1 /*
   2  * Copyright 2005-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_c1_LIRGenerator.cpp.incl"
  27 
  28 #ifdef ASSERT
  29 #define __ gen()->lir(__FILE__, __LINE__)->
  30 #else
  31 #define __ gen()->lir()->
  32 #endif
  33 
  34 
  35 void PhiResolverState::reset(int max_vregs) {
  36   // Initialize array sizes
  37   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  38   _virtual_operands.trunc_to(0);
  39   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  40   _other_operands.trunc_to(0);
  41   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  42   _vreg_table.trunc_to(0);
  43 }
  44 
  45 
  46 
  47 //--------------------------------------------------------------
  48 // PhiResolver
  49 
  50 // Resolves cycles:
  51 //
  52 //  r1 := r2  becomes  temp := r1
  53 //  r2 := r1           r1 := r2
  54 //                     r2 := temp
  55 // and orders moves:
  56 //
  57 //  r2 := r3  becomes  r1 := r2
  58 //  r1 := r2           r2 := r3
  59 
  60 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  61  : _gen(gen)
  62  , _state(gen->resolver_state())
  63  , _temp(LIR_OprFact::illegalOpr)
  64 {
  65   // reinitialize the shared state arrays
  66   _state.reset(max_vregs);
  67 }
  68 
  69 
  70 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  71   assert(src->is_valid(), "");
  72   assert(dest->is_valid(), "");
  73   __ move(src, dest);
  74 }
  75 
  76 
  77 void PhiResolver::move_temp_to(LIR_Opr dest) {
  78   assert(_temp->is_valid(), "");
  79   emit_move(_temp, dest);
  80   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
  81 }
  82 
  83 
  84 void PhiResolver::move_to_temp(LIR_Opr src) {
  85   assert(_temp->is_illegal(), "");
  86   _temp = _gen->new_register(src->type());
  87   emit_move(src, _temp);
  88 }
  89 
  90 
  91 // Traverse assignment graph in depth first order and generate moves in post order
  92 // ie. two assignments: b := c, a := b start with node c:
  93 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
  94 // Generates moves in this order: move b to a and move c to b
  95 // ie. cycle a := b, b := a start with node a
  96 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
  97 // Generates moves in this order: move b to temp, move a to b, move temp to a
  98 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
  99   if (!dest->visited()) {
 100     dest->set_visited();
 101     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 102       move(dest, dest->destination_at(i));
 103     }
 104   } else if (!dest->start_node()) {
 105     // cylce in graph detected
 106     assert(_loop == NULL, "only one loop valid!");
 107     _loop = dest;
 108     move_to_temp(src->operand());
 109     return;
 110   } // else dest is a start node
 111 
 112   if (!dest->assigned()) {
 113     if (_loop == dest) {
 114       move_temp_to(dest->operand());
 115       dest->set_assigned();
 116     } else if (src != NULL) {
 117       emit_move(src->operand(), dest->operand());
 118       dest->set_assigned();
 119     }
 120   }
 121 }
 122 
 123 
 124 PhiResolver::~PhiResolver() {
 125   int i;
 126   // resolve any cycles in moves from and to virtual registers
 127   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 128     ResolveNode* node = virtual_operands()[i];
 129     if (!node->visited()) {
 130       _loop = NULL;
 131       move(NULL, node);
 132       node->set_start_node();
 133       assert(_temp->is_illegal(), "move_temp_to() call missing");
 134     }
 135   }
 136 
 137   // generate move for move from non virtual register to abitrary destination
 138   for (i = other_operands().length() - 1; i >= 0; i --) {
 139     ResolveNode* node = other_operands()[i];
 140     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 141       emit_move(node->operand(), node->destination_at(j)->operand());
 142     }
 143   }
 144 }
 145 
 146 
 147 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 148   ResolveNode* node;
 149   if (opr->is_virtual()) {
 150     int vreg_num = opr->vreg_number();
 151     node = vreg_table().at_grow(vreg_num, NULL);
 152     assert(node == NULL || node->operand() == opr, "");
 153     if (node == NULL) {
 154       node = new ResolveNode(opr);
 155       vreg_table()[vreg_num] = node;
 156     }
 157     // Make sure that all virtual operands show up in the list when
 158     // they are used as the source of a move.
 159     if (source && !virtual_operands().contains(node)) {
 160       virtual_operands().append(node);
 161     }
 162   } else {
 163     assert(source, "");
 164     node = new ResolveNode(opr);
 165     other_operands().append(node);
 166   }
 167   return node;
 168 }
 169 
 170 
 171 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 172   assert(dest->is_virtual(), "");
 173   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 174   assert(src->is_valid(), "");
 175   assert(dest->is_valid(), "");
 176   ResolveNode* source = source_node(src);
 177   source->append(destination_node(dest));
 178 }
 179 
 180 
 181 //--------------------------------------------------------------
 182 // LIRItem
 183 
 184 void LIRItem::set_result(LIR_Opr opr) {
 185   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 186   value()->set_operand(opr);
 187 
 188   if (opr->is_virtual()) {
 189     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 190   }
 191 
 192   _result = opr;
 193 }
 194 
 195 void LIRItem::load_item() {
 196   if (result()->is_illegal()) {
 197     // update the items result
 198     _result = value()->operand();
 199   }
 200   if (!result()->is_register()) {
 201     LIR_Opr reg = _gen->new_register(value()->type());
 202     __ move(result(), reg);
 203     if (result()->is_constant()) {
 204       _result = reg;
 205     } else {
 206       set_result(reg);
 207     }
 208   }
 209 }
 210 
 211 
 212 void LIRItem::load_for_store(BasicType type) {
 213   if (_gen->can_store_as_constant(value(), type)) {
 214     _result = value()->operand();
 215     if (!_result->is_constant()) {
 216       _result = LIR_OprFact::value_type(value()->type());
 217     }
 218   } else if (type == T_BYTE || type == T_BOOLEAN) {
 219     load_byte_item();
 220   } else {
 221     load_item();
 222   }
 223 }
 224 
 225 void LIRItem::load_item_force(LIR_Opr reg) {
 226   LIR_Opr r = result();
 227   if (r != reg) {
 228     if (r->type() != reg->type()) {
 229       // moves between different types need an intervening spill slot
 230       LIR_Opr tmp = _gen->force_to_spill(r, reg->type());
 231       __ move(tmp, reg);
 232     } else {
 233       __ move(r, reg);
 234     }
 235     _result = reg;
 236   }
 237 }
 238 
 239 ciObject* LIRItem::get_jobject_constant() const {
 240   ObjectType* oc = type()->as_ObjectType();
 241   if (oc) {
 242     return oc->constant_value();
 243   }
 244   return NULL;
 245 }
 246 
 247 
 248 jint LIRItem::get_jint_constant() const {
 249   assert(is_constant() && value() != NULL, "");
 250   assert(type()->as_IntConstant() != NULL, "type check");
 251   return type()->as_IntConstant()->value();
 252 }
 253 
 254 
 255 jint LIRItem::get_address_constant() const {
 256   assert(is_constant() && value() != NULL, "");
 257   assert(type()->as_AddressConstant() != NULL, "type check");
 258   return type()->as_AddressConstant()->value();
 259 }
 260 
 261 
 262 jfloat LIRItem::get_jfloat_constant() const {
 263   assert(is_constant() && value() != NULL, "");
 264   assert(type()->as_FloatConstant() != NULL, "type check");
 265   return type()->as_FloatConstant()->value();
 266 }
 267 
 268 
 269 jdouble LIRItem::get_jdouble_constant() const {
 270   assert(is_constant() && value() != NULL, "");
 271   assert(type()->as_DoubleConstant() != NULL, "type check");
 272   return type()->as_DoubleConstant()->value();
 273 }
 274 
 275 
 276 jlong LIRItem::get_jlong_constant() const {
 277   assert(is_constant() && value() != NULL, "");
 278   assert(type()->as_LongConstant() != NULL, "type check");
 279   return type()->as_LongConstant()->value();
 280 }
 281 
 282 
 283 
 284 //--------------------------------------------------------------
 285 
 286 
 287 void LIRGenerator::init() {
 288   _bs = Universe::heap()->barrier_set();
 289 }
 290 
 291 
 292 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 293 #ifndef PRODUCT
 294   if (PrintIRWithLIR) {
 295     block->print();
 296   }
 297 #endif
 298 
 299   // set up the list of LIR instructions
 300   assert(block->lir() == NULL, "LIR list already computed for this block");
 301   _lir = new LIR_List(compilation(), block);
 302   block->set_lir(_lir);
 303 
 304   __ branch_destination(block->label());
 305 
 306   if (LIRTraceExecution &&
 307       Compilation::current_compilation()->hir()->start()->block_id() != block->block_id() &&
 308       !block->is_set(BlockBegin::exception_entry_flag)) {
 309     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 310     trace_block_entry(block);
 311   }
 312 }
 313 
 314 
 315 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 316 #ifndef PRODUCT
 317   if (PrintIRWithLIR) {
 318     tty->cr();
 319   }
 320 #endif
 321 
 322   // LIR_Opr for unpinned constants shouldn't be referenced by other
 323   // blocks so clear them out after processing the block.
 324   for (int i = 0; i < _unpinned_constants.length(); i++) {
 325     _unpinned_constants.at(i)->clear_operand();
 326   }
 327   _unpinned_constants.trunc_to(0);
 328 
 329   // clear our any registers for other local constants
 330   _constants.trunc_to(0);
 331   _reg_for_constants.trunc_to(0);
 332 }
 333 
 334 
 335 void LIRGenerator::block_do(BlockBegin* block) {
 336   CHECK_BAILOUT();
 337 
 338   block_do_prolog(block);
 339   set_block(block);
 340 
 341   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 342     if (instr->is_pinned()) do_root(instr);
 343   }
 344 
 345   set_block(NULL);
 346   block_do_epilog(block);
 347 }
 348 
 349 
 350 //-------------------------LIRGenerator-----------------------------
 351 
 352 // This is where the tree-walk starts; instr must be root;
 353 void LIRGenerator::do_root(Value instr) {
 354   CHECK_BAILOUT();
 355 
 356   InstructionMark im(compilation(), instr);
 357 
 358   assert(instr->is_pinned(), "use only with roots");
 359   assert(instr->subst() == instr, "shouldn't have missed substitution");
 360 
 361   instr->visit(this);
 362 
 363   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 364          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 365 }
 366 
 367 
 368 // This is called for each node in tree; the walk stops if a root is reached
 369 void LIRGenerator::walk(Value instr) {
 370   InstructionMark im(compilation(), instr);
 371   //stop walk when encounter a root
 372   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 373     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 374   } else {
 375     assert(instr->subst() == instr, "shouldn't have missed substitution");
 376     instr->visit(this);
 377     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 378   }
 379 }
 380 
 381 
 382 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 383   int index;
 384   Value value;
 385   for_each_stack_value(state, index, value) {
 386     assert(value->subst() == value, "missed substition");
 387     if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 388       walk(value);
 389       assert(value->operand()->is_valid(), "must be evaluated now");
 390     }
 391   }
 392   ValueStack* s = state;
 393   int bci = x->bci();
 394   for_each_state(s) {
 395     IRScope* scope = s->scope();
 396     ciMethod* method = scope->method();
 397 
 398     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 399     if (bci == SynchronizationEntryBCI) {
 400       if (x->as_ExceptionObject() || x->as_Throw()) {
 401         // all locals are dead on exit from the synthetic unlocker
 402         liveness.clear();
 403       } else {
 404         assert(x->as_MonitorEnter(), "only other case is MonitorEnter");
 405       }
 406     }
 407     if (!liveness.is_valid()) {
 408       // Degenerate or breakpointed method.
