1 /*
   2  * Copyright 1999-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_stubGenerator_x86_32.cpp.incl"
  27 
  28 // Declaration and definition of StubGenerator (no .hpp file).
  29 // For a more detailed description of the stub routine structure
  30 // see the comment in stubRoutines.hpp
  31 
  32 #define __ _masm->
  33 #define a__ ((Assembler*)_masm)->
  34 
  35 #ifdef PRODUCT
  36 #define BLOCK_COMMENT(str) /* nothing */
  37 #else
  38 #define BLOCK_COMMENT(str) __ block_comment(str)
  39 #endif
  40 
  41 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  42 
  43 const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
  44 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
  45 
  46 // -------------------------------------------------------------------------------------------------------------------------
  47 // Stub Code definitions
  48 
  49 static address handle_unsafe_access() {
  50   JavaThread* thread = JavaThread::current();
  51   address pc  = thread->saved_exception_pc();
  52   // pc is the instruction which we must emulate
  53   // doing a no-op is fine:  return garbage from the load
  54   // therefore, compute npc
  55   address npc = Assembler::locate_next_instruction(pc);
  56 
  57   // request an async exception
  58   thread->set_pending_unsafe_access_error();
  59 
  60   // return address of next instruction to execute
  61   return npc;
  62 }
  63 
  64 class StubGenerator: public StubCodeGenerator {
  65  private:
  66 
  67 #ifdef PRODUCT
  68 #define inc_counter_np(counter) (0)
  69 #else
  70   void inc_counter_np_(int& counter) {
  71     __ incrementl(ExternalAddress((address)&counter));
  72   }
  73 #define inc_counter_np(counter) \
  74   BLOCK_COMMENT("inc_counter " #counter); \
  75   inc_counter_np_(counter);
  76 #endif //PRODUCT
  77 
  78   void inc_copy_counter_np(BasicType t) {
  79 #ifndef PRODUCT
  80     switch (t) {
  81     case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
  82     case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
  83     case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
  84     case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
  85     case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
  86     }
  87     ShouldNotReachHere();
  88 #endif //PRODUCT
  89   }
  90 
  91   //------------------------------------------------------------------------------------------------------------------------
  92   // Call stubs are used to call Java from C
  93   //
  94   //    [ return_from_Java     ] <--- rsp
  95   //    [ argument word n      ]
  96   //      ...
  97   // -N [ argument word 1      ]
  98   // -7 [ Possible padding for stack alignment ]
  99   // -6 [ Possible padding for stack alignment ]
 100   // -5 [ Possible padding for stack alignment ]
 101   // -4 [ mxcsr save           ] <--- rsp_after_call
 102   // -3 [ saved rbx,            ]
 103   // -2 [ saved rsi            ]
 104   // -1 [ saved rdi            ]
 105   //  0 [ saved rbp,            ] <--- rbp,
 106   //  1 [ return address       ]
 107   //  2 [ ptr. to call wrapper ]
 108   //  3 [ result               ]
 109   //  4 [ result_type          ]
 110   //  5 [ method               ]
 111   //  6 [ entry_point          ]
 112   //  7 [ parameters           ]
 113   //  8 [ parameter_size       ]
 114   //  9 [ thread               ]
 115 
 116 
 117   address generate_call_stub(address& return_address) {
 118     StubCodeMark mark(this, "StubRoutines", "call_stub");
 119     address start = __ pc();
 120 
 121     // stub code parameters / addresses
 122     assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
 123     bool  sse_save = false;
 124     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
 125     const int     locals_count_in_bytes  (4*wordSize);
 126     const Address mxcsr_save    (rbp, -4 * wordSize);
 127     const Address saved_rbx     (rbp, -3 * wordSize);
 128     const Address saved_rsi     (rbp, -2 * wordSize);
 129     const Address saved_rdi     (rbp, -1 * wordSize);
 130     const Address result        (rbp,  3 * wordSize);
 131     const Address result_type   (rbp,  4 * wordSize);
 132     const Address method        (rbp,  5 * wordSize);
 133     const Address entry_point   (rbp,  6 * wordSize);
 134     const Address parameters    (rbp,  7 * wordSize);
 135     const Address parameter_size(rbp,  8 * wordSize);
 136     const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
 137     sse_save =  UseSSE > 0;
 138 
 139     // stub code
 140     __ enter();
 141     __ movptr(rcx, parameter_size);              // parameter counter
 142     __ shlptr(rcx, Interpreter::logStackElementSize()); // convert parameter count to bytes
 143     __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
 144     __ subptr(rsp, rcx);
 145     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
 146 
 147     // save rdi, rsi, & rbx, according to C calling conventions
 148     __ movptr(saved_rdi, rdi);
 149     __ movptr(saved_rsi, rsi);
 150     __ movptr(saved_rbx, rbx);
 151     // save and initialize %mxcsr
 152     if (sse_save) {
 153       Label skip_ldmx;
 154       __ stmxcsr(mxcsr_save);
 155       __ movl(rax, mxcsr_save);
 156       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 157       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
 158       __ cmp32(rax, mxcsr_std);
 159       __ jcc(Assembler::equal, skip_ldmx);
 160       __ ldmxcsr(mxcsr_std);
 161       __ bind(skip_ldmx);
 162     }
 163 
 164     // make sure the control word is correct.
 165     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 166 
 167 #ifdef ASSERT
 168     // make sure we have no pending exceptions
 169     { Label L;
 170       __ movptr(rcx, thread);
 171       __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 172       __ jcc(Assembler::equal, L);
 173       __ stop("StubRoutines::call_stub: entered with pending exception");
 174       __ bind(L);
 175     }
 176 #endif
 177 
 178     // pass parameters if any
 179     BLOCK_COMMENT("pass parameters if any");
 180     Label parameters_done;
 181     __ movl(rcx, parameter_size);  // parameter counter
 182     __ testl(rcx, rcx);
 183     __ jcc(Assembler::zero, parameters_done);
 184 
 185     // parameter passing loop
 186 
 187     Label loop;
 188     // Copy Java parameters in reverse order (receiver last)
 189     // Note that the argument order is inverted in the process
 190     // source is rdx[rcx: N-1..0]
 191     // dest   is rsp[rbx: 0..N-1]
 192 
 193     __ movptr(rdx, parameters);          // parameter pointer
 194     __ xorptr(rbx, rbx);
 195 
 196     __ BIND(loop);
 197     if (TaggedStackInterpreter) {
 198       __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(),
 199                       -2*wordSize));                          // get tag
 200       __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
 201                       Interpreter::expr_tag_offset_in_bytes(0)), rax);     // store tag
 202     }
 203 
 204     // get parameter
 205     __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
 206     __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
 207                     Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
 208     __ increment(rbx);
 209     __ decrement(rcx);
 210     __ jcc(Assembler::notZero, loop);
 211 
 212     // call Java function
 213     __ BIND(parameters_done);
 214     __ movptr(rbx, method);           // get methodOop
 215     __ movptr(rax, entry_point);      // get entry_point
 216     __ mov(rsi, rsp);                 // set sender sp
 217     BLOCK_COMMENT("call Java function");
 218     __ call(rax);
 219 
 220     BLOCK_COMMENT("call_stub_return_address:");
 221     return_address = __ pc();
 222 
 223     Label common_return;
 224 
 225     __ BIND(common_return);
 226 
 227     // store result depending on type
 228     // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
 229     __ movptr(rdi, result);
 230     Label is_long, is_float, is_double, exit;
 231     __ movl(rsi, result_type);
 232     __ cmpl(rsi, T_LONG);
 233     __ jcc(Assembler::equal, is_long);
 234     __ cmpl(rsi, T_FLOAT);
 235     __ jcc(Assembler::equal, is_float);
 236     __ cmpl(rsi, T_DOUBLE);
 237     __ jcc(Assembler::equal, is_double);
 238 
 239     // handle T_INT case
 240     __ movl(Address(rdi, 0), rax);
 241     __ BIND(exit);
 242 
 243     // check that FPU stack is empty
 244     __ verify_FPU(0, "generate_call_stub");
 245 
 246     // pop parameters
 247     __ lea(rsp, rsp_after_call);
 248 
 249     // restore %mxcsr
 250     if (sse_save) {
 251       __ ldmxcsr(mxcsr_save);
 252     }
 253 
 254     // restore rdi, rsi and rbx,
 255     __ movptr(rbx, saved_rbx);
 256     __ movptr(rsi, saved_rsi);
 257     __ movptr(rdi, saved_rdi);
 258     __ addptr(rsp, 4*wordSize);
 259 
 260     // return
 261     __ pop(rbp);
 262     __ ret(0);
 263 
 264     // handle return types different from T_INT
 265     __ BIND(is_long);
 266     __ movl(Address(rdi, 0 * wordSize), rax);
 267     __ movl(Address(rdi, 1 * wordSize), rdx);
 268     __ jmp(exit);
 269 
 270     __ BIND(is_float);
 271     // interpreter uses xmm0 for return values
 272     if (UseSSE >= 1) {
 273       __ movflt(Address(rdi, 0), xmm0);
 274     } else {
 275       __ fstp_s(Address(rdi, 0));
 276     }
 277     __ jmp(exit);
 278 
 279     __ BIND(is_double);
 280     // interpreter uses xmm0 for return values
 281     if (UseSSE >= 2) {
 282       __ movdbl(Address(rdi, 0), xmm0);
 283     } else {
 284       __ fstp_d(Address(rdi, 0));
 285     }
 286     __ jmp(exit);
 287 
 288     // If we call compiled code directly from the call stub we will
 289     // need to adjust the return back to the call stub to a specialized
 290     // piece of code that can handle compiled results and cleaning the fpu
 291     // stack. compiled code will be set to return here instead of the
 292     // return above that handles interpreter returns.
 293 
 294     BLOCK_COMMENT("call_stub_compiled_return:");
 295     StubRoutines::x86::set_call_stub_compiled_return( __ pc());
 296 
 297 #ifdef COMPILER2
 298     if (UseSSE >= 2) {
 299       __ verify_FPU(0, "call_stub_compiled_return");
 300     } else {
 301       for (int i = 1; i < 8; i++) {
 302         __ ffree(i);
 303       }
 304 
 305       // UseSSE <= 1 so double result should be left on TOS
 306       __ movl(rsi, result_type);
 307       __ cmpl(rsi, T_DOUBLE);
 308       __ jcc(Assembler::equal, common_return);
 309       if (UseSSE == 0) {
 310         // UseSSE == 0 so float result should be left on TOS
 311         __ cmpl(rsi, T_FLOAT);
 312         __ jcc(Assembler::equal, common_return);
 313       }
 314       __ ffree(0);
 315     }
 316 #endif /* COMPILER2 */
 317     __ jmp(common_return);
 318 
 319     return start;
 320   }
 321 
 322 
 323   //------------------------------------------------------------------------------------------------------------------------
 324   // Return point for a Java call if there's an exception thrown in Java code.
