1 /*
   2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_templateInterpreter_sparc.cpp.incl"
  27 
  28 #ifndef CC_INTERP
  29 #ifndef FAST_DISPATCH
  30 #define FAST_DISPATCH 1
  31 #endif
  32 #undef FAST_DISPATCH
  33 
  34 
  35 // Generation of Interpreter
  36 //
  37 // The InterpreterGenerator generates the interpreter into Interpreter::_code.
  38 
  39 
  40 #define __ _masm->
  41 
  42 
  43 //----------------------------------------------------------------------------------------------------
  44 
  45 
  46 void InterpreterGenerator::save_native_result(void) {
  47   // result potentially in O0/O1: save it across calls
  48   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
  49 
  50   // result potentially in F0/F1: save it across calls
  51   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
  52 
  53   // save and restore any potential method result value around the unlocking operation
  54   __ stf(FloatRegisterImpl::D, F0, d_tmp);
  55 #ifdef _LP64
  56   __ stx(O0, l_tmp);
  57 #else
  58   __ std(O0, l_tmp);
  59 #endif
  60 }
  61 
  62 void InterpreterGenerator::restore_native_result(void) {
  63   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
  64   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
  65 
  66   // Restore any method result value
  67   __ ldf(FloatRegisterImpl::D, d_tmp, F0);
  68 #ifdef _LP64
  69   __ ldx(l_tmp, O0);
  70 #else
  71   __ ldd(l_tmp, O0);
  72 #endif
  73 }
  74 
  75 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
  76   assert(!pass_oop || message == NULL, "either oop or message but not both");
  77   address entry = __ pc();
  78   // expression stack must be empty before entering the VM if an exception happened
  79   __ empty_expression_stack();
  80   // load exception object
  81   __ set((intptr_t)name, G3_scratch);
  82   if (pass_oop) {
  83     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
  84   } else {
  85     __ set((intptr_t)message, G4_scratch);
  86     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
  87   }
  88   // throw exception
  89   assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
  90   AddressLiteral thrower(Interpreter::throw_exception_entry());
  91   __ jump_to(thrower, G3_scratch);
  92   __ delayed()->nop();
  93   return entry;
  94 }
  95 
  96 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
  97   address entry = __ pc();
  98   // expression stack must be empty before entering the VM if an exception
  99   // happened
 100   __ empty_expression_stack();
 101   // load exception object
 102   __ call_VM(Oexception,
 103              CAST_FROM_FN_PTR(address,
 104                               InterpreterRuntime::throw_ClassCastException),
 105              Otos_i);
 106   __ should_not_reach_here();
 107   return entry;
 108 }
 109 
 110 
 111 // Arguments are: required type in G5_method_type, and
 112 // failing object (or NULL) in G3_method_handle.
 113 address TemplateInterpreterGenerator::generate_WrongMethodType_handler() {
 114   address entry = __ pc();
 115   // expression stack must be empty before entering the VM if an exception
 116   // happened
 117   __ empty_expression_stack();
 118   // load exception object
 119   __ call_VM(Oexception,
 120              CAST_FROM_FN_PTR(address,
 121                               InterpreterRuntime::throw_WrongMethodTypeException),
 122              G5_method_type,    // required
 123              G3_method_handle); // actual
 124   __ should_not_reach_here();
 125   return entry;
 126 }
 127 
 128 
 129 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
 130   address entry = __ pc();
 131   // expression stack must be empty before entering the VM if an exception happened
 132   __ empty_expression_stack();
 133   // convention: expect aberrant index in register G3_scratch, then shuffle the
 134   // index to G4_scratch for the VM call
 135   __ mov(G3_scratch, G4_scratch);
 136   __ set((intptr_t)name, G3_scratch);
 137   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
 138   __ should_not_reach_here();
 139   return entry;
 140 }
 141 
 142 
 143 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 144   address entry = __ pc();
 145   // expression stack must be empty before entering the VM if an exception happened
 146   __ empty_expression_stack();
 147   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 148   __ should_not_reach_here();
 149   return entry;
 150 }
 151 
 152 
 153 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
 154   address compiled_entry = __ pc();
 155   Label cont;
 156 
 157   address entry = __ pc();
 158 #if !defined(_LP64) && defined(COMPILER2)
 159   // All return values are where we want them, except for Longs.  C2 returns
 160   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
 161   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
 162   // build even if we are returning from interpreted we just do a little
 163   // stupid shuffing.
 164   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
 165   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
 166   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
 167 
 168   if( state == ltos ) {
 169     __ srl (G1, 0,O1);
 170     __ srlx(G1,32,O0);
 171   }
 172 #endif /* !_LP64 && COMPILER2 */
 173 
 174 
 175   __ bind(cont);
 176 
 177   // The callee returns with the stack possibly adjusted by adapter transition
 178   // We remove that possible adjustment here.
 179   // All interpreter local registers are untouched. Any result is passed back
 180   // in the O0/O1 or float registers. Before continuing, the arguments must be
 181   // popped from the java expression stack; i.e., Lesp must be adjusted.
 182 
 183   __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
 184 
 185 
 186   const Register cache = G3_scratch;
 187   const Register size  = G1_scratch;
 188   __ get_cache_and_index_at_bcp(cache, G1_scratch, 1);
 189   __ ld_ptr(cache, constantPoolCacheOopDesc::base_offset() +
 190                    ConstantPoolCacheEntry::flags_offset(), size);
 191   __ and3(size, 0xFF, size);                   // argument size in words
 192   __ sll(size, Interpreter::logStackElementSize(), size); // each argument size in bytes
 193   __ add(Lesp, size, Lesp);                    // pop arguments
 194   __ dispatch_next(state, step);
 195 
 196   return entry;
 197 }
 198 
 199 
 200 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 201   address entry = __ pc();
 202   __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
 203   { Label L;
 204     Address exception_addr(G2_thread, Thread::pending_exception_offset());
 205     __ ld_ptr(exception_addr, Gtemp);  // Load pending exception.
 206     __ tst(Gtemp);
 207     __ brx(Assembler::equal, false, Assembler::pt, L);
 208     __ delayed()->nop();
 209     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
 210     __ should_not_reach_here();
 211     __ bind(L);
 212   }
 213   __ dispatch_next(state, step);
 214   return entry;
 215 }
 216 
 217 // A result handler converts/unboxes a native call result into
 218 // a java interpreter/compiler result. The current frame is an
 219 // interpreter frame. The activation frame unwind code must be
 220 // consistent with that of TemplateTable::_return(...). In the
 221 // case of native methods, the caller's SP was not modified.
 222 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 223   address entry = __ pc();
 224   Register Itos_i  = Otos_i ->after_save();
 225   Register Itos_l  = Otos_l ->after_save();
 226   Register Itos_l1 = Otos_l1->after_save();
 227   Register Itos_l2 = Otos_l2->after_save();
 228   switch (type) {
 229     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
 230     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
 231     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
 232     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
 233     case T_LONG   :
 234 #ifndef _LP64
 235                     __ mov(O1, Itos_l2);  // move other half of long
 236 #endif              // ifdef or no ifdef, fall through to the T_INT case
 237     case T_INT    : __ mov(O0, Itos_i);                         break;
 238     case T_VOID   : /* nothing to do */                         break;
 239     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
 240     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
 241     case T_OBJECT :
 242       __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
 243       __ verify_oop(Itos_i);
 244       break;
 245     default       : ShouldNotReachHere();
 246   }
 247   __ ret();                           // return from interpreter activation
 248   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
 249   NOT_PRODUCT(__ emit_long(0);)       // marker for disassembly
 250   return entry;
 251 }
 252 
 253 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 254   address entry = __ pc();
 255   __ push(state);
 256   __ call_VM(noreg, runtime_entry);
 257   __ dispatch_via(vtos, Interpreter::normal_table(vtos));
 258   return entry;
 259 }
 260 
 261 
 262 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 263   address entry = __ pc();
 264   __ dispatch_next(state);
 265   return entry;
 266 }
 267 
 268 //
 269 // Helpers for commoning out cases in the various type of method entries.