 409       bailout("Degenerate or breakpointed method");
 410     } else {
 411       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 412       for_each_local_value(s, index, value) {
 413         assert(value->subst() == value, "missed substition");
 414         if (liveness.at(index) && !value->type()->is_illegal()) {
 415           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 416             walk(value);
 417             assert(value->operand()->is_valid(), "must be evaluated now");
 418           }
 419         } else {
 420           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 421           s->invalidate_local(index);
 422         }
 423       }
 424     }
 425     bci = scope->caller_bci();
 426   }
 427 
 428   return new CodeEmitInfo(x->bci(), state, ignore_xhandler ? NULL : x->exception_handlers());
 429 }
 430 
 431 
 432 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 433   return state_for(x, x->lock_stack());
 434 }
 435 
 436 
 437 void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
 438   if (!obj->is_loaded() || PatchALot) {
 439     assert(info != NULL, "info must be set if class is not loaded");
 440     __ oop2reg_patch(NULL, r, info);
 441   } else {
 442     // no patching needed
 443     __ oop2reg(obj->constant_encoding(), r);
 444   }
 445 }
 446 
 447 
 448 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 449                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 450   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 451   if (index->is_constant()) {
 452     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 453                 index->as_jint(), null_check_info);
 454     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 455   } else {
 456     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 457                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 458     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 459   }
 460 }
 461 
 462 
 463 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 464   CodeStub* stub = new RangeCheckStub(info, index, true);
 465   if (index->is_constant()) {
 466     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 467     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 468   } else {
 469     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 470                 java_nio_Buffer::limit_offset(), T_INT, info);
 471     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 472   }
 473   __ move(index, result);
 474 }
 475 
 476 
 477 // increment a counter returning the incremented value
 478 LIR_Opr LIRGenerator::increment_and_return_counter(LIR_Opr base, int offset, int increment) {
 479   LIR_Address* counter = new LIR_Address(base, offset, T_INT);
 480   LIR_Opr result = new_register(T_INT);
 481   __ load(counter, result);
 482   __ add(result, LIR_OprFact::intConst(increment), result);
 483   __ store(result, counter);
 484   return result;
 485 }
 486 
 487 
 488 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 489   LIR_Opr result_op = result;
 490   LIR_Opr left_op   = left;
 491   LIR_Opr right_op  = right;
 492 
 493   if (TwoOperandLIRForm && left_op != result_op) {
 494     assert(right_op != result_op, "malformed");
 495     __ move(left_op, result_op);
 496     left_op = result_op;
 497   }
 498 
 499   switch(code) {
 500     case Bytecodes::_dadd:
 501     case Bytecodes::_fadd:
 502     case Bytecodes::_ladd:
 503     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 504     case Bytecodes::_fmul:
 505     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 506 
 507     case Bytecodes::_dmul:
 508       {
 509         if (is_strictfp) {
 510           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 511         } else {
 512           __ mul(left_op, right_op, result_op); break;
 513         }
 514       }
 515       break;
 516 
 517     case Bytecodes::_imul:
 518       {
 519         bool    did_strength_reduce = false;
 520 
 521         if (right->is_constant()) {
 522           int c = right->as_jint();
 523           if (is_power_of_2(c)) {
 524             // do not need tmp here
 525             __ shift_left(left_op, exact_log2(c), result_op);
 526             did_strength_reduce = true;
 527           } else {
 528             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 529           }
 530         }
 531         // we couldn't strength reduce so just emit the multiply
 532         if (!did_strength_reduce) {
 533           __ mul(left_op, right_op, result_op);
 534         }
 535       }
 536       break;
 537 
 538     case Bytecodes::_dsub:
 539     case Bytecodes::_fsub:
 540     case Bytecodes::_lsub:
 541     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 542 
 543     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 544     // ldiv and lrem are implemented with a direct runtime call
 545 
 546     case Bytecodes::_ddiv:
 547       {
 548         if (is_strictfp) {
 549           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 550         } else {
 551           __ div (left_op, right_op, result_op); break;
 552         }
 553       }
 554       break;
 555 
 556     case Bytecodes::_drem:
 557     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 558 
 559     default: ShouldNotReachHere();
 560   }
 561 }
 562 
 563 
 564 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 565   arithmetic_op(code, result, left, right, false, tmp);
 566 }
 567 
 568 
 569 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 570   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 571 }
 572 
 573 
 574 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 575   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 576 }
 577 
 578 
 579 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 580   if (TwoOperandLIRForm && value != result_op) {
 581     assert(count != result_op, "malformed");
 582     __ move(value, result_op);
 583     value = result_op;
 584   }
 585 
 586   assert(count->is_constant() || count->is_register(), "must be");
 587   switch(code) {
 588   case Bytecodes::_ishl:
 589   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 590   case Bytecodes::_ishr:
 591   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 592   case Bytecodes::_iushr:
 593   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 594   default: ShouldNotReachHere();
 595   }
 596 }
 597 
 598 
 599 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 600   if (TwoOperandLIRForm && left_op != result_op) {
 601     assert(right_op != result_op, "malformed");
 602     __ move(left_op, result_op);
 603     left_op = result_op;
 604   }
 605 
 606   switch(code) {
 607     case Bytecodes::_iand:
 608     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 609 
 610     case Bytecodes::_ior:
 611     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 612 
 613     case Bytecodes::_ixor:
 614     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 615 
 616     default: ShouldNotReachHere();
 617   }
 618 }
 619 
 620 
 621 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 622   if (!GenerateSynchronizationCode) return;
 623   // for slow path, use debug info for state after successful locking
 624   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 625   __ load_stack_address_monitor(monitor_no, lock);
 626   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 627   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 628 }
 629 
 630 
 631 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, int monitor_no) {
 632   if (!GenerateSynchronizationCode) return;
 633   // setup registers
 634   LIR_Opr hdr = lock;
 635   lock = new_hdr;
 636   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 637   __ load_stack_address_monitor(monitor_no, lock);
 638   __ unlock_object(hdr, object, lock, slow_path);
 639 }
 640 
 641 
 642 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 643   jobject2reg_with_patching(klass_reg, klass, info);
 644   // If klass is not loaded we do not know if the klass has finalizers:
 645   if (UseFastNewInstance && klass->is_loaded()
 646       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 647 
 648     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 649 
 650     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 651 
 652     assert(klass->is_loaded(), "must be loaded");
 653     // allocate space for instance
 654     assert(klass->size_helper() >= 0, "illegal instance size");
 655     const int instance_size = align_object_size(klass->size_helper());
 656     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 657                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 658   } else {
 659     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 660     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 661     __ branch_destination(slow_path->continuation());
 662   }
 663 }
 664 
 665 
 666 static bool is_constant_zero(Instruction* inst) {
 667   IntConstant* c = inst->type()->as_IntConstant();
 668   if (c) {
 669     return (c->value() == 0);
 670   }
 671   return false;
 672 }
 673 
 674 
 675 static bool positive_constant(Instruction* inst) {
 676   IntConstant* c = inst->type()->as_IntConstant();
 677   if (c) {
 678     return (c->value() >= 0);
 679   }
 680   return false;
 681 }
 682 
 683 
 684 static ciArrayKlass* as_array_klass(ciType* type) {
 685   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 686     return (ciArrayKlass*)type;
 687   } else {
 688     return NULL;
 689   }
 690 }
 691 
 692 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 693   Instruction* src     = x->argument_at(0);
 694   Instruction* src_pos = x->argument_at(1);
 695   Instruction* dst     = x->argument_at(2);
 696   Instruction* dst_pos = x->argument_at(3);
 697   Instruction* length  = x->argument_at(4);
 698 
 699   // first try to identify the likely type of the arrays involved
 700   ciArrayKlass* expected_type = NULL;
 701   bool is_exact = false;
 702   {
 703     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 704     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 705     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 706     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 707     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 708       // the types exactly match so the type is fully known
 709       is_exact = true;
 710       expected_type = src_exact_type;
 711     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 712       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 713       ciArrayKlass* src_type = NULL;
 714       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 715         src_type = (ciArrayKlass*) src_exact_type;
 716       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 717         src_type = (ciArrayKlass*) src_declared_type;
 718       }
 719       if (src_type != NULL) {
 720         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 721           is_exact = true;
 722           expected_type = dst_type;
 723         }
 724       }
 725     }
 726     // at least pass along a good guess
 727     if (expected_type == NULL) expected_type = dst_exact_type;
 728     if (expected_type == NULL) expected_type = src_declared_type;
 729     if (expected_type == NULL) expected_type = dst_declared_type;
 730   }
 731 
 732   // if a probable array type has been identified, figure out if any
 733   // of the required checks for a fast case can be elided.
 734   int flags = LIR_OpArrayCopy::all_flags;
 735   if (expected_type != NULL) {
 736     // try to skip null checks
 737     if (src->as_NewArray() != NULL)
 738       flags &= ~LIR_OpArrayCopy::src_null_check;
 739     if (dst->as_NewArray() != NULL)
 740       flags &= ~LIR_OpArrayCopy::dst_null_check;
 741 
 742     // check from incoming constant values
 743     if (positive_constant(src_pos))
 744       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 745     if (positive_constant(dst_pos))
 746       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 747     if (positive_constant(length))
 748       flags &= ~LIR_OpArrayCopy::length_positive_check;
 749 
 750     // see if the range check can be elided, which might also imply
 751     // that src or dst is non-null.
