1 /*
   2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_sharedRuntime.cpp.incl"
  27 #include <math.h>
  28 
  29 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
  30 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
  31                       char*, int, char*, int, char*, int);
  32 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
  33                       char*, int, char*, int, char*, int);
  34 
  35 // Implementation of SharedRuntime
  36 
  37 #ifndef PRODUCT
  38 // For statistics
  39 int SharedRuntime::_ic_miss_ctr = 0;
  40 int SharedRuntime::_wrong_method_ctr = 0;
  41 int SharedRuntime::_resolve_static_ctr = 0;
  42 int SharedRuntime::_resolve_virtual_ctr = 0;
  43 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
  44 int SharedRuntime::_implicit_null_throws = 0;
  45 int SharedRuntime::_implicit_div0_throws = 0;
  46 int SharedRuntime::_throw_null_ctr = 0;
  47 
  48 int SharedRuntime::_nof_normal_calls = 0;
  49 int SharedRuntime::_nof_optimized_calls = 0;
  50 int SharedRuntime::_nof_inlined_calls = 0;
  51 int SharedRuntime::_nof_megamorphic_calls = 0;
  52 int SharedRuntime::_nof_static_calls = 0;
  53 int SharedRuntime::_nof_inlined_static_calls = 0;
  54 int SharedRuntime::_nof_interface_calls = 0;
  55 int SharedRuntime::_nof_optimized_interface_calls = 0;
  56 int SharedRuntime::_nof_inlined_interface_calls = 0;
  57 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
  58 int SharedRuntime::_nof_removable_exceptions = 0;
  59 
  60 int SharedRuntime::_new_instance_ctr=0;
  61 int SharedRuntime::_new_array_ctr=0;
  62 int SharedRuntime::_multi1_ctr=0;
  63 int SharedRuntime::_multi2_ctr=0;
  64 int SharedRuntime::_multi3_ctr=0;
  65 int SharedRuntime::_multi4_ctr=0;
  66 int SharedRuntime::_multi5_ctr=0;
  67 int SharedRuntime::_mon_enter_stub_ctr=0;
  68 int SharedRuntime::_mon_exit_stub_ctr=0;
  69 int SharedRuntime::_mon_enter_ctr=0;
  70 int SharedRuntime::_mon_exit_ctr=0;
  71 int SharedRuntime::_partial_subtype_ctr=0;
  72 int SharedRuntime::_jbyte_array_copy_ctr=0;
  73 int SharedRuntime::_jshort_array_copy_ctr=0;
  74 int SharedRuntime::_jint_array_copy_ctr=0;
  75 int SharedRuntime::_jlong_array_copy_ctr=0;
  76 int SharedRuntime::_oop_array_copy_ctr=0;
  77 int SharedRuntime::_checkcast_array_copy_ctr=0;
  78 int SharedRuntime::_unsafe_array_copy_ctr=0;
  79 int SharedRuntime::_generic_array_copy_ctr=0;
  80 int SharedRuntime::_slow_array_copy_ctr=0;
  81 int SharedRuntime::_find_handler_ctr=0;
  82 int SharedRuntime::_rethrow_ctr=0;
  83 
  84 int     SharedRuntime::_ICmiss_index                    = 0;
  85 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
  86 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
  87 
  88 void SharedRuntime::trace_ic_miss(address at) {
  89   for (int i = 0; i < _ICmiss_index; i++) {
  90     if (_ICmiss_at[i] == at) {
  91       _ICmiss_count[i]++;
  92       return;
  93     }
  94   }
  95   int index = _ICmiss_index++;
  96   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
  97   _ICmiss_at[index] = at;
  98   _ICmiss_count[index] = 1;
  99 }
 100 
 101 void SharedRuntime::print_ic_miss_histogram() {
 102   if (ICMissHistogram) {
 103     tty->print_cr ("IC Miss Histogram:");
 104     int tot_misses = 0;
 105     for (int i = 0; i < _ICmiss_index; i++) {
 106       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 107       tot_misses += _ICmiss_count[i];
 108     }
 109     tty->print_cr ("Total IC misses: %7d", tot_misses);
 110   }
 111 }
 112 #endif // PRODUCT
 113 
 114 #ifndef SERIALGC
 115 
 116 // G1 write-barrier pre: executed before a pointer store.
 117 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 118   if (orig == NULL) {
 119     assert(false, "should be optimized out");
 120     return;
 121   }
 122   assert(orig->is_oop(true /* ignore mark word */), "Error");
 123   // store the original value that was in the field reference
 124   thread->satb_mark_queue().enqueue(orig);
 125 JRT_END
 126 
 127 // G1 write-barrier post: executed after a pointer store.
 128 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 129   thread->dirty_card_queue().enqueue(card_addr);
 130 JRT_END
 131 
 132 #endif // !SERIALGC
 133 
 134 
 135 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 136   return x * y;
 137 JRT_END
 138 
 139 
 140 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 141   if (x == min_jlong && y == CONST64(-1)) {
 142     return x;
 143   } else {
 144     return x / y;
 145   }
 146 JRT_END
 147 
 148 
 149 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 150   if (x == min_jlong && y == CONST64(-1)) {
 151     return 0;
 152   } else {
 153     return x % y;
 154   }
 155 JRT_END
 156 
 157 
 158 const juint  float_sign_mask  = 0x7FFFFFFF;
 159 const juint  float_infinity   = 0x7F800000;
 160 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 161 const julong double_infinity  = CONST64(0x7FF0000000000000);
 162 
 163 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 164 #ifdef _WIN64
 165   // 64-bit Windows on amd64 returns the wrong values for
 166   // infinity operands.
 167   union { jfloat f; juint i; } xbits, ybits;
 168   xbits.f = x;
 169   ybits.f = y;
 170   // x Mod Infinity == x unless x is infinity
 171   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 172        ((ybits.i & float_sign_mask) == float_infinity) ) {
 173     return x;
 174   }
 175 #endif
 176   return ((jfloat)fmod((double)x,(double)y));
 177 JRT_END
 178 
 179 
 180 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 181 #ifdef _WIN64
 182   union { jdouble d; julong l; } xbits, ybits;
 183   xbits.d = x;
 184   ybits.d = y;
 185   // x Mod Infinity == x unless x is infinity
 186   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 187        ((ybits.l & double_sign_mask) == double_infinity) ) {
 188     return x;
 189   }
 190 #endif
 191   return ((jdouble)fmod((double)x,(double)y));
 192 JRT_END
 193 
 194 
 195 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 196   if (g_isnan(x))
 197     return 0;
 198   if (x >= (jfloat) max_jint)
 199     return max_jint;
 200   if (x <= (jfloat) min_jint)
 201     return min_jint;
 202   return (jint) x;
 203 JRT_END
 204 
 205 
 206 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 207   if (g_isnan(x))
 208     return 0;
 209   if (x >= (jfloat) max_jlong)
 210     return max_jlong;
 211   if (x <= (jfloat) min_jlong)
 212     return min_jlong;
 213   return (jlong) x;
 214 JRT_END
 215 
 216 
 217 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 218   if (g_isnan(x))
 219     return 0;
 220   if (x >= (jdouble) max_jint)
 221     return max_jint;
 222   if (x <= (jdouble) min_jint)
 223     return min_jint;
 224   return (jint) x;
 225 JRT_END
 226 
 227 
 228 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 229   if (g_isnan(x))
 230     return 0;
 231   if (x >= (jdouble) max_jlong)
 232     return max_jlong;
 233   if (x <= (jdouble) min_jlong)
 234     return min_jlong;
 235   return (jlong) x;
 236 JRT_END
 237 
 238 
 239 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 240   return (jfloat)x;
 241 JRT_END
 242 
 243 
 244 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 245   return (jfloat)x;
 246 JRT_END
 247 
 248 
 249 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 250   return (jdouble)x;
 251 JRT_END
 252 
 253 // Exception handling accross interpreter/compiler boundaries
 254 //
 255 // exception_handler_for_return_address(...) returns the continuation address.
 256 // The continuation address is the entry point of the exception handler of the
 257 // previous frame depending on the return address.
 258 
 259 address SharedRuntime::raw_exception_handler_for_return_address(address return_address) {
 260   assert(frame::verify_return_pc(return_address), "must be a return pc");
 261 
 262   // the fastest case first
 263   CodeBlob* blob = CodeCache::find_blob(return_address);
 264   if (blob != NULL && blob->is_nmethod()) {
 265     nmethod* code = (nmethod*)blob;
 266     assert(code != NULL, "nmethod must be present");
 267     // native nmethods don't have exception handlers
 268     assert(!code->is_native_method(), "no exception handler");
 269     assert(code->header_begin() != code->exception_begin(), "no exception handler");
 270     if (code->is_deopt_pc(return_address)) {
 271       return SharedRuntime::deopt_blob()->unpack_with_exception();
 272     } else {
 273       return code->exception_begin();
 274     }
 275   }
 276 
 277   // Entry code
 278   if (StubRoutines::returns_to_call_stub(return_address)) {
 279     return StubRoutines::catch_exception_entry();
 280   }
 281   // Interpreted code
 282   if (Interpreter::contains(return_address)) {
 283     return Interpreter::rethrow_exception_entry();
 284   }
 285 
 286   // Compiled code
 287   if (CodeCache::contains(return_address)) {
 288     CodeBlob* blob = CodeCache::find_blob(return_address);
 289     if (blob->is_nmethod()) {
 290       nmethod* code = (nmethod*)blob;
 291       assert(code != NULL, "nmethod must be present");
 292       assert(code->header_begin() != code->exception_begin(), "no exception handler");
 293       return code->exception_begin();
 294     }
 295     if (blob->is_runtime_stub()) {
 296       ShouldNotReachHere();   // callers are responsible for skipping runtime stub frames
 297     }
 298   }
 299   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 300 #ifndef PRODUCT
 301   { ResourceMark rm;
 302     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 303     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 304     tty->print_cr("b) other problem");
 305   }
 306 #endif // PRODUCT
 307   ShouldNotReachHere();
 308   return NULL;
 309 }
 310 
 311 
 312 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(address return_address))
 313   return raw_exception_handler_for_return_address(return_address);
 314 JRT_END
 315 
 316 address SharedRuntime::get_poll_stub(address pc) {
 317   address stub;
 318   // Look up the code blob
 319   CodeBlob *cb = CodeCache::find_blob(pc);
 320 
 321   // Should be an nmethod
 322   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 323 
 324   // Look up the relocation information
 325   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 326     "safepoint polling: type must be poll" );
 327 
 328   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 329     "Only polling locations are used for safepoint");
 330 
 331   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 332   if (at_poll_return) {
 333     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 334            "polling page return stub not created yet");
 335     stub = SharedRuntime::polling_page_return_handler_blob()->instructions_begin();
 336   } else {
 337     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 338            "polling page safepoint stub not created yet");
 339     stub = SharedRuntime::polling_page_safepoint_handler_blob()->instructions_begin();
 340   }
 341 #ifndef PRODUCT
 342   if( TraceSafepoint ) {
 343     char buf[256];
 344     jio_snprintf(buf, sizeof(buf),
 345                  "... found polling page %s exception at pc = "
 346                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 347                  at_poll_return ? "return" : "loop",
 348                  (intptr_t)pc, (intptr_t)stub);
 349     tty->print_raw_cr(buf);
 350   }
 351 #endif // PRODUCT
 352   return stub;
 353 }
 354 
 355 
 356 oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
 357   assert(caller.is_interpreted_frame(), "");
 358   int args_size = ArgumentSizeComputer(sig).size() + 1;
 359   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 360   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
 361   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 362   return result;
 363 }
 364 
 365 
 366 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 367   if (JvmtiExport::can_post_on_exceptions()) {
 368     vframeStream vfst(thread, true);
 369     methodHandle method = methodHandle(thread, vfst.method());
 370     address bcp = method()->bcp_from(vfst.bci());
 371     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 372   }
 373   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 374 }
 375 
 376 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
 377   Handle h_exception = Exceptions::new_exception(thread, name, message);
 378   throw_and_post_jvmti_exception(thread, h_exception);
 379 }
 380 
 381 // The interpreter code to call this tracing function is only
 382 // called/generated when TraceRedefineClasses has the right bits
 383 // set. Since obsolete methods are never compiled, we don't have
 384 // to modify the compilers to generate calls to this function.