 325   // The exception is caught and transformed into a pending exception stored in
 326   // JavaThread that can be tested from within the VM.
 327   //
 328   // Note: Usually the parameters are removed by the callee. In case of an exception
 329   //       crossing an activation frame boundary, that is not the case if the callee
 330   //       is compiled code => need to setup the rsp.
 331   //
 332   // rax,: exception oop
 333 
 334   address generate_catch_exception() {
 335     StubCodeMark mark(this, "StubRoutines", "catch_exception");
 336     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
 337     const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
 338     address start = __ pc();
 339 
 340     // get thread directly
 341     __ movptr(rcx, thread);
 342 #ifdef ASSERT
 343     // verify that threads correspond
 344     { Label L;
 345       __ get_thread(rbx);
 346       __ cmpptr(rbx, rcx);
 347       __ jcc(Assembler::equal, L);
 348       __ stop("StubRoutines::catch_exception: threads must correspond");
 349       __ bind(L);
 350     }
 351 #endif
 352     // set pending exception
 353     __ verify_oop(rax);
 354     __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
 355     __ lea(Address(rcx, Thread::exception_file_offset   ()),
 356            ExternalAddress((address)__FILE__));
 357     __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
 358     // complete return to VM
 359     assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
 360     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
 361 
 362     return start;
 363   }
 364 
 365 
 366   //------------------------------------------------------------------------------------------------------------------------
 367   // Continuation point for runtime calls returning with a pending exception.
 368   // The pending exception check happened in the runtime or native call stub.
 369   // The pending exception in Thread is converted into a Java-level exception.
 370   //
 371   // Contract with Java-level exception handlers:
 372   // rax,: exception
 373   // rdx: throwing pc
 374   //
 375   // NOTE: At entry of this stub, exception-pc must be on stack !!
 376 
 377   address generate_forward_exception() {
 378     StubCodeMark mark(this, "StubRoutines", "forward exception");
 379     address start = __ pc();
 380 
 381     // Upon entry, the sp points to the return address returning into Java
 382     // (interpreted or compiled) code; i.e., the return address becomes the
 383     // throwing pc.
 384     //
 385     // Arguments pushed before the runtime call are still on the stack but
 386     // the exception handler will reset the stack pointer -> ignore them.
 387     // A potential result in registers can be ignored as well.
 388 
 389 #ifdef ASSERT
 390     // make sure this code is only executed if there is a pending exception
 391     { Label L;
 392       __ get_thread(rcx);
 393       __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 394       __ jcc(Assembler::notEqual, L);
 395       __ stop("StubRoutines::forward exception: no pending exception (1)");
 396       __ bind(L);
 397     }
 398 #endif
 399 
 400     // compute exception handler into rbx,
 401     __ movptr(rax, Address(rsp, 0));
 402     BLOCK_COMMENT("call exception_handler_for_return_address");
 403     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rax);
 404     __ mov(rbx, rax);
 405 
 406     // setup rax, & rdx, remove return address & clear pending exception
 407     __ get_thread(rcx);
 408     __ pop(rdx);
 409     __ movptr(rax, Address(rcx, Thread::pending_exception_offset()));
 410     __ movptr(Address(rcx, Thread::pending_exception_offset()), NULL_WORD);
 411 
 412 #ifdef ASSERT
 413     // make sure exception is set
 414     { Label L;
 415       __ testptr(rax, rax);
 416       __ jcc(Assembler::notEqual, L);
 417       __ stop("StubRoutines::forward exception: no pending exception (2)");
 418       __ bind(L);
 419     }
 420 #endif
 421 
 422     // continue at exception handler (return address removed)
 423     // rax,: exception
 424     // rbx,: exception handler
 425     // rdx: throwing pc
 426     __ verify_oop(rax);
 427     __ jmp(rbx);
 428 
 429     return start;
 430   }
 431 
 432 
 433   //----------------------------------------------------------------------------------------------------
 434   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
 435   //
 436   // xchg exists as far back as 8086, lock needed for MP only
 437   // Stack layout immediately after call:
 438   //
 439   // 0 [ret addr ] <--- rsp
 440   // 1 [  ex     ]
 441   // 2 [  dest   ]
 442   //
 443   // Result:   *dest <- ex, return (old *dest)
 444   //
 445   // Note: win32 does not currently use this code
 446 
 447   address generate_atomic_xchg() {
 448     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
 449     address start = __ pc();
 450 
 451     __ push(rdx);
 452     Address exchange(rsp, 2 * wordSize);
 453     Address dest_addr(rsp, 3 * wordSize);
 454     __ movl(rax, exchange);
 455     __ movptr(rdx, dest_addr);
 456     __ xchgl(rax, Address(rdx, 0));
 457     __ pop(rdx);
 458     __ ret(0);
 459 
 460     return start;
 461   }
 462 
 463   //----------------------------------------------------------------------------------------------------
 464   // Support for void verify_mxcsr()
 465   //
 466   // This routine is used with -Xcheck:jni to verify that native
 467   // JNI code does not return to Java code without restoring the
 468   // MXCSR register to our expected state.
 469 
 470 
 471   address generate_verify_mxcsr() {
 472     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
 473     address start = __ pc();
 474 
 475     const Address mxcsr_save(rsp, 0);
 476 
 477     if (CheckJNICalls && UseSSE > 0 ) {
 478       Label ok_ret;
 479       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
 480       __ push(rax);
 481       __ subptr(rsp, wordSize);      // allocate a temp location
 482       __ stmxcsr(mxcsr_save);
 483       __ movl(rax, mxcsr_save);
 484       __ andl(rax, MXCSR_MASK);
 485       __ cmp32(rax, mxcsr_std);
 486       __ jcc(Assembler::equal, ok_ret);
 487 
 488       __ warn("MXCSR changed by native JNI code.");
 489 
 490       __ ldmxcsr(mxcsr_std);
 491 
 492       __ bind(ok_ret);
 493       __ addptr(rsp, wordSize);
 494       __ pop(rax);
 495     }
 496 
 497     __ ret(0);
 498 
 499     return start;
 500   }
 501 
 502 
 503   //---------------------------------------------------------------------------
 504   // Support for void verify_fpu_cntrl_wrd()
 505   //
 506   // This routine is used with -Xcheck:jni to verify that native
 507   // JNI code does not return to Java code without restoring the
 508   // FP control word to our expected state.
 509 
 510   address generate_verify_fpu_cntrl_wrd() {
 511     StubCodeMark mark(this, "StubRoutines", "verify_spcw");
 512     address start = __ pc();
 513 
 514     const Address fpu_cntrl_wrd_save(rsp, 0);
 515 
 516     if (CheckJNICalls) {
 517       Label ok_ret;
 518       __ push(rax);
 519       __ subptr(rsp, wordSize);      // allocate a temp location
 520       __ fnstcw(fpu_cntrl_wrd_save);
 521       __ movl(rax, fpu_cntrl_wrd_save);
 522       __ andl(rax, FPU_CNTRL_WRD_MASK);
 523       ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
 524       __ cmp32(rax, fpu_std);
 525       __ jcc(Assembler::equal, ok_ret);
 526 
 527       __ warn("Floating point control word changed by native JNI code.");
 528 
 529       __ fldcw(fpu_std);
 530 
 531       __ bind(ok_ret);
 532       __ addptr(rsp, wordSize);
 533       __ pop(rax);
 534     }
 535 
 536     __ ret(0);
 537 
 538     return start;
 539   }
 540 
 541   //---------------------------------------------------------------------------
 542   // Wrapper for slow-case handling of double-to-integer conversion
 543   // d2i or f2i fast case failed either because it is nan or because
 544   // of under/overflow.
 545   // Input:  FPU TOS: float value
 546   // Output: rax, (rdx): integer (long) result
 547 
 548   address generate_d2i_wrapper(BasicType t, address fcn) {
 549     StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
 550     address start = __ pc();
 551 
 552   // Capture info about frame layout
 553   enum layout { FPUState_off         = 0,
 554                 rbp_off              = FPUStateSizeInWords,
 555                 rdi_off,
 556                 rsi_off,
 557                 rcx_off,
 558                 rbx_off,
 559                 saved_argument_off,
 560                 saved_argument_off2, // 2nd half of double
 561                 framesize
 562   };
 563 
 564   assert(FPUStateSizeInWords == 27, "update stack layout");
 565 
 566     // Save outgoing argument to stack across push_FPU_state()
 567     __ subptr(rsp, wordSize * 2);
 568     __ fstp_d(Address(rsp, 0));
 569 
 570     // Save CPU & FPU state
 571     __ push(rbx);
 572     __ push(rcx);
 573     __ push(rsi);
 574     __ push(rdi);
 575     __ push(rbp);
 576     __ push_FPU_state();
 577 
 578     // push_FPU_state() resets the FP top of stack
 579     // Load original double into FP top of stack
 580     __ fld_d(Address(rsp, saved_argument_off * wordSize));
 581     // Store double into stack as outgoing argument
 582     __ subptr(rsp, wordSize*2);
 583     __ fst_d(Address(rsp, 0));
 584 
 585     // Prepare FPU for doing math in C-land
 586     __ empty_FPU_stack();
 587     // Call the C code to massage the double.  Result in EAX
 588     if (t == T_INT)
 589       { BLOCK_COMMENT("SharedRuntime::d2i"); }
 590     else if (t == T_LONG)
 591       { BLOCK_COMMENT("SharedRuntime::d2l"); }
 592     __ call_VM_leaf( fcn, 2 );
 593 
 594     // Restore CPU & FPU state
 595     __ pop_FPU_state();
 596     __ pop(rbp);
 597     __ pop(rdi);
 598     __ pop(rsi);
 599     __ pop(rcx);
 600     __ pop(rbx);
 601     __ addptr(rsp, wordSize * 2);
 602 
 603     __ ret(0);
 604 
 605     return start;
 606   }
 607 
 608 
 609   //---------------------------------------------------------------------------
 610   // The following routine generates a subroutine to throw an asynchronous
 611   // UnknownError when an unsafe access gets a fault that could not be
 612   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
 613   address generate_handler_for_unsafe_access() {
 614     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
 615     address start = __ pc();
 616 
 617     __ push(0);                       // hole for return address-to-be
 618     __ pusha();                       // push registers
 619     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
 620     BLOCK_COMMENT("call handle_unsafe_access");
 621     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
 622     __ movptr(next_pc, rax);          // stuff next address
 623     __ popa();
 624     __ ret(0);                        // jump to next address
 625 
 626     return start;
 627   }
 628 
 629 
 630   //----------------------------------------------------------------------------------------------------
 631   // Non-destructive plausibility checks for oops
 632 
 633   address generate_verify_oop() {
 634     StubCodeMark mark(this, "StubRoutines", "verify_oop");
 635     address start = __ pc();
 636 
 637     // Incoming arguments on stack after saving rax,:
 638     //
 639     // [tos    ]: saved rdx
 640     // [tos + 1]: saved EFLAGS
 641     // [tos + 2]: return address
 642     // [tos + 3]: char* error message
 643     // [tos + 4]: oop   object to verify
 644     // [tos + 5]: saved rax, - saved by caller and bashed
 645 
 646     Label exit, error;
 647     __ pushf();
 648     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
 649     __ push(rdx);                                // save rdx
 650     // make sure object is 'reasonable'
 651     __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
 652     __ testptr(rax, rax);
 653     __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
 654 
 655     // Check if the oop is in the right area of memory
 656     const int oop_mask = Universe::verify_oop_mask();
 657     const int oop_bits = Universe::verify_oop_bits();
 658     __ mov(rdx, rax);
 659     __ andptr(rdx, oop_mask);
 660     __ cmpptr(rdx, oop_bits);
 661     __ jcc(Assembler::notZero, error);
 662 
 663     // make sure klass is 'reasonable'
 664     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
 665     __ testptr(rax, rax);
 666     __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
 667 
 668     // Check if the klass is in the right area of memory
 669     const int klass_mask = Universe::verify_klass_mask();
 670     const int klass_bits = Universe::verify_klass_bits();
 671     __ mov(rdx, rax);
 672     __ andptr(rdx, klass_mask);
 673     __ cmpptr(rdx, klass_bits);
 674     __ jcc(Assembler::notZero, error);
 675 
 676     // make sure klass' klass is 'reasonable'
 677     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass' klass
 678     __ testptr(rax, rax);
 679     __ jcc(Assembler::zero, error);              // if klass' klass is NULL it is broken
 680 
 681     __ mov(rdx, rax);
 682     __ andptr(rdx, klass_mask);
 683     __ cmpptr(rdx, klass_bits);
 684     __ jcc(Assembler::notZero, error);           // if klass not in right area
 685                                                  // of memory it is broken too.
