1 /*
   2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_relocInfo.cpp.incl"
  27 
  28 
  29 const RelocationHolder RelocationHolder::none; // its type is relocInfo::none
  30 
  31 
  32 // Implementation of relocInfo
  33 
  34 #ifdef ASSERT
  35 relocInfo::relocInfo(relocType t, int off, int f) {
  36   assert(t != data_prefix_tag, "cannot build a prefix this way");
  37   assert((t & type_mask) == t, "wrong type");
  38   assert((f & format_mask) == f, "wrong format");
  39   assert(off >= 0 && off < offset_limit(), "offset out off bounds");
  40   assert((off & (offset_unit-1)) == 0, "misaligned offset");
  41   (*this) = relocInfo(t, RAW_BITS, off, f);
  42 }
  43 #endif
  44 
  45 void relocInfo::initialize(CodeSection* dest, Relocation* reloc) {
  46   relocInfo* data = this+1;  // here's where the data might go
  47   dest->set_locs_end(data);  // sync end: the next call may read dest.locs_end
  48   reloc->pack_data_to(dest); // maybe write data into locs, advancing locs_end
  49   relocInfo* data_limit = dest->locs_end();
  50   if (data_limit > data) {
  51     relocInfo suffix = (*this);
  52     data_limit = this->finish_prefix((short*) data_limit);
  53     // Finish up with the suffix.  (Hack note: pack_data_to might edit this.)
  54     *data_limit = suffix;
  55     dest->set_locs_end(data_limit+1);
  56   }
  57 }
  58 
  59 relocInfo* relocInfo::finish_prefix(short* prefix_limit) {
  60   assert(sizeof(relocInfo) == sizeof(short), "change this code");
  61   short* p = (short*)(this+1);
  62   assert(prefix_limit >= p, "must be a valid span of data");
  63   int plen = prefix_limit - p;
  64   if (plen == 0) {
  65     debug_only(_value = 0xFFFF);
  66     return this;                         // no data: remove self completely
  67   }
  68   if (plen == 1 && fits_into_immediate(p[0])) {
  69     (*this) = immediate_relocInfo(p[0]); // move data inside self
  70     return this+1;
  71   }
  72   // cannot compact, so just update the count and return the limit pointer
  73   (*this) = prefix_relocInfo(plen);   // write new datalen
  74   assert(data() + datalen() == prefix_limit, "pointers must line up");
  75   return (relocInfo*)prefix_limit;
  76 }
  77 
  78 
  79 void relocInfo::set_type(relocType t) {
  80   int old_offset = addr_offset();
  81   int old_format = format();
  82   (*this) = relocInfo(t, old_offset, old_format);
  83   assert(type()==(int)t, "sanity check");
  84   assert(addr_offset()==old_offset, "sanity check");
  85   assert(format()==old_format, "sanity check");
  86 }
  87 
  88 
  89 void relocInfo::set_format(int f) {
  90   int old_offset = addr_offset();
  91   assert((f & format_mask) == f, "wrong format");
  92   _value = (_value & ~(format_mask << offset_width)) | (f << offset_width);
  93   assert(addr_offset()==old_offset, "sanity check");
  94 }
  95 
  96 
  97 void relocInfo::change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type) {
  98   bool found = false;
  99   while (itr->next() && !found) {
 100     if (itr->addr() == pc) {
 101       assert(itr->type()==old_type, "wrong relocInfo type found");
 102       itr->current()->set_type(new_type);
 103       found=true;
 104     }
 105   }
 106   assert(found, "no relocInfo found for pc");
 107 }
 108 
 109 
 110 void relocInfo::remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type) {
 111   change_reloc_info_for_address(itr, pc, old_type, none);
 112 }
 113 
 114 
 115 // ----------------------------------------------------------------------------------------------------
 116 // Implementation of RelocIterator
 117 
 118 void RelocIterator::initialize(CodeBlob* cb, address begin, address limit) {
 119   initialize_misc();
 120 
 121   if (cb == NULL && begin != NULL) {
 122     // allow CodeBlob to be deduced from beginning address
 123     cb = CodeCache::find_blob(begin);
 124   }
 125   assert(cb != NULL, "must be able to deduce nmethod from other arguments");
 126 
 127   _code    = cb;
 128   _current = cb->relocation_begin()-1;
 129   _end     = cb->relocation_end();
 130   _addr    = (address) cb->instructions_begin();
 131 
 132   assert(!has_current(), "just checking");
 133   address code_end = cb->instructions_end();
 134 
 135   assert(begin == NULL || begin >= cb->instructions_begin(), "in bounds");
 136  // FIX THIS  assert(limit == NULL || limit <= code_end,     "in bounds");
 137   set_limits(begin, limit);
 138 }
 139 
 140 
 141 RelocIterator::RelocIterator(CodeSection* cs, address begin, address limit) {
 142   initialize_misc();
 143 
 144   _current = cs->locs_start()-1;
 145   _end     = cs->locs_end();
 146   _addr    = cs->start();
 147   _code    = NULL; // Not cb->blob();
 148 
 149   CodeBuffer* cb = cs->outer();
 150   assert((int)SECT_LIMIT == CodeBuffer::SECT_LIMIT, "my copy must be equal");
 151   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 152     _section_start[n] = cb->code_section(n)->start();
 153   }
 154 
 155   assert(!has_current(), "just checking");
 156 
 157   assert(begin == NULL || begin >= cs->start(), "in bounds");
 158   assert(limit == NULL || limit <= cs->end(),   "in bounds");
 159   set_limits(begin, limit);
 160 }
 161 
 162 
 163 enum { indexCardSize = 128 };
 164 struct RelocIndexEntry {
 165   jint addr_offset;          // offset from header_end of an addr()
 166   jint reloc_offset;         // offset from header_end of a relocInfo (prefix)
 167 };
 168 
 169 
 170 static inline int num_cards(int code_size) {
 171   return (code_size-1) / indexCardSize;
 172 }
 173 
 174 
 175 int RelocIterator::locs_and_index_size(int code_size, int locs_size) {
 176   if (!UseRelocIndex)  return locs_size;   // no index
 177   code_size = round_to(code_size, oopSize);
 178   locs_size = round_to(locs_size, oopSize);
 179   int index_size = num_cards(code_size) * sizeof(RelocIndexEntry);
 180   // format of indexed relocs:
 181   //   relocation_begin:   relocInfo ...