 385 //
 386 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 387     JavaThread* thread, methodOopDesc* method))
 388   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 389 
 390   if (method->is_obsolete()) {
 391     // We are calling an obsolete method, but this is not necessarily
 392     // an error. Our method could have been redefined just after we
 393     // fetched the methodOop from the constant pool.
 394 
 395     // RC_TRACE macro has an embedded ResourceMark
 396     RC_TRACE_WITH_THREAD(0x00001000, thread,
 397                          ("calling obsolete method '%s'",
 398                           method->name_and_sig_as_C_string()));
 399     if (RC_TRACE_ENABLED(0x00002000)) {
 400       // this option is provided to debug calls to obsolete methods
 401       guarantee(false, "faulting at call to an obsolete method.");
 402     }
 403   }
 404   return 0;
 405 JRT_END
 406 
 407 // ret_pc points into caller; we are returning caller's exception handler
 408 // for given exception
 409 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 410                                                     bool force_unwind, bool top_frame_only) {
 411   assert(nm != NULL, "must exist");
 412   ResourceMark rm;
 413 
 414   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 415   // determine handler bci, if any
 416   EXCEPTION_MARK;
 417 
 418   int handler_bci = -1;
 419   int scope_depth = 0;
 420   if (!force_unwind) {
 421     int bci = sd->bci();
 422     do {
 423       bool skip_scope_increment = false;
 424       // exception handler lookup
 425       KlassHandle ek (THREAD, exception->klass());
 426       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
 427       if (HAS_PENDING_EXCEPTION) {
 428         // We threw an exception while trying to find the exception handler.
 429         // Transfer the new exception to the exception handle which will
 430         // be set into thread local storage, and do another lookup for an
 431         // exception handler for this exception, this time starting at the
 432         // BCI of the exception handler which caused the exception to be
 433         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 434         // argument to ensure that the correct exception is thrown (4870175).
 435         exception = Handle(THREAD, PENDING_EXCEPTION);
 436         CLEAR_PENDING_EXCEPTION;
 437         if (handler_bci >= 0) {
 438           bci = handler_bci;
 439           handler_bci = -1;
 440           skip_scope_increment = true;
 441         }
 442       }
 443       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 444         sd = sd->sender();
 445         if (sd != NULL) {
 446           bci = sd->bci();
 447         }
 448         ++scope_depth;
 449       }
 450     } while (!top_frame_only && handler_bci < 0 && sd != NULL);
 451   }
 452 
 453   // found handling method => lookup exception handler
 454   int catch_pco = ret_pc - nm->instructions_begin();
 455 
 456   ExceptionHandlerTable table(nm);
 457   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 458   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 459     // Allow abbreviated catch tables.  The idea is to allow a method
 460     // to materialize its exceptions without committing to the exact
 461     // routing of exceptions.  In particular this is needed for adding
 462     // a synthethic handler to unlock monitors when inlining
 463     // synchonized methods since the unlock path isn't represented in
 464     // the bytecodes.
 465     t = table.entry_for(catch_pco, -1, 0);
 466   }
 467 
 468 #ifdef COMPILER1
 469   if (nm->is_compiled_by_c1() && t == NULL && handler_bci == -1) {
 470     // Exception is not handled by this frame so unwind.  Note that
 471     // this is not the same as how C2 does this.  C2 emits a table
 472     // entry that dispatches to the unwind code in the nmethod.
 473     return NULL;
 474   }
 475 #endif /* COMPILER1 */
 476 
 477 
 478   if (t == NULL) {
 479     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 480     tty->print_cr("   Exception:");
 481     exception->print();
 482     tty->cr();
 483     tty->print_cr(" Compiled exception table :");
 484     table.print();
 485     nm->print_code();
 486     guarantee(false, "missing exception handler");
 487     return NULL;
 488   }
 489 
 490   return nm->instructions_begin() + t->pco();
 491 }
 492 
 493 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 494   // These errors occur only at call sites
 495   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 496 JRT_END
 497 
 498 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 499   // These errors occur only at call sites
 500   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 501 JRT_END
 502 
 503 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 504   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 505 JRT_END
 506 
 507 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 508   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 509 JRT_END
 510 
 511 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 512   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 513   // cache sites (when the callee activation is not yet set up) so we are at a call site
 514   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 515 JRT_END
 516 
 517 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 518   // We avoid using the normal exception construction in this case because
 519   // it performs an upcall to Java, and we're already out of stack space.
 520   klassOop k = SystemDictionary::StackOverflowError_klass();
 521   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
 522   Handle exception (thread, exception_oop);
 523   if (StackTraceInThrowable) {
 524     java_lang_Throwable::fill_in_stack_trace(exception);
 525   }
 526   throw_and_post_jvmti_exception(thread, exception);
 527 JRT_END
 528 
 529 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 530                                                            address pc,
 531                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 532 {
 533   address target_pc = NULL;
 534 
 535   if (Interpreter::contains(pc)) {
 536 #ifdef CC_INTERP
 537     // C++ interpreter doesn't throw implicit exceptions
 538     ShouldNotReachHere();
 539 #else
 540     switch (exception_kind) {
 541       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 542       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 543       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 544       default:                      ShouldNotReachHere();
 545     }
 546 #endif // !CC_INTERP
 547   } else {
 548     switch (exception_kind) {
 549       case STACK_OVERFLOW: {
 550         // Stack overflow only occurs upon frame setup; the callee is
 551         // going to be unwound. Dispatch to a shared runtime stub
 552         // which will cause the StackOverflowError to be fabricated
 553         // and processed.
 554         // For stack overflow in deoptimization blob, cleanup thread.
 555         if (thread->deopt_mark() != NULL) {
 556           Deoptimization::cleanup_deopt_info(thread, NULL);
 557         }
 558         return StubRoutines::throw_StackOverflowError_entry();
 559       }
 560 
 561       case IMPLICIT_NULL: {
 562         if (VtableStubs::contains(pc)) {
 563           // We haven't yet entered the callee frame. Fabricate an
 564           // exception and begin dispatching it in the caller. Since
 565           // the caller was at a call site, it's safe to destroy all
 566           // caller-saved registers, as these entry points do.
 567           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 568 
 569           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 570           if (vt_stub == NULL) return NULL;
 571 
 572           if (vt_stub->is_abstract_method_error(pc)) {
 573             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 574             return StubRoutines::throw_AbstractMethodError_entry();
 575           } else {
 576             return StubRoutines::throw_NullPointerException_at_call_entry();
 577           }
 578         } else {
 579           CodeBlob* cb = CodeCache::find_blob(pc);
 580 
 581           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 582           if (cb == NULL) return NULL;
 583 
 584           // Exception happened in CodeCache. Must be either:
 585           // 1. Inline-cache check in C2I handler blob,
 586           // 2. Inline-cache check in nmethod, or
 587           // 3. Implict null exception in nmethod
 588 
 589           if (!cb->is_nmethod()) {
 590             guarantee(cb->is_adapter_blob(),
 591                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
 592             // There is no handler here, so we will simply unwind.
 593             return StubRoutines::throw_NullPointerException_at_call_entry();
 594           }
 595 
 596           // Otherwise, it's an nmethod.  Consult its exception handlers.
 597           nmethod* nm = (nmethod*)cb;
 598           if (nm->inlinecache_check_contains(pc)) {
 599             // exception happened inside inline-cache check code
 600             // => the nmethod is not yet active (i.e., the frame
 601             // is not set up yet) => use return address pushed by
 602             // caller => don't push another return address
 603             return StubRoutines::throw_NullPointerException_at_call_entry();
 604           }
 605 
 606 #ifndef PRODUCT
 607           _implicit_null_throws++;
 608 #endif
 609           target_pc = nm->continuation_for_implicit_exception(pc);
 610           // If there's an unexpected fault, target_pc might be NULL,
 611           // in which case we want to fall through into the normal
 612           // error handling code.
 613         }
 614 
 615         break; // fall through
 616       }
 617 
 618 
 619       case IMPLICIT_DIVIDE_BY_ZERO: {
 620         nmethod* nm = CodeCache::find_nmethod(pc);
 621         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 622 #ifndef PRODUCT
 623         _implicit_div0_throws++;
 624 #endif
 625         target_pc = nm->continuation_for_implicit_exception(pc);
 626         // If there's an unexpected fault, target_pc might be NULL,
 627         // in which case we want to fall through into the normal
 628         // error handling code.