 686 
 687     // return if everything seems ok
 688     __ bind(exit);
 689     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
 690     __ pop(rdx);                                 // restore rdx
 691     __ popf();                                   // restore EFLAGS
 692     __ ret(3 * wordSize);                        // pop arguments
 693 
 694     // handle errors
 695     __ bind(error);
 696     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
 697     __ pop(rdx);                                 // get saved rdx back
 698     __ popf();                                   // get saved EFLAGS off stack -- will be ignored
 699     __ pusha();                                  // push registers (eip = return address & msg are already pushed)
 700     BLOCK_COMMENT("call MacroAssembler::debug");
 701     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 702     __ popa();
 703     __ ret(3 * wordSize);                        // pop arguments
 704     return start;
 705   }
 706 
 707   //
 708   //  Generate pre-barrier for array stores
 709   //
 710   //  Input:
 711   //     start   -  starting address
 712   //     count   -  element count
 713   void  gen_write_ref_array_pre_barrier(Register start, Register count) {
 714     assert_different_registers(start, count);
 715     BarrierSet* bs = Universe::heap()->barrier_set();
 716     switch (bs->kind()) {
 717       case BarrierSet::G1SATBCT:
 718       case BarrierSet::G1SATBCTLogging:
 719         {
 720           __ pusha();                      // push registers
 721           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
 722                           start, count);
 723           __ popa();
 724         }
 725         break;
 726       case BarrierSet::CardTableModRef:
 727       case BarrierSet::CardTableExtension:
 728       case BarrierSet::ModRef:
 729         break;
 730       default      :
 731         ShouldNotReachHere();
 732 
 733     }
 734   }
 735 
 736 
 737   //
 738   // Generate a post-barrier for an array store
 739   //
 740   //     start    -  starting address
 741   //     count    -  element count
 742   //
 743   //  The two input registers are overwritten.
 744   //
 745   void  gen_write_ref_array_post_barrier(Register start, Register count) {
 746     BarrierSet* bs = Universe::heap()->barrier_set();
 747     assert_different_registers(start, count);
 748     switch (bs->kind()) {
 749       case BarrierSet::G1SATBCT:
 750       case BarrierSet::G1SATBCTLogging:
 751         {
 752           __ pusha();                      // push registers
 753           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
 754                           start, count);
 755           __ popa();
 756         }
 757         break;
 758 
 759       case BarrierSet::CardTableModRef:
 760       case BarrierSet::CardTableExtension:
 761         {
 762           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
 763           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
 764 
 765           Label L_loop;
 766           const Register end = count;  // elements count; end == start+count-1
 767           assert_different_registers(start, end);
 768 
 769           __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
 770           __ shrptr(start, CardTableModRefBS::card_shift);
 771           __ shrptr(end,   CardTableModRefBS::card_shift);
 772           __ subptr(end, start); // end --> count
 773         __ BIND(L_loop);
 774           intptr_t disp = (intptr_t) ct->byte_map_base;
 775           Address cardtable(start, count, Address::times_1, disp);
 776           __ movb(cardtable, 0);
 777           __ decrement(count);
 778           __ jcc(Assembler::greaterEqual, L_loop);
 779         }
 780         break;
 781       case BarrierSet::ModRef:
 782         break;
 783       default      :
 784         ShouldNotReachHere();
 785 
 786     }
 787   }
 788 
 789 
 790   // Copy 64 bytes chunks
 791   //
 792   // Inputs:
 793   //   from        - source array address
 794   //   to_from     - destination array address - from
 795   //   qword_count - 8-bytes element count, negative
 796   //
 797   void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
 798     assert( UseSSE >= 2, "supported cpu only" );
 799     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
 800     // Copy 64-byte chunks
 801     __ jmpb(L_copy_64_bytes);
 802     __ align(16);
 803   __ BIND(L_copy_64_bytes_loop);
 804 
 805     if(UseUnalignedLoadStores) {
 806       __ movdqu(xmm0, Address(from, 0));
 807       __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
 808       __ movdqu(xmm1, Address(from, 16));
 809       __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
 810       __ movdqu(xmm2, Address(from, 32));
 811       __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
 812       __ movdqu(xmm3, Address(from, 48));
 813       __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
 814 
 815     } else {
 816       __ movq(xmm0, Address(from, 0));
 817       __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
 818       __ movq(xmm1, Address(from, 8));
 819       __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
 820       __ movq(xmm2, Address(from, 16));
 821       __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
 822       __ movq(xmm3, Address(from, 24));
 823       __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
 824       __ movq(xmm4, Address(from, 32));
 825       __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
 826       __ movq(xmm5, Address(from, 40));
 827       __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
 828       __ movq(xmm6, Address(from, 48));
 829       __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
 830       __ movq(xmm7, Address(from, 56));
 831       __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
 832     }
 833 
 834     __ addl(from, 64);
 835   __ BIND(L_copy_64_bytes);
 836     __ subl(qword_count, 8);
 837     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
 838     __ addl(qword_count, 8);
 839     __ jccb(Assembler::zero, L_exit);
 840     //
 841     // length is too short, just copy qwords
 842     //
 843   __ BIND(L_copy_8_bytes);
 844     __ movq(xmm0, Address(from, 0));
 845     __ movq(Address(from, to_from, Address::times_1), xmm0);
 846     __ addl(from, 8);
 847     __ decrement(qword_count);
 848     __ jcc(Assembler::greater, L_copy_8_bytes);
 849   __ BIND(L_exit);
 850   }
 851 
 852   // Copy 64 bytes chunks
 853   //
 854   // Inputs:
 855   //   from        - source array address
 856   //   to_from     - destination array address - from
 857   //   qword_count - 8-bytes element count, negative
 858   //
 859   void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
 860     assert( VM_Version::supports_mmx(), "supported cpu only" );
 861     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
 862     // Copy 64-byte chunks
 863     __ jmpb(L_copy_64_bytes);
 864     __ align(16);
 865   __ BIND(L_copy_64_bytes_loop);
 866     __ movq(mmx0, Address(from, 0));
 867     __ movq(mmx1, Address(from, 8));
 868     __ movq(mmx2, Address(from, 16));
 869     __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
 870     __ movq(mmx3, Address(from, 24));
 871     __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
 872     __ movq(mmx4, Address(from, 32));
 873     __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
 874     __ movq(mmx5, Address(from, 40));
 875     __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
 876     __ movq(mmx6, Address(from, 48));
 877     __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
 878     __ movq(mmx7, Address(from, 56));
 879     __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
 880     __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
 881     __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
 882     __ addptr(from, 64);
 883   __ BIND(L_copy_64_bytes);
 884     __ subl(qword_count, 8);
 885     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
 886     __ addl(qword_count, 8);
 887     __ jccb(Assembler::zero, L_exit);
 888     //
 889     // length is too short, just copy qwords
 890     //
 891   __ BIND(L_copy_8_bytes);
 892     __ movq(mmx0, Address(from, 0));
 893     __ movq(Address(from, to_from, Address::times_1), mmx0);
 894     __ addptr(from, 8);
 895     __ decrement(qword_count);
 896     __ jcc(Assembler::greater, L_copy_8_bytes);
 897   __ BIND(L_exit);
 898     __ emms();
 899   }
 900 
 901   address generate_disjoint_copy(BasicType t, bool aligned,
 902                                  Address::ScaleFactor sf,
 903                                  address* entry, const char *name) {
 904     __ align(CodeEntryAlignment);
 905     StubCodeMark mark(this, "StubRoutines", name);
 906     address start = __ pc();
 907 
 908     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
 909     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
 910 
 911     int shift = Address::times_ptr - sf;
 912 
 913     const Register from     = rsi;  // source array address
 914     const Register to       = rdi;  // destination array address
 915     const Register count    = rcx;  // elements count
 916     const Register to_from  = to;   // (to - from)
 917     const Register saved_to = rdx;  // saved destination array address
 918 
 919     __ enter(); // required for proper stackwalking of RuntimeStub frame
 920     __ push(rsi);
 921     __ push(rdi);
 922     __ movptr(from , Address(rsp, 12+ 4));
 923     __ movptr(to   , Address(rsp, 12+ 8));
 924     __ movl(count, Address(rsp, 12+ 12));
 925     if (t == T_OBJECT) {
 926       __ testl(count, count);
 927       __ jcc(Assembler::zero, L_0_count);
 928       gen_write_ref_array_pre_barrier(to, count);
 929       __ mov(saved_to, to);          // save 'to'
 930     }
 931 
 932     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
 933     BLOCK_COMMENT("Entry:");
 934 
 935     __ subptr(to, from); // to --> to_from
 936     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
 937     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
 938     if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
 939       // align source address at 4 bytes address boundary
 940       if (t == T_BYTE) {
 941         // One byte misalignment happens only for byte arrays
 942         __ testl(from, 1);
 943         __ jccb(Assembler::zero, L_skip_align1);
 944         __ movb(rax, Address(from, 0));
 945         __ movb(Address(from, to_from, Address::times_1, 0), rax);
 946         __ increment(from);
 947         __ decrement(count);
 948       __ BIND(L_skip_align1);
 949       }
 950       // Two bytes misalignment happens only for byte and short (char) arrays
 951       __ testl(from, 2);
 952       __ jccb(Assembler::zero, L_skip_align2);
 953       __ movw(rax, Address(from, 0));
 954       __ movw(Address(from, to_from, Address::times_1, 0), rax);
 955       __ addptr(from, 2);
 956       __ subl(count, 1<<(shift-1));
 957     __ BIND(L_skip_align2);
 958     }
 959     if (!VM_Version::supports_mmx()) {
 960       __ mov(rax, count);      // save 'count'
 961       __ shrl(count, shift); // bytes count
 962       __ addptr(to_from, from);// restore 'to'
 963       __ rep_mov();
 964       __ subptr(to_from, from);// restore 'to_from'
 965       __ mov(count, rax);      // restore 'count'
 966       __ jmpb(L_copy_2_bytes); // all dwords were copied
 967     } else {