 182   //   index:              (addr,reloc#) ...
 183   //                       indexSize           :relocation_end
 184   return locs_size + index_size + BytesPerInt;
 185 }
 186 
 187 
 188 void RelocIterator::create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end) {
 189   address relocation_begin = (address)dest_begin;
 190   address relocation_end   = (address)dest_end;
 191   int     total_size       = relocation_end - relocation_begin;
 192   int     locs_size        = dest_count * sizeof(relocInfo);
 193   if (!UseRelocIndex) {
 194     Copy::fill_to_bytes(relocation_begin + locs_size, total_size-locs_size, 0);
 195     return;
 196   }
 197   int     index_size       = total_size - locs_size - BytesPerInt;      // find out how much space is left
 198   int     ncards           = index_size / sizeof(RelocIndexEntry);
 199   assert(total_size == locs_size + index_size + BytesPerInt, "checkin'");
 200   assert(index_size >= 0 && index_size % sizeof(RelocIndexEntry) == 0, "checkin'");
 201   jint*   index_size_addr  = (jint*)relocation_end - 1;
 202 
 203   assert(sizeof(jint) == BytesPerInt, "change this code");
 204 
 205   *index_size_addr = index_size;
 206   if (index_size != 0) {
 207     assert(index_size > 0, "checkin'");
 208 
 209     RelocIndexEntry* index = (RelocIndexEntry *)(relocation_begin + locs_size);
 210     assert(index == (RelocIndexEntry*)index_size_addr - ncards, "checkin'");
 211 
 212     // walk over the relocations, and fill in index entries as we go
 213     RelocIterator iter;
 214     const address    initial_addr    = NULL;
 215     relocInfo* const initial_current = dest_begin - 1;  // biased by -1 like elsewhere
 216 
 217     iter._code    = NULL;
 218     iter._addr    = initial_addr;
 219     iter._limit   = (address)(intptr_t)(ncards * indexCardSize);
 220     iter._current = initial_current;
 221     iter._end     = dest_begin + dest_count;
 222 
 223     int i = 0;
 224     address next_card_addr = (address)indexCardSize;
 225     int addr_offset = 0;
 226     int reloc_offset = 0;
 227     while (true) {
 228       // Checkpoint the iterator before advancing it.
 229       addr_offset  = iter._addr    - initial_addr;
 230       reloc_offset = iter._current - initial_current;
 231       if (!iter.next())  break;
 232       while (iter.addr() >= next_card_addr) {
 233         index[i].addr_offset  = addr_offset;
 234         index[i].reloc_offset = reloc_offset;
 235         i++;
 236         next_card_addr += indexCardSize;
 237       }
 238     }
 239     while (i < ncards) {
 240       index[i].addr_offset  = addr_offset;
 241       index[i].reloc_offset = reloc_offset;
 242       i++;
 243     }
 244   }
 245 }
 246 
 247 
 248 void RelocIterator::set_limits(address begin, address limit) {
 249   int index_size = 0;
 250   if (UseRelocIndex && _code != NULL) {
 251     index_size = ((jint*)_end)[-1];
 252     _end = (relocInfo*)( (address)_end - index_size - BytesPerInt );
 253   }
 254 
 255   _limit = limit;
 256 
 257   // the limit affects this next stuff:
 258   if (begin != NULL) {
 259 #ifdef ASSERT
 260     // In ASSERT mode we do not actually use the index, but simply
 261     // check that its contents would have led us to the right answer.
 262     address addrCheck = _addr;
 263     relocInfo* infoCheck = _current;
 264 #endif // ASSERT
 265     if (index_size > 0) {
 266       // skip ahead
 267       RelocIndexEntry* index       = (RelocIndexEntry*)_end;
 268       RelocIndexEntry* index_limit = (RelocIndexEntry*)((address)index + index_size);
 269       assert(_addr == _code->instructions_begin(), "_addr must be unadjusted");
 270       int card = (begin - _addr) / indexCardSize;
 271       if (card > 0) {
 272         if (index+card-1 < index_limit)  index += card-1;
 273         else                             index = index_limit - 1;
 274 #ifdef ASSERT
 275         addrCheck = _addr    + index->addr_offset;
 276         infoCheck = _current + index->reloc_offset;
 277 #else
 278         // Advance the iterator immediately to the last valid state
 279         // for the previous card.  Calling "next" will then advance
 280         // it to the first item on the required card.
