1 /*
   2  * Copyright 2000-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_c1_LIRAssembler_sparc.cpp.incl"
  27 
  28 #define __ _masm->
  29 
  30 
  31 //------------------------------------------------------------
  32 
  33 
  34 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
  35   if (opr->is_constant()) {
  36     LIR_Const* constant = opr->as_constant_ptr();
  37     switch (constant->type()) {
  38       case T_INT: {
  39         jint value = constant->as_jint();
  40         return Assembler::is_simm13(value);
  41       }
  42 
  43       default:
  44         return false;
  45     }
  46   }
  47   return false;
  48 }
  49 
  50 
  51 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
  52   switch (op->code()) {
  53     case lir_null_check:
  54     return true;
  55 
  56 
  57     case lir_add:
  58     case lir_ushr:
  59     case lir_shr:
  60     case lir_shl:
  61       // integer shifts and adds are always one instruction
  62       return op->result_opr()->is_single_cpu();
  63 
  64 
  65     case lir_move: {
  66       LIR_Op1* op1 = op->as_Op1();
  67       LIR_Opr src = op1->in_opr();
  68       LIR_Opr dst = op1->result_opr();
  69 
  70       if (src == dst) {
  71         NEEDS_CLEANUP;
  72         // this works around a problem where moves with the same src and dst
  73         // end up in the delay slot and then the assembler swallows the mov
  74         // since it has no effect and then it complains because the delay slot
  75         // is empty.  returning false stops the optimizer from putting this in
  76         // the delay slot
  77         return false;
  78       }
  79 
  80       // don't put moves involving oops into the delay slot since the VerifyOops code
  81       // will make it much larger than a single instruction.
  82       if (VerifyOops) {
  83         return false;
  84       }
  85 
  86       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
  87           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
  88         return false;
  89       }
  90 
  91       if (dst->is_register()) {
  92         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
  93           return !PatchALot;
  94         } else if (src->is_single_stack()) {
  95           return true;
  96         }
  97       }
  98 
  99       if (src->is_register()) {
 100         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
 101           return !PatchALot;
 102         } else if (dst->is_single_stack()) {
 103           return true;
 104         }
 105       }
 106 
 107       if (dst->is_register() &&
 108           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
 109            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
 110         return true;
 111       }
 112 
 113       return false;
 114     }
 115 
 116     default:
 117       return false;
 118   }
 119   ShouldNotReachHere();
 120 }
 121 
 122 
 123 LIR_Opr LIR_Assembler::receiverOpr() {
 124   return FrameMap::O0_oop_opr;
 125 }
 126 
 127 
 128 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
 129   return FrameMap::I0_oop_opr;
 130 }
 131 
 132 
 133 LIR_Opr LIR_Assembler::osrBufferPointer() {
 134   return FrameMap::I0_opr;
 135 }
 136 
 137 
 138 int LIR_Assembler::initial_frame_size_in_bytes() {
 139   return in_bytes(frame_map()->framesize_in_bytes());
 140 }
 141 
 142 
 143 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
 144 // we fetch the class of the receiver (O0) and compare it with the cached class.
 145 // If they do not match we jump to slow case.
 146 int LIR_Assembler::check_icache() {
 147   int offset = __ offset();
 148   __ inline_cache_check(O0, G5_inline_cache_reg);
 149   return offset;
 150 }
 151 
 152 
 153 void LIR_Assembler::osr_entry() {
 154   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
 155   //
 156   //   1. Create a new compiled activation.
 157   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
 158   //      at the osr_bci; it is not initialized.
 159   //   3. Jump to the continuation address in compiled code to resume execution.
 160 
 161   // OSR entry point
 162   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 163   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 164   ValueStack* entry_state = osr_entry->end()->state();
 165   int number_of_locks = entry_state->locks_size();
 166 
 167   // Create a frame for the compiled activation.
 168   __ build_frame(initial_frame_size_in_bytes());
 169 
 170   // OSR buffer is
 171   //
 172   // locals[nlocals-1..0]
 173   // monitors[number_of_locks-1..0]
 174   //
 175   // locals is a direct copy of the interpreter frame so in the osr buffer
 176   // so first slot in the local array is the last local from the interpreter
 177   // and last slot is local[0] (receiver) from the interpreter
 178   //
 179   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 180   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 181   // in the interpreter frame (the method lock if a sync method)
 182 
 183   // Initialize monitors in the compiled activation.
 184   //   I0: pointer to osr buffer
 185   //
 186   // All other registers are dead at this point and the locals will be
 187   // copied into place by code emitted in the IR.
 188 
 189   Register OSR_buf = osrBufferPointer()->as_register();
 190   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 191     int monitor_offset = BytesPerWord * method()->max_locals() +
 192       (2 * BytesPerWord) * (number_of_locks - 1);
 193     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 194     // the OSR buffer using 2 word entries: first the lock and then
 195     // the oop.
 196     for (int i = 0; i < number_of_locks; i++) {
 197       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 198 #ifdef ASSERT
 199       // verify the interpreter's monitor has a non-null object
 200       {
 201         Label L;
 202         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 203         __ cmp(G0, O7);
 204         __ br(Assembler::notEqual, false, Assembler::pt, L);
 205         __ delayed()->nop();
 206         __ stop("locked object is NULL");
 207         __ bind(L);
 208       }
 209 #endif // ASSERT
 210       // Copy the lock field into the compiled activation.
 211       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
 212       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
 213       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 214       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
 215     }
 216   }
 217 }
 218 
 219 
 220 // Optimized Library calls
 221 // This is the fast version of java.lang.String.compare; it has not
 222 // OSR-entry and therefore, we generate a slow version for OSR's
 223 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
 224   Register str0 = left->as_register();
 225   Register str1 = right->as_register();
 226 
 227   Label Ldone;
 228 
 229   Register result = dst->as_register();
 230   {
 231     // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
 232     // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
 233     // Also, get string0.count-string1.count in o7 and get the condition code set
 234     // Note: some instructions have been hoisted for better instruction scheduling
 235 
 236     Register tmp0 = L0;
 237     Register tmp1 = L1;
 238     Register tmp2 = L2;
 239 
 240     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
 241     int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
 242     int  count_offset = java_lang_String:: count_offset_in_bytes();
 243 
 244     __ ld_ptr(str0, value_offset, tmp0);
 245     __ ld(str0, offset_offset, tmp2);
 246     __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
 247     __ ld(str0, count_offset, str0);
 248     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
 249 
 250     // str1 may be null
 251     add_debug_info_for_null_check_here(info);
 252 
 253     __ ld_ptr(str1, value_offset, tmp1);
 254     __ add(tmp0, tmp2, tmp0);
 255 
 256     __ ld(str1, offset_offset, tmp2);
 257     __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
 258     __ ld(str1, count_offset, str1);
 259     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
 260     __ subcc(str0, str1, O7);
 261     __ add(tmp1, tmp2, tmp1);
 262   }
 263 
 264   {
 265     // Compute the minimum of the string lengths, scale it and store it in limit
 266     Register count0 = I0;
 267     Register count1 = I1;
 268     Register limit  = L3;
 269 
 270     Label Lskip;
 271     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
 272     __ br(Assembler::greater, true, Assembler::pt, Lskip);
 273     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
 274     __ bind(Lskip);
 275 
 276     // If either string is empty (or both of them) the result is the difference in lengths
 277     __ cmp(limit, 0);
 278     __ br(Assembler::equal, true, Assembler::pn, Ldone);
 279     __ delayed()->mov(O7, result);  // result is difference in lengths
 280   }
 281 
 282   {
 283     // Neither string is empty
 284     Label Lloop;
 285 
 286     Register base0 = L0;
 287     Register base1 = L1;
 288     Register chr0  = I0;
 289     Register chr1  = I1;
 290     Register limit = L3;
 291 
 292     // Shift base0 and base1 to the end of the arrays, negate limit
 293     __ add(base0, limit, base0);
 294     __ add(base1, limit, base1);
 295     __ neg(limit);  // limit = -min{string0.count, strin1.count}
 296 
 297     __ lduh(base0, limit, chr0);
 298     __ bind(Lloop);
 299     __ lduh(base1, limit, chr1);
 300     __ subcc(chr0, chr1, chr0);
 301     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
 302     assert(chr0 == result, "result must be pre-placed");
 303     __ delayed()->inccc(limit, sizeof(jchar));
 304     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
 305     __ delayed()->lduh(base0, limit, chr0);
 306   }
 307 
 308   // If strings are equal up to min length, return the length difference.
 309   __ mov(O7, result);
 310 
 311   // Otherwise, return the difference between the first mismatched chars.
 312   __ bind(Ldone);
 313 }
 314 
 315 
 316 // --------------------------------------------------------------------------------------------
 317 
 318 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
 319   if (!GenerateSynchronizationCode) return;
 320 
 321   Register obj_reg = obj_opr->as_register();
 322   Register lock_reg = lock_opr->as_register();
 323 
 324   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
 325   Register reg = mon_addr.base();
 326   int offset = mon_addr.disp();
 327   // compute pointer to BasicLock
 328   if (mon_addr.is_simm13()) {
 329     __ add(reg, offset, lock_reg);
 330   }
 331   else {
 332     __ set(offset, lock_reg);
 333     __ add(reg, lock_reg, lock_reg);
 334   }
 335   // unlock object
 336   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
 337   // _slow_case_stubs->append(slow_case);
 338   // temporary fix: must be created after exceptionhandler, therefore as call stub
 339   _slow_case_stubs->append(slow_case);
 340   if (UseFastLocking) {
 341     // try inlined fast unlocking first, revert to slow locking if it fails
 342     // note: lock_reg points to the displaced header since the displaced header offset is 0!
