1 /*
   2  * Copyright 2000-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_c1_LIRAssembler_x86.cpp.incl"
  27 
  28 
  29 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  30 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  31 // fast versions of NegF/NegD and AbsF/AbsD.
  32 
  33 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  34 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  35   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  36   // of 128-bits operands for SSE instructions.
  37   jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
  38   // Store the value to a 128-bits operand.
  39   operand[0] = lo;
  40   operand[1] = hi;
  41   return operand;
  42 }
  43 
  44 // Buffer for 128-bits masks used by SSE instructions.
  45 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  46 
  47 // Static initialization during VM startup.
  48 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
  49 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
  50 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
  51 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
  52 
  53 
  54 
  55 NEEDS_CLEANUP // remove this definitions ?
  56 const Register IC_Klass    = rax;   // where the IC klass is cached
  57 const Register SYNC_header = rax;   // synchronization header
  58 const Register SHIFT_count = rcx;   // where count for shift operations must be
  59 
  60 #define __ _masm->
  61 
  62 
  63 static void select_different_registers(Register preserve,
  64                                        Register extra,
  65                                        Register &tmp1,
  66                                        Register &tmp2) {
  67   if (tmp1 == preserve) {
  68     assert_different_registers(tmp1, tmp2, extra);
  69     tmp1 = extra;
  70   } else if (tmp2 == preserve) {
  71     assert_different_registers(tmp1, tmp2, extra);
  72     tmp2 = extra;
  73   }
  74   assert_different_registers(preserve, tmp1, tmp2);
  75 }
  76 
  77 
  78 
  79 static void select_different_registers(Register preserve,
  80                                        Register extra,
  81                                        Register &tmp1,
  82                                        Register &tmp2,
  83                                        Register &tmp3) {
  84   if (tmp1 == preserve) {
  85     assert_different_registers(tmp1, tmp2, tmp3, extra);
  86     tmp1 = extra;
  87   } else if (tmp2 == preserve) {
  88     assert_different_registers(tmp1, tmp2, tmp3, extra);
  89     tmp2 = extra;
  90   } else if (tmp3 == preserve) {
  91     assert_different_registers(tmp1, tmp2, tmp3, extra);
  92     tmp3 = extra;
  93   }
  94   assert_different_registers(preserve, tmp1, tmp2, tmp3);
  95 }
  96 
  97 
  98 
  99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 100   if (opr->is_constant()) {
 101     LIR_Const* constant = opr->as_constant_ptr();
 102     switch (constant->type()) {
 103       case T_INT: {
 104         return true;
 105       }
 106 
 107       default:
 108         return false;
 109     }
 110   }
 111   return false;
 112 }
 113 
 114 
 115 LIR_Opr LIR_Assembler::receiverOpr() {
 116   return FrameMap::receiver_opr;
 117 }
 118 
 119 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
 120   return receiverOpr();
 121 }
 122 
 123 LIR_Opr LIR_Assembler::osrBufferPointer() {
 124   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 125 }
 126 
 127 //--------------fpu register translations-----------------------
 128 
 129 
 130 address LIR_Assembler::float_constant(float f) {
 131   address const_addr = __ float_constant(f);
 132   if (const_addr == NULL) {
 133     bailout("const section overflow");
 134     return __ code()->consts()->start();
 135   } else {
 136     return const_addr;
 137   }
 138 }
 139 
 140 
 141 address LIR_Assembler::double_constant(double d) {
 142   address const_addr = __ double_constant(d);
 143   if (const_addr == NULL) {
 144     bailout("const section overflow");
 145     return __ code()->consts()->start();
 146   } else {
 147     return const_addr;
 148   }
 149 }
 150 
 151 
 152 void LIR_Assembler::set_24bit_FPU() {
 153   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 154 }
 155 
 156 void LIR_Assembler::reset_FPU() {
 157   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 158 }
 159 
 160 void LIR_Assembler::fpop() {
 161   __ fpop();
 162 }
 163 
 164 void LIR_Assembler::fxch(int i) {
 165   __ fxch(i);
 166 }
 167 
 168 void LIR_Assembler::fld(int i) {
 169   __ fld_s(i);
 170 }
 171 
 172 void LIR_Assembler::ffree(int i) {
 173   __ ffree(i);
 174 }
 175 
 176 void LIR_Assembler::breakpoint() {
 177   __ int3();
 178 }
 179 
 180 void LIR_Assembler::push(LIR_Opr opr) {
 181   if (opr->is_single_cpu()) {
 182     __ push_reg(opr->as_register());
 183   } else if (opr->is_double_cpu()) {
 184     NOT_LP64(__ push_reg(opr->as_register_hi()));
 185     __ push_reg(opr->as_register_lo());
 186   } else if (opr->is_stack()) {
 187     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 188   } else if (opr->is_constant()) {
 189     LIR_Const* const_opr = opr->as_constant_ptr();
 190     if (const_opr->type() == T_OBJECT) {
 191       __ push_oop(const_opr->as_jobject());
 192     } else if (const_opr->type() == T_INT) {
 193       __ push_jint(const_opr->as_jint());
 194     } else {
 195       ShouldNotReachHere();
 196     }
 197 
 198   } else {
 199     ShouldNotReachHere();
 200   }
 201 }
 202 
 203 void LIR_Assembler::pop(LIR_Opr opr) {
 204   if (opr->is_single_cpu()) {
 205     __ pop_reg(opr->as_register());
 206   } else {
 207     ShouldNotReachHere();
 208   }
 209 }
 210 
 211 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 212   return addr->base()->is_illegal() && addr->index()->is_illegal();
 213 }
 214 
 215 //-------------------------------------------
 216 
 217 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 218   return as_Address(addr, rscratch1);
 219 }
 220 
 221 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 222   if (addr->base()->is_illegal()) {
 223     assert(addr->index()->is_illegal(), "must be illegal too");
 224     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 225     if (! __ reachable(laddr)) {
 226       __ movptr(tmp, laddr.addr());
 227       Address res(tmp, 0);
 228       return res;
 229     } else {
 230       return __ as_Address(laddr);
 231     }
 232   }
 233 
 234   Register base = addr->base()->as_pointer_register();
 235 
 236   if (addr->index()->is_illegal()) {
 237     return Address( base, addr->disp());
 238   } else if (addr->index()->is_cpu_register()) {
 239     Register index = addr->index()->as_pointer_register();
 240     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 241   } else if (addr->index()->is_constant()) {
 242     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 243     assert(Assembler::is_simm32(addr_offset), "must be");
 244 
 245     return Address(base, addr_offset);
 246   } else {
 247     Unimplemented();
 248     return Address();
 249   }
 250 }
 251 
 252 
 253 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 254   Address base = as_Address(addr);
 255   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 256 }
 257 
 258 
 259 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 260   return as_Address(addr);
 261 }
 262 
 263 
 264 void LIR_Assembler::osr_entry() {
 265   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 266   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 267   ValueStack* entry_state = osr_entry->state();
 268   int number_of_locks = entry_state->locks_size();
 269 
 270   // we jump here if osr happens with the interpreter
 271   // state set up to continue at the beginning of the
 272   // loop that triggered osr - in particular, we have
 273   // the following registers setup:
 274   //
 275   // rcx: osr buffer
 276   //
 277 
 278   // build frame
 279   ciMethod* m = compilation()->method();
 280   __ build_frame(initial_frame_size_in_bytes());
 281 
 282   // OSR buffer is
 283   //
 284   // locals[nlocals-1..0]
 285   // monitors[0..number_of_locks]
 286   //
 287   // locals is a direct copy of the interpreter frame so in the osr buffer
 288   // so first slot in the local array is the last local from the interpreter
 289   // and last slot is local[0] (receiver) from the interpreter
 290   //
 291   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 292   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 293   // in the interpreter frame (the method lock if a sync method)
 294 
 295   // Initialize monitors in the compiled activation.
 296   //   rcx: pointer to osr buffer
 297   //
 298   // All other registers are dead at this point and the locals will be
 299   // copied into place by code emitted in the IR.
 300 
 301   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 302   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 303     int monitor_offset = BytesPerWord * method()->max_locals() +
 304       (2 * BytesPerWord) * (number_of_locks - 1);
 305     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 306     // the OSR buffer using 2 word entries: first the lock and then
 307     // the oop.
 308     for (int i = 0; i < number_of_locks; i++) {
 309       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 310 #ifdef ASSERT
 311       // verify the interpreter's monitor has a non-null object
 312       {
 313         Label L;
 314         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 315         __ jcc(Assembler::notZero, L);
 316         __ stop("locked object is NULL");
 317         __ bind(L);
 318       }
 319 #endif
 320       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 321       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 322       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 323       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 324     }
 325   }
 326 }
 327 
 328 
 329 // inline cache check; done before the frame is built.
 330 int LIR_Assembler::check_icache() {
 331   Register receiver = FrameMap::receiver_opr->as_register();
 332   Register ic_klass = IC_Klass;
 333   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 334 
 335   if (!VerifyOops) {
 336     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 337     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
 338       __ nop();
 339     }
 340   }
 341   int offset = __ offset();
 342   __ inline_cache_check(receiver, IC_Klass);
 343   assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct");
 344   if (VerifyOops) {
 345     // force alignment after the cache check.
 346     // It's been verified to be aligned if !VerifyOops
 347     __ align(CodeEntryAlignment);
 348   }
 349   return offset;
 350 }
 351 
 352 
 353 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 354   jobject o = NULL;
 355   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 356   __ movoop(reg, o);
 357   patching_epilog(patch, lir_patch_normal, reg, info);
 358 }
 359 
 360 
 361 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
 362   if (exception->is_valid()) {
 363     // preserve exception
 364     // note: the monitor_exit runtime call is a leaf routine
 365     //       and cannot block => no GC can happen
 366     // The slow case (MonitorAccessStub) uses the first two stack slots
 367     // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
 368     __ movptr (Address(rsp, 2*wordSize), exception);
 369   }
 370 
 371   Register obj_reg  = obj_opr->as_register();
 372   Register lock_reg = lock_opr->as_register();
 373 
 374   // setup registers (lock_reg must be rax, for lock_object)
 375   assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
 376   Register hdr = lock_reg;
 377   assert(new_hdr == SYNC_header, "wrong register");
 378   lock_reg = new_hdr;
 379   // compute pointer to BasicLock
 380   Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
 381   __ lea(lock_reg, lock_addr);
 382   // unlock object
 383   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
 384   // _slow_case_stubs->append(slow_case);
 385   // temporary fix: must be created after exceptionhandler, therefore as call stub
 386   _slow_case_stubs->append(slow_case);
 387   if (UseFastLocking) {
 388     // try inlined fast unlocking first, revert to slow locking if it fails
 389     // note: lock_reg points to the displaced header since the displaced header offset is 0!
 390     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
 391     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
 392   } else {
 393     // always do slow unlocking
 394     // note: the slow unlocking code could be inlined here, however if we use
 395     //       slow unlocking, speed doesn't matter anyway and this solution is
 396     //       simpler and requires less duplicated code - additionally, the
 397     //       slow unlocking code is the same in either case which simplifies
 398     //       debugging
 399     __ jmp(*slow_case->entry());
 400   }
 401   // done
 402   __ bind(*slow_case->continuation());
 403 
 404   if (exception->is_valid()) {
 405     // restore exception
 406     __ movptr (exception, Address(rsp, 2 * wordSize));
 407   }
 408 }
 409 
 410 // This specifies the rsp decrement needed to build the frame
 411 int LIR_Assembler::initial_frame_size_in_bytes() {
 412   // if rounding, must let FrameMap know!
 413 
 414   // The frame_map records size in slots (32bit word)
 415 
 416   // subtract two words to account for return address and link
 417   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 418 }
 419 
 420 
 421 int LIR_Assembler::emit_exception_handler() {
 422   // if the last instruction is a call (typically to do a throw which
 423   // is coming at the end after block reordering) the return address
 424   // must still point into the code area in order to avoid assertion
 425   // failures when searching for the corresponding bci => add a nop
 426   // (was bug 5/14/1999 - gri)
 427   __ nop();
 428 
 429   // generate code for exception handler
 430   address handler_base = __ start_a_stub(exception_handler_size);
 431   if (handler_base == NULL) {
 432     // not enough space left for the handler
 433     bailout("exception handler overflow");
 434     return -1;
 435   }
 436 
 437   int offset = code_offset();
 438 
 439   // the exception oop and pc are in rax, and rdx
 440   // no other registers need to be preserved, so invalidate them
 441   __ invalidate_registers(false, true, true, false, true, true);
 442 
 443   // check that there is really an exception
 444   __ verify_not_null_oop(rax);
 445 
 446   // search an exception handler (rax: exception oop, rdx: throwing pc)
 447   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
 448 
 449   __ stop("should not reach here");
 450 
 451   assert(code_offset() - offset <= exception_handler_size, "overflow");
 452   __ end_a_stub();
 453 
 454   return offset;
 455 }
 456 
 457 
 458 int LIR_Assembler::emit_deopt_handler() {
 459   // if the last instruction is a call (typically to do a throw which
 460   // is coming at the end after block reordering) the return address
 461   // must still point into the code area in order to avoid assertion
 462   // failures when searching for the corresponding bci => add a nop
 463   // (was bug 5/14/1999 - gri)
 464   __ nop();
 465 
 466   // generate code for exception handler
 467   address handler_base = __ start_a_stub(deopt_handler_size);
 468   if (handler_base == NULL) {
 469     // not enough space left for the handler
 470     bailout("deopt handler overflow");
 471     return -1;
 472   }
 473 
 474   int offset = code_offset();
 475   InternalAddress here(__ pc());
 476 
 477   __ pushptr(here.addr());
 478   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 479 
 480   assert(code_offset() - offset <= deopt_handler_size, "overflow");
 481   __ end_a_stub();
 482 
 483   return offset;
 484 }
 485 
 486 
 487 // This is the fast version of java.lang.String.compare; it has not
 488 // OSR-entry and therefore, we generate a slow version for OSR's
 489 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
 490   __ movptr (rbx, rcx); // receiver is in rcx
 491   __ movptr (rax, arg1->as_register());
 492 
 493   // Get addresses of first characters from both Strings
 494   __ movptr (rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
 495   __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
 496   __ lea    (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 497 
 498 
 499   // rbx, may be NULL
 500   add_debug_info_for_null_check_here(info);
 501   __ movptr (rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
 502   __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
 503   __ lea    (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 504 
 505   // compute minimum length (in rax) and difference of lengths (on top of stack)
 506   if (VM_Version::supports_cmov()) {
 507     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
 508     __ movl     (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
 509     __ mov      (rcx, rbx);
 510     __ subptr   (rbx, rax); // subtract lengths
 511     __ push     (rbx);      // result
 512     __ cmov     (Assembler::lessEqual, rax, rcx);
 513   } else {
 514     Label L;
 515     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
 516     __ movl     (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
 517     __ mov      (rax, rbx);
 518     __ subptr   (rbx, rcx);
 519     __ push     (rbx);
 520     __ jcc      (Assembler::lessEqual, L);
 521     __ mov      (rax, rcx);
 522     __ bind (L);
 523   }
 524   // is minimum length 0?
