1 /*
   2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_sharedRuntime.cpp.incl"
  27 #include <math.h>
  28 
  29 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
  30 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
  31                       char*, int, char*, int, char*, int);
  32 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
  33                       char*, int, char*, int, char*, int);
  34 
  35 // Implementation of SharedRuntime
  36 
  37 #ifndef PRODUCT
  38 // For statistics
  39 int SharedRuntime::_ic_miss_ctr = 0;
  40 int SharedRuntime::_wrong_method_ctr = 0;
  41 int SharedRuntime::_resolve_static_ctr = 0;
  42 int SharedRuntime::_resolve_virtual_ctr = 0;
  43 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
  44 int SharedRuntime::_implicit_null_throws = 0;
  45 int SharedRuntime::_implicit_div0_throws = 0;
  46 int SharedRuntime::_throw_null_ctr = 0;
  47 
  48 int SharedRuntime::_nof_normal_calls = 0;
  49 int SharedRuntime::_nof_optimized_calls = 0;
  50 int SharedRuntime::_nof_inlined_calls = 0;
  51 int SharedRuntime::_nof_megamorphic_calls = 0;
  52 int SharedRuntime::_nof_static_calls = 0;
  53 int SharedRuntime::_nof_inlined_static_calls = 0;
  54 int SharedRuntime::_nof_interface_calls = 0;
  55 int SharedRuntime::_nof_optimized_interface_calls = 0;
  56 int SharedRuntime::_nof_inlined_interface_calls = 0;
  57 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
  58 int SharedRuntime::_nof_removable_exceptions = 0;
  59 
  60 int SharedRuntime::_new_instance_ctr=0;
  61 int SharedRuntime::_new_array_ctr=0;
  62 int SharedRuntime::_multi1_ctr=0;
  63 int SharedRuntime::_multi2_ctr=0;
  64 int SharedRuntime::_multi3_ctr=0;
  65 int SharedRuntime::_multi4_ctr=0;
  66 int SharedRuntime::_multi5_ctr=0;
  67 int SharedRuntime::_mon_enter_stub_ctr=0;
  68 int SharedRuntime::_mon_exit_stub_ctr=0;
  69 int SharedRuntime::_mon_enter_ctr=0;
  70 int SharedRuntime::_mon_exit_ctr=0;
  71 int SharedRuntime::_partial_subtype_ctr=0;
  72 int SharedRuntime::_jbyte_array_copy_ctr=0;
  73 int SharedRuntime::_jshort_array_copy_ctr=0;
  74 int SharedRuntime::_jint_array_copy_ctr=0;
  75 int SharedRuntime::_jlong_array_copy_ctr=0;
  76 int SharedRuntime::_oop_array_copy_ctr=0;
  77 int SharedRuntime::_checkcast_array_copy_ctr=0;
  78 int SharedRuntime::_unsafe_array_copy_ctr=0;
  79 int SharedRuntime::_generic_array_copy_ctr=0;
  80 int SharedRuntime::_slow_array_copy_ctr=0;
  81 int SharedRuntime::_find_handler_ctr=0;
  82 int SharedRuntime::_rethrow_ctr=0;
  83 
  84 int     SharedRuntime::_ICmiss_index                    = 0;
  85 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
  86 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
  87 
  88 void SharedRuntime::trace_ic_miss(address at) {
  89   for (int i = 0; i < _ICmiss_index; i++) {
  90     if (_ICmiss_at[i] == at) {
  91       _ICmiss_count[i]++;
  92       return;
  93     }
  94   }
  95   int index = _ICmiss_index++;
  96   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
  97   _ICmiss_at[index] = at;
  98   _ICmiss_count[index] = 1;
  99 }
 100 
 101 void SharedRuntime::print_ic_miss_histogram() {
 102   if (ICMissHistogram) {
 103     tty->print_cr ("IC Miss Histogram:");
 104     int tot_misses = 0;
 105     for (int i = 0; i < _ICmiss_index; i++) {
 106       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 107       tot_misses += _ICmiss_count[i];
 108     }
 109     tty->print_cr ("Total IC misses: %7d", tot_misses);
 110   }
 111 }
 112 #endif // PRODUCT
 113 
 114 #ifndef SERIALGC
 115 
 116 // G1 write-barrier pre: executed before a pointer store.
 117 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 118   if (orig == NULL) {
 119     assert(false, "should be optimized out");
 120     return;
 121   }
 122   assert(orig->is_oop(true /* ignore mark word */), "Error");
 123   // store the original value that was in the field reference
 124   thread->satb_mark_queue().enqueue(orig);
 125 JRT_END
 126 
 127 // G1 write-barrier post: executed after a pointer store.
 128 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 129   thread->dirty_card_queue().enqueue(card_addr);
 130 JRT_END
 131 
 132 #endif // !SERIALGC
 133 
 134 
 135 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 136   return x * y;
 137 JRT_END
 138 
 139 
 140 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 141   if (x == min_jlong && y == CONST64(-1)) {
 142     return x;
 143   } else {
 144     return x / y;
 145   }
 146 JRT_END
 147 
 148 
 149 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 150   if (x == min_jlong && y == CONST64(-1)) {
 151     return 0;
 152   } else {
 153     return x % y;
 154   }
 155 JRT_END
 156 
 157 
 158 const juint  float_sign_mask  = 0x7FFFFFFF;
 159 const juint  float_infinity   = 0x7F800000;
 160 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 161 const julong double_infinity  = CONST64(0x7FF0000000000000);
 162 
 163 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 164 #ifdef _WIN64
 165   // 64-bit Windows on amd64 returns the wrong values for
 166   // infinity operands.
 167   union { jfloat f; juint i; } xbits, ybits;
 168   xbits.f = x;
 169   ybits.f = y;
 170   // x Mod Infinity == x unless x is infinity
 171   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 172        ((ybits.i & float_sign_mask) == float_infinity) ) {
 173     return x;
 174   }
 175 #endif
 176   return ((jfloat)fmod((double)x,(double)y));
 177 JRT_END
 178 
 179 
 180 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 181 #ifdef _WIN64
 182   union { jdouble d; julong l; } xbits, ybits;
 183   xbits.d = x;
 184   ybits.d = y;
 185   // x Mod Infinity == x unless x is infinity
 186   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 187        ((ybits.l & double_sign_mask) == double_infinity) ) {
 188     return x;
 189   }
 190 #endif
 191   return ((jdouble)fmod((double)x,(double)y));
 192 JRT_END
 193 
 194 
 195 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 196   if (g_isnan(x))
 197     return 0;
 198   if (x >= (jfloat) max_jint)
 199     return max_jint;
 200   if (x <= (jfloat) min_jint)
 201     return min_jint;
 202   return (jint) x;
 203 JRT_END
 204 
 205 
 206 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 207   if (g_isnan(x))
 208     return 0;
 209   if (x >= (jfloat) max_jlong)
 210     return max_jlong;
 211   if (x <= (jfloat) min_jlong)
 212     return min_jlong;
 213   return (jlong) x;
 214 JRT_END
 215 
 216 
 217 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 218   if (g_isnan(x))
 219     return 0;
 220   if (x >= (jdouble) max_jint)
 221     return max_jint;
 222   if (x <= (jdouble) min_jint)
 223     return min_jint;
 224   return (jint) x;
 225 JRT_END
 226 
 227 
 228 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 229   if (g_isnan(x))
 230     return 0;
 231   if (x >= (jdouble) max_jlong)
 232     return max_jlong;
 233   if (x <= (jdouble) min_jlong)
 234     return min_jlong;
 235   return (jlong) x;
 236 JRT_END
 237 
 238 
 239 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 240   return (jfloat)x;
 241 JRT_END
 242 
 243 
 244 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 245   return (jfloat)x;
 246 JRT_END
 247 
 248 
 249 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 250   return (jdouble)x;
 251 JRT_END
 252 
 253 // Exception handling accross interpreter/compiler boundaries
 254 //
 255 // exception_handler_for_return_address(...) returns the continuation address.
 256 // The continuation address is the entry point of the exception handler of the
 257 // previous frame depending on the return address.
 258 
 259 address SharedRuntime::raw_exception_handler_for_return_address(address return_address) {
 260   assert(frame::verify_return_pc(return_address), "must be a return pc");
 261 
 262   // the fastest case first
 263   CodeBlob* blob = CodeCache::find_blob(return_address);
 264   if (blob != NULL && blob->is_nmethod()) {
 265     nmethod* code = (nmethod*)blob;
 266     assert(code != NULL, "nmethod must be present");
 267     // native nmethods don't have exception handlers
 268     assert(!code->is_native_method(), "no exception handler");
 269     assert(code->header_begin() != code->exception_begin(), "no exception handler");
 270     if (code->is_deopt_pc(return_address)) {
 271       return SharedRuntime::deopt_blob()->unpack_with_exception();
 272     } else {
 273       return code->exception_begin();
 274     }
 275   }
 276 
 277   // Entry code
 278   if (StubRoutines::returns_to_call_stub(return_address)) {
 279     return StubRoutines::catch_exception_entry();
 280   }
 281   // Interpreted code
 282   if (Interpreter::contains(return_address)) {
 283     return Interpreter::rethrow_exception_entry();
 284   }
 285 
 286   // Compiled code
 287   if (CodeCache::contains(return_address)) {
 288     CodeBlob* blob = CodeCache::find_blob(return_address);
 289     if (blob->is_nmethod()) {
 290       nmethod* code = (nmethod*)blob;
 291       assert(code != NULL, "nmethod must be present");
 292       assert(code->header_begin() != code->exception_begin(), "no exception handler");
 293       return code->exception_begin();
 294     }
 295     if (blob->is_runtime_stub()) {
 296       ShouldNotReachHere();   // callers are responsible for skipping runtime stub frames
 297     }
 298   }
 299   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 300 #ifndef PRODUCT
 301   { ResourceMark rm;
 302     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 303     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 304     tty->print_cr("b) other problem");
 305   }
 306 #endif // PRODUCT
 307   ShouldNotReachHere();
 308   return NULL;
 309 }
 310 
 311 
 312 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(address return_address))
 313   return raw_exception_handler_for_return_address(return_address);
 314 JRT_END
 315 
 316 address SharedRuntime::get_poll_stub(address pc) {
 317   address stub;
 318   // Look up the code blob
 319   CodeBlob *cb = CodeCache::find_blob(pc);
 320 
 321   // Should be an nmethod
 322   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 323 
 324   // Look up the relocation information
 325   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 326     "safepoint polling: type must be poll" );
 327 
 328   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 329     "Only polling locations are used for safepoint");
 330 
 331   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 332   if (at_poll_return) {
 333     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 334            "polling page return stub not created yet");
 335     stub = SharedRuntime::polling_page_return_handler_blob()->instructions_begin();
 336   } else {
 337     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 338            "polling page safepoint stub not created yet");
 339     stub = SharedRuntime::polling_page_safepoint_handler_blob()->instructions_begin();
 340   }
 341 #ifndef PRODUCT
 342   if( TraceSafepoint ) {
 343     char buf[256];
 344     jio_snprintf(buf, sizeof(buf),
 345                  "... found polling page %s exception at pc = "
 346                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 347                  at_poll_return ? "return" : "loop",
 348                  (intptr_t)pc, (intptr_t)stub);
 349     tty->print_raw_cr(buf);
 350   }
 351 #endif // PRODUCT
 352   return stub;
 353 }
 354 
 355 
 356 oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
 357   assert(caller.is_interpreted_frame(), "");
 358   int args_size = ArgumentSizeComputer(sig).size() + 1;
 359   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 360   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
 361   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 362   return result;
 363 }
 364 
 365 
 366 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 367   if (JvmtiExport::can_post_exceptions()) {
 368     vframeStream vfst(thread, true);
 369     methodHandle method = methodHandle(thread, vfst.method());
 370     address bcp = method()->bcp_from(vfst.bci());
 371     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 372   }
 373   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 374 }
 375 
 376 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
 377   Handle h_exception = Exceptions::new_exception(thread, name, message);
 378   throw_and_post_jvmti_exception(thread, h_exception);
 379 }
 380 
 381 // The interpreter code to call this tracing function is only
 382 // called/generated when TraceRedefineClasses has the right bits
 383 // set. Since obsolete methods are never compiled, we don't have
 384 // to modify the compilers to generate calls to this function.