 343     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
 344     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
 345   } else {
 346     // always do slow unlocking
 347     // note: the slow unlocking code could be inlined here, however if we use
 348     //       slow unlocking, speed doesn't matter anyway and this solution is
 349     //       simpler and requires less duplicated code - additionally, the
 350     //       slow unlocking code is the same in either case which simplifies
 351     //       debugging
 352     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
 353     __ delayed()->nop();
 354   }
 355   // done
 356   __ bind(*slow_case->continuation());
 357 }
 358 
 359 
 360 int LIR_Assembler::emit_exception_handler() {
 361   // if the last instruction is a call (typically to do a throw which
 362   // is coming at the end after block reordering) the return address
 363   // must still point into the code area in order to avoid assertion
 364   // failures when searching for the corresponding bci => add a nop
 365   // (was bug 5/14/1999 - gri)
 366   __ nop();
 367 
 368   // generate code for exception handler
 369   ciMethod* method = compilation()->method();
 370 
 371   address handler_base = __ start_a_stub(exception_handler_size);
 372 
 373   if (handler_base == NULL) {
 374     // not enough space left for the handler
 375     bailout("exception handler overflow");
 376     return -1;
 377   }
 378 
 379   int offset = code_offset();
 380 
 381   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
 382   __ delayed()->nop();
 383   debug_only(__ stop("should have gone to the caller");)
 384   assert(code_offset() - offset <= exception_handler_size, "overflow");
 385   __ end_a_stub();
 386 
 387   return offset;
 388 }
 389 
 390 
 391 int LIR_Assembler::emit_deopt_handler() {
 392   // if the last instruction is a call (typically to do a throw which
 393   // is coming at the end after block reordering) the return address
 394   // must still point into the code area in order to avoid assertion
 395   // failures when searching for the corresponding bci => add a nop
 396   // (was bug 5/14/1999 - gri)
 397   __ nop();
 398 
 399   // generate code for deopt handler
 400   ciMethod* method = compilation()->method();
 401   address handler_base = __ start_a_stub(deopt_handler_size);
 402   if (handler_base == NULL) {
 403     // not enough space left for the handler
 404     bailout("deopt handler overflow");
 405     return -1;
 406   }
 407 
 408   int offset = code_offset();
 409   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
 410   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
 411   __ delayed()->nop();
 412   assert(code_offset() - offset <= deopt_handler_size, "overflow");
 413   debug_only(__ stop("should have gone to the caller");)
 414   __ end_a_stub();
 415 
 416   return offset;
 417 }
 418 
 419 
 420 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 421   if (o == NULL) {
 422     __ set(NULL_WORD, reg);
 423   } else {
 424     int oop_index = __ oop_recorder()->find_index(o);
 425     RelocationHolder rspec = oop_Relocation::spec(oop_index);
 426     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
 427   }
 428 }
 429 
 430 
 431 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 432   // Allocate a new index in oop table to hold the oop once it's been patched
 433   int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
 434   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
 435 
 436   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
 437   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
 438   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
 439   // NULL will be dynamically patched later and the patched value may be large.  We must
 440   // therefore generate the sethi/add as a placeholders
 441   __ patchable_set(addrlit, reg);
 442 
 443   patching_epilog(patch, lir_patch_normal, reg, info);
 444 }
 445 
 446 
 447 void LIR_Assembler::emit_op3(LIR_Op3* op) {
 448   Register Rdividend = op->in_opr1()->as_register();
 449   Register Rdivisor  = noreg;
 450   Register Rscratch  = op->in_opr3()->as_register();
 451   Register Rresult   = op->result_opr()->as_register();
 452   int divisor = -1;
 453 
 454   if (op->in_opr2()->is_register()) {
 455     Rdivisor = op->in_opr2()->as_register();
 456   } else {
 457     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
 458     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 459   }
 460 
 461   assert(Rdividend != Rscratch, "");
 462   assert(Rdivisor  != Rscratch, "");
 463   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
 464 
 465   if (Rdivisor == noreg && is_power_of_2(divisor)) {
 466     // convert division by a power of two into some shifts and logical operations
 467     if (op->code() == lir_idiv) {
 468       if (divisor == 2) {
 469         __ srl(Rdividend, 31, Rscratch);
 470       } else {
 471         __ sra(Rdividend, 31, Rscratch);
 472         __ and3(Rscratch, divisor - 1, Rscratch);
 473       }
 474       __ add(Rdividend, Rscratch, Rscratch);
 475       __ sra(Rscratch, log2_intptr(divisor), Rresult);
 476       return;
 477     } else {
 478       if (divisor == 2) {
 479         __ srl(Rdividend, 31, Rscratch);
 480       } else {
 481         __ sra(Rdividend, 31, Rscratch);
 482         __ and3(Rscratch, divisor - 1,Rscratch);
 483       }
 484       __ add(Rdividend, Rscratch, Rscratch);
 485       __ andn(Rscratch, divisor - 1,Rscratch);
 486       __ sub(Rdividend, Rscratch, Rresult);
 487       return;
 488     }
 489   }
 490 
 491   __ sra(Rdividend, 31, Rscratch);
 492   __ wry(Rscratch);
 493   if (!VM_Version::v9_instructions_work()) {
 494     // v9 doesn't require these nops
 495     __ nop();
 496     __ nop();
 497     __ nop();
 498     __ nop();
 499   }
 500 
 501   add_debug_info_for_div0_here(op->info());
 502 
 503   if (Rdivisor != noreg) {
 504     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 505   } else {
 506     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 507     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 508   }
 509 
 510   Label skip;
 511   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
 512   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
 513   __ bind(skip);
 514 
 515   if (op->code() == lir_irem) {
 516     if (Rdivisor != noreg) {
 517       __ smul(Rscratch, Rdivisor, Rscratch);
 518     } else {
 519       __ smul(Rscratch, divisor, Rscratch);
 520     }
 521     __ sub(Rdividend, Rscratch, Rresult);
 522   }
 523 }
 524 
 525 
 526 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
 527 #ifdef ASSERT
 528   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
 529   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
 530   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
 531 #endif
 532   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
 533 
 534   if (op->cond() == lir_cond_always) {
 535     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
 536   } else if (op->code() == lir_cond_float_branch) {
 537     assert(op->ublock() != NULL, "must have unordered successor");
 538     bool is_unordered = (op->ublock() == op->block());
 539     Assembler::Condition acond;
 540     switch (op->cond()) {
 541       case lir_cond_equal:         acond = Assembler::f_equal;    break;
 542       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
 543       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
 544       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
 545       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
 546       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
 547       default :                         ShouldNotReachHere();
 548     };
 549 
 550     if (!VM_Version::v9_instructions_work()) {
 551       __ nop();
 552     }
 553     __ fb( acond, false, Assembler::pn, *(op->label()));
 554   } else {
 555     assert (op->code() == lir_branch, "just checking");
 556 
 557     Assembler::Condition acond;
 558     switch (op->cond()) {
 559       case lir_cond_equal:        acond = Assembler::equal;                break;
 560       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
 561       case lir_cond_less:         acond = Assembler::less;                 break;
 562       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
 563       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
 564       case lir_cond_greater:      acond = Assembler::greater;              break;
 565       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
 566       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
 567       default:                         ShouldNotReachHere();
 568     };
 569 
 570     // sparc has different condition codes for testing 32-bit
 571     // vs. 64-bit values.  We could always test xcc is we could
 572     // guarantee that 32-bit loads always sign extended but that isn't
 573     // true and since sign extension isn't free, it would impose a
 574     // slight cost.
 575 #ifdef _LP64
 576     if  (op->type() == T_INT) {
 577       __ br(acond, false, Assembler::pn, *(op->label()));
 578     } else
 579 #endif
 580       __ brx(acond, false, Assembler::pn, *(op->label()));
 581   }
 582   // The peephole pass fills the delay slot
 583 }
 584 
 585 
 586 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
 587   Bytecodes::Code code = op->bytecode();
 588   LIR_Opr dst = op->result_opr();
 589 
 590   switch(code) {
 591     case Bytecodes::_i2l: {
 592       Register rlo  = dst->as_register_lo();
 593       Register rhi  = dst->as_register_hi();
 594       Register rval = op->in_opr()->as_register();
 595 #ifdef _LP64
 596       __ sra(rval, 0, rlo);
 597 #else
 598       __ mov(rval, rlo);
 599       __ sra(rval, BitsPerInt-1, rhi);
 600 #endif
 601       break;
 602     }
 603     case Bytecodes::_i2d:
 604     case Bytecodes::_i2f: {
 605       bool is_double = (code == Bytecodes::_i2d);
 606       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 607       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 608       FloatRegister rsrc = op->in_opr()->as_float_reg();
 609       if (rsrc != rdst) {
 610         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
 611       }
 612       __ fitof(w, rdst, rdst);
 613       break;
 614     }
 615     case Bytecodes::_f2i:{
 616       FloatRegister rsrc = op->in_opr()->as_float_reg();
 617       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
 618       Label L;
 619       // result must be 0 if value is NaN; test by comparing value to itself
 620       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
 621       if (!VM_Version::v9_instructions_work()) {
 622         __ nop();
 623       }
 624       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
 625       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
 626       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
 627       // move integer result from float register to int register
 628       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
 629       __ bind (L);
 630       break;
 631     }
 632     case Bytecodes::_l2i: {
 633       Register rlo  = op->in_opr()->as_register_lo();
 634       Register rhi  = op->in_opr()->as_register_hi();
 635       Register rdst = dst->as_register();
 636 #ifdef _LP64
 637       __ sra(rlo, 0, rdst);
 638 #else
 639       __ mov(rlo, rdst);
 640 #endif
 641       break;
 642     }
 643     case Bytecodes::_d2f:
 644     case Bytecodes::_f2d: {
 645       bool is_double = (code == Bytecodes::_f2d);
 646       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
 647       LIR_Opr val = op->in_opr();
 648       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
 649       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 650       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
 651       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 652       __ ftof(vw, dw, rval, rdst);
 653       break;
 654     }
 655     case Bytecodes::_i2s:
 656     case Bytecodes::_i2b: {
 657       Register rval = op->in_opr()->as_register();
 658       Register rdst = dst->as_register();
 659       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
 660       __ sll (rval, shift, rdst);
 661       __ sra (rdst, shift, rdst);
 662       break;
 663     }
 664     case Bytecodes::_i2c: {
 665       Register rval = op->in_opr()->as_register();
 666       Register rdst = dst->as_register();
 667       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
 668       __ sll (rval, shift, rdst);
 669       __ srl (rdst, shift, rdst);
 670       break;
 671     }
 672 
 673     default: ShouldNotReachHere();
 674   }
 675 }
 676 
 677 
 678 void LIR_Assembler::align_call(LIR_Code) {
 679   // do nothing since all instructions are word aligned on sparc
 680 }
 681 
 682 
 683 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
 684   __ call(op->addr(), rtype);
 685   // The peephole pass fills the delay slot, add_call_info is done in
 686   // LIR_Assembler::emit_delay.
 687 }
 688 
 689 
 690 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
 691   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
 692   __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
 693   __ relocate(rspec);
 694   __ call(op->addr(), relocInfo::none);
 695   // The peephole pass fills the delay slot, add_call_info is done in
 696   // LIR_Assembler::emit_delay.
 697 }
 698 
 699 
 700 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
 701   add_debug_info_for_null_check_here(op->info());
 702   __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
 703   if (__ is_simm13(op->vtable_offset())) {
 704     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
 705   } else {
 706     // This will generate 2 instructions
 707     __ set(op->vtable_offset(), G5_method);
 708     // ld_ptr, set_hi, set
 709     __ ld_ptr(G3_scratch, G5_method, G5_method);
 710   }
 711   __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
 712   __ callr(G3_scratch, G0);
 713   // the peephole pass fills the delay slot
 714 }
 715 
 716 
 717 // load with 32-bit displacement
 718 int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
 719   int load_offset = code_offset();
 720   if (Assembler::is_simm13(disp)) {
 721     if (info != NULL) add_debug_info_for_null_check_here(info);
 722     switch(ld_type) {
 723       case T_BOOLEAN: // fall through
 724       case T_BYTE  : __ ldsb(s, disp, d); break;
 725       case T_CHAR  : __ lduh(s, disp, d); break;
 726       case T_SHORT : __ ldsh(s, disp, d); break;
 727       case T_INT   : __ ld(s, disp, d); break;
 728       case T_ADDRESS:// fall through
 729       case T_ARRAY : // fall through
 730       case T_OBJECT: __ ld_ptr(s, disp, d); break;
 731       default      : ShouldNotReachHere();
 732     }
 733   } else {
 734     __ set(disp, O7);
 735     if (info != NULL) add_debug_info_for_null_check_here(info);
 736     load_offset = code_offset();
 737     switch(ld_type) {
 738       case T_BOOLEAN: // fall through
 739       case T_BYTE  : __ ldsb(s, O7, d); break;
 740       case T_CHAR  : __ lduh(s, O7, d); break;
 741       case T_SHORT : __ ldsh(s, O7, d); break;
 742       case T_INT   : __ ld(s, O7, d); break;
 743       case T_ADDRESS:// fall through
 744       case T_ARRAY : // fall through
 745       case T_OBJECT: __ ld_ptr(s, O7, d); break;
 746       default      : ShouldNotReachHere();
 747     }
 748   }
 749   if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
 750   return load_offset;
 751 }
 752 
 753 
 754 // store with 32-bit displacement
 755 void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
 756   if (Assembler::is_simm13(offset)) {
 757     if (info != NULL)  add_debug_info_for_null_check_here(info);
 758     switch (type) {
 759       case T_BOOLEAN: // fall through
 760       case T_BYTE  : __ stb(value, base, offset); break;
 761       case T_CHAR  : __ sth(value, base, offset); break;
 762       case T_SHORT : __ sth(value, base, offset); break;
 763       case T_INT   : __ stw(value, base, offset); break;
 764       case T_ADDRESS:// fall through
 765       case T_ARRAY : // fall through
 766       case T_OBJECT: __ st_ptr(value, base, offset); break;
 767       default      : ShouldNotReachHere();
 768     }
 769   } else {
 770     __ set(offset, O7);
 771     if (info != NULL) add_debug_info_for_null_check_here(info);
 772     switch (type) {
 773       case T_BOOLEAN: // fall through
 774       case T_BYTE  : __ stb(value, base, O7); break;
 775       case T_CHAR  : __ sth(value, base, O7); break;
 776       case T_SHORT : __ sth(value, base, O7); break;
 777       case T_INT   : __ stw(value, base, O7); break;
 778       case T_ADDRESS:// fall through
 779       case T_ARRAY : //fall through
 780       case T_OBJECT: __ st_ptr(value, base, O7); break;
 781       default      : ShouldNotReachHere();
 782     }
 783   }
 784   // Note: Do the store before verification as the code might be patched!
