   : __ ld(base, disp, to_reg->as_register()); break;
1006     case T_ADDRESS:// fall through
1007     case T_ARRAY : // fall through
1008     case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;
1009     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
1010     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
1011     case T_LONG  :
1012 #ifdef _LP64
1013       __ ldx(base, disp, to_reg->as_register_lo());
1014 #else
1015       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
1016              "must be sequential");
1017       __ ldd(base, disp, to_reg->as_register_hi());
1018 #endif
1019       break;
1020     default      : ShouldNotReachHere();
1021   }
1022   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
1023   return load_offset;
1024 }
1025 
1026 
1027 // load/store with an Address
1028 void LIR_Assembler::load(const Address& a, Register d,  BasicType ld_type, CodeEmitInfo *info, int offset) {
1029   load(a.base(), a.disp() + offset, d, ld_type, info);
1030 }
1031 
1032 
1033 void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
1034   store(value, dest.base(), dest.disp() + offset, type, info);
1035 }
1036 
1037 
1038 // loadf/storef with an Address
1039 void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
1040   load(a.base(), a.disp() + offset, d, ld_type, info);
1041 }
1042 
1043 
1044 void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
1045   store(value, dest.base(), dest.disp() + offset, type, info);
1046 }
1047 
1048 
1049 // load/store with an Address
1050 void LIR_Assembler::load(LIR_Address* a, Register d,  BasicType ld_type, CodeEmitInfo *info) {
1051   load(as_Address(a), d, ld_type, info);
1052 }
1053 
1054 
1055 void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
1056   store(value, as_Address(dest), type, info);
1057 }
1058 
1059 
1060 // loadf/storef with an Address
1061 void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
1062   load(as_Address(a), d, ld_type, info);
1063 }
1064 
1065 
1066 void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
1067   store(value, as_Address(dest), type, info);
1068 }
1069 
1070 
1071 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
1072   LIR_Const* c = src->as_constant_ptr();
1073   switch (c->type()) {
1074     case T_INT:
1075     case T_FLOAT: {
1076       Register src_reg = O7;
1077       int value = c->as_jint_bits();
1078       if (value == 0) {
1079         src_reg = G0;
1080       } else {
1081         __ set(value, O7);
1082       }
1083       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1084       __ stw(src_reg, addr.base(), addr.disp());
1085       break;
1086     }
1087     case T_OBJECT: {
1088       Register src_reg = O7;
1089       jobject2reg(c->as_jobject(), src_reg);
1090       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1091       __ st_ptr(src_reg, addr.base(), addr.disp());
1092       break;
1093     }
1094     case T_LONG:
1095     case T_DOUBLE: {
1096       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
1097 
1098       Register tmp = O7;
1099       int value_lo = c->as_jint_lo_bits();
1100       if (value_lo == 0) {
1101         tmp = G0;
1102       } else {
1103         __ set(value_lo, O7);
1104       }
1105       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
1106       int value_hi = c->as_jint_hi_bits();
1107       if (value_hi == 0) {
1108         tmp = G0;
1109       } else {
1110         __ set(value_hi, O7);
1111       }
1112       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
1113       break;
1114     }
1115     default:
1116       Unimplemented();
1117   }
1118 }
1119 
1120 
1121 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
1122   LIR_Const* c = src->as_constant_ptr();
1123   LIR_Address* addr     = dest->as_address_ptr();
1124   Register base = addr->base()->as_pointer_register();
1125 
1126   if (info != NULL) {
1127     add_debug_info_for_null_check_here(info);
1128   }
1129   switch (c->type()) {
1130     case T_INT:
1131     case T_FLOAT: {
1132       LIR_Opr tmp = FrameMap::O7_opr;
1133       int value = c->as_jint_bits();
1134       if (value == 0) {
1135         tmp = FrameMap::G0_opr;
1136       } else if (Assembler::is_simm13(value)) {
1137         __ set(value, O7);
1138       }
1139       if (addr->index()->is_valid()) {
1140         assert(addr->disp() == 0, "must be zero");
1141         store(tmp, base, addr->index()->as_pointer_register(), type);
1142       } else {
1143         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1144         store(tmp, base, addr->disp(), type);
1145       }
1146       break;
1147     }
1148     case T_LONG:
1149     case T_DOUBLE: {
1150       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1151       assert(Assembler::is_simm13(addr->disp()) &&
1152              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1153 
1154       Register tmp = O7;
1155       int value_lo = c->as_jint_lo_bits();
1156       if (value_lo == 0) {
1157         tmp = G0;
1158       } else {
1159         __ set(value_lo, O7);
1160       }
1161       store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
1162       int value_hi = c->as_jint_hi_bits();
1163       if (value_hi == 0) {
1164         tmp = G0;
1165       } else {
1166         __ set(value_hi, O7);
1167       }
1168       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
1169       break;
1170     }
1171     case T_OBJECT: {
1172       jobject obj = c->as_jobject();
1173       LIR_Opr tmp;
1174       if (obj == NULL) {
1175         tmp = FrameMap::G0_opr;
1176       } else {
1177         tmp = FrameMap::O7_opr;
1178         jobject2reg(c->as_jobject(), O7);
1179       }
1180       // handle either reg+reg or reg+disp address
1181       if (addr->index()->is_valid()) {
1182         assert(addr->disp() == 0, "must be zero");
1183         store(tmp, base, addr->index()->as_pointer_register(), type);
1184       } else {
1185         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1186         store(tmp, base, addr->disp(), type);
1187       }
1188 
1189       break;
1190     }
1191     default:
1192       Unimplemented();
1193   }
1194 }
1195 
1196 
1197 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1198   LIR_Const* c = src->as_constant_ptr();
1199   LIR_Opr to_reg = dest;
1200 
1201   switch (c->type()) {
1202     case T_INT:
1203       {
1204         jint con = c->as_jint();
1205         if (to_reg->is_single_cpu()) {
1206           assert(patch_code == lir_patch_none, "no patching handled here");
1207           __ set(con, to_reg->as_register());
1208         } else {
1209           ShouldNotReachHere();
1210           assert(to_reg->is_single_fpu(), "wrong register kind");
1211 
1212           __ set(con, O7);
1213           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
1214           __ st(O7, temp_slot);
1215           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
1216         }
1217       }
1218       break;
1219 
1220     case T_LONG:
1221       {
1222         jlong con = c->as_jlong();
1223 
1224         if (to_reg->is_double_cpu()) {
1225 #ifdef _LP64
1226           __ set(con,  to_reg->as_register_lo());
1227 #else
1228           __ set(low(con),  to_reg->as_register_lo());
1229           __ set(high(con), to_reg->as_register_hi());
1230 #endif
1231 #ifdef _LP64
1232         } else if (to_reg->is_single_cpu()) {
1233           __ set(con, to_reg->as_register());
1234 #endif
1235         } else {
1236           ShouldNotReachHere();
1237           assert(to_reg->is_double_fpu(), "wrong register kind");
1238           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
1239           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
1240           __ set(low(con),  O7);
1241           __ st(O7, temp_slot_lo);
1242           __ set(high(con), O7);
1243           __ st(O7, temp_slot_hi);
1244           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
1245         }
1246       }
1247       break;
1248 
1249     case T_OBJECT:
1250       {
1251         if (patch_code == lir_patch_none) {
1252           jobject2reg(c->as_jobject(), to_reg->as_register());
1253         } else {
1254           jobject2reg_with_patching(to_reg->as_register(), info);
1255         }
1256       }
1257       break;
1258 
1259     case T_FLOAT:
1260       {
1261         address const_addr = __ float_constant(c->as_jfloat());
1262         if (const_addr == NULL) {
1263           bailout("const section overflow");
1264           break;
1265         }
1266         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1267         AddressLiteral const_addrlit(const_addr, rspec);
1268         if (to_reg->is_single_fpu()) {
1269           __ patchable_sethi(const_addrlit, O7);
1270           __ relocate(rspec);
1271           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1272 
1273         } else {
1274           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1275 
1276           __ set(const_addrlit, O7);
1277           load(O7, 0, to_reg->as_register(), T_INT);
1278         }
1279       }
1280       break;
1281 
1282     case T_DOUBLE:
1283       {
1284         address const_addr = __ double_constant(c->as_jdouble());
1285         if (const_addr == NULL) {
1286           bailout("const section overflow");
1287           break;
1288         }