 525   Label noLoop, haveResult;
 526   __ testptr (rax, rax);
 527   __ jcc (Assembler::zero, noLoop);
 528 
 529   // compare first characters
 530   __ load_unsigned_short(rcx, Address(rdi, 0));
 531   __ load_unsigned_short(rbx, Address(rsi, 0));
 532   __ subl(rcx, rbx);
 533   __ jcc(Assembler::notZero, haveResult);
 534   // starting loop
 535   __ decrement(rax); // we already tested index: skip one
 536   __ jcc(Assembler::zero, noLoop);
 537 
 538   // set rsi.edi to the end of the arrays (arrays have same length)
 539   // negate the index
 540 
 541   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 542   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 543   __ negptr(rax);
 544 
 545   // compare the strings in a loop
 546 
 547   Label loop;
 548   __ align(wordSize);
 549   __ bind(loop);
 550   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
 551   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
 552   __ subl(rcx, rbx);
 553   __ jcc(Assembler::notZero, haveResult);
 554   __ increment(rax);
 555   __ jcc(Assembler::notZero, loop);
 556 
 557   // strings are equal up to min length
 558 
 559   __ bind(noLoop);
 560   __ pop(rax);
 561   return_op(LIR_OprFact::illegalOpr);
 562 
 563   __ bind(haveResult);
 564   // leave instruction is going to discard the TOS value
 565   __ mov (rax, rcx); // result of call is in rax,
 566 }
 567 
 568 
 569 void LIR_Assembler::return_op(LIR_Opr result) {
 570   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 571   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 572     assert(result->fpu() == 0, "result must already be on TOS");
 573   }
 574 
 575   // Pop the stack before the safepoint code
 576   __ remove_frame(initial_frame_size_in_bytes());
 577 
 578   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 579 
 580   // Note: we do not need to round double result; float result has the right precision
 581   // the poll sets the condition code, but no data registers
 582   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
 583                               relocInfo::poll_return_type);
 584 
 585   // NOTE: the requires that the polling page be reachable else the reloc
 586   // goes to the movq that loads the address and not the faulting instruction
 587   // which breaks the signal handler code
 588 
 589   __ test32(rax, polling_page);
 590 
 591   __ ret(0);
 592 }
 593 
 594 
 595 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 596   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
 597                               relocInfo::poll_type);
 598 
 599   if (info != NULL) {
 600     add_debug_info_for_branch(info);
 601   } else {
 602     ShouldNotReachHere();
 603   }
 604 
 605   int offset = __ offset();
 606 
 607   // NOTE: the requires that the polling page be reachable else the reloc
 608   // goes to the movq that loads the address and not the faulting instruction
 609   // which breaks the signal handler code
 610 
 611   __ test32(rax, polling_page);
 612   return offset;
 613 }
 614 
 615 
 616 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 617   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 618 }
 619 
 620 void LIR_Assembler::swap_reg(Register a, Register b) {
 621   __ xchgptr(a, b);
 622 }
 623 
 624 
 625 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 626   assert(src->is_constant(), "should not call otherwise");
 627   assert(dest->is_register(), "should not call otherwise");
 628   LIR_Const* c = src->as_constant_ptr();
 629 
 630   switch (c->type()) {
 631     case T_INT: {
 632       assert(patch_code == lir_patch_none, "no patching handled here");
 633       __ movl(dest->as_register(), c->as_jint());
 634       break;
 635     }
 636 
 637     case T_LONG: {
 638       assert(patch_code == lir_patch_none, "no patching handled here");
 639 #ifdef _LP64
 640       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 641 #else
 642       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 643       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 644 #endif // _LP64
 645       break;
 646     }
 647 
 648     case T_OBJECT: {
 649       if (patch_code != lir_patch_none) {
 650         jobject2reg_with_patching(dest->as_register(), info);
 651       } else {
 652         __ movoop(dest->as_register(), c->as_jobject());
 653       }
 654       break;
 655     }
 656 
 657     case T_FLOAT: {
 658       if (dest->is_single_xmm()) {
 659         if (c->is_zero_float()) {
 660           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 661         } else {
 662           __ movflt(dest->as_xmm_float_reg(),
 663                    InternalAddress(float_constant(c->as_jfloat())));
 664         }
 665       } else {
 666         assert(dest->is_single_fpu(), "must be");
 667         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 668         if (c->is_zero_float()) {
 669           __ fldz();
 670         } else if (c->is_one_float()) {
 671           __ fld1();
 672         } else {
 673           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 674         }
 675       }
 676       break;
 677     }
 678 
 679     case T_DOUBLE: {
 680       if (dest->is_double_xmm()) {
 681         if (c->is_zero_double()) {
 682           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 683         } else {
 684           __ movdbl(dest->as_xmm_double_reg(),
 685                     InternalAddress(double_constant(c->as_jdouble())));
 686         }
 687       } else {
 688         assert(dest->is_double_fpu(), "must be");
 689         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 690         if (c->is_zero_double()) {
 691           __ fldz();
 692         } else if (c->is_one_double()) {
 693           __ fld1();
 694         } else {
 695           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 696         }
 697       }
 698       break;
 699     }
 700 
 701     default:
 702       ShouldNotReachHere();
 703   }
 704 }
 705 
 706 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 707   assert(src->is_constant(), "should not call otherwise");
 708   assert(dest->is_stack(), "should not call otherwise");
 709   LIR_Const* c = src->as_constant_ptr();
 710 
 711   switch (c->type()) {
 712     case T_INT:  // fall through
 713     case T_FLOAT:
 714       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 715       break;
 716 
 717     case T_OBJECT:
 718       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 719       break;
 720 
 721     case T_LONG:  // fall through
 722     case T_DOUBLE:
 723 #ifdef _LP64
 724       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 725                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 726 #else
 727       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 728                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 729       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 730                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 731 #endif // _LP64
 732       break;
 733 
 734     default:
 735       ShouldNotReachHere();
 736   }
 737 }
 738 
 739 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
 740   assert(src->is_constant(), "should not call otherwise");
 741   assert(dest->is_address(), "should not call otherwise");
 742   LIR_Const* c = src->as_constant_ptr();
 743   LIR_Address* addr = dest->as_address_ptr();
 744 
 745   int null_check_here = code_offset();
 746   switch (type) {
 747     case T_INT:    // fall through
 748     case T_FLOAT:
 749       __ movl(as_Address(addr), c->as_jint_bits());
 750       break;
 751 
 752     case T_OBJECT:  // fall through
 753     case T_ARRAY:
 754       if (c->as_jobject() == NULL) {
 755         __ movptr(as_Address(addr), NULL_WORD);
 756       } else {
 757         if (is_literal_address(addr)) {
 758           ShouldNotReachHere();
 759           __ movoop(as_Address(addr, noreg), c->as_jobject());
 760         } else {
 761 #ifdef _LP64
 762           __ movoop(rscratch1, c->as_jobject());
 763           null_check_here = code_offset();
 764           __ movptr(as_Address_lo(addr), rscratch1);
 765 #else
 766           __ movoop(as_Address(addr), c->as_jobject());
 767 #endif
 768         }
 769       }
 770       break;
 771 
 772     case T_LONG:    // fall through
 773     case T_DOUBLE:
 774 #ifdef _LP64
 775       if (is_literal_address(addr)) {
 776         ShouldNotReachHere();
 777         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 778       } else {
 779         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 780         null_check_here = code_offset();
 781         __ movptr(as_Address_lo(addr), r10);
 782       }
 783 #else
 784       // Always reachable in 32bit so this doesn't produce useless move literal
 785       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 786       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 787 #endif // _LP64
 788       break;
 789 
 790     case T_BOOLEAN: // fall through
 791     case T_BYTE:
 792       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 793       break;
 794 
 795     case T_CHAR:    // fall through
 796     case T_SHORT:
 797       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 798       break;
 799 
 800     default:
 801       ShouldNotReachHere();
 802   };
 803 
 804   if (info != NULL) {
 805     add_debug_info_for_null_check(null_check_here, info);
 806   }
 807 }
 808 
 809 
 810 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 811   assert(src->is_register(), "should not call otherwise");
 812   assert(dest->is_register(), "should not call otherwise");
 813 
 814   // move between cpu-registers
 815   if (dest->is_single_cpu()) {
 816 #ifdef _LP64
 817     if (src->type() == T_LONG) {
 818       // Can do LONG -> OBJECT
 819       move_regs(src->as_register_lo(), dest->as_register());
 820       return;
 821     }
 822 #endif
 823     assert(src->is_single_cpu(), "must match");
 824     if (src->type() == T_OBJECT) {
 825       __ verify_oop(src->as_register());
 826     }
 827     move_regs(src->as_register(), dest->as_register());
 828 
 829   } else if (dest->is_double_cpu()) {
 830 #ifdef _LP64
 831     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
 832       // Surprising to me but we can see move of a long to t_object
 833       __ verify_oop(src->as_register());
 834       move_regs(src->as_register(), dest->as_register_lo());
 835       return;
 836     }
 837 #endif
 838     assert(src->is_double_cpu(), "must match");
 839     Register f_lo = src->as_register_lo();
 840     Register f_hi = src->as_register_hi();
 841     Register t_lo = dest->as_register_lo();
 842     Register t_hi = dest->as_register_hi();
 843 #ifdef _LP64
 844     assert(f_hi == f_lo, "must be same");
 845     assert(t_hi == t_lo, "must be same");
 846     move_regs(f_lo, t_lo);
 847 #else
 848     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 849 
 850 
 851     if (f_lo == t_hi && f_hi == t_lo) {
 852       swap_reg(f_lo, f_hi);
 853     } else if (f_hi == t_lo) {
 854       assert(f_lo != t_hi, "overwriting register");
 855       move_regs(f_hi, t_hi);
 856       move_regs(f_lo, t_lo);
 857     } else {
 858       assert(f_hi != t_lo, "overwriting register");
 859       move_regs(f_lo, t_lo);
 860       move_regs(f_hi, t_hi);
 861     }
 862 #endif // LP64
 863 
 864     // special moves from fpu-register to xmm-register
 865     // necessary for method results
 866   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 867     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 868     __ fld_s(Address(rsp, 0));
 869   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 870     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 871     __ fld_d(Address(rsp, 0));
 872   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 873     __ fstp_s(Address(rsp, 0));
 874     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 875   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 876     __ fstp_d(Address(rsp, 0));
 877     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 878 
 879     // move between xmm-registers
 880   } else if (dest->is_single_xmm()) {
 881     assert(src->is_single_xmm(), "must match");
 882     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 883   } else if (dest->is_double_xmm()) {
 884     assert(src->is_double_xmm(), "must match");
 885     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 886 
 887     // move between fpu-registers (no instruction necessary because of fpu-stack)
 888   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 889     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 890     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 891   } else {
 892     ShouldNotReachHere();
 893   }
 894 }
 895 
 896 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 897   assert(src->is_register(), "should not call otherwise");
 898   assert(dest->is_stack(), "should not call otherwise");
 899 
 900   if (src->is_single_cpu()) {
 901     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 902     if (type == T_OBJECT || type == T_ARRAY) {
 903       __ verify_oop(src->as_register());
 904       __ movptr (dst, src->as_register());
 905     } else {
 906       __ movl (dst, src->as_register());
 907     }
 908 
 909   } else if (src->is_double_cpu()) {
 910     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 911     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 912     __ movptr (dstLO, src->as_register_lo());
 913     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 914 
 915   } else if (src->is_single_xmm()) {
 916     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 917     __ movflt(dst_addr, src->as_xmm_float_reg());
 918 
 919   } else if (src->is_double_xmm()) {
 920     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 921     __ movdbl(dst_addr, src->as_xmm_double_reg());
 922 
 923   } else if (src->is_single_fpu()) {
 924     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 925     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 926     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 927     else                   __ fst_s  (dst_addr);
 928 
 929   } else if (src->is_double_fpu()) {