 785   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
 786 }
 787 
 788 
 789 // load float with 32-bit displacement
 790 void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
 791   FloatRegisterImpl::Width w;
 792   switch(ld_type) {
 793     case T_FLOAT : w = FloatRegisterImpl::S; break;
 794     case T_DOUBLE: w = FloatRegisterImpl::D; break;
 795     default      : ShouldNotReachHere();
 796   }
 797 
 798   if (Assembler::is_simm13(disp)) {
 799     if (info != NULL) add_debug_info_for_null_check_here(info);
 800     if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
 801       __ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
 802       __ ldf(FloatRegisterImpl::S, s, disp               , d);
 803     } else {
 804       __ ldf(w, s, disp, d);
 805     }
 806   } else {
 807     __ set(disp, O7);
 808     if (info != NULL) add_debug_info_for_null_check_here(info);
 809     __ ldf(w, s, O7, d);
 810   }
 811 }
 812 
 813 
 814 // store float with 32-bit displacement
 815 void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
 816   FloatRegisterImpl::Width w;
 817   switch(type) {
 818     case T_FLOAT : w = FloatRegisterImpl::S; break;
 819     case T_DOUBLE: w = FloatRegisterImpl::D; break;
 820     default      : ShouldNotReachHere();
 821   }
 822 
 823   if (Assembler::is_simm13(offset)) {
 824     if (info != NULL) add_debug_info_for_null_check_here(info);
 825     if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
 826       __ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
 827       __ stf(FloatRegisterImpl::S, value             , base, offset);
 828     } else {
 829       __ stf(w, value, base, offset);
 830     }
 831   } else {
 832     __ set(offset, O7);
 833     if (info != NULL) add_debug_info_for_null_check_here(info);
 834     __ stf(w, value, O7, base);
 835   }
 836 }
 837 
 838 
 839 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
 840   int store_offset;
 841   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 842     assert(!unaligned, "can't handle this");
 843     // for offsets larger than a simm13 we setup the offset in O7
 844     __ set(offset, O7);
 845     store_offset = store(from_reg, base, O7, type);
 846   } else {
 847     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
 848     store_offset = code_offset();
 849     switch (type) {
 850       case T_BOOLEAN: // fall through
 851       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
 852       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
 853       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
 854       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
 855       case T_LONG  :
 856 #ifdef _LP64
 857         if (unaligned || PatchALot) {
 858           __ srax(from_reg->as_register_lo(), 32, O7);
 859           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 860           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
 861         } else {
 862           __ stx(from_reg->as_register_lo(), base, offset);
 863         }
 864 #else
 865         assert(Assembler::is_simm13(offset + 4), "must be");
 866         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 867         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
 868 #endif
 869         break;
 870       case T_ADDRESS:// fall through
 871       case T_ARRAY : // fall through
 872       case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;
 873       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
 874       case T_DOUBLE:
 875         {
 876           FloatRegister reg = from_reg->as_double_reg();
 877           // split unaligned stores
 878           if (unaligned || PatchALot) {
 879             assert(Assembler::is_simm13(offset + 4), "must be");
 880             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
 881             __ stf(FloatRegisterImpl::S, reg,              base, offset);
 882           } else {
 883             __ stf(FloatRegisterImpl::D, reg, base, offset);
 884           }
 885           break;
 886         }
 887       default      : ShouldNotReachHere();
 888     }
 889   }
 890   return store_offset;
 891 }
 892 
 893 
 894 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
 895   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
 896   int store_offset = code_offset();
 897   switch (type) {
 898     case T_BOOLEAN: // fall through
 899     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
 900     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
 901     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
 902     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
 903     case T_LONG  :
 904 #ifdef _LP64
 905       __ stx(from_reg->as_register_lo(), base, disp);
 906 #else
 907       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
 908       __ std(from_reg->as_register_hi(), base, disp);
 909 #endif
 910       break;
 911     case T_ADDRESS:// fall through
 912     case T_ARRAY : // fall through
 913     case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;
 914     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
 915     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
 916     default      : ShouldNotReachHere();
 917   }
 918   return store_offset;
 919 }
 920 
 921 
 922 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
 923   int load_offset;
 924   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 925     assert(base != O7, "destroying register");
 926     assert(!unaligned, "can't handle this");
 927     // for offsets larger than a simm13 we setup the offset in O7
 928     __ set(offset, O7);
 929     load_offset = load(base, O7, to_reg, type);
 930   } else {
 931     load_offset = code_offset();
 932     switch(type) {
 933       case T_BOOLEAN: // fall through
 934       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
 935       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
 936       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
 937       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
 938       case T_LONG  :
 939         if (!unaligned) {
 940 #ifdef _LP64
 941           __ ldx(base, offset, to_reg->as_register_lo());
 942 #else
 943           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
 944                  "must be sequential");
 945           __ ldd(base, offset, to_reg->as_register_hi());
 946 #endif
 947         } else {
 948 #ifdef _LP64
 949           assert(base != to_reg->as_register_lo(), "can't handle this");
 950           assert(O7 != to_reg->as_register_lo(), "can't handle this");
 951           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
 952           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
 953           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
 954           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
 955 #else
 956           if (base == to_reg->as_register_lo()) {
 957             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
 958             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
 959           } else {
 960             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
 961             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
 962           }
 963 #endif
 964         }
 965         break;
 966       case T_ADDRESS:// fall through
 967       case T_ARRAY : // fall through
 968       case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;
 969       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
 970       case T_DOUBLE:
 971         {
 972           FloatRegister reg = to_reg->as_double_reg();
 973           // split unaligned loads
 974           if (unaligned || PatchALot) {
 975             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
 976             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
 977           } else {
 978             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
 979           }
 980           break;
 981         }
 982       default      : ShouldNotReachHere();
 983     }
 984     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
 985   }
 986   return load_offset;
 987 }
 988 
 989 
 990 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
 991   int load_offset = code_offset();
 992   switch(type) {
 993     case T_BOOLEAN: // fall through
 994     case T_BYTE  : __ ldsb(base, disp, to_reg->as_register()); break;
 995     case T_CHAR  : __ lduh(base, disp, to_reg->as_register()); break;
 996     case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
 997     case T_INT   : __ ld(base, disp, to_reg->as_register()); break;
 998     case T_ADDRESS:// fall through
 999     case T_ARRAY : // fall through
1000     case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;
1001     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
1002     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
1003     case T_LONG  :
1004 #ifdef _LP64
1005       __ ldx(base, disp, to_reg->as_register_lo());
1006 #else
1007       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
1008              "must be sequential");
1009       __ ldd(base, disp, to_reg->as_register_hi());
1010 #endif
1011       break;
1012     default      : ShouldNotReachHere();
1013   }
1014   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
1015   return load_offset;
1016 }
1017 
1018 
1019 // load/store with an Address
1020 void LIR_Assembler::load(const Address& a, Register d,  BasicType ld_type, CodeEmitInfo *info, int offset) {
1021   load(a.base(), a.disp() + offset, d, ld_type, info);
1022 }
1023 
1024 
1025 void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
1026   store(value, dest.base(), dest.disp() + offset, type, info);
1027 }
1028 
1029 
1030 // loadf/storef with an Address
1031 void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
1032   load(a.base(), a.disp() + offset, d, ld_type, info);
1033 }
1034 
1035 
1036 void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
1037   store(value, dest.base(), dest.disp() + offset, type, info);
1038 }
1039 
1040 
1041 // load/store with an Address
1042 void LIR_Assembler::load(LIR_Address* a, Register d,  BasicType ld_type, CodeEmitInfo *info) {
1043   load(as_Address(a), d, ld_type, info);
1044 }
1045 
1046 
1047 void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
1048   store(value, as_Address(dest), type, info);
1049 }
1050 
1051 
1052 // loadf/storef with an Address
1053 void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
1054   load(as_Address(a), d, ld_type, info);
1055 }
1056 
1057 
1058 void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
1059   store(value, as_Address(dest), type, info);
1060 }
1061 
1062 
1063 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
1064   LIR_Const* c = src->as_constant_ptr();
1065   switch (c->type()) {
1066     case T_INT:
1067     case T_FLOAT:
1068     case T_ADDRESS: {
1069       Register src_reg = O7;
1070       int value = c->as_jint_bits();
1071       if (value == 0) {
1072         src_reg = G0;
1073       } else {
1074         __ set(value, O7);
1075       }
1076       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1077       __ stw(src_reg, addr.base(), addr.disp());
1078       break;
1079     }
1080     case T_OBJECT: {
1081       Register src_reg = O7;
1082       jobject2reg(c->as_jobject(), src_reg);
1083       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1084       __ st_ptr(src_reg, addr.base(), addr.disp());
1085       break;
1086     }
1087     case T_LONG:
1088     case T_DOUBLE: {
1089       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
1090 
1091       Register tmp = O7;
1092       int value_lo = c->as_jint_lo_bits();
1093       if (value_lo == 0) {
1094         tmp = G0;
1095       } else {
1096         __ set(value_lo, O7);
1097       }
1098       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
1099       int value_hi = c->as_jint_hi_bits();
1100       if (value_hi == 0) {
1101         tmp = G0;
1102       } else {
1103         __ set(value_hi, O7);
1104       }
1105       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
1106       break;
1107     }
1108     default:
1109       Unimplemented();
1110   }
1111 }
1112 
1113 
1114 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
1115   LIR_Const* c = src->as_constant_ptr();
1116   LIR_Address* addr     = dest->as_address_ptr();
1117   Register base = addr->base()->as_pointer_register();
1118 
1119   if (info != NULL) {
1120     add_debug_info_for_null_check_here(info);
1121   }
1122   switch (c->type()) {
1123     case T_INT:
1124     case T_FLOAT:
1125     case T_ADDRESS: {
1126       LIR_Opr tmp = FrameMap::O7_opr;
1127       int value = c->as_jint_bits();
1128       if (value == 0) {
1129         tmp = FrameMap::G0_opr;
1130       } else if (Assembler::is_simm13(value)) {
1131         __ set(value, O7);
1132       }
1133       if (addr->index()->is_valid()) {
1134         assert(addr->disp() == 0, "must be zero");
1135         store(tmp, base, addr->index()->as_pointer_register(), type);
1136       } else {
1137         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1138         store(tmp, base, addr->disp(), type);
1139       }
1140       break;
1141     }
1142     case T_LONG:
1143     case T_DOUBLE: {
1144       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1145       assert(Assembler::is_simm13(addr->disp()) &&
1146              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1147 
1148       Register tmp = O7;
1149       int value_lo = c->as_jint_lo_bits();
1150       if (value_lo == 0) {
1151         tmp = G0;
1152       } else {
1153         __ set(value_lo, O7);