 385 //
 386 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 387     JavaThread* thread, methodOopDesc* method))
 388   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 389 
 390   if (method->is_obsolete()) {
 391     // We are calling an obsolete method, but this is not necessarily
 392     // an error. Our method could have been redefined just after we
 393     // fetched the methodOop from the constant pool.
 394 
 395     // RC_TRACE macro has an embedded ResourceMark
 396     RC_TRACE_WITH_THREAD(0x00001000, thread,
 397                          ("calling obsolete method '%s'",
 398                           method->name_and_sig_as_C_string()));
 399     if (RC_TRACE_ENABLED(0x00002000)) {
 400       // this option is provided to debug calls to obsolete methods
 401       guarantee(false, "faulting at call to an obsolete method.");
 402     }
 403   }
 404   return 0;
 405 JRT_END
 406 
 407 // ret_pc points into caller; we are returning caller's exception handler
 408 // for given exception
 409 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 410                                                     bool force_unwind, bool top_frame_only) {
 411   assert(nm != NULL, "must exist");
 412   ResourceMark rm;
 413 
 414   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 415   // determine handler bci, if any
 416   EXCEPTION_MARK;
 417 
 418   int handler_bci = -1;
 419   int scope_depth = 0;
 420   if (!force_unwind) {
 421     int bci = sd->bci();
 422     do {
 423       bool skip_scope_increment = false;
 424       // exception handler lookup
 425       KlassHandle ek (THREAD, exception->klass());
 426       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
 427       if (HAS_PENDING_EXCEPTION) {
 428         // We threw an exception while trying to find the exception handler.
 429         // Transfer the new exception to the exception handle which will
 430         // be set into thread local storage, and do another lookup for an
 431         // exception handler for this exception, this time starting at the
 432         // BCI of the exception handler which caused the exception to be
 433         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 434         // argument to ensure that the correct exception is thrown (4870175).
 435         exception = Handle(THREAD, PENDING_EXCEPTION);
 436         CLEAR_PENDING_EXCEPTION;
 437         if (handler_bci >= 0) {
 438           bci = handler_bci;
 439           handler_bci = -1;
 440           skip_scope_increment = true;
 441         }
 442       }
 443       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 444         sd = sd->sender();
 445         if (sd != NULL) {
 446           bci = sd->bci();
 447         }
 448         ++scope_depth;
 449       }
 450     } while (!top_frame_only && handler_bci < 0 && sd != NULL);
 451   }
 452 
 453   // found handling method => lookup exception handler
 454   int catch_pco = ret_pc - nm->instructions_begin();
 455 
 456   ExceptionHandlerTable table(nm);
 457   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 458   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 459     // Allow abbreviated catch tables.  The idea is to allow a method
 460     // to materialize its exceptions without committing to the exact
 461     // routing of exceptions.  In particular this is needed for adding
 462     // a synthethic handler to unlock monitors when inlining
 463     // synchonized methods since the unlock path isn't represented in
 464     // the bytecodes.
 465     t = table.entry_for(catch_pco, -1, 0);
 466   }
 467 
 468 #ifdef COMPILER1
 469   if (nm->is_compiled_by_c1() && t == NULL && handler_bci == -1) {
 470     // Exception is not handled by this frame so unwind.  Note that
 471     // this is not the same as how C2 does this.  C2 emits a table
 472     // entry that dispatches to the unwind code in the nmethod.
 473     return NULL;
 474   }
 475 #endif /* COMPILER1 */
 476 
 477 
 478   if (t == NULL) {
 479     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 480     tty->print_cr("   Exception:");
 481     exception->print();
 482     tty->cr();
 483     tty->print_cr(" Compiled exception table :");
 484     table.print();
 485     nm->print_code();
 486     guarantee(false, "missing exception handler");
 487     return NULL;
 488   }
 489 
 490   return nm->instructions_begin() + t->pco();
 491 }
 492 
 493 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 494   // These errors occur only at call sites
 495   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 496 JRT_END
 497 
 498 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 499   // These errors occur only at call sites
 500   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 501 JRT_END
 502 
 503 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 504   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 505 JRT_END
 506 
 507 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 508   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 509 JRT_END
 510 
 511 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 512   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 513   // cache sites (when the callee activation is not yet set up) so we are at a call site
 514   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 515 JRT_END
 516 
 517 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 518   // We avoid using the normal exception construction in this case because
 519   // it performs an upcall to Java, and we're already out of stack space.
 520   klassOop k = SystemDictionary::StackOverflowError_klass();
 521   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
 522   Handle exception (thread, exception_oop);
 523   if (StackTraceInThrowable) {
 524     java_lang_Throwable::fill_in_stack_trace(exception);
 525   }
 526   throw_and_post_jvmti_exception(thread, exception);
 527 JRT_END
 528 
 529 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 530                                                            address pc,
 531                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 532 {
 533   address target_pc = NULL;
 534 
 535   if (Interpreter::contains(pc)) {
 536 #ifdef CC_INTERP
 537     // C++ interpreter doesn't throw implicit exceptions
 538     ShouldNotReachHere();
 539 #else
 540     switch (exception_kind) {
 541       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 542       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 543       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 544       default:                      ShouldNotReachHere();
 545     }
 546 #endif // !CC_INTERP
 547   } else {
 548     switch (exception_kind) {
 549       case STACK_OVERFLOW: {
 550         // Stack overflow only occurs upon frame setup; the callee is
 551         // going to be unwound. Dispatch to a shared runtime stub
 552         // which will cause the StackOverflowError to be fabricated
 553         // and processed.
 554         // For stack overflow in deoptimization blob, cleanup thread.
 555         if (thread->deopt_mark() != NULL) {
 556           Deoptimization::cleanup_deopt_info(thread, NULL);
 557         }
 558         return StubRoutines::throw_StackOverflowError_entry();
 559       }
 560 
 561       case IMPLICIT_NULL: {
 562         if (VtableStubs::contains(pc)) {
 563           // We haven't yet entered the callee frame. Fabricate an
 564           // exception and begin dispatching it in the caller. Since
 565           // the caller was at a call site, it's safe to destroy all
 566           // caller-saved registers, as these entry points do.
 567           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 568 
 569           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 570           if (vt_stub == NULL) return NULL;
 571 
 572           if (vt_stub->is_abstract_method_error(pc)) {
 573             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 574             return StubRoutines::throw_AbstractMethodError_entry();
 575           } else {
 576             return StubRoutines::throw_NullPointerException_at_call_entry();
 577           }
 578         } else {
 579           CodeBlob* cb = CodeCache::find_blob(pc);
 580 
 581           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 582           if (cb == NULL) return NULL;
 583 
 584           // Exception happened in CodeCache. Must be either:
 585           // 1. Inline-cache check in C2I handler blob,
 586           // 2. Inline-cache check in nmethod, or
 587           // 3. Implict null exception in nmethod
 588 
 589           if (!cb->is_nmethod()) {
 590             guarantee(cb->is_adapter_blob(),
 591                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
 592             // There is no handler here, so we will simply unwind.
 593             return StubRoutines::throw_NullPointerException_at_call_entry();
 594           }
 595 
 596           // Otherwise, it's an nmethod.  Consult its exception handlers.