 968       if (!UseUnalignedLoadStores) {
 969         // align to 8 bytes, we know we are 4 byte aligned to start
 970         __ testptr(from, 4);
 971         __ jccb(Assembler::zero, L_copy_64_bytes);
 972         __ movl(rax, Address(from, 0));
 973         __ movl(Address(from, to_from, Address::times_1, 0), rax);
 974         __ addptr(from, 4);
 975         __ subl(count, 1<<shift);
 976       }
 977     __ BIND(L_copy_64_bytes);
 978       __ mov(rax, count);
 979       __ shrl(rax, shift+1);  // 8 bytes chunk count
 980       //
 981       // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
 982       //
 983       if (UseXMMForArrayCopy) {
 984         xmm_copy_forward(from, to_from, rax);
 985       } else {
 986         mmx_copy_forward(from, to_from, rax);
 987       }
 988     }
 989     // copy tailing dword
 990   __ BIND(L_copy_4_bytes);
 991     __ testl(count, 1<<shift);
 992     __ jccb(Assembler::zero, L_copy_2_bytes);
 993     __ movl(rax, Address(from, 0));
 994     __ movl(Address(from, to_from, Address::times_1, 0), rax);
 995     if (t == T_BYTE || t == T_SHORT) {
 996       __ addptr(from, 4);
 997     __ BIND(L_copy_2_bytes);
 998       // copy tailing word
 999       __ testl(count, 1<<(shift-1));
1000       __ jccb(Assembler::zero, L_copy_byte);
1001       __ movw(rax, Address(from, 0));
1002       __ movw(Address(from, to_from, Address::times_1, 0), rax);
1003       if (t == T_BYTE) {
1004         __ addptr(from, 2);
1005       __ BIND(L_copy_byte);
1006         // copy tailing byte
1007         __ testl(count, 1);
1008         __ jccb(Assembler::zero, L_exit);
1009         __ movb(rax, Address(from, 0));
1010         __ movb(Address(from, to_from, Address::times_1, 0), rax);
1011       __ BIND(L_exit);
1012       } else {
1013       __ BIND(L_copy_byte);
1014       }
1015     } else {
1016     __ BIND(L_copy_2_bytes);
1017     }
1018 
1019     if (t == T_OBJECT) {
1020       __ movl(count, Address(rsp, 12+12)); // reread 'count'
1021       __ mov(to, saved_to); // restore 'to'
1022       gen_write_ref_array_post_barrier(to, count);
1023     __ BIND(L_0_count);
1024     }
1025     inc_copy_counter_np(t);
1026     __ pop(rdi);
1027     __ pop(rsi);
1028     __ leave(); // required for proper stackwalking of RuntimeStub frame
1029     __ xorptr(rax, rax); // return 0
1030     __ ret(0);
1031     return start;
1032   }
1033 
1034 
1035   address generate_conjoint_copy(BasicType t, bool aligned,
1036                                  Address::ScaleFactor sf,
1037                                  address nooverlap_target,
1038                                  address* entry, const char *name) {
1039     __ align(CodeEntryAlignment);
1040     StubCodeMark mark(this, "StubRoutines", name);
1041     address start = __ pc();
1042 
1043     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
1044     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
1045 
1046     int shift = Address::times_ptr - sf;
1047 
1048     const Register src   = rax;  // source array address
1049     const Register dst   = rdx;  // destination array address
1050     const Register from  = rsi;  // source array address
1051     const Register to    = rdi;  // destination array address
1052     const Register count = rcx;  // elements count
1053     const Register end   = rax;  // array end address
1054 
1055     __ enter(); // required for proper stackwalking of RuntimeStub frame
1056     __ push(rsi);
1057     __ push(rdi);
1058     __ movptr(src  , Address(rsp, 12+ 4));   // from
1059     __ movptr(dst  , Address(rsp, 12+ 8));   // to
1060     __ movl2ptr(count, Address(rsp, 12+12)); // count
1061     if (t == T_OBJECT) {
1062        gen_write_ref_array_pre_barrier(dst, count);
1063     }
1064 
1065     if (entry != NULL) {
1066       *entry = __ pc(); // Entry point from generic arraycopy stub.
1067       BLOCK_COMMENT("Entry:");
1068     }
1069 
1070     if (t == T_OBJECT) {
1071       __ testl(count, count);
1072       __ jcc(Assembler::zero, L_0_count);
1073     }
1074     __ mov(from, src);
1075     __ mov(to  , dst);
1076 
1077     // arrays overlap test
1078     RuntimeAddress nooverlap(nooverlap_target);
1079     __ cmpptr(dst, src);
1080     __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
1081     __ jump_cc(Assembler::belowEqual, nooverlap);
1082     __ cmpptr(dst, end);
1083     __ jump_cc(Assembler::aboveEqual, nooverlap);
1084 
1085     // copy from high to low
1086     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
1087     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
1088     if (t == T_BYTE || t == T_SHORT) {
1089       // Align the end of destination array at 4 bytes address boundary
1090       __ lea(end, Address(dst, count, sf, 0));
1091       if (t == T_BYTE) {
1092         // One byte misalignment happens only for byte arrays
1093         __ testl(end, 1);
1094         __ jccb(Assembler::zero, L_skip_align1);
1095         __ decrement(count);
1096         __ movb(rdx, Address(from, count, sf, 0));
1097         __ movb(Address(to, count, sf, 0), rdx);
1098       __ BIND(L_skip_align1);
1099       }
1100       // Two bytes misalignment happens only for byte and short (char) arrays
1101       __ testl(end, 2);
1102       __ jccb(Assembler::zero, L_skip_align2);
1103       __ subptr(count, 1<<(shift-1));
1104       __ movw(rdx, Address(from, count, sf, 0));
1105       __ movw(Address(to, count, sf, 0), rdx);
1106     __ BIND(L_skip_align2);
1107       __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
1108       __ jcc(Assembler::below, L_copy_4_bytes);
1109     }
1110 
1111     if (!VM_Version::supports_mmx()) {
1112       __ std();
1113       __ mov(rax, count); // Save 'count'
1114       __ mov(rdx, to);    // Save 'to'
1115       __ lea(rsi, Address(from, count, sf, -4));
1116       __ lea(rdi, Address(to  , count, sf, -4));
1117       __ shrptr(count, shift); // bytes count
1118       __ rep_mov();
1119       __ cld();
1120       __ mov(count, rax); // restore 'count'
1121       __ andl(count, (1<<shift)-1);      // mask the number of rest elements
1122       __ movptr(from, Address(rsp, 12+4)); // reread 'from'
1123       __ mov(to, rdx);   // restore 'to'
1124       __ jmpb(L_copy_2_bytes); // all dword were copied
1125    } else {
1126       // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
1127       __ testptr(end, 4);
1128       __ jccb(Assembler::zero, L_copy_8_bytes);
1129       __ subl(count, 1<<shift);
1130       __ movl(rdx, Address(from, count, sf, 0));
1131       __ movl(Address(to, count, sf, 0), rdx);
1132       __ jmpb(L_copy_8_bytes);
1133 
1134       __ align(16);
1135       // Move 8 bytes
1136     __ BIND(L_copy_8_bytes_loop);
1137       if (UseXMMForArrayCopy) {
1138         __ movq(xmm0, Address(from, count, sf, 0));
1139         __ movq(Address(to, count, sf, 0), xmm0);
1140       } else {
1141         __ movq(mmx0, Address(from, count, sf, 0));
1142         __ movq(Address(to, count, sf, 0), mmx0);
1143       }
1144     __ BIND(L_copy_8_bytes);
1145       __ subl(count, 2<<shift);
1146       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1147       __ addl(count, 2<<shift);
1148       if (!UseXMMForArrayCopy) {
1149         __ emms();
1150       }
1151     }
1152   __ BIND(L_copy_4_bytes);
1153     // copy prefix qword
1154     __ testl(count, 1<<shift);
1155     __ jccb(Assembler::zero, L_copy_2_bytes);
1156     __ movl(rdx, Address(from, count, sf, -4));
1157     __ movl(Address(to, count, sf, -4), rdx);
1158 
1159     if (t == T_BYTE || t == T_SHORT) {
1160         __ subl(count, (1<<shift));
1161       __ BIND(L_copy_2_bytes);
1162         // copy prefix dword
1163         __ testl(count, 1<<(shift-1));
1164         __ jccb(Assembler::zero, L_copy_byte);
1165         __ movw(rdx, Address(from, count, sf, -2));
1166         __ movw(Address(to, count, sf, -2), rdx);
1167         if (t == T_BYTE) {
1168           __ subl(count, 1<<(shift-1));
1169         __ BIND(L_copy_byte);
1170           // copy prefix byte
1171           __ testl(count, 1);
1172           __ jccb(Assembler::zero, L_exit);
1173           __ movb(rdx, Address(from, 0));
1174           __ movb(Address(to, 0), rdx);
1175         __ BIND(L_exit);
1176         } else {
1177         __ BIND(L_copy_byte);
1178         }
1179     } else {
1180     __ BIND(L_copy_2_bytes);
1181     }
1182     if (t == T_OBJECT) {
1183       __ movl2ptr(count, Address(rsp, 12+12)); // reread count
1184       gen_write_ref_array_post_barrier(to, count);
1185     __ BIND(L_0_count);
1186     }
1187     inc_copy_counter_np(t);
1188     __ pop(rdi);
1189     __ pop(rsi);
1190     __ leave(); // required for proper stackwalking of RuntimeStub frame
1191     __ xorptr(rax, rax); // return 0
1192     __ ret(0);
1193     return start;
1194   }
1195 
1196 
1197   address generate_disjoint_long_copy(address* entry, const char *name) {
1198     __ align(CodeEntryAlignment);
1199     StubCodeMark mark(this, "StubRoutines", name);
1200     address start = __ pc();
1201 
1202     Label L_copy_8_bytes, L_copy_8_bytes_loop;
1203     const Register from       = rax;  // source array address
1204     const Register to         = rdx;  // destination array address
1205     const Register count      = rcx;  // elements count
1206     const Register to_from    = rdx;  // (to - from)
1207 
1208     __ enter(); // required for proper stackwalking of RuntimeStub frame
1209     __ movptr(from , Address(rsp, 8+0));       // from
1210     __ movptr(to   , Address(rsp, 8+4));       // to
1211     __ movl2ptr(count, Address(rsp, 8+8));     // count
1212 
1213     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
1214     BLOCK_COMMENT("Entry:");
1215 
1216     __ subptr(to, from); // to --> to_from
1217     if (VM_Version::supports_mmx()) {
1218       if (UseXMMForArrayCopy) {
1219         xmm_copy_forward(from, to_from, count);
1220       } else {
1221         mmx_copy_forward(from, to_from, count);
1222       }
1223     } else {
1224       __ jmpb(L_copy_8_bytes);
1225       __ align(16);
1226     __ BIND(L_copy_8_bytes_loop);
1227       __ fild_d(Address(from, 0));
1228       __ fistp_d(Address(from, to_from, Address::times_1));
1229       __ addptr(from, 8);
1230     __ BIND(L_copy_8_bytes);
1231       __ decrement(count);
1232       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1233     }
1234     inc_copy_counter_np(T_LONG);
1235     __ leave(); // required for proper stackwalking of RuntimeStub frame
1236     __ xorptr(rax, rax); // return 0
1237     __ ret(0);
1238     return start;
1239   }
1240 
1241   address generate_conjoint_long_copy(address nooverlap_target,
1242                                       address* entry, const char *name) {
1243     __ align(CodeEntryAlignment);
1244     StubCodeMark mark(this, "StubRoutines", name);
1245     address start = __ pc();
1246 
1247     Label L_copy_8_bytes, L_copy_8_bytes_loop;
1248     const Register from       = rax;  // source array address
1249     const Register to         = rdx;  // destination array address
1250     const Register count      = rcx;  // elements count
1251     const Register end_from   = rax;  // source array end address
1252 
1253     __ enter(); // required for proper stackwalking of RuntimeStub frame
1254     __ movptr(from , Address(rsp, 8+0));       // from
1255     __ movptr(to   , Address(rsp, 8+4));       // to
1256     __ movl2ptr(count, Address(rsp, 8+8));     // count
1257 
1258     *entry = __ pc(); // Entry point from generic arraycopy stub.