 270 //
 271 
 272 // increment invocation count & check for overflow
 273 //
 274 // Note: checking for negative value instead of overflow
 275 //       so we have a 'sticky' overflow test
 276 //
 277 // Lmethod: method
 278 // ??: invocation counter
 279 //
 280 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 281   // Update standard invocation counters
 282   __ increment_invocation_counter(O0, G3_scratch);
 283   if (ProfileInterpreter) {  // %%% Merge this into methodDataOop
 284     Address interpreter_invocation_counter(Lmethod, methodOopDesc::interpreter_invocation_counter_offset());
 285     __ ld(interpreter_invocation_counter, G3_scratch);
 286     __ inc(G3_scratch);
 287     __ st(G3_scratch, interpreter_invocation_counter);
 288   }
 289 
 290   if (ProfileInterpreter && profile_method != NULL) {
 291     // Test to see if we should create a method data oop
 292     AddressLiteral profile_limit(&InvocationCounter::InterpreterProfileLimit);
 293     __ sethi(profile_limit, G3_scratch);
 294     __ ld(G3_scratch, profile_limit.low10(), G3_scratch);
 295     __ cmp(O0, G3_scratch);
 296     __ br(Assembler::lessUnsigned, false, Assembler::pn, *profile_method_continue);
 297     __ delayed()->nop();
 298 
 299     // if no method data exists, go to profile_method
 300     __ test_method_data_pointer(*profile_method);
 301   }
 302 
 303   AddressLiteral invocation_limit(&InvocationCounter::InterpreterInvocationLimit);
 304   __ sethi(invocation_limit, G3_scratch);
 305   __ ld(G3_scratch, invocation_limit.low10(), G3_scratch);
 306   __ cmp(O0, G3_scratch);
 307   __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow);
 308   __ delayed()->nop();
 309 
 310 }
 311 
 312 // Allocate monitor and lock method (asm interpreter)
 313 // ebx - methodOop
 314 //
 315 void InterpreterGenerator::lock_method(void) {
 316   __ ld(Lmethod, in_bytes(methodOopDesc::access_flags_offset()), O0);  // Load access flags.
 317 
 318 #ifdef ASSERT
 319  { Label ok;
 320    __ btst(JVM_ACC_SYNCHRONIZED, O0);
 321    __ br( Assembler::notZero, false, Assembler::pt, ok);
 322    __ delayed()->nop();
 323    __ stop("method doesn't need synchronization");
 324    __ bind(ok);
 325   }
 326 #endif // ASSERT
 327 
 328   // get synchronization object to O0
 329   { Label done;
 330     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
 331     __ btst(JVM_ACC_STATIC, O0);
 332     __ br( Assembler::zero, true, Assembler::pt, done);
 333     __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
 334 
 335     __ ld_ptr( Lmethod, in_bytes(methodOopDesc::constants_offset()), O0);
 336     __ ld_ptr( O0, constantPoolOopDesc::pool_holder_offset_in_bytes(), O0);
 337 
 338     // lock the mirror, not the klassOop
 339     __ ld_ptr( O0, mirror_offset, O0);
 340 
 341 #ifdef ASSERT
 342     __ tst(O0);
 343     __ breakpoint_trap(Assembler::zero);
 344 #endif // ASSERT
 345 
 346     __ bind(done);
 347   }
 348 
 349   __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
 350   __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
 351   // __ untested("lock_object from method entry");
 352   __ lock_object(Lmonitors, O0);
 353 }
 354 
 355 
 356 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
 357                                                          Register Rscratch,
 358                                                          Register Rscratch2) {
 359   const int page_size = os::vm_page_size();
 360   Address saved_exception_pc(G2_thread, JavaThread::saved_exception_pc_offset());
 361   Label after_frame_check;
 362 
 363   assert_different_registers(Rframe_size, Rscratch, Rscratch2);
 364 
 365   __ set( page_size,   Rscratch );
 366   __ cmp( Rframe_size, Rscratch );
 367 
 368   __ br( Assembler::lessEqual, false, Assembler::pt, after_frame_check );
 369   __ delayed()->nop();
 370 
 371   // get the stack base, and in debug, verify it is non-zero
 372   __ ld_ptr( G2_thread, Thread::stack_base_offset(), Rscratch );
 373 #ifdef ASSERT
 374   Label base_not_zero;
 375   __ cmp( Rscratch, G0 );
 376   __ brx( Assembler::notEqual, false, Assembler::pn, base_not_zero );
 377   __ delayed()->nop();
 378   __ stop("stack base is zero in generate_stack_overflow_check");
 379   __ bind(base_not_zero);
 380 #endif
 381 
 382   // get the stack size, and in debug, verify it is non-zero
 383   assert( sizeof(size_t) == sizeof(intptr_t), "wrong load size" );
 384   __ ld_ptr( G2_thread, Thread::stack_size_offset(), Rscratch2 );
 385 #ifdef ASSERT
 386   Label size_not_zero;
 387   __ cmp( Rscratch2, G0 );
 388   __ brx( Assembler::notEqual, false, Assembler::pn, size_not_zero );
 389   __ delayed()->nop();
 390   __ stop("stack size is zero in generate_stack_overflow_check");
 391   __ bind(size_not_zero);
 392 #endif
 393 
 394   // compute the beginning of the protected zone minus the requested frame size
 395   __ sub( Rscratch, Rscratch2,   Rscratch );
 396   __ set( (StackRedPages+StackYellowPages) * page_size, Rscratch2 );
 397   __ add( Rscratch, Rscratch2,   Rscratch );
 398 
 399   // Add in the size of the frame (which is the same as subtracting it from the
 400   // SP, which would take another register
 401   __ add( Rscratch, Rframe_size, Rscratch );
 402 
 403   // the frame is greater than one page in size, so check against
 404   // the bottom of the stack
 405   __ cmp( SP, Rscratch );
 406   __ brx( Assembler::greater, false, Assembler::pt, after_frame_check );
 407   __ delayed()->nop();
 408 
 409   // Save the return address as the exception pc
 410   __ st_ptr(O7, saved_exception_pc);
 411 
 412   // the stack will overflow, throw an exception
 413   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 414 
 415   // if you get to here, then there is enough stack space
 416   __ bind( after_frame_check );
 417 }
 418 
 419 
 420 //
 421 // Generate a fixed interpreter frame. This is identical setup for interpreted
 422 // methods and for native methods hence the shared code.
 423 
 424 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 425   //
 426   //
 427   // The entry code sets up a new interpreter frame in 4 steps:
 428   //
 429   // 1) Increase caller's SP by for the extra local space needed:
 430   //    (check for overflow)
 431   //    Efficient implementation of xload/xstore bytecodes requires
 432   //    that arguments and non-argument locals are in a contigously
 433   //    addressable memory block => non-argument locals must be
 434   //    allocated in the caller's frame.
 435   //
 436   // 2) Create a new stack frame and register window:
 437   //    The new stack frame must provide space for the standard
 438   //    register save area, the maximum java expression stack size,
 439   //    the monitor slots (0 slots initially), and some frame local
 440   //    scratch locations.
 441   //
 442   // 3) The following interpreter activation registers must be setup:
 443   //    Lesp       : expression stack pointer
 444   //    Lbcp       : bytecode pointer
 445   //    Lmethod    : method
 446   //    Llocals    : locals pointer
 447   //    Lmonitors  : monitor pointer
 448   //    LcpoolCache: constant pool cache
 449   //
 450   // 4) Initialize the non-argument locals if necessary:
 451   //    Non-argument locals may need to be initialized to NULL
 452   //    for GC to work. If the oop-map information is accurate
 453   //    (in the absence of the JSR problem), no initialization
 454   //    is necessary.
 455   //
 456   // (gri - 2/25/2000)
 457 
 458 
 459   const Address size_of_parameters(G5_method, methodOopDesc::size_of_parameters_offset());
 460   const Address size_of_locals    (G5_method, methodOopDesc::size_of_locals_offset());
 461   const Address max_stack         (G5_method, methodOopDesc::max_stack_offset());
 462   int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong );
 463 
 464   const int extra_space =
 465     rounded_vm_local_words +                   // frame local scratch space
 466     //6815692//methodOopDesc::extra_stack_words() +       // extra push slots for MH adapters
 467     frame::memory_parameter_word_sp_offset +   // register save area
 468     (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
 469 
 470   const Register Glocals_size = G3;
 471   const Register Otmp1 = O3;
 472   const Register Otmp2 = O4;
 473   // Lscratch can't be used as a temporary because the call_stub uses
 474   // it to assert that the stack frame was setup correctly.