 752     ArrayLength* al = length->as_ArrayLength();
 753     if (al != NULL) {
 754       if (al->array() == src) {
 755         // it's the length of the source array
 756         flags &= ~LIR_OpArrayCopy::length_positive_check;
 757         flags &= ~LIR_OpArrayCopy::src_null_check;
 758         if (is_constant_zero(src_pos))
 759           flags &= ~LIR_OpArrayCopy::src_range_check;
 760       }
 761       if (al->array() == dst) {
 762         // it's the length of the destination array
 763         flags &= ~LIR_OpArrayCopy::length_positive_check;
 764         flags &= ~LIR_OpArrayCopy::dst_null_check;
 765         if (is_constant_zero(dst_pos))
 766           flags &= ~LIR_OpArrayCopy::dst_range_check;
 767       }
 768     }
 769     if (is_exact) {
 770       flags &= ~LIR_OpArrayCopy::type_check;
 771     }
 772   }
 773 
 774   if (src == dst) {
 775     // moving within a single array so no type checks are needed
 776     if (flags & LIR_OpArrayCopy::type_check) {
 777       flags &= ~LIR_OpArrayCopy::type_check;
 778     }
 779   }
 780   *flagsp = flags;
 781   *expected_typep = (ciArrayKlass*)expected_type;
 782 }
 783 
 784 
 785 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 786   assert(opr->is_register(), "why spill if item is not register?");
 787 
 788   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 789     LIR_Opr result = new_register(T_FLOAT);
 790     set_vreg_flag(result, must_start_in_memory);
 791     assert(opr->is_register(), "only a register can be spilled");
 792     assert(opr->value_type()->is_float(), "rounding only for floats available");
 793     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 794     return result;
 795   }
 796   return opr;
 797 }
 798 
 799 
 800 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 801   assert(type2size[t] == type2size[value->type()], "size mismatch");
 802   if (!value->is_register()) {
 803     // force into a register
 804     LIR_Opr r = new_register(value->type());
 805     __ move(value, r);
 806     value = r;
 807   }
 808 
 809   // create a spill location
 810   LIR_Opr tmp = new_register(t);
 811   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 812 
 813   // move from register to spill
 814   __ move(value, tmp);
 815   return tmp;
 816 }
 817 
 818 
 819 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 820   if (if_instr->should_profile()) {
 821     ciMethod* method = if_instr->profiled_method();
 822     assert(method != NULL, "method should be set if branch is profiled");
 823     ciMethodData* md = method->method_data();
 824     if (md == NULL) {
 825       bailout("out of memory building methodDataOop");
 826       return;
 827     }
 828     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 829     assert(data != NULL, "must have profiling data");
 830     assert(data->is_BranchData(), "need BranchData for two-way branches");
 831     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 832     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 833     LIR_Opr md_reg = new_register(T_OBJECT);
 834     __ move(LIR_OprFact::oopConst(md->constant_encoding()), md_reg);
 835     LIR_Opr data_offset_reg = new_register(T_INT);
 836     __ cmove(lir_cond(cond),
 837              LIR_OprFact::intConst(taken_count_offset),
 838              LIR_OprFact::intConst(not_taken_count_offset),
 839              data_offset_reg);
 840     LIR_Opr data_reg = new_register(T_INT);
 841     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, T_INT);
 842     __ move(LIR_OprFact::address(data_addr), data_reg);
 843     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 844     // Use leal instead of add to avoid destroying condition codes on x86
 845     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 846     __ move(data_reg, LIR_OprFact::address(data_addr));
 847   }
 848 }
 849 
 850 
 851 // Phi technique:
 852 // This is about passing live values from one basic block to the other.
 853 // In code generated with Java it is rather rare that more than one
 854 // value is on the stack from one basic block to the other.
 855 // We optimize our technique for efficient passing of one value
 856 // (of type long, int, double..) but it can be extended.
 857 // When entering or leaving a basic block, all registers and all spill
 858 // slots are release and empty. We use the released registers
 859 // and spill slots to pass the live values from one block
 860 // to the other. The topmost value, i.e., the value on TOS of expression
 861 // stack is passed in registers. All other values are stored in spilling
 862 // area. Every Phi has an index which designates its spill slot
 863 // At exit of a basic block, we fill the register(s) and spill slots.
 864 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 865 // and locks necessary registers and spilling slots.
 866 
 867 
 868 // move current value to referenced phi function
 869 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 870   Phi* phi = sux_val->as_Phi();
 871   // cur_val can be null without phi being null in conjunction with inlining
 872   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 873     LIR_Opr operand = cur_val->operand();
 874     if (cur_val->operand()->is_illegal()) {
 875       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
 876              "these can be produced lazily");
 877       operand = operand_for_instruction(cur_val);
 878     }
 879     resolver->move(operand, operand_for_instruction(phi));
 880   }
 881 }
 882 
 883 
 884 // Moves all stack values into their PHI position
 885 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
 886   BlockBegin* bb = block();
 887   if (bb->number_of_sux() == 1) {
 888     BlockBegin* sux = bb->sux_at(0);
 889     assert(sux->number_of_preds() > 0, "invalid CFG");
 890 
 891     // a block with only one predecessor never has phi functions
 892     if (sux->number_of_preds() > 1) {
 893       int max_phis = cur_state->stack_size() + cur_state->locals_size();
 894       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
 895 
 896       ValueStack* sux_state = sux->state();
 897       Value sux_value;
 898       int index;
 899 
 900       for_each_stack_value(sux_state, index, sux_value) {
 901         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
 902       }
 903 
 904       // Inlining may cause the local state not to match up, so walk up
 905       // the caller state until we get to the same scope as the
 906       // successor and then start processing from there.
 907       while (cur_state->scope() != sux_state->scope()) {
 908         cur_state = cur_state->caller_state();
 909         assert(cur_state != NULL, "scopes don't match up");
 910       }
 911 
 912       for_each_local_value(sux_state, index, sux_value) {
 913         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
 914       }
 915 
 916       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
 917     }
 918   }
 919 }
 920 
 921 
 922 LIR_Opr LIRGenerator::new_register(BasicType type) {
 923   int vreg = _virtual_register_number;
 924   // add a little fudge factor for the bailout, since the bailout is
 925   // only checked periodically.  This gives a few extra registers to
 926   // hand out before we really run out, which helps us keep from
 927   // tripping over assertions.
 928   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
 929     bailout("out of virtual registers");
 930     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
 931       // wrap it around
 932       _virtual_register_number = LIR_OprDesc::vreg_base;
 933     }
 934   }
 935   _virtual_register_number += 1;
 936   if (type == T_ADDRESS) type = T_INT;
 937   return LIR_OprFact::virtual_register(vreg, type);
 938 }
 939 
 940 
 941 // Try to lock using register in hint
 942 LIR_Opr LIRGenerator::rlock(Value instr) {
 943   return new_register(instr->type());
 944 }
 945 
 946 
 947 // does an rlock and sets result
 948 LIR_Opr LIRGenerator::rlock_result(Value x) {
 949   LIR_Opr reg = rlock(x);
 950   set_result(x, reg);
 951   return reg;
 952 }
 953 
 954 
 955 // does an rlock and sets result
 956 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
 957   LIR_Opr reg;
 958   switch (type) {
 959   case T_BYTE:
 960   case T_BOOLEAN:
 961     reg = rlock_byte(type);
 962     break;
 963   default:
 964     reg = rlock(x);
 965     break;
 966   }
 967 
 968   set_result(x, reg);
 969   return reg;
 970 }
 971 
 972 
 973 //---------------------------------------------------------------------
 974 ciObject* LIRGenerator::get_jobject_constant(Value value) {
 975   ObjectType* oc = value->type()->as_ObjectType();
 976   if (oc) {
 977     return oc->constant_value();
 978   }
 979   return NULL;
 980 }
 981 
 982 
 983 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
 984   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
 985   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
 986 
 987   // no moves are created for phi functions at the begin of exception
 988   // handlers, so assign operands manually here
 989   for_each_phi_fun(block(), phi,
 990                    operand_for_instruction(phi));
 991 
 992   LIR_Opr thread_reg = getThreadPointer();
 993   __ move(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
 994           exceptionOopOpr());
 995   __ move(LIR_OprFact::oopConst(NULL),
 996           new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
 997   __ move(LIR_OprFact::oopConst(NULL),
 998           new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
 999 
1000   LIR_Opr result = new_register(T_OBJECT);
1001   __ move(exceptionOopOpr(), result);
1002   set_result(x, result);
1003 }
1004 
1005 
1006 //----------------------------------------------------------------------
1007 //----------------------------------------------------------------------
1008 //----------------------------------------------------------------------
1009 //----------------------------------------------------------------------
1010 //                        visitor functions
1011 //----------------------------------------------------------------------
1012 //----------------------------------------------------------------------
1013 //----------------------------------------------------------------------
1014 //----------------------------------------------------------------------
1015 
1016 void LIRGenerator::do_Phi(Phi* x) {
1017   // phi functions are never visited directly
1018   ShouldNotReachHere();
1019 }
1020 
1021 
1022 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1023 void LIRGenerator::do_Constant(Constant* x) {
1024   if (x->state() != NULL) {
1025     // Any constant with a ValueStack requires patching so emit the patch here
1026     LIR_Opr reg = rlock_result(x);
1027     CodeEmitInfo* info = state_for(x, x->state());
1028     __ oop2reg_patch(NULL, reg, info);
1029   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1030     if (!x->is_pinned()) {
1031       // unpinned constants are handled specially so that they can be
1032       // put into registers when they are used multiple times within a
1033       // block.  After the block completes their operand will be
1034       // cleared so that other blocks can't refer to that register.
1035       set_result(x, load_constant(x));
1036     } else {
1037       LIR_Opr res = x->operand();
1038       if (!res->is_valid()) {
1039         res = LIR_OprFact::value_type(x->type());
1040       }
1041       if (res->is_constant()) {
1042         LIR_Opr reg = rlock_result(x);
1043         __ move(res, reg);
1044       } else {
1045         set_result(x, res);
1046       }
1047     }
1048   } else {
1049     set_result(x, LIR_OprFact::value_type(x->type()));
1050   }
1051 }
1052 
1053 
1054 void LIRGenerator::do_Local(Local* x) {
1055   // operand_for_instruction has the side effect of setting the result
1056   // so there's no need to do it here.