1259     BLOCK_COMMENT("Entry:");
1260 
1261     // arrays overlap test
1262     __ cmpptr(to, from);
1263     RuntimeAddress nooverlap(nooverlap_target);
1264     __ jump_cc(Assembler::belowEqual, nooverlap);
1265     __ lea(end_from, Address(from, count, Address::times_8, 0));
1266     __ cmpptr(to, end_from);
1267     __ movptr(from, Address(rsp, 8));  // from
1268     __ jump_cc(Assembler::aboveEqual, nooverlap);
1269 
1270     __ jmpb(L_copy_8_bytes);
1271 
1272     __ align(16);
1273   __ BIND(L_copy_8_bytes_loop);
1274     if (VM_Version::supports_mmx()) {
1275       if (UseXMMForArrayCopy) {
1276         __ movq(xmm0, Address(from, count, Address::times_8));
1277         __ movq(Address(to, count, Address::times_8), xmm0);
1278       } else {
1279         __ movq(mmx0, Address(from, count, Address::times_8));
1280         __ movq(Address(to, count, Address::times_8), mmx0);
1281       }
1282     } else {
1283       __ fild_d(Address(from, count, Address::times_8));
1284       __ fistp_d(Address(to, count, Address::times_8));
1285     }
1286   __ BIND(L_copy_8_bytes);
1287     __ decrement(count);
1288     __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1289 
1290     if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
1291       __ emms();
1292     }
1293     inc_copy_counter_np(T_LONG);
1294     __ leave(); // required for proper stackwalking of RuntimeStub frame
1295     __ xorptr(rax, rax); // return 0
1296     __ ret(0);
1297     return start;
1298   }
1299 
1300 
1301   // Helper for generating a dynamic type check.
1302   // The sub_klass must be one of {rbx, rdx, rsi}.
1303   // The temp is killed.
1304   void generate_type_check(Register sub_klass,
1305                            Address& super_check_offset_addr,
1306                            Address& super_klass_addr,
1307                            Register temp,
1308                            Label* L_success, Label* L_failure) {
1309     BLOCK_COMMENT("type_check:");
1310 
1311     Label L_fallthrough;
1312 #define LOCAL_JCC(assembler_con, label_ptr)                             \
1313     if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
1314     else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/
1315 
1316     // The following is a strange variation of the fast path which requires
1317     // one less register, because needed values are on the argument stack.
1318     // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
1319     //                                  L_success, L_failure, NULL);
1320     assert_different_registers(sub_klass, temp);
1321 
1322     int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
1323                      Klass::secondary_super_cache_offset_in_bytes());
1324 
1325     // if the pointers are equal, we are done (e.g., String[] elements)
1326     __ cmpptr(sub_klass, super_klass_addr);
1327     LOCAL_JCC(Assembler::equal, L_success);
1328 
1329     // check the supertype display:
1330     __ movl2ptr(temp, super_check_offset_addr);
1331     Address super_check_addr(sub_klass, temp, Address::times_1, 0);
1332     __ movptr(temp, super_check_addr); // load displayed supertype
1333     __ cmpptr(temp, super_klass_addr); // test the super type
1334     LOCAL_JCC(Assembler::equal, L_success);
1335 
1336     // if it was a primary super, we can just fail immediately
1337     __ cmpl(super_check_offset_addr, sc_offset);
1338     LOCAL_JCC(Assembler::notEqual, L_failure);
1339 
1340     // The repne_scan instruction uses fixed registers, which will get spilled.
1341     // We happen to know this works best when super_klass is in rax.
1342     Register super_klass = temp;
1343     __ movptr(super_klass, super_klass_addr);
1344     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
1345                                      L_success, L_failure);
1346 
1347     __ bind(L_fallthrough);
1348 
1349     if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
1350     if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
1351 
1352 #undef LOCAL_JCC
1353   }
1354 
1355   //
1356   //  Generate checkcasting array copy stub
1357   //
1358   //  Input:
1359   //    4(rsp)   - source array address
1360   //    8(rsp)   - destination array address
1361   //   12(rsp)   - element count, can be zero
1362   //   16(rsp)   - size_t ckoff (super_check_offset)
1363   //   20(rsp)   - oop ckval (super_klass)
1364   //
1365   //  Output:
1366   //    rax, ==  0  -  success
1367   //    rax, == -1^K - failure, where K is partial transfer count
1368   //
1369   address generate_checkcast_copy(const char *name, address* entry) {
1370     __ align(CodeEntryAlignment);
1371     StubCodeMark mark(this, "StubRoutines", name);
1372     address start = __ pc();
1373 
1374     Label L_load_element, L_store_element, L_do_card_marks, L_done;
1375 
1376     // register use:
1377     //  rax, rdx, rcx -- loop control (end_from, end_to, count)
1378     //  rdi, rsi      -- element access (oop, klass)
1379     //  rbx,           -- temp
1380     const Register from       = rax;    // source array address
1381     const Register to         = rdx;    // destination array address
1382     const Register length     = rcx;    // elements count
1383     const Register elem       = rdi;    // each oop copied
1384     const Register elem_klass = rsi;    // each elem._klass (sub_klass)
1385     const Register temp       = rbx;    // lone remaining temp
1386 
1387     __ enter(); // required for proper stackwalking of RuntimeStub frame
1388 
1389     __ push(rsi);
1390     __ push(rdi);
1391     __ push(rbx);
1392 
1393     Address   from_arg(rsp, 16+ 4);     // from
1394     Address     to_arg(rsp, 16+ 8);     // to
1395     Address length_arg(rsp, 16+12);     // elements count
1396     Address  ckoff_arg(rsp, 16+16);     // super_check_offset
1397     Address  ckval_arg(rsp, 16+20);     // super_klass
1398 
1399     // Load up:
1400     __ movptr(from,     from_arg);
1401     __ movptr(to,         to_arg);
1402     __ movl2ptr(length, length_arg);
1403 
1404     *entry = __ pc(); // Entry point from generic arraycopy stub.
1405     BLOCK_COMMENT("Entry:");
1406 
1407     //---------------------------------------------------------------
1408     // Assembler stub will be used for this call to arraycopy
1409     // if the two arrays are subtypes of Object[] but the
1410     // destination array type is not equal to or a supertype
1411     // of the source type.  Each element must be separately
1412     // checked.
1413 
1414     // Loop-invariant addresses.  They are exclusive end pointers.
1415     Address end_from_addr(from, length, Address::times_ptr, 0);
1416     Address   end_to_addr(to,   length, Address::times_ptr, 0);
1417 
1418     Register end_from = from;           // re-use
1419     Register end_to   = to;             // re-use
1420     Register count    = length;         // re-use
1421 
1422     // Loop-variant addresses.  They assume post-incremented count < 0.
1423     Address from_element_addr(end_from, count, Address::times_ptr, 0);
1424     Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
1425     Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
1426 
1427     // Copy from low to high addresses, indexed from the end of each array.
1428     gen_write_ref_array_pre_barrier(to, count);
1429     __ lea(end_from, end_from_addr);
1430     __ lea(end_to,   end_to_addr);
1431     assert(length == count, "");        // else fix next line:
1432     __ negptr(count);                   // negate and test the length
1433     __ jccb(Assembler::notZero, L_load_element);
1434 
1435     // Empty array:  Nothing to do.
1436     __ xorptr(rax, rax);                  // return 0 on (trivial) success
1437     __ jmp(L_done);
1438 
1439     // ======== begin loop ========
1440     // (Loop is rotated; its entry is L_load_element.)
1441     // Loop control:
1442     //   for (count = -count; count != 0; count++)
1443     // Base pointers src, dst are biased by 8*count,to last element.