 930     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 931     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 932     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 933     else                   __ fst_d  (dst_addr);
 934 
 935   } else {
 936     ShouldNotReachHere();
 937   }
 938 }
 939 
 940 
 941 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) {
 942   LIR_Address* to_addr = dest->as_address_ptr();
 943   PatchingStub* patch = NULL;
 944 
 945   if (type == T_ARRAY || type == T_OBJECT) {
 946     __ verify_oop(src->as_register());
 947   }
 948   if (patch_code != lir_patch_none) {
 949     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 950     Address toa = as_Address(to_addr);
 951     assert(toa.disp() != 0, "must have");
 952   }
 953   if (info != NULL) {
 954     add_debug_info_for_null_check_here(info);
 955   }
 956 
 957   switch (type) {
 958     case T_FLOAT: {
 959       if (src->is_single_xmm()) {
 960         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 961       } else {
 962         assert(src->is_single_fpu(), "must be");
 963         assert(src->fpu_regnr() == 0, "argument must be on TOS");
 964         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
 965         else                    __ fst_s (as_Address(to_addr));
 966       }
 967       break;
 968     }
 969 
 970     case T_DOUBLE: {
 971       if (src->is_double_xmm()) {
 972         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
 973       } else {
 974         assert(src->is_double_fpu(), "must be");
 975         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 976         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
 977         else                    __ fst_d (as_Address(to_addr));
 978       }
 979       break;
 980     }
 981 
 982     case T_ADDRESS: // fall through
 983     case T_ARRAY:   // fall through
 984     case T_OBJECT:  // fall through
 985 #ifdef _LP64
 986       __ movptr(as_Address(to_addr), src->as_register());
 987       break;
 988 #endif // _LP64
 989     case T_INT:
 990       __ movl(as_Address(to_addr), src->as_register());
 991       break;
 992 
 993     case T_LONG: {
 994       Register from_lo = src->as_register_lo();
 995       Register from_hi = src->as_register_hi();
 996 #ifdef _LP64
 997       __ movptr(as_Address_lo(to_addr), from_lo);
 998 #else
 999       Register base = to_addr->base()->as_register();
1000       Register index = noreg;
1001       if (to_addr->index()->is_register()) {
1002         index = to_addr->index()->as_register();
1003       }
1004       if (base == from_lo || index == from_lo) {
1005         assert(base != from_hi, "can't be");
1006         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1007         __ movl(as_Address_hi(to_addr), from_hi);
1008         if (patch != NULL) {
1009           patching_epilog(patch, lir_patch_high, base, info);
1010           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1011           patch_code = lir_patch_low;
1012         }
1013         __ movl(as_Address_lo(to_addr), from_lo);
1014       } else {
1015         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1016         __ movl(as_Address_lo(to_addr), from_lo);
1017         if (patch != NULL) {
1018           patching_epilog(patch, lir_patch_low, base, info);
1019           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1020           patch_code = lir_patch_high;
1021         }
1022         __ movl(as_Address_hi(to_addr), from_hi);
1023       }
1024 #endif // _LP64
1025       break;
1026     }
1027 
1028     case T_BYTE:    // fall through
1029     case T_BOOLEAN: {
1030       Register src_reg = src->as_register();
1031       Address dst_addr = as_Address(to_addr);
1032       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1033       __ movb(dst_addr, src_reg);
1034       break;
1035     }
1036 
1037     case T_CHAR:    // fall through
1038     case T_SHORT:
1039       __ movw(as_Address(to_addr), src->as_register());
1040       break;
1041 
1042     default:
1043       ShouldNotReachHere();
1044   }
1045 
1046   if (patch_code != lir_patch_none) {
1047     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1048   }
1049 }
1050 
1051 
1052 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1053   assert(src->is_stack(), "should not call otherwise");
1054   assert(dest->is_register(), "should not call otherwise");
1055 
1056   if (dest->is_single_cpu()) {
1057     if (type == T_ARRAY || type == T_OBJECT) {
1058       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1059       __ verify_oop(dest->as_register());
1060     } else {
1061       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1062     }
1063 
1064   } else if (dest->is_double_cpu()) {
1065     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1066     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1067     __ movptr(dest->as_register_lo(), src_addr_LO);
1068     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1069 
1070   } else if (dest->is_single_xmm()) {
1071     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1072     __ movflt(dest->as_xmm_float_reg(), src_addr);
1073 
1074   } else if (dest->is_double_xmm()) {
1075     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1076     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1077 
1078   } else if (dest->is_single_fpu()) {
1079     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1080     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1081     __ fld_s(src_addr);
1082 
1083   } else if (dest->is_double_fpu()) {
1084     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1085     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1086     __ fld_d(src_addr);
1087 
1088   } else {
1089     ShouldNotReachHere();
1090   }
1091 }
1092 
1093 
1094 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1095   if (src->is_single_stack()) {
1096     if (type == T_OBJECT || type == T_ARRAY) {
1097       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1098       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1099     } else {
1100 #ifndef _LP64
1101       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1102       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1103 #else
1104       //no pushl on 64bits
1105       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1106       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1107 #endif
1108     }
1109 
1110   } else if (src->is_double_stack()) {
1111 #ifdef _LP64
1112     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1113     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1114 #else
1115     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1116     // push and pop the part at src + wordSize, adding wordSize for the previous push
1117     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1118     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1119     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1120 #endif // _LP64
1121 
1122   } else {
1123     ShouldNotReachHere();
1124   }
1125 }
1126 
1127 
1128 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) {
1129   assert(src->is_address(), "should not call otherwise");
1130   assert(dest->is_register(), "should not call otherwise");
1131 
1132   LIR_Address* addr = src->as_address_ptr();
1133   Address from_addr = as_Address(addr);
1134 
1135   switch (type) {
1136     case T_BOOLEAN: // fall through
1137     case T_BYTE:    // fall through
1138     case T_CHAR:    // fall through
1139     case T_SHORT:
1140       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1141         // on pre P6 processors we may get partial register stalls
1142         // so blow away the value of to_rinfo before loading a
1143         // partial word into it.  Do it here so that it precedes
1144         // the potential patch point below.
1145         __ xorptr(dest->as_register(), dest->as_register());
1146       }
1147       break;
1148   }
1149 
1150   PatchingStub* patch = NULL;
1151   if (patch_code != lir_patch_none) {
1152     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1153     assert(from_addr.disp() != 0, "must have");
1154   }
1155   if (info != NULL) {
1156     add_debug_info_for_null_check_here(info);
1157   }
1158 
1159   switch (type) {
1160     case T_FLOAT: {
1161       if (dest->is_single_xmm()) {
1162         __ movflt(dest->as_xmm_float_reg(), from_addr);
1163       } else {
1164         assert(dest->is_single_fpu(), "must be");
1165         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1166         __ fld_s(from_addr);
1167       }
1168       break;
1169     }
1170 
1171     case T_DOUBLE: {
1172       if (dest->is_double_xmm()) {
1173         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1174       } else {
1175         assert(dest->is_double_fpu(), "must be");
1176         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1177         __ fld_d(from_addr);
1178       }
1179       break;
1180     }
1181 
1182     case T_ADDRESS: // fall through
1183     case T_OBJECT:  // fall through
1184     case T_ARRAY:   // fall through
1185 #ifdef _LP64
1186       __ movptr(dest->as_register(), from_addr);
1187       break;
1188 #endif // _L64
1189     case T_INT:
1190       // %%% could this be a movl? this is safer but longer instruction
1191       __ movl2ptr(dest->as_register(), from_addr);
1192       break;
1193 
1194     case T_LONG: {
1195       Register to_lo = dest->as_register_lo();
1196       Register to_hi = dest->as_register_hi();
1197 #ifdef _LP64
1198       __ movptr(to_lo, as_Address_lo(addr));
1199 #else
1200       Register base = addr->base()->as_register();
1201       Register index = noreg;
1202       if (addr->index()->is_register()) {
1203         index = addr->index()->as_register();
1204       }
1205       if ((base == to_lo && index == to_hi) ||
1206           (base == to_hi && index == to_lo)) {
1207         // addresses with 2 registers are only formed as a result of
1208         // array access so this code will never have to deal with
1209         // patches or null checks.
1210         assert(info == NULL && patch == NULL, "must be");
1211         __ lea(to_hi, as_Address(addr));
1212         __ movl(to_lo, Address(to_hi, 0));
1213         __ movl(to_hi, Address(to_hi, BytesPerWord));
1214       } else if (base == to_lo || index == to_lo) {
1215         assert(base != to_hi, "can't be");
1216         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1217         __ movl(to_hi, as_Address_hi(addr));
1218         if (patch != NULL) {
1219           patching_epilog(patch, lir_patch_high, base, info);
1220           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1221           patch_code = lir_patch_low;
1222         }
1223         __ movl(to_lo, as_Address_lo(addr));
1224       } else {
1225         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1226         __ movl(to_lo, as_Address_lo(addr));
1227         if (patch != NULL) {
1228           patching_epilog(patch, lir_patch_low, base, info);
1229           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1230           patch_code = lir_patch_high;
1231         }
1232         __ movl(to_hi, as_Address_hi(addr));
1233       }
1234 #endif // _LP64
1235       break;
1236     }
1237 
1238     case T_BOOLEAN: // fall through
1239     case T_BYTE: {
1240       Register dest_reg = dest->as_register();
1241       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1242       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1243         __ movsbl(dest_reg, from_addr);
1244       } else {
1245         __ movb(dest_reg, from_addr);
1246         __ shll(dest_reg, 24);
1247         __ sarl(dest_reg, 24);
1248       }
1249       // These are unsigned so the zero extension on 64bit is just what we need
1250       break;
1251     }
1252 
1253     case T_CHAR: {
1254       Register dest_reg = dest->as_register();
1255       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1256       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1257         __ movzwl(dest_reg, from_addr);
1258       } else {
1259         __ movw(dest_reg, from_addr);
1260       }
1261       // This is unsigned so the zero extension on 64bit is just what we need
1262       // __ movl2ptr(dest_reg, dest_reg);
1263       break;
1264     }
1265 
1266     case T_SHORT: {
1267       Register dest_reg = dest->as_register();
1268       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1269         __ movswl(dest_reg, from_addr);
1270       } else {
1271         __ movw(dest_reg, from_addr);
1272         __ shll(dest_reg, 16);
1273         __ sarl(dest_reg, 16);
1274       }
1275       // Might not be needed in 64bit but certainly doesn't hurt (except for code size)
1276       __ movl2ptr(dest_reg, dest_reg);
1277       break;
1278     }
1279 
1280     default:
1281       ShouldNotReachHere();
1282   }
1283 
1284   if (patch != NULL) {
1285     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1286   }
1287 
1288   if (type == T_ARRAY || type == T_OBJECT) {
1289     __ verify_oop(dest->as_register());
1290   }
1291 }
1292 
1293 
1294 void LIR_Assembler::prefetchr(LIR_Opr src) {
1295   LIR_Address* addr = src->as_address_ptr();
1296   Address from_addr = as_Address(addr);
1297 
1298   if (VM_Version::supports_sse()) {
1299     switch (ReadPrefetchInstr) {
1300       case 0:
1301         __ prefetchnta(from_addr); break;
1302       case 1:
1303         __ prefetcht0(from_addr); break;
1304       case 2:
1305         __ prefetcht2(from_addr); break;
1306       default:
1307         ShouldNotReachHere(); break;
1308     }
1309   } else if (VM_Version::supports_3dnow()) {
1310     __ prefetchr(from_addr);
1311   }
1312 }
1313 
1314 
1315 void LIR_Assembler::prefetchw(LIR_Opr src) {
1316   LIR_Address* addr = src->as_address_ptr();
1317   Address from_addr = as_Address(addr);
1318 
1319   if (VM_Version::supports_sse()) {
1320     switch (AllocatePrefetchInstr) {
1321       case 0:
1322         __ prefetchnta(from_addr); break;
1323       case 1:
1324         __ prefetcht0(from_addr); break;
1325       case 2:
1326         __ prefetcht2(from_addr); break;
1327       case 3:
1328         __ prefetchw(from_addr); break;
1329       default:
1330         ShouldNotReachHere(); break;
1331     }
1332   } else if (VM_Version::supports_3dnow()) {
1333     __ prefetchw(from_addr);