 629         break; // fall through
 630       }
 631 
 632       default: ShouldNotReachHere();
 633     }
 634 
 635     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 636 
 637     // for AbortVMOnException flag
 638     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 639     if (exception_kind == IMPLICIT_NULL) {
 640       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 641     } else {
 642       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 643     }
 644     return target_pc;
 645   }
 646 
 647   ShouldNotReachHere();
 648   return NULL;
 649 }
 650 
 651 
 652 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
 653 {
 654   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
 655 }
 656 JNI_END
 657 
 658 
 659 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 660   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 661 }
 662 
 663 
 664 #ifndef PRODUCT
 665 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 666   const frame f = thread->last_frame();
 667   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 668 #ifndef PRODUCT
 669   methodHandle mh(THREAD, f.interpreter_frame_method());
 670   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 671 #endif // !PRODUCT
 672   return preserve_this_value;
 673 JRT_END
 674 #endif // !PRODUCT
 675 
 676 
 677 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 678   os::yield_all(attempts);
 679 JRT_END
 680 
 681 
 682 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 683   assert(obj->is_oop(), "must be a valid oop");
 684   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
 685   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
 686 JRT_END
 687 
 688 
 689 jlong SharedRuntime::get_java_tid(Thread* thread) {
 690   if (thread != NULL) {
 691     if (thread->is_Java_thread()) {
 692       oop obj = ((JavaThread*)thread)->threadObj();
 693       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 694     }
 695   }
 696   return 0;
 697 }
 698 
 699 /**
 700  * This function ought to be a void function, but cannot be because
 701  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 702  * 6254741.  Once that is fixed we can remove the dummy return value.
 703  */
 704 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 705   return dtrace_object_alloc_base(Thread::current(), o);
 706 }
 707 
 708 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 709   assert(DTraceAllocProbes, "wrong call");
 710   Klass* klass = o->blueprint();
 711   int size = o->size();
 712   symbolOop name = klass->name();
 713   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 714                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 715   return 0;
 716 }
 717 
 718 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 719     JavaThread* thread, methodOopDesc* method))
 720   assert(DTraceMethodProbes, "wrong call");
 721   symbolOop kname = method->klass_name();
 722   symbolOop name = method->name();
 723   symbolOop sig = method->signature();
 724   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 725       kname->bytes(), kname->utf8_length(),
 726       name->bytes(), name->utf8_length(),
 727       sig->bytes(), sig->utf8_length());
 728   return 0;
 729 JRT_END
 730 
 731 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 732     JavaThread* thread, methodOopDesc* method))
 733   assert(DTraceMethodProbes, "wrong call");
 734   symbolOop kname = method->klass_name();
 735   symbolOop name = method->name();
 736   symbolOop sig = method->signature();
 737   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
 738       kname->bytes(), kname->utf8_length(),
 739       name->bytes(), name->utf8_length(),
 740       sig->bytes(), sig->utf8_length());
 741   return 0;
 742 JRT_END
 743 
 744 
 745 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
 746 // for a call current in progress, i.e., arguments has been pushed on stack
 747 // put callee has not been invoked yet.  Used by: resolve virtual/static,
 748 // vtable updates, etc.  Caller frame must be compiled.
 749 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
 750   ResourceMark rm(THREAD);
 751 
 752   // last java frame on stack (which includes native call frames)
 753   vframeStream vfst(thread, true);  // Do not skip and javaCalls
 754 
 755   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
 756 }
 757 
 758 
 759 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
 760 // for a call current in progress, i.e., arguments has been pushed on stack
 761 // but callee has not been invoked yet.  Caller frame must be compiled.
 762 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
 763                                               vframeStream& vfst,
 764                                               Bytecodes::Code& bc,
 765                                               CallInfo& callinfo, TRAPS) {
 766   Handle receiver;
 767   Handle nullHandle;  //create a handy null handle for exception returns
 768 
 769   assert(!vfst.at_end(), "Java frame must exist");
 770 
 771   // Find caller and bci from vframe
 772   methodHandle caller (THREAD, vfst.method());
 773   int          bci    = vfst.bci();
 774 
 775   // Find bytecode
 776   Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
 777   bc = bytecode->adjusted_invoke_code();
 778   int bytecode_index = bytecode->index();
 779 
 780   // Find receiver for non-static call
 781   if (bc != Bytecodes::_invokestatic) {
 782     // This register map must be update since we need to find the receiver for
 783     // compiled frames. The receiver might be in a register.
 784     RegisterMap reg_map2(thread);
 785     frame stubFrame   = thread->last_frame();
 786     // Caller-frame is a compiled frame
 787     frame callerFrame = stubFrame.sender(&reg_map2);
 788 
 789     methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
 790     if (callee.is_null()) {
 791       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
 792     }
 793     // Retrieve from a compiled argument list
 794     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
 795 
 796     if (receiver.is_null()) {
 797       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
 798     }
 799   }
 800 
 801   // Resolve method. This is parameterized by bytecode.
 802   constantPoolHandle constants (THREAD, caller->constants());
 803   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
 804   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
 805 
 806 #ifdef ASSERT
 807   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
 808   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
 809     assert(receiver.not_null(), "should have thrown exception");
 810     KlassHandle receiver_klass (THREAD, receiver->klass());
 811     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
 812                             // klass is already loaded
 813     KlassHandle static_receiver_klass (THREAD, rk);
 814     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
 815     if (receiver_klass->oop_is_instance()) {
 816       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
 817         tty->print_cr("ERROR: Klass not yet initialized!!");
 818         receiver_klass.print();
 819       }
 820       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
 821     }
 822   }
 823 #endif
 824 
 825   return receiver;
 826 }
 827 
 828 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
 829   ResourceMark rm(THREAD);
 830   // We need first to check if any Java activations (compiled, interpreted)
 831   // exist on the stack since last JavaCall.  If not, we need
 832   // to get the target method from the JavaCall wrapper.
 833   vframeStream vfst(thread, true);  // Do not skip any javaCalls
 834   methodHandle callee_method;
 835   if (vfst.at_end()) {
 836     // No Java frames were found on stack since we did the JavaCall.
 837     // Hence the stack can only contain an entry_frame.  We need to
 838     // find the target method from the stub frame.
 839     RegisterMap reg_map(thread, false);
 840     frame fr = thread->last_frame();
 841     assert(fr.is_runtime_frame(), "must be a runtimeStub");
 842     fr = fr.sender(&reg_map);
 843     assert(fr.is_entry_frame(), "must be");
 844     // fr is now pointing to the entry frame.
 845     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
 846     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
 847   } else {
 848     Bytecodes::Code bc;
 849     CallInfo callinfo;
 850     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
 851     callee_method = callinfo.selected_method();
 852   }
 853   assert(callee_method()->is_method(), "must be");
 854   return callee_method;
 855 }
 856 
 857 // Resolves a call.
 858 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
 859                                            bool is_virtual,
 860                                            bool is_optimized, TRAPS) {
 861   methodHandle callee_method;
 862   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
 863   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
 864     int retry_count = 0;
 865     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
 866            callee_method->method_holder() != SystemDictionary::Object_klass()) {
 867       // If has a pending exception then there is no need to re-try to
 868       // resolve this method.
 869       // If the method has been redefined, we need to try again.
 870       // Hack: we have no way to update the vtables of arrays, so don't
 871       // require that java.lang.Object has been updated.
 872 
 873       // It is very unlikely that method is redefined more than 100 times
 874       // in the middle of resolve. If it is looping here more than 100 times
 875       // means then there could be a bug here.
 876       guarantee((retry_count++ < 100),
 877                 "Could not resolve to latest version of redefined method");
 878       // method is redefined in the middle of resolve so re-try.
 879       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
 880     }
 881   }
 882   return callee_method;
 883 }
 884 
 885 // Resolves a call.  The compilers generate code for calls that go here
 886 // and are patched with the real destination of the call.
 887 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
 888                                            bool is_virtual,
 889                                            bool is_optimized, TRAPS) {
 890 
 891   ResourceMark rm(thread);
 892   RegisterMap cbl_map(thread, false);
 893   frame caller_frame = thread->last_frame().sender(&cbl_map);
 894 
 895   CodeBlob* cb = caller_frame.cb();
 896   guarantee(cb != NULL && cb->is_nmethod(), "must be called from nmethod");
 897   // make sure caller is not getting deoptimized
 898   // and removed before we are done with it.
 899   // CLEANUP - with lazy deopt shouldn't need this lock
 900   nmethodLocker caller_lock((nmethod*)cb);
 901 
 902 
 903   // determine call info & receiver
 904   // note: a) receiver is NULL for static calls
 905   //       b) an exception is thrown if receiver is NULL for non-static calls
 906   CallInfo call_info;
 907   Bytecodes::Code invoke_code = Bytecodes::_illegal;
 908   Handle receiver = find_callee_info(thread, invoke_code,
 909                                      call_info, CHECK_(methodHandle()));
 910   methodHandle callee_method = call_info.selected_method();
 911 
 912   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
 913          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
 914 
 915 #ifndef PRODUCT
 916   // tracing/debugging/statistics
 917   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
 918                 (is_virtual) ? (&_resolve_virtual_ctr) :
 919                                (&_resolve_static_ctr);
 920   Atomic::inc(addr);
 921 
 922   if (TraceCallFixup) {
 923     ResourceMark rm(thread);
 924     tty->print("resolving %s%s (%s) call to",
 925       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
 926       Bytecodes::name(invoke_code));
 927     callee_method->print_short_name(tty);
 928     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
 929   }
 930 #endif
 931 
 932   // Compute entry points. This might require generation of C2I converter
 933   // frames, so we cannot be holding any locks here. Furthermore, the
 934   // computation of the entry points is independent of patching the call.  We
 935   // always return the entry-point, but we only patch the stub if the call has
 936   // not been deoptimized.  Return values: For a virtual call this is an
 937   // (cached_oop, destination address) pair. For a static call/optimized
 938   // virtual this is just a destination address.
 939 
 940   StaticCallInfo static_call_info;
 941   CompiledICInfo virtual_call_info;
 942 
 943 
 944   // Make sure the callee nmethod does not get deoptimized and removed before
 945   // we are done patching the code.
 946   nmethod* nm = callee_method->code();
 947   nmethodLocker nl_callee(nm);
 948 #ifdef ASSERT
 949   address dest_entry_point = nm == NULL ? 0 : nm->entry_point(); // used below
 950 #endif
 951 
 952   if (is_virtual) {
 953     assert(receiver.not_null(), "sanity check");
 954     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
 955     KlassHandle h_klass(THREAD, receiver->klass());
 956     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
 957                      is_optimized, static_bound, virtual_call_info,
 958                      CHECK_(methodHandle()));
 959   } else {
 960     // static call
 961     CompiledStaticCall::compute_entry(callee_method, static_call_info);
 962   }
 963 
 964   // grab lock, check for deoptimization and potentially patch caller
 965   {
 966     MutexLocker ml_patch(CompiledIC_lock);
 967 
 968     // Now that we are ready to patch if the methodOop was redefined then
 969     // don't update call site and let the caller retry.
 970 
 971     if (!callee_method->is_old()) {
 972 #ifdef ASSERT
 973       // We must not try to patch to jump to an already unloaded method.