1154       }
1155       store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
1156       int value_hi = c->as_jint_hi_bits();
1157       if (value_hi == 0) {
1158         tmp = G0;
1159       } else {
1160         __ set(value_hi, O7);
1161       }
1162       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
1163       break;
1164     }
1165     case T_OBJECT: {
1166       jobject obj = c->as_jobject();
1167       LIR_Opr tmp;
1168       if (obj == NULL) {
1169         tmp = FrameMap::G0_opr;
1170       } else {
1171         tmp = FrameMap::O7_opr;
1172         jobject2reg(c->as_jobject(), O7);
1173       }
1174       // handle either reg+reg or reg+disp address
1175       if (addr->index()->is_valid()) {
1176         assert(addr->disp() == 0, "must be zero");
1177         store(tmp, base, addr->index()->as_pointer_register(), type);
1178       } else {
1179         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1180         store(tmp, base, addr->disp(), type);
1181       }
1182 
1183       break;
1184     }
1185     default:
1186       Unimplemented();
1187   }
1188 }
1189 
1190 
1191 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1192   LIR_Const* c = src->as_constant_ptr();
1193   LIR_Opr to_reg = dest;
1194 
1195   switch (c->type()) {
1196     case T_INT:
1197     case T_ADDRESS:
1198       {
1199         jint con = c->as_jint();
1200         if (to_reg->is_single_cpu()) {
1201           assert(patch_code == lir_patch_none, "no patching handled here");
1202           __ set(con, to_reg->as_register());
1203         } else {
1204           ShouldNotReachHere();
1205           assert(to_reg->is_single_fpu(), "wrong register kind");
1206 
1207           __ set(con, O7);
1208           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
1209           __ st(O7, temp_slot);
1210           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
1211         }
1212       }
1213       break;
1214 
1215     case T_LONG:
1216       {
1217         jlong con = c->as_jlong();
1218 
1219         if (to_reg->is_double_cpu()) {
1220 #ifdef _LP64
1221           __ set(con,  to_reg->as_register_lo());
1222 #else
1223           __ set(low(con),  to_reg->as_register_lo());
1224           __ set(high(con), to_reg->as_register_hi());
1225 #endif
1226 #ifdef _LP64
1227         } else if (to_reg->is_single_cpu()) {
1228           __ set(con, to_reg->as_register());
1229 #endif
1230         } else {
1231           ShouldNotReachHere();
1232           assert(to_reg->is_double_fpu(), "wrong register kind");
1233           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
1234           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
1235           __ set(low(con),  O7);
1236           __ st(O7, temp_slot_lo);
1237           __ set(high(con), O7);
1238           __ st(O7, temp_slot_hi);
1239           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
1240         }
1241       }
1242       break;
1243 
1244     case T_OBJECT:
1245       {
1246         if (patch_code == lir_patch_none) {
1247           jobject2reg(c->as_jobject(), to_reg->as_register());
1248         } else {
1249           jobject2reg_with_patching(to_reg->as_register(), info);
1250         }
1251       }
1252       break;
1253 
1254     case T_FLOAT:
1255       {
1256         address const_addr = __ float_constant(c->as_jfloat());
1257         if (const_addr == NULL) {
1258           bailout("const section overflow");
1259           break;
1260         }
1261         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1262         AddressLiteral const_addrlit(const_addr, rspec);
1263         if (to_reg->is_single_fpu()) {
1264           __ patchable_sethi(const_addrlit, O7);
1265           __ relocate(rspec);
1266           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1267 
1268         } else {
1269           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1270 
1271           __ set(const_addrlit, O7);
1272           load(O7, 0, to_reg->as_register(), T_INT);
1273         }
1274       }
1275       break;
1276 
1277     case T_DOUBLE:
1278       {
1279         address const_addr = __ double_constant(c->as_jdouble());
1280         if (const_addr == NULL) {
1281           bailout("const section overflow");
1282           break;
1283         }
1284         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1285 
1286         if (to_reg->is_double_fpu()) {
1287           AddressLiteral const_addrlit(const_addr, rspec);
1288           __ patchable_sethi(const_addrlit, O7);
1289           __ relocate(rspec);
1290           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1291         } else {
1292           assert(to_reg->is_double_cpu(), "Must be a long register.");
1293 #ifdef _LP64
1294           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
1295 #else
1296           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
1297           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
1298 #endif
1299         }
1300 
1301       }
1302       break;
1303 
1304     default:
1305       ShouldNotReachHere();
1306   }
1307 }
1308 
1309 Address LIR_Assembler::as_Address(LIR_Address* addr) {
1310   Register reg = addr->base()->as_register();
1311   return Address(reg, addr->disp());
1312 }
1313 
1314 
1315 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1316   switch (type) {
1317     case T_INT:
1318     case T_FLOAT: {
1319       Register tmp = O7;
1320       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1321       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1322       __ lduw(from.base(), from.disp(), tmp);
1323       __ stw(tmp, to.base(), to.disp());
1324       break;
1325     }
1326     case T_OBJECT: {
1327       Register tmp = O7;
1328       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1329       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1330       __ ld_ptr(from.base(), from.disp(), tmp);
1331       __ st_ptr(tmp, to.base(), to.disp());
1332       break;
1333     }
1334     case T_LONG:
1335     case T_DOUBLE: {
1336       Register tmp = O7;
1337       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1338       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1339       __ lduw(from.base(), from.disp(), tmp);
1340       __ stw(tmp, to.base(), to.disp());
1341       __ lduw(from.base(), from.disp() + 4, tmp);
1342       __ stw(tmp, to.base(), to.disp() + 4);
1343       break;
1344     }
1345 
1346     default:
1347       ShouldNotReachHere();
1348   }
1349 }
1350 
1351 
1352 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1353   Address base = as_Address(addr);
1354   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1355 }
1356 
1357 
1358 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1359   Address base = as_Address(addr);
1360   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1361 }
1362 
1363 
1364 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1365                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
1366 
1367   LIR_Address* addr = src_opr->as_address_ptr();
1368   LIR_Opr to_reg = dest;
1369 
1370   Register src = addr->base()->as_pointer_register();
1371   Register disp_reg = noreg;
1372   int disp_value = addr->disp();
1373   bool needs_patching = (patch_code != lir_patch_none);
1374 
1375   if (addr->base()->type() == T_OBJECT) {
1376     __ verify_oop(src);
1377   }
1378 
1379   PatchingStub* patch = NULL;
1380   if (needs_patching) {
1381     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1382     assert(!to_reg->is_double_cpu() ||
1383            patch_code == lir_patch_none ||
1384            patch_code == lir_patch_normal, "patching doesn't match register");
1385   }
1386 
1387   if (addr->index()->is_illegal()) {
1388     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1389       if (needs_patching) {
1390         __ patchable_set(0, O7);
1391       } else {
1392         __ set(disp_value, O7);
1393       }
1394       disp_reg = O7;
1395     }
1396   } else if (unaligned || PatchALot) {
1397     __ add(src, addr->index()->as_register(), O7);
1398     src = O7;
1399   } else {
1400     disp_reg = addr->index()->as_pointer_register();
1401     assert(disp_value == 0, "can't handle 3 operand addresses");
1402   }
1403 
1404   // remember the offset of the load.  The patching_epilog must be done
1405   // before the call to add_debug_info, otherwise the PcDescs don't get
1406   // entered in increasing order.
1407   int offset = code_offset();
1408 
1409   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1410   if (disp_reg == noreg) {
1411     offset = load(src, disp_value, to_reg, type, unaligned);
1412   } else {
1413     assert(!unaligned, "can't handle this");
1414     offset = load(src, disp_reg, to_reg, type);
1415   }
1416 
1417   if (patch != NULL) {
1418     patching_epilog(patch, patch_code, src, info);
1419   }
1420 
1421   if (info != NULL) add_debug_info_for_null_check(offset, info);
1422 }
1423 
1424 
1425 void LIR_Assembler::prefetchr(LIR_Opr src) {
1426   LIR_Address* addr = src->as_address_ptr();
1427   Address from_addr = as_Address(addr);
1428 
1429   if (VM_Version::has_v9()) {
1430     __ prefetch(from_addr, Assembler::severalReads);
1431   }
1432 }
1433 
1434 
1435 void LIR_Assembler::prefetchw(LIR_Opr src) {
1436   LIR_Address* addr = src->as_address_ptr();
1437   Address from_addr = as_Address(addr);
1438 
1439   if (VM_Version::has_v9()) {
1440     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
1441   }
1442 }
1443 
1444 
1445 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1446   Address addr;
1447   if (src->is_single_word()) {
1448     addr = frame_map()->address_for_slot(src->single_stack_ix());
1449   } else if (src->is_double_word())  {
1450     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1451   }
1452 
1453   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1454   load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
1455 }
1456 
1457 
1458 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1459   Address addr;
1460   if (dest->is_single_word()) {
1461     addr = frame_map()->address_for_slot(dest->single_stack_ix());
1462   } else if (dest->is_double_word())  {
1463     addr = frame_map()->address_for_slot(dest->double_stack_ix());
1464   }
1465   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1466   store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
1467 }
1468 
1469 
1470 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1471   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1472     if (from_reg->is_double_fpu()) {
1473       // double to double moves
1474       assert(to_reg->is_double_fpu(), "should match");
1475       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1476     } else {
1477       // float to float moves
1478       assert(to_reg->is_single_fpu(), "should match");
1479       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1480     }
1481   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1482     if (from_reg->is_double_cpu()) {
1483 #ifdef _LP64
1484       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1485 #else
1486       assert(to_reg->is_double_cpu() &&
1487              from_reg->as_register_hi() != to_reg->as_register_lo() &&
1488              from_reg->as_register_lo() != to_reg->as_register_hi(),
1489              "should both be long and not overlap");
1490       // long to long moves
1491       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
1492       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
1493 #endif
1494 #ifdef _LP64
1495     } else if (to_reg->is_double_cpu()) {
1496       // int to int moves
1497       __ mov(from_reg->as_register(), to_reg->as_register_lo());
1498 #endif
1499     } else {
1500       // int to int moves
1501       __ mov(from_reg->as_register(), to_reg->as_register());
1502     }
1503   } else {
1504     ShouldNotReachHere();
1505   }
1506   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1507     __ verify_oop(to_reg->as_register());
1508   }
1509 }
1510 
1511 
1512 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1513                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1514                             bool unaligned) {
1515   LIR_Address* addr = dest->as_address_ptr();
1516 
1517   Register src = addr->base()->as_pointer_register();
1518   Register disp_reg = noreg;
1519   int disp_value = addr->disp();
1520   bool needs_patching = (patch_code != lir_patch_none);
1521 
1522   if (addr->base()->is_oop_register()) {
1523     __ verify_oop(src);
1524   }
1525 
1526   PatchingStub* patch = NULL;
1527   if (needs_patching) {
1528     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1529     assert(!from_reg->is_double_cpu() ||
1530            patch_code == lir_patch_none ||
1531            patch_code == lir_patch_normal, "patching doesn't match register");
1532   }
1533 
1534   if (addr->index()->is_illegal()) {
1535     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1536       if (needs_patching) {
1537         __ patchable_set(0, O7);
1538       } else {
1539         __ set(disp_value, O7);
1540       }
1541       disp_reg = O7;
1542     }
1543   } else if (unaligned || PatchALot) {
1544     __ add(src, addr->index()->as_register(), O7);
1545     src = O7;
1546   } else {
1547     disp_reg = addr->index()->as_pointer_register();
1548     assert(disp_value == 0, "can't handle 3 operand addresses");
1549   }
1550 
1551   // remember the offset of the store.  The patching_epilog must be done
1552   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1553   // entered in increasing order.