1057   operand_for_instruction(x);
1058 }
1059 
1060 
1061 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1062   Unimplemented();
1063 }
1064 
1065 
1066 void LIRGenerator::do_Return(Return* x) {
1067   if (compilation()->env()->dtrace_method_probes()) {
1068     BasicTypeList signature;
1069     signature.append(T_INT);    // thread
1070     signature.append(T_OBJECT); // methodOop
1071     LIR_OprList* args = new LIR_OprList();
1072     args->append(getThreadPointer());
1073     LIR_Opr meth = new_register(T_OBJECT);
1074     __ oop2reg(method()->constant_encoding(), meth);
1075     args->append(meth);
1076     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1077   }
1078 
1079   if (x->type()->is_void()) {
1080     __ return_op(LIR_OprFact::illegalOpr);
1081   } else {
1082     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1083     LIRItem result(x->result(), this);
1084 
1085     result.load_item_force(reg);
1086     __ return_op(result.result());
1087   }
1088   set_no_result(x);
1089 }
1090 
1091 
1092 // Example: object.getClass ()
1093 void LIRGenerator::do_getClass(Intrinsic* x) {
1094   assert(x->number_of_arguments() == 1, "wrong type");
1095 
1096   LIRItem rcvr(x->argument_at(0), this);
1097   rcvr.load_item();
1098   LIR_Opr result = rlock_result(x);
1099 
1100   // need to perform the null check on the rcvr
1101   CodeEmitInfo* info = NULL;
1102   if (x->needs_null_check()) {
1103     info = state_for(x, x->state()->copy_locks());
1104   }
1105   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
1106   __ move(new LIR_Address(result, Klass::java_mirror_offset_in_bytes() +
1107                           klassOopDesc::klass_part_offset_in_bytes(), T_OBJECT), result);
1108 }
1109 
1110 
1111 // Example: Thread.currentThread()
1112 void LIRGenerator::do_currentThread(Intrinsic* x) {
1113   assert(x->number_of_arguments() == 0, "wrong type");
1114   LIR_Opr reg = rlock_result(x);
1115   __ load(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1116 }
1117 
1118 
1119 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1120   assert(x->number_of_arguments() == 1, "wrong type");
1121   LIRItem receiver(x->argument_at(0), this);
1122 
1123   receiver.load_item();
1124   BasicTypeList signature;
1125   signature.append(T_OBJECT); // receiver
1126   LIR_OprList* args = new LIR_OprList();
1127   args->append(receiver.result());
1128   CodeEmitInfo* info = state_for(x, x->state());
1129   call_runtime(&signature, args,
1130                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1131                voidType, info);
1132 
1133   set_no_result(x);
1134 }
1135 
1136 
1137 //------------------------local access--------------------------------------
1138 
1139 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1140   if (x->operand()->is_illegal()) {
1141     Constant* c = x->as_Constant();
1142     if (c != NULL) {
1143       x->set_operand(LIR_OprFact::value_type(c->type()));
1144     } else {
1145       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1146       // allocate a virtual register for this local or phi
1147       x->set_operand(rlock(x));
1148       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1149     }
1150   }
1151   return x->operand();
1152 }
1153 
1154 
1155 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1156   if (opr->is_virtual()) {
1157     return instruction_for_vreg(opr->vreg_number());
1158   }
1159   return NULL;
1160 }
1161 
1162 
1163 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1164   if (reg_num < _instruction_for_operand.length()) {
1165     return _instruction_for_operand.at(reg_num);
1166   }
1167   return NULL;
1168 }
1169 
1170 
1171 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1172   if (_vreg_flags.size_in_bits() == 0) {
1173     BitMap2D temp(100, num_vreg_flags);
1174     temp.clear();
1175     _vreg_flags = temp;
1176   }
1177   _vreg_flags.at_put_grow(vreg_num, f, true);
1178 }
1179 
1180 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1181   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1182     return false;
1183   }
1184   return _vreg_flags.at(vreg_num, f);
1185 }
1186 
1187 
1188 // Block local constant handling.  This code is useful for keeping
1189 // unpinned constants and constants which aren't exposed in the IR in
1190 // registers.  Unpinned Constant instructions have their operands
1191 // cleared when the block is finished so that other blocks can't end
1192 // up referring to their registers.
1193 
1194 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1195   assert(!x->is_pinned(), "only for unpinned constants");
1196   _unpinned_constants.append(x);
1197   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1198 }
1199 
1200 
1201 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1202   BasicType t = c->type();
1203   for (int i = 0; i < _constants.length(); i++) {
1204     LIR_Const* other = _constants.at(i);
1205     if (t == other->type()) {
1206       switch (t) {
1207       case T_INT:
1208       case T_FLOAT:
1209         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1210         break;
1211       case T_LONG:
1212       case T_DOUBLE:
1213         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1214         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1215         break;
1216       case T_OBJECT:
1217         if (c->as_jobject() != other->as_jobject()) continue;
1218         break;
1219       }
1220       return _reg_for_constants.at(i);
1221     }
1222   }
1223 
1224   LIR_Opr result = new_register(t);
1225   __ move((LIR_Opr)c, result);
1226   _constants.append(c);
1227   _reg_for_constants.append(result);
1228   return result;
1229 }
1230 
1231 // Various barriers
1232 
1233 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, bool patch,  CodeEmitInfo* info) {
1234   // Do the pre-write barrier, if any.
1235   switch (_bs->kind()) {
1236 #ifndef SERIALGC
1237     case BarrierSet::G1SATBCT:
1238     case BarrierSet::G1SATBCTLogging:
1239       G1SATBCardTableModRef_pre_barrier(addr_opr, patch, info);
1240       break;
1241 #endif // SERIALGC
1242     case BarrierSet::CardTableModRef:
1243     case BarrierSet::CardTableExtension:
1244       // No pre barriers
1245       break;
1246     case BarrierSet::ModRef:
1247     case BarrierSet::Other:
1248       // No pre barriers
1249       break;
1250     default      :
1251       ShouldNotReachHere();
1252 
1253   }
1254 }
1255 
1256 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1257   switch (_bs->kind()) {
1258 #ifndef SERIALGC
1259     case BarrierSet::G1SATBCT:
1260     case BarrierSet::G1SATBCTLogging:
1261       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1262       break;
1263 #endif // SERIALGC
1264     case BarrierSet::CardTableModRef:
1265     case BarrierSet::CardTableExtension:
1266       CardTableModRef_post_barrier(addr,  new_val);
1267       break;
1268     case BarrierSet::ModRef:
1269     case BarrierSet::Other:
1270       // No post barriers
1271       break;
1272     default      :
1273       ShouldNotReachHere();
1274     }
1275 }
1276 
1277 ////////////////////////////////////////////////////////////////////////
1278 #ifndef SERIALGC
1279 
1280 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, bool patch,  CodeEmitInfo* info) {
1281   if (G1DisablePreBarrier) return;
1282 
1283   // First we test whether marking is in progress.
1284   BasicType flag_type;
1285   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1286     flag_type = T_INT;
1287   } else {
1288     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1289               "Assumption");
1290     flag_type = T_BYTE;
1291   }
1292   LIR_Opr thrd = getThreadPointer();
1293   LIR_Address* mark_active_flag_addr =
1294     new LIR_Address(thrd,
1295                     in_bytes(JavaThread::satb_mark_queue_offset() +
1296                              PtrQueue::byte_offset_of_active()),
1297                     flag_type);
1298   // Read the marking-in-progress flag.
1299   LIR_Opr flag_val = new_register(T_INT);
1300   __ load(mark_active_flag_addr, flag_val);
1301 
1302   LabelObj* start_store = new LabelObj();
1303 
1304   LIR_PatchCode pre_val_patch_code =
1305     patch ? lir_patch_normal : lir_patch_none;
1306 
1307   LIR_Opr pre_val = new_register(T_OBJECT);
1308 
1309   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1310   if (!addr_opr->is_address()) {
1311     assert(addr_opr->is_register(), "must be");
1312     addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, 0, T_OBJECT));
1313   }
1314   CodeStub* slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code,
1315                                         info);
1316   __ branch(lir_cond_notEqual, T_INT, slow);
1317   __ branch_destination(slow->continuation());
1318 }
1319 
1320 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1321   if (G1DisablePostBarrier) return;
1322 
1323   // If the "new_val" is a constant NULL, no barrier is necessary.
1324   if (new_val->is_constant() &&
1325       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1326 
1327   if (!new_val->is_register()) {
1328     LIR_Opr new_val_reg = new_pointer_register();
1329     if (new_val->is_constant()) {
1330       __ move(new_val, new_val_reg);
1331     } else {
1332       __ leal(new_val, new_val_reg);
1333     }
1334     new_val = new_val_reg;
1335   }
1336   assert(new_val->is_register(), "must be a register at this point");
1337 
1338   if (addr->is_address()) {
1339     LIR_Address* address = addr->as_address_ptr();
1340     LIR_Opr ptr = new_pointer_register();
1341     if (!address->index()->is_valid() && address->disp() == 0) {
1342       __ move(address->base(), ptr);
1343     } else {
1344       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1345       __ leal(addr, ptr);
1346     }
1347     addr = ptr;
1348   }
1349   assert(addr->is_register(), "must be a register at this point");
1350 
1351   LIR_Opr xor_res = new_pointer_register();
1352   LIR_Opr xor_shift_res = new_pointer_register();
1353 
1354   if (TwoOperandLIRForm ) {
1355     __ move(addr, xor_res);
1356     __ logical_xor(xor_res, new_val, xor_res);
1357     __ move(xor_res, xor_shift_res);
1358     __ unsigned_shift_right(xor_shift_res,
1359                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1360                             xor_shift_res,
1361                             LIR_OprDesc::illegalOpr());
1362   } else {
1363     __ logical_xor(addr, new_val, xor_res);
1364     __ unsigned_shift_right(xor_res,
1365                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1366                             xor_shift_res,
1367                             LIR_OprDesc::illegalOpr());
1368   }
1369 
1370   if (!new_val->is_register()) {
1371     LIR_Opr new_val_reg = new_pointer_register();
1372     __ leal(new_val, new_val_reg);
1373     new_val = new_val_reg;
1374   }
1375   assert(new_val->is_register(), "must be a register at this point");
1376 
1377   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1378 
1379   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1380   __ branch(lir_cond_notEqual, T_INT, slow);
1381   __ branch_destination(slow->continuation());
1382 }
1383 
1384 #endif // SERIALGC
1385 ////////////////////////////////////////////////////////////////////////
1386 
1387 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1388 
1389   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1390   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1391   if (addr->is_address()) {
1392     LIR_Address* address = addr->as_address_ptr();
1393     LIR_Opr ptr = new_register(T_OBJECT);
1394     if (!address->index()->is_valid() && address->disp() == 0) {
1395       __ move(address->base(), ptr);
1396     } else {
1397       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1398       __ leal(addr, ptr);
1399     }
1400     addr = ptr;
1401   }
1402   assert(addr->is_register(), "must be a register at this point");
1403 
1404   LIR_Opr tmp = new_pointer_register();
1405   if (TwoOperandLIRForm) {
1406     __ move(addr, tmp);
1407     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1408   } else {
1409     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1410   }
1411   if (can_inline_as_constant(card_table_base)) {
1412     __ move(LIR_OprFact::intConst(0),
1413               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1414   } else {
1415     __ move(LIR_OprFact::intConst(0),
1416               new LIR_Address(tmp, load_constant(card_table_base),
1417                               T_BYTE));
1418   }
1419 }
1420 
1421 
1422 //------------------------field access--------------------------------------
1423 
1424 // Comment copied form templateTable_i486.cpp
1425 // ----------------------------------------------------------------------------
1426 // Volatile variables demand their effects be made known to all CPU's in
1427 // order.  Store buffers on most chips allow reads & writes to reorder; the
1428 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1429 // memory barrier (i.e., it's not sufficient that the interpreter does not
1430 // reorder volatile references, the hardware also must not reorder them).