1444     __ align(16);
1445 
1446     __ BIND(L_store_element);
1447     __ movptr(to_element_addr, elem);     // store the oop
1448     __ increment(count);                // increment the count toward zero
1449     __ jccb(Assembler::zero, L_do_card_marks);
1450 
1451     // ======== loop entry is here ========
1452     __ BIND(L_load_element);
1453     __ movptr(elem, from_element_addr);   // load the oop
1454     __ testptr(elem, elem);
1455     __ jccb(Assembler::zero, L_store_element);
1456 
1457     // (Could do a trick here:  Remember last successful non-null
1458     // element stored and make a quick oop equality check on it.)
1459 
1460     __ movptr(elem_klass, elem_klass_addr); // query the object klass
1461     generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
1462                         &L_store_element, NULL);
1463       // (On fall-through, we have failed the element type check.)
1464     // ======== end loop ========
1465 
1466     // It was a real error; we must depend on the caller to finish the job.
1467     // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
1468     // Emit GC store barriers for the oops we have copied (length_arg + count),
1469     // and report their number to the caller.
1470     __ addl(count, length_arg);         // transfers = (length - remaining)
1471     __ movl2ptr(rax, count);            // save the value
1472     __ notptr(rax);                     // report (-1^K) to caller
1473     __ movptr(to, to_arg);              // reload
1474     assert_different_registers(to, count, rax);
1475     gen_write_ref_array_post_barrier(to, count);
1476     __ jmpb(L_done);
1477 
1478     // Come here on success only.
1479     __ BIND(L_do_card_marks);
1480     __ movl2ptr(count, length_arg);
1481     __ movptr(to, to_arg);                // reload
1482     gen_write_ref_array_post_barrier(to, count);
1483     __ xorptr(rax, rax);                  // return 0 on success
1484 
1485     // Common exit point (success or failure).
1486     __ BIND(L_done);
1487     __ pop(rbx);
1488     __ pop(rdi);
1489     __ pop(rsi);
1490     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
1491     __ leave(); // required for proper stackwalking of RuntimeStub frame
1492     __ ret(0);
1493 
1494     return start;
1495   }
1496 
1497   //
1498   //  Generate 'unsafe' array copy stub
1499   //  Though just as safe as the other stubs, it takes an unscaled
1500   //  size_t argument instead of an element count.
1501   //
1502   //  Input:
1503   //    4(rsp)   - source array address
1504   //    8(rsp)   - destination array address
1505   //   12(rsp)   - byte count, can be zero
1506   //
1507   //  Output:
1508   //    rax, ==  0  -  success
1509   //    rax, == -1  -  need to call System.arraycopy
1510   //
1511   // Examines the alignment of the operands and dispatches
1512   // to a long, int, short, or byte copy loop.
1513   //
1514   address generate_unsafe_copy(const char *name,
1515                                address byte_copy_entry,
1516                                address short_copy_entry,
1517                                address int_copy_entry,
1518                                address long_copy_entry) {
1519 
1520     Label L_long_aligned, L_int_aligned, L_short_aligned;
1521 
1522     __ align(CodeEntryAlignment);
1523     StubCodeMark mark(this, "StubRoutines", name);
1524     address start = __ pc();
1525 
1526     const Register from       = rax;  // source array address
1527     const Register to         = rdx;  // destination array address
1528     const Register count      = rcx;  // elements count
1529 
1530     __ enter(); // required for proper stackwalking of RuntimeStub frame
1531     __ push(rsi);
1532     __ push(rdi);
1533     Address  from_arg(rsp, 12+ 4);      // from
1534     Address    to_arg(rsp, 12+ 8);      // to
1535     Address count_arg(rsp, 12+12);      // byte count
1536 
1537     // Load up:
1538     __ movptr(from ,  from_arg);
1539     __ movptr(to   ,    to_arg);
1540     __ movl2ptr(count, count_arg);
1541 
1542     // bump this on entry, not on exit:
1543     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
1544 
1545     const Register bits = rsi;
1546     __ mov(bits, from);
1547     __ orptr(bits, to);
1548     __ orptr(bits, count);
1549 
1550     __ testl(bits, BytesPerLong-1);
1551     __ jccb(Assembler::zero, L_long_aligned);
1552 
1553     __ testl(bits, BytesPerInt-1);
1554     __ jccb(Assembler::zero, L_int_aligned);
1555 
1556     __ testl(bits, BytesPerShort-1);
1557     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
1558 
1559     __ BIND(L_short_aligned);
1560     __ shrptr(count, LogBytesPerShort); // size => short_count
1561     __ movl(count_arg, count);          // update 'count'
1562     __ jump(RuntimeAddress(short_copy_entry));
1563 
1564     __ BIND(L_int_aligned);
1565     __ shrptr(count, LogBytesPerInt); // size => int_count
1566     __ movl(count_arg, count);          // update 'count'
1567     __ jump(RuntimeAddress(int_copy_entry));
1568 
1569     __ BIND(L_long_aligned);
1570     __ shrptr(count, LogBytesPerLong); // size => qword_count
1571     __ movl(count_arg, count);          // update 'count'
1572     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
1573     __ pop(rsi);
1574     __ jump(RuntimeAddress(long_copy_entry));
1575 
1576     return start;
1577   }
1578 
1579 
1580   // Perform range checks on the proposed arraycopy.
1581   // Smashes src_pos and dst_pos.  (Uses them up for temps.)
1582   void arraycopy_range_checks(Register src,
1583                               Register src_pos,
1584                               Register dst,
1585                               Register dst_pos,
1586                               Address& length,
1587                               Label& L_failed) {
1588     BLOCK_COMMENT("arraycopy_range_checks:");
1589     const Register src_end = src_pos;   // source array end position
1590     const Register dst_end = dst_pos;   // destination array end position
1591     __ addl(src_end, length); // src_pos + length
1592     __ addl(dst_end, length); // dst_pos + length
1593 
1594     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
1595     __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
1596     __ jcc(Assembler::above, L_failed);
1597 
1598     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
1599     __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
1600     __ jcc(Assembler::above, L_failed);
1601 
1602     BLOCK_COMMENT("arraycopy_range_checks done");
1603   }
1604 
1605 
1606   //
1607   //  Generate generic array copy stubs
1608   //
1609   //  Input:
1610   //     4(rsp)    -  src oop
1611   //     8(rsp)    -  src_pos
1612   //    12(rsp)    -  dst oop
1613   //    16(rsp)    -  dst_pos
1614   //    20(rsp)    -  element count
1615   //
1616   //  Output:
1617   //    rax, ==  0  -  success
1618   //    rax, == -1^K - failure, where K is partial transfer count
1619   //
1620   address generate_generic_copy(const char *name,
1621                                 address entry_jbyte_arraycopy,
1622                                 address entry_jshort_arraycopy,
1623                                 address entry_jint_arraycopy,
1624                                 address entry_oop_arraycopy,
1625                                 address entry_jlong_arraycopy,
1626                                 address entry_checkcast_arraycopy) {
1627     Label L_failed, L_failed_0, L_objArray;
1628 
1629     { int modulus = CodeEntryAlignment;
1630       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
1631       int advance = target - (__ offset() % modulus);
1632       if (advance < 0)  advance += modulus;
1633       if (advance > 0)  __ nop(advance);
1634     }
1635     StubCodeMark mark(this, "StubRoutines", name);
1636 
1637     // Short-hop target to L_failed.  Makes for denser prologue code.
1638     __ BIND(L_failed_0);
1639     __ jmp(L_failed);
1640     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
1641 
1642     __ align(CodeEntryAlignment);
1643     address start = __ pc();
1644 
1645     __ enter(); // required for proper stackwalking of RuntimeStub frame
1646     __ push(rsi);
1647     __ push(rdi);
1648 
1649     // bump this on entry, not on exit:
1650     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
1651 
1652     // Input values
1653     Address SRC     (rsp, 12+ 4);
1654     Address SRC_POS (rsp, 12+ 8);
1655     Address DST     (rsp, 12+12);
1656     Address DST_POS (rsp, 12+16);
1657     Address LENGTH  (rsp, 12+20);
1658 
1659     //-----------------------------------------------------------------------
1660     // Assembler stub will be used for this call to arraycopy
1661     // if the following conditions are met:
1662     //
1663     // (1) src and dst must not be null.
1664     // (2) src_pos must not be negative.
1665     // (3) dst_pos must not be negative.
1666     // (4) length  must not be negative.
1667     // (5) src klass and dst klass should be the same and not NULL.
1668     // (6) src and dst should be arrays.
1669     // (7) src_pos + length must not exceed length of src.
1670     // (8) dst_pos + length must not exceed length of dst.
1671     //
1672 
1673     const Register src     = rax;       // source array oop
1674     const Register src_pos = rsi;
1675     const Register dst     = rdx;       // destination array oop
1676     const Register dst_pos = rdi;
1677     const Register length  = rcx;       // transfer count
1678 
1679     //  if (src == NULL) return -1;
1680     __ movptr(src, SRC);      // src oop
1681     __ testptr(src, src);
1682     __ jccb(Assembler::zero, L_failed_0);
1683 
1684     //  if (src_pos < 0) return -1;
1685     __ movl2ptr(src_pos, SRC_POS);  // src_pos
1686     __ testl(src_pos, src_pos);
1687     __ jccb(Assembler::negative, L_failed_0);
1688 
1689     //  if (dst == NULL) return -1;
1690     __ movptr(dst, DST);      // dst oop
1691     __ testptr(dst, dst);
1692     __ jccb(Assembler::zero, L_failed_0);
1693 
1694     //  if (dst_pos < 0) return -1;
1695     __ movl2ptr(dst_pos, DST_POS);  // dst_pos
1696     __ testl(dst_pos, dst_pos);
1697     __ jccb(Assembler::negative, L_failed_0);
1698 
1699     //  if (length < 0) return -1;
1700     __ movl2ptr(length, LENGTH);   // length
1701     __ testl(length, length);
1702     __ jccb(Assembler::negative, L_failed_0);
1703 
1704     //  if (src->klass() == NULL) return -1;
1705     Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
1706     Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
1707     const Register rcx_src_klass = rcx;    // array klass
1708     __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
1709 
1710 #ifdef ASSERT
1711     //  assert(src->klass() != NULL);
1712     BLOCK_COMMENT("assert klasses not null");
1713     { Label L1, L2;
1714       __ testptr(rcx_src_klass, rcx_src_klass);
1715       __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
1716       __ bind(L1);
1717       __ stop("broken null klass");
1718       __ bind(L2);
1719       __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
1720       __ jccb(Assembler::equal, L1);      // this would be broken also
1721       BLOCK_COMMENT("assert done");
1722     }
1723 #endif //ASSERT
1724 
1725     // Load layout helper (32-bits)
1726     //
1727     //  |array_tag|     | header_size | element_type |     |log2_element_size|
1728     // 32        30    24            16              8     2                 0
1729     //
1730     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
1731     //
1732 
1733     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
1734                     Klass::layout_helper_offset_in_bytes();
1735     Address src_klass_lh_addr(rcx_src_klass, lh_offset);
1736 
1737     // Handle objArrays completely differently...