1554   int offset;
1555 
1556   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1557   if (disp_reg == noreg) {
1558     offset = store(from_reg, src, disp_value, type, unaligned);
1559   } else {
1560     assert(!unaligned, "can't handle this");
1561     offset = store(from_reg, src, disp_reg, type);
1562   }
1563 
1564   if (patch != NULL) {
1565     patching_epilog(patch, patch_code, src, info);
1566   }
1567 
1568   if (info != NULL) add_debug_info_for_null_check(offset, info);
1569 }
1570 
1571 
1572 void LIR_Assembler::return_op(LIR_Opr result) {
1573   // the poll may need a register so just pick one that isn't the return register
1574 #ifdef TIERED
1575   if (result->type_field() == LIR_OprDesc::long_type) {
1576     // Must move the result to G1
1577     // Must leave proper result in O0,O1 and G1 (TIERED only)
1578     __ sllx(I0, 32, G1);          // Shift bits into high G1
1579     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
1580     __ or3 (I1, G1, G1);          // OR 64 bits into G1
1581   }
1582 #endif // TIERED
1583   __ set((intptr_t)os::get_polling_page(), L0);
1584   __ relocate(relocInfo::poll_return_type);
1585   __ ld_ptr(L0, 0, G0);
1586   __ ret();
1587   __ delayed()->restore();
1588 }
1589 
1590 
1591 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1592   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
1593   if (info != NULL) {
1594     add_debug_info_for_branch(info);
1595   } else {
1596     __ relocate(relocInfo::poll_type);
1597   }
1598 
1599   int offset = __ offset();
1600   __ ld_ptr(tmp->as_register(), 0, G0);
1601 
1602   return offset;
1603 }
1604 
1605 
1606 void LIR_Assembler::emit_static_call_stub() {
1607   address call_pc = __ pc();
1608   address stub = __ start_a_stub(call_stub_size);
1609   if (stub == NULL) {
1610     bailout("static call stub overflow");
1611     return;
1612   }
1613 
1614   int start = __ offset();
1615   __ relocate(static_stub_Relocation::spec(call_pc));
1616 
1617   __ set_oop(NULL, G5);
1618   // must be set to -1 at code generation time
1619   AddressLiteral addrlit(-1);
1620   __ jump_to(addrlit, G3);
1621   __ delayed()->nop();
1622 
1623   assert(__ offset() - start <= call_stub_size, "stub too big");
1624   __ end_a_stub();
1625 }
1626 
1627 
1628 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1629   if (opr1->is_single_fpu()) {
1630     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
1631   } else if (opr1->is_double_fpu()) {
1632     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
1633   } else if (opr1->is_single_cpu()) {
1634     if (opr2->is_constant()) {
1635       switch (opr2->as_constant_ptr()->type()) {
1636         case T_INT:
1637           { jint con = opr2->as_constant_ptr()->as_jint();
1638             if (Assembler::is_simm13(con)) {
1639               __ cmp(opr1->as_register(), con);
1640             } else {
1641               __ set(con, O7);
1642               __ cmp(opr1->as_register(), O7);
1643             }
1644           }
1645           break;
1646 
1647         case T_OBJECT:
1648           // there are only equal/notequal comparisions on objects
1649           { jobject con = opr2->as_constant_ptr()->as_jobject();
1650             if (con == NULL) {
1651               __ cmp(opr1->as_register(), 0);
1652             } else {
1653               jobject2reg(con, O7);
1654               __ cmp(opr1->as_register(), O7);
1655             }
1656           }
1657           break;
1658 
1659         default:
1660           ShouldNotReachHere();
1661           break;
1662       }
1663     } else {
1664       if (opr2->is_address()) {
1665         LIR_Address * addr = opr2->as_address_ptr();
1666         BasicType type = addr->type();
1667         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1668         else                    __ ld(as_Address(addr), O7);
1669         __ cmp(opr1->as_register(), O7);
1670       } else {
1671         __ cmp(opr1->as_register(), opr2->as_register());
1672       }
1673     }
1674   } else if (opr1->is_double_cpu()) {
1675     Register xlo = opr1->as_register_lo();
1676     Register xhi = opr1->as_register_hi();
1677     if (opr2->is_constant() && opr2->as_jlong() == 0) {
1678       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
1679 #ifdef _LP64
1680       __ orcc(xhi, G0, G0);
1681 #else
1682       __ orcc(xhi, xlo, G0);
1683 #endif
1684     } else if (opr2->is_register()) {
1685       Register ylo = opr2->as_register_lo();
1686       Register yhi = opr2->as_register_hi();
1687 #ifdef _LP64
1688       __ cmp(xlo, ylo);
1689 #else
1690       __ subcc(xlo, ylo, xlo);
1691       __ subccc(xhi, yhi, xhi);
1692       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
1693         __ orcc(xhi, xlo, G0);
1694       }
1695 #endif
1696     } else {
1697       ShouldNotReachHere();
1698     }
1699   } else if (opr1->is_address()) {
1700     LIR_Address * addr = opr1->as_address_ptr();
1701     BasicType type = addr->type();
1702     assert (opr2->is_constant(), "Checking");
1703     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1704     else                    __ ld(as_Address(addr), O7);
1705     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
1706   } else {
1707     ShouldNotReachHere();
1708   }
1709 }
1710 
1711 
1712 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1713   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1714     bool is_unordered_less = (code == lir_ucmp_fd2i);
1715     if (left->is_single_fpu()) {
1716       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1717     } else if (left->is_double_fpu()) {
1718       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1719     } else {
1720       ShouldNotReachHere();
1721     }
1722   } else if (code == lir_cmp_l2i) {
1723 #ifdef _LP64
1724     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
1725 #else
1726     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
1727             right->as_register_hi(), right->as_register_lo(),
1728             dst->as_register());
1729 #endif
1730   } else {
1731     ShouldNotReachHere();
1732   }
1733 }
1734 
1735 
1736 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
1737 
1738   Assembler::Condition acond;
1739   switch (condition) {
1740     case lir_cond_equal:        acond = Assembler::equal;        break;
1741     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
1742     case lir_cond_less:         acond = Assembler::less;         break;
1743     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
1744     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
1745     case lir_cond_greater:      acond = Assembler::greater;      break;
1746     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
1747     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
1748     default:                         ShouldNotReachHere();
1749   };
1750 
1751   if (opr1->is_constant() && opr1->type() == T_INT) {
1752     Register dest = result->as_register();
1753     // load up first part of constant before branch
1754     // and do the rest in the delay slot.
1755     if (!Assembler::is_simm13(opr1->as_jint())) {
1756       __ sethi(opr1->as_jint(), dest);
1757     }
1758   } else if (opr1->is_constant()) {
1759     const2reg(opr1, result, lir_patch_none, NULL);
1760   } else if (opr1->is_register()) {
1761     reg2reg(opr1, result);
1762   } else if (opr1->is_stack()) {
1763     stack2reg(opr1, result, result->type());
1764   } else {
1765     ShouldNotReachHere();
1766   }
1767   Label skip;
1768   __ br(acond, false, Assembler::pt, skip);
1769   if (opr1->is_constant() && opr1->type() == T_INT) {
1770     Register dest = result->as_register();
1771     if (Assembler::is_simm13(opr1->as_jint())) {
1772       __ delayed()->or3(G0, opr1->as_jint(), dest);
1773     } else {
1774       // the sethi has been done above, so just put in the low 10 bits
1775       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
1776     }
1777   } else {
1778     // can't do anything useful in the delay slot
1779     __ delayed()->nop();
1780   }
1781   if (opr2->is_constant()) {
1782     const2reg(opr2, result, lir_patch_none, NULL);
1783   } else if (opr2->is_register()) {
1784     reg2reg(opr2, result);
1785   } else if (opr2->is_stack()) {
1786     stack2reg(opr2, result, result->type());
1787   } else {
1788     ShouldNotReachHere();
1789   }
1790   __ bind(skip);
1791 }
1792 
1793 
1794 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1795   assert(info == NULL, "unused on this code path");
1796   assert(left->is_register(), "wrong items state");
1797   assert(dest->is_register(), "wrong items state");
1798 
1799   if (right->is_register()) {
1800     if (dest->is_float_kind()) {
1801 
1802       FloatRegister lreg, rreg, res;
1803       FloatRegisterImpl::Width w;
1804       if (right->is_single_fpu()) {
1805         w = FloatRegisterImpl::S;
1806         lreg = left->as_float_reg();
1807         rreg = right->as_float_reg();
1808         res  = dest->as_float_reg();
1809       } else {
1810         w = FloatRegisterImpl::D;
1811         lreg = left->as_double_reg();
1812         rreg = right->as_double_reg();
1813         res  = dest->as_double_reg();
1814       }
1815 
1816       switch (code) {
1817         case lir_add: __ fadd(w, lreg, rreg, res); break;
1818         case lir_sub: __ fsub(w, lreg, rreg, res); break;
1819         case lir_mul: // fall through
1820         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
1821         case lir_div: // fall through
1822         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
1823         default: ShouldNotReachHere();
1824       }
1825 
1826     } else if (dest->is_double_cpu()) {
1827 #ifdef _LP64
1828       Register dst_lo = dest->as_register_lo();
1829       Register op1_lo = left->as_pointer_register();
1830       Register op2_lo = right->as_pointer_register();
1831 
1832       switch (code) {
1833         case lir_add:
1834           __ add(op1_lo, op2_lo, dst_lo);
1835           break;
1836 
1837         case lir_sub:
1838           __ sub(op1_lo, op2_lo, dst_lo);
1839           break;
1840 
1841         default: ShouldNotReachHere();
1842       }
1843 #else
1844       Register op1_lo = left->as_register_lo();
1845       Register op1_hi = left->as_register_hi();
1846       Register op2_lo = right->as_register_lo();
1847       Register op2_hi = right->as_register_hi();
1848       Register dst_lo = dest->as_register_lo();
1849       Register dst_hi = dest->as_register_hi();
1850 
1851       switch (code) {
1852         case lir_add:
1853           __ addcc(op1_lo, op2_lo, dst_lo);
1854           __ addc (op1_hi, op2_hi, dst_hi);
1855           break;
1856 
1857         case lir_sub:
1858           __ subcc(op1_lo, op2_lo, dst_lo);
1859           __ subc (op1_hi, op2_hi, dst_hi);
1860           break;
1861 
1862         default: ShouldNotReachHere();
1863       }
1864 #endif
1865     } else {
1866       assert (right->is_single_cpu(), "Just Checking");
1867 
1868       Register lreg = left->as_register();
1869       Register res  = dest->as_register();
1870       Register rreg = right->as_register();
1871       switch (code) {
1872         case lir_add:  __ add  (lreg, rreg, res); break;
1873         case lir_sub:  __ sub  (lreg, rreg, res); break;
1874         case lir_mul:  __ mult (lreg, rreg, res); break;
1875         default: ShouldNotReachHere();
1876       }
1877     }
1878   } else {
1879     assert (right->is_constant(), "must be constant");
1880 
1881     if (dest->is_single_cpu()) {
1882       Register lreg = left->as_register();
1883       Register res  = dest->as_register();
1884       int    simm13 = right->as_constant_ptr()->as_jint();
1885 
1886       switch (code) {
1887         case lir_add:  __ add  (lreg, simm13, res); break;
1888         case lir_sub:  __ sub  (lreg, simm13, res); break;
1889         case lir_mul:  __ mult (lreg, simm13, res); break;
1890         default: ShouldNotReachHere();
1891       }
1892     } else {
1893       Register lreg = left->as_pointer_register();
1894       Register res  = dest->as_register_lo();
1895       long con = right->as_constant_ptr()->as_jlong();
1896       assert(Assembler::is_simm13(con), "must be simm13");
1897 
1898       switch (code) {
1899         case lir_add:  __ add  (lreg, (int)con, res); break;
1900         case lir_sub:  __ sub  (lreg, (int)con, res); break;
1901         case lir_mul:  __ mult (lreg, (int)con, res); break;
1902         default: ShouldNotReachHere();
1903       }
1904     }
1905   }
1906 }
1907 
1908 
1909 void LIR_Assembler::fpop() {
1910   // do nothing
1911 }
1912 
1913 
1914 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1915   switch (code) {
1916     case lir_sin:
1917     case lir_tan:
1918     case lir_cos: {
1919       assert(thread->is_valid(), "preserve the thread object for performance reasons");
1920       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
1921       break;
1922     }
1923     case lir_sqrt: {
1924       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1925       FloatRegister src_reg = value->as_double_reg();
1926       FloatRegister dst_reg = dest->as_double_reg();
1927       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
1928       break;
1929     }
1930     case lir_abs: {
1931       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1932       FloatRegister src_reg = value->as_double_reg();
1933       FloatRegister dst_reg = dest->as_double_reg();
1934       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
1935       break;
1936     }
1937     default: {
1938       ShouldNotReachHere();
1939       break;
1940     }
1941   }
1942 }
1943 
1944 
1945 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1946   if (right->is_constant()) {
1947     if (dest->is_single_cpu()) {
1948       int simm13 = right->as_constant_ptr()->as_jint();
1949       switch (code) {
1950         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
1951         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
1952         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
1953         default: ShouldNotReachHere();
1954       }
1955     } else {
1956       long c = right->as_constant_ptr()->as_jlong();
1957       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
1958       int simm13 = (int)c;
1959       switch (code) {
1960         case lir_logic_and:
1961 #ifndef _LP64
1962           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
1963 #endif
1964           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
1965           break;
1966 
1967         case lir_logic_or:
1968 #ifndef _LP64
1969           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
1970 #endif
1971           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
1972           break;
1973 
1974         case lir_logic_xor:
1975 #ifndef _LP64
1976           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
1977 #endif
1978           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
1979           break;
1980 
1981         default: ShouldNotReachHere();
1982       }
1983     }
1984   } else {
1985     assert(right->is_register(), "right should be in register");
1986 
1987     if (dest->is_single_cpu()) {
1988       switch (code) {
1989         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
1990         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
1991         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
1992         default: ShouldNotReachHere();
1993       }
1994     } else {
1995 #ifdef _LP64
1996       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
1997                                                                         left->as_register_lo();
1998       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
1999                                                                           right->as_register_lo();
2000 
2001       switch (code) {
2002         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
2003         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
2004         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
2005         default: ShouldNotReachHere();
2006       }
2007 #else
2008       switch (code) {
2009         case lir_logic_and:
2010           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2011           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2012           break;
2013 
2014         case lir_logic_or:
2015           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2016           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2017           break;
2018 
2019         case lir_logic_xor:
2020           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2021           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2022           break;
2023 
2024         default: ShouldNotReachHere();
2025       }
2026 #endif
2027     }
2028   }
2029 }
2030 
2031 
2032 int LIR_Assembler::shift_amount(BasicType t) {
2033   int elem_size = type2aelembytes(t);
2034   switch (elem_size) {
2035     case 1 : return 0;
2036     case 2 : return 1;
2037     case 4 : return 2;
2038     case 8 : return 3;
2039   }
2040   ShouldNotReachHere();
2041   return -1;
2042 }
2043 
2044 
2045 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
2046   assert(exceptionOop->as_register() == Oexception, "should match");
2047   assert(unwind || exceptionPC->as_register() == Oissuing_pc, "should match");
2048 
2049   info->add_register_oop(exceptionOop);
2050 
2051   if (unwind) {
2052     __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
2053     __ delayed()->nop();
2054   } else {
2055     // reuse the debug info from the safepoint poll for the throw op itself
2056     address pc_for_athrow  = __ pc();
2057     int pc_for_athrow_offset = __ offset();
2058     RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
2059     __ set(pc_for_athrow, Oissuing_pc, rspec);
2060     add_call_info(pc_for_athrow_offset, info); // for exception handler
2061 
2062     __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
2063     __ delayed()->nop();
2064   }
2065 }
2066 
2067 
2068 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2069   Register src = op->src()->as_register();
2070   Register dst = op->dst()->as_register();
2071   Register src_pos = op->src_pos()->as_register();
2072   Register dst_pos = op->dst_pos()->as_register();
2073   Register length  = op->length()->as_register();
2074   Register tmp = op->tmp()->as_register();
2075   Register tmp2 = O7;
2076 
2077   int flags = op->flags();
2078   ciArrayKlass* default_type = op->expected_type();
2079   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2080   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2081 
2082   // set up the arraycopy stub information
2083   ArrayCopyStub* stub = op->stub();
2084 
2085   // always do stub if no type information is available.  it's ok if
2086   // the known type isn't loaded since the code sanity checks
2087   // in debug mode and the type isn't required when we know the exact type
2088   // also check that the type is an array type.