 974       if (dest_entry_point != 0) {
 975         assert(CodeCache::find_blob(dest_entry_point) != NULL,
 976                "should not unload nmethod while locked");
 977       }
 978 #endif
 979       if (is_virtual) {
 980         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
 981         if (inline_cache->is_clean()) {
 982           inline_cache->set_to_monomorphic(virtual_call_info);
 983         }
 984       } else {
 985         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
 986         if (ssc->is_clean()) ssc->set(static_call_info);
 987       }
 988     }
 989 
 990   } // unlock CompiledIC_lock
 991 
 992   return callee_method;
 993 }
 994 
 995 
 996 // Inline caches exist only in compiled code
 997 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
 998 #ifdef ASSERT
 999   RegisterMap reg_map(thread, false);
1000   frame stub_frame = thread->last_frame();
1001   assert(stub_frame.is_runtime_frame(), "sanity check");
1002   frame caller_frame = stub_frame.sender(&reg_map);
1003   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1004 #endif /* ASSERT */
1005 
1006   methodHandle callee_method;
1007   JRT_BLOCK
1008     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1009     // Return methodOop through TLS
1010     thread->set_vm_result(callee_method());
1011   JRT_BLOCK_END
1012   // return compiled code entry point after potential safepoints
1013   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1014   return callee_method->verified_code_entry();
1015 JRT_END
1016 
1017 
1018 // Handle call site that has been made non-entrant
1019 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1020   // 6243940 We might end up in here if the callee is deoptimized
1021   // as we race to call it.  We don't want to take a safepoint if
1022   // the caller was interpreted because the caller frame will look
1023   // interpreted to the stack walkers and arguments are now
1024   // "compiled" so it is much better to make this transition
1025   // invisible to the stack walking code. The i2c path will
1026   // place the callee method in the callee_target. It is stashed
1027   // there because if we try and find the callee by normal means a
1028   // safepoint is possible and have trouble gc'ing the compiled args.
1029   RegisterMap reg_map(thread, false);
1030   frame stub_frame = thread->last_frame();
1031   assert(stub_frame.is_runtime_frame(), "sanity check");
1032   frame caller_frame = stub_frame.sender(&reg_map);
1033 
1034   // MethodHandle invokes don't have a CompiledIC and should always
1035   // simply redispatch to the callee_target.
1036   address   sender_pc = caller_frame.pc();
1037   CodeBlob* sender_cb = caller_frame.cb();
1038   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
1039   bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
1040   if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
1041     // If the callee_target is set, then we have come here via an i2c
1042     // adapter.
1043     methodOop callee = thread->callee_target();
1044     if (callee != NULL) {
1045       assert(callee->is_method(), "sanity");
1046       is_mh_invoke_via_adapter = true;
1047     }
1048   }
1049 
1050   if (caller_frame.is_interpreted_frame() ||
1051       caller_frame.is_entry_frame()       ||
1052       is_mh_invoke_via_adapter) {
1053     methodOop callee = thread->callee_target();
1054     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1055     thread->set_vm_result(callee);
1056     thread->set_callee_target(NULL);
1057     return callee->get_c2i_entry();
1058   }
1059 
1060   // Must be compiled to compiled path which is safe to stackwalk
1061   methodHandle callee_method;
1062   JRT_BLOCK
1063     // Force resolving of caller (if we called from compiled frame)
1064     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1065     thread->set_vm_result(callee_method());
1066   JRT_BLOCK_END
1067   // return compiled code entry point after potential safepoints
1068   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1069   return callee_method->verified_code_entry();
1070 JRT_END
1071 
1072 
1073 // resolve a static call and patch code
1074 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1075   methodHandle callee_method;
1076   JRT_BLOCK
1077     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1078     thread->set_vm_result(callee_method());
1079   JRT_BLOCK_END
1080   // return compiled code entry point after potential safepoints
1081   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1082   return callee_method->verified_code_entry();
1083 JRT_END
1084 
1085 
1086 // resolve virtual call and update inline cache to monomorphic
1087 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1088   methodHandle callee_method;
1089   JRT_BLOCK
1090     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1091     thread->set_vm_result(callee_method());
1092   JRT_BLOCK_END
1093   // return compiled code entry point after potential safepoints
1094   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1095   return callee_method->verified_code_entry();
1096 JRT_END
1097 
1098 
1099 // Resolve a virtual call that can be statically bound (e.g., always
1100 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1101 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1102   methodHandle callee_method;
1103   JRT_BLOCK
1104     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1105     thread->set_vm_result(callee_method());
1106   JRT_BLOCK_END
1107   // return compiled code entry point after potential safepoints
1108   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1109   return callee_method->verified_code_entry();
1110 JRT_END
1111 
1112 
1113 
1114 
1115 
1116 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1117   ResourceMark rm(thread);
1118   CallInfo call_info;
1119   Bytecodes::Code bc;
1120 
1121   // receiver is NULL for static calls. An exception is thrown for NULL
1122   // receivers for non-static calls
1123   Handle receiver = find_callee_info(thread, bc, call_info,
1124                                      CHECK_(methodHandle()));
1125   // Compiler1 can produce virtual call sites that can actually be statically bound
1126   // If we fell thru to below we would think that the site was going megamorphic
1127   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1128   // we'd try and do a vtable dispatch however methods that can be statically bound
1129   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1130   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1131   // plain ic_miss) and the site will be converted to an optimized virtual call site
1132   // never to miss again. I don't believe C2 will produce code like this but if it
1133   // did this would still be the correct thing to do for it too, hence no ifdef.
1134   //
1135   if (call_info.resolved_method()->can_be_statically_bound()) {
1136     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1137     if (TraceCallFixup) {
1138       RegisterMap reg_map(thread, false);
1139       frame caller_frame = thread->last_frame().sender(&reg_map);
1140       ResourceMark rm(thread);
1141       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1142       callee_method->print_short_name(tty);
1143       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1144       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1145     }
1146     return callee_method;
1147   }
1148 
1149   methodHandle callee_method = call_info.selected_method();
1150 
1151   bool should_be_mono = false;
1152 
1153 #ifndef PRODUCT
1154   Atomic::inc(&_ic_miss_ctr);
1155 
1156   // Statistics & Tracing
1157   if (TraceCallFixup) {
1158     ResourceMark rm(thread);
1159     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1160     callee_method->print_short_name(tty);
1161     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1162   }
1163 
1164   if (ICMissHistogram) {
1165     MutexLocker m(VMStatistic_lock);
1166     RegisterMap reg_map(thread, false);
1167     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1168     // produce statistics under the lock
1169     trace_ic_miss(f.pc());
1170   }
1171 #endif
1172 
1173   // install an event collector so that when a vtable stub is created the
1174   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1175   // event can't be posted when the stub is created as locks are held
1176   // - instead the event will be deferred until the event collector goes
1177   // out of scope.
1178   JvmtiDynamicCodeEventCollector event_collector;
1179 
1180   // Update inline cache to megamorphic. Skip update if caller has been
1181   // made non-entrant or we are called from interpreted.
1182   { MutexLocker ml_patch (CompiledIC_lock);
1183     RegisterMap reg_map(thread, false);
1184     frame caller_frame = thread->last_frame().sender(&reg_map);
1185     CodeBlob* cb = caller_frame.cb();
1186     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1187       // Not a non-entrant nmethod, so find inline_cache
1188       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1189       bool should_be_mono = false;
1190       if (inline_cache->is_optimized()) {
1191         if (TraceCallFixup) {
1192           ResourceMark rm(thread);
1193           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1194           callee_method->print_short_name(tty);
1195           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1196         }
1197         should_be_mono = true;
1198       } else {
1199         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
1200         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
1201 
1202           if (receiver()->klass() == ic_oop->holder_klass()) {
1203             // This isn't a real miss. We must have seen that compiled code
1204             // is now available and we want the call site converted to a
1205             // monomorphic compiled call site.
1206             // We can't assert for callee_method->code() != NULL because it
1207             // could have been deoptimized in the meantime
1208             if (TraceCallFixup) {
1209               ResourceMark rm(thread);
1210               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1211               callee_method->print_short_name(tty);
1212               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1213             }
1214             should_be_mono = true;
1215           }
1216         }
1217       }
1218 
1219       if (should_be_mono) {
1220 
1221         // We have a path that was monomorphic but was going interpreted
1222         // and now we have (or had) a compiled entry. We correct the IC
1223         // by using a new icBuffer.
1224         CompiledICInfo info;
1225         KlassHandle receiver_klass(THREAD, receiver()->klass());
1226         inline_cache->compute_monomorphic_entry(callee_method,
1227                                                 receiver_klass,
1228                                                 inline_cache->is_optimized(),
1229                                                 false,
1230                                                 info, CHECK_(methodHandle()));
1231         inline_cache->set_to_monomorphic(info);
1232       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1233         // Change to megamorphic
1234         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1235       } else {
1236         // Either clean or megamorphic
1237       }
1238     }
1239   } // Release CompiledIC_lock
1240 
1241   return callee_method;
1242 }
1243 
1244 //
1245 // Resets a call-site in compiled code so it will get resolved again.
1246 // This routines handles both virtual call sites, optimized virtual call
1247 // sites, and static call sites. Typically used to change a call sites
1248 // destination from compiled to interpreted.
1249 //
1250 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1251   ResourceMark rm(thread);
1252   RegisterMap reg_map(thread, false);
1253   frame stub_frame = thread->last_frame();
1254   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1255   frame caller = stub_frame.sender(&reg_map);
1256 
1257   // Do nothing if the frame isn't a live compiled frame.
1258   // nmethod could be deoptimized by the time we get here
1259   // so no update to the caller is needed.
1260 
1261   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1262 
1263     address pc = caller.pc();
1264     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
1265 
1266     // Default call_addr is the location of the "basic" call.
1267     // Determine the address of the call we a reresolving. With
1268     // Inline Caches we will always find a recognizable call.
1269     // With Inline Caches disabled we may or may not find a
1270     // recognizable call. We will always find a call for static
1271     // calls and for optimized virtual calls. For vanilla virtual
1272     // calls it depends on the state of the UseInlineCaches switch.
1273     //
1274     // With Inline Caches disabled we can get here for a virtual call
1275     // for two reasons:
1276     //   1 - calling an abstract method. The vtable for abstract methods
1277     //       will run us thru handle_wrong_method and we will eventually
1278     //       end up in the interpreter to throw the ame.
1279     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1280     //       call and between the time we fetch the entry address and
1281     //       we jump to it the target gets deoptimized. Similar to 1
1282     //       we will wind up in the interprter (thru a c2i with c2).
1283     //
1284     address call_addr = NULL;
1285     {
1286       // Get call instruction under lock because another thread may be
1287       // busy patching it.
