1 /*
   2  * Copyright 1999-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_c1_FrameMap_x86.cpp.incl"
  27 
  28 const int FrameMap::pd_c_runtime_reserved_arg_size = 0;
  29 
  30 LIR_Opr FrameMap::map_to_opr(BasicType type, VMRegPair* reg, bool) {
  31   LIR_Opr opr = LIR_OprFact::illegalOpr;
  32   VMReg r_1 = reg->first();
  33   VMReg r_2 = reg->second();
  34   if (r_1->is_stack()) {
  35     // Convert stack slot to an SP offset
  36     // The calling convention does not count the SharedRuntime::out_preserve_stack_slots() value
  37     // so we must add it in here.
  38     int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
  39     opr = LIR_OprFact::address(new LIR_Address(rsp_opr, st_off, type));
  40   } else if (r_1->is_Register()) {
  41     Register reg = r_1->as_Register();
  42     if (r_2->is_Register() && (type == T_LONG || type == T_DOUBLE)) {
  43       Register reg2 = r_2->as_Register();
  44 #ifdef _LP64
  45       assert(reg2 == reg, "must be same register");
  46       opr = as_long_opr(reg);
  47 #else
  48       opr = as_long_opr(reg2, reg);
  49 #endif // _LP64
  50     } else if (type == T_OBJECT || type == T_ARRAY) {
  51       opr = as_oop_opr(reg);
  52     } else {
  53       opr = as_opr(reg);
  54     }
  55   } else if (r_1->is_FloatRegister()) {
  56     assert(type == T_DOUBLE || type == T_FLOAT, "wrong type");
  57     int num = r_1->as_FloatRegister()->encoding();
  58     if (type == T_FLOAT) {
  59       opr = LIR_OprFact::single_fpu(num);
  60     } else {
  61       opr = LIR_OprFact::double_fpu(num);
  62     }
  63   } else if (r_1->is_XMMRegister()) {
  64     assert(type == T_DOUBLE || type == T_FLOAT, "wrong type");
  65     int num = r_1->as_XMMRegister()->encoding();
  66     if (type == T_FLOAT) {
  67       opr = LIR_OprFact::single_xmm(num);
  68     } else {
  69       opr = LIR_OprFact::double_xmm(num);
  70     }
  71   } else {
  72     ShouldNotReachHere();
  73   }
  74   return opr;
  75 }
  76 
  77 
  78 LIR_Opr FrameMap::rsi_opr;
  79 LIR_Opr FrameMap::rdi_opr;
  80 LIR_Opr FrameMap::rbx_opr;
  81 LIR_Opr FrameMap::rax_opr;
  82 LIR_Opr FrameMap::rdx_opr;
  83 LIR_Opr FrameMap::rcx_opr;
  84 LIR_Opr FrameMap::rsp_opr;
  85 LIR_Opr FrameMap::rbp_opr;
  86 
  87 LIR_Opr FrameMap::receiver_opr;
  88 
  89 LIR_Opr FrameMap::rsi_oop_opr;
  90 LIR_Opr FrameMap::rdi_oop_opr;
  91 LIR_Opr FrameMap::rbx_oop_opr;
  92 LIR_Opr FrameMap::rax_oop_opr;
  93 LIR_Opr FrameMap::rdx_oop_opr;
  94 LIR_Opr FrameMap::rcx_oop_opr;
  95 
  96 LIR_Opr FrameMap::long0_opr;
  97 LIR_Opr FrameMap::long1_opr;
  98 LIR_Opr FrameMap::fpu0_float_opr;
  99 LIR_Opr FrameMap::fpu0_double_opr;
 100 LIR_Opr FrameMap::xmm0_float_opr;
 101 LIR_Opr FrameMap::xmm0_double_opr;
 102 
 103 #ifdef _LP64
 104 
 105 LIR_Opr  FrameMap::r8_opr;
 106 LIR_Opr  FrameMap::r9_opr;
 107 LIR_Opr FrameMap::r10_opr;
 108 LIR_Opr FrameMap::r11_opr;
 109 LIR_Opr FrameMap::r12_opr;
 110 LIR_Opr FrameMap::r13_opr;
 111 LIR_Opr FrameMap::r14_opr;
 112 LIR_Opr FrameMap::r15_opr;
 113 
 114 // r10 and r15 can never contain oops since they aren't available to
 115 // the allocator
 116 LIR_Opr  FrameMap::r8_oop_opr;
 117 LIR_Opr  FrameMap::r9_oop_opr;
 118 LIR_Opr FrameMap::r11_oop_opr;
 119 LIR_Opr FrameMap::r12_oop_opr;
 120 LIR_Opr FrameMap::r13_oop_opr;
 121 LIR_Opr FrameMap::r14_oop_opr;