 597           nmethod* nm = (nmethod*)cb;
 598           if (nm->inlinecache_check_contains(pc)) {
 599             // exception happened inside inline-cache check code
 600             // => the nmethod is not yet active (i.e., the frame
 601             // is not set up yet) => use return address pushed by
 602             // caller => don't push another return address
 603             return StubRoutines::throw_NullPointerException_at_call_entry();
 604           }
 605 
 606 #ifndef PRODUCT
 607           _implicit_null_throws++;
 608 #endif
 609           target_pc = nm->continuation_for_implicit_exception(pc);
 610           guarantee(target_pc != 0, "must have a continuation point");
 611         }
 612 
 613         break; // fall through
 614       }
 615 
 616 
 617       case IMPLICIT_DIVIDE_BY_ZERO: {
 618         nmethod* nm = CodeCache::find_nmethod(pc);
 619         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 620 #ifndef PRODUCT
 621         _implicit_div0_throws++;
 622 #endif
 623         target_pc = nm->continuation_for_implicit_exception(pc);
 624         guarantee(target_pc != 0, "must have a continuation point");
 625         break; // fall through
 626       }
 627 
 628       default: ShouldNotReachHere();
 629     }
 630 
 631     guarantee(target_pc != NULL, "must have computed destination PC for implicit exception");
 632     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 633 
 634     // for AbortVMOnException flag
 635     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 636     if (exception_kind == IMPLICIT_NULL) {
 637       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 638     } else {
 639       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 640     }
 641     return target_pc;
 642   }
 643 
 644   ShouldNotReachHere();
 645   return NULL;
 646 }
 647 
 648 
 649 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
 650 {
 651   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
 652 }
 653 JNI_END
 654 
 655 
 656 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 657   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 658 }
 659 
 660 
 661 #ifndef PRODUCT
 662 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 663   const frame f = thread->last_frame();
 664   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 665 #ifndef PRODUCT
 666   methodHandle mh(THREAD, f.interpreter_frame_method());
 667   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 668 #endif // !PRODUCT
 669   return preserve_this_value;
 670 JRT_END
 671 #endif // !PRODUCT
 672 
 673 
 674 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 675   os::yield_all(attempts);
 676 JRT_END
 677 
 678 
 679 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 680   assert(obj->is_oop(), "must be a valid oop");
 681   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
 682   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
 683 JRT_END
 684 
 685 
 686 jlong SharedRuntime::get_java_tid(Thread* thread) {
 687   if (thread != NULL) {
 688     if (thread->is_Java_thread()) {
 689       oop obj = ((JavaThread*)thread)->threadObj();
 690       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 691     }
 692   }
 693   return 0;
 694 }
 695 
 696 /**
 697  * This function ought to be a void function, but cannot be because
 698  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 699  * 6254741.  Once that is fixed we can remove the dummy return value.
 700  */
 701 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 702   return dtrace_object_alloc_base(Thread::current(), o);
 703 }
 704 
 705 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 706   assert(DTraceAllocProbes, "wrong call");
 707   Klass* klass = o->blueprint();
 708   int size = o->size();
 709   symbolOop name = klass->name();
 710   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 711                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 712   return 0;
 713 }
 714 
 715 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 716     JavaThread* thread, methodOopDesc* method))
 717   assert(DTraceMethodProbes, "wrong call");
 718   symbolOop kname = method->klass_name();
 719   symbolOop name = method->name();
 720   symbolOop sig = method->signature();
 721   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 722       kname->bytes(), kname->utf8_length(),
 723       name->bytes(), name->utf8_length(),
 724       sig->bytes(), sig->utf8_length());
 725   return 0;
 726 JRT_END
 727 
 728 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 729     JavaThread* thread, methodOopDesc* method))
 730   assert(DTraceMethodProbes, "wrong call");
 731   symbolOop kname = method->klass_name();
 732   symbolOop name = method->name();
 733   symbolOop sig = method->signature();
 734   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
 735       kname->bytes(), kname->utf8_length(),
 736       name->bytes(), name->utf8_length(),
 737       sig->bytes(), sig->utf8_length());
 738   return 0;
 739 JRT_END
 740 
 741 
 742 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
 743 // for a call current in progress, i.e., arguments has been pushed on stack
 744 // put callee has not been invoked yet.  Used by: resolve virtual/static,
 745 // vtable updates, etc.  Caller frame must be compiled.
 746 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
 747   ResourceMark rm(THREAD);
 748 
 749   // last java frame on stack (which includes native call frames)
 750   vframeStream vfst(thread, true);  // Do not skip and javaCalls
 751 
 752   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
 753 }
 754 
 755 
 756 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
 757 // for a call current in progress, i.e., arguments has been pushed on stack
 758 // but callee has not been invoked yet.  Caller frame must be compiled.
 759 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
 760                                               vframeStream& vfst,
 761                                               Bytecodes::Code& bc,
 762                                               CallInfo& callinfo, TRAPS) {
 763   Handle receiver;
 764   Handle nullHandle;  //create a handy null handle for exception returns
 765 
 766   assert(!vfst.at_end(), "Java frame must exist");
 767 
 768   // Find caller and bci from vframe
 769   methodHandle caller (THREAD, vfst.method());
 770   int          bci    = vfst.bci();
 771 
 772   // Find bytecode
 773   Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
 774   bc = bytecode->adjusted_invoke_code();
 775   int bytecode_index = bytecode->index();
 776 
 777   // Find receiver for non-static call
 778   if (bc != Bytecodes::_invokestatic) {
 779     // This register map must be update since we need to find the receiver for
 780     // compiled frames. The receiver might be in a register.
 781     RegisterMap reg_map2(thread);
 782     frame stubFrame   = thread->last_frame();
 783     // Caller-frame is a compiled frame
 784     frame callerFrame = stubFrame.sender(&reg_map2);
 785 
 786     methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
 787     if (callee.is_null()) {
 788       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
 789     }
 790     // Retrieve from a compiled argument list
 791     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
 792 
 793     if (receiver.is_null()) {
 794       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
 795     }
 796   }
 797 
 798   // Resolve method. This is parameterized by bytecode.
 799   constantPoolHandle constants (THREAD, caller->constants());
 800   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
 801   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
 802 
 803 #ifdef ASSERT
 804   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
 805   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
 806     assert(receiver.not_null(), "should have thrown exception");
 807     KlassHandle receiver_klass (THREAD, receiver->klass());
 808     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
 809                             // klass is already loaded
 810     KlassHandle static_receiver_klass (THREAD, rk);
 811     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
 812     if (receiver_klass->oop_is_instance()) {
 813       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
 814         tty->print_cr("ERROR: Klass not yet initialized!!");
 815         receiver_klass.print();
 816       }
 817       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
 818     }
 819   }
 820 #endif
 821 
 822   return receiver;
 823 }
 824 
 825 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
 826   ResourceMark rm(THREAD);
 827   // We need first to check if any Java activations (compiled, interpreted)
 828   // exist on the stack since last JavaCall.  If not, we need
 829   // to get the target method from the JavaCall wrapper.
 830   vframeStream vfst(thread, true);  // Do not skip any javaCalls
 831   methodHandle callee_method;
 832   if (vfst.at_end()) {
 833     // No Java frames were found on stack since we did the JavaCall.
 834     // Hence the stack can only contain an entry_frame.  We need to
 835     // find the target method from the stub frame.
 836     RegisterMap reg_map(thread, false);
 837     frame fr = thread->last_frame();
 838     assert(fr.is_runtime_frame(), "must be a runtimeStub");
 839     fr = fr.sender(&reg_map);
 840     assert(fr.is_entry_frame(), "must be");
 841     // fr is now pointing to the entry frame.
 842     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
 843     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
 844   } else {
 845     Bytecodes::Code bc;
 846     CallInfo callinfo;
 847     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
 848     callee_method = callinfo.selected_method();
 849   }
 850   assert(callee_method()->is_method(), "must be");
 851   return callee_method;
 852 }
 853 
 854 // Resolves a call.
 855 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
 856                                            bool is_virtual,
 857                                            bool is_optimized, TRAPS) {
 858   methodHandle callee_method;
 859   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
 860   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
 861     int retry_count = 0;
 862     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
 863            callee_method->method_holder() != SystemDictionary::Object_klass()) {
 864       // If has a pending exception then there is no need to re-try to
 865       // resolve this method.
 866       // If the method has been redefined, we need to try again.
 867       // Hack: we have no way to update the vtables of arrays, so don't
 868       // require that java.lang.Object has been updated.
 869 
 870       // It is very unlikely that method is redefined more than 100 times
 871       // in the middle of resolve. If it is looping here more than 100 times
 872       // means then there could be a bug here.
 873       guarantee((retry_count++ < 100),
 874                 "Could not resolve to latest version of redefined method");
 875       // method is redefined in the middle of resolve so re-try.
 876       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
 877     }
 878   }
 879   return callee_method;
 880 }
 881 
 882 // Resolves a call.  The compilers generate code for calls that go here
 883 // and are patched with the real destination of the call.
 884 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
 885                                            bool is_virtual,
 886                                            bool is_optimized, TRAPS) {
 887 
 888   ResourceMark rm(thread);
 889   RegisterMap cbl_map(thread, false);
 890   frame caller_frame = thread->last_frame().sender(&cbl_map);
 891 
 892   CodeBlob* cb = caller_frame.cb();
 893   guarantee(cb != NULL && cb->is_nmethod(), "must be called from nmethod");
 894   // make sure caller is not getting deoptimized
 895   // and removed before we are done with it.
 896   // CLEANUP - with lazy deopt shouldn't need this lock
 897   nmethodLocker caller_lock((nmethod*)cb);
 898 
 899 
 900   // determine call info & receiver
 901   // note: a) receiver is NULL for static calls
 902   //       b) an exception is thrown if receiver is NULL for non-static calls
 903   CallInfo call_info;
 904   Bytecodes::Code invoke_code = Bytecodes::_illegal;
 905   Handle receiver = find_callee_info(thread, invoke_code,
 906                                      call_info, CHECK_(methodHandle()));
 907   methodHandle callee_method = call_info.selected_method();
 908 
 909   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
 910          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
 911 
 912 #ifndef PRODUCT
 913   // tracing/debugging/statistics
 914   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
 915                 (is_virtual) ? (&_resolve_virtual_ctr) :
 916                                (&_resolve_static_ctr);
 917   Atomic::inc(addr);
 918 
 919   if (TraceCallFixup) {
 920     ResourceMark rm(thread);
 921     tty->print("resolving %s%s (%s) call to",
 922       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
 923       Bytecodes::name(invoke_code));
 924     callee_method->print_short_name(tty);
 925     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
 926   }
 927 #endif
 928 
 929   // Compute entry points. This might require generation of C2I converter
 930   // frames, so we cannot be holding any locks here. Furthermore, the
 931   // computation of the entry points is independent of patching the call.  We
 932   // always return the entry-point, but we only patch the stub if the call has
 933   // not been deoptimized.  Return values: For a virtual call this is an
 934   // (cached_oop, destination address) pair. For a static call/optimized
 935   // virtual this is just a destination address.
 936 
 937   StaticCallInfo static_call_info;
 938   CompiledICInfo virtual_call_info;
 939 
 940 
 941   // Make sure the callee nmethod does not get deoptimized and removed before
 942   // we are done patching the code.