1289         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1290 
1291         if (to_reg->is_double_fpu()) {
1292           AddressLiteral const_addrlit(const_addr, rspec);
1293           __ patchable_sethi(const_addrlit, O7);
1294           __ relocate(rspec);
1295           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1296         } else {
1297           assert(to_reg->is_double_cpu(), "Must be a long register.");
1298 #ifdef _LP64
1299           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
1300 #else
1301           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
1302           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
1303 #endif
1304         }
1305 
1306       }
1307       break;
1308 
1309     default:
1310       ShouldNotReachHere();
1311   }
1312 }
1313 
1314 Address LIR_Assembler::as_Address(LIR_Address* addr) {
1315   Register reg = addr->base()->as_register();
1316   return Address(reg, addr->disp());
1317 }
1318 
1319 
1320 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1321   switch (type) {
1322     case T_INT:
1323     case T_FLOAT: {
1324       Register tmp = O7;
1325       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1326       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1327       __ lduw(from.base(), from.disp(), tmp);
1328       __ stw(tmp, to.base(), to.disp());
1329       break;
1330     }
1331     case T_OBJECT: {
1332       Register tmp = O7;
1333       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1334       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1335       __ ld_ptr(from.base(), from.disp(), tmp);
1336       __ st_ptr(tmp, to.base(), to.disp());
1337       break;
1338     }
1339     case T_LONG:
1340     case T_DOUBLE: {
1341       Register tmp = O7;
1342       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1343       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1344       __ lduw(from.base(), from.disp(), tmp);
1345       __ stw(tmp, to.base(), to.disp());
1346       __ lduw(from.base(), from.disp() + 4, tmp);
1347       __ stw(tmp, to.base(), to.disp() + 4);
1348       break;
1349     }
1350 
1351     default:
1352       ShouldNotReachHere();
1353   }
1354 }
1355 
1356 
1357 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1358   Address base = as_Address(addr);
1359   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1360 }
1361 
1362 
1363 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1364   Address base = as_Address(addr);
1365   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1366 }
1367 
1368 
1369 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1370                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
1371 
1372   LIR_Address* addr = src_opr->as_address_ptr();
1373   LIR_Opr to_reg = dest;
1374 
1375   Register src = addr->base()->as_pointer_register();
1376   Register disp_reg = noreg;
1377   int disp_value = addr->disp();
1378   bool needs_patching = (patch_code != lir_patch_none);
1379 
1380   if (addr->base()->type() == T_OBJECT) {
1381     __ verify_oop(src);
1382   }
1383 
1384   PatchingStub* patch = NULL;
1385   if (needs_patching) {
1386     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1387     assert(!to_reg->is_double_cpu() ||
1388            patch_code == lir_patch_none ||
1389            patch_code == lir_patch_normal, "patching doesn't match register");
1390   }
1391 
1392   if (addr->index()->is_illegal()) {
1393     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1394       if (needs_patching) {
1395         __ patchable_set(0, O7);
1396       } else {
1397         __ set(disp_value, O7);
1398       }
1399       disp_reg = O7;
1400     }
1401   } else if (unaligned || PatchALot) {
1402     __ add(src, addr->index()->as_register(), O7);
1403     src = O7;
1404   } else {
1405     disp_reg = addr->index()->as_pointer_register();
1406     assert(disp_value == 0, "can't handle 3 operand addresses");
1407   }
1408 
1409   // remember the offset of the load.  The patching_epilog must be done
1410   // before the call to add_debug_info, otherwise the PcDescs don't get
1411   // entered in increasing order.
1412   int offset = code_offset();
1413 
1414   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1415   if (disp_reg == noreg) {
1416     offset = load(src, disp_value, to_reg, type, unaligned);
1417   } else {
1418     assert(!unaligned, "can't handle this");
1419     offset = load(src, disp_reg, to_reg, type);
1420   }
1421 
1422   if (patch != NULL) {
1423     patching_epilog(patch, patch_code, src, info);
1424   }
1425 
1426   if (info != NULL) add_debug_info_for_null_check(offset, info);
1427 }
1428 
1429 
1430 void LIR_Assembler::prefetchr(LIR_Opr src) {
1431   LIR_Address* addr = src->as_address_ptr();
1432   Address from_addr = as_Address(addr);
1433 
1434   if (VM_Version::has_v9()) {
1435     __ prefetch(from_addr, Assembler::severalReads);
1436   }
1437 }
1438 
1439 
1440 void LIR_Assembler::prefetchw(LIR_Opr src) {
1441   LIR_Address* addr = src->as_address_ptr();
1442   Address from_addr = as_Address(addr);
1443 
1444   if (VM_Version::has_v9()) {
1445     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
1446   }
1447 }
1448 
1449 
1450 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1451   Address addr;
1452   if (src->is_single_word()) {
1453     addr = frame_map()->address_for_slot(src->single_stack_ix());
1454   } else if (src->is_double_word())  {
1455     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1456   }
1457 
1458   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1459   load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
1460 }
1461 
1462 
1463 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1464   Address addr;
1465   if (dest->is_single_word()) {
1466     addr = frame_map()->address_for_slot(dest->single_stack_ix());
1467   } else if (dest->is_double_word())  {
1468     addr = frame_map()->address_for_slot(dest->double_stack_ix());
1469   }
1470   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1471   store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
1472 }
1473 
1474 
1475 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1476   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1477     if (from_reg->is_double_fpu()) {
1478       // double to double moves
1479       assert(to_reg->is_double_fpu(), "should match");
1480       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1481     } else {
1482       // float to float moves
1483       assert(to_reg->is_single_fpu(), "should match");
1484       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1485     }
1486   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1487     if (from_reg->is_double_cpu()) {
1488 #ifdef _LP64
1489       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1490 #else
1491       assert(to_reg->is_double_cpu() &&
1492              from_reg->as_register_hi() != to_reg->as_register_lo() &&
1493              from_reg->as_register_lo() != to_reg->as_register_hi(),
1494              "should both be long and not overlap");
1495       // long to long moves
1496       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
1497       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
1498 #endif
1499 #ifdef _LP64
1500     } else if (to_reg->is_double_cpu()) {
1501       // int to int moves
1502       __ mov(from_reg->as_register(), to_reg->as_register_lo());
1503 #endif
1504     } else {
1505       // int to int moves
1506       __ mov(from_reg->as_register(), to_reg->as_register());
1507     }
1508   } else {
1509     ShouldNotReachHere();
1510   }
1511   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1512     __ verify_oop(to_reg->as_register());
1513   }
1514 }
1515 
1516 
1517 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1518                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1519                             bool unaligned) {
1520   LIR_Address* addr = dest->as_address_ptr();
1521 
1522   Register src = addr->base()->as_pointer_register();
1523   Register disp_reg = noreg;
1524   int disp_value = addr->disp();
1525   bool needs_patching = (patch_code != lir_patch_none);
1526 
1527   if (addr->base()->is_oop_register()) {
1528     __ verify_oop(src);
1529   }
1530 
1531   PatchingStub* patch = NULL;
1532   if (needs_patching) {
1533     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1534     assert(!from_reg->is_double_cpu() ||
1535            patch_code == lir_patch_none ||
1536            patch_code == lir_patch_normal, "patching doesn't match register");
1537   }
1538 
1539   if (addr->index()->is_illegal()) {
1540     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1541       if (needs_patching) {
1542         __ patchable_set(0, O7);
1543       } else {
1544         __ set(disp_value, O7);
1545       }
1546       disp_reg = O7;
1547     }
1548   } else if (unaligned || PatchALot) {
1549     __ add(src, addr->index()->as_register(), O7);
1550     src = O7;
1551   } else {
1552     disp_reg = addr->index()->as_pointer_register();
1553     assert(disp_value == 0, "can't handle 3 operand addresses");
1554   }
1555 
1556   // remember the offset of the store.  The patching_epilog must be done
1557   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1558   // entered in increasing order.