1334   }
1335 }
1336 
1337 
1338 NEEDS_CLEANUP; // This could be static?
1339 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1340   int elem_size = type2aelembytes(type);
1341   switch (elem_size) {
1342     case 1: return Address::times_1;
1343     case 2: return Address::times_2;
1344     case 4: return Address::times_4;
1345     case 8: return Address::times_8;
1346   }
1347   ShouldNotReachHere();
1348   return Address::no_scale;
1349 }
1350 
1351 
1352 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1353   switch (op->code()) {
1354     case lir_idiv:
1355     case lir_irem:
1356       arithmetic_idiv(op->code(),
1357                       op->in_opr1(),
1358                       op->in_opr2(),
1359                       op->in_opr3(),
1360                       op->result_opr(),
1361                       op->info());
1362       break;
1363     default:      ShouldNotReachHere(); break;
1364   }
1365 }
1366 
1367 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1368 #ifdef ASSERT
1369   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1370   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1371   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1372 #endif
1373 
1374   if (op->cond() == lir_cond_always) {
1375     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1376     __ jmp (*(op->label()));
1377   } else {
1378     Assembler::Condition acond = Assembler::zero;
1379     if (op->code() == lir_cond_float_branch) {
1380       assert(op->ublock() != NULL, "must have unordered successor");
1381       __ jcc(Assembler::parity, *(op->ublock()->label()));
1382       switch(op->cond()) {
1383         case lir_cond_equal:        acond = Assembler::equal;      break;
1384         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1385         case lir_cond_less:         acond = Assembler::below;      break;
1386         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1387         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1388         case lir_cond_greater:      acond = Assembler::above;      break;
1389         default:                         ShouldNotReachHere();
1390       }
1391     } else {
1392       switch (op->cond()) {
1393         case lir_cond_equal:        acond = Assembler::equal;       break;
1394         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1395         case lir_cond_less:         acond = Assembler::less;        break;
1396         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1397         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1398         case lir_cond_greater:      acond = Assembler::greater;     break;
1399         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1400         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1401         default:                         ShouldNotReachHere();
1402       }
1403     }
1404     __ jcc(acond,*(op->label()));
1405   }
1406 }
1407 
1408 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1409   LIR_Opr src  = op->in_opr();
1410   LIR_Opr dest = op->result_opr();
1411 
1412   switch (op->bytecode()) {
1413     case Bytecodes::_i2l:
1414 #ifdef _LP64
1415       __ movl2ptr(dest->as_register_lo(), src->as_register());
1416 #else
1417       move_regs(src->as_register(), dest->as_register_lo());
1418       move_regs(src->as_register(), dest->as_register_hi());
1419       __ sarl(dest->as_register_hi(), 31);
1420 #endif // LP64
1421       break;
1422 
1423     case Bytecodes::_l2i:
1424       move_regs(src->as_register_lo(), dest->as_register());
1425       break;
1426 
1427     case Bytecodes::_i2b:
1428       move_regs(src->as_register(), dest->as_register());
1429       __ sign_extend_byte(dest->as_register());
1430       break;
1431 
1432     case Bytecodes::_i2c:
1433       move_regs(src->as_register(), dest->as_register());
1434       __ andl(dest->as_register(), 0xFFFF);
1435       break;
1436 
1437     case Bytecodes::_i2s:
1438       move_regs(src->as_register(), dest->as_register());
1439       __ sign_extend_short(dest->as_register());
1440       break;
1441 
1442 
1443     case Bytecodes::_f2d:
1444     case Bytecodes::_d2f:
1445       if (dest->is_single_xmm()) {
1446         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1447       } else if (dest->is_double_xmm()) {
1448         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1449       } else {
1450         assert(src->fpu() == dest->fpu(), "register must be equal");
1451         // do nothing (float result is rounded later through spilling)
1452       }
1453       break;
1454 
1455     case Bytecodes::_i2f:
1456     case Bytecodes::_i2d:
1457       if (dest->is_single_xmm()) {
1458         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1459       } else if (dest->is_double_xmm()) {
1460         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1461       } else {
1462         assert(dest->fpu() == 0, "result must be on TOS");
1463         __ movl(Address(rsp, 0), src->as_register());
1464         __ fild_s(Address(rsp, 0));
1465       }
1466       break;
1467 
1468     case Bytecodes::_f2i:
1469     case Bytecodes::_d2i:
1470       if (src->is_single_xmm()) {
1471         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1472       } else if (src->is_double_xmm()) {
1473         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1474       } else {
1475         assert(src->fpu() == 0, "input must be on TOS");
1476         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1477         __ fist_s(Address(rsp, 0));
1478         __ movl(dest->as_register(), Address(rsp, 0));
1479         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1480       }
1481 
1482       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1483       assert(op->stub() != NULL, "stub required");
1484       __ cmpl(dest->as_register(), 0x80000000);
1485       __ jcc(Assembler::equal, *op->stub()->entry());
1486       __ bind(*op->stub()->continuation());
1487       break;
1488 
1489     case Bytecodes::_l2f:
1490     case Bytecodes::_l2d:
1491       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1492       assert(dest->fpu() == 0, "result must be on TOS");
1493 
1494       __ movptr(Address(rsp, 0),            src->as_register_lo());
1495       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1496       __ fild_d(Address(rsp, 0));
1497       // float result is rounded later through spilling
1498       break;
1499 
1500     case Bytecodes::_f2l:
1501     case Bytecodes::_d2l:
1502       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1503       assert(src->fpu() == 0, "input must be on TOS");
1504       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1505 
1506       // instruction sequence too long to inline it here
1507       {
1508         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1509       }
1510       break;
1511 
1512     default: ShouldNotReachHere();
1513   }
1514 }
1515 
1516 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1517   if (op->init_check()) {
1518     __ cmpl(Address(op->klass()->as_register(),
1519                     instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
1520             instanceKlass::fully_initialized);
1521     add_debug_info_for_null_check_here(op->stub()->info());
1522     __ jcc(Assembler::notEqual, *op->stub()->entry());
1523   }
1524   __ allocate_object(op->obj()->as_register(),
1525                      op->tmp1()->as_register(),
1526                      op->tmp2()->as_register(),
1527                      op->header_size(),
1528                      op->object_size(),
1529                      op->klass()->as_register(),
1530                      *op->stub()->entry());
1531   __ bind(*op->stub()->continuation());
1532 }
1533 
1534 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1535   if (UseSlowPath ||
1536       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1537       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1538     __ jmp(*op->stub()->entry());
1539   } else {
1540     Register len =  op->len()->as_register();
1541     Register tmp1 = op->tmp1()->as_register();
1542     Register tmp2 = op->tmp2()->as_register();
1543     Register tmp3 = op->tmp3()->as_register();
1544     if (len == tmp1) {
1545       tmp1 = tmp3;
1546     } else if (len == tmp2) {
1547       tmp2 = tmp3;
1548     } else if (len == tmp3) {
1549       // everything is ok
1550     } else {
1551       __ mov(tmp3, len);
1552     }
1553     __ allocate_array(op->obj()->as_register(),
1554                       len,
1555                       tmp1,
1556                       tmp2,
1557                       arrayOopDesc::header_size(op->type()),
1558                       array_element_size(op->type()),
1559                       op->klass()->as_register(),
1560                       *op->stub()->entry());
1561   }
1562   __ bind(*op->stub()->continuation());
1563 }
1564 
1565 
1566 
1567 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1568   LIR_Code code = op->code();
1569   if (code == lir_store_check) {
1570     Register value = op->object()->as_register();
1571     Register array = op->array()->as_register();
1572     Register k_RInfo = op->tmp1()->as_register();
1573     Register klass_RInfo = op->tmp2()->as_register();
1574     Register Rtmp1 = op->tmp3()->as_register();
1575 
1576     CodeStub* stub = op->stub();
1577     Label done;
1578     __ cmpptr(value, (int32_t)NULL_WORD);
1579     __ jcc(Assembler::equal, done);
1580     add_debug_info_for_null_check_here(op->info_for_exception());
1581     __ movptr(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes()));
1582     __ movptr(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes()));
1583 
1584     // get instance klass
1585     __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
1586     // perform the fast part of the checking logic
1587     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
1588     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1589     __ push(klass_RInfo);
1590     __ push(k_RInfo);
1591     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1592     __ pop(klass_RInfo);
1593     __ pop(k_RInfo);
1594     // result is a boolean
1595     __ cmpl(k_RInfo, 0);
1596     __ jcc(Assembler::equal, *stub->entry());
1597     __ bind(done);
1598   } else if (op->code() == lir_checkcast) {
1599     // we always need a stub for the failure case.
1600     CodeStub* stub = op->stub();
1601     Register obj = op->object()->as_register();
1602     Register k_RInfo = op->tmp1()->as_register();
1603     Register klass_RInfo = op->tmp2()->as_register();
1604     Register dst = op->result_opr()->as_register();
1605     ciKlass* k = op->klass();
1606     Register Rtmp1 = noreg;
1607 
1608     Label done;
1609     if (obj == k_RInfo) {
1610       k_RInfo = dst;
1611     } else if (obj == klass_RInfo) {
1612       klass_RInfo = dst;
1613     }
1614     if (k->is_loaded()) {
1615       select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1616     } else {
1617       Rtmp1 = op->tmp3()->as_register();
1618       select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1619     }
1620 
1621     assert_different_registers(obj, k_RInfo, klass_RInfo);
1622     if (!k->is_loaded()) {
1623       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
1624     } else {
1625 #ifdef _LP64
1626       __ movoop(k_RInfo, k->constant_encoding());
1627 #else
1628       k_RInfo = noreg;
1629 #endif // _LP64
1630     }
1631     assert(obj != k_RInfo, "must be different");
1632     __ cmpptr(obj, (int32_t)NULL_WORD);
1633     if (op->profiled_method() != NULL) {
1634       ciMethod* method = op->profiled_method();
1635       int bci          = op->profiled_bci();
1636 
1637       Label profile_done;
1638       __ jcc(Assembler::notEqual, profile_done);
1639       // Object is null; update methodDataOop
1640       ciMethodData* md = method->method_data();
1641       if (md == NULL) {
1642         bailout("out of memory building methodDataOop");
1643         return;
1644       }
1645       ciProfileData* data = md->bci_to_data(bci);
1646       assert(data != NULL,       "need data for checkcast");
1647       assert(data->is_BitData(), "need BitData for checkcast");
1648       Register mdo  = klass_RInfo;
1649       __ movoop(mdo, md->constant_encoding());
1650       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1651       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1652       __ orl(data_addr, header_bits);
1653       __ jmp(done);
1654       __ bind(profile_done);
1655     } else {
1656       __ jcc(Assembler::equal, done);
1657     }
1658     __ verify_oop(obj);
1659 
1660     if (op->fast_check()) {
1661       // get object classo
1662       // not a safepoint as obj null check happens earlier
1663       if (k->is_loaded()) {
1664 #ifdef _LP64
1665         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1666 #else
1667         __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1668 #endif // _LP64
1669       } else {
1670         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1671 
1672       }
1673       __ jcc(Assembler::notEqual, *stub->entry());
1674       __ bind(done);
1675     } else {
1676       // get object class
1677       // not a safepoint as obj null check happens earlier
1678       __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1679       if (k->is_loaded()) {
1680         // See if we get an immediate positive hit
1681 #ifdef _LP64
1682         __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1683 #else
1684         __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1685 #endif // _LP64
1686         if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
1687           __ jcc(Assembler::notEqual, *stub->entry());
1688         } else {
1689           // See if we get an immediate positive hit
1690           __ jcc(Assembler::equal, done);
1691           // check for self
1692 #ifdef _LP64
1693           __ cmpptr(klass_RInfo, k_RInfo);
1694 #else
1695           __ cmpoop(klass_RInfo, k->constant_encoding());
1696 #endif // _LP64
1697           __ jcc(Assembler::equal, done);
1698 
1699           __ push(klass_RInfo);
1700 #ifdef _LP64
1701           __ push(k_RInfo);
1702 #else
1703           __ pushoop(k->constant_encoding());
1704 #endif // _LP64
1705           __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1706           __ pop(klass_RInfo);
1707           __ pop(klass_RInfo);
1708           // result is a boolean
1709           __ cmpl(klass_RInfo, 0);
1710           __ jcc(Assembler::equal, *stub->entry());
1711         }
1712         __ bind(done);
1713       } else {
1714         // perform the fast part of the checking logic
1715         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
1716         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1717         __ push(klass_RInfo);
1718         __ push(k_RInfo);
1719         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1720         __ pop(klass_RInfo);
1721         __ pop(k_RInfo);
1722         // result is a boolean
1723         __ cmpl(k_RInfo, 0);
1724         __ jcc(Assembler::equal, *stub->entry());
1725         __ bind(done);
1726       }
1727 
1728     }
1729     if (dst != obj) {
1730       __ mov(dst, obj);
1731     }
1732   } else if (code == lir_instanceof) {
1733     Register obj = op->object()->as_register();
1734     Register k_RInfo = op->tmp1()->as_register();
1735     Register klass_RInfo = op->tmp2()->as_register();
1736     Register dst = op->result_opr()->as_register();
1737     ciKlass* k = op->klass();
1738 
1739     Label done;
1740     Label zero;
1741     Label one;
1742     if (obj == k_RInfo) {
1743       k_RInfo = klass_RInfo;
1744       klass_RInfo = obj;
1745     }
1746     // patching may screw with our temporaries on sparc,