 475 
 476   __ lduh( size_of_parameters, Glocals_size);
 477 
 478   // Gargs points to first local + BytesPerWord
 479   // Set the saved SP after the register window save
 480   //
 481   assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
 482   __ sll(Glocals_size, Interpreter::logStackElementSize(), Otmp1);
 483   __ add(Gargs, Otmp1, Gargs);
 484 
 485   if (native_call) {
 486     __ calc_mem_param_words( Glocals_size, Gframe_size );
 487     __ add( Gframe_size,  extra_space, Gframe_size);
 488     __ round_to( Gframe_size, WordsPerLong );
 489     __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
 490   } else {
 491 
 492     //
 493     // Compute number of locals in method apart from incoming parameters
 494     //
 495     __ lduh( size_of_locals, Otmp1 );
 496     __ sub( Otmp1, Glocals_size, Glocals_size );
 497     __ round_to( Glocals_size, WordsPerLong );
 498     __ sll( Glocals_size, Interpreter::logStackElementSize(), Glocals_size );
 499 
 500     // see if the frame is greater than one page in size. If so,
 501     // then we need to verify there is enough stack space remaining
 502     // Frame_size = (max_stack + extra_space) * BytesPerWord;
 503     __ lduh( max_stack, Gframe_size );
 504     __ add( Gframe_size, extra_space, Gframe_size );
 505     __ round_to( Gframe_size, WordsPerLong );
 506     __ sll( Gframe_size, Interpreter::logStackElementSize(), Gframe_size);
 507 
 508     // Add in java locals size for stack overflow check only
 509     __ add( Gframe_size, Glocals_size, Gframe_size );
 510 
 511     const Register Otmp2 = O4;
 512     assert_different_registers(Otmp1, Otmp2, O5_savedSP);
 513     generate_stack_overflow_check(Gframe_size, Otmp1, Otmp2);
 514 
 515     __ sub( Gframe_size, Glocals_size, Gframe_size);
 516 
 517     //
 518     // bump SP to accomodate the extra locals
 519     //
 520     __ sub( SP, Glocals_size, SP );
 521   }
 522 
 523   //
 524   // now set up a stack frame with the size computed above
 525   //
 526   __ neg( Gframe_size );
 527   __ save( SP, Gframe_size, SP );
 528 
 529   //
 530   // now set up all the local cache registers
 531   //
 532   // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
 533   // that all present references to Lbyte_code initialize the register
 534   // immediately before use
 535   if (native_call) {
 536     __ mov(G0, Lbcp);
 537   } else {
 538     __ ld_ptr(G5_method, methodOopDesc::const_offset(), Lbcp);
 539     __ add(Lbcp, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
 540   }
 541   __ mov( G5_method, Lmethod);                 // set Lmethod
 542   __ get_constant_pool_cache( LcpoolCache );   // set LcpoolCache
 543   __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
 544 #ifdef _LP64
 545   __ add( Lmonitors, STACK_BIAS, Lmonitors );   // Account for 64 bit stack bias
 546 #endif
 547   __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
 548 
 549   // setup interpreter activation registers
 550   __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
 551 
 552   if (ProfileInterpreter) {
 553 #ifdef FAST_DISPATCH
 554     // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
 555     // they both use I2.
 556     assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
 557 #endif // FAST_DISPATCH
 558     __ set_method_data_pointer();
 559   }
 560 
 561 }
 562 
 563 // Empty method, generate a very fast return.
 564 
 565 address InterpreterGenerator::generate_empty_entry(void) {
 566 
 567   // A method that does nother but return...
 568 
 569   address entry = __ pc();
 570   Label slow_path;
 571 
 572   __ verify_oop(G5_method);
 573 
 574   // do nothing for empty methods (do not even increment invocation counter)
 575   if ( UseFastEmptyMethods) {
 576     // If we need a safepoint check, generate full interpreter entry.
 577     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
 578     __ set(sync_state, G3_scratch);
 579     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
 580     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
 581     __ delayed()->nop();
 582 
 583     // Code: _return
 584     __ retl();
 585     __ delayed()->mov(O5_savedSP, SP);
 586 
 587     __ bind(slow_path);
 588     (void) generate_normal_entry(false);
 589 
 590     return entry;
 591   }
 592   return NULL;
 593 }
 594 
 595 // Call an accessor method (assuming it is resolved, otherwise drop into
 596 // vanilla (slow path) entry
 597 
 598 // Generates code to elide accessor methods
 599 // Uses G3_scratch and G1_scratch as scratch
 600 address InterpreterGenerator::generate_accessor_entry(void) {
 601 
 602   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
 603   // parameter size = 1
 604   // Note: We can only use this code if the getfield has been resolved
 605   //       and if we don't have a null-pointer exception => check for
 606   //       these conditions first and use slow path if necessary.
 607   address entry = __ pc();
 608   Label slow_path;
 609 
 610 
 611   // XXX: for compressed oops pointer loading and decoding doesn't fit in
 612   // delay slot and damages G1
 613   if ( UseFastAccessorMethods && !UseCompressedOops ) {
 614     // Check if we need to reach a safepoint and generate full interpreter
 615     // frame if so.
 616     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
 617     __ load_contents(sync_state, G3_scratch);
 618     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
 619     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
 620     __ delayed()->nop();
 621 
 622     // Check if local 0 != NULL
 623     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 624     __ tst(Otos_i);  // check if local 0 == NULL and go the slow path
 625     __ brx(Assembler::zero, false, Assembler::pn, slow_path);
 626     __ delayed()->nop();
 627 
 628 
 629     // read first instruction word and extract bytecode @ 1 and index @ 2
 630     // get first 4 bytes of the bytecodes (big endian!)
 631     __ ld_ptr(G5_method, methodOopDesc::const_offset(), G1_scratch);
 632     __ ld(G1_scratch, constMethodOopDesc::codes_offset(), G1_scratch);
 633 
 634     // move index @ 2 far left then to the right most two bytes.
 635     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
 636     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
 637                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
 638 
 639     // get constant pool cache
 640     __ ld_ptr(G5_method, methodOopDesc::constants_offset(), G3_scratch);
 641     __ ld_ptr(G3_scratch, constantPoolOopDesc::cache_offset_in_bytes(), G3_scratch);
 642 
 643     // get specific constant pool cache entry
 644     __ add(G3_scratch, G1_scratch, G3_scratch);
 645 
 646     // Check the constant Pool cache entry to see if it has been resolved.
 647     // If not, need the slow path.
 648     ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
 649     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::indices_offset(), G1_scratch);
 650     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
 651     __ and3(G1_scratch, 0xFF, G1_scratch);
 652     __ cmp(G1_scratch, Bytecodes::_getfield);
 653     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
 654     __ delayed()->nop();
 655 
 656     // Get the type and return field offset from the constant pool cache
 657     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), G1_scratch);
 658     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), G3_scratch);
 659 
 660     Label xreturn_path;
 661     // Need to differentiate between igetfield, agetfield, bgetfield etc.
 662     // because they are different sizes.
 663     // Get the type from the constant pool cache
 664     __ srl(G1_scratch, ConstantPoolCacheEntry::tosBits, G1_scratch);
 665     // Make sure we don't need to mask G1_scratch for tosBits after the above shift
 666     ConstantPoolCacheEntry::verify_tosBits();
 667     __ cmp(G1_scratch, atos );
 668     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 669     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
 670     __ cmp(G1_scratch, itos);
 671     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 672     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
 673     __ cmp(G1_scratch, stos);
 674     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 675     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
 676     __ cmp(G1_scratch, ctos);
 677     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 678     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
 679 #ifdef ASSERT
 680     __ cmp(G1_scratch, btos);
 681     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 682     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
 683     __ should_not_reach_here();
 684 #endif
 685     __ ldsb(Otos_i, G3_scratch, Otos_i);
 686     __ bind(xreturn_path);
 687 
 688     // _ireturn/_areturn
 689     __ retl();                      // return from leaf routine
 690     __ delayed()->mov(O5_savedSP, SP);
 691 
 692     // Generate regular method entry
 693     __ bind(slow_path);
 694     (void) generate_normal_entry(false);
 695     return entry;
 696   }
 697   return NULL;
 698 }
 699 
 700 //
 701 // Interpreter stub for calling a native method. (asm interpreter)
 702 // This sets up a somewhat different looking stack for calling the native method
 703 // than the typical interpreter frame setup.
 704 //
 705 
 706 address InterpreterGenerator::generate_native_entry(bool synchronized) {
 707   address entry = __ pc();
 708 
 709   // the following temporary registers are used during frame creation
 710   const Register Gtmp1 = G3_scratch ;
 711   const Register Gtmp2 = G1_scratch;
 712   bool inc_counter  = UseCompiler || CountCompiledCalls;
 713 
 714   // make sure registers are different!
 715   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
 716 
 717   const Address Laccess_flags(Lmethod, methodOopDesc::access_flags_offset());
 718 
 719   __ verify_oop(G5_method);
 720 
 721   const Register Glocals_size = G3;
 722   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
 723 
 724   // make sure method is native & not abstract
 725   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
 726 #ifdef ASSERT
 727   __ ld(G5_method, methodOopDesc::access_flags_offset(), Gtmp1);
 728   {
 729     Label L;
 730     __ btst(JVM_ACC_NATIVE, Gtmp1);
 731     __ br(Assembler::notZero, false, Assembler::pt, L);
 732     __ delayed()->nop();
 733     __ stop("tried to execute non-native method as native");
 734     __ bind(L);
 735   }
 736   { Label L;
 737     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
 738     __ br(Assembler::zero, false, Assembler::pt, L);
 739     __ delayed()->nop();
 740     __ stop("tried to execute abstract method as non-abstract");
 741     __ bind(L);
 742   }
 743 #endif // ASSERT
 744 
 745  // generate the code to allocate the interpreter stack frame
 746   generate_fixed_frame(true);
 747 
 748   //
 749   // No locals to initialize for native method
 750   //
 751 
 752   // this slot will be set later, we initialize it to null here just in
 753   // case we get a GC before the actual value is stored later
 754   __ st_ptr(G0, FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS);
 755 
 756   const Address do_not_unlock_if_synchronized(G2_thread,
 757     JavaThread::do_not_unlock_if_synchronized_offset());
 758   // Since at this point in the method invocation the exception handler
 759   // would try to exit the monitor of synchronized methods which hasn't
 760   // been entered yet, we set the thread local variable
 761   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
 762   // runtime, exception handling i.e. unlock_if_synchronized_method will
 763   // check this thread local flag.