1431 //
1432 // According to the new Java Memory Model (JMM):
1433 // (1) All volatiles are serialized wrt to each other.
1434 // ALSO reads & writes act as aquire & release, so:
1435 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1436 // the read float up to before the read.  It's OK for non-volatile memory refs
1437 // that happen before the volatile read to float down below it.
1438 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1439 // that happen BEFORE the write float down to after the write.  It's OK for
1440 // non-volatile memory refs that happen after the volatile write to float up
1441 // before it.
1442 //
1443 // We only put in barriers around volatile refs (they are expensive), not
1444 // _between_ memory refs (that would require us to track the flavor of the
1445 // previous memory refs).  Requirements (2) and (3) require some barriers
1446 // before volatile stores and after volatile loads.  These nearly cover
1447 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1448 // case is placed after volatile-stores although it could just as well go
1449 // before volatile-loads.
1450 
1451 
1452 void LIRGenerator::do_StoreField(StoreField* x) {
1453   bool needs_patching = x->needs_patching();
1454   bool is_volatile = x->field()->is_volatile();
1455   BasicType field_type = x->field_type();
1456   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1457 
1458   CodeEmitInfo* info = NULL;
1459   if (needs_patching) {
1460     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1461     info = state_for(x, x->state_before());
1462   } else if (x->needs_null_check()) {
1463     NullCheck* nc = x->explicit_null_check();
1464     if (nc == NULL) {
1465       info = state_for(x, x->lock_stack());
1466     } else {
1467       info = state_for(nc);
1468     }
1469   }
1470 
1471 
1472   LIRItem object(x->obj(), this);
1473   LIRItem value(x->value(),  this);
1474 
1475   object.load_item();
1476 
1477   if (is_volatile || needs_patching) {
1478     // load item if field is volatile (fewer special cases for volatiles)
1479     // load item if field not initialized
1480     // load item if field not constant
1481     // because of code patching we cannot inline constants
1482     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1483       value.load_byte_item();
1484     } else  {
1485       value.load_item();
1486     }
1487   } else {
1488     value.load_for_store(field_type);
1489   }
1490 
1491   set_no_result(x);
1492 
1493   if (PrintNotLoaded && needs_patching) {
1494     tty->print_cr("   ###class not loaded at store_%s bci %d",
1495                   x->is_static() ?  "static" : "field", x->bci());
1496   }
1497 
1498   if (x->needs_null_check() &&
1499       (needs_patching ||
1500        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1501     // emit an explicit null check because the offset is too large
1502     __ null_check(object.result(), new CodeEmitInfo(info));
1503   }
1504 
1505   LIR_Address* address;
1506   if (needs_patching) {
1507     // we need to patch the offset in the instruction so don't allow
1508     // generate_address to try to be smart about emitting the -1.
1509     // Otherwise the patching code won't know how to find the
1510     // instruction to patch.
1511     address = new LIR_Address(object.result(), max_jint, field_type);
1512   } else {
1513     address = generate_address(object.result(), x->offset(), field_type);
1514   }
1515 
1516   if (is_volatile && os::is_MP()) {
1517     __ membar_release();
1518   }
1519 
1520   if (is_oop) {
1521     // Do the pre-write barrier, if any.
1522     pre_barrier(LIR_OprFact::address(address),
1523                 needs_patching,
1524                 (info ? new CodeEmitInfo(info) : NULL));
1525   }
1526 
1527   if (is_volatile) {
1528     assert(!needs_patching && x->is_loaded(),
1529            "how do we know it's volatile if it's not loaded");
1530     volatile_field_store(value.result(), address, info);
1531   } else {
1532     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1533     __ store(value.result(), address, info, patch_code);
1534   }
1535 
1536   if (is_oop) {
1537     // Store to object so mark the card of the header
1538     post_barrier(object.result(), value.result());
1539   }
1540 
1541   if (is_volatile && os::is_MP()) {
1542     __ membar();
1543   }
1544 }
1545 
1546 
1547 void LIRGenerator::do_LoadField(LoadField* x) {
1548   bool needs_patching = x->needs_patching();
1549   bool is_volatile = x->field()->is_volatile();
1550   BasicType field_type = x->field_type();
1551 
1552   CodeEmitInfo* info = NULL;
1553   if (needs_patching) {
1554     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1555     info = state_for(x, x->state_before());
1556   } else if (x->needs_null_check()) {
1557     NullCheck* nc = x->explicit_null_check();
1558     if (nc == NULL) {
1559       info = state_for(x, x->lock_stack());
1560     } else {
1561       info = state_for(nc);
1562     }
1563   }
1564 
1565   LIRItem object(x->obj(), this);
1566 
1567   object.load_item();
1568 
1569   if (PrintNotLoaded && needs_patching) {
1570     tty->print_cr("   ###class not loaded at load_%s bci %d",
1571                   x->is_static() ?  "static" : "field", x->bci());
1572   }
1573 
1574   if (x->needs_null_check() &&
1575       (needs_patching ||
1576        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1577     // emit an explicit null check because the offset is too large
1578     __ null_check(object.result(), new CodeEmitInfo(info));
1579   }
1580 
1581   LIR_Opr reg = rlock_result(x, field_type);
1582   LIR_Address* address;
1583   if (needs_patching) {
1584     // we need to patch the offset in the instruction so don't allow
1585     // generate_address to try to be smart about emitting the -1.
1586     // Otherwise the patching code won't know how to find the
1587     // instruction to patch.
1588     address = new LIR_Address(object.result(), max_jint, field_type);
1589   } else {
1590     address = generate_address(object.result(), x->offset(), field_type);
1591   }
1592 
1593   if (is_volatile) {
1594     assert(!needs_patching && x->is_loaded(),
1595            "how do we know it's volatile if it's not loaded");
1596     volatile_field_load(address, reg, info);
1597   } else {
1598     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1599     __ load(address, reg, info, patch_code);
1600   }
1601 
1602   if (is_volatile && os::is_MP()) {
1603     __ membar_acquire();
1604   }
1605 }
1606 
1607 
1608 //------------------------java.nio.Buffer.checkIndex------------------------
1609 
1610 // int java.nio.Buffer.checkIndex(int)
1611 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1612   // NOTE: by the time we are in checkIndex() we are guaranteed that
1613   // the buffer is non-null (because checkIndex is package-private and
1614   // only called from within other methods in the buffer).
1615   assert(x->number_of_arguments() == 2, "wrong type");
1616   LIRItem buf  (x->argument_at(0), this);
1617   LIRItem index(x->argument_at(1), this);
1618   buf.load_item();
1619   index.load_item();
1620 
1621   LIR_Opr result = rlock_result(x);
1622   if (GenerateRangeChecks) {
1623     CodeEmitInfo* info = state_for(x);
1624     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1625     if (index.result()->is_constant()) {
1626       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1627       __ branch(lir_cond_belowEqual, T_INT, stub);
1628     } else {
1629       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1630                   java_nio_Buffer::limit_offset(), T_INT, info);
1631       __ branch(lir_cond_aboveEqual, T_INT, stub);
1632     }
1633     __ move(index.result(), result);
1634   } else {
1635     // Just load the index into the result register
1636     __ move(index.result(), result);
1637   }
1638 }
1639 
1640 
1641 //------------------------array access--------------------------------------
1642 
1643 
1644 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1645   LIRItem array(x->array(), this);
1646   array.load_item();
1647   LIR_Opr reg = rlock_result(x);
1648 
1649   CodeEmitInfo* info = NULL;
1650   if (x->needs_null_check()) {
1651     NullCheck* nc = x->explicit_null_check();
1652     if (nc == NULL) {
1653       info = state_for(x);
1654     } else {
1655       info = state_for(nc);
1656     }
1657   }
1658   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1659 }
1660 
1661 
1662 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1663   bool use_length = x->length() != NULL;
1664   LIRItem array(x->array(), this);
1665   LIRItem index(x->index(), this);
1666   LIRItem length(this);
1667   bool needs_range_check = true;
1668 
1669   if (use_length) {
1670     needs_range_check = x->compute_needs_range_check();
1671     if (needs_range_check) {
1672       length.set_instruction(x->length());
1673       length.load_item();
1674     }
1675   }
1676 
1677   array.load_item();
1678   if (index.is_constant() && can_inline_as_constant(x->index())) {
1679     // let it be a constant
1680     index.dont_load_item();
1681   } else {
1682     index.load_item();
1683   }
1684 
1685   CodeEmitInfo* range_check_info = state_for(x);
1686   CodeEmitInfo* null_check_info = NULL;
1687   if (x->needs_null_check()) {
1688     NullCheck* nc = x->explicit_null_check();
1689     if (nc != NULL) {
1690       null_check_info = state_for(nc);
1691     } else {
1692       null_check_info = range_check_info;
1693     }
1694   }
1695 
1696   // emit array address setup early so it schedules better
1697   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1698 
1699   if (GenerateRangeChecks && needs_range_check) {
1700     if (use_length) {
1701       // TODO: use a (modified) version of array_range_check that does not require a
1702       //       constant length to be loaded to a register
1703       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1704       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1705     } else {
1706       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1707       // The range check performs the null check, so clear it out for the load
1708       null_check_info = NULL;
1709     }
1710   }
1711 
1712   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1713 }
1714 
1715 
1716 void LIRGenerator::do_NullCheck(NullCheck* x) {
1717   if (x->can_trap()) {
1718     LIRItem value(x->obj(), this);
1719     value.load_item();
1720     CodeEmitInfo* info = state_for(x);
1721     __ null_check(value.result(), info);
1722   }
1723 }
1724 
1725 
1726 void LIRGenerator::do_Throw(Throw* x) {
1727   LIRItem exception(x->exception(), this);
1728   exception.load_item();
1729   set_no_result(x);
1730   LIR_Opr exception_opr = exception.result();
1731   CodeEmitInfo* info = state_for(x, x->state());
1732 
1733 #ifndef PRODUCT
1734   if (PrintC1Statistics) {
1735     increment_counter(Runtime1::throw_count_address());
1736   }
1737 #endif
1738 
1739   // check if the instruction has an xhandler in any of the nested scopes
1740   bool unwind = false;
1741   if (info->exception_handlers()->length() == 0) {
1742     // this throw is not inside an xhandler
1743     unwind = true;
1744   } else {
1745     // get some idea of the throw type
1746     bool type_is_exact = true;
1747     ciType* throw_type = x->exception()->exact_type();
1748     if (throw_type == NULL) {
1749       type_is_exact = false;
1750       throw_type = x->exception()->declared_type();
1751     }
1752     if (throw_type != NULL && throw_type->is_instance_klass()) {
1753       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1754       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1755     }
1756   }
1757 
1758   // do null check before moving exception oop into fixed register
1759   // to avoid a fixed interval with an oop during the null check.
1760   // Use a copy of the CodeEmitInfo because debug information is
1761   // different for null_check and throw.