1288       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1289       // Location of call instruction
1290       if (NativeCall::is_call_before(pc)) {
1291         NativeCall *ncall = nativeCall_before(pc);
1292         call_addr = ncall->instruction_address();
1293       }
1294     }
1295 
1296     // Check for static or virtual call
1297     bool is_static_call = false;
1298     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1299     // Make sure nmethod doesn't get deoptimized and removed until
1300     // this is done with it.
1301     // CLEANUP - with lazy deopt shouldn't need this lock
1302     nmethodLocker nmlock(caller_nm);
1303 
1304     if (call_addr != NULL) {
1305       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1306       int ret = iter.next(); // Get item
1307       if (ret) {
1308         assert(iter.addr() == call_addr, "must find call");
1309         if (iter.type() == relocInfo::static_call_type) {
1310           is_static_call = true;
1311         } else {
1312           assert(iter.type() == relocInfo::virtual_call_type ||
1313                  iter.type() == relocInfo::opt_virtual_call_type
1314                 , "unexpected relocInfo. type");
1315         }
1316       } else {
1317         assert(!UseInlineCaches, "relocation info. must exist for this address");
1318       }
1319 
1320       // Cleaning the inline cache will force a new resolve. This is more robust
1321       // than directly setting it to the new destination, since resolving of calls
1322       // is always done through the same code path. (experience shows that it
1323       // leads to very hard to track down bugs, if an inline cache gets updated
1324       // to a wrong method). It should not be performance critical, since the
1325       // resolve is only done once.
1326 
1327       MutexLocker ml(CompiledIC_lock);
1328       //
1329       // We do not patch the call site if the nmethod has been made non-entrant
1330       // as it is a waste of time
1331       //
1332       if (caller_nm->is_in_use()) {
1333         if (is_static_call) {
1334           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1335           ssc->set_to_clean();
1336         } else {
1337           // compiled, dispatched call (which used to call an interpreted method)
1338           CompiledIC* inline_cache = CompiledIC_at(call_addr);
1339           inline_cache->set_to_clean();
1340         }
1341       }
1342     }
1343 
1344   }
1345 
1346   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1347 
1348 
1349 #ifndef PRODUCT
1350   Atomic::inc(&_wrong_method_ctr);
1351 
1352   if (TraceCallFixup) {
1353     ResourceMark rm(thread);
1354     tty->print("handle_wrong_method reresolving call to");
1355     callee_method->print_short_name(tty);
1356     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1357   }
1358 #endif
1359 
1360   return callee_method;
1361 }
1362 
1363 // ---------------------------------------------------------------------------
1364 // We are calling the interpreter via a c2i. Normally this would mean that
1365 // we were called by a compiled method. However we could have lost a race
1366 // where we went int -> i2c -> c2i and so the caller could in fact be
1367 // interpreted. If the caller is compiled we attempt to patch the caller
1368 // so he no longer calls into the interpreter.
1369 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
1370   methodOop moop(method);
1371 
1372   address entry_point = moop->from_compiled_entry();
1373 
1374   // It's possible that deoptimization can occur at a call site which hasn't
1375   // been resolved yet, in which case this function will be called from
1376   // an nmethod that has been patched for deopt and we can ignore the
1377   // request for a fixup.
1378   // Also it is possible that we lost a race in that from_compiled_entry
1379   // is now back to the i2c in that case we don't need to patch and if
1380   // we did we'd leap into space because the callsite needs to use
1381   // "to interpreter" stub in order to load up the methodOop. Don't
1382   // ask me how I know this...
1383 
1384   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1385   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1386     return;
1387   }
1388 
1389   // The check above makes sure this is a nmethod.
1390   nmethod* nm = cb->as_nmethod_or_null();
1391   assert(nm, "must be");
1392 
1393   // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
1394   // to implement MethodHandle actions.
1395   if (nm->is_method_handle_return(caller_pc)) {
1396     return;
1397   }
1398 
1399   // There is a benign race here. We could be attempting to patch to a compiled
1400   // entry point at the same time the callee is being deoptimized. If that is
1401   // the case then entry_point may in fact point to a c2i and we'd patch the
1402   // call site with the same old data. clear_code will set code() to NULL
1403   // at the end of it. If we happen to see that NULL then we can skip trying
1404   // to patch. If we hit the window where the callee has a c2i in the
1405   // from_compiled_entry and the NULL isn't present yet then we lose the race
1406   // and patch the code with the same old data. Asi es la vida.
1407 
1408   if (moop->code() == NULL) return;
1409 
1410   if (nm->is_in_use()) {
1411 
1412     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1413     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1414     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
1415       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
1416       //
1417       // bug 6281185. We might get here after resolving a call site to a vanilla
1418       // virtual call. Because the resolvee uses the verified entry it may then
1419       // see compiled code and attempt to patch the site by calling us. This would
1420       // then incorrectly convert the call site to optimized and its downhill from
1421       // there. If you're lucky you'll get the assert in the bugid, if not you've
1422       // just made a call site that could be megamorphic into a monomorphic site
1423       // for the rest of its life! Just another racing bug in the life of
1424       // fixup_callers_callsite ...
1425       //
1426       RelocIterator iter(cb, call->instruction_address(), call->next_instruction_address());
1427       iter.next();
1428       assert(iter.has_current(), "must have a reloc at java call site");
1429       relocInfo::relocType typ = iter.reloc()->type();
1430       if ( typ != relocInfo::static_call_type &&
1431            typ != relocInfo::opt_virtual_call_type &&
1432            typ != relocInfo::static_stub_type) {
1433         return;
1434       }
1435       address destination = call->destination();
1436       if (destination != entry_point) {
1437         CodeBlob* callee = CodeCache::find_blob(destination);
1438         // callee == cb seems weird. It means calling interpreter thru stub.
1439         if (callee == cb || callee->is_adapter_blob()) {
1440           // static call or optimized virtual
1441           if (TraceCallFixup) {
1442             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1443             moop->print_short_name(tty);
1444             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1445           }
1446           call->set_destination_mt_safe(entry_point);
1447         } else {
1448           if (TraceCallFixup) {
1449             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1450             moop->print_short_name(tty);
1451             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1452           }
1453           // assert is too strong could also be resolve destinations.
1454           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1455         }
1456       } else {
1457           if (TraceCallFixup) {
1458             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1459             moop->print_short_name(tty);
1460             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1461           }
1462       }
1463     }
1464   }
1465 
1466 IRT_END
1467 
1468 
1469 // same as JVM_Arraycopy, but called directly from compiled code
1470 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1471                                                 oopDesc* dest, jint dest_pos,
1472                                                 jint length,
1473                                                 JavaThread* thread)) {
1474 #ifndef PRODUCT
1475   _slow_array_copy_ctr++;
1476 #endif
1477   // Check if we have null pointers
1478   if (src == NULL || dest == NULL) {
1479     THROW(vmSymbols::java_lang_NullPointerException());
1480   }
1481   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1482   // even though the copy_array API also performs dynamic checks to ensure
1483   // that src and dest are truly arrays (and are conformable).
1484   // The copy_array mechanism is awkward and could be removed, but
1485   // the compilers don't call this function except as a last resort,
1486   // so it probably doesn't matter.
1487   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
1488                                         (arrayOopDesc*)dest, dest_pos,
1489                                         length, thread);
1490 }
1491 JRT_END
1492 
1493 char* SharedRuntime::generate_class_cast_message(
1494     JavaThread* thread, const char* objName) {
1495 
1496   // Get target class name from the checkcast instruction
1497   vframeStream vfst(thread, true);
1498   assert(!vfst.at_end(), "Java frame must exist");
1499   Bytecode_checkcast* cc = Bytecode_checkcast_at(
1500     vfst.method()->bcp_from(vfst.bci()));
1501   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
1502     cc->index(), thread));
1503   return generate_class_cast_message(objName, targetKlass->external_name());
1504 }
1505 
1506 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
1507                                                         oopDesc* required,
1508                                                         oopDesc* actual) {
1509   assert(EnableMethodHandles, "");
1510   oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
1511   if (singleKlass != NULL) {
1512     const char* objName = "argument or return value";
1513     if (actual != NULL) {
1514       // be flexible about the junk passed in:
1515       klassOop ak = (actual->is_klass()
1516                      ? (klassOop)actual
1517                      : actual->klass());
1518       objName = Klass::cast(ak)->external_name();
1519     }
1520     Klass* targetKlass = Klass::cast(required->is_klass()
1521                                      ? (klassOop)required
1522                                      : java_lang_Class::as_klassOop(required));
1523     return generate_class_cast_message(objName, targetKlass->external_name());
1524   } else {
1525     // %%% need to get the MethodType string, without messing around too much
1526     // Get a signature from the invoke instruction
1527     const char* mhName = "method handle";
1528     const char* targetType = "the required signature";
1529     vframeStream vfst(thread, true);
1530     if (!vfst.at_end()) {
1531       Bytecode_invoke* call = Bytecode_invoke_at(vfst.method(), vfst.bci());
1532       methodHandle target;
1533       {
1534         EXCEPTION_MARK;
1535         target = call->static_target(THREAD);
1536         if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
1537       }
1538       if (target.not_null()
1539           && target->is_method_handle_invoke()
1540           && required == target->method_handle_type()) {
1541         targetType = target->signature()->as_C_string();
1542       }
1543     }
1544     klassOop kignore; int fignore;
1545     methodOop actual_method = MethodHandles::decode_method(actual,
1546                                                           kignore, fignore);
1547     if (actual_method != NULL) {
1548       if (actual_method->name() == vmSymbols::invoke_name())
1549         mhName = "$";
1550       else
1551         mhName = actual_method->signature()->as_C_string();
1552       if (mhName[0] == '$')
1553         mhName = actual_method->signature()->as_C_string();
1554     }
1555     return generate_class_cast_message(mhName, targetType,
1556                                        " cannot be called as ");
1557   }
1558 }
1559 
1560 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
1561                                                             oopDesc* required) {
1562   if (required == NULL)  return NULL;
1563   if (required->klass() == SystemDictionary::Class_klass())
1564     return required;
1565   if (required->is_klass())
1566     return Klass::cast(klassOop(required))->java_mirror();
1567   return NULL;
1568 }
1569 
1570 
1571 char* SharedRuntime::generate_class_cast_message(
1572     const char* objName, const char* targetKlassName, const char* desc) {
1573   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1574 
1575   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1576   if (NULL == message) {
1577     // Shouldn't happen, but don't cause even more problems if it does
1578     message = const_cast<char*>(objName);
1579   } else {
1580     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1581   }
1582   return message;
1583 }
1584 
1585 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1586   (void) JavaThread::current()->reguard_stack();
1587 JRT_END
1588 
1589 
1590 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1591 #ifndef PRODUCT
1592 int SharedRuntime::_monitor_enter_ctr=0;
1593 #endif
1594 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1595   oop obj(_obj);
1596 #ifndef PRODUCT
1597   _monitor_enter_ctr++;             // monitor enter slow
1598 #endif
1599   if (PrintBiasedLockingStatistics) {
1600     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1601   }
1602   Handle h_obj(THREAD, obj);
1603   if (UseBiasedLocking) {
1604     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1605     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1606   } else {
1607     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1608   }
1609   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1610 JRT_END
1611 
1612 #ifndef PRODUCT
1613 int SharedRuntime::_monitor_exit_ctr=0;
1614 #endif
1615 // Handles the uncommon cases of monitor unlocking in compiled code
1616 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1617    oop obj(_obj);
1618 #ifndef PRODUCT
1619   _monitor_exit_ctr++;              // monitor exit slow
1620 #endif
1621   Thread* THREAD = JavaThread::current();
1622   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1623   // testing was unable to ever fire the assert that guarded it so I have removed it.