 764   // This flag has two effects, one is to force an unwind in the topmost
 765   // interpreter frame and not perform an unlock while doing so.
 766 
 767   __ movbool(true, G3_scratch);
 768   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
 769 
 770   // increment invocation counter and check for overflow
 771   //
 772   // Note: checking for negative value instead of overflow
 773   //       so we have a 'sticky' overflow test (may be of
 774   //       importance as soon as we have true MT/MP)
 775   Label invocation_counter_overflow;
 776   Label Lcontinue;
 777   if (inc_counter) {
 778     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 779 
 780   }
 781   __ bind(Lcontinue);
 782 
 783   bang_stack_shadow_pages(true);
 784 
 785   // reset the _do_not_unlock_if_synchronized flag
 786   __ stbool(G0, do_not_unlock_if_synchronized);
 787 
 788   // check for synchronized methods
 789   // Must happen AFTER invocation_counter check and stack overflow check,
 790   // so method is not locked if overflows.
 791 
 792   if (synchronized) {
 793     lock_method();
 794   } else {
 795 #ifdef ASSERT
 796     { Label ok;
 797       __ ld(Laccess_flags, O0);
 798       __ btst(JVM_ACC_SYNCHRONIZED, O0);
 799       __ br( Assembler::zero, false, Assembler::pt, ok);
 800       __ delayed()->nop();
 801       __ stop("method needs synchronization");
 802       __ bind(ok);
 803     }
 804 #endif // ASSERT
 805   }
 806 
 807 
 808   // start execution
 809   __ verify_thread();
 810 
 811   // JVMTI support
 812   __ notify_method_entry();
 813 
 814   // native call
 815 
 816   // (note that O0 is never an oop--at most it is a handle)
 817   // It is important not to smash any handles created by this call,
 818   // until any oop handle in O0 is dereferenced.
 819 
 820   // (note that the space for outgoing params is preallocated)
 821 
 822   // get signature handler
 823   { Label L;
 824     Address signature_handler(Lmethod, methodOopDesc::signature_handler_offset());
 825     __ ld_ptr(signature_handler, G3_scratch);
 826     __ tst(G3_scratch);
 827     __ brx(Assembler::notZero, false, Assembler::pt, L);
 828     __ delayed()->nop();
 829     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
 830     __ ld_ptr(signature_handler, G3_scratch);
 831     __ bind(L);
 832   }
 833 
 834   // Push a new frame so that the args will really be stored in
 835   // Copy a few locals across so the new frame has the variables
 836   // we need but these values will be dead at the jni call and
 837   // therefore not gc volatile like the values in the current
 838   // frame (Lmethod in particular)
 839 
 840   // Flush the method pointer to the register save area
 841   __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
 842   __ mov(Llocals, O1);
 843 
 844   // calculate where the mirror handle body is allocated in the interpreter frame:
 845   __ add(FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS, O2);
 846 
 847   // Calculate current frame size
 848   __ sub(SP, FP, O3);         // Calculate negative of current frame size
 849   __ save(SP, O3, SP);        // Allocate an identical sized frame
 850 
 851   // Note I7 has leftover trash. Slow signature handler will fill it in
 852   // should we get there. Normal jni call will set reasonable last_Java_pc
 853   // below (and fix I7 so the stack trace doesn't have a meaningless frame
 854   // in it).
 855 
 856   // Load interpreter frame's Lmethod into same register here
 857 
 858   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
 859 
 860   __ mov(I1, Llocals);
 861   __ mov(I2, Lscratch2);     // save the address of the mirror
 862 
 863 
 864   // ONLY Lmethod and Llocals are valid here!
 865 
 866   // call signature handler, It will move the arg properly since Llocals in current frame
 867   // matches that in outer frame
 868 
 869   __ callr(G3_scratch, 0);
 870   __ delayed()->nop();
 871 
 872   // Result handler is in Lscratch
 873 
 874   // Reload interpreter frame's Lmethod since slow signature handler may block
 875   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
 876 
 877   { Label not_static;
 878 
 879     __ ld(Laccess_flags, O0);
 880     __ btst(JVM_ACC_STATIC, O0);
 881     __ br( Assembler::zero, false, Assembler::pt, not_static);
 882     // get native function entry point(O0 is a good temp until the very end)
 883     __ delayed()->ld_ptr(Lmethod, in_bytes(methodOopDesc::native_function_offset()), O0);
 884     // for static methods insert the mirror argument
 885     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
 886 
 887     __ ld_ptr(Lmethod, methodOopDesc:: constants_offset(), O1);
 888     __ ld_ptr(O1, constantPoolOopDesc::pool_holder_offset_in_bytes(), O1);
 889     __ ld_ptr(O1, mirror_offset, O1);
 890 #ifdef ASSERT
 891     if (!PrintSignatureHandlers)  // do not dirty the output with this
 892     { Label L;
 893       __ tst(O1);
 894       __ brx(Assembler::notZero, false, Assembler::pt, L);
 895       __ delayed()->nop();
 896       __ stop("mirror is missing");
 897       __ bind(L);
 898     }
 899 #endif // ASSERT
 900     __ st_ptr(O1, Lscratch2, 0);
 901     __ mov(Lscratch2, O1);
 902     __ bind(not_static);
 903   }
 904 
 905   // At this point, arguments have been copied off of stack into
 906   // their JNI positions, which are O1..O5 and SP[68..].
 907   // Oops are boxed in-place on the stack, with handles copied to arguments.
 908   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
 909 
 910 #ifdef ASSERT
 911   { Label L;
 912     __ tst(O0);
 913     __ brx(Assembler::notZero, false, Assembler::pt, L);
 914     __ delayed()->nop();
 915     __ stop("native entry point is missing");
 916     __ bind(L);
 917   }
 918 #endif // ASSERT
 919 
 920   //
 921   // setup the frame anchor
 922   //
 923   // The scavenge function only needs to know that the PC of this frame is
 924   // in the interpreter method entry code, it doesn't need to know the exact
 925   // PC and hence we can use O7 which points to the return address from the
 926   // previous call in the code stream (signature handler function)
 927   //
 928   // The other trick is we set last_Java_sp to FP instead of the usual SP because
 929   // we have pushed the extra frame in order to protect the volatile register(s)
 930   // in that frame when we return from the jni call
 931   //
 932 
 933   __ set_last_Java_frame(FP, O7);
 934   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
 935                    // not meaningless information that'll confuse me.
 936 
 937   // flush the windows now. We don't care about the current (protection) frame
 938   // only the outer frames
 939 
 940   __ flush_windows();
 941 
 942   // mark windows as flushed
 943   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
 944   __ set(JavaFrameAnchor::flushed, G3_scratch);
 945   __ st(G3_scratch, flags);
 946 
 947   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
 948 
 949   Address thread_state(G2_thread, JavaThread::thread_state_offset());
 950 #ifdef ASSERT
 951   { Label L;
 952     __ ld(thread_state, G3_scratch);
 953     __ cmp(G3_scratch, _thread_in_Java);
 954     __ br(Assembler::equal, false, Assembler::pt, L);
 955     __ delayed()->nop();
 956     __ stop("Wrong thread state in native stub");
 957     __ bind(L);
 958   }
 959 #endif // ASSERT
 960   __ set(_thread_in_native, G3_scratch);
 961   __ st(G3_scratch, thread_state);
 962 
 963   // Call the jni method, using the delay slot to set the JNIEnv* argument.
 964   __ save_thread(L7_thread_cache); // save Gthread
 965   __ callr(O0, 0);
 966   __ delayed()->
 967      add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
 968 
 969   // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
 970 
 971   __ restore_thread(L7_thread_cache); // restore G2_thread
 972   __ reinit_heapbase();
 973 
 974   // must we block?
 975 
 976   // Block, if necessary, before resuming in _thread_in_Java state.
 977   // In order for GC to work, don't clear the last_Java_sp until after blocking.
 978   { Label no_block;
 979     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
 980 
 981     // Switch thread to "native transition" state before reading the synchronization state.
 982     // This additional state is necessary because reading and testing the synchronization
 983     // state is not atomic w.r.t. GC, as this scenario demonstrates:
 984     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
 985     //     VM thread changes sync state to synchronizing and suspends threads for GC.
 986     //     Thread A is resumed to finish this native method, but doesn't block here since it
 987     //     didn't see any synchronization is progress, and escapes.
 988     __ set(_thread_in_native_trans, G3_scratch);
 989     __ st(G3_scratch, thread_state);
 990     if(os::is_MP()) {
 991       if (UseMembar) {
 992         // Force this write out before the read below
 993         __ membar(Assembler::StoreLoad);
 994       } else {
 995         // Write serialization page so VM thread can do a pseudo remote membar.