1559   int offset;
1560 
1561   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1562   if (disp_reg == noreg) {
1563     offset = store(from_reg, src, disp_value, type, unaligned);
1564   } else {
1565     assert(!unaligned, "can't handle this");
1566     offset = store(from_reg, src, disp_reg, type);
1567   }
1568 
1569   if (patch != NULL) {
1570     patching_epilog(patch, patch_code, src, info);
1571   }
1572 
1573   if (info != NULL) add_debug_info_for_null_check(offset, info);
1574 }
1575 
1576 
1577 void LIR_Assembler::return_op(LIR_Opr result) {
1578   // the poll may need a register so just pick one that isn't the return register
1579 #ifdef TIERED
1580   if (result->type_field() == LIR_OprDesc::long_type) {
1581     // Must move the result to G1
1582     // Must leave proper result in O0,O1 and G1 (TIERED only)
1583     __ sllx(I0, 32, G1);          // Shift bits into high G1
1584     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
1585     __ or3 (I1, G1, G1);          // OR 64 bits into G1
1586   }
1587 #endif // TIERED
1588   __ set((intptr_t)os::get_polling_page(), L0);
1589   __ relocate(relocInfo::poll_return_type);
1590   __ ld_ptr(L0, 0, G0);
1591   __ ret();
1592   __ delayed()->restore();
1593 }
1594 
1595 
1596 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1597   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
1598   if (info != NULL) {
1599     add_debug_info_for_branch(info);
1600   } else {
1601     __ relocate(relocInfo::poll_type);
1602   }
1603 
1604   int offset = __ offset();
1605   __ ld_ptr(tmp->as_register(), 0, G0);
1606 
1607   return offset;
1608 }
1609 
1610 
1611 void LIR_Assembler::emit_static_call_stub() {
1612   address call_pc = __ pc();
1613   address stub = __ start_a_stub(call_stub_size);
1614   if (stub == NULL) {
1615     bailout("static call stub overflow");
1616     return;
1617   }
1618 
1619   int start = __ offset();
1620   __ relocate(static_stub_Relocation::spec(call_pc));
1621 
1622   __ set_oop(NULL, G5);
1623   // must be set to -1 at code generation time
1624   AddressLiteral addrlit(-1);
1625   __ jump_to(addrlit, G3);
1626   __ delayed()->nop();
1627 
1628   assert(__ offset() - start <= call_stub_size, "stub too big");
1629   __ end_a_stub();
1630 }
1631 
1632 
1633 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1634   if (opr1->is_single_fpu()) {
1635     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
1636   } else if (opr1->is_double_fpu()) {
1637     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
1638   } else if (opr1->is_single_cpu()) {
1639     if (opr2->is_constant()) {
1640       switch (opr2->as_constant_ptr()->type()) {
1641         case T_INT:
1642           { jint con = opr2->as_constant_ptr()->as_jint();
1643             if (Assembler::is_simm13(con)) {
1644               __ cmp(opr1->as_register(), con);
1645             } else {
1646               __ set(con, O7);
1647               __ cmp(opr1->as_register(), O7);
1648             }
1649           }
1650           break;
1651 
1652         case T_OBJECT:
1653           // there are only equal/notequal comparisions on objects
1654           { jobject con = opr2->as_constant_ptr()->as_jobject();
1655             if (con == NULL) {
1656               __ cmp(opr1->as_register(), 0);
1657             } else {
1658               jobject2reg(con, O7);
1659               __ cmp(opr1->as_register(), O7);
1660             }
1661           }
1662           break;
1663 
1664         default:
1665           ShouldNotReachHere();
1666           break;
1667       }
1668     } else {
1669       if (opr2->is_address()) {
1670         LIR_Address * addr = opr2->as_address_ptr();
1671         BasicType type = addr->type();
1672         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1673         else                    __ ld(as_Address(addr), O7);
1674         __ cmp(opr1->as_register(), O7);
1675       } else {
1676         __ cmp(opr1->as_register(), opr2->as_register());
1677       }
1678     }
1679   } else if (opr1->is_double_cpu()) {
1680     Register xlo = opr1->as_register_lo();
1681     Register xhi = opr1->as_register_hi();
1682     if (opr2->is_constant() && opr2->as_jlong() == 0) {
1683       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
1684 #ifdef _LP64
1685       __ orcc(xhi, G0, G0);
1686 #else
1687       __ orcc(xhi, xlo, G0);
1688 #endif
1689     } else if (opr2->is_register()) {
1690       Register ylo = opr2->as_register_lo();
1691       Register yhi = opr2->as_register_hi();
1692 #ifdef _LP64
1693       __ cmp(xlo, ylo);
1694 #else
1695       __ subcc(xlo, ylo, xlo);
1696       __ subccc(xhi, yhi, xhi);
1697       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
1698         __ orcc(xhi, xlo, G0);
1699       }
1700 #endif
1701     } else {
1702       ShouldNotReachHere();
1703     }
1704   } else if (opr1->is_address()) {
1705     LIR_Address * addr = opr1->as_address_ptr();
1706     BasicType type = addr->type();
1707     assert (opr2->is_constant(), "Checking");
1708     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1709     else                    __ ld(as_Address(addr), O7);
1710     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
1711   } else {
1712     ShouldNotReachHere();
1713   }
1714 }
1715 
1716 
1717 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1718   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1719     bool is_unordered_less = (code == lir_ucmp_fd2i);
1720     if (left->is_single_fpu()) {
1721       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1722     } else if (left->is_double_fpu()) {
1723       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1724     } else {
1725       ShouldNotReachHere();
1726     }
1727   } else if (code == lir_cmp_l2i) {
1728     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
1729             right->as_register_hi(), right->as_register_lo(),
1730             dst->as_register());
1731   } else {
1732     ShouldNotReachHere();
1733   }
1734 }
1735 
1736 
1737 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
1738 
1739   Assembler::Condition acond;
1740   switch (condition) {
1741     case lir_cond_equal:        acond = Assembler::equal;        break;
1742     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
1743     case lir_cond_less:         acond = Assembler::less;         break;
1744     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
1745     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
1746     case lir_cond_greater:      acond = Assembler::greater;      break;
1747     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
1748     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
1749     default:                         ShouldNotReachHere();
1750   };
1751 
1752   if (opr1->is_constant() && opr1->type() == T_INT) {
1753     Register dest = result->as_register();
1754     // load up first part of constant before branch
1755     // and do the rest in the delay slot.
1756     if (!Assembler::is_simm13(opr1->as_jint())) {
1757       __ sethi(opr1->as_jint(), dest);
1758     }
1759   } else if (opr1->is_constant()) {
1760     const2reg(opr1, result, lir_patch_none, NULL);
1761   } else if (opr1->is_register()) {
1762     reg2reg(opr1, result);
1763   } else if (opr1->is_stack()) {
1764     stack2reg(opr1, result, result->type());
1765   } else {
1766     ShouldNotReachHere();
1767   }
1768   Label skip;
1769   __ br(acond, false, Assembler::pt, skip);
1770   if (opr1->is_constant() && opr1->type() == T_INT) {
1771     Register dest = result->as_register();
1772     if (Assembler::is_simm13(opr1->as_jint())) {
1773       __ delayed()->or3(G0, opr1->as_jint(), dest);
1774     } else {
1775       // the sethi has been done above, so just put in the low 10 bits
1776       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
1777     }
1778   } else {
1779     // can't do anything useful in the delay slot
1780     __ delayed()->nop();
1781   }
1782   if (opr2->is_constant()) {
1783     const2reg(opr2, result, lir_patch_none, NULL);
1784   } else if (opr2->is_register()) {
1785     reg2reg(opr2, result);
1786   } else if (opr2->is_stack()) {
1787     stack2reg(opr2, result, result->type());
1788   } else {
1789     ShouldNotReachHere();
1790   }
1791   __ bind(skip);
1792 }
1793 
1794 
1795 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1796   assert(info == NULL, "unused on this code path");
1797   assert(left->is_register(), "wrong items state");
1798   assert(dest->is_register(), "wrong items state");
1799 
1800   if (right->is_register()) {
1801     if (dest->is_float_kind()) {
1802 
1803       FloatRegister lreg, rreg, res;
1804       FloatRegisterImpl::Width w;
1805       if (right->is_single_fpu()) {
1806         w = FloatRegisterImpl::S;
1807         lreg = left->as_float_reg();
1808         rreg = right->as_float_reg();
1809         res  = dest->as_float_reg();
1810       } else {
1811         w = FloatRegisterImpl::D;
1812         lreg = left->as_double_reg();
1813         rreg = right->as_double_reg();
1814         res  = dest->as_double_reg();
1815       }
1816 
1817       switch (code) {
1818         case lir_add: __ fadd(w, lreg, rreg, res); break;
1819         case lir_sub: __ fsub(w, lreg, rreg, res); break;
1820         case lir_mul: // fall through
1821         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
1822         case lir_div: // fall through
1823         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
1824         default: ShouldNotReachHere();
1825       }
1826 
1827     } else if (dest->is_double_cpu()) {