1624   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1625 #undef MIGHT_HAVE_PENDING
1626 #ifdef MIGHT_HAVE_PENDING
1627   // Save and restore any pending_exception around the exception mark.
1628   // While the slow_exit must not throw an exception, we could come into
1629   // this routine with one set.
1630   oop pending_excep = NULL;
1631   const char* pending_file;
1632   int pending_line;
1633   if (HAS_PENDING_EXCEPTION) {
1634     pending_excep = PENDING_EXCEPTION;
1635     pending_file  = THREAD->exception_file();
1636     pending_line  = THREAD->exception_line();
1637     CLEAR_PENDING_EXCEPTION;
1638   }
1639 #endif /* MIGHT_HAVE_PENDING */
1640 
1641   {
1642     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1643     EXCEPTION_MARK;
1644     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1645   }
1646 
1647 #ifdef MIGHT_HAVE_PENDING
1648   if (pending_excep != NULL) {
1649     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1650   }
1651 #endif /* MIGHT_HAVE_PENDING */
1652 JRT_END
1653 
1654 #ifndef PRODUCT
1655 
1656 void SharedRuntime::print_statistics() {
1657   ttyLocker ttyl;
1658   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1659 
1660   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1661   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1662   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1663 
1664   SharedRuntime::print_ic_miss_histogram();
1665 
1666   if (CountRemovableExceptions) {
1667     if (_nof_removable_exceptions > 0) {
1668       Unimplemented(); // this counter is not yet incremented
1669       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1670     }
1671   }
1672 
1673   // Dump the JRT_ENTRY counters
1674   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1675   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1676   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1677   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1678   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1679   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1680   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1681 
1682   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1683   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1684   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1685   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1686   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1687 
1688   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1689   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1690   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1691   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1692   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1693   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1694   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1695   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1696   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1697   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1698   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1699   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1700   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1701   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1702   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1703   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1704 
1705   AdapterHandlerLibrary::print_statistics();
1706 
1707   if (xtty != NULL)  xtty->tail("statistics");
1708 }
1709 
1710 inline double percent(int x, int y) {
1711   return 100.0 * x / MAX2(y, 1);
1712 }
1713 
1714 class MethodArityHistogram {
1715  public:
1716   enum { MAX_ARITY = 256 };
1717  private:
1718   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1719   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1720   static int _max_arity;                      // max. arity seen
1721   static int _max_size;                       // max. arg size seen
1722 
1723   static void add_method_to_histogram(nmethod* nm) {
1724     methodOop m = nm->method();
1725     ArgumentCount args(m->signature());
1726     int arity   = args.size() + (m->is_static() ? 0 : 1);
1727     int argsize = m->size_of_parameters();
1728     arity   = MIN2(arity, MAX_ARITY-1);
1729     argsize = MIN2(argsize, MAX_ARITY-1);
1730     int count = nm->method()->compiled_invocation_count();
1731     _arity_histogram[arity]  += count;
1732     _size_histogram[argsize] += count;
1733     _max_arity = MAX2(_max_arity, arity);
1734     _max_size  = MAX2(_max_size, argsize);
1735   }
1736 
1737   void print_histogram_helper(int n, int* histo, const char* name) {
1738     const int N = MIN2(5, n);
1739     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1740     double sum = 0;
1741     double weighted_sum = 0;
1742     int i;
1743     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1744     double rest = sum;
1745     double percent = sum / 100;
1746     for (i = 0; i <= N; i++) {
1747       rest -= histo[i];
1748       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1749     }
1750     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1751     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1752   }
1753 
1754   void print_histogram() {
1755     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1756     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1757     tty->print_cr("\nSame for parameter size (in words):");
1758     print_histogram_helper(_max_size, _size_histogram, "size");
1759     tty->cr();
1760   }
1761 
1762  public:
1763   MethodArityHistogram() {
1764     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1765     _max_arity = _max_size = 0;
1766     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
1767     CodeCache::nmethods_do(add_method_to_histogram);
1768     print_histogram();
1769   }
1770 };
1771 
1772 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
1773 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
1774 int MethodArityHistogram::_max_arity;
1775 int MethodArityHistogram::_max_size;
1776 
1777 void SharedRuntime::print_call_statistics(int comp_total) {
1778   tty->print_cr("Calls from compiled code:");
1779   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
1780   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
1781   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
1782   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
1783   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
1784   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
1785   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
1786   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
1787   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
1788   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
1789   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
1790   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
1791   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
1792   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
1793   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
1794   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
1795   tty->cr();
1796   tty->print_cr("Note 1: counter updates are not MT-safe.");
1797   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
1798   tty->print_cr("        %% in nested categories are relative to their category");
1799   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
1800   tty->cr();
1801 
1802   MethodArityHistogram h;
1803 }
1804 #endif
1805 
1806 
1807 // A simple wrapper class around the calling convention information
1808 // that allows sharing of adapters for the same calling convention.
1809 class AdapterFingerPrint : public CHeapObj {
1810  private:
1811   union {
1812     int  _compact[3];
1813     int* _fingerprint;
1814   } _value;
1815   int _length; // A negative length indicates the fingerprint is in the compact form,
1816                // Otherwise _value._fingerprint is the array.
1817 
1818   // Remap BasicTypes that are handled equivalently by the adapters.
1819   // These are correct for the current system but someday it might be
1820   // necessary to make this mapping platform dependent.
1821   static BasicType adapter_encoding(BasicType in) {
1822     assert((~0xf & in) == 0, "must fit in 4 bits");
1823     switch(in) {
1824       case T_BOOLEAN:
1825       case T_BYTE:
1826       case T_SHORT:
1827       case T_CHAR:
1828         // There are all promoted to T_INT in the calling convention
1829         return T_INT;
1830 
1831       case T_OBJECT:
1832       case T_ARRAY:
1833         if (!TaggedStackInterpreter) {
1834 #ifdef _LP64
1835           return T_LONG;
1836 #else
1837           return T_INT;
1838 #endif
1839         }
1840         return T_OBJECT;
1841 
1842       case T_INT:
1843       case T_LONG:
1844       case T_FLOAT:
1845       case T_DOUBLE:
1846       case T_VOID:
1847         return in;
1848 
1849       default:
1850         ShouldNotReachHere();
1851         return T_CONFLICT;
1852     }
1853   }
1854 
1855  public:
1856   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
1857     // The fingerprint is based on the BasicType signature encoded
1858     // into an array of ints with four entries per int.
1859     int* ptr;
1860     int len = (total_args_passed + 3) >> 2;
1861     if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
1862       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
1863       // Storing the signature encoded as signed chars hits about 98%
1864       // of the time.
1865       _length = -len;
1866       ptr = _value._compact;
1867     } else {
1868       _length = len;
1869       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
1870       ptr = _value._fingerprint;
1871     }
1872 
1873     // Now pack the BasicTypes with 4 per int
1874     int sig_index = 0;
1875     for (int index = 0; index < len; index++) {
1876       int value = 0;
1877       for (int byte = 0; byte < 4; byte++) {
1878         if (sig_index < total_args_passed) {
1879           value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
1880         }
1881       }
1882       ptr[index] = value;
1883     }
1884   }
1885 
1886   ~AdapterFingerPrint() {
1887     if (_length > 0) {
1888       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
1889     }
1890   }
1891 
1892   int value(int index) {
1893     if (_length < 0) {
1894       return _value._compact[index];
1895     }
1896     return _value._fingerprint[index];
1897   }
1898   int length() {
1899     if (_length < 0) return -_length;
1900     return _length;
1901   }
1902 
1903   bool is_compact() {
1904     return _length <= 0;
1905   }
1906 
1907   unsigned int compute_hash() {
1908     int hash = 0;
1909     for (int i = 0; i < length(); i++) {
1910       int v = value(i);
1911       hash = (hash << 8) ^ v ^ (hash >> 5);
1912     }
1913     return (unsigned int)hash;
1914   }
1915 
1916   const char* as_string() {
1917     stringStream st;
1918     for (int i = 0; i < length(); i++) {
1919       st.print(PTR_FORMAT, value(i));
1920     }
1921     return st.as_string();
1922   }
1923 
1924   bool equals(AdapterFingerPrint* other) {
1925     if (other->_length != _length) {
1926       return false;
1927     }
1928     if (_length < 0) {
1929       return _value._compact[0] == other->_value._compact[0] &&
1930              _value._compact[1] == other->_value._compact[1] &&
1931              _value._compact[2] == other->_value._compact[2];
1932     } else {
1933       for (int i = 0; i < _length; i++) {
1934         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
1935           return false;
1936         }
1937       }
1938     }
1939     return true;
1940   }
1941 };
1942 
1943 
1944 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
1945 class AdapterHandlerTable : public BasicHashtable {
1946   friend class AdapterHandlerTableIterator;
1947 
1948  private:
1949 
1950 #ifdef ASSERT
1951   static int _lookups; // number of calls to lookup
1952   static int _buckets; // number of buckets checked
1953   static int _equals;  // number of buckets checked with matching hash
1954   static int _hits;    // number of successful lookups
1955   static int _compact; // number of equals calls with compact signature
1956 #endif
1957 
1958   AdapterHandlerEntry* bucket(int i) {
1959     return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
1960   }
1961 
1962  public:
1963   AdapterHandlerTable()
1964     : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
1965 
1966   // Create a new entry suitable for insertion in the table
1967   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
1968     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
1969     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
1970     return entry;
1971   }
1972 
1973   // Insert an entry into the table
1974   void add(AdapterHandlerEntry* entry) {
1975     int index = hash_to_index(entry->hash());
1976     add_entry(index, entry);
1977   }
1978 
1979   void free_entry(AdapterHandlerEntry* entry) {
1980     entry->deallocate();
1981     BasicHashtable::free_entry(entry);
1982   }
1983 
1984   // Find a entry with the same fingerprint if it exists
1985   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
1986     debug_only(_lookups++);
1987     AdapterFingerPrint fp(total_args_passed, sig_bt);
1988     unsigned int hash = fp.compute_hash();
1989     int index = hash_to_index(hash);
1990     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
1991       debug_only(_buckets++);
1992       if (e->hash() == hash) {
1993         debug_only(_equals++);
1994         if (fp.equals(e->fingerprint())) {
1995 #ifdef ASSERT
1996           if (fp.is_compact()) _compact++;
1997           _hits++;
1998 #endif
1999           return e;
2000         }
2001       }
2002     }
2003     return NULL;
2004   }
2005 
2006   void print_statistics() {
2007     ResourceMark rm;
2008     int longest = 0;
2009     int empty = 0;
2010     int total = 0;
2011     int nonempty = 0;
2012     for (int index = 0; index < table_size(); index++) {
2013       int count = 0;
2014       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2015         count++;
2016       }
2017       if (count != 0) nonempty++;
2018       if (count == 0) empty++;
2019       if (count > longest) longest = count;
2020       total += count;
2021     }
2022     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2023                   empty, longest, total, total / (double)nonempty);
2024 #ifdef ASSERT
2025     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2026                   _lookups, _buckets, _equals, _hits, _compact);
2027 #endif
2028   }
2029 };
2030 
2031 
2032 #ifdef ASSERT
2033 
2034 int AdapterHandlerTable::_lookups;
2035 int AdapterHandlerTable::_buckets;
2036 int AdapterHandlerTable::_equals;
2037 int AdapterHandlerTable::_hits;
2038 int AdapterHandlerTable::_compact;
2039 
2040 class AdapterHandlerTableIterator : public StackObj {
2041  private:
2042   AdapterHandlerTable* _table;
2043   int _index;
2044   AdapterHandlerEntry* _current;
2045 
2046   void scan() {
2047     while (_index < _table->table_size()) {
2048       AdapterHandlerEntry* a = _table->bucket(_index);
2049       if (a != NULL) {
2050         _current = a;
2051         return;
2052       }
2053       _index++;
2054     }
2055   }
2056 
2057  public:
2058   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2059     scan();
2060   }
2061   bool has_next() {
2062     return _current != NULL;
2063   }
2064   AdapterHandlerEntry* next() {
2065     if (_current != NULL) {
2066       AdapterHandlerEntry* result = _current;
2067       _current = _current->next();
2068       if (_current == NULL) scan();
2069       return result;
2070     } else {
2071       return NULL;
2072     }
2073   }
2074 };
2075 #endif
2076 
2077 
2078 // ---------------------------------------------------------------------------
2079 // Implementation of AdapterHandlerLibrary
2080 const char* AdapterHandlerEntry::name = "I2C/C2I adapters";
2081 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2082 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2083 const int AdapterHandlerLibrary_size = 16*K;
2084 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2085 
2086 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2087   // Should be called only when AdapterHandlerLibrary_lock is active.