 996         // We use the current thread pointer to calculate a thread specific
 997         // offset to write to within the page. This minimizes bus traffic
 998         // due to cache line collision.
 999         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
1000       }
1001     }
1002     __ load_contents(sync_state, G3_scratch);
1003     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
1004 
1005     Label L;
1006     __ br(Assembler::notEqual, false, Assembler::pn, L);
1007     __ delayed()->ld(G2_thread, JavaThread::suspend_flags_offset(), G3_scratch);
1008     __ cmp(G3_scratch, 0);
1009     __ br(Assembler::equal, false, Assembler::pt, no_block);
1010     __ delayed()->nop();
1011     __ bind(L);
1012 
1013     // Block.  Save any potential method result value before the operation and
1014     // use a leaf call to leave the last_Java_frame setup undisturbed.
1015     save_native_result();
1016     __ call_VM_leaf(L7_thread_cache,
1017                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1018                     G2_thread);
1019 
1020     // Restore any method result value
1021     restore_native_result();
1022     __ bind(no_block);
1023   }
1024 
1025   // Clear the frame anchor now
1026 
1027   __ reset_last_Java_frame();
1028 
1029   // Move the result handler address
1030   __ mov(Lscratch, G3_scratch);
1031   // return possible result to the outer frame
1032 #ifndef __LP64
1033   __ mov(O0, I0);
1034   __ restore(O1, G0, O1);
1035 #else
1036   __ restore(O0, G0, O0);
1037 #endif /* __LP64 */
1038 
1039   // Move result handler to expected register
1040   __ mov(G3_scratch, Lscratch);
1041 
1042   // Back in normal (native) interpreter frame. State is thread_in_native_trans
1043   // switch to thread_in_Java.
1044 
1045   __ set(_thread_in_Java, G3_scratch);
1046   __ st(G3_scratch, thread_state);
1047 
1048   // reset handle block
1049   __ ld_ptr(G2_thread, JavaThread::active_handles_offset(), G3_scratch);
1050   __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
1051 
1052   // If we have an oop result store it where it will be safe for any further gc
1053   // until we return now that we've released the handle it might be protected by
1054 
1055   {
1056     Label no_oop, store_result;
1057 
1058     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
1059     __ cmp(G3_scratch, Lscratch);
1060     __ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
1061     __ delayed()->nop();
1062     __ addcc(G0, O0, O0);
1063     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
1064     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
1065     __ mov(G0, O0);
1066 
1067     __ bind(store_result);
1068     // Store it where gc will look for it and result handler expects it.
1069     __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
1070 
1071     __ bind(no_oop);
1072 
1073   }
1074 
1075 
1076   // handle exceptions (exception handling will handle unlocking!)
1077   { Label L;
1078     Address exception_addr(G2_thread, Thread::pending_exception_offset());
1079     __ ld_ptr(exception_addr, Gtemp);
1080     __ tst(Gtemp);
1081     __ brx(Assembler::equal, false, Assembler::pt, L);
1082     __ delayed()->nop();
1083     // Note: This could be handled more efficiently since we know that the native
1084     //       method doesn't have an exception handler. We could directly return
1085     //       to the exception handler for the caller.
1086     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
1087     __ should_not_reach_here();
1088     __ bind(L);
1089   }
1090 
1091   // JVMTI support (preserves thread register)
1092   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
1093 
1094   if (synchronized) {
1095     // save and restore any potential method result value around the unlocking operation
1096     save_native_result();
1097 
1098     __ add( __ top_most_monitor(), O1);
1099     __ unlock_object(O1);
1100 
1101     restore_native_result();
1102   }
1103 
1104 #if defined(COMPILER2) && !defined(_LP64)
1105 
1106   // C2 expects long results in G1 we can't tell if we're returning to interpreted
1107   // or compiled so just be safe.
1108 
1109   __ sllx(O0, 32, G1);          // Shift bits into high G1
1110   __ srl (O1, 0, O1);           // Zero extend O1
1111   __ or3 (O1, G1, G1);          // OR 64 bits into G1
1112 
1113 #endif /* COMPILER2 && !_LP64 */
1114 
1115   // dispose of return address and remove activation
1116 #ifdef ASSERT
1117   {
1118     Label ok;
1119     __ cmp(I5_savedSP, FP);
1120     __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
1121     __ delayed()->nop();
1122     __ stop("bad I5_savedSP value");
1123     __ should_not_reach_here();
1124     __ bind(ok);
1125   }
1126 #endif
1127   if (TraceJumps) {
1128     // Move target to register that is recordable
1129     __ mov(Lscratch, G3_scratch);
1130     __ JMP(G3_scratch, 0);
1131   } else {
1132     __ jmp(Lscratch, 0);
1133   }
1134   __ delayed()->nop();
1135 
1136 
1137   if (inc_counter) {
1138     // handle invocation counter overflow
1139     __ bind(invocation_counter_overflow);
1140     generate_counter_overflow(Lcontinue);
1141   }
1142 
1143 
1144 
1145   return entry;
1146 }
1147 
1148 
1149 // Generic method entry to (asm) interpreter
1150 //------------------------------------------------------------------------------------------------------------------------
1151 //
1152 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1153   address entry = __ pc();
1154 
1155   bool inc_counter  = UseCompiler || CountCompiledCalls;
1156 
1157   // the following temporary registers are used during frame creation
1158   const Register Gtmp1 = G3_scratch ;
1159   const Register Gtmp2 = G1_scratch;
1160 
1161   // make sure registers are different!
1162   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
1163 
1164   const Address size_of_parameters(G5_method, methodOopDesc::size_of_parameters_offset());
1165   const Address size_of_locals    (G5_method, methodOopDesc::size_of_locals_offset());
1166   // Seems like G5_method is live at the point this is used. So we could make this look consistent
1167   // and use in the asserts.
1168   const Address access_flags      (Lmethod,   methodOopDesc::access_flags_offset());
1169 
1170   __ verify_oop(G5_method);
1171 
1172   const Register Glocals_size = G3;
1173   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
1174 
1175   // make sure method is not native & not abstract
1176   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
1177 #ifdef ASSERT
1178   __ ld(G5_method, methodOopDesc::access_flags_offset(), Gtmp1);
1179   {
1180     Label L;
1181     __ btst(JVM_ACC_NATIVE, Gtmp1);
1182     __ br(Assembler::zero, false, Assembler::pt, L);
1183     __ delayed()->nop();
1184     __ stop("tried to execute native method as non-native");
1185     __ bind(L);
1186   }
1187   { Label L;
1188     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
1189     __ br(Assembler::zero, false, Assembler::pt, L);
1190     __ delayed()->nop();
1191     __ stop("tried to execute abstract method as non-abstract");
1192     __ bind(L);
1193   }
1194 #endif // ASSERT
1195 
1196   // generate the code to allocate the interpreter stack frame
1197 
1198   generate_fixed_frame(false);
1199 
1200 #ifdef FAST_DISPATCH
1201   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
1202                                           // set bytecode dispatch table base
1203 #endif
1204 
1205   //
1206   // Code to initialize the extra (i.e. non-parm) locals
1207   //
1208   Register init_value = noreg;    // will be G0 if we must clear locals
1209   // The way the code was setup before zerolocals was always true for vanilla java entries.
1210   // It could only be false for the specialized entries like accessor or empty which have
1211   // no extra locals so the testing was a waste of time and the extra locals were always
1212   // initialized. We removed this extra complication to already over complicated code.
1213 
1214   init_value = G0;
1215   Label clear_loop;
1216 
1217   // NOTE: If you change the frame layout, this code will need to
1218   // be updated!
1219   __ lduh( size_of_locals, O2 );
1220   __ lduh( size_of_parameters, O1 );
1221   __ sll( O2, Interpreter::logStackElementSize(), O2);
1222   __ sll( O1, Interpreter::logStackElementSize(), O1 );
1223   __ sub( Llocals, O2, O2 );
1224   __ sub( Llocals, O1, O1 );
1225 
1226   __ bind( clear_loop );
1227   __ inc( O2, wordSize );
1228 
1229   __ cmp( O2, O1 );
1230   __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
1231   __ delayed()->st_ptr( init_value, O2, 0 );
1232 
1233   const Address do_not_unlock_if_synchronized(G2_thread,
1234     JavaThread::do_not_unlock_if_synchronized_offset());
1235   // Since at this point in the method invocation the exception handler
1236   // would try to exit the monitor of synchronized methods which hasn't
1237   // been entered yet, we set the thread local variable
1238   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1239   // runtime, exception handling i.e. unlock_if_synchronized_method will
1240   // check this thread local flag.