 943   nmethod* nm = callee_method->code();
 944   nmethodLocker nl_callee(nm);
 945 #ifdef ASSERT
 946   address dest_entry_point = nm == NULL ? 0 : nm->entry_point(); // used below
 947 #endif
 948 
 949   if (is_virtual) {
 950     assert(receiver.not_null(), "sanity check");
 951     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
 952     KlassHandle h_klass(THREAD, receiver->klass());
 953     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
 954                      is_optimized, static_bound, virtual_call_info,
 955                      CHECK_(methodHandle()));
 956   } else {
 957     // static call
 958     CompiledStaticCall::compute_entry(callee_method, static_call_info);
 959   }
 960 
 961   // grab lock, check for deoptimization and potentially patch caller
 962   {
 963     MutexLocker ml_patch(CompiledIC_lock);
 964 
 965     // Now that we are ready to patch if the methodOop was redefined then
 966     // don't update call site and let the caller retry.
 967 
 968     if (!callee_method->is_old()) {
 969 #ifdef ASSERT
 970       // We must not try to patch to jump to an already unloaded method.
 971       if (dest_entry_point != 0) {
 972         assert(CodeCache::find_blob(dest_entry_point) != NULL,
 973                "should not unload nmethod while locked");
 974       }
 975 #endif
 976       if (is_virtual) {
 977         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
 978         if (inline_cache->is_clean()) {
 979           inline_cache->set_to_monomorphic(virtual_call_info);
 980         }
 981       } else {
 982         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
 983         if (ssc->is_clean()) ssc->set(static_call_info);
 984       }
 985     }
 986 
 987   } // unlock CompiledIC_lock
 988 
 989   return callee_method;
 990 }
 991 
 992 
 993 // Inline caches exist only in compiled code
 994 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
 995 #ifdef ASSERT
 996   RegisterMap reg_map(thread, false);
 997   frame stub_frame = thread->last_frame();
 998   assert(stub_frame.is_runtime_frame(), "sanity check");
 999   frame caller_frame = stub_frame.sender(&reg_map);
1000   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1001 #endif /* ASSERT */
1002 
1003   methodHandle callee_method;
1004   JRT_BLOCK
1005     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1006     // Return methodOop through TLS
1007     thread->set_vm_result(callee_method());
1008   JRT_BLOCK_END
1009   // return compiled code entry point after potential safepoints
1010   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1011   return callee_method->verified_code_entry();
1012 JRT_END
1013 
1014 
1015 // Handle call site that has been made non-entrant
1016 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1017   // 6243940 We might end up in here if the callee is deoptimized
1018   // as we race to call it.  We don't want to take a safepoint if
1019   // the caller was interpreted because the caller frame will look
1020   // interpreted to the stack walkers and arguments are now
1021   // "compiled" so it is much better to make this transition
1022   // invisible to the stack walking code. The i2c path will
1023   // place the callee method in the callee_target. It is stashed
1024   // there because if we try and find the callee by normal means a
1025   // safepoint is possible and have trouble gc'ing the compiled args.
1026   RegisterMap reg_map(thread, false);
1027   frame stub_frame = thread->last_frame();
1028   assert(stub_frame.is_runtime_frame(), "sanity check");
1029   frame caller_frame = stub_frame.sender(&reg_map);
1030 
1031   // MethodHandle invokes don't have a CompiledIC and should always
1032   // simply redispatch to the callee_target.
1033   address   sender_pc = caller_frame.pc();
1034   CodeBlob* sender_cb = caller_frame.cb();
1035   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
1036 
1037   if (caller_frame.is_interpreted_frame() ||
1038       caller_frame.is_entry_frame() ||
1039       (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc))) {
1040     methodOop callee = thread->callee_target();
1041     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1042     thread->set_vm_result(callee);
1043     thread->set_callee_target(NULL);
1044     return callee->get_c2i_entry();
1045   }
1046 
1047   // Must be compiled to compiled path which is safe to stackwalk
1048   methodHandle callee_method;
1049   JRT_BLOCK
1050     // Force resolving of caller (if we called from compiled frame)
1051     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1052     thread->set_vm_result(callee_method());
1053   JRT_BLOCK_END
1054   // return compiled code entry point after potential safepoints
1055   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1056   return callee_method->verified_code_entry();
1057 JRT_END
1058 
1059 
1060 // resolve a static call and patch code
1061 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1062   methodHandle callee_method;
1063   JRT_BLOCK
1064     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1065     thread->set_vm_result(callee_method());
1066   JRT_BLOCK_END
1067   // return compiled code entry point after potential safepoints
1068   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1069   return callee_method->verified_code_entry();
1070 JRT_END
1071 
1072 
1073 // resolve virtual call and update inline cache to monomorphic
1074 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1075   methodHandle callee_method;
1076   JRT_BLOCK
1077     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1078     thread->set_vm_result(callee_method());
1079   JRT_BLOCK_END
1080   // return compiled code entry point after potential safepoints
1081   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1082   return callee_method->verified_code_entry();
1083 JRT_END
1084 
1085 
1086 // Resolve a virtual call that can be statically bound (e.g., always
1087 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1088 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1089   methodHandle callee_method;
1090   JRT_BLOCK
1091     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1092     thread->set_vm_result(callee_method());
1093   JRT_BLOCK_END
1094   // return compiled code entry point after potential safepoints
1095   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1096   return callee_method->verified_code_entry();
1097 JRT_END
1098 
1099 
1100 
1101 
1102 
1103 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1104   ResourceMark rm(thread);
1105   CallInfo call_info;
1106   Bytecodes::Code bc;
1107 
1108   // receiver is NULL for static calls. An exception is thrown for NULL
1109   // receivers for non-static calls
1110   Handle receiver = find_callee_info(thread, bc, call_info,
1111                                      CHECK_(methodHandle()));
1112   // Compiler1 can produce virtual call sites that can actually be statically bound
1113   // If we fell thru to below we would think that the site was going megamorphic
1114   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1115   // we'd try and do a vtable dispatch however methods that can be statically bound
1116   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1117   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1118   // plain ic_miss) and the site will be converted to an optimized virtual call site
1119   // never to miss again. I don't believe C2 will produce code like this but if it
1120   // did this would still be the correct thing to do for it too, hence no ifdef.
1121   //
1122   if (call_info.resolved_method()->can_be_statically_bound()) {
1123     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1124     if (TraceCallFixup) {
1125       RegisterMap reg_map(thread, false);
1126       frame caller_frame = thread->last_frame().sender(&reg_map);
1127       ResourceMark rm(thread);
1128       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1129       callee_method->print_short_name(tty);
1130       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1131       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1132     }
1133     return callee_method;
1134   }
1135 
1136   methodHandle callee_method = call_info.selected_method();
1137 
1138   bool should_be_mono = false;
1139 
1140 #ifndef PRODUCT
1141   Atomic::inc(&_ic_miss_ctr);
1142 
1143   // Statistics & Tracing
1144   if (TraceCallFixup) {
1145     ResourceMark rm(thread);
1146     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1147     callee_method->print_short_name(tty);
1148     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1149   }
1150 
1151   if (ICMissHistogram) {
1152     MutexLocker m(VMStatistic_lock);
1153     RegisterMap reg_map(thread, false);
1154     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1155     // produce statistics under the lock
1156     trace_ic_miss(f.pc());
1157   }
1158 #endif
1159 
1160   // install an event collector so that when a vtable stub is created the
1161   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1162   // event can't be posted when the stub is created as locks are held
1163   // - instead the event will be deferred until the event collector goes
1164   // out of scope.
1165   JvmtiDynamicCodeEventCollector event_collector;
1166 
1167   // Update inline cache to megamorphic. Skip update if caller has been
1168   // made non-entrant or we are called from interpreted.
1169   { MutexLocker ml_patch (CompiledIC_lock);
1170     RegisterMap reg_map(thread, false);
1171     frame caller_frame = thread->last_frame().sender(&reg_map);
1172     CodeBlob* cb = caller_frame.cb();
1173     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1174       // Not a non-entrant nmethod, so find inline_cache
1175       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1176       bool should_be_mono = false;
1177       if (inline_cache->is_optimized()) {
1178         if (TraceCallFixup) {
1179           ResourceMark rm(thread);
1180           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1181           callee_method->print_short_name(tty);
1182           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1183         }
1184         should_be_mono = true;
1185       } else {
1186         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
1187         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
1188 
1189           if (receiver()->klass() == ic_oop->holder_klass()) {
1190             // This isn't a real miss. We must have seen that compiled code
1191             // is now available and we want the call site converted to a
1192             // monomorphic compiled call site.
1193             // We can't assert for callee_method->code() != NULL because it
1194             // could have been deoptimized in the meantime
1195             if (TraceCallFixup) {
1196               ResourceMark rm(thread);
1197               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1198               callee_method->print_short_name(tty);
1199               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1200             }
1201             should_be_mono = true;
1202           }
1203         }
1204       }
1205 
1206       if (should_be_mono) {
1207 
1208         // We have a path that was monomorphic but was going interpreted
1209         // and now we have (or had) a compiled entry. We correct the IC
1210         // by using a new icBuffer.
1211         CompiledICInfo info;
1212         KlassHandle receiver_klass(THREAD, receiver()->klass());
1213         inline_cache->compute_monomorphic_entry(callee_method,
1214                                                 receiver_klass,
1215                                                 inline_cache->is_optimized(),
1216                                                 false,
1217                                                 info, CHECK_(methodHandle()));
1218         inline_cache->set_to_monomorphic(info);
1219       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1220         // Change to megamorphic
1221         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1222       } else {
1223         // Either clean or megamorphic
1224       }
1225     }
1226   } // Release CompiledIC_lock
1227 
1228   return callee_method;
1229 }
1230 
1231 //
1232 // Resets a call-site in compiled code so it will get resolved again.
1233 // This routines handles both virtual call sites, optimized virtual call
1234 // sites, and static call sites. Typically used to change a call sites
1235 // destination from compiled to interpreted.
1236 //
1237 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1238   ResourceMark rm(thread);
1239   RegisterMap reg_map(thread, false);
1240   frame stub_frame = thread->last_frame();
1241   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1242   frame caller = stub_frame.sender(&reg_map);
1243 
1244   // Do nothing if the frame isn't a live compiled frame.
1245   // nmethod could be deoptimized by the time we get here
1246   // so no update to the caller is needed.
1247 
1248   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1249 
1250     address pc = caller.pc();
1251     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
1252 
1253     // Default call_addr is the location of the "basic" call.
1254     // Determine the address of the call we a reresolving. With
1255     // Inline Caches we will always find a recognizable call.