2089   // We also, for now, always call the stub if the barrier set requires a
2090   // write_ref_pre barrier (which the stub does, but none of the optimized
2091   // cases currently does).
2092   if (op->expected_type() == NULL ||
2093       Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
2094     __ mov(src,     O0);
2095     __ mov(src_pos, O1);
2096     __ mov(dst,     O2);
2097     __ mov(dst_pos, O3);
2098     __ mov(length,  O4);
2099     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
2100 
2101     __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
2102     __ delayed()->nop();
2103     __ bind(*stub->continuation());
2104     return;
2105   }
2106 
2107   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
2108 
2109   // make sure src and dst are non-null and load array length
2110   if (flags & LIR_OpArrayCopy::src_null_check) {
2111     __ tst(src);
2112     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2113     __ delayed()->nop();
2114   }
2115 
2116   if (flags & LIR_OpArrayCopy::dst_null_check) {
2117     __ tst(dst);
2118     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2119     __ delayed()->nop();
2120   }
2121 
2122   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2123     // test src_pos register
2124     __ tst(src_pos);
2125     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2126     __ delayed()->nop();
2127   }
2128 
2129   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2130     // test dst_pos register
2131     __ tst(dst_pos);
2132     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2133     __ delayed()->nop();
2134   }
2135 
2136   if (flags & LIR_OpArrayCopy::length_positive_check) {
2137     // make sure length isn't negative
2138     __ tst(length);
2139     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2140     __ delayed()->nop();
2141   }
2142 
2143   if (flags & LIR_OpArrayCopy::src_range_check) {
2144     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
2145     __ add(length, src_pos, tmp);
2146     __ cmp(tmp2, tmp);
2147     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2148     __ delayed()->nop();
2149   }
2150 
2151   if (flags & LIR_OpArrayCopy::dst_range_check) {
2152     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
2153     __ add(length, dst_pos, tmp);
2154     __ cmp(tmp2, tmp);
2155     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2156     __ delayed()->nop();
2157   }
2158 
2159   if (flags & LIR_OpArrayCopy::type_check) {
2160     __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
2161     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2162     __ cmp(tmp, tmp2);
2163     __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2164     __ delayed()->nop();
2165   }
2166 
2167 #ifdef ASSERT
2168   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2169     // Sanity check the known type with the incoming class.  For the
2170     // primitive case the types must match exactly with src.klass and
2171     // dst.klass each exactly matching the default type.  For the
2172     // object array case, if no type check is needed then either the
2173     // dst type is exactly the expected type and the src type is a
2174     // subtype which we can't check or src is the same array as dst
2175     // but not necessarily exactly of type default_type.
2176     Label known_ok, halt;
2177     jobject2reg(op->expected_type()->constant_encoding(), tmp);
2178     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2179     if (basic_type != T_OBJECT) {
2180       __ cmp(tmp, tmp2);
2181       __ br(Assembler::notEqual, false, Assembler::pn, halt);
2182       __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
2183       __ cmp(tmp, tmp2);
2184       __ br(Assembler::equal, false, Assembler::pn, known_ok);
2185       __ delayed()->nop();
2186     } else {
2187       __ cmp(tmp, tmp2);
2188       __ br(Assembler::equal, false, Assembler::pn, known_ok);
2189       __ delayed()->cmp(src, dst);
2190       __ br(Assembler::equal, false, Assembler::pn, known_ok);
2191       __ delayed()->nop();
2192     }
2193     __ bind(halt);
2194     __ stop("incorrect type information in arraycopy");
2195     __ bind(known_ok);
2196   }
2197 #endif
2198 
2199   int shift = shift_amount(basic_type);
2200 
2201   Register src_ptr = O0;
2202   Register dst_ptr = O1;
2203   Register len     = O2;
2204 
2205   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2206   LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null
2207   if (shift == 0) {
2208     __ add(src_ptr, src_pos, src_ptr);
2209   } else {
2210     __ sll(src_pos, shift, tmp);
2211     __ add(src_ptr, tmp, src_ptr);
2212   }
2213 
2214   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2215   LP64_ONLY(__ sra(dst_pos, 0, dst_pos);) //higher 32bits must be null
2216   if (shift == 0) {
2217     __ add(dst_ptr, dst_pos, dst_ptr);
2218   } else {
2219     __ sll(dst_pos, shift, tmp);
2220     __ add(dst_ptr, tmp, dst_ptr);
2221   }
2222 
2223   if (basic_type != T_OBJECT) {
2224     if (shift == 0) {
2225       __ mov(length, len);
2226     } else {
2227       __ sll(length, shift, len);
2228     }
2229     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
2230   } else {
2231     // oop_arraycopy takes a length in number of elements, so don't scale it.
2232     __ mov(length, len);
2233     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
2234   }
2235 
2236   __ bind(*stub->continuation());
2237 }
2238 
2239 
2240 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2241   if (dest->is_single_cpu()) {
2242 #ifdef _LP64
2243     if (left->type() == T_OBJECT) {
2244       switch (code) {
2245         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
2246         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
2247         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2248         default: ShouldNotReachHere();
2249       }
2250     } else
2251 #endif
2252       switch (code) {
2253         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
2254         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
2255         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2256         default: ShouldNotReachHere();
2257       }
2258   } else {
2259 #ifdef _LP64
2260     switch (code) {
2261       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2262       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2263       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2264       default: ShouldNotReachHere();
2265     }
2266 #else
2267     switch (code) {
2268       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2269       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2270       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2271       default: ShouldNotReachHere();
2272     }
2273 #endif
2274   }
2275 }
2276 
2277 
2278 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2279 #ifdef _LP64
2280   if (left->type() == T_OBJECT) {
2281     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
2282     Register l = left->as_register();
2283     Register d = dest->as_register_lo();
2284     switch (code) {
2285       case lir_shl:  __ sllx  (l, count, d); break;
2286       case lir_shr:  __ srax  (l, count, d); break;
2287       case lir_ushr: __ srlx  (l, count, d); break;
2288       default: ShouldNotReachHere();
2289     }
2290     return;
2291   }
2292 #endif
2293 
2294   if (dest->is_single_cpu()) {
2295     count = count & 0x1F; // Java spec
2296     switch (code) {
2297       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
2298       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
2299       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
2300       default: ShouldNotReachHere();
2301     }
2302   } else if (dest->is_double_cpu()) {
2303     count = count & 63; // Java spec
2304     switch (code) {
2305       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2306       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2307       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2308       default: ShouldNotReachHere();
2309     }
2310   } else {
2311     ShouldNotReachHere();
2312   }
2313 }
2314 
2315 
2316 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2317   assert(op->tmp1()->as_register()  == G1 &&
2318          op->tmp2()->as_register()  == G3 &&
2319          op->tmp3()->as_register()  == G4 &&
2320          op->obj()->as_register()   == O0 &&
2321          op->klass()->as_register() == G5, "must be");
2322   if (op->init_check()) {
2323     __ ld(op->klass()->as_register(),
2324           instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
2325           op->tmp1()->as_register());
2326     add_debug_info_for_null_check_here(op->stub()->info());
2327     __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
2328     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
2329     __ delayed()->nop();
2330   }
2331   __ allocate_object(op->obj()->as_register(),
2332                      op->tmp1()->as_register(),
2333                      op->tmp2()->as_register(),
2334                      op->tmp3()->as_register(),
2335                      op->header_size(),
2336                      op->object_size(),
2337                      op->klass()->as_register(),
2338                      *op->stub()->entry());
2339   __ bind(*op->stub()->continuation());
2340   __ verify_oop(op->obj()->as_register());
2341 }
2342 
2343 
2344 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2345   assert(op->tmp1()->as_register()  == G1 &&
2346          op->tmp2()->as_register()  == G3 &&
2347          op->tmp3()->as_register()  == G4 &&
2348          op->tmp4()->as_register()  == O1 &&
2349          op->klass()->as_register() == G5, "must be");
2350   if (UseSlowPath ||
2351       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2352       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2353     __ br(Assembler::always, false, Assembler::pn, *op->stub()->entry());
2354     __ delayed()->nop();
2355   } else {
2356     __ allocate_array(op->obj()->as_register(),
2357                       op->len()->as_register(),
2358                       op->tmp1()->as_register(),
2359                       op->tmp2()->as_register(),
2360                       op->tmp3()->as_register(),
2361                       arrayOopDesc::header_size(op->type()),
2362                       type2aelembytes(op->type()),
2363                       op->klass()->as_register(),
2364                       *op->stub()->entry());
2365   }
2366   __ bind(*op->stub()->continuation());
2367 }
2368 
2369 
2370 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2371   LIR_Code code = op->code();
2372   if (code == lir_store_check) {
2373     Register value = op->object()->as_register();
2374     Register array = op->array()->as_register();
2375     Register k_RInfo = op->tmp1()->as_register();
2376     Register klass_RInfo = op->tmp2()->as_register();
2377     Register Rtmp1 = op->tmp3()->as_register();
2378 
2379     __ verify_oop(value);
2380 
2381     CodeStub* stub = op->stub();
2382     Label done;
2383     __ cmp(value, 0);
2384     __ br(Assembler::equal, false, Assembler::pn, done);
2385     __ delayed()->nop();
2386     load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
2387     load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2388 
2389     // get instance klass
2390     load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
2391     // perform the fast part of the checking logic
2392     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, &done, stub->entry(), NULL);
2393 
2394     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2395     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2396     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2397     __ delayed()->nop();
2398     __ cmp(G3, 0);
2399     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2400     __ delayed()->nop();
2401     __ bind(done);
2402   } else if (op->code() == lir_checkcast) {
2403     // we always need a stub for the failure case.