1747     // so let's do it before loading the class
1748     if (!k->is_loaded()) {
1749       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
1750     } else {
1751       LP64_ONLY(__ movoop(k_RInfo, k->constant_encoding()));
1752     }
1753     assert(obj != k_RInfo, "must be different");
1754 
1755     __ verify_oop(obj);
1756     if (op->fast_check()) {
1757       __ cmpptr(obj, (int32_t)NULL_WORD);
1758       __ jcc(Assembler::equal, zero);
1759       // get object class
1760       // not a safepoint as obj null check happens earlier
1761       if (LP64_ONLY(false &&) k->is_loaded()) {
1762         NOT_LP64(__ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding()));
1763         k_RInfo = noreg;
1764       } else {
1765         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1766 
1767       }
1768       __ jcc(Assembler::equal, one);
1769     } else {
1770       // get object class
1771       // not a safepoint as obj null check happens earlier
1772       __ cmpptr(obj, (int32_t)NULL_WORD);
1773       __ jcc(Assembler::equal, zero);
1774       __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1775 
1776 #ifndef _LP64
1777       if (k->is_loaded()) {
1778         // See if we get an immediate positive hit
1779         __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1780         __ jcc(Assembler::equal, one);
1781         if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() == k->super_check_offset()) {
1782           // check for self
1783           __ cmpoop(klass_RInfo, k->constant_encoding());
1784           __ jcc(Assembler::equal, one);
1785           __ push(klass_RInfo);
1786           __ pushoop(k->constant_encoding());
1787           __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1788           __ pop(klass_RInfo);
1789           __ pop(dst);
1790           __ jmp(done);
1791         }
1792       }
1793         else // next block is unconditional if LP64:
1794 #endif // LP64
1795       {
1796         assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
1797 
1798         // perform the fast part of the checking logic
1799         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, dst, &one, &zero, NULL);
1800         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1801         __ push(klass_RInfo);
1802         __ push(k_RInfo);
1803         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1804         __ pop(klass_RInfo);
1805         __ pop(dst);
1806         __ jmp(done);
1807       }
1808     }
1809     __ bind(zero);
1810     __ xorptr(dst, dst);
1811     __ jmp(done);
1812     __ bind(one);
1813     __ movptr(dst, 1);
1814     __ bind(done);
1815   } else {
1816     ShouldNotReachHere();
1817   }
1818 
1819 }
1820 
1821 
1822 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1823   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1824     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1825     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1826     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1827     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1828     Register addr = op->addr()->as_register();
1829     if (os::is_MP()) {
1830       __ lock();
1831     }
1832     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1833 
1834   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1835     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1836     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1837     Register newval = op->new_value()->as_register();
1838     Register cmpval = op->cmp_value()->as_register();
1839     assert(cmpval == rax, "wrong register");
1840     assert(newval != NULL, "new val must be register");
1841     assert(cmpval != newval, "cmp and new values must be in different registers");
1842     assert(cmpval != addr, "cmp and addr must be in different registers");
1843     assert(newval != addr, "new value and addr must be in different registers");
1844     if (os::is_MP()) {
1845       __ lock();
1846     }
1847     if ( op->code() == lir_cas_obj) {
1848       __ cmpxchgptr(newval, Address(addr, 0));
1849     } else if (op->code() == lir_cas_int) {
1850       __ cmpxchgl(newval, Address(addr, 0));
1851     } else {
1852       LP64_ONLY(__ cmpxchgq(newval, Address(addr, 0)));
1853     }
1854 #ifdef _LP64
1855   } else if (op->code() == lir_cas_long) {
1856     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1857     Register newval = op->new_value()->as_register_lo();
1858     Register cmpval = op->cmp_value()->as_register_lo();
1859     assert(cmpval == rax, "wrong register");
1860     assert(newval != NULL, "new val must be register");
1861     assert(cmpval != newval, "cmp and new values must be in different registers");
1862     assert(cmpval != addr, "cmp and addr must be in different registers");
1863     assert(newval != addr, "new value and addr must be in different registers");
1864     if (os::is_MP()) {
1865       __ lock();
1866     }
1867     __ cmpxchgq(newval, Address(addr, 0));
1868 #endif // _LP64
1869   } else {
1870     Unimplemented();
1871   }
1872 }
1873 
1874 
1875 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
1876   Assembler::Condition acond, ncond;
1877   switch (condition) {
1878     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1879     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1880     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1881     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1882     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1883     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1884     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1885     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1886     default:                    ShouldNotReachHere();
1887   }
1888 
1889   if (opr1->is_cpu_register()) {
1890     reg2reg(opr1, result);
1891   } else if (opr1->is_stack()) {
1892     stack2reg(opr1, result, result->type());
1893   } else if (opr1->is_constant()) {
1894     const2reg(opr1, result, lir_patch_none, NULL);
1895   } else {
1896     ShouldNotReachHere();
1897   }
1898 
1899   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
1900     // optimized version that does not require a branch
1901     if (opr2->is_single_cpu()) {
1902       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
1903       __ cmov(ncond, result->as_register(), opr2->as_register());
1904     } else if (opr2->is_double_cpu()) {
1905       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1906       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1907       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
1908       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
1909     } else if (opr2->is_single_stack()) {
1910       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
1911     } else if (opr2->is_double_stack()) {
1912       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
1913       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
1914     } else {
1915       ShouldNotReachHere();
1916     }
1917 
1918   } else {
1919     Label skip;
1920     __ jcc (acond, skip);
1921     if (opr2->is_cpu_register()) {
1922       reg2reg(opr2, result);
1923     } else if (opr2->is_stack()) {
1924       stack2reg(opr2, result, result->type());
1925     } else if (opr2->is_constant()) {
1926       const2reg(opr2, result, lir_patch_none, NULL);
1927     } else {
1928       ShouldNotReachHere();
1929     }
1930     __ bind(skip);
1931   }
1932 }
1933 
1934 
1935 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1936   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1937 
1938   if (left->is_single_cpu()) {
1939     assert(left == dest, "left and dest must be equal");
1940     Register lreg = left->as_register();
1941 
1942     if (right->is_single_cpu()) {
1943       // cpu register - cpu register
1944       Register rreg = right->as_register();
1945       switch (code) {
1946         case lir_add: __ addl (lreg, rreg); break;
1947         case lir_sub: __ subl (lreg, rreg); break;
1948         case lir_mul: __ imull(lreg, rreg); break;
1949         default:      ShouldNotReachHere();
1950       }
1951 
1952     } else if (right->is_stack()) {
1953       // cpu register - stack
1954       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
1955       switch (code) {
1956         case lir_add: __ addl(lreg, raddr); break;
1957         case lir_sub: __ subl(lreg, raddr); break;
1958         default:      ShouldNotReachHere();
1959       }
1960 
1961     } else if (right->is_constant()) {
1962       // cpu register - constant
1963       jint c = right->as_constant_ptr()->as_jint();
1964       switch (code) {
1965         case lir_add: {
1966           __ increment(lreg, c);
1967           break;
1968         }
1969         case lir_sub: {
1970           __ decrement(lreg, c);
1971           break;
1972         }
1973         default: ShouldNotReachHere();
1974       }
1975 
1976     } else {
1977       ShouldNotReachHere();
1978     }
1979 
1980   } else if (left->is_double_cpu()) {
1981     assert(left == dest, "left and dest must be equal");
1982     Register lreg_lo = left->as_register_lo();
1983     Register lreg_hi = left->as_register_hi();
1984 
1985     if (right->is_double_cpu()) {
1986       // cpu register - cpu register
1987       Register rreg_lo = right->as_register_lo();
1988       Register rreg_hi = right->as_register_hi();
1989       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
1990       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
1991       switch (code) {
1992         case lir_add:
1993           __ addptr(lreg_lo, rreg_lo);
1994           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
1995           break;
1996         case lir_sub:
1997           __ subptr(lreg_lo, rreg_lo);
1998           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
1999           break;
2000         case lir_mul:
2001 #ifdef _LP64
2002           __ imulq(lreg_lo, rreg_lo);
2003 #else
2004           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2005           __ imull(lreg_hi, rreg_lo);
2006           __ imull(rreg_hi, lreg_lo);
2007           __ addl (rreg_hi, lreg_hi);
2008           __ mull (rreg_lo);
2009           __ addl (lreg_hi, rreg_hi);
2010 #endif // _LP64
2011           break;
2012         default:
2013           ShouldNotReachHere();
2014       }
2015 
2016     } else if (right->is_constant()) {
2017       // cpu register - constant
2018 #ifdef _LP64
2019       jlong c = right->as_constant_ptr()->as_jlong_bits();
2020       __ movptr(r10, (intptr_t) c);
2021       switch (code) {
2022         case lir_add:
2023           __ addptr(lreg_lo, r10);
2024           break;
2025         case lir_sub:
2026           __ subptr(lreg_lo, r10);
2027           break;
2028         default:
2029           ShouldNotReachHere();
2030       }
2031 #else
2032       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2033       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2034       switch (code) {
2035         case lir_add:
2036           __ addptr(lreg_lo, c_lo);
2037           __ adcl(lreg_hi, c_hi);
2038           break;
2039         case lir_sub:
2040           __ subptr(lreg_lo, c_lo);
2041           __ sbbl(lreg_hi, c_hi);
2042           break;
2043         default:
2044           ShouldNotReachHere();
2045       }
2046 #endif // _LP64
2047 
2048     } else {
2049       ShouldNotReachHere();
2050     }
2051 
2052   } else if (left->is_single_xmm()) {
2053     assert(left == dest, "left and dest must be equal");
2054     XMMRegister lreg = left->as_xmm_float_reg();
2055 
2056     if (right->is_single_xmm()) {
2057       XMMRegister rreg = right->as_xmm_float_reg();
2058       switch (code) {
2059         case lir_add: __ addss(lreg, rreg);  break;
2060         case lir_sub: __ subss(lreg, rreg);  break;
2061         case lir_mul_strictfp: // fall through
2062         case lir_mul: __ mulss(lreg, rreg);  break;
2063         case lir_div_strictfp: // fall through
2064         case lir_div: __ divss(lreg, rreg);  break;
2065         default: ShouldNotReachHere();
2066       }
2067     } else {
2068       Address raddr;
2069       if (right->is_single_stack()) {
2070         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2071       } else if (right->is_constant()) {
2072         // hack for now
2073         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2074       } else {
2075         ShouldNotReachHere();
2076       }
2077       switch (code) {
2078         case lir_add: __ addss(lreg, raddr);  break;
2079         case lir_sub: __ subss(lreg, raddr);  break;
2080         case lir_mul_strictfp: // fall through
2081         case lir_mul: __ mulss(lreg, raddr);  break;
2082         case lir_div_strictfp: // fall through
2083         case lir_div: __ divss(lreg, raddr);  break;
2084         default: ShouldNotReachHere();
2085       }
2086     }
2087 
2088   } else if (left->is_double_xmm()) {
2089     assert(left == dest, "left and dest must be equal");
2090 
2091     XMMRegister lreg = left->as_xmm_double_reg();
2092     if (right->is_double_xmm()) {
2093       XMMRegister rreg = right->as_xmm_double_reg();
2094       switch (code) {
2095         case lir_add: __ addsd(lreg, rreg);  break;
2096         case lir_sub: __ subsd(lreg, rreg);  break;
2097         case lir_mul_strictfp: // fall through
2098         case lir_mul: __ mulsd(lreg, rreg);  break;
2099         case lir_div_strictfp: // fall through
2100         case lir_div: __ divsd(lreg, rreg);  break;
2101         default: ShouldNotReachHere();
2102       }
2103     } else {
2104       Address raddr;
2105       if (right->is_double_stack()) {
2106         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2107       } else if (right->is_constant()) {
2108         // hack for now
2109         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2110       } else {
2111         ShouldNotReachHere();
2112       }
2113       switch (code) {
2114         case lir_add: __ addsd(lreg, raddr);  break;
2115         case lir_sub: __ subsd(lreg, raddr);  break;
2116         case lir_mul_strictfp: // fall through
2117         case lir_mul: __ mulsd(lreg, raddr);  break;
2118         case lir_div_strictfp: // fall through
2119         case lir_div: __ divsd(lreg, raddr);  break;
2120         default: ShouldNotReachHere();
2121       }
2122     }
2123 
2124   } else if (left->is_single_fpu()) {
2125     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2126 
2127     if (right->is_single_fpu()) {
2128       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2129 
2130     } else {
2131       assert(left->fpu_regnr() == 0, "left must be on TOS");
2132       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2133 
2134       Address raddr;
2135       if (right->is_single_stack()) {
2136         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2137       } else if (right->is_constant()) {
2138         address const_addr = float_constant(right->as_jfloat());
2139         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2140         // hack for now
2141         raddr = __ as_Address(InternalAddress(const_addr));
2142       } else {
2143         ShouldNotReachHere();
2144       }
2145 
2146       switch (code) {
2147         case lir_add: __ fadd_s(raddr); break;
2148         case lir_sub: __ fsub_s(raddr); break;
2149         case lir_mul_strictfp: // fall through
2150         case lir_mul: __ fmul_s(raddr); break;
2151         case lir_div_strictfp: // fall through
2152         case lir_div: __ fdiv_s(raddr); break;
2153         default:      ShouldNotReachHere();
2154       }
2155     }
2156 
2157   } else if (left->is_double_fpu()) {
2158     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2159 