1256     // With Inline Caches disabled we may or may not find a
1257     // recognizable call. We will always find a call for static
1258     // calls and for optimized virtual calls. For vanilla virtual
1259     // calls it depends on the state of the UseInlineCaches switch.
1260     //
1261     // With Inline Caches disabled we can get here for a virtual call
1262     // for two reasons:
1263     //   1 - calling an abstract method. The vtable for abstract methods
1264     //       will run us thru handle_wrong_method and we will eventually
1265     //       end up in the interpreter to throw the ame.
1266     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1267     //       call and between the time we fetch the entry address and
1268     //       we jump to it the target gets deoptimized. Similar to 1
1269     //       we will wind up in the interprter (thru a c2i with c2).
1270     //
1271     address call_addr = NULL;
1272     {
1273       // Get call instruction under lock because another thread may be
1274       // busy patching it.
1275       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1276       // Location of call instruction
1277       if (NativeCall::is_call_before(pc)) {
1278         NativeCall *ncall = nativeCall_before(pc);
1279         call_addr = ncall->instruction_address();
1280       }
1281     }
1282 
1283     // Check for static or virtual call
1284     bool is_static_call = false;
1285     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1286     // Make sure nmethod doesn't get deoptimized and removed until
1287     // this is done with it.
1288     // CLEANUP - with lazy deopt shouldn't need this lock
1289     nmethodLocker nmlock(caller_nm);
1290 
1291     if (call_addr != NULL) {
1292       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1293       int ret = iter.next(); // Get item
1294       if (ret) {
1295         assert(iter.addr() == call_addr, "must find call");
1296         if (iter.type() == relocInfo::static_call_type) {
1297           is_static_call = true;
1298         } else {
1299           assert(iter.type() == relocInfo::virtual_call_type ||
1300                  iter.type() == relocInfo::opt_virtual_call_type
1301                 , "unexpected relocInfo. type");
1302         }
1303       } else {
1304         assert(!UseInlineCaches, "relocation info. must exist for this address");
1305       }
1306 
1307       // Cleaning the inline cache will force a new resolve. This is more robust
1308       // than directly setting it to the new destination, since resolving of calls
1309       // is always done through the same code path. (experience shows that it
1310       // leads to very hard to track down bugs, if an inline cache gets updated
1311       // to a wrong method). It should not be performance critical, since the
1312       // resolve is only done once.
1313 
1314       MutexLocker ml(CompiledIC_lock);
1315       //
1316       // We do not patch the call site if the nmethod has been made non-entrant
1317       // as it is a waste of time
1318       //
1319       if (caller_nm->is_in_use()) {
1320         if (is_static_call) {
1321           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1322           ssc->set_to_clean();
1323         } else {
1324           // compiled, dispatched call (which used to call an interpreted method)
1325           CompiledIC* inline_cache = CompiledIC_at(call_addr);
1326           inline_cache->set_to_clean();
1327         }
1328       }
1329     }
1330 
1331   }
1332 
1333   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1334 
1335 
1336 #ifndef PRODUCT
1337   Atomic::inc(&_wrong_method_ctr);
1338 
1339   if (TraceCallFixup) {
1340     ResourceMark rm(thread);
1341     tty->print("handle_wrong_method reresolving call to");
1342     callee_method->print_short_name(tty);
1343     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1344   }
1345 #endif
1346 
1347   return callee_method;
1348 }
1349 
1350 // ---------------------------------------------------------------------------
1351 // We are calling the interpreter via a c2i. Normally this would mean that
1352 // we were called by a compiled method. However we could have lost a race
1353 // where we went int -> i2c -> c2i and so the caller could in fact be
1354 // interpreted. If the caller is compiled we attampt to patch the caller
1355 // so he no longer calls into the interpreter.
1356 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
1357   methodOop moop(method);
1358 
1359   address entry_point = moop->from_compiled_entry();
1360 
1361   // It's possible that deoptimization can occur at a call site which hasn't
1362   // been resolved yet, in which case this function will be called from
1363   // an nmethod that has been patched for deopt and we can ignore the
1364   // request for a fixup.
1365   // Also it is possible that we lost a race in that from_compiled_entry
1366   // is now back to the i2c in that case we don't need to patch and if
1367   // we did we'd leap into space because the callsite needs to use
1368   // "to interpreter" stub in order to load up the methodOop. Don't
1369   // ask me how I know this...
1370   //
1371 
1372   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1373   if ( !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1374     return;
1375   }
1376 
1377   // There is a benign race here. We could be attempting to patch to a compiled
1378   // entry point at the same time the callee is being deoptimized. If that is
1379   // the case then entry_point may in fact point to a c2i and we'd patch the
1380   // call site with the same old data. clear_code will set code() to NULL
1381   // at the end of it. If we happen to see that NULL then we can skip trying
1382   // to patch. If we hit the window where the callee has a c2i in the
1383   // from_compiled_entry and the NULL isn't present yet then we lose the race
1384   // and patch the code with the same old data. Asi es la vida.
1385 
1386   if (moop->code() == NULL) return;
1387 
1388   if (((nmethod*)cb)->is_in_use()) {
1389 
1390     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1391     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1392     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
1393       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
1394       //
1395       // bug 6281185. We might get here after resolving a call site to a vanilla
1396       // virtual call. Because the resolvee uses the verified entry it may then
1397       // see compiled code and attempt to patch the site by calling us. This would
1398       // then incorrectly convert the call site to optimized and its downhill from
1399       // there. If you're lucky you'll get the assert in the bugid, if not you've
1400       // just made a call site that could be megamorphic into a monomorphic site
1401       // for the rest of its life! Just another racing bug in the life of
1402       // fixup_callers_callsite ...
1403       //
1404       RelocIterator iter(cb, call->instruction_address(), call->next_instruction_address());
1405       iter.next();
1406       assert(iter.has_current(), "must have a reloc at java call site");
1407       relocInfo::relocType typ = iter.reloc()->type();
1408       if ( typ != relocInfo::static_call_type &&
1409            typ != relocInfo::opt_virtual_call_type &&
1410            typ != relocInfo::static_stub_type) {
1411         return;
1412       }
1413       address destination = call->destination();
1414       if (destination != entry_point) {
1415         CodeBlob* callee = CodeCache::find_blob(destination);
1416         // callee == cb seems weird. It means calling interpreter thru stub.
1417         if (callee == cb || callee->is_adapter_blob()) {
1418           // static call or optimized virtual
1419           if (TraceCallFixup) {
1420             tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1421             moop->print_short_name(tty);
1422             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1423           }
1424           call->set_destination_mt_safe(entry_point);
1425         } else {
1426           if (TraceCallFixup) {
1427             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1428             moop->print_short_name(tty);
1429             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1430           }
1431           // assert is too strong could also be resolve destinations.
1432           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1433         }
1434       } else {
1435           if (TraceCallFixup) {
1436             tty->print("already patched  callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1437             moop->print_short_name(tty);
1438             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1439           }
1440       }
1441     }
1442   }
1443 
1444 IRT_END
1445 
1446 
1447 // same as JVM_Arraycopy, but called directly from compiled code
1448 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1449                                                 oopDesc* dest, jint dest_pos,
1450                                                 jint length,
1451                                                 JavaThread* thread)) {
1452 #ifndef PRODUCT
1453   _slow_array_copy_ctr++;
1454 #endif
1455   // Check if we have null pointers
1456   if (src == NULL || dest == NULL) {
1457     THROW(vmSymbols::java_lang_NullPointerException());
1458   }
1459   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1460   // even though the copy_array API also performs dynamic checks to ensure
1461   // that src and dest are truly arrays (and are conformable).
1462   // The copy_array mechanism is awkward and could be removed, but
1463   // the compilers don't call this function except as a last resort,
1464   // so it probably doesn't matter.
1465   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
1466                                         (arrayOopDesc*)dest, dest_pos,
1467                                         length, thread);
1468 }
1469 JRT_END
1470 
1471 char* SharedRuntime::generate_class_cast_message(
1472     JavaThread* thread, const char* objName) {
1473 
1474   // Get target class name from the checkcast instruction
1475   vframeStream vfst(thread, true);
1476   assert(!vfst.at_end(), "Java frame must exist");
1477   Bytecode_checkcast* cc = Bytecode_checkcast_at(
1478     vfst.method()->bcp_from(vfst.bci()));
1479   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
1480     cc->index(), thread));
1481   return generate_class_cast_message(objName, targetKlass->external_name());
1482 }
1483 
1484 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
1485                                                         oopDesc* required,
1486                                                         oopDesc* actual) {
1487   assert(EnableMethodHandles, "");
1488   oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
1489   if (singleKlass != NULL) {
1490     const char* objName = "argument or return value";
1491     if (actual != NULL) {
1492       // be flexible about the junk passed in:
1493       klassOop ak = (actual->is_klass()
1494                      ? (klassOop)actual
1495                      : actual->klass());
1496       objName = Klass::cast(ak)->external_name();
1497     }
1498     Klass* targetKlass = Klass::cast(required->is_klass()
1499                                      ? (klassOop)required
1500                                      : java_lang_Class::as_klassOop(required));
1501     return generate_class_cast_message(objName, targetKlass->external_name());
1502   } else {
1503     // %%% need to get the MethodType string, without messing around too much
1504     // Get a signature from the invoke instruction
1505     const char* mhName = "method handle";
1506     const char* targetType = "the required signature";
1507     vframeStream vfst(thread, true);
1508     if (!vfst.at_end()) {
1509       Bytecode_invoke* call = Bytecode_invoke_at(vfst.method(), vfst.bci());
1510       methodHandle target;
1511       {
1512         EXCEPTION_MARK;
1513         target = call->static_target(THREAD);
1514         if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
1515       }
1516       if (target.not_null()
1517           && target->is_method_handle_invoke()
1518           && required == target->method_handle_type()) {
1519         targetType = target->signature()->as_C_string();
1520       }
1521     }
1522     klassOop kignore; int fignore;
1523     methodOop actual_method = MethodHandles::decode_method(actual,
1524                                                           kignore, fignore);
1525     if (actual_method != NULL) {
1526       if (actual_method->name() == vmSymbols::invoke_name())
1527         mhName = "$";
1528       else
1529         mhName = actual_method->signature()->as_C_string();
1530       if (mhName[0] == '$')
1531         mhName = actual_method->signature()->as_C_string();
1532     }
1533     return generate_class_cast_message(mhName, targetType,
1534                                        " cannot be called as ");
1535   }
1536 }
1537 
1538 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
1539                                                             oopDesc* required) {
1540   if (required == NULL)  return NULL;
1541   if (required->klass() == SystemDictionary::Class_klass())
1542     return required;
1543   if (required->is_klass())
1544     return Klass::cast(klassOop(required))->java_mirror();
1545   return NULL;
1546 }
1547 
1548 
1549 char* SharedRuntime::generate_class_cast_message(
1550     const char* objName, const char* targetKlassName, const char* desc) {
1551   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1552 
1553   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1554   if (NULL == message) {
1555     // Shouldn't happen, but don't cause even more problems if it does
1556     message = const_cast<char*>(objName);
1557   } else {
1558     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1559   }
1560   return message;
1561 }
1562 
1563 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1564   (void) JavaThread::current()->reguard_stack();
1565 JRT_END
1566 
1567 
1568 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1569 #ifndef PRODUCT
1570 int SharedRuntime::_monitor_enter_ctr=0;
1571 #endif
1572 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1573   oop obj(_obj);
1574 #ifndef PRODUCT
1575   _monitor_enter_ctr++;             // monitor enter slow
1576 #endif
1577   if (PrintBiasedLockingStatistics) {
1578     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1579   }
1580   Handle h_obj(THREAD, obj);
1581   if (UseBiasedLocking) {
1582     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1583     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1584   } else {
1585     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1586   }
1587   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1588 JRT_END
1589 
1590 #ifndef PRODUCT
1591 int SharedRuntime::_monitor_exit_ctr=0;
1592 #endif
1593 // Handles the uncommon cases of monitor unlocking in compiled code
1594 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1595    oop obj(_obj);
1596 #ifndef PRODUCT
1597   _monitor_exit_ctr++;              // monitor exit slow
1598 #endif
1599   Thread* THREAD = JavaThread::current();
1600   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1601   // testing was unable to ever fire the assert that guarded it so I have removed it.