1828 #ifdef _LP64
1829       Register dst_lo = dest->as_register_lo();
1830       Register op1_lo = left->as_pointer_register();
1831       Register op2_lo = right->as_pointer_register();
1832 
1833       switch (code) {
1834         case lir_add:
1835           __ add(op1_lo, op2_lo, dst_lo);
1836           break;
1837 
1838         case lir_sub:
1839           __ sub(op1_lo, op2_lo, dst_lo);
1840           break;
1841 
1842         default: ShouldNotReachHere();
1843       }
1844 #else
1845       Register op1_lo = left->as_register_lo();
1846       Register op1_hi = left->as_register_hi();
1847       Register op2_lo = right->as_register_lo();
1848       Register op2_hi = right->as_register_hi();
1849       Register dst_lo = dest->as_register_lo();
1850       Register dst_hi = dest->as_register_hi();
1851 
1852       switch (code) {
1853         case lir_add:
1854           __ addcc(op1_lo, op2_lo, dst_lo);
1855           __ addc (op1_hi, op2_hi, dst_hi);
1856           break;
1857 
1858         case lir_sub:
1859           __ subcc(op1_lo, op2_lo, dst_lo);
1860           __ subc (op1_hi, op2_hi, dst_hi);
1861           break;
1862 
1863         default: ShouldNotReachHere();
1864       }
1865 #endif
1866     } else {
1867       assert (right->is_single_cpu(), "Just Checking");
1868 
1869       Register lreg = left->as_register();
1870       Register res  = dest->as_register();
1871       Register rreg = right->as_register();
1872       switch (code) {
1873         case lir_add:  __ add  (lreg, rreg, res); break;
1874         case lir_sub:  __ sub  (lreg, rreg, res); break;
1875         case lir_mul:  __ mult (lreg, rreg, res); break;
1876         default: ShouldNotReachHere();
1877       }
1878     }
1879   } else {
1880     assert (right->is_constant(), "must be constant");
1881 
1882     if (dest->is_single_cpu()) {
1883       Register lreg = left->as_register();
1884       Register res  = dest->as_register();
1885       int    simm13 = right->as_constant_ptr()->as_jint();
1886 
1887       switch (code) {
1888         case lir_add:  __ add  (lreg, simm13, res); break;
1889         case lir_sub:  __ sub  (lreg, simm13, res); break;
1890         case lir_mul:  __ mult (lreg, simm13, res); break;
1891         default: ShouldNotReachHere();
1892       }
1893     } else {
1894       Register lreg = left->as_pointer_register();
1895       Register res  = dest->as_register_lo();
1896       long con = right->as_constant_ptr()->as_jlong();
1897       assert(Assembler::is_simm13(con), "must be simm13");
1898 
1899       switch (code) {
1900         case lir_add:  __ add  (lreg, (int)con, res); break;
1901         case lir_sub:  __ sub  (lreg, (int)con, res); break;
1902         case lir_mul:  __ mult (lreg, (int)con, res); break;
1903         default: ShouldNotReachHere();
1904       }
1905     }
1906   }
1907 }
1908 
1909 
1910 void LIR_Assembler::fpop() {
1911   // do nothing
1912 }
1913 
1914 
1915 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1916   switch (code) {
1917     case lir_sin:
1918     case lir_tan:
1919     case lir_cos: {
1920       assert(thread->is_valid(), "preserve the thread object for performance reasons");
1921       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
1922       break;
1923     }
1924     case lir_sqrt: {
1925       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1926       FloatRegister src_reg = value->as_double_reg();
1927       FloatRegister dst_reg = dest->as_double_reg();
1928       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
1929       break;
1930     }
1931     case lir_abs: {
1932       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1933       FloatRegister src_reg = value->as_double_reg();
1934       FloatRegister dst_reg = dest->as_double_reg();
1935       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
1936       break;
1937     }
1938     default: {
1939       ShouldNotReachHere();
1940       break;
1941     }
1942   }
1943 }
1944 
1945 
1946 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1947   if (right->is_constant()) {
1948     if (dest->is_single_cpu()) {
1949       int simm13 = right->as_constant_ptr()->as_jint();
1950       switch (code) {
1951         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
1952         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
1953         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
1954         default: ShouldNotReachHere();
1955       }
1956     } else {
1957       long c = right->as_constant_ptr()->as_jlong();
1958       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
1959       int simm13 = (int)c;
1960       switch (code) {
1961         case lir_logic_and:
1962 #ifndef _LP64
1963           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
1964 #endif
1965           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
1966           break;
1967 
1968         case lir_logic_or:
1969 #ifndef _LP64
1970           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
1971 #endif
1972           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
1973           break;
1974 
1975         case lir_logic_xor:
1976 #ifndef _LP64
1977           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
1978 #endif
1979           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
1980           break;
1981 
1982         default: ShouldNotReachHere();
1983       }
1984     }
1985   } else {
1986     assert(right->is_register(), "right should be in register");
1987 
1988     if (dest->is_single_cpu()) {
1989       switch (code) {
1990         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
1991         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
1992         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
1993         default: ShouldNotReachHere();
1994       }
1995     } else {
1996 #ifdef _LP64
1997       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
1998                                                                         left->as_register_lo();
1999       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
2000                                                                           right->as_register_lo();
2001 
2002       switch (code) {
2003         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
2004         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
2005         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
2006         default: ShouldNotReachHere();
2007       }
2008 #else
2009       switch (code) {
2010         case lir_logic_and:
2011           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2012           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2013           break;
2014 
2015         case lir_logic_or:
2016           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2017           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2018           break;
2019 
2020         case lir_logic_xor:
2021           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2022           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2023           break;
2024 
2025         default: ShouldNotReachHere();
2026       }
2027 #endif
2028     }
2029   }
2030 }
2031 
2032 
2033 int LIR_Assembler::shift_amount(BasicType t) {
2034   int elem_size = type2aelembytes(t);
2035   switch (elem_size) {
2036     case 1 : return 0;
2037     case 2 : return 1;
2038     case 4 : return 2;
2039     case 8 : return 3;
2040   }
2041   ShouldNotReachHere();
2042   return -1;
2043 }
2044 
2045 
2046 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
2047   assert(exceptionOop->as_register() == Oexception, "should match");
2048   assert(unwind || exceptionPC->as_register() == Oissuing_pc, "should match");
2049 
2050   info->add_register_oop(exceptionOop);
2051 
2052   if (unwind) {
2053     __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
2054     __ delayed()->nop();
2055   } else {
2056     // reuse the debug info from the safepoint poll for the throw op itself
2057     address pc_for_athrow  = __ pc();
2058     int pc_for_athrow_offset = __ offset();
2059     RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
2060     __ set(pc_for_athrow, Oissuing_pc, rspec);
2061     add_call_info(pc_for_athrow_offset, info); // for exception handler
2062 
2063     __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
2064     __ delayed()->nop();
2065   }
2066 }
2067 
2068 
2069 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2070   Register src = op->src()->as_register();
2071   Register dst = op->dst()->as_register();
2072   Register src_pos = op->src_pos()->as_register();
2073   Register dst_pos = op->dst_pos()->as_register();
2074   Register length  = op->length()->as_register();
2075   Register tmp = op->tmp()->as_register();
2076   Register tmp2 = O7;
2077 
2078   int flags = op->flags();
2079   ciArrayKlass* default_type = op->expected_type();
2080   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2081   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2082 
2083   // set up the arraycopy stub information
2084   ArrayCopyStub* stub = op->stub();
2085 
2086   // always do stub if no type information is available.  it's ok if
2087   // the known type isn't loaded since the code sanity checks
2088   // in debug mode and the type isn't required when we know the exact type
2089   // also check that the type is an array type.
2090   // We also, for now, always call the stub if the barrier set requires a
2091   // write_ref_pre barrier (which the stub does, but none of the optimized
2092   // cases currently does).