1738     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
1739     __ cmpl(src_klass_lh_addr, objArray_lh);
1740     __ jcc(Assembler::equal, L_objArray);
1741 
1742     //  if (src->klass() != dst->klass()) return -1;
1743     __ cmpptr(rcx_src_klass, dst_klass_addr);
1744     __ jccb(Assembler::notEqual, L_failed_0);
1745 
1746     const Register rcx_lh = rcx;  // layout helper
1747     assert(rcx_lh == rcx_src_klass, "known alias");
1748     __ movl(rcx_lh, src_klass_lh_addr);
1749 
1750     //  if (!src->is_Array()) return -1;
1751     __ cmpl(rcx_lh, Klass::_lh_neutral_value);
1752     __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
1753 
1754     // At this point, it is known to be a typeArray (array_tag 0x3).
1755 #ifdef ASSERT
1756     { Label L;
1757       __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
1758       __ jcc(Assembler::greaterEqual, L); // signed cmp
1759       __ stop("must be a primitive array");
1760       __ bind(L);
1761     }
1762 #endif
1763 
1764     assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
1765     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1766 
1767     // typeArrayKlass
1768     //
1769     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
1770     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
1771     //
1772     const Register rsi_offset = rsi; // array offset
1773     const Register src_array  = src; // src array offset
1774     const Register dst_array  = dst; // dst array offset
1775     const Register rdi_elsize = rdi; // log2 element size
1776 
1777     __ mov(rsi_offset, rcx_lh);
1778     __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
1779     __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
1780     __ addptr(src_array, rsi_offset);  // src array offset
1781     __ addptr(dst_array, rsi_offset);  // dst array offset
1782     __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
1783 
1784     // next registers should be set before the jump to corresponding stub
1785     const Register from       = src; // source array address
1786     const Register to         = dst; // destination array address
1787     const Register count      = rcx; // elements count
1788     // some of them should be duplicated on stack
1789 #define FROM   Address(rsp, 12+ 4)
1790 #define TO     Address(rsp, 12+ 8)   // Not used now
1791 #define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
1792 
1793     BLOCK_COMMENT("scale indexes to element size");
1794     __ movl2ptr(rsi, SRC_POS);  // src_pos
1795     __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
1796     assert(src_array == from, "");
1797     __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
1798     __ movl2ptr(rdi, DST_POS);  // dst_pos
1799     __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
1800     assert(dst_array == to, "");
1801     __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
1802     __ movptr(FROM, from);      // src_addr
1803     __ mov(rdi_elsize, rcx_lh); // log2 elsize
1804     __ movl2ptr(count, LENGTH); // elements count
1805 
1806     BLOCK_COMMENT("choose copy loop based on element size");
1807     __ cmpl(rdi_elsize, 0);
1808 
1809     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
1810     __ cmpl(rdi_elsize, LogBytesPerShort);
1811     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
1812     __ cmpl(rdi_elsize, LogBytesPerInt);
1813     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
1814 #ifdef ASSERT
1815     __ cmpl(rdi_elsize, LogBytesPerLong);
1816     __ jccb(Assembler::notEqual, L_failed);
1817 #endif
1818     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
1819     __ pop(rsi);
1820     __ jump(RuntimeAddress(entry_jlong_arraycopy));
1821 
1822   __ BIND(L_failed);
1823     __ xorptr(rax, rax);
1824     __ notptr(rax); // return -1
1825     __ pop(rdi);
1826     __ pop(rsi);
1827     __ leave(); // required for proper stackwalking of RuntimeStub frame
1828     __ ret(0);
1829 
1830     // objArrayKlass
1831   __ BIND(L_objArray);
1832     // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
1833 
1834     Label L_plain_copy, L_checkcast_copy;
1835     //  test array classes for subtyping
1836     __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
1837     __ jccb(Assembler::notEqual, L_checkcast_copy);
1838 
1839     // Identically typed arrays can be copied without element-wise checks.
1840     assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
1841     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1842 
1843   __ BIND(L_plain_copy);
1844     __ movl2ptr(count, LENGTH); // elements count
1845     __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
1846     __ lea(from, Address(src, src_pos, Address::times_ptr,
1847                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
1848     __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
1849     __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
1850                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
1851     __ movptr(FROM,  from);   // src_addr
1852     __ movptr(TO,    to);     // dst_addr
1853     __ movl(COUNT, count);  // count
1854     __ jump(RuntimeAddress(entry_oop_arraycopy));
1855 
1856   __ BIND(L_checkcast_copy);
1857     // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
1858     {
1859       // Handy offsets:
1860       int  ek_offset = (klassOopDesc::header_size() * HeapWordSize +
1861                         objArrayKlass::element_klass_offset_in_bytes());
1862       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
1863                         Klass::super_check_offset_offset_in_bytes());
1864 
1865       Register rsi_dst_klass = rsi;
1866       Register rdi_temp      = rdi;
1867       assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
1868       assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
1869       Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
1870 
1871       // Before looking at dst.length, make sure dst is also an objArray.
1872       __ movptr(rsi_dst_klass, dst_klass_addr);
1873       __ cmpl(dst_klass_lh_addr, objArray_lh);
1874       __ jccb(Assembler::notEqual, L_failed);
1875 
1876       // It is safe to examine both src.length and dst.length.
1877       __ movl2ptr(src_pos, SRC_POS);        // reload rsi
1878       arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1879       // (Now src_pos and dst_pos are killed, but not src and dst.)
1880 
1881       // We'll need this temp (don't forget to pop it after the type check).
1882       __ push(rbx);
1883       Register rbx_src_klass = rbx;
1884 
1885       __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
1886       __ movptr(rsi_dst_klass, dst_klass_addr);
1887       Address super_check_offset_addr(rsi_dst_klass, sco_offset);
1888       Label L_fail_array_check;
1889       generate_type_check(rbx_src_klass,
1890                           super_check_offset_addr, dst_klass_addr,
1891                           rdi_temp, NULL, &L_fail_array_check);
1892       // (On fall-through, we have passed the array type check.)
1893       __ pop(rbx);
1894       __ jmp(L_plain_copy);
1895 
1896       __ BIND(L_fail_array_check);
1897       // Reshuffle arguments so we can call checkcast_arraycopy:
1898 
1899       // match initial saves for checkcast_arraycopy
1900       // push(rsi);    // already done; see above
1901       // push(rdi);    // already done; see above
1902       // push(rbx);    // already done; see above
1903 
1904       // Marshal outgoing arguments now, freeing registers.
1905       Address   from_arg(rsp, 16+ 4);   // from
1906       Address     to_arg(rsp, 16+ 8);   // to
1907       Address length_arg(rsp, 16+12);   // elements count
1908       Address  ckoff_arg(rsp, 16+16);   // super_check_offset
1909       Address  ckval_arg(rsp, 16+20);   // super_klass
1910 
1911       Address SRC_POS_arg(rsp, 16+ 8);
1912       Address DST_POS_arg(rsp, 16+16);
1913       Address  LENGTH_arg(rsp, 16+20);
1914       // push rbx, changed the incoming offsets (why not just use rbp,??)
1915       // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
1916 
1917       __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
1918       __ movl2ptr(length, LENGTH_arg);    // reload elements count
1919       __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
1920       __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
1921 
1922       __ movptr(ckval_arg, rbx);          // destination element type
1923       __ movl(rbx, Address(rbx, sco_offset));
1924       __ movl(ckoff_arg, rbx);          // corresponding class check offset
1925 
1926       __ movl(length_arg, length);      // outgoing length argument
1927 
1928       __ lea(from, Address(src, src_pos, Address::times_ptr,
1929                             arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1930       __ movptr(from_arg, from);
1931 
1932       __ lea(to, Address(dst, dst_pos, Address::times_ptr,
1933                           arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1934       __ movptr(to_arg, to);
1935       __ jump(RuntimeAddress(entry_checkcast_arraycopy));
1936     }
1937 
1938     return start;
1939   }
1940 
1941   void generate_arraycopy_stubs() {
1942     address entry;
1943     address entry_jbyte_arraycopy;
1944     address entry_jshort_arraycopy;
1945     address entry_jint_arraycopy;
1946     address entry_oop_arraycopy;
1947     address entry_jlong_arraycopy;
1948     address entry_checkcast_arraycopy;
1949 
1950     StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
1951         generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
1952                                "arrayof_jbyte_disjoint_arraycopy");
1953     StubRoutines::_arrayof_jbyte_arraycopy =
1954         generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
1955                                NULL, "arrayof_jbyte_arraycopy");
1956     StubRoutines::_jbyte_disjoint_arraycopy =
1957         generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
1958                                "jbyte_disjoint_arraycopy");
1959     StubRoutines::_jbyte_arraycopy =
1960         generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
1961                                &entry_jbyte_arraycopy, "jbyte_arraycopy");
1962 
1963     StubRoutines::_arrayof_jshort_disjoint_arraycopy =
1964         generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
1965                                "arrayof_jshort_disjoint_arraycopy");
1966     StubRoutines::_arrayof_jshort_arraycopy =
1967         generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
1968                                NULL, "arrayof_jshort_arraycopy");
1969     StubRoutines::_jshort_disjoint_arraycopy =
1970         generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
1971                                "jshort_disjoint_arraycopy");
1972     StubRoutines::_jshort_arraycopy =
1973         generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
1974                                &entry_jshort_arraycopy, "jshort_arraycopy");
1975 
1976     // Next arrays are always aligned on 4 bytes at least.