2160     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2161       // Double values require special handling for strictfp mul/div on x86
2162       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2163       __ fmulp(left->fpu_regnrLo() + 1);
2164     }
2165 
2166     if (right->is_double_fpu()) {
2167       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2168 
2169     } else {
2170       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2171       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2172 
2173       Address raddr;
2174       if (right->is_double_stack()) {
2175         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2176       } else if (right->is_constant()) {
2177         // hack for now
2178         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2179       } else {
2180         ShouldNotReachHere();
2181       }
2182 
2183       switch (code) {
2184         case lir_add: __ fadd_d(raddr); break;
2185         case lir_sub: __ fsub_d(raddr); break;
2186         case lir_mul_strictfp: // fall through
2187         case lir_mul: __ fmul_d(raddr); break;
2188         case lir_div_strictfp: // fall through
2189         case lir_div: __ fdiv_d(raddr); break;
2190         default: ShouldNotReachHere();
2191       }
2192     }
2193 
2194     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2195       // Double values require special handling for strictfp mul/div on x86
2196       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2197       __ fmulp(dest->fpu_regnrLo() + 1);
2198     }
2199 
2200   } else if (left->is_single_stack() || left->is_address()) {
2201     assert(left == dest, "left and dest must be equal");
2202 
2203     Address laddr;
2204     if (left->is_single_stack()) {
2205       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2206     } else if (left->is_address()) {
2207       laddr = as_Address(left->as_address_ptr());
2208     } else {
2209       ShouldNotReachHere();
2210     }
2211 
2212     if (right->is_single_cpu()) {
2213       Register rreg = right->as_register();
2214       switch (code) {
2215         case lir_add: __ addl(laddr, rreg); break;
2216         case lir_sub: __ subl(laddr, rreg); break;
2217         default:      ShouldNotReachHere();
2218       }
2219     } else if (right->is_constant()) {
2220       jint c = right->as_constant_ptr()->as_jint();
2221       switch (code) {
2222         case lir_add: {
2223           __ incrementl(laddr, c);
2224           break;
2225         }
2226         case lir_sub: {
2227           __ decrementl(laddr, c);
2228           break;
2229         }
2230         default: ShouldNotReachHere();
2231       }
2232     } else {
2233       ShouldNotReachHere();
2234     }
2235 
2236   } else {
2237     ShouldNotReachHere();
2238   }
2239 }
2240 
2241 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2242   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2243   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2244   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2245 
2246   bool left_is_tos = (left_index == 0);
2247   bool dest_is_tos = (dest_index == 0);
2248   int non_tos_index = (left_is_tos ? right_index : left_index);
2249 
2250   switch (code) {
2251     case lir_add:
2252       if (pop_fpu_stack)       __ faddp(non_tos_index);
2253       else if (dest_is_tos)    __ fadd (non_tos_index);
2254       else                     __ fadda(non_tos_index);
2255       break;
2256 
2257     case lir_sub:
2258       if (left_is_tos) {
2259         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2260         else if (dest_is_tos)  __ fsub  (non_tos_index);
2261         else                   __ fsubra(non_tos_index);
2262       } else {
2263         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2264         else if (dest_is_tos)  __ fsubr (non_tos_index);
2265         else                   __ fsuba (non_tos_index);
2266       }
2267       break;
2268 
2269     case lir_mul_strictfp: // fall through
2270     case lir_mul:
2271       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2272       else if (dest_is_tos)    __ fmul (non_tos_index);
2273       else                     __ fmula(non_tos_index);
2274       break;
2275 
2276     case lir_div_strictfp: // fall through
2277     case lir_div:
2278       if (left_is_tos) {
2279         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2280         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2281         else                   __ fdivra(non_tos_index);
2282       } else {
2283         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2284         else if (dest_is_tos)  __ fdivr (non_tos_index);
2285         else                   __ fdiva (non_tos_index);
2286       }
2287       break;
2288 
2289     case lir_rem:
2290       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2291       __ fremr(noreg);
2292       break;
2293 
2294     default:
2295       ShouldNotReachHere();
2296   }
2297 }
2298 
2299 
2300 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2301   if (value->is_double_xmm()) {
2302     switch(code) {
2303       case lir_abs :
2304         {
2305           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2306             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2307           }
2308           __ andpd(dest->as_xmm_double_reg(),
2309                     ExternalAddress((address)double_signmask_pool));
2310         }
2311         break;
2312 
2313       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2314       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2315       default      : ShouldNotReachHere();
2316     }
2317 
2318   } else if (value->is_double_fpu()) {
2319     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2320     switch(code) {
2321       case lir_log   : __ flog() ; break;
2322       case lir_log10 : __ flog10() ; break;
2323       case lir_abs   : __ fabs() ; break;
2324       case lir_sqrt  : __ fsqrt(); break;
2325       case lir_sin   :
2326         // Should consider not saving rbx, if not necessary
2327         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
2328         break;
2329       case lir_cos :
2330         // Should consider not saving rbx, if not necessary
2331         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
2332         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
2333         break;
2334       case lir_tan :
2335         // Should consider not saving rbx, if not necessary
2336         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
2337         break;
2338       default      : ShouldNotReachHere();
2339     }
2340   } else {
2341     Unimplemented();
2342   }
2343 }
2344 
2345 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2346   // assert(left->destroys_register(), "check");
2347   if (left->is_single_cpu()) {
2348     Register reg = left->as_register();
2349     if (right->is_constant()) {
2350       int val = right->as_constant_ptr()->as_jint();
2351       switch (code) {
2352         case lir_logic_and: __ andl (reg, val); break;
2353         case lir_logic_or:  __ orl  (reg, val); break;
2354         case lir_logic_xor: __ xorl (reg, val); break;
2355         default: ShouldNotReachHere();
2356       }
2357     } else if (right->is_stack()) {
2358       // added support for stack operands
2359       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2360       switch (code) {
2361         case lir_logic_and: __ andl (reg, raddr); break;
2362         case lir_logic_or:  __ orl  (reg, raddr); break;
2363         case lir_logic_xor: __ xorl (reg, raddr); break;
2364         default: ShouldNotReachHere();
2365       }
2366     } else {
2367       Register rright = right->as_register();
2368       switch (code) {
2369         case lir_logic_and: __ andptr (reg, rright); break;
2370         case lir_logic_or : __ orptr  (reg, rright); break;
2371         case lir_logic_xor: __ xorptr (reg, rright); break;
2372         default: ShouldNotReachHere();
2373       }
2374     }
2375     move_regs(reg, dst->as_register());
2376   } else {
2377     Register l_lo = left->as_register_lo();
2378     Register l_hi = left->as_register_hi();
2379     if (right->is_constant()) {
2380 #ifdef _LP64
2381       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2382       switch (code) {
2383         case lir_logic_and:
2384           __ andq(l_lo, rscratch1);
2385           break;
2386         case lir_logic_or:
2387           __ orq(l_lo, rscratch1);
2388           break;
2389         case lir_logic_xor:
2390           __ xorq(l_lo, rscratch1);
2391           break;
2392         default: ShouldNotReachHere();
2393       }
2394 #else
2395       int r_lo = right->as_constant_ptr()->as_jint_lo();
2396       int r_hi = right->as_constant_ptr()->as_jint_hi();
2397       switch (code) {
2398         case lir_logic_and:
2399           __ andl(l_lo, r_lo);
2400           __ andl(l_hi, r_hi);
2401           break;
2402         case lir_logic_or:
2403           __ orl(l_lo, r_lo);
2404           __ orl(l_hi, r_hi);
2405           break;
2406         case lir_logic_xor:
2407           __ xorl(l_lo, r_lo);
2408           __ xorl(l_hi, r_hi);
2409           break;
2410         default: ShouldNotReachHere();
2411       }
2412 #endif // _LP64
2413     } else {
2414       Register r_lo = right->as_register_lo();
2415       Register r_hi = right->as_register_hi();
2416       assert(l_lo != r_hi, "overwriting registers");
2417       switch (code) {
2418         case lir_logic_and:
2419           __ andptr(l_lo, r_lo);
2420           NOT_LP64(__ andptr(l_hi, r_hi);)
2421           break;
2422         case lir_logic_or:
2423           __ orptr(l_lo, r_lo);
2424           NOT_LP64(__ orptr(l_hi, r_hi);)
2425           break;
2426         case lir_logic_xor:
2427           __ xorptr(l_lo, r_lo);
2428           NOT_LP64(__ xorptr(l_hi, r_hi);)
2429           break;
2430         default: ShouldNotReachHere();
2431       }
2432     }
2433 
2434     Register dst_lo = dst->as_register_lo();
2435     Register dst_hi = dst->as_register_hi();
2436 
2437 #ifdef _LP64
2438     move_regs(l_lo, dst_lo);
2439 #else
2440     if (dst_lo == l_hi) {
2441       assert(dst_hi != l_lo, "overwriting registers");
2442       move_regs(l_hi, dst_hi);
2443       move_regs(l_lo, dst_lo);
2444     } else {
2445       assert(dst_lo != l_hi, "overwriting registers");
2446       move_regs(l_lo, dst_lo);
2447       move_regs(l_hi, dst_hi);
2448     }
2449 #endif // _LP64
2450   }
2451 }
2452 
2453 
2454 // we assume that rax, and rdx can be overwritten
2455 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2456 
2457   assert(left->is_single_cpu(),   "left must be register");
2458   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2459   assert(result->is_single_cpu(), "result must be register");
2460 
2461   //  assert(left->destroys_register(), "check");
2462   //  assert(right->destroys_register(), "check");
2463 
2464   Register lreg = left->as_register();
2465   Register dreg = result->as_register();
2466 
2467   if (right->is_constant()) {
2468     int divisor = right->as_constant_ptr()->as_jint();
2469     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2470     if (code == lir_idiv) {
2471       assert(lreg == rax, "must be rax,");
2472       assert(temp->as_register() == rdx, "tmp register must be rdx");
2473       __ cdql(); // sign extend into rdx:rax
2474       if (divisor == 2) {
2475         __ subl(lreg, rdx);
2476       } else {
2477         __ andl(rdx, divisor - 1);
2478         __ addl(lreg, rdx);
2479       }
2480       __ sarl(lreg, log2_intptr(divisor));
2481       move_regs(lreg, dreg);
2482     } else if (code == lir_irem) {
2483       Label done;
2484       __ mov(dreg, lreg);
2485       __ andl(dreg, 0x80000000 | (divisor - 1));
2486       __ jcc(Assembler::positive, done);
2487       __ decrement(dreg);
2488       __ orl(dreg, ~(divisor - 1));
2489       __ increment(dreg);
2490       __ bind(done);
2491     } else {
2492       ShouldNotReachHere();
2493     }
2494   } else {
2495     Register rreg = right->as_register();
2496     assert(lreg == rax, "left register must be rax,");
2497     assert(rreg != rdx, "right register must not be rdx");
2498     assert(temp->as_register() == rdx, "tmp register must be rdx");
2499 
2500     move_regs(lreg, rax);
2501 
2502     int idivl_offset = __ corrected_idivl(rreg);
2503     add_debug_info_for_div0(idivl_offset, info);
2504     if (code == lir_irem) {
2505       move_regs(rdx, dreg); // result is in rdx
2506     } else {
2507       move_regs(rax, dreg);
2508     }
2509   }
2510 }
2511 
2512 
2513 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2514   if (opr1->is_single_cpu()) {
2515     Register reg1 = opr1->as_register();
2516     if (opr2->is_single_cpu()) {
2517       // cpu register - cpu register
2518       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2519         __ cmpptr(reg1, opr2->as_register());
2520       } else {
2521         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2522         __ cmpl(reg1, opr2->as_register());
2523       }
2524     } else if (opr2->is_stack()) {
2525       // cpu register - stack
2526       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2527         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2528       } else {
2529         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2530       }
2531     } else if (opr2->is_constant()) {
2532       // cpu register - constant
2533       LIR_Const* c = opr2->as_constant_ptr();
2534       if (c->type() == T_INT) {
2535         __ cmpl(reg1, c->as_jint());
2536       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2537         // In 64bit oops are single register
2538         jobject o = c->as_jobject();
2539         if (o == NULL) {
2540           __ cmpptr(reg1, (int32_t)NULL_WORD);
2541         } else {
2542 #ifdef _LP64
2543           __ movoop(rscratch1, o);
2544           __ cmpptr(reg1, rscratch1);
2545 #else
2546           __ cmpoop(reg1, c->as_jobject());
2547 #endif // _LP64
2548         }
2549       } else {
2550         ShouldNotReachHere();
2551       }
2552       // cpu register - address
2553     } else if (opr2->is_address()) {
2554       if (op->info() != NULL) {
2555         add_debug_info_for_null_check_here(op->info());
2556       }
2557       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2558     } else {
2559       ShouldNotReachHere();
2560     }
2561 
2562   } else if(opr1->is_double_cpu()) {
2563     Register xlo = opr1->as_register_lo();
2564     Register xhi = opr1->as_register_hi();
2565     if (opr2->is_double_cpu()) {
2566 #ifdef _LP64
2567       __ cmpptr(xlo, opr2->as_register_lo());
2568 #else
2569       // cpu register - cpu register
2570       Register ylo = opr2->as_register_lo();
2571       Register yhi = opr2->as_register_hi();
2572       __ subl(xlo, ylo);
2573       __ sbbl(xhi, yhi);
2574       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2575         __ orl(xhi, xlo);
2576       }
2577 #endif // _LP64
2578     } else if (opr2->is_constant()) {
2579       // cpu register - constant 0
2580       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2581 #ifdef _LP64
2582       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2583 #else
2584       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2585       __ orl(xhi, xlo);
2586 #endif // _LP64
2587     } else {
2588       ShouldNotReachHere();
2589     }
2590 
2591   } else if (opr1->is_single_xmm()) {
2592     XMMRegister reg1 = opr1->as_xmm_float_reg();
2593     if (opr2->is_single_xmm()) {
2594       // xmm register - xmm register
2595       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2596     } else if (opr2->is_stack()) {
2597       // xmm register - stack