2093   if (op->expected_type() == NULL ||
2094       Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
2095     __ mov(src,     O0);
2096     __ mov(src_pos, O1);
2097     __ mov(dst,     O2);
2098     __ mov(dst_pos, O3);
2099     __ mov(length,  O4);
2100     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
2101 
2102     __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
2103     __ delayed()->nop();
2104     __ bind(*stub->continuation());
2105     return;
2106   }
2107 
2108   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
2109 
2110   // make sure src and dst are non-null and load array length
2111   if (flags & LIR_OpArrayCopy::src_null_check) {
2112     __ tst(src);
2113     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2114     __ delayed()->nop();
2115   }
2116 
2117   if (flags & LIR_OpArrayCopy::dst_null_check) {
2118     __ tst(dst);
2119     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2120     __ delayed()->nop();
2121   }
2122 
2123   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2124     // test src_pos register
2125     __ tst(src_pos);
2126     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2127     __ delayed()->nop();
2128   }
2129 
2130   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2131     // test dst_pos register
2132     __ tst(dst_pos);
2133     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2134     __ delayed()->nop();
2135   }
2136 
2137   if (flags & LIR_OpArrayCopy::length_positive_check) {
2138     // make sure length isn't negative
2139     __ tst(length);
2140     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2141     __ delayed()->nop();
2142   }
2143 
2144   if (flags & LIR_OpArrayCopy::src_range_check) {
2145     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
2146     __ add(length, src_pos, tmp);
2147     __ cmp(tmp2, tmp);
2148     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2149     __ delayed()->nop();
2150   }
2151 
2152   if (flags & LIR_OpArrayCopy::dst_range_check) {
2153     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
2154     __ add(length, dst_pos, tmp);
2155     __ cmp(tmp2, tmp);
2156     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2157     __ delayed()->nop();
2158   }
2159 
2160   if (flags & LIR_OpArrayCopy::type_check) {
2161     __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
2162     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2163     __ cmp(tmp, tmp2);
2164     __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2165     __ delayed()->nop();
2166   }
2167 
2168 #ifdef ASSERT
2169   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2170     // Sanity check the known type with the incoming class.  For the
2171     // primitive case the types must match exactly with src.klass and
2172     // dst.klass each exactly matching the default type.  For the
2173     // object array case, if no type check is needed then either the
2174     // dst type is exactly the expected type and the src type is a
2175     // subtype which we can't check or src is the same array as dst
2176     // but not necessarily exactly of type default_type.
2177     Label known_ok, halt;
2178     jobject2reg(op->expected_type()->constant_encoding(), tmp);
2179     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2180     if (basic_type != T_OBJECT) {
2181       __ cmp(tmp, tmp2);
2182       __ br(Assembler::notEqual, false, Assembler::pn, halt);
2183       __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
2184       __ cmp(tmp, tmp2);
2185       __ br(Assembler::equal, false, Assembler::pn, known_ok);
2186       __ delayed()->nop();
2187     } else {
2188       __ cmp(tmp, tmp2);
2189       __ br(Assembler::equal, false, Assembler::pn, known_ok);
2190       __ delayed()->cmp(src, dst);
2191       __ br(Assembler::equal, false, Assembler::pn, known_ok);
2192       __ delayed()->nop();
2193     }
2194     __ bind(halt);
2195     __ stop("incorrect type information in arraycopy");
2196     __ bind(known_ok);
2197   }
2198 #endif
2199 
2200   int shift = shift_amount(basic_type);
2201 
2202   Register src_ptr = O0;
2203   Register dst_ptr = O1;
2204   Register len     = O2;
2205 
2206   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2207   LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null
2208   if (shift == 0) {
2209     __ add(src_ptr, src_pos, src_ptr);
2210   } else {
2211     __ sll(src_pos, shift, tmp);
2212     __ add(src_ptr, tmp, src_ptr);
2213   }
2214 
2215   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2216   LP64_ONLY(__ sra(dst_pos, 0, dst_pos);) //higher 32bits must be null
2217   if (shift == 0) {
2218     __ add(dst_ptr, dst_pos, dst_ptr);
2219   } else {
2220     __ sll(dst_pos, shift, tmp);
2221     __ add(dst_ptr, tmp, dst_ptr);
2222   }
2223 
2224   if (basic_type != T_OBJECT) {
2225     if (shift == 0) {
2226       __ mov(length, len);
2227     } else {
2228       __ sll(length, shift, len);
2229     }
2230     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
2231   } else {
2232     // oop_arraycopy takes a length in number of elements, so don't scale it.
2233     __ mov(length, len);
2234     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
2235   }
2236 
2237   __ bind(*stub->continuation());
2238 }
2239 
2240 
2241 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2242   if (dest->is_single_cpu()) {
2243 #ifdef _LP64
2244     if (left->type() == T_OBJECT) {
2245       switch (code) {
2246         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
2247         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
2248         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2249         default: ShouldNotReachHere();
2250       }
2251     } else
2252 #endif
2253       switch (code) {
2254         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
2255         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
2256         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2257         default: ShouldNotReachHere();
2258       }
2259   } else {
2260 #ifdef _LP64
2261     switch (code) {
2262       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2263       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2264       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2265       default: ShouldNotReachHere();
2266     }
2267 #else
2268     switch (code) {
2269       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2270       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2271       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2272       default: ShouldNotReachHere();
2273     }
2274 #endif
2275   }
2276 }
2277 
2278 
2279 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2280 #ifdef _LP64
2281   if (left->type() == T_OBJECT) {
2282     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
2283     Register l = left->as_register();
2284     Register d = dest->as_register_lo();
2285     switch (code) {
2286       case lir_shl:  __ sllx  (l, count, d); break;
2287       case lir_shr:  __ srax  (l, count, d); break;
2288       case lir_ushr: __ srlx  (l, count, d); break;
2289       default: ShouldNotReachHere();
2290     }
2291     return;
2292   }
2293 #endif
2294 
2295   if (dest->is_single_cpu()) {
2296     count = count & 0x1F; // Java spec
2297     switch (code) {
2298       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
2299       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
2300       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
2301       default: ShouldNotReachHere();
2302     }
2303   } else if (dest->is_double_cpu()) {
2304     count = count & 63; // Java spec
2305     switch (code) {
2306       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2307       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2308       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2309       default: ShouldNotReachHere();
2310     }
2311   } else {
2312     ShouldNotReachHere();
2313   }
2314 }
2315 
2316 
2317 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2318   assert(op->tmp1()->as_register()  == G1 &&
2319          op->tmp2()->as_register()  == G3 &&
2320          op->tmp3()->as_register()  == G4 &&
2321          op->obj()->as_register()   == O0 &&
2322          op->klass()->as_register() == G5, "must be");
2323   if (op->init_check()) {
2324     __ ld(op->klass()->as_register(),
2325           instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
2326           op->tmp1()->as_register());
2327     add_debug_info_for_null_check_here(op->stub()->info());
2328     __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
2329     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
2330     __ delayed()->nop();
2331   }
2332   __ allocate_object(op->obj()->as_register(),
2333                      op->tmp1()->as_register(),
2334                      op->tmp2()->as_register(),
2335                      op->tmp3()->as_register(),
2336                      op->header_size(),
2337                      op->object_size(),
2338                      op->klass()->as_register(),
2339                      *op->stub()->entry());
2340   __ bind(*op->stub()->continuation());
2341   __ verify_oop(op->obj()->as_register());
2342 }
2343 
2344 
2345 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2346   assert(op->tmp1()->as_register()  == G1 &&
2347          op->tmp2()->as_register()  == G3 &&
2348          op->tmp3()->as_register()  == G4 &&
2349          op->tmp4()->as_register()  == O1 &&
2350          op->klass()->as_register() == G5, "must be");
2351   if (UseSlowPath ||
2352       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2353       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2354     __ br(Assembler::always, false, Assembler::pn, *op->stub()->entry());
2355     __ delayed()->nop();
2356   } else {
2357     __ allocate_array(op->obj()->as_register(),
2358                       op->len()->as_register(),
2359                       op->tmp1()->as_register(),
2360                       op->tmp2()->as_register(),
2361                       op->tmp3()->as_register(),
2362                       arrayOopDesc::header_size(op->type()),
2363                       type2aelembytes(op->type()),
2364                       op->klass()->as_register(),
2365                       *op->stub()->entry());
2366   }
2367   __ bind(*op->stub()->continuation());
2368 }
2369 
2370 
2371 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2372   LIR_Code code = op->code();
2373   if (code == lir_store_check) {
2374     Register value = op->object()->as_register();
2375     Register array = op->array()->as_register();
2376     Register k_RInfo = op->tmp1()->as_register();
2377     Register klass_RInfo = op->tmp2()->as_register();
2378     Register Rtmp1 = op->tmp3()->as_register();
2379 
2380     __ verify_oop(value);
2381 
2382     CodeStub* stub = op->stub();
2383     Label done;
2384     __ cmp(value, 0);
2385     __ br(Assembler::equal, false, Assembler::pn, done);
2386     __ delayed()->nop();
2387     load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
2388     load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2389 
2390     // get instance klass
2391     load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
2392     // perform the fast part of the checking logic
2393     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, &done, stub->entry(), NULL);
2394 
2395     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2396     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2397     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2398     __ delayed()->nop();
2399     __ cmp(G3, 0);
2400     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2401     __ delayed()->nop();
2402     __ bind(done);
2403   } else if (op->code() == lir_checkcast) {
2404     // we always need a stub for the failure case.