 281         _addr    += index->addr_offset;
 282         _current += index->reloc_offset;
 283 #endif // ASSERT
 284       }
 285     }
 286 
 287     relocInfo* backup;
 288     address    backup_addr;
 289     while (true) {
 290       backup      = _current;
 291       backup_addr = _addr;
 292 #ifdef ASSERT
 293       if (backup == infoCheck) {
 294         assert(backup_addr == addrCheck, "must match"); addrCheck = NULL; infoCheck = NULL;
 295       } else {
 296         assert(addrCheck == NULL || backup_addr <= addrCheck, "must not pass addrCheck");
 297       }
 298 #endif // ASSERT
 299       if (!next() || addr() >= begin) break;
 300     }
 301     assert(addrCheck == NULL || addrCheck == backup_addr, "must have matched addrCheck");
 302     assert(infoCheck == NULL || infoCheck == backup,      "must have matched infoCheck");
 303     // At this point, either we are at the first matching record,
 304     // or else there is no such record, and !has_current().
 305     // In either case, revert to the immediatly preceding state.
 306     _current = backup;
 307     _addr    = backup_addr;
 308     set_has_current(false);
 309   }
 310 }
 311 
 312 
 313 void RelocIterator::set_limit(address limit) {
 314   address code_end = (address)code() + code()->size();
 315   assert(limit == NULL || limit <= code_end, "in bounds");
 316   _limit = limit;
 317 }
 318 
 319 
 320 void PatchingRelocIterator:: prepass() {
 321   // turn breakpoints off during patching
 322   _init_state = (*this);        // save cursor
 323   while (next()) {
 324     if (type() == relocInfo::breakpoint_type) {
 325       breakpoint_reloc()->set_active(false);
 326     }
 327   }
 328   (RelocIterator&)(*this) = _init_state;        // reset cursor for client
 329 }
 330 
 331 
 332 void PatchingRelocIterator:: postpass() {
 333   // turn breakpoints back on after patching
 334   (RelocIterator&)(*this) = _init_state;        // reset cursor again
 335   while (next()) {
 336     if (type() == relocInfo::breakpoint_type) {
 337       breakpoint_Relocation* bpt = breakpoint_reloc();
 338       bpt->set_active(bpt->enabled());
 339     }
 340   }
 341 }
 342 
 343 
 344 // All the strange bit-encodings are in here.
 345 // The idea is to encode relocation data which are small integers
 346 // very efficiently (a single extra halfword).  Larger chunks of
 347 // relocation data need a halfword header to hold their size.
 348 void RelocIterator::advance_over_prefix() {
 349   if (_current->is_datalen()) {
 350     _data    = (short*) _current->data();
 351     _datalen =          _current->datalen();
 352     _current += _datalen + 1;   // skip the embedded data & header
 353   } else {
 354     _databuf = _current->immediate();
 355     _data = &_databuf;
 356     _datalen = 1;
 357     _current++;                 // skip the header
 358   }
 359   // The client will see the following relocInfo, whatever that is.
 360   // It is the reloc to which the preceding data applies.
 361 }
 362 
 363 
 364 address RelocIterator::compute_section_start(int n) const {
 365 // This routine not only computes a section start, but also
 366 // memoizes it for later.
 367 #define CACHE ((RelocIterator*)this)->_section_start[n]
 368   CodeBlob* cb = code();
 369   guarantee(cb != NULL, "must have a code blob");
 370   if (n == CodeBuffer::SECT_INSTS)
 371     return CACHE = cb->instructions_begin();
 372   assert(cb->is_nmethod(), "only nmethods have these sections");
 373   nmethod* nm = (nmethod*) cb;
 374   address res = NULL;
 375   switch (n) {
 376   case CodeBuffer::SECT_STUBS:
 377     res = nm->stub_begin();
 378     break;
 379   case CodeBuffer::SECT_CONSTS:
 380     res = nm->consts_begin();
 381     break;
 382   default:
 383     ShouldNotReachHere();
 384   }
 385   assert(nm->contains(res) || res == nm->instructions_end(), "tame pointer");
 386   CACHE = res;
 387   return res;
 388 #undef CACHE
 389 }
 390 
 391 
 392 Relocation* RelocIterator::reloc() {
 393   // (take the "switch" out-of-line)
 394   relocInfo::relocType t = type();
 395   if (false) {}
 396   #define EACH_TYPE(name)                             \
 397   else if (t == relocInfo::name##_type) {             \
 398     return name##_reloc();                            \
 399   }
 400   APPLY_TO_RELOCATIONS(EACH_TYPE);
 401   #undef EACH_TYPE
 402   assert(t == relocInfo::none, "must be padding");
 403   return new(_rh) Relocation();
 404 }
 405 
 406 
 407 //////// Methods for flyweight Relocation types
 408 
 409 
 410 RelocationHolder RelocationHolder::plus(int offset) const {
 411   if (offset != 0) {
 412     switch (type()) {
 413     case relocInfo::none:
 414       break;
 415     case relocInfo::oop_type:
 416       {
 417         oop_Relocation* r = (oop_Relocation*)reloc();
 418         return oop_Relocation::spec(r->oop_index(), r->offset() + offset);
 419       }
 420     default:
 421       ShouldNotReachHere();
 422     }
 423   }
 424   return (*this);
 425 }
 426 
 427 
 428 void Relocation::guarantee_size() {
 429   guarantee(false, "Make _relocbuf bigger!");
 430 }
 431 
 432     // some relocations can compute their own values