2598       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2599     } else if (opr2->is_constant()) {
2600       // xmm register - constant
2601       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2602     } else if (opr2->is_address()) {
2603       // xmm register - address
2604       if (op->info() != NULL) {
2605         add_debug_info_for_null_check_here(op->info());
2606       }
2607       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2608     } else {
2609       ShouldNotReachHere();
2610     }
2611 
2612   } else if (opr1->is_double_xmm()) {
2613     XMMRegister reg1 = opr1->as_xmm_double_reg();
2614     if (opr2->is_double_xmm()) {
2615       // xmm register - xmm register
2616       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2617     } else if (opr2->is_stack()) {
2618       // xmm register - stack
2619       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2620     } else if (opr2->is_constant()) {
2621       // xmm register - constant
2622       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2623     } else if (opr2->is_address()) {
2624       // xmm register - address
2625       if (op->info() != NULL) {
2626         add_debug_info_for_null_check_here(op->info());
2627       }
2628       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2629     } else {
2630       ShouldNotReachHere();
2631     }
2632 
2633   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2634     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2635     assert(opr2->is_fpu_register(), "both must be registers");
2636     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2637 
2638   } else if (opr1->is_address() && opr2->is_constant()) {
2639     LIR_Const* c = opr2->as_constant_ptr();
2640 #ifdef _LP64
2641     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2642       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2643       __ movoop(rscratch1, c->as_jobject());
2644     }
2645 #endif // LP64
2646     if (op->info() != NULL) {
2647       add_debug_info_for_null_check_here(op->info());
2648     }
2649     // special case: address - constant
2650     LIR_Address* addr = opr1->as_address_ptr();
2651     if (c->type() == T_INT) {
2652       __ cmpl(as_Address(addr), c->as_jint());
2653     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2654 #ifdef _LP64
2655       // %%% Make this explode if addr isn't reachable until we figure out a
2656       // better strategy by giving noreg as the temp for as_Address
2657       __ cmpptr(rscratch1, as_Address(addr, noreg));
2658 #else
2659       __ cmpoop(as_Address(addr), c->as_jobject());
2660 #endif // _LP64
2661     } else {
2662       ShouldNotReachHere();
2663     }
2664 
2665   } else {
2666     ShouldNotReachHere();
2667   }
2668 }
2669 
2670 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2671   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2672     if (left->is_single_xmm()) {
2673       assert(right->is_single_xmm(), "must match");
2674       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2675     } else if (left->is_double_xmm()) {
2676       assert(right->is_double_xmm(), "must match");
2677       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2678 
2679     } else {
2680       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2681       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2682 
2683       assert(left->fpu() == 0, "left must be on TOS");
2684       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2685                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2686     }
2687   } else {
2688     assert(code == lir_cmp_l2i, "check");
2689 #ifdef _LP64
2690       Register dest = dst->as_register();
2691       __ xorptr(dest, dest);
2692       Label high, done;
2693       __ cmpptr(left->as_register_lo(), right->as_register_lo());
2694       __ jcc(Assembler::equal, done);
2695       __ jcc(Assembler::greater, high);
2696       __ decrement(dest);
2697       __ jmp(done);
2698       __ bind(high);
2699       __ increment(dest);
2700 
2701       __ bind(done);
2702 
2703 #else
2704     __ lcmp2int(left->as_register_hi(),
2705                 left->as_register_lo(),
2706                 right->as_register_hi(),
2707                 right->as_register_lo());
2708     move_regs(left->as_register_hi(), dst->as_register());
2709 #endif // _LP64
2710   }
2711 }
2712 
2713 
2714 void LIR_Assembler::align_call(LIR_Code code) {
2715   if (os::is_MP()) {
2716     // make sure that the displacement word of the call ends up word aligned
2717     int offset = __ offset();
2718     switch (code) {
2719       case lir_static_call:
2720       case lir_optvirtual_call:
2721       case lir_dynamic_call:
2722         offset += NativeCall::displacement_offset;
2723         break;
2724       case lir_icvirtual_call:
2725         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2726       break;
2727       case lir_virtual_call:  // currently, sparc-specific for niagara
2728       default: ShouldNotReachHere();
2729     }
2730     while (offset++ % BytesPerWord != 0) {
2731       __ nop();
2732     }
2733   }
2734 }
2735 
2736 
2737 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2738   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2739          "must be aligned");
2740   __ call(AddressLiteral(op->addr(), rtype));
2741   add_call_info(code_offset(), op->info(), op->is_method_handle_invoke());
2742 }
2743 
2744 
2745 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2746   RelocationHolder rh = virtual_call_Relocation::spec(pc());
2747   __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
2748   assert(!os::is_MP() ||
2749          (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2750          "must be aligned");
2751   __ call(AddressLiteral(op->addr(), rh));
2752   add_call_info(code_offset(), op->info(), op->is_method_handle_invoke());
2753 }
2754 
2755 
2756 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2757 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2758   ShouldNotReachHere();
2759 }
2760 
2761 
2762 void LIR_Assembler::preserve_SP() {
2763   __ movptr(rbp, rsp);
2764 }
2765 
2766 
2767 void LIR_Assembler::restore_SP() {
2768   __ movptr(rsp, rbp);
2769 }
2770 
2771 
2772 void LIR_Assembler::emit_static_call_stub() {
2773   address call_pc = __ pc();
2774   address stub = __ start_a_stub(call_stub_size);
2775   if (stub == NULL) {
2776     bailout("static call stub overflow");
2777     return;
2778   }
2779 
2780   int start = __ offset();
2781   if (os::is_MP()) {
2782     // make sure that the displacement word of the call ends up word aligned
2783     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
2784     while (offset++ % BytesPerWord != 0) {
2785       __ nop();
2786     }
2787   }
2788   __ relocate(static_stub_Relocation::spec(call_pc));
2789   __ movoop(rbx, (jobject)NULL);
2790   // must be set to -1 at code generation time
2791   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2792   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2793   __ jump(RuntimeAddress(__ pc()));
2794 
2795   assert(__ offset() - start <= call_stub_size, "stub too big")
2796   __ end_a_stub();
2797 }
2798 
2799 
2800 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
2801   assert(exceptionOop->as_register() == rax, "must match");
2802   assert(unwind || exceptionPC->as_register() == rdx, "must match");
2803 
2804   // exception object is not added to oop map by LinearScan
2805   // (LinearScan assumes that no oops are in fixed registers)
2806   info->add_register_oop(exceptionOop);
2807   Runtime1::StubID unwind_id;
2808 
2809   if (!unwind) {
2810     // get current pc information
2811     // pc is only needed if the method has an exception handler, the unwind code does not need it.
2812     int pc_for_athrow_offset = __ offset();
2813     InternalAddress pc_for_athrow(__ pc());
2814     __ lea(exceptionPC->as_register(), pc_for_athrow);
2815     add_call_info(pc_for_athrow_offset, info); // for exception handler
2816 
2817     __ verify_not_null_oop(rax);
2818     // search an exception handler (rax: exception oop, rdx: throwing pc)
2819     if (compilation()->has_fpu_code()) {
2820       unwind_id = Runtime1::handle_exception_id;
2821     } else {
2822       unwind_id = Runtime1::handle_exception_nofpu_id;
2823     }
2824     __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2825   } else {
2826     // remove the activation
2827     __ remove_frame(initial_frame_size_in_bytes());
2828     __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
2829   }
2830 
2831   // enough room for two byte trap
2832   __ nop();
2833 }
2834 
2835 
2836 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2837 
2838   // optimized version for linear scan:
2839   // * count must be already in ECX (guaranteed by LinearScan)
2840   // * left and dest must be equal
2841   // * tmp must be unused
2842   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2843   assert(left == dest, "left and dest must be equal");
2844   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2845 
2846   if (left->is_single_cpu()) {
2847     Register value = left->as_register();
2848     assert(value != SHIFT_count, "left cannot be ECX");
2849 
2850     switch (code) {
2851       case lir_shl:  __ shll(value); break;
2852       case lir_shr:  __ sarl(value); break;
2853       case lir_ushr: __ shrl(value); break;
2854       default: ShouldNotReachHere();
2855     }
2856   } else if (left->is_double_cpu()) {
2857     Register lo = left->as_register_lo();
2858     Register hi = left->as_register_hi();
2859     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2860 #ifdef _LP64
2861     switch (code) {
2862       case lir_shl:  __ shlptr(lo);        break;
2863       case lir_shr:  __ sarptr(lo);        break;
2864       case lir_ushr: __ shrptr(lo);        break;
2865       default: ShouldNotReachHere();
2866     }
2867 #else
2868 
2869     switch (code) {
2870       case lir_shl:  __ lshl(hi, lo);        break;
2871       case lir_shr:  __ lshr(hi, lo, true);  break;
2872       case lir_ushr: __ lshr(hi, lo, false); break;
2873       default: ShouldNotReachHere();
2874     }
2875 #endif // LP64
2876   } else {
2877     ShouldNotReachHere();
2878   }
2879 }
2880 
2881 
2882 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2883   if (dest->is_single_cpu()) {
2884     // first move left into dest so that left is not destroyed by the shift
2885     Register value = dest->as_register();
2886     count = count & 0x1F; // Java spec
2887 
2888     move_regs(left->as_register(), value);
2889     switch (code) {
2890       case lir_shl:  __ shll(value, count); break;
2891       case lir_shr:  __ sarl(value, count); break;
2892       case lir_ushr: __ shrl(value, count); break;
2893       default: ShouldNotReachHere();
2894     }
2895   } else if (dest->is_double_cpu()) {
2896 #ifndef _LP64
2897     Unimplemented();
2898 #else
2899     // first move left into dest so that left is not destroyed by the shift
2900     Register value = dest->as_register_lo();
2901     count = count & 0x1F; // Java spec
2902 
2903     move_regs(left->as_register_lo(), value);
2904     switch (code) {
2905       case lir_shl:  __ shlptr(value, count); break;
2906       case lir_shr:  __ sarptr(value, count); break;
2907       case lir_ushr: __ shrptr(value, count); break;
2908       default: ShouldNotReachHere();
2909     }
2910 #endif // _LP64
2911   } else {
2912     ShouldNotReachHere();
2913   }
2914 }
2915 
2916 
2917 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2918   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2919   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2920   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2921   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
2922 }
2923 
2924 
2925 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
2926   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2927   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2928   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2929   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
2930 }
2931 
2932 
2933 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
2934   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2935   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2936   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2937   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
2938 }
2939 
2940 
2941 // This code replaces a call to arraycopy; no exception may
2942 // be thrown in this code, they must be thrown in the System.arraycopy
2943 // activation frame; we could save some checks if this would not be the case
2944 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2945   ciArrayKlass* default_type = op->expected_type();
2946   Register src = op->src()->as_register();
2947   Register dst = op->dst()->as_register();
2948   Register src_pos = op->src_pos()->as_register();
2949   Register dst_pos = op->dst_pos()->as_register();
2950   Register length  = op->length()->as_register();
2951   Register tmp = op->tmp()->as_register();
2952 
2953   CodeStub* stub = op->stub();
2954   int flags = op->flags();
2955   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2956   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2957 
2958   // if we don't know anything or it's an object array, just go through the generic arraycopy
2959   if (default_type == NULL) {
2960     Label done;
2961     // save outgoing arguments on stack in case call to System.arraycopy is needed
2962     // HACK ALERT. This code used to push the parameters in a hardwired fashion
2963     // for interpreter calling conventions. Now we have to do it in new style conventions.
2964     // For the moment until C1 gets the new register allocator I just force all the
2965     // args to the right place (except the register args) and then on the back side
2966     // reload the register args properly if we go slow path. Yuck
2967 
2968     // These are proper for the calling convention
2969 
2970     store_parameter(length, 2);
2971     store_parameter(dst_pos, 1);
2972     store_parameter(dst, 0);
2973 
2974     // these are just temporary placements until we need to reload
2975     store_parameter(src_pos, 3);
2976     store_parameter(src, 4);
2977     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
2978 
2979     address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
2980 
2981     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
2982 #ifdef _LP64
2983     // The arguments are in java calling convention so we can trivially shift them to C
2984     // convention
2985     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
2986     __ mov(c_rarg0, j_rarg0);
2987     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
2988     __ mov(c_rarg1, j_rarg1);
2989     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
2990     __ mov(c_rarg2, j_rarg2);
2991     assert_different_registers(c_rarg3, j_rarg4);
2992     __ mov(c_rarg3, j_rarg3);
2993 #ifdef _WIN64
2994     // Allocate abi space for args but be sure to keep stack aligned
2995     __ subptr(rsp, 6*wordSize);
2996     store_parameter(j_rarg4, 4);
2997     __ call(RuntimeAddress(entry));
2998     __ addptr(rsp, 6*wordSize);
2999 #else
3000     __ mov(c_rarg4, j_rarg4);
3001     __ call(RuntimeAddress(entry));
3002 #endif // _WIN64
3003 #else
3004     __ push(length);
3005     __ push(dst_pos);
3006     __ push(dst);
3007     __ push(src_pos);
3008     __ push(src);
3009     __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
3010 
3011 #endif // _LP64
3012 
3013     __ cmpl(rax, 0);
3014     __ jcc(Assembler::equal, *stub->continuation());
3015 
3016     // Reload values from the stack so they are where the stub
3017     // expects them.