1602   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1603 #undef MIGHT_HAVE_PENDING
1604 #ifdef MIGHT_HAVE_PENDING
1605   // Save and restore any pending_exception around the exception mark.
1606   // While the slow_exit must not throw an exception, we could come into
1607   // this routine with one set.
1608   oop pending_excep = NULL;
1609   const char* pending_file;
1610   int pending_line;
1611   if (HAS_PENDING_EXCEPTION) {
1612     pending_excep = PENDING_EXCEPTION;
1613     pending_file  = THREAD->exception_file();
1614     pending_line  = THREAD->exception_line();
1615     CLEAR_PENDING_EXCEPTION;
1616   }
1617 #endif /* MIGHT_HAVE_PENDING */
1618 
1619   {
1620     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1621     EXCEPTION_MARK;
1622     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1623   }
1624 
1625 #ifdef MIGHT_HAVE_PENDING
1626   if (pending_excep != NULL) {
1627     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1628   }
1629 #endif /* MIGHT_HAVE_PENDING */
1630 JRT_END
1631 
1632 #ifndef PRODUCT
1633 
1634 void SharedRuntime::print_statistics() {
1635   ttyLocker ttyl;
1636   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1637 
1638   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1639   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1640   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1641 
1642   SharedRuntime::print_ic_miss_histogram();
1643 
1644   if (CountRemovableExceptions) {
1645     if (_nof_removable_exceptions > 0) {
1646       Unimplemented(); // this counter is not yet incremented
1647       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1648     }
1649   }
1650 
1651   // Dump the JRT_ENTRY counters
1652   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1653   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1654   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1655   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1656   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1657   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1658   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1659 
1660   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1661   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1662   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1663   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1664   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1665 
1666   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1667   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1668   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1669   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1670   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1671   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1672   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1673   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1674   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1675   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1676   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1677   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1678   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1679   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1680   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1681   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1682 
1683   AdapterHandlerLibrary::print_statistics();
1684 
1685   if (xtty != NULL)  xtty->tail("statistics");
1686 }
1687 
1688 inline double percent(int x, int y) {
1689   return 100.0 * x / MAX2(y, 1);
1690 }
1691 
1692 class MethodArityHistogram {
1693  public:
1694   enum { MAX_ARITY = 256 };
1695  private:
1696   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1697   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1698   static int _max_arity;                      // max. arity seen
1699   static int _max_size;                       // max. arg size seen
1700 
1701   static void add_method_to_histogram(nmethod* nm) {
1702     methodOop m = nm->method();
1703     ArgumentCount args(m->signature());
1704     int arity   = args.size() + (m->is_static() ? 0 : 1);
1705     int argsize = m->size_of_parameters();
1706     arity   = MIN2(arity, MAX_ARITY-1);
1707     argsize = MIN2(argsize, MAX_ARITY-1);
1708     int count = nm->method()->compiled_invocation_count();
1709     _arity_histogram[arity]  += count;
1710     _size_histogram[argsize] += count;
1711     _max_arity = MAX2(_max_arity, arity);
1712     _max_size  = MAX2(_max_size, argsize);
1713   }
1714 
1715   void print_histogram_helper(int n, int* histo, const char* name) {
1716     const int N = MIN2(5, n);
1717     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1718     double sum = 0;
1719     double weighted_sum = 0;
1720     int i;
1721     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1722     double rest = sum;
1723     double percent = sum / 100;
1724     for (i = 0; i <= N; i++) {
1725       rest -= histo[i];
1726       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1727     }
1728     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1729     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1730   }
1731 
1732   void print_histogram() {
1733     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1734     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1735     tty->print_cr("\nSame for parameter size (in words):");
1736     print_histogram_helper(_max_size, _size_histogram, "size");
1737     tty->cr();
1738   }
1739 
1740  public:
1741   MethodArityHistogram() {
1742     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1743     _max_arity = _max_size = 0;
1744     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
1745     CodeCache::nmethods_do(add_method_to_histogram);
1746     print_histogram();
1747   }
1748 };
1749 
1750 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
1751 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
1752 int MethodArityHistogram::_max_arity;
1753 int MethodArityHistogram::_max_size;
1754 
1755 void SharedRuntime::print_call_statistics(int comp_total) {
1756   tty->print_cr("Calls from compiled code:");
1757   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
1758   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
1759   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
1760   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
1761   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
1762   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
1763   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
1764   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
1765   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
1766   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
1767   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
1768   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
1769   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
1770   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
1771   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
1772   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
1773   tty->cr();
1774   tty->print_cr("Note 1: counter updates are not MT-safe.");
1775   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
1776   tty->print_cr("        %% in nested categories are relative to their category");
1777   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
1778   tty->cr();
1779 
1780   MethodArityHistogram h;
1781 }
1782 #endif
1783 
1784 
1785 // A simple wrapper class around the calling convention information
1786 // that allows sharing of adapters for the same calling convention.
1787 class AdapterFingerPrint : public CHeapObj {
1788  private:
1789   union {
1790     signed char  _compact[12];
1791     int          _compact_int[3];
1792     intptr_t*    _fingerprint;
1793   } _value;
1794   int _length; // A negative length indicates that _value._fingerprint is the array.
1795                // Otherwise it's in the compact form.
1796 
1797  public:
1798   AdapterFingerPrint(int total_args_passed, VMRegPair* regs) {
1799     assert(sizeof(_value._compact) == sizeof(_value._compact_int), "must match");
1800     _length = total_args_passed * 2;
1801     if (_length < (int)sizeof(_value._compact)) {
1802       _value._compact_int[0] = _value._compact_int[1] = _value._compact_int[2] = 0;
1803       // Storing the signature encoded as signed chars hits about 98%
1804       // of the time.