1762   if (GenerateCompilerNullChecks &&
1763       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
1764     // if the exception object wasn't created using new then it might be null.
1765     __ null_check(exception_opr, new CodeEmitInfo(info, true));
1766   }
1767 
1768   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
1769     // we need to go through the exception lookup path to get JVMTI
1770     // notification done
1771     unwind = false;
1772   }
1773 
1774   // move exception oop into fixed register
1775   __ move(exception_opr, exceptionOopOpr());
1776 
1777   if (unwind) {
1778     __ unwind_exception(exceptionOopOpr());
1779   } else {
1780     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
1781   }
1782 }
1783 
1784 
1785 void LIRGenerator::do_RoundFP(RoundFP* x) {
1786   LIRItem input(x->input(), this);
1787   input.load_item();
1788   LIR_Opr input_opr = input.result();
1789   assert(input_opr->is_register(), "why round if value is not in a register?");
1790   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
1791   if (input_opr->is_single_fpu()) {
1792     set_result(x, round_item(input_opr)); // This code path not currently taken
1793   } else {
1794     LIR_Opr result = new_register(T_DOUBLE);
1795     set_vreg_flag(result, must_start_in_memory);
1796     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
1797     set_result(x, result);
1798   }
1799 }
1800 
1801 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
1802   LIRItem base(x->base(), this);
1803   LIRItem idx(this);
1804 
1805   base.load_item();
1806   if (x->has_index()) {
1807     idx.set_instruction(x->index());
1808     idx.load_nonconstant();
1809   }
1810 
1811   LIR_Opr reg = rlock_result(x, x->basic_type());
1812 
1813   int   log2_scale = 0;
1814   if (x->has_index()) {
1815     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
1816     log2_scale = x->log2_scale();
1817   }
1818 
1819   assert(!x->has_index() || idx.value() == x->index(), "should match");
1820 
1821   LIR_Opr base_op = base.result();
1822 #ifndef _LP64
1823   if (x->base()->type()->tag() == longTag) {
1824     base_op = new_register(T_INT);
1825     __ convert(Bytecodes::_l2i, base.result(), base_op);
1826   } else {
1827     assert(x->base()->type()->tag() == intTag, "must be");
1828   }
1829 #endif
1830 
1831   BasicType dst_type = x->basic_type();
1832   LIR_Opr index_op = idx.result();
1833 
1834   LIR_Address* addr;
1835   if (index_op->is_constant()) {
1836     assert(log2_scale == 0, "must not have a scale");
1837     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
1838   } else {
1839 #ifdef X86
1840 #ifdef _LP64
1841     if (!index_op->is_illegal() && index_op->type() == T_INT) {
1842       LIR_Opr tmp = new_pointer_register();
1843       __ convert(Bytecodes::_i2l, index_op, tmp);
1844       index_op = tmp;
1845     }
1846 #endif
1847     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
1848 #else
1849     if (index_op->is_illegal() || log2_scale == 0) {
1850 #ifdef _LP64
1851       if (!index_op->is_illegal() && index_op->type() == T_INT) {
1852         LIR_Opr tmp = new_pointer_register();
1853         __ convert(Bytecodes::_i2l, index_op, tmp);
1854         index_op = tmp;
1855       }
1856 #endif
1857       addr = new LIR_Address(base_op, index_op, dst_type);
1858     } else {
1859       LIR_Opr tmp = new_pointer_register();
1860       __ shift_left(index_op, log2_scale, tmp);
1861       addr = new LIR_Address(base_op, tmp, dst_type);
1862     }
1863 #endif
1864   }
1865 
1866   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
1867     __ unaligned_move(addr, reg);
1868   } else {
1869     __ move(addr, reg);
1870   }
1871 }
1872 
1873 
1874 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
1875   int  log2_scale = 0;
1876   BasicType type = x->basic_type();
1877 
1878   if (x->has_index()) {
1879     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
1880     log2_scale = x->log2_scale();
1881   }
1882 
1883   LIRItem base(x->base(), this);
1884   LIRItem value(x->value(), this);
1885   LIRItem idx(this);
1886 
1887   base.load_item();
1888   if (x->has_index()) {
1889     idx.set_instruction(x->index());
1890     idx.load_item();
1891   }
1892 
1893   if (type == T_BYTE || type == T_BOOLEAN) {
1894     value.load_byte_item();
1895   } else {
1896     value.load_item();
1897   }
1898 
1899   set_no_result(x);
1900 
1901   LIR_Opr base_op = base.result();
1902 #ifndef _LP64
1903   if (x->base()->type()->tag() == longTag) {
1904     base_op = new_register(T_INT);
1905     __ convert(Bytecodes::_l2i, base.result(), base_op);
1906   } else {
1907     assert(x->base()->type()->tag() == intTag, "must be");
1908   }
1909 #endif
1910 
1911   LIR_Opr index_op = idx.result();
1912   if (log2_scale != 0) {
1913     // temporary fix (platform dependent code without shift on Intel would be better)
1914     index_op = new_pointer_register();
1915 #ifdef _LP64
1916     if(idx.result()->type() == T_INT) {
1917       __ convert(Bytecodes::_i2l, idx.result(), index_op);
1918     } else {
1919 #endif
1920       __ move(idx.result(), index_op);
1921 #ifdef _LP64
1922     }
1923 #endif
1924     __ shift_left(index_op, log2_scale, index_op);
1925   }
1926 #ifdef _LP64
1927   else if(!index_op->is_illegal() && index_op->type() == T_INT) {
1928     LIR_Opr tmp = new_pointer_register();
1929     __ convert(Bytecodes::_i2l, index_op, tmp);
1930     index_op = tmp;
1931   }
1932 #endif
1933 
1934   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
1935   __ move(value.result(), addr);
1936 }
1937 
1938 
1939 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
1940   BasicType type = x->basic_type();
1941   LIRItem src(x->object(), this);
1942   LIRItem off(x->offset(), this);
1943 
1944   off.load_item();
1945   src.load_item();
1946 
1947   LIR_Opr reg = reg = rlock_result(x, x->basic_type());
1948 
1949   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
1950   get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
1951   if (x->is_volatile() && os::is_MP()) __ membar();
1952 }
1953 
1954 
1955 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
1956   BasicType type = x->basic_type();
1957   LIRItem src(x->object(), this);
1958   LIRItem off(x->offset(), this);
1959   LIRItem data(x->value(), this);
1960 
1961   src.load_item();
1962   if (type == T_BOOLEAN || type == T_BYTE) {
1963     data.load_byte_item();
1964   } else {
1965     data.load_item();
1966   }
1967   off.load_item();
1968 
1969   set_no_result(x);
1970 
1971   if (x->is_volatile() && os::is_MP()) __ membar_release();
1972   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
1973 }
1974 
1975 
1976 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
1977   LIRItem src(x->object(), this);
1978   LIRItem off(x->offset(), this);
1979 
1980   src.load_item();
1981   if (off.is_constant() && can_inline_as_constant(x->offset())) {
1982     // let it be a constant
1983     off.dont_load_item();
1984   } else {
1985     off.load_item();
1986   }
1987 
1988   set_no_result(x);
1989 
1990   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
1991   __ prefetch(addr, is_store);
1992 }
1993 
1994 
1995 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
1996   do_UnsafePrefetch(x, false);
1997 }
1998 
1999 
2000 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2001   do_UnsafePrefetch(x, true);
2002 }
2003 
2004 
2005 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2006   int lng = x->length();
2007 
2008   for (int i = 0; i < lng; i++) {
2009     SwitchRange* one_range = x->at(i);
2010     int low_key = one_range->low_key();
2011     int high_key = one_range->high_key();
2012     BlockBegin* dest = one_range->sux();
2013     if (low_key == high_key) {
2014       __ cmp(lir_cond_equal, value, low_key);
2015       __ branch(lir_cond_equal, T_INT, dest);
2016     } else if (high_key - low_key == 1) {
2017       __ cmp(lir_cond_equal, value, low_key);
2018       __ branch(lir_cond_equal, T_INT, dest);
2019       __ cmp(lir_cond_equal, value, high_key);
2020       __ branch(lir_cond_equal, T_INT, dest);
2021     } else {
2022       LabelObj* L = new LabelObj();
2023       __ cmp(lir_cond_less, value, low_key);
2024       __ branch(lir_cond_less, L->label());
2025       __ cmp(lir_cond_lessEqual, value, high_key);
2026       __ branch(lir_cond_lessEqual, T_INT, dest);
2027       __ branch_destination(L->label());
2028     }
2029   }
2030   __ jump(default_sux);
2031 }
2032 
2033 
2034 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2035   SwitchRangeList* res = new SwitchRangeList();
2036   int len = x->length();
2037   if (len > 0) {
2038     BlockBegin* sux = x->sux_at(0);
2039     int key = x->lo_key();
2040     BlockBegin* default_sux = x->default_sux();
2041     SwitchRange* range = new SwitchRange(key, sux);
2042     for (int i = 0; i < len; i++, key++) {
2043       BlockBegin* new_sux = x->sux_at(i);
2044       if (sux == new_sux) {
2045         // still in same range
2046         range->set_high_key(key);
2047       } else {
2048         // skip tests which explicitly dispatch to the default
2049         if (sux != default_sux) {
2050           res->append(range);
2051         }
2052         range = new SwitchRange(key, new_sux);
2053       }
2054       sux = new_sux;
2055     }
2056     if (res->length() == 0 || res->last() != range)  res->append(range);
2057   }
2058   return res;
2059 }
2060 
2061 
2062 // we expect the keys to be sorted by increasing value
2063 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2064   SwitchRangeList* res = new SwitchRangeList();
2065   int len = x->length();
2066   if (len > 0) {
2067     BlockBegin* default_sux = x->default_sux();
2068     int key = x->key_at(0);
2069     BlockBegin* sux = x->sux_at(0);
2070     SwitchRange* range = new SwitchRange(key, sux);
2071     for (int i = 1; i < len; i++) {
2072       int new_key = x->key_at(i);
2073       BlockBegin* new_sux = x->sux_at(i);
2074       if (key+1 == new_key && sux == new_sux) {
2075         // still in same range
2076         range->set_high_key(new_key);
2077       } else {
2078         // skip tests which explicitly dispatch to the default
2079         if (range->sux() != default_sux) {
2080           res->append(range);
2081         }
2082         range = new SwitchRange(new_key, new_sux);
2083       }
2084       key = new_key;
2085       sux = new_sux;
2086     }
2087     if (res->length() == 0 || res->last() != range)  res->append(range);
2088   }
2089   return res;
2090 }
2091 
2092 
2093 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2094   LIRItem tag(x->tag(), this);
2095   tag.load_item();
2096   set_no_result(x);
2097 
2098   if (x->is_safepoint()) {
2099     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2100   }
2101 
2102   // move values into phi locations
2103   move_to_phi(x->state());
2104 
2105   int lo_key = x->lo_key();
2106   int hi_key = x->hi_key();
2107   int len = x->length();
2108   CodeEmitInfo* info = state_for(x, x->state());
2109   LIR_Opr value = tag.result();
2110   if (UseTableRanges) {
2111     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2112   } else {
2113     for (int i = 0; i < len; i++) {
2114       __ cmp(lir_cond_equal, value, i + lo_key);
2115       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2116     }
2117     __ jump(x->default_sux());
2118   }
2119 }
2120 
2121 
2122 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2123   LIRItem tag(x->tag(), this);
2124   tag.load_item();
2125   set_no_result(x);
2126 
2127   if (x->is_safepoint()) {
2128     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2129   }
2130 
2131   // move values into phi locations
2132   move_to_phi(x->state());
2133 
2134   LIR_Opr value = tag.result();
2135   if (UseTableRanges) {
2136     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2137   } else {
2138     int len = x->length();
2139     for (int i = 0; i < len; i++) {
2140       __ cmp(lir_cond_equal, value, x->key_at(i));
2141       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2142     }
2143     __ jump(x->default_sux());
2144   }
2145 }
2146 
2147 
2148 void LIRGenerator::do_Goto(Goto* x) {
2149   set_no_result(x);
2150 
2151   if (block()->next()->as_OsrEntry()) {
2152     // need to free up storage used for OSR entry point
2153     LIR_Opr osrBuffer = block()->next()->operand();
2154     BasicTypeList signature;
2155     signature.append(T_INT);
2156     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2157     __ move(osrBuffer, cc->args()->at(0));
2158     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2159                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2160   }
2161 
2162   if (x->is_safepoint()) {
2163     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2164 
2165     // increment backedge counter if needed
2166     increment_backedge_counter(state_for(x, state));
2167 
2168     CodeEmitInfo* safepoint_info = state_for(x, state);
2169     __ safepoint(safepoint_poll_register(), safepoint_info);
2170   }
2171 
2172   // emit phi-instruction move after safepoint since this simplifies
2173   // describing the state as the safepoint.