3018     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3019     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3020     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3021     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3022     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3023     __ jmp(*stub->entry());
3024 
3025     __ bind(*stub->continuation());
3026     return;
3027   }
3028 
3029   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3030 
3031   int elem_size = type2aelembytes(basic_type);
3032   int shift_amount;
3033   Address::ScaleFactor scale;
3034 
3035   switch (elem_size) {
3036     case 1 :
3037       shift_amount = 0;
3038       scale = Address::times_1;
3039       break;
3040     case 2 :
3041       shift_amount = 1;
3042       scale = Address::times_2;
3043       break;
3044     case 4 :
3045       shift_amount = 2;
3046       scale = Address::times_4;
3047       break;
3048     case 8 :
3049       shift_amount = 3;
3050       scale = Address::times_8;
3051       break;
3052     default:
3053       ShouldNotReachHere();
3054   }
3055 
3056   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3057   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3058   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3059   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3060 
3061   // length and pos's are all sign extended at this point on 64bit
3062 
3063   // test for NULL
3064   if (flags & LIR_OpArrayCopy::src_null_check) {
3065     __ testptr(src, src);
3066     __ jcc(Assembler::zero, *stub->entry());
3067   }
3068   if (flags & LIR_OpArrayCopy::dst_null_check) {
3069     __ testptr(dst, dst);
3070     __ jcc(Assembler::zero, *stub->entry());
3071   }
3072 
3073   // check if negative
3074   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3075     __ testl(src_pos, src_pos);
3076     __ jcc(Assembler::less, *stub->entry());
3077   }
3078   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3079     __ testl(dst_pos, dst_pos);
3080     __ jcc(Assembler::less, *stub->entry());
3081   }
3082   if (flags & LIR_OpArrayCopy::length_positive_check) {
3083     __ testl(length, length);
3084     __ jcc(Assembler::less, *stub->entry());
3085   }
3086 
3087   if (flags & LIR_OpArrayCopy::src_range_check) {
3088     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3089     __ cmpl(tmp, src_length_addr);
3090     __ jcc(Assembler::above, *stub->entry());
3091   }
3092   if (flags & LIR_OpArrayCopy::dst_range_check) {
3093     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3094     __ cmpl(tmp, dst_length_addr);
3095     __ jcc(Assembler::above, *stub->entry());
3096   }
3097 
3098   if (flags & LIR_OpArrayCopy::type_check) {
3099     __ movptr(tmp, src_klass_addr);
3100     __ cmpptr(tmp, dst_klass_addr);
3101     __ jcc(Assembler::notEqual, *stub->entry());
3102   }
3103 
3104 #ifdef ASSERT
3105   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3106     // Sanity check the known type with the incoming class.  For the
3107     // primitive case the types must match exactly with src.klass and
3108     // dst.klass each exactly matching the default type.  For the
3109     // object array case, if no type check is needed then either the
3110     // dst type is exactly the expected type and the src type is a
3111     // subtype which we can't check or src is the same array as dst
3112     // but not necessarily exactly of type default_type.
3113     Label known_ok, halt;
3114     __ movoop(tmp, default_type->constant_encoding());
3115     if (basic_type != T_OBJECT) {
3116       __ cmpptr(tmp, dst_klass_addr);
3117       __ jcc(Assembler::notEqual, halt);
3118       __ cmpptr(tmp, src_klass_addr);
3119       __ jcc(Assembler::equal, known_ok);
3120     } else {
3121       __ cmpptr(tmp, dst_klass_addr);
3122       __ jcc(Assembler::equal, known_ok);
3123       __ cmpptr(src, dst);
3124       __ jcc(Assembler::equal, known_ok);
3125     }
3126     __ bind(halt);
3127     __ stop("incorrect type information in arraycopy");
3128     __ bind(known_ok);
3129   }
3130 #endif
3131 
3132   if (shift_amount > 0 && basic_type != T_OBJECT) {
3133     __ shlptr(length, shift_amount);
3134   }
3135 
3136 #ifdef _LP64
3137   assert_different_registers(c_rarg0, dst, dst_pos, length);
3138   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3139   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3140   assert_different_registers(c_rarg1, length);
3141   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3142   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3143   __ mov(c_rarg2, length);
3144 
3145 #else
3146   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3147   store_parameter(tmp, 0);
3148   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3149   store_parameter(tmp, 1);
3150   store_parameter(length, 2);
3151 #endif // _LP64
3152   if (basic_type == T_OBJECT) {
3153     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
3154   } else {
3155     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
3156   }
3157 
3158   __ bind(*stub->continuation());
3159 }
3160 
3161 
3162 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3163   Register obj = op->obj_opr()->as_register();  // may not be an oop
3164   Register hdr = op->hdr_opr()->as_register();
3165   Register lock = op->lock_opr()->as_register();
3166   if (!UseFastLocking) {
3167     __ jmp(*op->stub()->entry());
3168   } else if (op->code() == lir_lock) {
3169     Register scratch = noreg;
3170     if (UseBiasedLocking) {
3171       scratch = op->scratch_opr()->as_register();
3172     }
3173     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3174     // add debug info for NullPointerException only if one is possible
3175     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3176     if (op->info() != NULL) {
3177       add_debug_info_for_null_check(null_check_offset, op->info());
3178     }
3179     // done
3180   } else if (op->code() == lir_unlock) {
3181     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3182     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3183   } else {
3184     Unimplemented();
3185   }
3186   __ bind(*op->stub()->continuation());
3187 }
3188 
3189 
3190 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3191   ciMethod* method = op->profiled_method();
3192   int bci          = op->profiled_bci();
3193 
3194   // Update counter for all call types
3195   ciMethodData* md = method->method_data();
3196   if (md == NULL) {
3197     bailout("out of memory building methodDataOop");
3198     return;
3199   }
3200   ciProfileData* data = md->bci_to_data(bci);
3201   assert(data->is_CounterData(), "need CounterData for calls");
3202   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3203   Register mdo  = op->mdo()->as_register();
3204   __ movoop(mdo, md->constant_encoding());
3205   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3206   Bytecodes::Code bc = method->java_code_at_bci(bci);
3207   // Perform additional virtual call profiling for invokevirtual and
3208   // invokeinterface bytecodes
3209   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3210       Tier1ProfileVirtualCalls) {
3211     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3212     Register recv = op->recv()->as_register();
3213     assert_different_registers(mdo, recv);
3214     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3215     ciKlass* known_klass = op->known_holder();
3216     if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
3217       // We know the type that will be seen at this call site; we can
3218       // statically update the methodDataOop rather than needing to do
3219       // dynamic tests on the receiver type
3220 
3221       // NOTE: we should probably put a lock around this search to
3222       // avoid collisions by concurrent compilations
3223       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3224       uint i;
3225       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3226         ciKlass* receiver = vc_data->receiver(i);
3227         if (known_klass->equals(receiver)) {
3228           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3229           __ addl(data_addr, DataLayout::counter_increment);
3230           return;
3231         }
3232       }
3233 
3234       // Receiver type not found in profile data; select an empty slot
3235 
3236       // Note that this is less efficient than it should be because it
3237       // always does a write to the receiver part of the
3238       // VirtualCallData rather than just the first time
3239       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3240         ciKlass* receiver = vc_data->receiver(i);
3241         if (receiver == NULL) {
3242           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3243           __ movoop(recv_addr, known_klass->constant_encoding());
3244           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3245           __ addl(data_addr, DataLayout::counter_increment);
3246           return;
3247         }
3248       }
3249     } else {
3250       __ movptr(recv, Address(recv, oopDesc::klass_offset_in_bytes()));
3251       Label update_done;
3252       uint i;
3253       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3254         Label next_test;
3255         // See if the receiver is receiver[n].
3256         __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))));
3257         __ jcc(Assembler::notEqual, next_test);
3258         Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3259         __ addl(data_addr, DataLayout::counter_increment);
3260         __ jmp(update_done);
3261         __ bind(next_test);
3262       }
3263 
3264       // Didn't find receiver; find next empty slot and fill it in
3265       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3266         Label next_test;
3267         Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3268         __ cmpptr(recv_addr, (int32_t)NULL_WORD);
3269         __ jcc(Assembler::notEqual, next_test);
3270         __ movptr(recv_addr, recv);
3271         __ movl(Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))), DataLayout::counter_increment);
3272         __ jmp(update_done);
3273         __ bind(next_test);
3274       }
3275       // Receiver did not match any saved receiver and there is no empty row for it.
3276       // Increment total counter to indicate polymorphic case.
3277       __ addl(counter_addr, DataLayout::counter_increment);
3278 
3279       __ bind(update_done);
3280     }
3281   } else {
3282     // Static call
3283     __ addl(counter_addr, DataLayout::counter_increment);
3284   }
3285 }
3286 
3287 
3288 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3289   Unimplemented();
3290 }
3291 
3292 
3293 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3294   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3295 }
3296 
3297 
3298 void LIR_Assembler::align_backward_branch_target() {
3299   __ align(BytesPerWord);
3300 }
3301 
3302 
3303 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3304   if (left->is_single_cpu()) {
3305     __ negl(left->as_register());
3306     move_regs(left->as_register(), dest->as_register());
3307 
3308   } else if (left->is_double_cpu()) {
3309     Register lo = left->as_register_lo();
3310 #ifdef _LP64
3311     Register dst = dest->as_register_lo();
3312     __ movptr(dst, lo);
3313     __ negptr(dst);
3314 #else
3315     Register hi = left->as_register_hi();
3316     __ lneg(hi, lo);
3317     if (dest->as_register_lo() == hi) {
3318       assert(dest->as_register_hi() != lo, "destroying register");
3319       move_regs(hi, dest->as_register_hi());
3320       move_regs(lo, dest->as_register_lo());
3321     } else {
3322       move_regs(lo, dest->as_register_lo());
3323       move_regs(hi, dest->as_register_hi());
3324     }
3325 #endif // _LP64
3326 
3327   } else if (dest->is_single_xmm()) {
3328     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3329       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3330     }
3331     __ xorps(dest->as_xmm_float_reg(),
3332              ExternalAddress((address)float_signflip_pool));
3333 
3334   } else if (dest->is_double_xmm()) {
3335     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3336       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3337     }
3338     __ xorpd(dest->as_xmm_double_reg(),
3339              ExternalAddress((address)double_signflip_pool));
3340 
3341   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3342     assert(left->fpu() == 0, "arg must be on TOS");
3343     assert(dest->fpu() == 0, "dest must be TOS");
3344     __ fchs();
3345 
3346   } else {
3347     ShouldNotReachHere();
3348   }
3349 }
3350 
3351 
3352 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3353   assert(addr->is_address() && dest->is_register(), "check");
3354   Register reg;
3355   reg = dest->as_pointer_register();
3356   __ lea(reg, as_Address(addr->as_address_ptr()));
3357 }
3358 
3359 
3360 
3361 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3362   assert(!tmp->is_valid(), "don't need temporary");
3363   __ call(RuntimeAddress(dest));
3364   if (info != NULL) {
3365     add_call_info_here(info);
3366   }
3367 }
3368 
3369 
3370 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3371   assert(type == T_LONG, "only for volatile long fields");
3372 
3373   if (info != NULL) {
3374     add_debug_info_for_null_check_here(info);
3375   }
3376 
3377   if (src->is_double_xmm()) {
3378     if (dest->is_double_cpu()) {
3379 #ifdef _LP64
3380       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3381 #else
3382       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3383       __ psrlq(src->as_xmm_double_reg(), 32);
3384       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3385 #endif // _LP64
3386     } else if (dest->is_double_stack()) {
3387       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3388     } else if (dest->is_address()) {
3389       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3390     } else {
3391       ShouldNotReachHere();
3392     }
3393 
3394   } else if (dest->is_double_xmm()) {
3395     if (src->is_double_stack()) {
3396       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3397     } else if (src->is_address()) {
3398       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3399     } else {
3400       ShouldNotReachHere();
3401     }
3402 
3403   } else if (src->is_double_fpu()) {
3404     assert(src->fpu_regnrLo() == 0, "must be TOS");
3405     if (dest->is_double_stack()) {
3406       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3407     } else if (dest->is_address()) {
3408       __ fistp_d(as_Address(dest->as_address_ptr()));
3409     } else {
3410       ShouldNotReachHere();
3411     }
3412 
3413   } else if (dest->is_double_fpu()) {
3414     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3415     if (src->is_double_stack()) {
3416       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3417     } else if (src->is_address()) {
3418       __ fild_d(as_Address(src->as_address_ptr()));
3419     } else {
3420       ShouldNotReachHere();
3421     }
3422   } else {
3423     ShouldNotReachHere();
3424   }
3425 }
3426 
3427 
3428 void LIR_Assembler::membar() {
3429   // QQQ sparc TSO uses this,
3430   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3431 }
3432 
3433 void LIR_Assembler::membar_acquire() {
3434   // No x86 machines currently require load fences
3435   // __ load_fence();
3436 }
3437 
3438 void LIR_Assembler::membar_release() {
3439   // No x86 machines currently require store fences
3440   // __ store_fence();
3441 }
3442 
3443 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3444   assert(result_reg->is_register(), "check");
3445 #ifdef _LP64
3446   // __ get_thread(result_reg->as_register_lo());
3447   __ mov(result_reg->as_register(), r15_thread);
3448 #else
3449   __ get_thread(result_reg->as_register());
3450 #endif // _LP64
3451 }
3452 
3453 
3454 void LIR_Assembler::peephole(LIR_List*) {
3455   // do nothing for now
3456 }
3457 
3458 
3459 #undef __