1805       signed char* ptr = _value._compact;
1806       int o = 0;
1807       for (int i = 0; i < total_args_passed; i++) {
1808         VMRegPair pair = regs[i];
1809         intptr_t v1 = pair.first()->value();
1810         intptr_t v2 = pair.second()->value();
1811         if (v1 == (signed char) v1 &&
1812             v2 == (signed char) v2) {
1813           _value._compact[o++] = v1;
1814           _value._compact[o++] = v2;
1815         } else {
1816           goto big;
1817         }
1818       }
1819       _length = -_length;
1820       return;
1821     }
1822   big:
1823     _value._fingerprint = NEW_C_HEAP_ARRAY(intptr_t, _length);
1824     int o = 0;
1825     for (int i = 0; i < total_args_passed; i++) {
1826       VMRegPair pair = regs[i];
1827       intptr_t v1 = pair.first()->value();
1828       intptr_t v2 = pair.second()->value();
1829       _value._fingerprint[o++] = v1;
1830       _value._fingerprint[o++] = v2;
1831     }
1832   }
1833 
1834   AdapterFingerPrint(AdapterFingerPrint* orig) {
1835     _length = orig->_length;
1836     _value = orig->_value;
1837     // take ownership of any storage by destroying the length
1838     orig->_length = 0;
1839   }
1840 
1841   ~AdapterFingerPrint() {
1842     if (_length > 0) {
1843       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
1844     }
1845   }
1846 
1847   AdapterFingerPrint* allocate() {
1848     return new AdapterFingerPrint(this);
1849   }
1850 
1851   intptr_t value(int index) {
1852     if (_length < 0) {
1853       return _value._compact[index];
1854     }
1855     return _value._fingerprint[index];
1856   }
1857   int length() {
1858     if (_length < 0) return -_length;
1859     return _length;
1860   }
1861 
1862   bool is_compact() {
1863     return _length <= 0;
1864   }
1865 
1866   unsigned int compute_hash() {
1867     intptr_t hash = 0;
1868     for (int i = 0; i < length(); i++) {
1869       intptr_t v = value(i);
1870       hash = (hash << 8) ^ v ^ (hash >> 5);
1871     }
1872     return (unsigned int)hash;
1873   }
1874 
1875   const char* as_string() {
1876     stringStream st;
1877     for (int i = 0; i < length(); i++) {
1878       st.print(PTR_FORMAT, value(i));
1879     }
1880     return st.as_string();
1881   }
1882 
1883   bool equals(AdapterFingerPrint* other) {
1884     if (other->_length != _length) {
1885       return false;
1886     }
1887     if (_length < 0) {
1888       return _value._compact_int[0] == other->_value._compact_int[0] &&
1889              _value._compact_int[1] == other->_value._compact_int[1] &&
1890              _value._compact_int[2] == other->_value._compact_int[2];
1891     } else {
1892       for (int i = 0; i < _length; i++) {
1893         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
1894           return false;
1895         }
1896       }
1897     }
1898     return true;
1899   }
1900 };
1901 
1902 
1903 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
1904 class AdapterHandlerTable : public BasicHashtable {
1905   friend class AdapterHandlerTableIterator;
1906 
1907  private:
1908 
1909 #ifdef ASSERT
1910   static int _lookups; // number of calls to lookup
1911   static int _buckets; // number of buckets checked
1912   static int _equals;  // number of buckets checked with matching hash
1913   static int _hits;    // number of successful lookups
1914   static int _compact; // number of equals calls with compact signature
1915 #endif
1916 
1917   AdapterHandlerEntry* bucket(int i) {
1918     return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
1919   }
1920 
1921  public:
1922   AdapterHandlerTable()
1923     : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
1924 
1925   // Create a new entry suitable for insertion in the table
1926   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
1927     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
1928     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
1929     return entry;
1930   }
1931 
1932   // Insert an entry into the table
1933   void add(AdapterHandlerEntry* entry) {
1934     int index = hash_to_index(entry->hash());
1935     add_entry(index, entry);
1936   }
1937 
1938   // Find a entry with the same fingerprint if it exists
1939   AdapterHandlerEntry* lookup(int total_args_passed, VMRegPair* regs) {
1940     debug_only(_lookups++);
1941     AdapterFingerPrint fp(total_args_passed, regs);
1942     unsigned int hash = fp.compute_hash();
1943     int index = hash_to_index(hash);
1944     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
1945       debug_only(_buckets++);
1946       if (e->hash() == hash) {
1947         debug_only(_equals++);
1948         if (fp.equals(e->fingerprint())) {
1949 #ifdef ASSERT
1950           if (fp.is_compact()) _compact++;
1951           _hits++;
1952 #endif
1953           return e;
1954         }
1955       }
1956     }
1957     return NULL;
1958   }
1959 
1960   void print_statistics() {
1961     ResourceMark rm;
1962     int longest = 0;
1963     int empty = 0;
1964     int total = 0;
1965     int nonempty = 0;
1966     for (int index = 0; index < table_size(); index++) {
1967       int count = 0;
1968       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
1969         count++;
1970       }
1971       if (count != 0) nonempty++;
1972       if (count == 0) empty++;
1973       if (count > longest) longest = count;
1974       total += count;
1975     }
1976     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
1977                   empty, longest, total, total / (double)nonempty);
1978 #ifdef ASSERT
1979     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
1980                   _lookups, _buckets, _equals, _hits, _compact);
1981 #endif
1982   }
1983 };
1984 
1985 
1986 #ifdef ASSERT
1987 
1988 int AdapterHandlerTable::_lookups;
1989 int AdapterHandlerTable::_buckets;
1990 int AdapterHandlerTable::_equals;
1991 int AdapterHandlerTable::_hits;
1992 int AdapterHandlerTable::_compact;
1993 
1994 class AdapterHandlerTableIterator : public StackObj {
1995  private:
1996   AdapterHandlerTable* _table;
1997   int _index;
1998   AdapterHandlerEntry* _current;
1999 
2000   void scan() {
2001     while (_index < _table->table_size()) {
2002       AdapterHandlerEntry* a = _table->bucket(_index);
2003       if (a != NULL) {
2004         _current = a;
2005         return;
2006       }
2007       _index++;
2008     }
2009   }
2010 
2011  public:
2012   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2013     scan();
2014   }
2015   bool has_next() {
2016     return _current != NULL;
2017   }
2018   AdapterHandlerEntry* next() {
2019     if (_current != NULL) {
2020       AdapterHandlerEntry* result = _current;
2021       _current = _current->next();
2022       if (_current == NULL) scan();
2023       return result;
2024     } else {
2025       return NULL;
2026     }
2027   }
2028 };
2029 #endif
2030 
2031 
2032 // ---------------------------------------------------------------------------
2033 // Implementation of AdapterHandlerLibrary
2034 const char* AdapterHandlerEntry::name = "I2C/C2I adapters";
2035 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2036 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2037 const int AdapterHandlerLibrary_size = 16*K;
2038 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2039 
2040 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2041   // Should be called only when AdapterHandlerLibrary_lock is active.
2042   if (_buffer == NULL) // Initialize lazily
2043       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2044   return _buffer;
2045 }
2046 
2047 void AdapterHandlerLibrary::initialize() {
2048   if (_adapters != NULL) return;
2049   _adapters = new AdapterHandlerTable();
2050 
2051   // Create a special handler for abstract methods.  Abstract methods
2052   // are never compiled so an i2c entry is somewhat meaningless, but
2053   // fill it in with something appropriate just in case.  Pass handle
2054   // wrong method for the c2i transitions.
2055   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2056   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2057                                                               StubRoutines::throw_AbstractMethodError_entry(),
2058                                                               wrong_method, wrong_method);
2059 }
2060 
2061 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2062                                                       address i2c_entry,
2063                                                       address c2i_entry,
2064                                                       address c2i_unverified_entry) {
2065   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2066 }
2067 
2068 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2069   // Use customized signature handler.  Need to lock around updates to
2070   // the AdapterHandlerTable (it is not safe for concurrent readers
2071   // and a single writer: this could be fixed if it becomes a
2072   // problem).
2073 
2074   // Get the address of the ic_miss handlers before we grab the
2075   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2076   // was caused by the initialization of the stubs happening
2077   // while we held the lock and then notifying jvmti while
2078   // holding it. This just forces the initialization to be a little
2079   // earlier.
2080   address ic_miss = SharedRuntime::get_ic_miss_stub();
2081   assert(ic_miss != NULL, "must have handler");
2082 
2083   ResourceMark rm;
2084 
2085   NOT_PRODUCT(int code_size);
2086   BufferBlob *B = NULL;
2087   AdapterHandlerEntry* entry = NULL;
2088   AdapterFingerPrint* fingerprint = NULL;
2089   {
2090     MutexLocker mu(AdapterHandlerLibrary_lock);
2091     // make sure data structure is initialized
2092     initialize();
2093 
2094     if (method->is_abstract()) {
2095       return _abstract_method_handler;
2096     }
2097 
2098     // Fill in the signature array, for the calling-convention call.
2099     int total_args_passed = method->size_of_parameters(); // All args on stack
2100 
2101     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2102     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2103     int i = 0;
2104     if (!method->is_static())  // Pass in receiver first
2105       sig_bt[i++] = T_OBJECT;
2106     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2107       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2108       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2109         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2110     }
2111     assert(i == total_args_passed, "");
2112 
2113     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2114     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2115 
2116     // Lookup method signature's fingerprint
2117     entry = _adapters->lookup(total_args_passed, regs);
2118     if (entry != NULL) {
2119       return entry;
2120     }
2121 
2122     // Make a C heap allocated version of the fingerprint to store in the adapter
2123     fingerprint = new AdapterFingerPrint(total_args_passed, regs);
2124 
2125     // Create I2C & C2I handlers
2126 
2127     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2128     if (buf != NULL) {
2129       CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
2130       short buffer_locs[20];
2131       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2132                                              sizeof(buffer_locs)/sizeof(relocInfo));
2133       MacroAssembler _masm(&buffer);
2134 
2135       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2136                                                      total_args_passed,
2137                                                      comp_args_on_stack,
2138                                                      sig_bt,
2139                                                      regs,
2140                                                      fingerprint);
2141 
2142       B = BufferBlob::create(AdapterHandlerEntry::name, &buffer);
2143       NOT_PRODUCT(code_size = buffer.code_size());
2144     }
2145     if (B == NULL) {
2146       // CodeCache is full, disable compilation
2147       // Ought to log this but compile log is only per compile thread
2148       // and we're some non descript Java thread.
2149       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2150       CompileBroker::handle_full_code_cache();
2151       return NULL; // Out of CodeCache space
2152     }
2153     entry->relocate(B->instructions_begin());
2154 #ifndef PRODUCT
2155     // debugging suppport
2156     if (PrintAdapterHandlers) {
2157       tty->cr();
2158       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
2159                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2160                     method->signature()->as_C_string(), fingerprint->as_string(), code_size );
2161       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2162       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + code_size);
2163     }
2164 #endif
2165 
2166     _adapters->add(entry);
2167   }
2168   // Outside of the lock
2169   if (B != NULL) {
2170     char blob_id[256];
2171     jio_snprintf(blob_id,
2172                  sizeof(blob_id),
2173                  "%s(%s)@" PTR_FORMAT,
2174                  AdapterHandlerEntry::name,
2175                  fingerprint->as_string(),
2176                  B->instructions_begin());
2177     VTune::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
2178     Forte::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
2179 
2180     if (JvmtiExport::should_post_dynamic_code_generated()) {
2181       JvmtiExport::post_dynamic_code_generated(blob_id,
2182                                                B->instructions_begin(),
2183                                                B->instructions_end());
2184     }
2185   }
2186   return entry;
2187 }
2188 
2189 void AdapterHandlerEntry::relocate(address new_base) {
2190     ptrdiff_t delta = new_base - _i2c_entry;
2191     _i2c_entry += delta;
2192     _c2i_entry += delta;
2193     _c2i_unverified_entry += delta;
2194 }
2195 
2196 // Create a native wrapper for this native method.  The wrapper converts the
2197 // java compiled calling convention to the native convention, handlizes
2198 // arguments, and transitions to native.  On return from the native we transition
2199 // back to java blocking if a safepoint is in progress.
2200 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2201   ResourceMark rm;
2202   nmethod* nm = NULL;
2203 
2204   if (PrintCompilation) {
2205     ttyLocker ttyl;
2206     tty->print("---   n%s ", (method->is_synchronized() ? "s" : " "));
2207     method->print_short_name(tty);
2208     if (method->is_static()) {
2209       tty->print(" (static)");
2210     }
2211     tty->cr();
2212   }
2213 
2214   assert(method->has_native_function(), "must have something valid to call!");
2215 
2216   {
2217     // perform the work while holding the lock, but perform any printing outside the lock
2218     MutexLocker mu(AdapterHandlerLibrary_lock);
2219     // See if somebody beat us to it
2220     nm = method->code();
2221     if (nm) {
2222       return nm;
2223     }
2224 
2225     ResourceMark rm;
2226 
2227     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2228     if (buf != NULL) {
2229       CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
2230       double locs_buf[20];
2231       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2232       MacroAssembler _masm(&buffer);
2233 
2234       // Fill in the signature array, for the calling-convention call.