 433 address Relocation::value() {
 434   ShouldNotReachHere();
 435   return NULL;
 436 }
 437 
 438 
 439 void Relocation::set_value(address x) {
 440   ShouldNotReachHere();
 441 }
 442 
 443 
 444 RelocationHolder Relocation::spec_simple(relocInfo::relocType rtype) {
 445   if (rtype == relocInfo::none)  return RelocationHolder::none;
 446   relocInfo ri = relocInfo(rtype, 0);
 447   RelocIterator itr;
 448   itr.set_current(ri);
 449   itr.reloc();
 450   return itr._rh;
 451 }
 452 
 453 
 454 static inline bool is_index(intptr_t index) {
 455   return 0 < index && index < os::vm_page_size();
 456 }
 457 
 458 
 459 int32_t Relocation::runtime_address_to_index(address runtime_address) {
 460   assert(!is_index((intptr_t)runtime_address), "must not look like an index");
 461 
 462   if (runtime_address == NULL)  return 0;
 463 
 464   StubCodeDesc* p = StubCodeDesc::desc_for(runtime_address);
 465   if (p != NULL && p->begin() == runtime_address) {
 466     assert(is_index(p->index()), "there must not be too many stubs");
 467     return (int32_t)p->index();
 468   } else {
 469     // Known "miscellaneous" non-stub pointers:
 470     // os::get_polling_page(), SafepointSynchronize::address_of_state()
 471     if (PrintRelocations) {
 472       tty->print_cr("random unregistered address in relocInfo: " INTPTR_FORMAT, runtime_address);
 473     }
 474 #ifndef _LP64
 475     return (int32_t) (intptr_t)runtime_address;
 476 #else
 477     // didn't fit return non-index
 478     return -1;
 479 #endif /* _LP64 */
 480   }
 481 }
 482 
 483 
 484 address Relocation::index_to_runtime_address(int32_t index) {
 485   if (index == 0)  return NULL;
 486 
 487   if (is_index(index)) {
 488     StubCodeDesc* p = StubCodeDesc::desc_for_index(index);
 489     assert(p != NULL, "there must be a stub for this index");
 490     return p->begin();
 491   } else {
 492 #ifndef _LP64
 493     // this only works on 32bit machines
 494     return (address) ((intptr_t) index);
 495 #else
 496     fatal("Relocation::index_to_runtime_address, int32_t not pointer sized");
 497     return NULL;
 498 #endif /* _LP64 */
 499   }
 500 }
 501 
 502 address Relocation::old_addr_for(address newa,
 503                                  const CodeBuffer* src, CodeBuffer* dest) {
 504   int sect = dest->section_index_of(newa);
 505   guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
 506   address ostart = src->code_section(sect)->start();
 507   address nstart = dest->code_section(sect)->start();
 508   return ostart + (newa - nstart);
 509 }
 510 
 511 address Relocation::new_addr_for(address olda,
 512                                  const CodeBuffer* src, CodeBuffer* dest) {
 513   debug_only(const CodeBuffer* src0 = src);
 514   int sect = CodeBuffer::SECT_NONE;
 515   // Look for olda in the source buffer, and all previous incarnations
 516   // if the source buffer has been expanded.
 517   for (; src != NULL; src = src->before_expand()) {
 518     sect = src->section_index_of(olda);
 519     if (sect != CodeBuffer::SECT_NONE)  break;
 520   }
 521   guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
 522   address ostart = src->code_section(sect)->start();
 523   address nstart = dest->code_section(sect)->start();
 524   return nstart + (olda - ostart);
 525 }
 526 
 527 void Relocation::normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections) {
 528   address addr0 = addr;
 529   if (addr0 == NULL || dest->allocates2(addr0))  return;
 530   CodeBuffer* cb = dest->outer();
 531   addr = new_addr_for(addr0, cb, cb);
 532   assert(allow_other_sections || dest->contains2(addr),
 533          "addr must be in required section");
 534 }
 535 
 536 
 537 void CallRelocation::set_destination(address x) {
 538   pd_set_call_destination(x);
 539 }
 540 
 541 void CallRelocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
 542   // Usually a self-relative reference to an external routine.
 543   // On some platforms, the reference is absolute (not self-relative).
 544   // The enhanced use of pd_call_destination sorts this all out.
 545   address orig_addr = old_addr_for(addr(), src, dest);
 546   address callee    = pd_call_destination(orig_addr);
 547   // Reassert the callee address, this time in the new copy of the code.
 548   pd_set_call_destination(callee);
 549 }
 550 
 551 
 552 //// pack/unpack methods
 553 
 554 void oop_Relocation::pack_data_to(CodeSection* dest) {
 555   short* p = (short*) dest->locs_end();
 556   p = pack_2_ints_to(p, _oop_index, _offset);
 557   dest->set_locs_end((relocInfo*) p);
 558 }
 559 
 560 
 561 void oop_Relocation::unpack_data() {
 562   unpack_2_ints(_oop_index, _offset);
 563 }
 564 
 565 
 566 void virtual_call_Relocation::pack_data_to(CodeSection* dest) {
 567   short*  p     = (short*) dest->locs_end();
 568   address point =          dest->locs_point();
 569 
 570   // Try to make a pointer NULL first.
 571   if (_oop_limit >= point &&
 572       _oop_limit <= point + NativeCall::instruction_size) {
 573     _oop_limit = NULL;
 574   }
 575   // If the _oop_limit is NULL, it "defaults" to the end of the call.
 576   // See ic_call_Relocation::oop_limit() below.