1977     StubRoutines::_jint_disjoint_arraycopy =
1978         generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
1979                                "jint_disjoint_arraycopy");
1980     StubRoutines::_jint_arraycopy =
1981         generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
1982                                &entry_jint_arraycopy, "jint_arraycopy");
1983 
1984     StubRoutines::_oop_disjoint_arraycopy =
1985         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
1986                                "oop_disjoint_arraycopy");
1987     StubRoutines::_oop_arraycopy =
1988         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
1989                                &entry_oop_arraycopy, "oop_arraycopy");
1990 
1991     StubRoutines::_jlong_disjoint_arraycopy =
1992         generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
1993     StubRoutines::_jlong_arraycopy =
1994         generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
1995                                     "jlong_arraycopy");
1996 
1997     StubRoutines::_arrayof_jint_disjoint_arraycopy  =
1998         StubRoutines::_jint_disjoint_arraycopy;
1999     StubRoutines::_arrayof_oop_disjoint_arraycopy   =
2000         StubRoutines::_oop_disjoint_arraycopy;
2001     StubRoutines::_arrayof_jlong_disjoint_arraycopy =
2002         StubRoutines::_jlong_disjoint_arraycopy;
2003 
2004     StubRoutines::_arrayof_jint_arraycopy  = StubRoutines::_jint_arraycopy;
2005     StubRoutines::_arrayof_oop_arraycopy   = StubRoutines::_oop_arraycopy;
2006     StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
2007 
2008     StubRoutines::_checkcast_arraycopy =
2009         generate_checkcast_copy("checkcast_arraycopy",
2010                                   &entry_checkcast_arraycopy);
2011 
2012     StubRoutines::_unsafe_arraycopy =
2013         generate_unsafe_copy("unsafe_arraycopy",
2014                                entry_jbyte_arraycopy,
2015                                entry_jshort_arraycopy,
2016                                entry_jint_arraycopy,
2017                                entry_jlong_arraycopy);
2018 
2019     StubRoutines::_generic_arraycopy =
2020         generate_generic_copy("generic_arraycopy",
2021                                entry_jbyte_arraycopy,
2022                                entry_jshort_arraycopy,
2023                                entry_jint_arraycopy,
2024                                entry_oop_arraycopy,
2025                                entry_jlong_arraycopy,
2026                                entry_checkcast_arraycopy);
2027   }
2028 
2029   void generate_math_stubs() {
2030     {
2031       StubCodeMark mark(this, "StubRoutines", "log");
2032       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
2033 
2034       __ fld_d(Address(rsp, 4));
2035       __ flog();
2036       __ ret(0);
2037     }
2038     {
2039       StubCodeMark mark(this, "StubRoutines", "log10");
2040       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
2041 
2042       __ fld_d(Address(rsp, 4));
2043       __ flog10();
2044       __ ret(0);
2045     }
2046     {
2047       StubCodeMark mark(this, "StubRoutines", "sin");
2048       StubRoutines::_intrinsic_sin = (double (*)(double))  __ pc();
2049 
2050       __ fld_d(Address(rsp, 4));
2051       __ trigfunc('s');
2052       __ ret(0);
2053     }
2054     {
2055       StubCodeMark mark(this, "StubRoutines", "cos");
2056       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
2057 
2058       __ fld_d(Address(rsp, 4));
2059       __ trigfunc('c');
2060       __ ret(0);
2061     }
2062     {
2063       StubCodeMark mark(this, "StubRoutines", "tan");
2064       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
2065 
2066       __ fld_d(Address(rsp, 4));
2067       __ trigfunc('t');
2068       __ ret(0);
2069     }
2070 
2071     // The intrinsic version of these seem to return the same value as
2072     // the strict version.
2073     StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
2074     StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
2075   }
2076 
2077  public:
2078   // Information about frame layout at time of blocking runtime call.
2079   // Note that we only have to preserve callee-saved registers since
2080   // the compilers are responsible for supplying a continuation point
2081   // if they expect all registers to be preserved.
2082   enum layout {
2083     thread_off,    // last_java_sp
2084     rbp_off,       // callee saved register
2085     ret_pc,
2086     framesize
2087   };
2088 
2089  private:
2090 
2091 #undef  __
2092 #define __ masm->
2093 
2094   //------------------------------------------------------------------------------------------------------------------------
2095   // Continuation point for throwing of implicit exceptions that are not handled in
2096   // the current activation. Fabricates an exception oop and initiates normal
2097   // exception dispatching in this frame.
2098   //
2099   // Previously the compiler (c2) allowed for callee save registers on Java calls.
2100   // This is no longer true after adapter frames were removed but could possibly
2101   // be brought back in the future if the interpreter code was reworked and it
2102   // was deemed worthwhile. The comment below was left to describe what must
2103   // happen here if callee saves were resurrected. As it stands now this stub
2104   // could actually be a vanilla BufferBlob and have now oopMap at all.
2105   // Since it doesn't make much difference we've chosen to leave it the
2106   // way it was in the callee save days and keep the comment.
2107 
2108   // If we need to preserve callee-saved values we need a callee-saved oop map and
2109   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
2110   // If the compiler needs all registers to be preserved between the fault
2111   // point and the exception handler then it must assume responsibility for that in
2112   // AbstractCompiler::continuation_for_implicit_null_exception or
2113   // continuation_for_implicit_division_by_zero_exception. All other implicit
2114   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
2115   // either at call sites or otherwise assume that stack unwinding will be initiated,
2116   // so caller saved registers were assumed volatile in the compiler.
2117   address generate_throw_exception(const char* name, address runtime_entry,
2118                                    bool restore_saved_exception_pc) {
2119 
2120     int insts_size = 256;
2121     int locs_size  = 32;
2122 
2123     CodeBuffer code(name, insts_size, locs_size);
2124     OopMapSet* oop_maps  = new OopMapSet();
2125     MacroAssembler* masm = new MacroAssembler(&code);
2126 
2127     address start = __ pc();
2128 
2129     // This is an inlined and slightly modified version of call_VM
2130     // which has the ability to fetch the return PC out of
2131     // thread-local storage and also sets up last_Java_sp slightly
2132     // differently than the real call_VM
2133     Register java_thread = rbx;
2134     __ get_thread(java_thread);
2135     if (restore_saved_exception_pc) {
2136       __ movptr(rax, Address(java_thread, in_bytes(JavaThread::saved_exception_pc_offset())));
2137       __ push(rax);
2138     }
2139 
2140     __ enter(); // required for proper stackwalking of RuntimeStub frame
2141 
2142     // pc and rbp, already pushed
2143     __ subptr(rsp, (framesize-2) * wordSize); // prolog
2144 
2145     // Frame is now completed as far as size and linkage.
2146 
2147     int frame_complete = __ pc() - start;
2148 
2149     // push java thread (becomes first argument of C function)
2150     __ movptr(Address(rsp, thread_off * wordSize), java_thread);
2151 
2152     // Set up last_Java_sp and last_Java_fp
2153     __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
2154 
2155     // Call runtime
2156     BLOCK_COMMENT("call runtime_entry");
2157     __ call(RuntimeAddress(runtime_entry));
2158     // Generate oop map
2159     OopMap* map =  new OopMap(framesize, 0);
2160     oop_maps->add_gc_map(__ pc() - start, map);
2161 
2162     // restore the thread (cannot use the pushed argument since arguments
2163     // may be overwritten by C code generated by an optimizing compiler);
2164     // however can use the register value directly if it is callee saved.
2165     __ get_thread(java_thread);
2166 
2167     __ reset_last_Java_frame(java_thread, true, false);
2168 
2169     __ leave(); // required for proper stackwalking of RuntimeStub frame
2170 
2171     // check for pending exceptions
2172 #ifdef ASSERT
2173     Label L;
2174     __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
2175     __ jcc(Assembler::notEqual, L);
2176     __ should_not_reach_here();
2177     __ bind(L);
2178 #endif /* ASSERT */
2179     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2180 
2181 
2182     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
2183     return stub->entry_point();
2184   }
2185 
2186 
2187   void create_control_words() {
2188     // Round to nearest, 53-bit mode, exceptions masked
2189     StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
2190     // Round to zero, 53-bit mode, exception mased
2191     StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
2192     // Round to nearest, 24-bit mode, exceptions masked
2193     StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
2194     // Round to nearest, 64-bit mode, exceptions masked
2195     StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
2196     // Round to nearest, 64-bit mode, exceptions masked
2197     StubRoutines::_mxcsr_std           = 0x1F80;
2198     // Note: the following two constants are 80-bit values
2199     //       layout is critical for correct loading by FPU.
2200     // Bias for strict fp multiply/divide
2201     StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
2202     StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
2203     StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
2204     // Un-Bias for strict fp multiply/divide
2205     StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
2206     StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
2207     StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
2208   }
2209 
2210   //---------------------------------------------------------------------------
2211   // Initialization
2212 
2213   void generate_initial() {
2214     // Generates all stubs and initializes the entry points
2215 
2216     //------------------------------------------------------------------------------------------------------------------------
2217     // entry points that exist in all platforms
2218     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
2219     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
2220     StubRoutines::_forward_exception_entry      = generate_forward_exception();
2221 
2222     StubRoutines::_call_stub_entry              =
2223       generate_call_stub(StubRoutines::_call_stub_return_address);
2224     // is referenced by megamorphic call
2225     StubRoutines::_catch_exception_entry        = generate_catch_exception();
2226 
2227     // These are currently used by Solaris/Intel
2228     StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
2229 
2230     StubRoutines::_handler_for_unsafe_access_entry =
2231       generate_handler_for_unsafe_access();
2232 
2233     // platform dependent
2234     create_control_words();
2235 
2236     StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
2237     StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
2238     StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
2239                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
2240     StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
2241                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
2242   }
2243 
2244 
2245   void generate_all() {
2246     // Generates all stubs and initializes the entry points
2247 
2248     // These entry points require SharedInfo::stack0 to be set up in non-core builds
2249     // and need to be relocatable, so they each fabricate a RuntimeStub internally.
2250     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError),  false);
2251     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError),  false);
2252     StubRoutines::_throw_ArithmeticException_entry         = generate_throw_exception("ArithmeticException throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException),  true);
2253     StubRoutines::_throw_NullPointerException_entry        = generate_throw_exception("NullPointerException throw_exception",         CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
2254     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
2255     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError),   false);
2256 
2257     //------------------------------------------------------------------------------------------------------------------------
2258     // entry points that are platform specific
2259 
2260     // support for verify_oop (must happen after universe_init)
2261     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
2262 
2263     // arraycopy stubs used by compilers
2264     generate_arraycopy_stubs();
2265 
2266     // generic method handle stubs
2267     if (EnableMethodHandles && SystemDictionary::MethodHandle_klass() != NULL) {
2268       for (MethodHandles::EntryKind ek = MethodHandles::_EK_FIRST;
2269            ek < MethodHandles::_EK_LIMIT;
2270            ek = MethodHandles::EntryKind(1 + (int)ek)) {
2271         StubCodeMark mark(this, "MethodHandle", MethodHandles::entry_name(ek));
2272         MethodHandles::generate_method_handle_stub(_masm, ek);
2273       }
2274     }
2275 
2276     generate_math_stubs();
2277   }
2278 
2279 
2280  public:
2281   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
2282     if (all) {
2283       generate_all();
2284     } else {
2285       generate_initial();
2286     }
2287   }
2288 }; // end class declaration
2289 
2290 
2291 void StubGenerator_generate(CodeBuffer* code, bool all) {
2292   StubGenerator g(code, all);
2293 }