2405     CodeStub* stub = op->stub();
2406     Register obj = op->object()->as_register();
2407     Register k_RInfo = op->tmp1()->as_register();
2408     Register klass_RInfo = op->tmp2()->as_register();
2409     Register dst = op->result_opr()->as_register();
2410     Register Rtmp1 = op->tmp3()->as_register();
2411     ciKlass* k = op->klass();
2412 
2413     if (obj == k_RInfo) {
2414       k_RInfo = klass_RInfo;
2415       klass_RInfo = obj;
2416     }
2417     if (op->profiled_method() != NULL) {
2418       ciMethod* method = op->profiled_method();
2419       int bci          = op->profiled_bci();
2420 
2421       // We need two temporaries to perform this operation on SPARC,
2422       // so to keep things simple we perform a redundant test here
2423       Label profile_done;
2424       __ cmp(obj, 0);
2425       __ br(Assembler::notEqual, false, Assembler::pn, profile_done);
2426       __ delayed()->nop();
2427       // Object is null; update methodDataOop
2428       ciMethodData* md = method->method_data();
2429       if (md == NULL) {
2430         bailout("out of memory building methodDataOop");
2431         return;
2432       }
2433       ciProfileData* data = md->bci_to_data(bci);
2434       assert(data != NULL,       "need data for checkcast");
2435       assert(data->is_BitData(), "need BitData for checkcast");
2436       Register mdo      = k_RInfo;
2437       Register data_val = Rtmp1;
2438       jobject2reg(md->constant_encoding(), mdo);
2439 
2440       int mdo_offset_bias = 0;
2441       if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2442         // The offset is large so bias the mdo by the base of the slot so
2443         // that the ld can use simm13s to reference the slots of the data
2444         mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2445         __ set(mdo_offset_bias, data_val);
2446         __ add(mdo, data_val, mdo);
2447       }
2448 
2449 
2450       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2451       __ ldub(flags_addr, data_val);
2452       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2453       __ stb(data_val, flags_addr);
2454       __ bind(profile_done);
2455     }
2456 
2457     Label done;
2458     // patching may screw with our temporaries on sparc,
2459     // so let's do it before loading the class
2460     if (k->is_loaded()) {
2461       jobject2reg(k->constant_encoding(), k_RInfo);
2462     } else {
2463       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
2464     }
2465     assert(obj != k_RInfo, "must be different");
2466     __ cmp(obj, 0);
2467     __ br(Assembler::equal, false, Assembler::pn, done);
2468     __ delayed()->nop();
2469 
2470     // get object class
2471     // not a safepoint as obj null check happens earlier
2472     load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2473     if (op->fast_check()) {
2474       assert_different_registers(klass_RInfo, k_RInfo);
2475       __ cmp(k_RInfo, klass_RInfo);
2476       __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2477       __ delayed()->nop();
2478       __ bind(done);
2479     } else {
2480       bool need_slow_path = true;
2481       if (k->is_loaded()) {
2482         if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
2483           need_slow_path = false;
2484         // perform the fast part of the checking logic
2485         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2486                                          (need_slow_path ? &done : NULL),
2487                                          stub->entry(), NULL,
2488                                          RegisterOrConstant(k->super_check_offset()));
2489       } else {
2490         // perform the fast part of the checking logic
2491         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7,
2492                                          &done, stub->entry(), NULL);
2493       }
2494       if (need_slow_path) {
2495         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2496         assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2497         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2498         __ delayed()->nop();
2499         __ cmp(G3, 0);
2500         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2501         __ delayed()->nop();
2502       }
2503       __ bind(done);
2504     }
2505     __ mov(obj, dst);
2506   } else if (code == lir_instanceof) {
2507     Register obj = op->object()->as_register();
2508     Register k_RInfo = op->tmp1()->as_register();
2509     Register klass_RInfo = op->tmp2()->as_register();
2510     Register dst = op->result_opr()->as_register();
2511     Register Rtmp1 = op->tmp3()->as_register();
2512     ciKlass* k = op->klass();
2513 
2514     Label done;
2515     if (obj == k_RInfo) {
2516       k_RInfo = klass_RInfo;
2517       klass_RInfo = obj;
2518     }
2519     // patching may screw with our temporaries on sparc,
2520     // so let's do it before loading the class
2521     if (k->is_loaded()) {
2522       jobject2reg(k->constant_encoding(), k_RInfo);
2523     } else {
2524       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
2525     }
2526     assert(obj != k_RInfo, "must be different");
2527     __ cmp(obj, 0);
2528     __ br(Assembler::equal, true, Assembler::pn, done);
2529     __ delayed()->set(0, dst);
2530 
2531     // get object class
2532     // not a safepoint as obj null check happens earlier
2533     load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2534     if (op->fast_check()) {
2535       __ cmp(k_RInfo, klass_RInfo);
2536       __ br(Assembler::equal, true, Assembler::pt, done);
2537       __ delayed()->set(1, dst);
2538       __ set(0, dst);
2539       __ bind(done);
2540     } else {
2541       bool need_slow_path = true;
2542       if (k->is_loaded()) {
2543         if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
2544           need_slow_path = false;
2545         // perform the fast part of the checking logic
2546         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, noreg,
2547                                          (need_slow_path ? &done : NULL),
2548                                          (need_slow_path ? &done : NULL), NULL,
2549                                          RegisterOrConstant(k->super_check_offset()),
2550                                          dst);
2551       } else {
2552         assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
2553         // perform the fast part of the checking logic
2554         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, dst,
2555                                          &done, &done, NULL,
2556                                          RegisterOrConstant(-1),
2557                                          dst);
2558       }
2559       if (need_slow_path) {
2560         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2561         assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2562         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2563         __ delayed()->nop();
2564         __ mov(G3, dst);
2565       }
2566       __ bind(done);
2567     }
2568   } else {
2569     ShouldNotReachHere();
2570   }
2571 
2572 }
2573 
2574 
2575 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2576   if (op->code() == lir_cas_long) {
2577     assert(VM_Version::supports_cx8(), "wrong machine");
2578     Register addr = op->addr()->as_pointer_register();
2579     Register cmp_value_lo = op->cmp_value()->as_register_lo();
2580     Register cmp_value_hi = op->cmp_value()->as_register_hi();
2581     Register new_value_lo = op->new_value()->as_register_lo();
2582     Register new_value_hi = op->new_value()->as_register_hi();
2583     Register t1 = op->tmp1()->as_register();
2584     Register t2 = op->tmp2()->as_register();
2585 #ifdef _LP64
2586     __ mov(cmp_value_lo, t1);
2587     __ mov(new_value_lo, t2);
2588 #else
2589     // move high and low halves of long values into single registers
2590     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
2591     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
2592     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
2593     __ sllx(new_value_hi, 32, t2);
2594     __ srl(new_value_lo, 0, new_value_lo);
2595     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
2596 #endif
2597     // perform the compare and swap operation
2598     __ casx(addr, t1, t2);
2599     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2600     // overwritten with the original value in "addr" and will be equal to t1.