 577 
 578   normalize_address(_first_oop, dest);
 579   normalize_address(_oop_limit, dest);
 580   jint x0 = scaled_offset_null_special(_first_oop, point);
 581   jint x1 = scaled_offset_null_special(_oop_limit, point);
 582   p = pack_2_ints_to(p, x0, x1);
 583   dest->set_locs_end((relocInfo*) p);
 584 }
 585 
 586 
 587 void virtual_call_Relocation::unpack_data() {
 588   jint x0, x1; unpack_2_ints(x0, x1);
 589   address point = addr();
 590   _first_oop = x0==0? NULL: address_from_scaled_offset(x0, point);
 591   _oop_limit = x1==0? NULL: address_from_scaled_offset(x1, point);
 592 }
 593 
 594 
 595 void static_stub_Relocation::pack_data_to(CodeSection* dest) {
 596   short* p = (short*) dest->locs_end();
 597   CodeSection* insts = dest->outer()->insts();
 598   normalize_address(_static_call, insts);
 599   p = pack_1_int_to(p, scaled_offset(_static_call, insts->start()));
 600   dest->set_locs_end((relocInfo*) p);
 601 }
 602 
 603 void static_stub_Relocation::unpack_data() {
 604   address base = binding()->section_start(CodeBuffer::SECT_INSTS);
 605   _static_call = address_from_scaled_offset(unpack_1_int(), base);
 606 }
 607 
 608 
 609 void external_word_Relocation::pack_data_to(CodeSection* dest) {
 610   short* p = (short*) dest->locs_end();
 611   int32_t index = runtime_address_to_index(_target);
 612 #ifndef _LP64
 613   p = pack_1_int_to(p, index);
 614 #else
 615   if (is_index(index)) {
 616     p = pack_2_ints_to(p, index, 0);
 617   } else {
 618     jlong t = (jlong) _target;
 619     int32_t lo = low(t);
 620     int32_t hi = high(t);
 621     p = pack_2_ints_to(p, lo, hi);
 622     DEBUG_ONLY(jlong t1 = jlong_from(hi, lo));
 623     assert(!is_index(t1) && (address) t1 == _target, "not symmetric");
 624   }
 625 #endif /* _LP64 */
 626   dest->set_locs_end((relocInfo*) p);
 627 }
 628 
 629 
 630 void external_word_Relocation::unpack_data() {
 631 #ifndef _LP64
 632   _target = index_to_runtime_address(unpack_1_int());
 633 #else
 634   int32_t lo, hi;
 635   unpack_2_ints(lo, hi);
 636   jlong t = jlong_from(hi, lo);;
 637   if (is_index(t)) {
 638     _target = index_to_runtime_address(t);
 639   } else {
 640     _target = (address) t;
 641   }
 642 #endif /* _LP64 */
 643 }
 644 
 645 
 646 void internal_word_Relocation::pack_data_to(CodeSection* dest) {
 647   short* p = (short*) dest->locs_end();
 648   normalize_address(_target, dest, true);
 649 
 650   // Check whether my target address is valid within this section.
 651   // If not, strengthen the relocation type to point to another section.
 652   int sindex = _section;
 653   if (sindex == CodeBuffer::SECT_NONE && _target != NULL
 654       && (!dest->allocates(_target) || _target == dest->locs_point())) {
 655     sindex = dest->outer()->section_index_of(_target);
 656     guarantee(sindex != CodeBuffer::SECT_NONE, "must belong somewhere");
 657     relocInfo* base = dest->locs_end() - 1;
 658     assert(base->type() == this->type(), "sanity");
 659     // Change the written type, to be section_word_type instead.
 660     base->set_type(relocInfo::section_word_type);
 661   }
 662 
 663   // Note: An internal_word relocation cannot refer to its own instruction,
 664   // because we reserve "0" to mean that the pointer itself is embedded
 665   // in the code stream.  We use a section_word relocation for such cases.
 666 
 667   if (sindex == CodeBuffer::SECT_NONE) {
 668     assert(type() == relocInfo::internal_word_type, "must be base class");
 669     guarantee(_target == NULL || dest->allocates2(_target), "must be within the given code section");
 670     jint x0 = scaled_offset_null_special(_target, dest->locs_point());
 671     assert(!(x0 == 0 && _target != NULL), "correct encoding of null target");
 672     p = pack_1_int_to(p, x0);
 673   } else {
 674     assert(_target != NULL, "sanity");
 675     CodeSection* sect = dest->outer()->code_section(sindex);
 676     guarantee(sect->allocates2(_target), "must be in correct section");
 677     address base = sect->start();
 678     jint offset = scaled_offset(_target, base);
 679     assert((uint)sindex < (uint)CodeBuffer::SECT_LIMIT, "sanity");
 680     assert(CodeBuffer::SECT_LIMIT <= (1 << section_width), "section_width++");
 681     p = pack_1_int_to(p, (offset << section_width) | sindex);
 682   }
 683 
 684   dest->set_locs_end((relocInfo*) p);
 685 }
 686 
 687 
 688 void internal_word_Relocation::unpack_data() {
 689   jint x0 = unpack_1_int();
 690   _target = x0==0? NULL: address_from_scaled_offset(x0, addr());
 691   _section = CodeBuffer::SECT_NONE;
 692 }
 693 
 694 
 695 void section_word_Relocation::unpack_data() {
 696   jint    x      = unpack_1_int();
 697   jint    offset = (x >> section_width);
 698   int     sindex = (x & ((1<<section_width)-1));
 699   address base   = binding()->section_start(sindex);
 700 
 701   _section = sindex;
 702   _target  = address_from_scaled_offset(offset, base);
 703 }
 704 
 705 
 706 void breakpoint_Relocation::pack_data_to(CodeSection* dest) {
 707   short* p = (short*) dest->locs_end();
 708   address point = dest->locs_point();
 709 
 710   *p++ = _bits;
 711 
 712   assert(_target != NULL, "sanity");
 713 