2174   move_to_phi(x->state());
2175 
2176   __ jump(x->default_sux());
2177 }
2178 
2179 
2180 void LIRGenerator::do_Base(Base* x) {
2181   __ std_entry(LIR_OprFact::illegalOpr);
2182   // Emit moves from physical registers / stack slots to virtual registers
2183   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2184   IRScope* irScope = compilation()->hir()->top_scope();
2185   int java_index = 0;
2186   for (int i = 0; i < args->length(); i++) {
2187     LIR_Opr src = args->at(i);
2188     assert(!src->is_illegal(), "check");
2189     BasicType t = src->type();
2190 
2191     // Types which are smaller than int are passed as int, so
2192     // correct the type which passed.
2193     switch (t) {
2194     case T_BYTE:
2195     case T_BOOLEAN:
2196     case T_SHORT:
2197     case T_CHAR:
2198       t = T_INT;
2199       break;
2200     }
2201 
2202     LIR_Opr dest = new_register(t);
2203     __ move(src, dest);
2204 
2205     // Assign new location to Local instruction for this local
2206     Local* local = x->state()->local_at(java_index)->as_Local();
2207     assert(local != NULL, "Locals for incoming arguments must have been created");
2208     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2209     local->set_operand(dest);
2210     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2211     java_index += type2size[t];
2212   }
2213 
2214   if (compilation()->env()->dtrace_method_probes()) {
2215     BasicTypeList signature;
2216     signature.append(T_INT);    // thread
2217     signature.append(T_OBJECT); // methodOop
2218     LIR_OprList* args = new LIR_OprList();
2219     args->append(getThreadPointer());
2220     LIR_Opr meth = new_register(T_OBJECT);
2221     __ oop2reg(method()->constant_encoding(), meth);
2222     args->append(meth);
2223     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2224   }
2225 
2226   if (method()->is_synchronized()) {
2227     LIR_Opr obj;
2228     if (method()->is_static()) {
2229       obj = new_register(T_OBJECT);
2230       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2231     } else {
2232       Local* receiver = x->state()->local_at(0)->as_Local();
2233       assert(receiver != NULL, "must already exist");
2234       obj = receiver->operand();
2235     }
2236     assert(obj->is_valid(), "must be valid");
2237 
2238     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2239       LIR_Opr lock = new_register(T_INT);
2240       __ load_stack_address_monitor(0, lock);
2241 
2242       CodeEmitInfo* info = new CodeEmitInfo(SynchronizationEntryBCI, scope()->start()->state(), NULL);
2243       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2244 
2245       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2246       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2247     }
2248   }
2249 
2250   // increment invocation counters if needed
2251   increment_invocation_counter(new CodeEmitInfo(0, scope()->start()->state(), NULL));
2252 
2253   // all blocks with a successor must end with an unconditional jump
2254   // to the successor even if they are consecutive
2255   __ jump(x->default_sux());
2256 }
2257 
2258 
2259 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2260   // construct our frame and model the production of incoming pointer
2261   // to the OSR buffer.
2262   __ osr_entry(LIR_Assembler::osrBufferPointer());
2263   LIR_Opr result = rlock_result(x);
2264   __ move(LIR_Assembler::osrBufferPointer(), result);
2265 }
2266 
2267 
2268 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2269   int i = (x->has_receiver() || x->is_invokedynamic()) ? 1 : 0;
2270   for (; i < args->length(); i++) {
2271     LIRItem* param = args->at(i);
2272     LIR_Opr loc = arg_list->at(i);
2273     if (loc->is_register()) {
2274       param->load_item_force(loc);
2275     } else {
2276       LIR_Address* addr = loc->as_address_ptr();
2277       param->load_for_store(addr->type());
2278       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2279         __ unaligned_move(param->result(), addr);
2280       } else {
2281         __ move(param->result(), addr);
2282       }
2283     }
2284   }
2285 
2286   if (x->has_receiver()) {
2287     LIRItem* receiver = args->at(0);
2288     LIR_Opr loc = arg_list->at(0);
2289     if (loc->is_register()) {
2290       receiver->load_item_force(loc);
2291     } else {
2292       assert(loc->is_address(), "just checking");
2293       receiver->load_for_store(T_OBJECT);
2294       __ move(receiver->result(), loc);
2295     }
2296   }
2297 }
2298 
2299 
2300 // Visits all arguments, returns appropriate items without loading them
2301 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2302   LIRItemList* argument_items = new LIRItemList();
2303   if (x->has_receiver()) {
2304     LIRItem* receiver = new LIRItem(x->receiver(), this);
2305     argument_items->append(receiver);
2306   }
2307   if (x->is_invokedynamic()) {
2308     // Insert a dummy for the synthetic MethodHandle argument.
2309     argument_items->append(NULL);
2310   }
2311   int idx = x->has_receiver() ? 1 : 0;
2312   for (int i = 0; i < x->number_of_arguments(); i++) {
2313     LIRItem* param = new LIRItem(x->argument_at(i), this);
2314     argument_items->append(param);
2315     idx += (param->type()->is_double_word() ? 2 : 1);
2316   }
2317   return argument_items;
2318 }
2319 
2320 
2321 // The invoke with receiver has following phases:
2322 //   a) traverse and load/lock receiver;
2323 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2324 //   c) push receiver on stack
2325 //   d) load each of the items and push on stack
2326 //   e) unlock receiver
2327 //   f) move receiver into receiver-register %o0
2328 //   g) lock result registers and emit call operation
2329 //
2330 // Before issuing a call, we must spill-save all values on stack
2331 // that are in caller-save register. "spill-save" moves thos registers
2332 // either in a free callee-save register or spills them if no free
2333 // callee save register is available.
2334 //
2335 // The problem is where to invoke spill-save.
2336 // - if invoked between e) and f), we may lock callee save
2337 //   register in "spill-save" that destroys the receiver register
2338 //   before f) is executed
2339 // - if we rearange the f) to be earlier, by loading %o0, it
2340 //   may destroy a value on the stack that is currently in %o0
2341 //   and is waiting to be spilled
2342 // - if we keep the receiver locked while doing spill-save,
2343 //   we cannot spill it as it is spill-locked
2344 //
2345 void LIRGenerator::do_Invoke(Invoke* x) {
2346   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2347 
2348   LIR_OprList* arg_list = cc->args();
2349   LIRItemList* args = invoke_visit_arguments(x);
2350   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2351 
2352   // setup result register
2353   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2354   if (x->type() != voidType) {
2355     result_register = result_register_for(x->type());
2356   }
2357 
2358   CodeEmitInfo* info = state_for(x, x->state());
2359 
2360   // invokedynamics can deoptimize.
2361   CodeEmitInfo* deopt_info = x->is_invokedynamic() ? state_for(x, x->state_before()) : NULL;
2362 
2363   invoke_load_arguments(x, args, arg_list);
2364 
2365   if (x->has_receiver()) {
2366     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2367     receiver = args->at(0)->result();
2368   }
2369 
2370   // emit invoke code
2371   bool optimized = x->target_is_loaded() && x->target_is_final();
2372   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2373 
2374   switch (x->code()) {
2375     case Bytecodes::_invokestatic:
2376       __ call_static(x->target(), result_register,
2377                      SharedRuntime::get_resolve_static_call_stub(),
2378                      arg_list, info);
2379       break;
2380     case Bytecodes::_invokespecial:
2381     case Bytecodes::_invokevirtual:
2382     case Bytecodes::_invokeinterface:
2383       // for final target we still produce an inline cache, in order
2384       // to be able to call mixed mode
2385       if (x->code() == Bytecodes::_invokespecial || optimized) {
2386         __ call_opt_virtual(x->target(), receiver, result_register,
2387                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2388                             arg_list, info);
2389       } else if (x->vtable_index() < 0) {
2390         __ call_icvirtual(x->target(), receiver, result_register,
2391                           SharedRuntime::get_resolve_virtual_call_stub(),
2392                           arg_list, info);
2393       } else {
2394         int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2395         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2396         __ call_virtual(x->target(), receiver, result_register, vtable_offset, arg_list, info);
2397       }
2398       break;
2399     case Bytecodes::_invokedynamic: {
2400       ciBytecodeStream bcs(x->scope()->method());
2401       bcs.force_bci(x->bci());
2402       assert(bcs.cur_bc() == Bytecodes::_invokedynamic, "wrong stream");
2403       ciCPCache* cpcache = bcs.get_cpcache();
2404 
2405       // Get CallSite offset from constant pool cache pointer.
2406       int index = bcs.get_method_index();
2407       size_t call_site_offset = cpcache->get_f1_offset(index);
2408 
2409       // If this invokedynamic call site hasn't been executed yet in
2410       // the interpreter, the CallSite object in the constant pool
2411       // cache is still null and we need to deoptimize.
2412       if (cpcache->is_f1_null_at(index)) {
2413         // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
2414         // clone all handlers.  This is handled transparently in other
2415         // places by the CodeEmitInfo cloning logic but is handled
2416         // specially here because a stub isn't being used.