1241   __ movbool(true, G3_scratch);
1242   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
1243 
1244   // increment invocation counter and check for overflow
1245   //
1246   // Note: checking for negative value instead of overflow
1247   //       so we have a 'sticky' overflow test (may be of
1248   //       importance as soon as we have true MT/MP)
1249   Label invocation_counter_overflow;
1250   Label profile_method;
1251   Label profile_method_continue;
1252   Label Lcontinue;
1253   if (inc_counter) {
1254     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1255     if (ProfileInterpreter) {
1256       __ bind(profile_method_continue);
1257     }
1258   }
1259   __ bind(Lcontinue);
1260 
1261   bang_stack_shadow_pages(false);
1262 
1263   // reset the _do_not_unlock_if_synchronized flag
1264   __ stbool(G0, do_not_unlock_if_synchronized);
1265 
1266   // check for synchronized methods
1267   // Must happen AFTER invocation_counter check and stack overflow check,
1268   // so method is not locked if overflows.
1269 
1270   if (synchronized) {
1271     lock_method();
1272   } else {
1273 #ifdef ASSERT
1274     { Label ok;
1275       __ ld(access_flags, O0);
1276       __ btst(JVM_ACC_SYNCHRONIZED, O0);
1277       __ br( Assembler::zero, false, Assembler::pt, ok);
1278       __ delayed()->nop();
1279       __ stop("method needs synchronization");
1280       __ bind(ok);
1281     }
1282 #endif // ASSERT
1283   }
1284 
1285   // start execution
1286 
1287   __ verify_thread();
1288 
1289   // jvmti support
1290   __ notify_method_entry();
1291 
1292   // start executing instructions
1293   __ dispatch_next(vtos);
1294 
1295 
1296   if (inc_counter) {
1297     if (ProfileInterpreter) {
1298       // We have decided to profile this method in the interpreter
1299       __ bind(profile_method);
1300 
1301       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), Lbcp, true);
1302 
1303 #ifdef ASSERT
1304       __ tst(O0);
1305       __ breakpoint_trap(Assembler::notEqual);
1306 #endif
1307 
1308       __ set_method_data_pointer();
1309 
1310       __ ba(false, profile_method_continue);
1311       __ delayed()->nop();
1312     }
1313 
1314     // handle invocation counter overflow
1315     __ bind(invocation_counter_overflow);
1316     generate_counter_overflow(Lcontinue);
1317   }
1318 
1319 
1320   return entry;
1321 }
1322 
1323 
1324 //----------------------------------------------------------------------------------------------------
1325 // Entry points & stack frame layout
1326 //
1327 // Here we generate the various kind of entries into the interpreter.
1328 // The two main entry type are generic bytecode methods and native call method.
1329 // These both come in synchronized and non-synchronized versions but the
1330 // frame layout they create is very similar. The other method entry
1331 // types are really just special purpose entries that are really entry
1332 // and interpretation all in one. These are for trivial methods like
1333 // accessor, empty, or special math methods.
1334 //
1335 // When control flow reaches any of the entry types for the interpreter
1336 // the following holds ->
1337 //
1338 // C2 Calling Conventions:
1339 //
1340 // The entry code below assumes that the following registers are set
1341 // when coming in:
1342 //    G5_method: holds the methodOop of the method to call
1343 //    Lesp:    points to the TOS of the callers expression stack
1344 //             after having pushed all the parameters
1345 //
1346 // The entry code does the following to setup an interpreter frame
1347 //   pop parameters from the callers stack by adjusting Lesp
1348 //   set O0 to Lesp
1349 //   compute X = (max_locals - num_parameters)
1350 //   bump SP up by X to accomadate the extra locals
1351 //   compute X = max_expression_stack
1352 //               + vm_local_words
1353 //               + 16 words of register save area
1354 //   save frame doing a save sp, -X, sp growing towards lower addresses
1355 //   set Lbcp, Lmethod, LcpoolCache
1356 //   set Llocals to i0
1357 //   set Lmonitors to FP - rounded_vm_local_words
1358 //   set Lesp to Lmonitors - 4
1359 //
1360 //  The frame has now been setup to do the rest of the entry code
1361 
1362 // Try this optimization:  Most method entries could live in a
1363 // "one size fits all" stack frame without all the dynamic size
1364 // calculations.  It might be profitable to do all this calculation
1365 // statically and approximately for "small enough" methods.
1366 
1367 //-----------------------------------------------------------------------------------------------
1368 
1369 // C1 Calling conventions
1370 //
1371 // Upon method entry, the following registers are setup:
1372 //
1373 // g2 G2_thread: current thread
1374 // g5 G5_method: method to activate
1375 // g4 Gargs  : pointer to last argument
1376 //
1377 //
1378 // Stack:
1379 //
1380 // +---------------+ <--- sp
1381 // |               |
1382 // : reg save area :
1383 // |               |
1384 // +---------------+ <--- sp + 0x40
1385 // |               |
1386 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
1387 // |               |
1388 // +---------------+ <--- sp + 0x5c
1389 // |               |
1390 // :     free      :
1391 // |               |
1392 // +---------------+ <--- Gargs
1393 // |               |
1394 // :   arguments   :
1395 // |               |
1396 // +---------------+
1397 // |               |
1398 //
1399 //
1400 //
1401 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
1402 //
1403 // +---------------+ <--- sp
1404 // |               |
1405 // : reg save area :
1406 // |               |
1407 // +---------------+ <--- sp + 0x40
1408 // |               |
1409 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
1410 // |               |
1411 // +---------------+ <--- sp + 0x5c
1412 // |               |
1413 // :               :
1414 // |               | <--- Lesp
1415 // +---------------+ <--- Lmonitors (fp - 0x18)
1416 // |   VM locals   |
1417 // +---------------+ <--- fp
1418 // |               |
1419 // : reg save area :
1420 // |               |
1421 // +---------------+ <--- fp + 0x40
1422 // |               |
1423 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
1424 // |               |
1425 // +---------------+ <--- fp + 0x5c
1426 // |               |
1427 // :     free      :
1428 // |               |
1429 // +---------------+
1430 // |               |
1431 // : nonarg locals :
1432 // |               |
1433 // +---------------+
1434 // |               |
1435 // :   arguments   :
1436 // |               | <--- Llocals
1437 // +---------------+ <--- Gargs
1438 // |               |
1439 
1440 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
1441 
1442   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
1443   // expression stack, the callee will have callee_extra_locals (so we can account for
1444   // frame extension) and monitor_size for monitors. Basically we need to calculate
1445   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
1446   //
1447   //
1448   // The big complicating thing here is that we must ensure that the stack stays properly
1449   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
1450   // needs to be aligned for). We are given that the sp (fp) is already aligned by
1451   // the caller so we must ensure that it is properly aligned for our callee.
1452   //
1453   const int rounded_vm_local_words =
1454        round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
1455   // callee_locals and max_stack are counts, not the size in frame.
1456   const int locals_size =
1457        round_to(callee_extra_locals * Interpreter::stackElementWords(), WordsPerLong);
1458   const int max_stack_words = max_stack * Interpreter::stackElementWords();
1459   return (round_to((max_stack_words
1460                    //6815692//+ methodOopDesc::extra_stack_words()
1461                    + rounded_vm_local_words
1462                    + frame::memory_parameter_word_sp_offset), WordsPerLong)
1463                    // already rounded
1464                    + locals_size + monitor_size);
1465 }
1466 
1467 // How much stack a method top interpreter activation needs in words.
1468 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
1469 
1470   // See call_stub code
1471   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
1472                                  WordsPerLong);    // 7 + register save area
1473 
1474   // Save space for one monitor to get into the interpreted method in case
1475   // the method is synchronized
1476   int monitor_size    = method->is_synchronized() ?
1477                                 1*frame::interpreter_frame_monitor_size() : 0;
1478   return size_activation_helper(method->max_locals(), method->max_stack(),
1479                                  monitor_size) + call_stub_size;
1480 }
1481 
1482 int AbstractInterpreter::layout_activation(methodOop method,
1483                                            int tempcount,
1484                                            int popframe_extra_args,
1485                                            int moncount,
1486                                            int callee_param_count,
1487                                            int callee_local_count,
1488                                            frame* caller,
1489                                            frame* interpreter_frame,
1490                                            bool is_top_frame) {
1491   // Note: This calculation must exactly parallel the frame setup
1492   // in InterpreterGenerator::generate_fixed_frame.
1493   // If f!=NULL, set up the following variables:
1494   //   - Lmethod
1495   //   - Llocals
1496   //   - Lmonitors (to the indicated number of monitors)
1497   //   - Lesp (to the indicated number of temps)
1498   // The frame f (if not NULL) on entry is a description of the caller of the frame
1499   // we are about to layout. We are guaranteed that we will be able to fill in a
1500   // new interpreter frame as its callee (i.e. the stack space is allocated and
1501   // the amount was determined by an earlier call to this method with f == NULL).
1502   // On return f (if not NULL) while describe the interpreter frame we just layed out.