2235       int total_args_passed = method->size_of_parameters();
2236 
2237       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
2238       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
2239       int i=0;
2240       if( !method->is_static() )  // Pass in receiver first
2241         sig_bt[i++] = T_OBJECT;
2242       SignatureStream ss(method->signature());
2243       for( ; !ss.at_return_type(); ss.next()) {
2244         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2245         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2246           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2247       }
2248       assert( i==total_args_passed, "" );
2249       BasicType ret_type = ss.type();
2250 
2251       // Now get the compiled-Java layout as input arguments
2252       int comp_args_on_stack;
2253       comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2254 
2255       // Generate the compiled-to-native wrapper code
2256       nm = SharedRuntime::generate_native_wrapper(&_masm,
2257                                                   method,
2258                                                   total_args_passed,
2259                                                   comp_args_on_stack,
2260                                                   sig_bt,regs,
2261                                                   ret_type);
2262     }
2263   }
2264 
2265   // Must unlock before calling set_code
2266   // Install the generated code.
2267   if (nm != NULL) {
2268     method->set_code(method, nm);
2269     nm->post_compiled_method_load_event();
2270   } else {
2271     // CodeCache is full, disable compilation
2272     // Ought to log this but compile log is only per compile thread
2273     // and we're some non descript Java thread.
2274     MutexUnlocker mu(AdapterHandlerLibrary_lock);
2275     CompileBroker::handle_full_code_cache();
2276   }
2277   return nm;
2278 }
2279 
2280 #ifdef HAVE_DTRACE_H
2281 // Create a dtrace nmethod for this method.  The wrapper converts the
2282 // java compiled calling convention to the native convention, makes a dummy call
2283 // (actually nops for the size of the call instruction, which become a trap if
2284 // probe is enabled). The returns to the caller. Since this all looks like a
2285 // leaf no thread transition is needed.
2286 
2287 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2288   ResourceMark rm;
2289   nmethod* nm = NULL;
2290 
2291   if (PrintCompilation) {
2292     ttyLocker ttyl;
2293     tty->print("---   n%s  ");
2294     method->print_short_name(tty);
2295     if (method->is_static()) {
2296       tty->print(" (static)");
2297     }
2298     tty->cr();
2299   }
2300 
2301   {
2302     // perform the work while holding the lock, but perform any printing
2303     // outside the lock
2304     MutexLocker mu(AdapterHandlerLibrary_lock);
2305     // See if somebody beat us to it
2306     nm = method->code();
2307     if (nm) {
2308       return nm;
2309     }
2310 
2311     ResourceMark rm;
2312 
2313     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2314     if (buf != NULL) {
2315       CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
2316       // Need a few relocation entries
2317       double locs_buf[20];
2318       buffer.insts()->initialize_shared_locs(
2319         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2320       MacroAssembler _masm(&buffer);
2321 
2322       // Generate the compiled-to-native wrapper code
2323       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2324     }
2325   }
2326   return nm;
2327 }
2328 
2329 // the dtrace method needs to convert java lang string to utf8 string.
2330 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2331   typeArrayOop jlsValue  = java_lang_String::value(src);
2332   int          jlsOffset = java_lang_String::offset(src);
2333   int          jlsLen    = java_lang_String::length(src);
2334   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2335                                            jlsValue->char_at_addr(jlsOffset);
2336   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2337 }
2338 #endif // ndef HAVE_DTRACE_H
2339 
2340 // -------------------------------------------------------------------------
2341 // Java-Java calling convention
2342 // (what you use when Java calls Java)
2343 
2344 //------------------------------name_for_receiver----------------------------------
2345 // For a given signature, return the VMReg for parameter 0.
2346 VMReg SharedRuntime::name_for_receiver() {
2347   VMRegPair regs;
2348   BasicType sig_bt = T_OBJECT;
2349   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2350   // Return argument 0 register.  In the LP64 build pointers
2351   // take 2 registers, but the VM wants only the 'main' name.
2352   return regs.first();
2353 }
2354 
2355 VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool has_receiver, int* arg_size) {
2356   // This method is returning a data structure allocating as a
2357   // ResourceObject, so do not put any ResourceMarks in here.
2358   char *s = sig->as_C_string();
2359   int len = (int)strlen(s);
2360   *s++; len--;                  // Skip opening paren
2361   char *t = s+len;
2362   while( *(--t) != ')' ) ;      // Find close paren
2363 
2364   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2365   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2366   int cnt = 0;
2367   if (has_receiver) {
2368     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2369   }
2370 
2371   while( s < t ) {
2372     switch( *s++ ) {            // Switch on signature character
2373     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2374     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2375     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2376     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2377     case 'I': sig_bt[cnt++] = T_INT;     break;
2378     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2379     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2380     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2381     case 'V': sig_bt[cnt++] = T_VOID;    break;
2382     case 'L':                   // Oop
2383       while( *s++ != ';'  ) ;   // Skip signature
2384       sig_bt[cnt++] = T_OBJECT;
2385       break;
2386     case '[': {                 // Array
2387       do {                      // Skip optional size
2388         while( *s >= '0' && *s <= '9' ) s++;
2389       } while( *s++ == '[' );   // Nested arrays?
2390       // Skip element type
2391       if( s[-1] == 'L' )
2392         while( *s++ != ';'  ) ; // Skip signature
2393       sig_bt[cnt++] = T_ARRAY;
2394       break;
2395     }
2396     default : ShouldNotReachHere();
2397     }
2398   }
2399   assert( cnt < 256, "grow table size" );
2400 
2401   int comp_args_on_stack;
2402   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2403 
2404   // the calling convention doesn't count out_preserve_stack_slots so
2405   // we must add that in to get "true" stack offsets.
2406 
2407   if (comp_args_on_stack) {
2408     for (int i = 0; i < cnt; i++) {
2409       VMReg reg1 = regs[i].first();
2410       if( reg1->is_stack()) {
2411         // Yuck
2412         reg1 = reg1->bias(out_preserve_stack_slots());
2413       }
2414       VMReg reg2 = regs[i].second();
2415       if( reg2->is_stack()) {
2416         // Yuck
2417         reg2 = reg2->bias(out_preserve_stack_slots());
2418       }
2419       regs[i].set_pair(reg2, reg1);
2420     }
2421   }
2422 
2423   // results
2424   *arg_size = cnt;
2425   return regs;
2426 }
2427 
2428 // OSR Migration Code
2429 //
2430 // This code is used convert interpreter frames into compiled frames.  It is
2431 // called from very start of a compiled OSR nmethod.  A temp array is
2432 // allocated to hold the interesting bits of the interpreter frame.  All
2433 // active locks are inflated to allow them to move.  The displaced headers and
2434 // active interpeter locals are copied into the temp buffer.  Then we return
2435 // back to the compiled code.  The compiled code then pops the current
2436 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2437 // copies the interpreter locals and displaced headers where it wants.
2438 // Finally it calls back to free the temp buffer.
2439 //
2440 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2441 
2442 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2443 
2444 #ifdef IA64
2445   ShouldNotReachHere(); // NYI
2446 #endif /* IA64 */
2447 
2448   //
2449   // This code is dependent on the memory layout of the interpreter local
2450   // array and the monitors. On all of our platforms the layout is identical
2451   // so this code is shared. If some platform lays the their arrays out
2452   // differently then this code could move to platform specific code or
2453   // the code here could be modified to copy items one at a time using
2454   // frame accessor methods and be platform independent.
2455 
2456   frame fr = thread->last_frame();
2457   assert( fr.is_interpreted_frame(), "" );
2458   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2459 
2460   // Figure out how many monitors are active.
2461   int active_monitor_count = 0;
2462   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2463        kptr < fr.interpreter_frame_monitor_begin();
2464        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2465     if( kptr->obj() != NULL ) active_monitor_count++;
2466   }
2467 
2468   // QQQ we could place number of active monitors in the array so that compiled code
2469   // could double check it.
2470 
2471   methodOop moop = fr.interpreter_frame_method();
2472   int max_locals = moop->max_locals();
2473   // Allocate temp buffer, 1 word per local & 2 per active monitor
2474   int buf_size_words = max_locals + active_monitor_count*2;
2475   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
2476 
2477   // Copy the locals.  Order is preserved so that loading of longs works.
2478   // Since there's no GC I can copy the oops blindly.
2479   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2480   if (TaggedStackInterpreter) {
2481     for (int i = 0; i < max_locals; i++) {
2482       // copy only each local separately to the buffer avoiding the tag
2483       buf[i] = *fr.interpreter_frame_local_at(max_locals-i-1);
2484     }
2485   } else {
2486     Copy::disjoint_words(
2487                        (HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2488                        (HeapWord*)&buf[0],
2489                        max_locals);
2490   }
2491 
2492   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2493   int i = max_locals;
2494   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2495        kptr2 < fr.interpreter_frame_monitor_begin();
2496        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2497     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2498       BasicLock *lock = kptr2->lock();
2499       // Inflate so the displaced header becomes position-independent
2500       if (lock->displaced_header()->is_unlocked())
2501         ObjectSynchronizer::inflate_helper(kptr2->obj());
2502       // Now the displaced header is free to move
2503       buf[i++] = (intptr_t)lock->displaced_header();
2504       buf[i++] = (intptr_t)kptr2->obj();
2505     }
2506   }
2507   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2508 
2509   return buf;
2510 JRT_END
2511 
2512 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2513   FREE_C_HEAP_ARRAY(intptr_t,buf);
2514 JRT_END
2515 
2516 #ifndef PRODUCT
2517 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2518   AdapterHandlerTableIterator iter(_adapters);
2519   while (iter.has_next()) {
2520     AdapterHandlerEntry* a = iter.next();
2521     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2522   }
2523   return false;
2524 }
2525 
2526 void AdapterHandlerLibrary::print_handler(CodeBlob* b) {
2527   AdapterHandlerTableIterator iter(_adapters);
2528   while (iter.has_next()) {
2529     AdapterHandlerEntry* a = iter.next();
2530     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
2531       tty->print("Adapter for signature: ");
2532       tty->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2533                     a->fingerprint()->as_string(),
2534                     a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
2535       return;
2536     }
2537   }
2538   assert(false, "Should have found handler");
2539 }
2540 
2541 void AdapterHandlerLibrary::print_statistics() {
2542   _adapters->print_statistics();
2543 }
2544 
2545 #endif /* PRODUCT */