2417         x->set_exception_handlers(new XHandlers(x->exception_handlers()));
2418 
2419         DeoptimizeStub* deopt_stub = new DeoptimizeStub(deopt_info);
2420         __ jump(deopt_stub);
2421       }
2422 
2423       // Use the receiver register for the synthetic MethodHandle
2424       // argument.
2425       receiver = LIR_Assembler::receiverOpr();
2426       LIR_Opr tmp = new_register(objectType);
2427 
2428       // Load CallSite object from constant pool cache.
2429       __ oop2reg(cpcache->constant_encoding(), tmp);
2430       __ load(new LIR_Address(tmp, call_site_offset, T_OBJECT), tmp);
2431 
2432       // Load target MethodHandle from CallSite object.
2433       __ load(new LIR_Address(tmp, java_dyn_CallSite::target_offset_in_bytes(), T_OBJECT), receiver);
2434 
2435       __ call_dynamic(x->target(), receiver, result_register,
2436                       SharedRuntime::get_resolve_opt_virtual_call_stub(),
2437                       arg_list, info);
2438       break;
2439     }
2440     default:
2441       ShouldNotReachHere();
2442       break;
2443   }
2444 
2445   if (x->type()->is_float() || x->type()->is_double()) {
2446     // Force rounding of results from non-strictfp when in strictfp
2447     // scope (or when we don't know the strictness of the callee, to
2448     // be safe.)
2449     if (method()->is_strict()) {
2450       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2451         result_register = round_item(result_register);
2452       }
2453     }
2454   }
2455 
2456   if (result_register->is_valid()) {
2457     LIR_Opr result = rlock_result(x);
2458     __ move(result_register, result);
2459   }
2460 }
2461 
2462 
2463 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2464   assert(x->number_of_arguments() == 1, "wrong type");
2465   LIRItem value       (x->argument_at(0), this);
2466   LIR_Opr reg = rlock_result(x);
2467   value.load_item();
2468   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2469   __ move(tmp, reg);
2470 }
2471 
2472 
2473 
2474 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2475 void LIRGenerator::do_IfOp(IfOp* x) {
2476 #ifdef ASSERT
2477   {
2478     ValueTag xtag = x->x()->type()->tag();
2479     ValueTag ttag = x->tval()->type()->tag();
2480     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2481     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2482     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2483   }
2484 #endif
2485 
2486   LIRItem left(x->x(), this);
2487   LIRItem right(x->y(), this);
2488   left.load_item();
2489   if (can_inline_as_constant(right.value())) {
2490     right.dont_load_item();
2491   } else {
2492     right.load_item();
2493   }
2494 
2495   LIRItem t_val(x->tval(), this);
2496   LIRItem f_val(x->fval(), this);
2497   t_val.dont_load_item();
2498   f_val.dont_load_item();
2499   LIR_Opr reg = rlock_result(x);
2500 
2501   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2502   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg);
2503 }
2504 
2505 
2506 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2507   switch (x->id()) {
2508   case vmIntrinsics::_intBitsToFloat      :
2509   case vmIntrinsics::_doubleToRawLongBits :
2510   case vmIntrinsics::_longBitsToDouble    :
2511   case vmIntrinsics::_floatToRawIntBits   : {
2512     do_FPIntrinsics(x);
2513     break;
2514   }
2515 
2516   case vmIntrinsics::_currentTimeMillis: {
2517     assert(x->number_of_arguments() == 0, "wrong type");
2518     LIR_Opr reg = result_register_for(x->type());
2519     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(),
2520                          reg, new LIR_OprList());
2521     LIR_Opr result = rlock_result(x);
2522     __ move(reg, result);
2523     break;
2524   }
2525 
2526   case vmIntrinsics::_nanoTime: {
2527     assert(x->number_of_arguments() == 0, "wrong type");
2528     LIR_Opr reg = result_register_for(x->type());
2529     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(),
2530                          reg, new LIR_OprList());
2531     LIR_Opr result = rlock_result(x);
2532     __ move(reg, result);
2533     break;
2534   }
2535 
2536   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2537   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2538   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
2539 
2540   case vmIntrinsics::_dlog:           // fall through
2541   case vmIntrinsics::_dlog10:         // fall through
2542   case vmIntrinsics::_dabs:           // fall through
2543   case vmIntrinsics::_dsqrt:          // fall through
2544   case vmIntrinsics::_dtan:           // fall through
2545   case vmIntrinsics::_dsin :          // fall through
2546   case vmIntrinsics::_dcos :          do_MathIntrinsic(x); break;
2547   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2548 
2549   // java.nio.Buffer.checkIndex
2550   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
2551 
2552   case vmIntrinsics::_compareAndSwapObject:
2553     do_CompareAndSwap(x, objectType);
2554     break;
2555   case vmIntrinsics::_compareAndSwapInt:
2556     do_CompareAndSwap(x, intType);
2557     break;
2558   case vmIntrinsics::_compareAndSwapLong:
2559     do_CompareAndSwap(x, longType);
2560     break;
2561 
2562     // sun.misc.AtomicLongCSImpl.attemptUpdate
2563   case vmIntrinsics::_attemptUpdate:
2564     do_AttemptUpdate(x);
2565     break;
2566 
2567   default: ShouldNotReachHere(); break;
2568   }
2569 }
2570 
2571 
2572 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
2573   // Need recv in a temporary register so it interferes with the other temporaries
2574   LIR_Opr recv = LIR_OprFact::illegalOpr;
2575   LIR_Opr mdo = new_register(T_OBJECT);
2576   LIR_Opr tmp = new_register(T_INT);
2577   if (x->recv() != NULL) {
2578     LIRItem value(x->recv(), this);
2579     value.load_item();
2580     recv = new_register(T_OBJECT);
2581     __ move(value.result(), recv);
2582   }
2583   __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder());
2584 }
2585 
2586 
2587 void LIRGenerator::do_ProfileCounter(ProfileCounter* x) {
2588   LIRItem mdo(x->mdo(), this);
2589   mdo.load_item();
2590 
2591   increment_counter(new LIR_Address(mdo.result(), x->offset(), T_INT), x->increment());
2592 }
2593 
2594 
2595 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
2596   LIRItemList args(1);
2597   LIRItem value(arg1, this);
2598   args.append(&value);
2599   BasicTypeList signature;
2600   signature.append(as_BasicType(arg1->type()));
2601 
2602   return call_runtime(&signature, &args, entry, result_type, info);
2603 }
2604 
2605 
2606 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
2607   LIRItemList args(2);
2608   LIRItem value1(arg1, this);
2609   LIRItem value2(arg2, this);
2610   args.append(&value1);
2611   args.append(&value2);
2612   BasicTypeList signature;
2613   signature.append(as_BasicType(arg1->type()));
2614   signature.append(as_BasicType(arg2->type()));
2615 
2616   return call_runtime(&signature, &args, entry, result_type, info);
2617 }
2618 
2619 
2620 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
2621                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
2622   // get a result register
2623   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
2624   LIR_Opr result = LIR_OprFact::illegalOpr;
2625   if (result_type->tag() != voidTag) {
2626     result = new_register(result_type);
2627     phys_reg = result_register_for(result_type);
2628   }
2629 
2630   // move the arguments into the correct location
2631   CallingConvention* cc = frame_map()->c_calling_convention(signature);
2632   assert(cc->length() == args->length(), "argument mismatch");
2633   for (int i = 0; i < args->length(); i++) {
2634     LIR_Opr arg = args->at(i);
2635     LIR_Opr loc = cc->at(i);
2636     if (loc->is_register()) {
2637       __ move(arg, loc);
2638     } else {
2639       LIR_Address* addr = loc->as_address_ptr();
2640 //           if (!can_store_as_constant(arg)) {
2641 //             LIR_Opr tmp = new_register(arg->type());
2642 //             __ move(arg, tmp);
2643 //             arg = tmp;
2644 //           }
2645       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2646         __ unaligned_move(arg, addr);
2647       } else {
2648         __ move(arg, addr);
2649       }
2650     }
2651   }
2652 
2653   if (info) {
2654     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
2655   } else {
2656     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
2657   }
2658   if (result->is_valid()) {
2659     __ move(phys_reg, result);
2660   }
2661   return result;
2662 }
2663 
2664 
2665 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
2666                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
2667   // get a result register
2668   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
2669   LIR_Opr result = LIR_OprFact::illegalOpr;
2670   if (result_type->tag() != voidTag) {
2671     result = new_register(result_type);
2672     phys_reg = result_register_for(result_type);
2673   }
2674 
2675   // move the arguments into the correct location
2676   CallingConvention* cc = frame_map()->c_calling_convention(signature);
2677 
2678   assert(cc->length() == args->length(), "argument mismatch");
2679   for (int i = 0; i < args->length(); i++) {
2680     LIRItem* arg = args->at(i);
2681     LIR_Opr loc = cc->at(i);
2682     if (loc->is_register()) {
2683       arg->load_item_force(loc);
2684     } else {
2685       LIR_Address* addr = loc->as_address_ptr();
2686       arg->load_for_store(addr->type());
2687       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2688         __ unaligned_move(arg->result(), addr);
2689       } else {
2690         __ move(arg->result(), addr);
2691       }
2692     }
2693   }
2694 
2695   if (info) {
2696     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
2697   } else {
2698     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
2699   }
2700   if (result->is_valid()) {
2701     __ move(phys_reg, result);
2702   }
2703   return result;
2704 }
2705 
2706 
2707 
2708 void LIRGenerator::increment_invocation_counter(CodeEmitInfo* info, bool backedge) {
2709 #ifdef TIERED
2710   if (_compilation->env()->comp_level() == CompLevel_fast_compile &&
2711       (method()->code_size() >= Tier1BytecodeLimit || backedge)) {
2712     int limit = InvocationCounter::Tier1InvocationLimit;
2713     int offset = in_bytes(methodOopDesc::invocation_counter_offset() +
2714                           InvocationCounter::counter_offset());
2715     if (backedge) {
2716       limit = InvocationCounter::Tier1BackEdgeLimit;
2717       offset = in_bytes(methodOopDesc::backedge_counter_offset() +
2718                         InvocationCounter::counter_offset());
2719     }
2720 
2721     LIR_Opr meth = new_register(T_OBJECT);
2722     __ oop2reg(method()->constant_encoding(), meth);
2723     LIR_Opr result = increment_and_return_counter(meth, offset, InvocationCounter::count_increment);
2724     __ cmp(lir_cond_aboveEqual, result, LIR_OprFact::intConst(limit));
2725     CodeStub* overflow = new CounterOverflowStub(info, info->bci());
2726     __ branch(lir_cond_aboveEqual, T_INT, overflow);
2727     __ branch_destination(overflow->continuation());
2728   }
2729 #endif
2730 }