2088   if (_buffer == NULL) // Initialize lazily
2089       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2090   return _buffer;
2091 }
2092 
2093 void AdapterHandlerLibrary::initialize() {
2094   if (_adapters != NULL) return;
2095   _adapters = new AdapterHandlerTable();
2096 
2097   // Create a special handler for abstract methods.  Abstract methods
2098   // are never compiled so an i2c entry is somewhat meaningless, but
2099   // fill it in with something appropriate just in case.  Pass handle
2100   // wrong method for the c2i transitions.
2101   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2102   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2103                                                               StubRoutines::throw_AbstractMethodError_entry(),
2104                                                               wrong_method, wrong_method);
2105 }
2106 
2107 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2108                                                       address i2c_entry,
2109                                                       address c2i_entry,
2110                                                       address c2i_unverified_entry) {
2111   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2112 }
2113 
2114 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2115   // Use customized signature handler.  Need to lock around updates to
2116   // the AdapterHandlerTable (it is not safe for concurrent readers
2117   // and a single writer: this could be fixed if it becomes a
2118   // problem).
2119 
2120   // Get the address of the ic_miss handlers before we grab the
2121   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2122   // was caused by the initialization of the stubs happening
2123   // while we held the lock and then notifying jvmti while
2124   // holding it. This just forces the initialization to be a little
2125   // earlier.
2126   address ic_miss = SharedRuntime::get_ic_miss_stub();
2127   assert(ic_miss != NULL, "must have handler");
2128 
2129   ResourceMark rm;
2130 
2131   NOT_PRODUCT(int code_size);
2132   BufferBlob *B = NULL;
2133   AdapterHandlerEntry* entry = NULL;
2134   AdapterFingerPrint* fingerprint = NULL;
2135   {
2136     MutexLocker mu(AdapterHandlerLibrary_lock);
2137     // make sure data structure is initialized
2138     initialize();
2139 
2140     if (method->is_abstract()) {
2141       return _abstract_method_handler;
2142     }
2143 
2144     // Fill in the signature array, for the calling-convention call.
2145     int total_args_passed = method->size_of_parameters(); // All args on stack
2146 
2147     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2148     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2149     int i = 0;
2150     if (!method->is_static())  // Pass in receiver first
2151       sig_bt[i++] = T_OBJECT;
2152     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2153       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2154       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2155         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2156     }
2157     assert(i == total_args_passed, "");
2158 
2159     // Lookup method signature's fingerprint
2160     entry = _adapters->lookup(total_args_passed, sig_bt);
2161 
2162 #ifdef ASSERT
2163     AdapterHandlerEntry* shared_entry = NULL;
2164     if (VerifyAdapterSharing && entry != NULL) {
2165       shared_entry = entry;
2166       entry = NULL;
2167     }
2168 #endif
2169 
2170     if (entry != NULL) {
2171       return entry;
2172     }
2173 
2174     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2175     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2176 
2177     // Make a C heap allocated version of the fingerprint to store in the adapter
2178     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2179 
2180     // Create I2C & C2I handlers
2181 
2182     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2183     if (buf != NULL) {
2184       CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
2185       short buffer_locs[20];
2186       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2187                                              sizeof(buffer_locs)/sizeof(relocInfo));
2188       MacroAssembler _masm(&buffer);
2189 
2190       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2191                                                      total_args_passed,
2192                                                      comp_args_on_stack,
2193                                                      sig_bt,
2194                                                      regs,
2195                                                      fingerprint);
2196 
2197 #ifdef ASSERT
2198       if (VerifyAdapterSharing) {
2199         if (shared_entry != NULL) {
2200           assert(shared_entry->compare_code(buf->instructions_begin(), buffer.code_size(), total_args_passed, sig_bt),
2201                  "code must match");
2202           // Release the one just created and return the original
2203           _adapters->free_entry(entry);
2204           return shared_entry;
2205         } else  {
2206           entry->save_code(buf->instructions_begin(), buffer.code_size(), total_args_passed, sig_bt);
2207         }
2208       }
2209 #endif
2210 
2211       B = BufferBlob::create(AdapterHandlerEntry::name, &buffer);
2212       NOT_PRODUCT(code_size = buffer.code_size());
2213     }
2214     if (B == NULL) {
2215       // CodeCache is full, disable compilation
2216       // Ought to log this but compile log is only per compile thread
2217       // and we're some non descript Java thread.
2218       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2219       CompileBroker::handle_full_code_cache();
2220       return NULL; // Out of CodeCache space
2221     }
2222     entry->relocate(B->instructions_begin());
2223 #ifndef PRODUCT
2224     // debugging suppport
2225     if (PrintAdapterHandlers) {
2226       tty->cr();
2227       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
2228                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2229                     method->signature()->as_C_string(), fingerprint->as_string(), code_size );
2230       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2231       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + code_size);
2232     }
2233 #endif
2234 
2235     _adapters->add(entry);
2236   }
2237   // Outside of the lock
2238   if (B != NULL) {
2239     char blob_id[256];
2240     jio_snprintf(blob_id,
2241                  sizeof(blob_id),
2242                  "%s(%s)@" PTR_FORMAT,
2243                  AdapterHandlerEntry::name,
2244                  fingerprint->as_string(),
2245                  B->instructions_begin());
2246     VTune::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
2247     Forte::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
2248 
2249     if (JvmtiExport::should_post_dynamic_code_generated()) {
2250       JvmtiExport::post_dynamic_code_generated(blob_id,
2251                                                B->instructions_begin(),
2252                                                B->instructions_end());
2253     }
2254   }
2255   return entry;
2256 }
2257 
2258 void AdapterHandlerEntry::relocate(address new_base) {
2259     ptrdiff_t delta = new_base - _i2c_entry;
2260     _i2c_entry += delta;
2261     _c2i_entry += delta;
2262     _c2i_unverified_entry += delta;
2263 }
2264 
2265 
2266 void AdapterHandlerEntry::deallocate() {
2267   delete _fingerprint;
2268 #ifdef ASSERT
2269   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2270   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
2271 #endif
2272 }
2273 
2274 
2275 #ifdef ASSERT
2276 // Capture the code before relocation so that it can be compared
2277 // against other versions.  If the code is captured after relocation
2278 // then relative instructions won't be equivalent.
2279 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2280   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
2281   _code_length = length;
2282   memcpy(_saved_code, buffer, length);
2283   _total_args_passed = total_args_passed;
2284   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
2285   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2286 }
2287 
2288 
2289 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2290   if (length != _code_length) {
2291     return false;
2292   }
2293   for (int i = 0; i < length; i++) {
2294     if (buffer[i] != _saved_code[i]) {
2295       return false;
2296     }
2297   }
2298   return true;
2299 }
2300 #endif
2301 
2302 
2303 // Create a native wrapper for this native method.  The wrapper converts the
2304 // java compiled calling convention to the native convention, handlizes
2305 // arguments, and transitions to native.  On return from the native we transition
2306 // back to java blocking if a safepoint is in progress.
2307 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2308   ResourceMark rm;
2309   nmethod* nm = NULL;
2310 
2311   if (PrintCompilation) {
2312     ttyLocker ttyl;
2313     tty->print("---   n%s ", (method->is_synchronized() ? "s" : " "));
2314     method->print_short_name(tty);
2315     if (method->is_static()) {
2316       tty->print(" (static)");
2317     }
2318     tty->cr();
2319   }
2320 
2321   assert(method->has_native_function(), "must have something valid to call!");
2322 
2323   {
2324     // perform the work while holding the lock, but perform any printing outside the lock
2325     MutexLocker mu(AdapterHandlerLibrary_lock);
2326     // See if somebody beat us to it
2327     nm = method->code();
2328     if (nm) {
2329       return nm;
2330     }
2331 
2332     ResourceMark rm;
2333 
2334     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2335     if (buf != NULL) {
2336       CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
2337       double locs_buf[20];
2338       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2339       MacroAssembler _masm(&buffer);
2340 
2341       // Fill in the signature array, for the calling-convention call.