2404     CodeStub* stub = op->stub();
2405     Register obj = op->object()->as_register();
2406     Register k_RInfo = op->tmp1()->as_register();
2407     Register klass_RInfo = op->tmp2()->as_register();
2408     Register dst = op->result_opr()->as_register();
2409     Register Rtmp1 = op->tmp3()->as_register();
2410     ciKlass* k = op->klass();
2411 
2412     if (obj == k_RInfo) {
2413       k_RInfo = klass_RInfo;
2414       klass_RInfo = obj;
2415     }
2416     if (op->profiled_method() != NULL) {
2417       ciMethod* method = op->profiled_method();
2418       int bci          = op->profiled_bci();
2419 
2420       // We need two temporaries to perform this operation on SPARC,
2421       // so to keep things simple we perform a redundant test here
2422       Label profile_done;
2423       __ cmp(obj, 0);
2424       __ br(Assembler::notEqual, false, Assembler::pn, profile_done);
2425       __ delayed()->nop();
2426       // Object is null; update methodDataOop
2427       ciMethodData* md = method->method_data();
2428       if (md == NULL) {
2429         bailout("out of memory building methodDataOop");
2430         return;
2431       }
2432       ciProfileData* data = md->bci_to_data(bci);
2433       assert(data != NULL,       "need data for checkcast");
2434       assert(data->is_BitData(), "need BitData for checkcast");
2435       Register mdo      = k_RInfo;
2436       Register data_val = Rtmp1;
2437       jobject2reg(md->constant_encoding(), mdo);
2438 
2439       int mdo_offset_bias = 0;
2440       if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2441         // The offset is large so bias the mdo by the base of the slot so
2442         // that the ld can use simm13s to reference the slots of the data
2443         mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2444         __ set(mdo_offset_bias, data_val);
2445         __ add(mdo, data_val, mdo);
2446       }
2447 
2448 
2449       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2450       __ ldub(flags_addr, data_val);
2451       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2452       __ stb(data_val, flags_addr);
2453       __ bind(profile_done);
2454     }
2455 
2456     Label done;
2457     // patching may screw with our temporaries on sparc,
2458     // so let's do it before loading the class
2459     if (k->is_loaded()) {
2460       jobject2reg(k->constant_encoding(), k_RInfo);
2461     } else {
2462       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
2463     }
2464     assert(obj != k_RInfo, "must be different");
2465     __ cmp(obj, 0);
2466     __ br(Assembler::equal, false, Assembler::pn, done);
2467     __ delayed()->nop();
2468 
2469     // get object class
2470     // not a safepoint as obj null check happens earlier
2471     load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2472     if (op->fast_check()) {
2473       assert_different_registers(klass_RInfo, k_RInfo);
2474       __ cmp(k_RInfo, klass_RInfo);
2475       __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2476       __ delayed()->nop();
2477       __ bind(done);
2478     } else {
2479       bool need_slow_path = true;
2480       if (k->is_loaded()) {
2481         if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
2482           need_slow_path = false;
2483         // perform the fast part of the checking logic
2484         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2485                                          (need_slow_path ? &done : NULL),
2486                                          stub->entry(), NULL,
2487                                          RegisterOrConstant(k->super_check_offset()));
2488       } else {
2489         // perform the fast part of the checking logic
2490         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7,
2491                                          &done, stub->entry(), NULL);
2492       }
2493       if (need_slow_path) {
2494         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2495         assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2496         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2497         __ delayed()->nop();
2498         __ cmp(G3, 0);
2499         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2500         __ delayed()->nop();
2501       }
2502       __ bind(done);
2503     }
2504     __ mov(obj, dst);
2505   } else if (code == lir_instanceof) {
2506     Register obj = op->object()->as_register();
2507     Register k_RInfo = op->tmp1()->as_register();
2508     Register klass_RInfo = op->tmp2()->as_register();
2509     Register dst = op->result_opr()->as_register();
2510     Register Rtmp1 = op->tmp3()->as_register();
2511     ciKlass* k = op->klass();
2512 
2513     Label done;
2514     if (obj == k_RInfo) {
2515       k_RInfo = klass_RInfo;
2516       klass_RInfo = obj;
2517     }
2518     // patching may screw with our temporaries on sparc,
2519     // so let's do it before loading the class
2520     if (k->is_loaded()) {
2521       jobject2reg(k->constant_encoding(), k_RInfo);
2522     } else {
2523       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
2524     }
2525     assert(obj != k_RInfo, "must be different");
2526     __ cmp(obj, 0);
2527     __ br(Assembler::equal, true, Assembler::pn, done);
2528     __ delayed()->set(0, dst);
2529 
2530     // get object class
2531     // not a safepoint as obj null check happens earlier
2532     load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2533     if (op->fast_check()) {
2534       __ cmp(k_RInfo, klass_RInfo);
2535       __ br(Assembler::equal, true, Assembler::pt, done);
2536       __ delayed()->set(1, dst);
2537       __ set(0, dst);
2538       __ bind(done);
2539     } else {
2540       bool need_slow_path = true;
2541       if (k->is_loaded()) {
2542         if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
2543           need_slow_path = false;
2544         // perform the fast part of the checking logic
2545         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, noreg,
2546                                          (need_slow_path ? &done : NULL),
2547                                          (need_slow_path ? &done : NULL), NULL,
2548                                          RegisterOrConstant(k->super_check_offset()),
2549                                          dst);
2550       } else {
2551         assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
2552         // perform the fast part of the checking logic
2553         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, dst,
2554                                          &done, &done, NULL,
2555                                          RegisterOrConstant(-1),
2556                                          dst);
2557       }
2558       if (need_slow_path) {
2559         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2560         assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2561         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2562         __ delayed()->nop();
2563         __ mov(G3, dst);
2564       }
2565       __ bind(done);
2566     }
2567   } else {
2568     ShouldNotReachHere();
2569   }
2570 
2571 }
2572 
2573 
2574 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2575   if (op->code() == lir_cas_long) {
2576     assert(VM_Version::supports_cx8(), "wrong machine");
2577     Register addr = op->addr()->as_pointer_register();
2578     Register cmp_value_lo = op->cmp_value()->as_register_lo();
2579     Register cmp_value_hi = op->cmp_value()->as_register_hi();
2580     Register new_value_lo = op->new_value()->as_register_lo();
2581     Register new_value_hi = op->new_value()->as_register_hi();
2582     Register t1 = op->tmp1()->as_register();
2583     Register t2 = op->tmp2()->as_register();
2584 #ifdef _LP64
2585     __ mov(cmp_value_lo, t1);
2586     __ mov(new_value_lo, t2);
2587 #else
2588     // move high and low halves of long values into single registers
2589     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
2590     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
2591     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
2592     __ sllx(new_value_hi, 32, t2);
2593     __ srl(new_value_lo, 0, new_value_lo);
2594     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
2595 #endif
2596     // perform the compare and swap operation
2597     __ casx(addr, t1, t2);
2598     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2599     // overwritten with the original value in "addr" and will be equal to t1.
2600     __ cmp(t1, t2);
2601 
2602   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2603     Register addr = op->addr()->as_pointer_register();
2604     Register cmp_value = op->cmp_value()->as_register();
2605     Register new_value = op->new_value()->as_register();
2606     Register t1 = op->tmp1()->as_register();
2607     Register t2 = op->tmp2()->as_register();
2608     __ mov(cmp_value, t1);
2609     __ mov(new_value, t2);
2610 #ifdef _LP64
2611     if (op->code() == lir_cas_obj) {
2612       __ casx(addr, t1, t2);
2613     } else
2614 #endif
2615       {
2616         __ cas(addr, t1, t2);
2617       }
2618     __ cmp(t1, t2);
2619   } else {
2620     Unimplemented();
2621   }
2622 }
2623 
2624 void LIR_Assembler::set_24bit_FPU() {
2625   Unimplemented();
2626 }
2627 
2628 
2629 void LIR_Assembler::reset_FPU() {
2630   Unimplemented();
2631 }
2632 
2633 
2634 void LIR_Assembler::breakpoint() {
2635   __ breakpoint_trap();
2636 }
2637 
2638 
2639 void LIR_Assembler::push(LIR_Opr opr) {
2640   Unimplemented();
2641 }
2642 
2643 
2644 void LIR_Assembler::pop(LIR_Opr opr) {
2645   Unimplemented();
2646 }
2647 
2648 
2649 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2650   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2651   Register dst = dst_opr->as_register();
2652   Register reg = mon_addr.base();
2653   int offset = mon_addr.disp();
2654   // compute pointer to BasicLock
2655   if (mon_addr.is_simm13()) {
2656     __ add(reg, offset, dst);
2657   } else {
2658     __ set(offset, dst);
2659     __ add(dst, reg, dst);
2660   }
2661 }
2662 
2663 
2664 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2665   Register obj = op->obj_opr()->as_register();
2666   Register hdr = op->hdr_opr()->as_register();
2667   Register lock = op->lock_opr()->as_register();
2668 
2669   // obj may not be an oop
2670   if (op->code() == lir_lock) {
2671     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2672     if (UseFastLocking) {
2673       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2674       // add debug info for NullPointerException only if one is possible
2675       if (op->info() != NULL) {
2676         add_debug_info_for_null_check_here(op->info());
2677       }
2678       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2679     } else {
2680       // always do slow locking
2681       // note: the slow locking code could be inlined here, however if we use
2682       //       slow locking, speed doesn't matter anyway and this solution is
2683       //       simpler and requires less duplicated code - additionally, the
2684       //       slow locking code is the same in either case which simplifies
2685       //       debugging
2686       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2687       __ delayed()->nop();
2688     }
2689   } else {
2690     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2691     if (UseFastLocking) {
2692       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2693       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2694     } else {
2695       // always do slow unlocking
2696       // note: the slow unlocking code could be inlined here, however if we use
2697       //       slow unlocking, speed doesn't matter anyway and this solution is
2698       //       simpler and requires less duplicated code - additionally, the
2699       //       slow unlocking code is the same in either case which simplifies
2700       //       debugging
2701       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2702       __ delayed()->nop();
2703     }
2704   }
2705   __ bind(*op->stub()->continuation());
2706 }
2707 
2708 
2709 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2710   ciMethod* method = op->profiled_method();
2711   int bci          = op->profiled_bci();
2712 
2713   // Update counter for all call types
2714   ciMethodData* md = method->method_data();
2715   if (md == NULL) {
2716     bailout("out of memory building methodDataOop");
2717     return;
2718   }
2719   ciProfileData* data = md->bci_to_data(bci);
2720   assert(data->is_CounterData(), "need CounterData for calls");
2721   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2722   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
2723   Register mdo  = op->mdo()->as_register();
2724   Register tmp1 = op->tmp1()->as_register();
2725   jobject2reg(md->constant_encoding(), mdo);
2726   int mdo_offset_bias = 0;
2727   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2728                             data->size_in_bytes())) {
2729     // The offset is large so bias the mdo by the base of the slot so
2730     // that the ld can use simm13s to reference the slots of the data
2731     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2732     __ set(mdo_offset_bias, O7);
2733     __ add(mdo, O7, mdo);
2734   }
2735 
2736   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2737   Bytecodes::Code bc = method->java_code_at_bci(bci);
2738   // Perform additional virtual call profiling for invokevirtual and
2739   // invokeinterface bytecodes
2740   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
2741       Tier1ProfileVirtualCalls) {
2742     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2743     Register recv = op->recv()->as_register();
2744     assert_different_registers(mdo, tmp1, recv);
2745     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2746     ciKlass* known_klass = op->known_holder();
2747     if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
2748       // We know the type that will be seen at this call site; we can
2749       // statically update the methodDataOop rather than needing to do
2750       // dynamic tests on the receiver type
2751 
2752       // NOTE: we should probably put a lock around this search to
2753       // avoid collisions by concurrent compilations
2754       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2755       uint i;
2756       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2757         ciKlass* receiver = vc_data->receiver(i);
2758         if (known_klass->equals(receiver)) {
2759           Address data_addr(mdo, md->byte_offset_of_slot(data,
2760                                                          VirtualCallData::receiver_count_offset(i)) -
2761                             mdo_offset_bias);
2762           __ lduw(data_addr, tmp1);
2763           __ add(tmp1, DataLayout::counter_increment, tmp1);
2764           __ stw(tmp1, data_addr);
2765           return;
2766         }
2767       }
2768 
2769       // Receiver type not found in profile data; select an empty slot
2770 
2771       // Note that this is less efficient than it should be because it
2772       // always does a write to the receiver part of the
2773       // VirtualCallData rather than just the first time
2774       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2775         ciKlass* receiver = vc_data->receiver(i);
2776         if (receiver == NULL) {
2777           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2778                             mdo_offset_bias);
2779           jobject2reg(known_klass->constant_encoding(), tmp1);
2780           __ st_ptr(tmp1, recv_addr);
2781           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2782                             mdo_offset_bias);
2783           __ lduw(data_addr, tmp1);
2784           __ add(tmp1, DataLayout::counter_increment, tmp1);
2785           __ stw(tmp1, data_addr);
2786           return;
2787         }
2788       }
2789     } else {
2790       load(Address(recv, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
2791       Label update_done;
2792       uint i;
2793       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2794         Label next_test;
2795         // See if the receiver is receiver[n].