 714   if (internal())  normalize_address(_target, dest);
 715 
 716   jint target_bits =
 717     (jint)( internal() ? scaled_offset           (_target, point)
 718                        : runtime_address_to_index(_target) );
 719   if (settable()) {
 720     // save space for set_target later
 721     p = add_jint(p, target_bits);
 722   } else {
 723     p = add_var_int(p, target_bits);
 724   }
 725 
 726   for (int i = 0; i < instrlen(); i++) {
 727     // put placeholder words until bytes can be saved
 728     p = add_short(p, (short)0x7777);
 729   }
 730 
 731   dest->set_locs_end((relocInfo*) p);
 732 }
 733 
 734 
 735 void breakpoint_Relocation::unpack_data() {
 736   _bits = live_bits();
 737 
 738   int targetlen = datalen() - 1 - instrlen();
 739   jint target_bits = 0;
 740   if (targetlen == 0)       target_bits = 0;
 741   else if (targetlen == 1)  target_bits = *(data()+1);
 742   else if (targetlen == 2)  target_bits = relocInfo::jint_from_data(data()+1);
 743   else                      { ShouldNotReachHere(); }
 744 
 745   _target = internal() ? address_from_scaled_offset(target_bits, addr())
 746                        : index_to_runtime_address  (target_bits);
 747 }
 748 
 749 
 750 //// miscellaneous methods
 751 oop* oop_Relocation::oop_addr() {
 752   int n = _oop_index;
 753   if (n == 0) {
 754     // oop is stored in the code stream
 755     return (oop*) pd_address_in_code();
 756   } else {
 757     // oop is stored in table at CodeBlob::oops_begin
 758     return code()->oop_addr_at(n);
 759   }
 760 }
 761 
 762 
 763 oop oop_Relocation::oop_value() {
 764   oop v = *oop_addr();
 765   // clean inline caches store a special pseudo-null
 766   if (v == (oop)Universe::non_oop_word())  v = NULL;
 767   return v;
 768 }
 769 
 770 
 771 void oop_Relocation::fix_oop_relocation() {
 772   if (!oop_is_immediate()) {
 773     // get the oop from the pool, and re-insert it into the instruction:
 774     set_value(value());
 775   }
 776 }
 777 
 778 
 779 RelocIterator virtual_call_Relocation::parse_ic(CodeBlob* &code, address &ic_call, address &first_oop,
 780                                                 oop* &oop_addr, bool *is_optimized) {
 781   assert(ic_call != NULL, "ic_call address must be set");
 782   assert(ic_call != NULL || first_oop != NULL, "must supply a non-null input");
 783   if (code == NULL) {
 784     if (ic_call != NULL) {
 785       code = CodeCache::find_blob(ic_call);
 786     } else if (first_oop != NULL) {
 787       code = CodeCache::find_blob(first_oop);
 788     }
 789     assert(code != NULL, "address to parse must be in CodeBlob");
 790   }
 791   assert(ic_call   == NULL || code->contains(ic_call),   "must be in CodeBlob");
 792   assert(first_oop == NULL || code->contains(first_oop), "must be in CodeBlob");
 793 
 794   address oop_limit = NULL;
 795 
 796   if (ic_call != NULL) {
 797     // search for the ic_call at the given address
 798     RelocIterator iter(code, ic_call, ic_call+1);
 799     bool ret = iter.next();
 800     assert(ret == true, "relocInfo must exist at this address");
 801     assert(iter.addr() == ic_call, "must find ic_call");
 802     if (iter.type() == relocInfo::virtual_call_type) {
 803       virtual_call_Relocation* r = iter.virtual_call_reloc();
 804       first_oop = r->first_oop();
 805       oop_limit = r->oop_limit();
 806       *is_optimized = false;
 807     } else {
 808       assert(iter.type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
 809       *is_optimized = true;
 810       oop_addr = NULL;
 811       first_oop = NULL;
 812       return iter;
 813     }
 814   }
 815 
 816   // search for the first_oop, to get its oop_addr
 817   RelocIterator all_oops(code, first_oop);
 818   RelocIterator iter = all_oops;
 819   iter.set_limit(first_oop+1);
 820   bool found_oop = false;
 821   while (iter.next()) {
 822     if (iter.type() == relocInfo::oop_type) {
 823       assert(iter.addr() == first_oop, "must find first_oop");
 824       oop_addr = iter.oop_reloc()->oop_addr();
 825       found_oop = true;
 826       break;
 827     }
 828   }
 829   assert(found_oop, "must find first_oop");
 830 
 831   bool did_reset = false;
 832   while (ic_call == NULL) {
 833     // search forward for the ic_call matching the given first_oop
 834     while (iter.next()) {
 835       if (iter.type() == relocInfo::virtual_call_type) {
 836         virtual_call_Relocation* r = iter.virtual_call_reloc();
 837         if (r->first_oop() == first_oop) {
 838           ic_call   = r->addr();
 839           oop_limit = r->oop_limit();
 840           break;
 841         }
 842       }
 843     }
 844     guarantee(!did_reset, "cannot find ic_call");
 845     iter = RelocIterator(code); // search the whole CodeBlob
 846     did_reset = true;
 847   }
 848 
 849   assert(oop_limit != NULL && first_oop != NULL && ic_call != NULL, "");
 850   all_oops.set_limit(oop_limit);
 851   return all_oops;
 852 }
 853 
 854 
 855 address virtual_call_Relocation::first_oop() {
 856   assert(_first_oop != NULL && _first_oop < addr(), "must precede ic_call");
 857   return _first_oop;
 858 }
 859 
 860 
 861 address virtual_call_Relocation::oop_limit() {