 122 #endif // _LP64
 123 
 124 LIR_Opr FrameMap::_caller_save_cpu_regs[] = { 0, };
 125 LIR_Opr FrameMap::_caller_save_fpu_regs[] = { 0, };
 126 LIR_Opr FrameMap::_caller_save_xmm_regs[] = { 0, };
 127 
 128 XMMRegister FrameMap::_xmm_regs [] = { 0, };
 129 
 130 XMMRegister FrameMap::nr2xmmreg(int rnr) {
 131   assert(_init_done, "tables not initialized");
 132   return _xmm_regs[rnr];
 133 }
 134 
 135 //--------------------------------------------------------
 136 //               FrameMap
 137 //--------------------------------------------------------
 138 
 139 void FrameMap::init() {
 140   if (_init_done) return;
 141 
 142   assert(nof_cpu_regs == LP64_ONLY(16) NOT_LP64(8), "wrong number of CPU registers");
 143   map_register(0, rsi);  rsi_opr = LIR_OprFact::single_cpu(0);
 144   map_register(1, rdi);  rdi_opr = LIR_OprFact::single_cpu(1);
 145   map_register(2, rbx);  rbx_opr = LIR_OprFact::single_cpu(2);
 146   map_register(3, rax);  rax_opr = LIR_OprFact::single_cpu(3);
 147   map_register(4, rdx);  rdx_opr = LIR_OprFact::single_cpu(4);
 148   map_register(5, rcx);  rcx_opr = LIR_OprFact::single_cpu(5);
 149 
 150 #ifndef _LP64
 151   // The unallocatable registers are at the end
 152   map_register(6, rsp);
 153   map_register(7, rbp);
 154 #else
 155   map_register( 6, r8);    r8_opr = LIR_OprFact::single_cpu(6);
 156   map_register( 7, r9);    r9_opr = LIR_OprFact::single_cpu(7);
 157   map_register( 8, r11);  r11_opr = LIR_OprFact::single_cpu(8);
 158   map_register( 9, r12);  r12_opr = LIR_OprFact::single_cpu(9);
 159   map_register(10, r13);  r13_opr = LIR_OprFact::single_cpu(10);
 160   map_register(11, r14);  r14_opr = LIR_OprFact::single_cpu(11);
 161   // The unallocatable registers are at the end
 162   map_register(12, r10);  r10_opr = LIR_OprFact::single_cpu(12);
 163   map_register(13, r15);  r15_opr = LIR_OprFact::single_cpu(13);
 164   map_register(14, rsp);
 165   map_register(15, rbp);
 166 #endif // _LP64
 167 
 168 #ifdef _LP64
 169   long0_opr = LIR_OprFact::double_cpu(3 /*eax*/, 3 /*eax*/);
 170   long1_opr = LIR_OprFact::double_cpu(2 /*ebx*/, 2 /*ebx*/);
 171 #else
 172   long0_opr = LIR_OprFact::double_cpu(3 /*eax*/, 4 /*edx*/);
 173   long1_opr = LIR_OprFact::double_cpu(2 /*ebx*/, 5 /*ecx*/);
 174 #endif // _LP64
 175   fpu0_float_opr   = LIR_OprFact::single_fpu(0);
 176   fpu0_double_opr  = LIR_OprFact::double_fpu(0);
 177   xmm0_float_opr   = LIR_OprFact::single_xmm(0);
 178   xmm0_double_opr  = LIR_OprFact::double_xmm(0);
 179 
 180   _caller_save_cpu_regs[0] = rsi_opr;
 181   _caller_save_cpu_regs[1] = rdi_opr;
 182   _caller_save_cpu_regs[2] = rbx_opr;
 183   _caller_save_cpu_regs[3] = rax_opr;
 184   _caller_save_cpu_regs[4] = rdx_opr;
 185   _caller_save_cpu_regs[5] = rcx_opr;
 186 
 187 #ifdef _LP64
 188   _caller_save_cpu_regs[6]  = r8_opr;
 189   _caller_save_cpu_regs[7]  = r9_opr;
 190   _caller_save_cpu_regs[8]  = r11_opr;
 191   _caller_save_cpu_regs[9]  = r12_opr;
 192   _caller_save_cpu_regs[10] = r13_opr;
 193   _caller_save_cpu_regs[11] = r14_opr;
 194 #endif // _LP64
 195 
 196 
 197   _xmm_regs[0] = xmm0;
 198   _xmm_regs[1] = xmm1;
 199   _xmm_regs[2] = xmm2;
 200   _xmm_regs[3] = xmm3;
 201   _xmm_regs[4] = xmm4;
 202   _xmm_regs[5] = xmm5;
 203   _xmm_regs[6] = xmm6;
 204   _xmm_regs[7] = xmm7;
 205 
 206 #ifdef _LP64
 207   _xmm_regs[8]   = xmm8;