1503 
1504   int monitor_size           = moncount * frame::interpreter_frame_monitor_size();
1505   int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
1506 
1507   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
1508   //
1509   // Note: if you look closely this appears to be doing something much different
1510   // than generate_fixed_frame. What is happening is this. On sparc we have to do
1511   // this dance with interpreter_sp_adjustment because the window save area would
1512   // appear just below the bottom (tos) of the caller's java expression stack. Because
1513   // the interpreter want to have the locals completely contiguous generate_fixed_frame
1514   // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
1515   // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
1516   // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
1517   // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
1518   // because the oldest frame would have adjust its callers frame and yet that frame
1519   // already exists and isn't part of this array of frames we are unpacking. So at first
1520   // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
1521   // will after it calculates all of the frame's on_stack_size()'s will then figure out the
1522   // amount to adjust the caller of the initial (oldest) frame and the calculation will all
1523   // add up. It does seem like it simpler to account for the adjustment here (and remove the
1524   // callee... parameters here). However this would mean that this routine would have to take
1525   // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
1526   // and run the calling loop in the reverse order. This would also would appear to mean making
1527   // this code aware of what the interactions are when that initial caller fram was an osr or
1528   // other adapter frame. deoptimization is complicated enough and  hard enough to debug that
1529   // there is no sense in messing working code.
1530   //
1531 
1532   int rounded_cls = round_to((callee_local_count - callee_param_count), WordsPerLong);
1533   assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align");
1534 
1535   int raw_frame_size = size_activation_helper(rounded_cls, method->max_stack(),
1536                                               monitor_size);
1537 
1538   if (interpreter_frame != NULL) {
1539     // The skeleton frame must already look like an interpreter frame
1540     // even if not fully filled out.
1541     assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
1542 
1543     intptr_t* fp = interpreter_frame->fp();
1544 
1545     JavaThread* thread = JavaThread::current();
1546     RegisterMap map(thread, false);
1547     // More verification that skeleton frame is properly walkable
1548     assert(fp == caller->sp(), "fp must match");
1549 
1550     intptr_t* montop     = fp - rounded_vm_local_words;
1551 
1552     // preallocate monitors (cf. __ add_monitor_to_stack)
1553     intptr_t* monitors = montop - monitor_size;
1554 
1555     // preallocate stack space
1556     intptr_t*  esp = monitors - 1 -
1557                      (tempcount * Interpreter::stackElementWords()) -
1558                      popframe_extra_args;
1559 
1560     int local_words = method->max_locals() * Interpreter::stackElementWords();
1561     int parm_words  = method->size_of_parameters() * Interpreter::stackElementWords();
1562     NEEDS_CLEANUP;
1563     intptr_t* locals;
1564     if (caller->is_interpreted_frame()) {
1565       // Can force the locals area to end up properly overlapping the top of the expression stack.
1566       intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
1567       // Note that this computation means we replace size_of_parameters() values from the caller
1568       // interpreter frame's expression stack with our argument locals
1569       locals = Lesp_ptr + parm_words;
1570       int delta = local_words - parm_words;
1571       int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
1572       *interpreter_frame->register_addr(I5_savedSP)    = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
1573     } else {
1574       assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
1575       // Don't have Lesp available; lay out locals block in the caller
1576       // adjacent to the register window save area.
1577       //
1578       // Compiled frames do not allocate a varargs area which is why this if
1579       // statement is needed.
1580       //
1581       if (caller->is_compiled_frame()) {
1582         locals = fp + frame::register_save_words + local_words - 1;
1583       } else {
1584         locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
1585       }
1586       if (!caller->is_entry_frame()) {
1587         // Caller wants his own SP back
1588         int caller_frame_size = caller->cb()->frame_size();
1589         *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
1590       }
1591     }
1592     if (TraceDeoptimization) {
1593       if (caller->is_entry_frame()) {
1594         // make sure I5_savedSP and the entry frames notion of saved SP
1595         // agree.  This assertion duplicate a check in entry frame code
1596         // but catches the failure earlier.
1597         assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
1598                "would change callers SP");
1599       }
1600       if (caller->is_entry_frame()) {
1601         tty->print("entry ");
1602       }
1603       if (caller->is_compiled_frame()) {
1604         tty->print("compiled ");
1605         if (caller->is_deoptimized_frame()) {
1606           tty->print("(deopt) ");
1607         }
1608       }
1609       if (caller->is_interpreted_frame()) {
1610         tty->print("interpreted ");
1611       }
1612       tty->print_cr("caller fp=0x%x sp=0x%x", caller->fp(), caller->sp());
1613       tty->print_cr("save area = 0x%x, 0x%x", caller->sp(), caller->sp() + 16);
1614       tty->print_cr("save area = 0x%x, 0x%x", caller->fp(), caller->fp() + 16);
1615       tty->print_cr("interpreter fp=0x%x sp=0x%x", interpreter_frame->fp(), interpreter_frame->sp());
1616       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->sp(), interpreter_frame->sp() + 16);
1617       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->fp(), interpreter_frame->fp() + 16);
1618       tty->print_cr("Llocals = 0x%x", locals);
1619       tty->print_cr("Lesp = 0x%x", esp);
1620       tty->print_cr("Lmonitors = 0x%x", monitors);
1621     }
1622 
1623     if (method->max_locals() > 0) {
1624       assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
1625       assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
1626       assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
1627       assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
1628     }
1629 #ifdef _LP64
1630     assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
1631 #endif
1632 
1633     *interpreter_frame->register_addr(Lmethod)     = (intptr_t) method;
1634     *interpreter_frame->register_addr(Llocals)     = (intptr_t) locals;
1635     *interpreter_frame->register_addr(Lmonitors)   = (intptr_t) monitors;
1636     *interpreter_frame->register_addr(Lesp)        = (intptr_t) esp;
1637     // Llast_SP will be same as SP as there is no adapter space
1638     *interpreter_frame->register_addr(Llast_SP)    = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
1639     *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
1640 #ifdef FAST_DISPATCH
1641     *interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table();
1642 #endif
1643 
1644 
1645 #ifdef ASSERT
1646     BasicObjectLock* mp = (BasicObjectLock*)monitors;
1647 
1648     assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
1649     assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize())+Interpreter::value_offset_in_bytes()), "locals match");
1650     assert(interpreter_frame->interpreter_frame_monitor_end()   == mp, "monitor_end matches");
1651     assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
1652     assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
1653 
1654     // check bounds
1655     intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
1656     intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
1657     assert(lo < monitors && montop <= hi, "monitors in bounds");
1658     assert(lo <= esp && esp < monitors, "esp in bounds");
1659 #endif // ASSERT
1660   }
1661 
1662   return raw_frame_size;
1663 }
1664 
1665 //----------------------------------------------------------------------------------------------------
1666 // Exceptions
1667 void TemplateInterpreterGenerator::generate_throw_exception() {
1668 
1669   // Entry point in previous activation (i.e., if the caller was interpreted)
1670   Interpreter::_rethrow_exception_entry = __ pc();
1671   // O0: exception
1672 
1673   // entry point for exceptions thrown within interpreter code
1674   Interpreter::_throw_exception_entry = __ pc();
1675   __ verify_thread();
1676   // expression stack is undefined here
1677   // O0: exception, i.e. Oexception
1678   // Lbcp: exception bcx
1679   __ verify_oop(Oexception);
1680 
1681 
1682   // expression stack must be empty before entering the VM in case of an exception
1683   __ empty_expression_stack();
1684   // find exception handler address and preserve exception oop
1685   // call C routine to find handler and jump to it
1686   __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
1687   __ push_ptr(O1); // push exception for exception handler bytecodes
1688 
1689   __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
1690   __ delayed()->nop();
1691 
1692 
1693   // if the exception is not handled in the current frame
1694   // the frame is removed and the exception is rethrown
1695   // (i.e. exception continuation is _rethrow_exception)
1696   //
1697   // Note: At this point the bci is still the bxi for the instruction which caused
1698   //       the exception and the expression stack is empty. Thus, for any VM calls
1699   //       at this point, GC will find a legal oop map (with empty expression stack).
1700 
1701   // in current activation
1702   // tos: exception
1703   // Lbcp: exception bcp
1704 
1705   //
1706   // JVMTI PopFrame support
1707   //
1708 
1709   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1710   Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1711   // Set the popframe_processing bit in popframe_condition indicating that we are
1712   // currently handling popframe, so that call_VMs that may happen later do not trigger new
1713   // popframe handling cycles.
1714 
1715   __ ld(popframe_condition_addr, G3_scratch);
1716   __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
1717   __ stw(G3_scratch, popframe_condition_addr);
1718 
1719   // Empty the expression stack, as in normal exception handling
1720   __ empty_expression_stack();
1721   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
1722 
1723   {
1724     // Check to see whether we are returning to a deoptimized frame.
1725     // (The PopFrame call ensures that the caller of the popped frame is
1726     // either interpreted or compiled and deoptimizes it if compiled.)
1727     // In this case, we can't call dispatch_next() after the frame is
1728     // popped, but instead must save the incoming arguments and restore
1729     // them after deoptimization has occurred.
1730     //
1731     // Note that we don't compare the return PC against the
1732     // deoptimization blob's unpack entry because of the presence of
1733     // adapter frames in C2.