 862   if (_oop_limit == NULL)
 863     return addr() + NativeCall::instruction_size;
 864   else
 865     return _oop_limit;
 866 }
 867 
 868 
 869 
 870 void virtual_call_Relocation::clear_inline_cache() {
 871   // No stubs for ICs
 872   // Clean IC
 873   ResourceMark rm;
 874   CompiledIC* icache = CompiledIC_at(this);
 875   icache->set_to_clean();
 876 }
 877 
 878 
 879 void opt_virtual_call_Relocation::clear_inline_cache() {
 880   // No stubs for ICs
 881   // Clean IC
 882   ResourceMark rm;
 883   CompiledIC* icache = CompiledIC_at(this);
 884   icache->set_to_clean();
 885 }
 886 
 887 
 888 address opt_virtual_call_Relocation::static_stub() {
 889   // search for the static stub who points back to this static call
 890   address static_call_addr = addr();
 891   RelocIterator iter(code());
 892   while (iter.next()) {
 893     if (iter.type() == relocInfo::static_stub_type) {
 894       if (iter.static_stub_reloc()->static_call() == static_call_addr) {
 895         return iter.addr();
 896       }
 897     }
 898   }
 899   return NULL;
 900 }
 901 
 902 
 903 void static_call_Relocation::clear_inline_cache() {
 904   // Safe call site info
 905   CompiledStaticCall* handler = compiledStaticCall_at(this);
 906   handler->set_to_clean();
 907 }
 908 
 909 
 910 address static_call_Relocation::static_stub() {
 911   // search for the static stub who points back to this static call
 912   address static_call_addr = addr();
 913   RelocIterator iter(code());
 914   while (iter.next()) {
 915     if (iter.type() == relocInfo::static_stub_type) {
 916       if (iter.static_stub_reloc()->static_call() == static_call_addr) {
 917         return iter.addr();
 918       }
 919     }
 920   }
 921   return NULL;
 922 }
 923 
 924 
 925 void static_stub_Relocation::clear_inline_cache() {
 926   // Call stub is only used when calling the interpreted code.
 927   // It does not really need to be cleared, except that we want to clean out the methodoop.
 928   CompiledStaticCall::set_stub_to_clean(this);
 929 }
 930 
 931 
 932 void external_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
 933   address target = _target;
 934   if (target == NULL) {
 935     // An absolute embedded reference to an external location,
 936     // which means there is nothing to fix here.
 937     return;
 938   }
 939   // Probably this reference is absolute, not relative, so the
 940   // following is probably a no-op.
 941   assert(src->section_index_of(target) == CodeBuffer::SECT_NONE, "sanity");
 942   set_value(target);
 943 }
 944 
 945 
 946 address external_word_Relocation::target() {
 947   address target = _target;
 948   if (target == NULL) {
 949     target = pd_get_address_from_code();
 950   }
 951   return target;
 952 }
 953 
 954 
 955 void internal_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
 956   address target = _target;
 957   if (target == NULL) {
 958     if (addr_in_const()) {
 959       target = new_addr_for(*(address*)addr(), src, dest);
 960     } else {
 961       target = new_addr_for(pd_get_address_from_code(), src, dest);
 962     }
 963   }
 964   set_value(target);
 965 }
 966 
 967 
 968 address internal_word_Relocation::target() {
 969   address target = _target;
 970   if (target == NULL) {
 971     target = pd_get_address_from_code();
 972   }
 973   return target;
 974 }
 975 
 976 
 977 breakpoint_Relocation::breakpoint_Relocation(int kind, address target, bool internal) {
 978   bool active    = false;
 979   bool enabled   = (kind == initialization);
 980   bool removable = (kind != safepoint);
 981   bool settable  = (target == NULL);
 982 
 983   int bits = kind;
 984   if (enabled)    bits |= enabled_state;
 985   if (internal)   bits |= internal_attr;
 986   if (removable)  bits |= removable_attr;
 987   if (settable)   bits |= settable_attr;
 988 
 989   _bits = bits | high_bit;
 990   _target = target;
 991 
 992   assert(this->kind()      == kind,      "kind encoded");
 993   assert(this->enabled()   == enabled,   "enabled encoded");
 994   assert(this->active()    == active,    "active encoded");
 995   assert(this->internal()  == internal,  "internal encoded");
 996   assert(this->removable() == removable, "removable encoded");
 997   assert(this->settable()  == settable,  "settable encoded");
 998 }
 999 
1000 
1001 address breakpoint_Relocation::target() const {
1002   return _target;
1003 }
1004 
1005 
1006 void breakpoint_Relocation::set_target(address x) {
1007   assert(settable(), "must be settable");
1008   jint target_bits =
1009     (jint)(internal() ? scaled_offset           (x, addr())
1010                       : runtime_address_to_index(x));
1011   short* p = &live_bits() + 1;
1012   p = add_jint(p, target_bits);
1013   assert(p == instrs(), "new target must fit");
1014   _target = x;
1015 }
1016 
1017 
1018 void breakpoint_Relocation::set_enabled(bool b) {
1019   if (enabled() == b) return;
1020 
1021   if (b) {
1022     set_bits(bits() | enabled_state);
1023   } else {
1024     set_active(false);          // remove the actual breakpoint insn, if any
1025     set_bits(bits() & ~enabled_state);
1026   }
1027 }
1028 
1029 
1030 void breakpoint_Relocation::set_active(bool b) {