 208   _xmm_regs[9]   = xmm9;
 209   _xmm_regs[10]  = xmm10;
 210   _xmm_regs[11]  = xmm11;
 211   _xmm_regs[12]  = xmm12;
 212   _xmm_regs[13]  = xmm13;
 213   _xmm_regs[14]  = xmm14;
 214   _xmm_regs[15]  = xmm15;
 215 #endif // _LP64
 216 
 217   for (int i = 0; i < 8; i++) {
 218     _caller_save_fpu_regs[i] = LIR_OprFact::single_fpu(i);
 219   }
 220 
 221   for (int i = 0; i < nof_caller_save_xmm_regs ; i++) {
 222     _caller_save_xmm_regs[i] = LIR_OprFact::single_xmm(i);
 223   }
 224 
 225   _init_done = true;
 226 
 227   rsi_oop_opr = as_oop_opr(rsi);
 228   rdi_oop_opr = as_oop_opr(rdi);
 229   rbx_oop_opr = as_oop_opr(rbx);
 230   rax_oop_opr = as_oop_opr(rax);
 231   rdx_oop_opr = as_oop_opr(rdx);
 232   rcx_oop_opr = as_oop_opr(rcx);
 233 
 234   rsp_opr = as_pointer_opr(rsp);
 235   rbp_opr = as_pointer_opr(rbp);
 236 
 237 #ifdef _LP64
 238   r8_oop_opr = as_oop_opr(r8);
 239   r9_oop_opr = as_oop_opr(r9);
 240   r11_oop_opr = as_oop_opr(r11);
 241   r12_oop_opr = as_oop_opr(r12);
 242   r13_oop_opr = as_oop_opr(r13);
 243   r14_oop_opr = as_oop_opr(r14);
 244 #endif // _LP64
 245 
 246   VMRegPair regs;
 247   BasicType sig_bt = T_OBJECT;
 248   SharedRuntime::java_calling_convention(&sig_bt, &regs, 1, true);
 249   receiver_opr = as_oop_opr(regs.first()->as_Register());
 250 
 251 }
 252 
 253 
 254 Address FrameMap::make_new_address(ByteSize sp_offset) const {
 255   // for rbp, based address use this:
 256   // return Address(rbp, in_bytes(sp_offset) - (framesize() - 2) * 4);
 257   return Address(rsp, in_bytes(sp_offset));
 258 }
 259 
 260 
 261 // ----------------mapping-----------------------
 262 // all mapping is based on rbp, addressing, except for simple leaf methods where we access
 263 // the locals rsp based (and no frame is built)
 264 
 265 
 266 // Frame for simple leaf methods (quick entries)
 267 //
 268 //   +----------+
 269 //   | ret addr |   <- TOS
 270 //   +----------+
 271 //   | args     |
 272 //   | ......   |
 273 
 274 // Frame for standard methods
 275 //
 276 //   | .........|  <- TOS
 277 //   | locals   |
 278 //   +----------+
 279 //   | old rbp,  |  <- EBP
 280 //   +----------+
 281 //   | ret addr |
 282 //   +----------+
 283 //   |  args    |
 284 //   | .........|
 285 
 286 
 287 // For OopMaps, map a local variable or spill index to an VMRegImpl name.
 288 // This is the offset from sp() in the frame of the slot for the index,
 289 // skewed by VMRegImpl::stack0 to indicate a stack location (vs.a register.)
 290 //
 291 //           framesize +
 292 //           stack0         stack0          0  <- VMReg
 293 //             |              | <registers> |
 294 //  ...........|..............|.............|
 295 //      0 1 2 3 x x 4 5 6 ... |                <- local indices
 296 //      ^           ^        sp()                 ( x x indicate link
 297 //      |           |                               and return addr)
 298 //  arguments   non-argument locals
 299 
 300 
 301 VMReg FrameMap::fpu_regname (int n) {
 302   // Return the OptoReg name for the fpu stack slot "n"
 303   // A spilled fpu stack slot comprises to two single-word OptoReg's.
 304   return as_FloatRegister(n)->as_VMReg();
 305 }
 306 
 307 LIR_Opr FrameMap::stack_pointer() {
 308   return FrameMap::rsp_opr;
 309 }
 310 
 311 
 312 bool FrameMap::validate_frame() {
 313   return true;
 314 }