1734     Label caller_not_deoptimized;
1735     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
1736     __ tst(O0);
1737     __ brx(Assembler::notEqual, false, Assembler::pt, caller_not_deoptimized);
1738     __ delayed()->nop();
1739 
1740     const Register Gtmp1 = G3_scratch;
1741     const Register Gtmp2 = G1_scratch;
1742 
1743     // Compute size of arguments for saving when returning to deoptimized caller
1744     __ lduh(Lmethod, in_bytes(methodOopDesc::size_of_parameters_offset()), Gtmp1);
1745     __ sll(Gtmp1, Interpreter::logStackElementSize(), Gtmp1);
1746     __ sub(Llocals, Gtmp1, Gtmp2);
1747     __ add(Gtmp2, wordSize, Gtmp2);
1748     // Save these arguments
1749     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
1750     // Inform deoptimization that it is responsible for restoring these arguments
1751     __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
1752     Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1753     __ st(Gtmp1, popframe_condition_addr);
1754 
1755     // Return from the current method
1756     // The caller's SP was adjusted upon method entry to accomodate
1757     // the callee's non-argument locals. Undo that adjustment.
1758     __ ret();
1759     __ delayed()->restore(I5_savedSP, G0, SP);
1760 
1761     __ bind(caller_not_deoptimized);
1762   }
1763 
1764   // Clear the popframe condition flag
1765   __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
1766 
1767   // Get out of the current method (how this is done depends on the particular compiler calling
1768   // convention that the interpreter currently follows)
1769   // The caller's SP was adjusted upon method entry to accomodate
1770   // the callee's non-argument locals. Undo that adjustment.
1771   __ restore(I5_savedSP, G0, SP);
1772   // The method data pointer was incremented already during
1773   // call profiling. We have to restore the mdp for the current bcp.
1774   if (ProfileInterpreter) {
1775     __ set_method_data_pointer_for_bcp();
1776   }
1777   // Resume bytecode interpretation at the current bcp
1778   __ dispatch_next(vtos);
1779   // end of JVMTI PopFrame support
1780 
1781   Interpreter::_remove_activation_entry = __ pc();
1782 
1783   // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
1784   __ pop_ptr(Oexception);                                  // get exception
1785 
1786   // Intel has the following comment:
1787   //// remove the activation (without doing throws on illegalMonitorExceptions)
1788   // They remove the activation without checking for bad monitor state.
1789   // %%% We should make sure this is the right semantics before implementing.
1790 
1791   // %%% changed set_vm_result_2 to set_vm_result and get_vm_result_2 to get_vm_result. Is there a bug here?
1792   __ set_vm_result(Oexception);
1793   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
1794 
1795   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
1796 
1797   __ get_vm_result(Oexception);
1798   __ verify_oop(Oexception);
1799 
1800     const int return_reg_adjustment = frame::pc_return_offset;
1801   Address issuing_pc_addr(I7, return_reg_adjustment);
1802 
1803   // We are done with this activation frame; find out where to go next.
1804   // The continuation point will be an exception handler, which expects
1805   // the following registers set up:
1806   //
1807   // Oexception: exception
1808   // Oissuing_pc: the local call that threw exception
1809   // Other On: garbage
1810   // In/Ln:  the contents of the caller's register window
1811   //
1812   // We do the required restore at the last possible moment, because we
1813   // need to preserve some state across a runtime call.
1814   // (Remember that the caller activation is unknown--it might not be
1815   // interpreted, so things like Lscratch are useless in the caller.)
1816 
1817   // Although the Intel version uses call_C, we can use the more
1818   // compact call_VM.  (The only real difference on SPARC is a
1819   // harmlessly ignored [re]set_last_Java_frame, compared with
1820   // the Intel code which lacks this.)
1821   __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
1822   __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
1823   __ super_call_VM_leaf(L7_thread_cache,
1824                         CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1825                         G2_thread, Oissuing_pc->after_save());
1826 
1827   // The caller's SP was adjusted upon method entry to accomodate
1828   // the callee's non-argument locals. Undo that adjustment.
1829   __ JMP(O0, 0);                         // return exception handler in caller
1830   __ delayed()->restore(I5_savedSP, G0, SP);
1831 
1832   // (same old exception object is already in Oexception; see above)
1833   // Note that an "issuing PC" is actually the next PC after the call
1834 }
1835 
1836 
1837 //
1838 // JVMTI ForceEarlyReturn support
1839 //
1840 
1841 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1842   address entry = __ pc();
1843 
1844   __ empty_expression_stack();
1845   __ load_earlyret_value(state);
1846 
1847   __ ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), G3_scratch);
1848   Address cond_addr(G3_scratch, JvmtiThreadState::earlyret_state_offset());
1849 
1850   // Clear the earlyret state
1851   __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
1852 
1853   __ remove_activation(state,
1854                        /* throw_monitor_exception */ false,
1855                        /* install_monitor_exception */ false);
1856 
1857   // The caller's SP was adjusted upon method entry to accomodate
1858   // the callee's non-argument locals. Undo that adjustment.
1859   __ ret();                             // return to caller
1860   __ delayed()->restore(I5_savedSP, G0, SP);
1861 
1862   return entry;
1863 } // end of JVMTI ForceEarlyReturn support
1864 
1865 
1866 //------------------------------------------------------------------------------------------------------------------------
1867 // Helper for vtos entry point generation
1868 
1869 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
1870   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1871   Label L;
1872   aep = __ pc(); __ push_ptr(); __ ba(false, L); __ delayed()->nop();
1873   fep = __ pc(); __ push_f();   __ ba(false, L); __ delayed()->nop();
1874   dep = __ pc(); __ push_d();   __ ba(false, L); __ delayed()->nop();
1875   lep = __ pc(); __ push_l();   __ ba(false, L); __ delayed()->nop();
1876   iep = __ pc(); __ push_i();
1877   bep = cep = sep = iep;                        // there aren't any
1878   vep = __ pc(); __ bind(L);                    // fall through
1879   generate_and_dispatch(t);
1880 }
1881 
1882 // --------------------------------------------------------------------------------
1883 
1884 
1885 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
1886  : TemplateInterpreterGenerator(code) {
1887    generate_all(); // down here so it can be "virtual"
1888 }
1889 
1890 // --------------------------------------------------------------------------------
1891 
1892 // Non-product code
1893 #ifndef PRODUCT
1894 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1895   address entry = __ pc();
1896 
1897   __ push(state);
1898   __ mov(O7, Lscratch); // protect return address within interpreter
1899 
1900   // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
1901   __ mov( Otos_l2, G3_scratch );
1902   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
1903   __ mov(Lscratch, O7); // restore return address
1904   __ pop(state);
1905   __ retl();
1906   __ delayed()->nop();
1907 
1908   return entry;
1909 }
1910 
1911 
1912 // helpers for generate_and_dispatch
1913 
1914 void TemplateInterpreterGenerator::count_bytecode() {
1915   __ inc_counter(&BytecodeCounter::_counter_value, G3_scratch, G4_scratch);
1916 }
1917 
1918 
1919 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
1920   __ inc_counter(&BytecodeHistogram::_counters[t->bytecode()], G3_scratch, G4_scratch);
1921 }
1922 
1923 
1924 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
1925   AddressLiteral index   (&BytecodePairHistogram::_index);
1926   AddressLiteral counters((address) &BytecodePairHistogram::_counters);
1927 
1928   // get index, shift out old bytecode, bring in new bytecode, and store it
1929   // _index = (_index >> log2_number_of_codes) |
1930   //          (bytecode << log2_number_of_codes);
1931 
1932   __ load_contents(index, G4_scratch);
1933   __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
1934   __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
1935   __ or3( G3_scratch,  G4_scratch, G4_scratch );
1936   __ store_contents(G4_scratch, index, G3_scratch);
1937 
1938   // bump bucket contents
1939   // _counters[_index] ++;
1940 
1941   __ set(counters, G3_scratch);                       // loads into G3_scratch
1942   __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
1943   __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
1944   __ ld (G3_scratch, 0, G4_scratch);
1945   __ inc (G4_scratch);
1946   __ st (G4_scratch, 0, G3_scratch);
1947 }
1948 
1949 
1950 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
1951   // Call a little run-time stub to avoid blow-up for each bytecode.
1952   // The run-time runtime saves the right registers, depending on
1953   // the tosca in-state for the given template.
1954   address entry = Interpreter::trace_code(t->tos_in());
1955   guarantee(entry != NULL, "entry must have been generated");
1956   __ call(entry, relocInfo::none);
1957   __ delayed()->nop();
1958 }
1959 
1960 
1961 void TemplateInterpreterGenerator::stop_interpreter_at() {
1962   AddressLiteral counter(&BytecodeCounter::_counter_value);
1963   __ load_contents(counter, G3_scratch);
1964   AddressLiteral stop_at(&StopInterpreterAt);
1965   __ load_ptr_contents(stop_at, G4_scratch);
1966   __ cmp(G3_scratch, G4_scratch);
1967   __ breakpoint_trap(Assembler::equal);
1968 }
1969 #endif // not PRODUCT
1970 #endif // !CC_INTERP