1031   assert(!b || enabled(), "cannot activate a disabled breakpoint");
1032 
1033   if (active() == b) return;
1034 
1035   // %%% should probably seize a lock here (might not be the right lock)
1036   //MutexLockerEx ml_patch(Patching_lock, true);
1037   //if (active() == b)  return;         // recheck state after locking
1038 
1039   if (b) {
1040     set_bits(bits() | active_state);
1041     if (instrlen() == 0)
1042       fatal("breakpoints in original code must be undoable");
1043     pd_swap_in_breakpoint (addr(), instrs(), instrlen());
1044   } else {
1045     set_bits(bits() & ~active_state);
1046     pd_swap_out_breakpoint(addr(), instrs(), instrlen());
1047   }
1048 }
1049 
1050 
1051 //---------------------------------------------------------------------------------
1052 // Non-product code
1053 
1054 #ifndef PRODUCT
1055 
1056 static const char* reloc_type_string(relocInfo::relocType t) {
1057   switch (t) {
1058   #define EACH_CASE(name) \
1059   case relocInfo::name##_type: \
1060     return #name;
1061 
1062   APPLY_TO_RELOCATIONS(EACH_CASE);
1063   #undef EACH_CASE
1064 
1065   case relocInfo::none:
1066     return "none";
1067   case relocInfo::data_prefix_tag:
1068     return "prefix";
1069   default:
1070     return "UNKNOWN RELOC TYPE";
1071   }
1072 }
1073 
1074 
1075 void RelocIterator::print_current() {
1076   if (!has_current()) {
1077     tty->print_cr("(no relocs)");
1078     return;
1079   }
1080   tty->print("relocInfo@" INTPTR_FORMAT " [type=%d(%s) addr=" INTPTR_FORMAT,
1081              _current, type(), reloc_type_string((relocInfo::relocType) type()), _addr);
1082   if (current()->format() != 0)
1083     tty->print(" format=%d", current()->format());
1084   if (datalen() == 1) {
1085     tty->print(" data=%d", data()[0]);
1086   } else if (datalen() > 0) {
1087     tty->print(" data={");
1088     for (int i = 0; i < datalen(); i++) {
1089       tty->print("%04x", data()[i] & 0xFFFF);
1090     }
1091     tty->print("}");
1092   }
1093   tty->print("]");
1094   switch (type()) {
1095   case relocInfo::oop_type:
1096     {
1097       oop_Relocation* r = oop_reloc();
1098       oop* oop_addr  = NULL;
1099       oop  raw_oop   = NULL;
1100       oop  oop_value = NULL;
1101       if (code() != NULL || r->oop_is_immediate()) {
1102         oop_addr  = r->oop_addr();
1103         raw_oop   = *oop_addr;
1104         oop_value = r->oop_value();
1105       }
1106       tty->print(" | [oop_addr=" INTPTR_FORMAT " *=" INTPTR_FORMAT " offset=%d]",
1107                  oop_addr, (address)raw_oop, r->offset());
1108       // Do not print the oop by default--we want this routine to
1109       // work even during GC or other inconvenient times.
1110       if (WizardMode && oop_value != NULL) {
1111         tty->print("oop_value=" INTPTR_FORMAT ": ", (address)oop_value);
1112         oop_value->print_value_on(tty);
1113       }
1114       break;
1115     }
1116   case relocInfo::external_word_type:
1117   case relocInfo::internal_word_type:
1118   case relocInfo::section_word_type:
1119     {
1120       DataRelocation* r = (DataRelocation*) reloc();
1121       tty->print(" | [target=" INTPTR_FORMAT "]", r->value()); //value==target
1122       break;
1123     }
1124   case relocInfo::static_call_type:
1125   case relocInfo::runtime_call_type:
1126     {
1127       CallRelocation* r = (CallRelocation*) reloc();
1128       tty->print(" | [destination=" INTPTR_FORMAT "]", r->destination());
1129       break;
1130     }
1131   case relocInfo::virtual_call_type:
1132     {
1133       virtual_call_Relocation* r = (virtual_call_Relocation*) reloc();
1134       tty->print(" | [destination=" INTPTR_FORMAT " first_oop=" INTPTR_FORMAT " oop_limit=" INTPTR_FORMAT "]",
1135                  r->destination(), r->first_oop(), r->oop_limit());
1136       break;
1137     }
1138   case relocInfo::static_stub_type:
1139     {
1140       static_stub_Relocation* r = (static_stub_Relocation*) reloc();
1141       tty->print(" | [static_call=" INTPTR_FORMAT "]", r->static_call());
1142       break;
1143     }
1144   }
1145   tty->cr();
1146 }
1147 
1148 
1149 void RelocIterator::print() {
1150   RelocIterator save_this = (*this);
1151   relocInfo* scan = _current;
1152   if (!has_current())  scan += 1;  // nothing to scan here!
1153 
1154   bool skip_next = has_current();
1155   bool got_next;
1156   while (true) {
1157     got_next = (skip_next || next());
1158     skip_next = false;
1159 
1160     tty->print("         @" INTPTR_FORMAT ": ", scan);
1161     relocInfo* newscan = _current+1;
1162     if (!has_current())  newscan -= 1;  // nothing to scan here!
1163     while (scan < newscan) {
1164       tty->print("%04x", *(short*)scan & 0xFFFF);
1165       scan++;
1166     }
1167     tty->cr();
1168 
1169     if (!got_next)  break;
1170     print_current();
1171   }
1172 
1173   (*this) = save_this;
1174 }
1175 
1176 // For the debugger:
1177 extern "C"
1178 void print_blob_locs(CodeBlob* cb) {
1179   cb->print();
1180   RelocIterator iter(cb);
1181   iter.print();
1182 }
1183 extern "C"
1184 void print_buf_locs(CodeBuffer* cb) {
1185   FlagSetting fs(PrintRelocations, true);
1186   cb->print();
1187 }
1188 #endif // !PRODUCT