2601     __ cmp(t1, t2);
2602 
2603   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2604     Register addr = op->addr()->as_pointer_register();
2605     Register cmp_value = op->cmp_value()->as_register();
2606     Register new_value = op->new_value()->as_register();
2607     Register t1 = op->tmp1()->as_register();
2608     Register t2 = op->tmp2()->as_register();
2609     __ mov(cmp_value, t1);
2610     __ mov(new_value, t2);
2611 #ifdef _LP64
2612     if (op->code() == lir_cas_obj) {
2613       __ casx(addr, t1, t2);
2614     } else
2615 #endif
2616       {
2617         __ cas(addr, t1, t2);
2618       }
2619     __ cmp(t1, t2);
2620   } else {
2621     Unimplemented();
2622   }
2623 }
2624 
2625 void LIR_Assembler::set_24bit_FPU() {
2626   Unimplemented();
2627 }
2628 
2629 
2630 void LIR_Assembler::reset_FPU() {
2631   Unimplemented();
2632 }
2633 
2634 
2635 void LIR_Assembler::breakpoint() {
2636   __ breakpoint_trap();
2637 }
2638 
2639 
2640 void LIR_Assembler::push(LIR_Opr opr) {
2641   Unimplemented();
2642 }
2643 
2644 
2645 void LIR_Assembler::pop(LIR_Opr opr) {
2646   Unimplemented();
2647 }
2648 
2649 
2650 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2651   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2652   Register dst = dst_opr->as_register();
2653   Register reg = mon_addr.base();
2654   int offset = mon_addr.disp();
2655   // compute pointer to BasicLock
2656   if (mon_addr.is_simm13()) {
2657     __ add(reg, offset, dst);
2658   } else {
2659     __ set(offset, dst);
2660     __ add(dst, reg, dst);
2661   }
2662 }
2663 
2664 
2665 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2666   Register obj = op->obj_opr()->as_register();
2667   Register hdr = op->hdr_opr()->as_register();
2668   Register lock = op->lock_opr()->as_register();
2669 
2670   // obj may not be an oop
2671   if (op->code() == lir_lock) {
2672     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2673     if (UseFastLocking) {
2674       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2675       // add debug info for NullPointerException only if one is possible
2676       if (op->info() != NULL) {
2677         add_debug_info_for_null_check_here(op->info());
2678       }
2679       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2680     } else {
2681       // always do slow locking
2682       // note: the slow locking code could be inlined here, however if we use
2683       //       slow locking, speed doesn't matter anyway and this solution is
2684       //       simpler and requires less duplicated code - additionally, the
2685       //       slow locking code is the same in either case which simplifies
2686       //       debugging
2687       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2688       __ delayed()->nop();
2689     }
2690   } else {
2691     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2692     if (UseFastLocking) {
2693       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2694       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2695     } else {
2696       // always do slow unlocking
2697       // note: the slow unlocking code could be inlined here, however if we use
2698       //       slow unlocking, speed doesn't matter anyway and this solution is
2699       //       simpler and requires less duplicated code - additionally, the
2700       //       slow unlocking code is the same in either case which simplifies
2701       //       debugging
2702       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2703       __ delayed()->nop();
2704     }
2705   }
2706   __ bind(*op->stub()->continuation());
2707 }
2708 
2709 
2710 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2711   ciMethod* method = op->profiled_method();
2712   int bci          = op->profiled_bci();
2713 
2714   // Update counter for all call types
2715   ciMethodData* md = method->method_data();
2716   if (md == NULL) {
2717     bailout("out of memory building methodDataOop");
2718     return;
2719   }
2720   ciProfileData* data = md->bci_to_data(bci);
2721   assert(data->is_CounterData(), "need CounterData for calls");
2722   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2723   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
2724   Register mdo  = op->mdo()->as_register();
2725   Register tmp1 = op->tmp1()->as_register();
2726   jobject2reg(md->constant_encoding(), mdo);
2727   int mdo_offset_bias = 0;
2728   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2729                             data->size_in_bytes())) {
2730     // The offset is large so bias the mdo by the base of the slot so
2731     // that the ld can use simm13s to reference the slots of the data
2732     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2733     __ set(mdo_offset_bias, O7);
2734     __ add(mdo, O7, mdo);
2735   }
2736 
2737   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2738   Bytecodes::Code bc = method->java_code_at_bci(bci);
2739   // Perform additional virtual call profiling for invokevirtual and
2740   // invokeinterface bytecodes
2741   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
2742       Tier1ProfileVirtualCalls) {
2743     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2744     Register recv = op->recv()->as_register();
2745     assert_different_registers(mdo, tmp1, recv);
2746     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2747     ciKlass* known_klass = op->known_holder();
2748     if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
2749       // We know the type that will be seen at this call site; we can
2750       // statically update the methodDataOop rather than needing to do
2751       // dynamic tests on the receiver type
2752 
2753       // NOTE: we should probably put a lock around this search to
2754       // avoid collisions by concurrent compilations
2755       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2756       uint i;
2757       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2758         ciKlass* receiver = vc_data->receiver(i);
2759         if (known_klass->equals(receiver)) {
2760           Address data_addr(mdo, md->byte_offset_of_slot(data,
2761                                                          VirtualCallData::receiver_count_offset(i)) -
2762                             mdo_offset_bias);
2763           __ lduw(data_addr, tmp1);
2764           __ add(tmp1, DataLayout::counter_increment, tmp1);
2765           __ stw(tmp1, data_addr);
2766           return;
2767         }
2768       }
2769 
2770       // Receiver type not found in profile data; select an empty slot
2771 
2772       // Note that this is less efficient than it should be because it
2773       // always does a write to the receiver part of the
2774       // VirtualCallData rather than just the first time
2775       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2776         ciKlass* receiver = vc_data->receiver(i);
2777         if (receiver == NULL) {
2778           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2779                             mdo_offset_bias);
2780           jobject2reg(known_klass->constant_encoding(), tmp1);
2781           __ st_ptr(tmp1, recv_addr);
2782           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2783                             mdo_offset_bias);
2784           __ lduw(data_addr, tmp1);
2785           __ add(tmp1, DataLayout::counter_increment, tmp1);
2786           __ stw(tmp1, data_addr);
2787           return;
2788         }
2789       }
2790     } else {
2791       load(Address(recv, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
2792       Label update_done;
2793       uint i;
2794       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2795         Label next_test;
2796         // See if the receiver is receiver[n].
2797         Address receiver_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2798                               mdo_offset_bias);
2799         __ ld_ptr(receiver_addr, tmp1);
2800         __ verify_oop(tmp1);
2801         __ cmp(recv, tmp1);
2802         __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
2803         __ delayed()->nop();
2804         Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2805                           mdo_offset_bias);
2806         __ lduw(data_addr, tmp1);
2807         __ add(tmp1, DataLayout::counter_increment, tmp1);
2808         __ stw(tmp1, data_addr);
2809         __ br(Assembler::always, false, Assembler::pt, update_done);
2810         __ delayed()->nop();
2811         __ bind(next_test);
2812       }
2813 
2814       // Didn't find receiver; find next empty slot and fill it in
2815       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2816         Label next_test;
2817         Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2818                           mdo_offset_bias);
2819         load(recv_addr, tmp1, T_OBJECT);
2820         __ tst(tmp1);
2821         __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
2822         __ delayed()->nop();
2823         __ st_ptr(recv, recv_addr);
2824         __ set(DataLayout::counter_increment, tmp1);
2825         __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2826                   mdo_offset_bias);
2827         __ br(Assembler::always, false, Assembler::pt, update_done);
2828         __ delayed()->nop();
2829         __ bind(next_test);
2830       }
2831       // Receiver did not match any saved receiver and there is no empty row for it.
2832       // Increment total counter to indicate polymorphic case.
2833       __ lduw(counter_addr, tmp1);
2834       __ add(tmp1, DataLayout::counter_increment, tmp1);
2835       __ stw(tmp1, counter_addr);
2836 
2837       __ bind(update_done);
2838     }
2839   } else {
2840     // Static call
2841     __ lduw(counter_addr, tmp1);
2842     __ add(tmp1, DataLayout::counter_increment, tmp1);
2843     __ stw(tmp1, counter_addr);
2844   }
2845 }
2846 
2847 
2848 void LIR_Assembler::align_backward_branch_target() {
2849   __ align(16);
2850 }
2851 
2852 
2853 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
2854   // make sure we are expecting a delay
2855   // this has the side effect of clearing the delay state
2856   // so we can use _masm instead of _masm->delayed() to do the
2857   // code generation.
2858   __ delayed();
2859 
2860   // make sure we only emit one instruction
2861   int offset = code_offset();
2862   op->delay_op()->emit_code(this);
2863 #ifdef ASSERT
2864   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
2865     op->delay_op()->print();
2866   }
2867   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
2868          "only one instruction can go in a delay slot");
2869 #endif
2870 
2871   // we may also be emitting the call info for the instruction
2872   // which we are the delay slot of.