2342       int total_args_passed = method->size_of_parameters();
2343 
2344       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
2345       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
2346       int i=0;
2347       if( !method->is_static() )  // Pass in receiver first
2348         sig_bt[i++] = T_OBJECT;
2349       SignatureStream ss(method->signature());
2350       for( ; !ss.at_return_type(); ss.next()) {
2351         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2352         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2353           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2354       }
2355       assert( i==total_args_passed, "" );
2356       BasicType ret_type = ss.type();
2357 
2358       // Now get the compiled-Java layout as input arguments
2359       int comp_args_on_stack;
2360       comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2361 
2362       // Generate the compiled-to-native wrapper code
2363       nm = SharedRuntime::generate_native_wrapper(&_masm,
2364                                                   method,
2365                                                   total_args_passed,
2366                                                   comp_args_on_stack,
2367                                                   sig_bt,regs,
2368                                                   ret_type);
2369     }
2370   }
2371 
2372   // Must unlock before calling set_code
2373   // Install the generated code.
2374   if (nm != NULL) {
2375     method->set_code(method, nm);
2376     nm->post_compiled_method_load_event();
2377   } else {
2378     // CodeCache is full, disable compilation
2379     // Ought to log this but compile log is only per compile thread
2380     // and we're some non descript Java thread.
2381     MutexUnlocker mu(AdapterHandlerLibrary_lock);
2382     CompileBroker::handle_full_code_cache();
2383   }
2384   return nm;
2385 }
2386 
2387 #ifdef HAVE_DTRACE_H
2388 // Create a dtrace nmethod for this method.  The wrapper converts the
2389 // java compiled calling convention to the native convention, makes a dummy call
2390 // (actually nops for the size of the call instruction, which become a trap if
2391 // probe is enabled). The returns to the caller. Since this all looks like a
2392 // leaf no thread transition is needed.
2393 
2394 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2395   ResourceMark rm;
2396   nmethod* nm = NULL;
2397 
2398   if (PrintCompilation) {
2399     ttyLocker ttyl;
2400     tty->print("---   n%s  ");
2401     method->print_short_name(tty);
2402     if (method->is_static()) {
2403       tty->print(" (static)");
2404     }
2405     tty->cr();
2406   }
2407 
2408   {
2409     // perform the work while holding the lock, but perform any printing
2410     // outside the lock
2411     MutexLocker mu(AdapterHandlerLibrary_lock);
2412     // See if somebody beat us to it
2413     nm = method->code();
2414     if (nm) {
2415       return nm;
2416     }
2417 
2418     ResourceMark rm;
2419 
2420     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2421     if (buf != NULL) {
2422       CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
2423       // Need a few relocation entries
2424       double locs_buf[20];
2425       buffer.insts()->initialize_shared_locs(
2426         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2427       MacroAssembler _masm(&buffer);
2428 
2429       // Generate the compiled-to-native wrapper code
2430       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2431     }
2432   }
2433   return nm;
2434 }
2435 
2436 // the dtrace method needs to convert java lang string to utf8 string.
2437 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2438   typeArrayOop jlsValue  = java_lang_String::value(src);
2439   int          jlsOffset = java_lang_String::offset(src);
2440   int          jlsLen    = java_lang_String::length(src);
2441   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2442                                            jlsValue->char_at_addr(jlsOffset);
2443   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2444 }
2445 #endif // ndef HAVE_DTRACE_H
2446 
2447 // -------------------------------------------------------------------------
2448 // Java-Java calling convention
2449 // (what you use when Java calls Java)
2450 
2451 //------------------------------name_for_receiver----------------------------------
2452 // For a given signature, return the VMReg for parameter 0.
2453 VMReg SharedRuntime::name_for_receiver() {
2454   VMRegPair regs;
2455   BasicType sig_bt = T_OBJECT;
2456   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2457   // Return argument 0 register.  In the LP64 build pointers
2458   // take 2 registers, but the VM wants only the 'main' name.
2459   return regs.first();
2460 }
2461 
2462 VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool has_receiver, int* arg_size) {
2463   // This method is returning a data structure allocating as a
2464   // ResourceObject, so do not put any ResourceMarks in here.
2465   char *s = sig->as_C_string();
2466   int len = (int)strlen(s);
2467   *s++; len--;                  // Skip opening paren
2468   char *t = s+len;
2469   while( *(--t) != ')' ) ;      // Find close paren
2470 
2471   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2472   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2473   int cnt = 0;
2474   if (has_receiver) {
2475     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2476   }
2477 
2478   while( s < t ) {
2479     switch( *s++ ) {            // Switch on signature character
2480     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2481     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2482     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2483     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2484     case 'I': sig_bt[cnt++] = T_INT;     break;
2485     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2486     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2487     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2488     case 'V': sig_bt[cnt++] = T_VOID;    break;
2489     case 'L':                   // Oop
2490       while( *s++ != ';'  ) ;   // Skip signature
2491       sig_bt[cnt++] = T_OBJECT;
2492       break;
2493     case '[': {                 // Array
2494       do {                      // Skip optional size
2495         while( *s >= '0' && *s <= '9' ) s++;
2496       } while( *s++ == '[' );   // Nested arrays?
2497       // Skip element type
2498       if( s[-1] == 'L' )
2499         while( *s++ != ';'  ) ; // Skip signature
2500       sig_bt[cnt++] = T_ARRAY;
2501       break;
2502     }
2503     default : ShouldNotReachHere();
2504     }
2505   }
2506   assert( cnt < 256, "grow table size" );
2507 
2508   int comp_args_on_stack;
2509   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2510 
2511   // the calling convention doesn't count out_preserve_stack_slots so
2512   // we must add that in to get "true" stack offsets.
2513 
2514   if (comp_args_on_stack) {
2515     for (int i = 0; i < cnt; i++) {
2516       VMReg reg1 = regs[i].first();
2517       if( reg1->is_stack()) {
2518         // Yuck
2519         reg1 = reg1->bias(out_preserve_stack_slots());
2520       }
2521       VMReg reg2 = regs[i].second();
2522       if( reg2->is_stack()) {
2523         // Yuck
2524         reg2 = reg2->bias(out_preserve_stack_slots());
2525       }
2526       regs[i].set_pair(reg2, reg1);
2527     }
2528   }
2529 
2530   // results
2531   *arg_size = cnt;
2532   return regs;
2533 }
2534 
2535 // OSR Migration Code
2536 //
2537 // This code is used convert interpreter frames into compiled frames.  It is
2538 // called from very start of a compiled OSR nmethod.  A temp array is
2539 // allocated to hold the interesting bits of the interpreter frame.  All
2540 // active locks are inflated to allow them to move.  The displaced headers and
2541 // active interpeter locals are copied into the temp buffer.  Then we return
2542 // back to the compiled code.  The compiled code then pops the current
2543 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2544 // copies the interpreter locals and displaced headers where it wants.
2545 // Finally it calls back to free the temp buffer.
2546 //
2547 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2548 
2549 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2550 
2551 #ifdef IA64
2552   ShouldNotReachHere(); // NYI
2553 #endif /* IA64 */
2554 
2555   //
2556   // This code is dependent on the memory layout of the interpreter local
2557   // array and the monitors. On all of our platforms the layout is identical
2558   // so this code is shared. If some platform lays the their arrays out
2559   // differently then this code could move to platform specific code or
2560   // the code here could be modified to copy items one at a time using
2561   // frame accessor methods and be platform independent.
2562 
2563   frame fr = thread->last_frame();
2564   assert( fr.is_interpreted_frame(), "" );
2565   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2566 
2567   // Figure out how many monitors are active.
2568   int active_monitor_count = 0;
2569   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2570        kptr < fr.interpreter_frame_monitor_begin();
2571        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2572     if( kptr->obj() != NULL ) active_monitor_count++;
2573   }
2574 
2575   // QQQ we could place number of active monitors in the array so that compiled code
2576   // could double check it.
2577 
2578   methodOop moop = fr.interpreter_frame_method();
2579   int max_locals = moop->max_locals();
2580   // Allocate temp buffer, 1 word per local & 2 per active monitor
2581   int buf_size_words = max_locals + active_monitor_count*2;
2582   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
2583 
2584   // Copy the locals.  Order is preserved so that loading of longs works.
2585   // Since there's no GC I can copy the oops blindly.
2586   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2587   if (TaggedStackInterpreter) {
2588     for (int i = 0; i < max_locals; i++) {
2589       // copy only each local separately to the buffer avoiding the tag
2590       buf[i] = *fr.interpreter_frame_local_at(max_locals-i-1);
2591     }
2592   } else {
2593     Copy::disjoint_words(
2594                        (HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2595                        (HeapWord*)&buf[0],
2596                        max_locals);
2597   }
2598 
2599   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2600   int i = max_locals;
2601   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2602        kptr2 < fr.interpreter_frame_monitor_begin();
2603        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2604     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2605       BasicLock *lock = kptr2->lock();
2606       // Inflate so the displaced header becomes position-independent
2607       if (lock->displaced_header()->is_unlocked())
2608         ObjectSynchronizer::inflate_helper(kptr2->obj());
2609       // Now the displaced header is free to move
2610       buf[i++] = (intptr_t)lock->displaced_header();
2611       buf[i++] = (intptr_t)kptr2->obj();
2612     }
2613   }
2614   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2615 
2616   return buf;
2617 JRT_END
2618 
2619 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2620   FREE_C_HEAP_ARRAY(intptr_t,buf);
2621 JRT_END
2622 
2623 #ifndef PRODUCT
2624 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2625   AdapterHandlerTableIterator iter(_adapters);
2626   while (iter.has_next()) {
2627     AdapterHandlerEntry* a = iter.next();
2628     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2629   }
2630   return false;
2631 }
2632 
2633 void AdapterHandlerLibrary::print_handler(CodeBlob* b) {
2634   AdapterHandlerTableIterator iter(_adapters);
2635   while (iter.has_next()) {
2636     AdapterHandlerEntry* a = iter.next();
2637     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
2638       tty->print("Adapter for signature: ");
2639       tty->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2640                     a->fingerprint()->as_string(),
2641                     a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
2642       return;
2643     }
2644   }
2645   assert(false, "Should have found handler");
2646 }
2647 
2648 void AdapterHandlerLibrary::print_statistics() {
2649   _adapters->print_statistics();
2650 }
2651 
2652 #endif /* PRODUCT */