2796         Address receiver_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2797                               mdo_offset_bias);
2798         __ ld_ptr(receiver_addr, tmp1);
2799         __ verify_oop(tmp1);
2800         __ cmp(recv, tmp1);
2801         __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
2802         __ delayed()->nop();
2803         Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2804                           mdo_offset_bias);
2805         __ lduw(data_addr, tmp1);
2806         __ add(tmp1, DataLayout::counter_increment, tmp1);
2807         __ stw(tmp1, data_addr);
2808         __ br(Assembler::always, false, Assembler::pt, update_done);
2809         __ delayed()->nop();
2810         __ bind(next_test);
2811       }
2812 
2813       // Didn't find receiver; find next empty slot and fill it in
2814       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2815         Label next_test;
2816         Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2817                           mdo_offset_bias);
2818         load(recv_addr, tmp1, T_OBJECT);
2819         __ tst(tmp1);
2820         __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
2821         __ delayed()->nop();
2822         __ st_ptr(recv, recv_addr);
2823         __ set(DataLayout::counter_increment, tmp1);
2824         __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2825                   mdo_offset_bias);
2826         __ br(Assembler::always, false, Assembler::pt, update_done);
2827         __ delayed()->nop();
2828         __ bind(next_test);
2829       }
2830       // Receiver did not match any saved receiver and there is no empty row for it.
2831       // Increment total counter to indicate polymorphic case.
2832       __ lduw(counter_addr, tmp1);
2833       __ add(tmp1, DataLayout::counter_increment, tmp1);
2834       __ stw(tmp1, counter_addr);
2835 
2836       __ bind(update_done);
2837     }
2838   } else {
2839     // Static call
2840     __ lduw(counter_addr, tmp1);
2841     __ add(tmp1, DataLayout::counter_increment, tmp1);
2842     __ stw(tmp1, counter_addr);
2843   }
2844 }
2845 
2846 
2847 void LIR_Assembler::align_backward_branch_target() {
2848   __ align(OptoLoopAlignment);
2849 }
2850 
2851 
2852 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
2853   // make sure we are expecting a delay
2854   // this has the side effect of clearing the delay state
2855   // so we can use _masm instead of _masm->delayed() to do the
2856   // code generation.
2857   __ delayed();
2858 
2859   // make sure we only emit one instruction
2860   int offset = code_offset();
2861   op->delay_op()->emit_code(this);
2862 #ifdef ASSERT
2863   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
2864     op->delay_op()->print();
2865   }
2866   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
2867          "only one instruction can go in a delay slot");
2868 #endif
2869 
2870   // we may also be emitting the call info for the instruction
2871   // which we are the delay slot of.
2872   CodeEmitInfo* call_info = op->call_info();
2873   if (call_info) {
2874     add_call_info(code_offset(), call_info);
2875   }
2876 
2877   if (VerifyStackAtCalls) {
2878     _masm->sub(FP, SP, O7);
2879     _masm->cmp(O7, initial_frame_size_in_bytes());
2880     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
2881   }
2882 }
2883 
2884 
2885 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
2886   assert(left->is_register(), "can only handle registers");
2887 
2888   if (left->is_single_cpu()) {
2889     __ neg(left->as_register(), dest->as_register());
2890   } else if (left->is_single_fpu()) {
2891     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
2892   } else if (left->is_double_fpu()) {
2893     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
2894   } else {
2895     assert (left->is_double_cpu(), "Must be a long");
2896     Register Rlow = left->as_register_lo();
2897     Register Rhi = left->as_register_hi();
2898 #ifdef _LP64
2899     __ sub(G0, Rlow, dest->as_register_lo());
2900 #else
2901     __ subcc(G0, Rlow, dest->as_register_lo());
2902     __ subc (G0, Rhi,  dest->as_register_hi());
2903 #endif
2904   }
2905 }
2906 
2907 
2908 void LIR_Assembler::fxch(int i) {
2909   Unimplemented();
2910 }
2911 
2912 void LIR_Assembler::fld(int i) {
2913   Unimplemented();
2914 }
2915 
2916 void LIR_Assembler::ffree(int i) {
2917   Unimplemented();
2918 }
2919 
2920 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
2921                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2922 
2923   // if tmp is invalid, then the function being called doesn't destroy the thread
2924   if (tmp->is_valid()) {
2925     __ save_thread(tmp->as_register());
2926   }
2927   __ call(dest, relocInfo::runtime_call_type);
2928   __ delayed()->nop();
2929   if (info != NULL) {
2930     add_call_info_here(info);
2931   }
2932   if (tmp->is_valid()) {
2933     __ restore_thread(tmp->as_register());
2934   }
2935 
2936 #ifdef ASSERT
2937   __ verify_thread();
2938 #endif // ASSERT
2939 }
2940 
2941 
2942 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2943 #ifdef _LP64
2944   ShouldNotReachHere();
2945 #endif
2946 
2947   NEEDS_CLEANUP;
2948   if (type == T_LONG) {
2949     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
2950 
2951     // (extended to allow indexed as well as constant displaced for JSR-166)
2952     Register idx = noreg; // contains either constant offset or index
2953 
2954     int disp = mem_addr->disp();
2955     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
2956       if (!Assembler::is_simm13(disp)) {
2957         idx = O7;
2958         __ set(disp, idx);
2959       }
2960     } else {
2961       assert(disp == 0, "not both indexed and disp");
2962       idx = mem_addr->index()->as_register();
2963     }
2964 
2965     int null_check_offset = -1;
2966 
2967     Register base = mem_addr->base()->as_register();
2968     if (src->is_register() && dest->is_address()) {
2969       // G4 is high half, G5 is low half
2970       if (VM_Version::v9_instructions_work()) {
2971         // clear the top bits of G5, and scale up G4
2972         __ srl (src->as_register_lo(),  0, G5);
2973         __ sllx(src->as_register_hi(), 32, G4);
2974         // combine the two halves into the 64 bits of G4
2975         __ or3(G4, G5, G4);
2976         null_check_offset = __ offset();
2977         if (idx == noreg) {
2978           __ stx(G4, base, disp);
2979         } else {
2980           __ stx(G4, base, idx);
2981         }
2982       } else {
2983         __ mov (src->as_register_hi(), G4);
2984         __ mov (src->as_register_lo(), G5);
2985         null_check_offset = __ offset();
2986         if (idx == noreg) {
2987           __ std(G4, base, disp);
2988         } else {
2989           __ std(G4, base, idx);
2990         }
2991       }
2992     } else if (src->is_address() && dest->is_register()) {
2993       null_check_offset = __ offset();
2994       if (VM_Version::v9_instructions_work()) {
2995         if (idx == noreg) {
2996           __ ldx(base, disp, G5);
2997         } else {
2998           __ ldx(base, idx, G5);
2999         }
3000         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
3001         __ mov (G5, dest->as_register_lo());     // copy low half into lo
3002       } else {
3003         if (idx == noreg) {
3004           __ ldd(base, disp, G4);
3005         } else {
3006           __ ldd(base, idx, G4);
3007         }
3008         // G4 is high half, G5 is low half
3009         __ mov (G4, dest->as_register_hi());
3010         __ mov (G5, dest->as_register_lo());
3011       }
3012     } else {
3013       Unimplemented();
3014     }
3015     if (info != NULL) {
3016       add_debug_info_for_null_check(null_check_offset, info);
3017     }
3018 
3019   } else {
3020     // use normal move for all other volatiles since they don't need
3021     // special handling to remain atomic.
3022     move_op(src, dest, type, lir_patch_none, info, false, false);
3023   }
3024 }
3025 
3026 void LIR_Assembler::membar() {
3027   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3028   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3029 }
3030 
3031 void LIR_Assembler::membar_acquire() {
3032   // no-op on TSO
3033 }
3034 
3035 void LIR_Assembler::membar_release() {
3036   // no-op on TSO
3037 }
3038 
3039 // Macro to Pack two sequential registers containing 32 bit values
3040 // into a single 64 bit register.
3041 // rs and rs->successor() are packed into rd
3042 // rd and rs may be the same register.
3043 // Note: rs and rs->successor() are destroyed.
3044 void LIR_Assembler::pack64( Register rs, Register rd ) {
3045   __ sllx(rs, 32, rs);
3046   __ srl(rs->successor(), 0, rs->successor());
3047   __ or3(rs, rs->successor(), rd);
3048 }
3049 
3050 // Macro to unpack a 64 bit value in a register into
3051 // two sequential registers.
3052 // rd is unpacked into rd and rd->successor()
3053 void LIR_Assembler::unpack64( Register rd ) {
3054   __ mov(rd, rd->successor());
3055   __ srax(rd, 32, rd);
3056   __ sra(rd->successor(), 0, rd->successor());
3057 }
3058 
3059 
3060 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
3061   LIR_Address* addr = addr_opr->as_address_ptr();
3062   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
3063   __ add(addr->base()->as_register(), addr->disp(), dest->as_register());
3064 }
3065 
3066 
3067 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3068   assert(result_reg->is_register(), "check");
3069   __ mov(G2_thread, result_reg->as_register());
3070 }
3071 
3072 
3073 void LIR_Assembler::peephole(LIR_List* lir) {
3074   LIR_OpList* inst = lir->instructions_list();
3075   for (int i = 0; i < inst->length(); i++) {
3076     LIR_Op* op = inst->at(i);
3077     switch (op->code()) {
3078       case lir_cond_float_branch:
3079       case lir_branch: {
3080         LIR_OpBranch* branch = op->as_OpBranch();
3081         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
3082         LIR_Op* delay_op = NULL;
3083         // we'd like to be able to pull following instructions into
3084         // this slot but we don't know enough to do it safely yet so
3085         // only optimize block to block control flow.
3086         if (LIRFillDelaySlots && branch->block()) {
3087           LIR_Op* prev = inst->at(i - 1);
3088           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
3089             // swap previous instruction into delay slot
3090             inst->at_put(i - 1, op);
3091             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3092 #ifndef PRODUCT
3093             if (LIRTracePeephole) {
3094               tty->print_cr("delayed");
3095               inst->at(i - 1)->print();
3096               inst->at(i)->print();
3097               tty->cr();
3098             }
3099 #endif
3100             continue;
3101           }
3102         }
3103 
3104         if (!delay_op) {
3105           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
3106         }
3107         inst->insert_before(i + 1, delay_op);
3108         break;
3109       }
3110       case lir_static_call:
3111       case lir_virtual_call:
3112       case lir_icvirtual_call:
3113       case lir_optvirtual_call:
3114       case lir_dynamic_call: {
3115         LIR_Op* prev = inst->at(i - 1);
3116         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
3117             (op->code() != lir_virtual_call ||
3118              !prev->result_opr()->is_single_cpu() ||
3119              prev->result_opr()->as_register() != O0) &&
3120             LIR_Assembler::is_single_instruction(prev)) {
3121           // Only moves without info can be put into the delay slot.
3122           // Also don't allow the setup of the receiver in the delay
3123           // slot for vtable calls.
3124           inst->at_put(i - 1, op);
3125           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3126 #ifndef PRODUCT
3127           if (LIRTracePeephole) {
3128             tty->print_cr("delayed");
3129             inst->at(i - 1)->print();
3130             inst->at(i)->print();
3131             tty->cr();
3132           }
3133 #endif
3134           continue;
3135         }
3136 
3137         LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
3138         inst->insert_before(i + 1, delay_op);
3139         break;
3140       }
3141     }
3142   }
3143 }
3144 
3145 
3146 
3147 
3148 #undef __