2873   CodeEmitInfo * call_info = op->call_info();
2874   if (call_info) {
2875     add_call_info(code_offset(), call_info);
2876   }
2877 
2878   if (VerifyStackAtCalls) {
2879     _masm->sub(FP, SP, O7);
2880     _masm->cmp(O7, initial_frame_size_in_bytes());
2881     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
2882   }
2883 }
2884 
2885 
2886 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
2887   assert(left->is_register(), "can only handle registers");
2888 
2889   if (left->is_single_cpu()) {
2890     __ neg(left->as_register(), dest->as_register());
2891   } else if (left->is_single_fpu()) {
2892     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
2893   } else if (left->is_double_fpu()) {
2894     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
2895   } else {
2896     assert (left->is_double_cpu(), "Must be a long");
2897     Register Rlow = left->as_register_lo();
2898     Register Rhi = left->as_register_hi();
2899 #ifdef _LP64
2900     __ sub(G0, Rlow, dest->as_register_lo());
2901 #else
2902     __ subcc(G0, Rlow, dest->as_register_lo());
2903     __ subc (G0, Rhi,  dest->as_register_hi());
2904 #endif
2905   }
2906 }
2907 
2908 
2909 void LIR_Assembler::fxch(int i) {
2910   Unimplemented();
2911 }
2912 
2913 void LIR_Assembler::fld(int i) {
2914   Unimplemented();
2915 }
2916 
2917 void LIR_Assembler::ffree(int i) {
2918   Unimplemented();
2919 }
2920 
2921 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
2922                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2923 
2924   // if tmp is invalid, then the function being called doesn't destroy the thread
2925   if (tmp->is_valid()) {
2926     __ save_thread(tmp->as_register());
2927   }
2928   __ call(dest, relocInfo::runtime_call_type);
2929   __ delayed()->nop();
2930   if (info != NULL) {
2931     add_call_info_here(info);
2932   }
2933   if (tmp->is_valid()) {
2934     __ restore_thread(tmp->as_register());
2935   }
2936 
2937 #ifdef ASSERT
2938   __ verify_thread();
2939 #endif // ASSERT
2940 }
2941 
2942 
2943 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2944 #ifdef _LP64
2945   ShouldNotReachHere();
2946 #endif
2947 
2948   NEEDS_CLEANUP;
2949   if (type == T_LONG) {
2950     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
2951 
2952     // (extended to allow indexed as well as constant displaced for JSR-166)
2953     Register idx = noreg; // contains either constant offset or index
2954 
2955     int disp = mem_addr->disp();
2956     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
2957       if (!Assembler::is_simm13(disp)) {
2958         idx = O7;
2959         __ set(disp, idx);
2960       }
2961     } else {
2962       assert(disp == 0, "not both indexed and disp");
2963       idx = mem_addr->index()->as_register();
2964     }
2965 
2966     int null_check_offset = -1;
2967 
2968     Register base = mem_addr->base()->as_register();
2969     if (src->is_register() && dest->is_address()) {
2970       // G4 is high half, G5 is low half
2971       if (VM_Version::v9_instructions_work()) {
2972         // clear the top bits of G5, and scale up G4
2973         __ srl (src->as_register_lo(),  0, G5);
2974         __ sllx(src->as_register_hi(), 32, G4);
2975         // combine the two halves into the 64 bits of G4
2976         __ or3(G4, G5, G4);
2977         null_check_offset = __ offset();
2978         if (idx == noreg) {
2979           __ stx(G4, base, disp);
2980         } else {
2981           __ stx(G4, base, idx);
2982         }
2983       } else {
2984         __ mov (src->as_register_hi(), G4);
2985         __ mov (src->as_register_lo(), G5);
2986         null_check_offset = __ offset();
2987         if (idx == noreg) {
2988           __ std(G4, base, disp);
2989         } else {
2990           __ std(G4, base, idx);
2991         }
2992       }
2993     } else if (src->is_address() && dest->is_register()) {
2994       null_check_offset = __ offset();
2995       if (VM_Version::v9_instructions_work()) {
2996         if (idx == noreg) {
2997           __ ldx(base, disp, G5);
2998         } else {
2999           __ ldx(base, idx, G5);
3000         }
3001         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
3002         __ mov (G5, dest->as_register_lo());     // copy low half into lo
3003       } else {
3004         if (idx == noreg) {
3005           __ ldd(base, disp, G4);
3006         } else {
3007           __ ldd(base, idx, G4);
3008         }
3009         // G4 is high half, G5 is low half
3010         __ mov (G4, dest->as_register_hi());
3011         __ mov (G5, dest->as_register_lo());
3012       }
3013     } else {
3014       Unimplemented();
3015     }
3016     if (info != NULL) {
3017       add_debug_info_for_null_check(null_check_offset, info);
3018     }
3019 
3020   } else {
3021     // use normal move for all other volatiles since they don't need
3022     // special handling to remain atomic.
3023     move_op(src, dest, type, lir_patch_none, info, false, false);
3024   }
3025 }
3026 
3027 void LIR_Assembler::membar() {
3028   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3029   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3030 }
3031 
3032 void LIR_Assembler::membar_acquire() {
3033   // no-op on TSO
3034 }
3035 
3036 void LIR_Assembler::membar_release() {
3037   // no-op on TSO
3038 }
3039 
3040 // Macro to Pack two sequential registers containing 32 bit values
3041 // into a single 64 bit register.
3042 // rs and rs->successor() are packed into rd
3043 // rd and rs may be the same register.
3044 // Note: rs and rs->successor() are destroyed.
3045 void LIR_Assembler::pack64( Register rs, Register rd ) {
3046   __ sllx(rs, 32, rs);
3047   __ srl(rs->successor(), 0, rs->successor());
3048   __ or3(rs, rs->successor(), rd);
3049 }
3050 
3051 // Macro to unpack a 64 bit value in a register into
3052 // two sequential registers.
3053 // rd is unpacked into rd and rd->successor()
3054 void LIR_Assembler::unpack64( Register rd ) {
3055   __ mov(rd, rd->successor());
3056   __ srax(rd, 32, rd);
3057   __ sra(rd->successor(), 0, rd->successor());
3058 }
3059 
3060 
3061 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
3062   LIR_Address* addr = addr_opr->as_address_ptr();
3063   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
3064   __ add(addr->base()->as_register(), addr->disp(), dest->as_register());
3065 }
3066 
3067 
3068 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3069   assert(result_reg->is_register(), "check");
3070   __ mov(G2_thread, result_reg->as_register());
3071 }
3072 
3073 
3074 void LIR_Assembler::peephole(LIR_List* lir) {
3075   LIR_OpList* inst = lir->instructions_list();
3076   for (int i = 0; i < inst->length(); i++) {
3077     LIR_Op* op = inst->at(i);
3078     switch (op->code()) {
3079       case lir_cond_float_branch:
3080       case lir_branch: {
3081         LIR_OpBranch* branch = op->as_OpBranch();
3082         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
3083         LIR_Op* delay_op = NULL;
3084         // we'd like to be able to pull following instructions into
3085         // this slot but we don't know enough to do it safely yet so
3086         // only optimize block to block control flow.
3087         if (LIRFillDelaySlots && branch->block()) {
3088           LIR_Op* prev = inst->at(i - 1);
3089           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
3090             // swap previous instruction into delay slot
3091             inst->at_put(i - 1, op);
3092             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3093 #ifndef PRODUCT
3094             if (LIRTracePeephole) {
3095               tty->print_cr("delayed");
3096               inst->at(i - 1)->print();
3097               inst->at(i)->print();
3098             }
3099 #endif
3100             continue;
3101           }
3102         }
3103 
3104         if (!delay_op) {
3105           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
3106         }
3107         inst->insert_before(i + 1, delay_op);
3108         break;
3109       }
3110       case lir_static_call:
3111       case lir_virtual_call:
3112       case lir_icvirtual_call:
3113       case lir_optvirtual_call: {
3114         LIR_Op* delay_op = NULL;
3115         LIR_Op* prev = inst->at(i - 1);
3116         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
3117             (op->code() != lir_virtual_call ||
3118              !prev->result_opr()->is_single_cpu() ||
3119              prev->result_opr()->as_register() != O0) &&
3120             LIR_Assembler::is_single_instruction(prev)) {
3121           // Only moves without info can be put into the delay slot.
3122           // Also don't allow the setup of the receiver in the delay
3123           // slot for vtable calls.
3124           inst->at_put(i - 1, op);
3125           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3126 #ifndef PRODUCT
3127           if (LIRTracePeephole) {
3128             tty->print_cr("delayed");
3129             inst->at(i - 1)->print();
3130             inst->at(i)->print();
3131           }
3132 #endif
3133           continue;
3134         }
3135 
3136         if (!delay_op) {
3137           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
3138           inst->insert_before(i + 1, delay_op);
3139         }
3140         break;
3141       }
3142     }
3143   }
3144 }
3145 
3146 
3147 
3148 
3149 #undef __