1 /*
   2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_relocInfo.cpp.incl"
  27 
  28 
  29 const RelocationHolder RelocationHolder::none; // its type is relocInfo::none
  30 
  31 
  32 // Implementation of relocInfo
  33 
  34 #ifdef ASSERT
  35 relocInfo::relocInfo(relocType t, int off, int f) {
  36   assert(t != data_prefix_tag, "cannot build a prefix this way");
  37   assert((t & type_mask) == t, "wrong type");
  38   assert((f & format_mask) == f, "wrong format");
  39   assert(off >= 0 && off < offset_limit(), "offset out off bounds");
  40   assert((off & (offset_unit-1)) == 0, "misaligned offset");
  41   (*this) = relocInfo(t, RAW_BITS, off, f);
  42 }
  43 #endif
  44 
  45 void relocInfo::initialize(CodeSection* dest, Relocation* reloc) {
  46   relocInfo* data = this+1;  // here's where the data might go
  47   dest->set_locs_end(data);  // sync end: the next call may read dest.locs_end
  48   reloc->pack_data_to(dest); // maybe write data into locs, advancing locs_end
  49   relocInfo* data_limit = dest->locs_end();
  50   if (data_limit > data) {
  51     relocInfo suffix = (*this);
  52     data_limit = this->finish_prefix((short*) data_limit);
  53     // Finish up with the suffix.  (Hack note: pack_data_to might edit this.)
  54     *data_limit = suffix;
  55     dest->set_locs_end(data_limit+1);
  56   }
  57 }
  58 
  59 relocInfo* relocInfo::finish_prefix(short* prefix_limit) {
  60   assert(sizeof(relocInfo) == sizeof(short), "change this code");
  61   short* p = (short*)(this+1);
  62   assert(prefix_limit >= p, "must be a valid span of data");
  63   int plen = prefix_limit - p;
  64   if (plen == 0) {
  65     debug_only(_value = 0xFFFF);
  66     return this;                         // no data: remove self completely
  67   }
  68   if (plen == 1 && fits_into_immediate(p[0])) {
  69     (*this) = immediate_relocInfo(p[0]); // move data inside self
  70     return this+1;
  71   }
  72   // cannot compact, so just update the count and return the limit pointer
  73   (*this) = prefix_relocInfo(plen);   // write new datalen
  74   assert(data() + datalen() == prefix_limit, "pointers must line up");
  75   return (relocInfo*)prefix_limit;
  76 }
  77 
  78 
  79 void relocInfo::set_type(relocType t) {
  80   int old_offset = addr_offset();
  81   int old_format = format();
  82   (*this) = relocInfo(t, old_offset, old_format);
  83   assert(type()==(int)t, "sanity check");
  84   assert(addr_offset()==old_offset, "sanity check");
  85   assert(format()==old_format, "sanity check");
  86 }
  87 
  88 
  89 void relocInfo::set_format(int f) {
  90   int old_offset = addr_offset();
  91   assert((f & format_mask) == f, "wrong format");
  92   _value = (_value & ~(format_mask << offset_width)) | (f << offset_width);
  93   assert(addr_offset()==old_offset, "sanity check");
  94 }
  95 
  96 
  97 void relocInfo::change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type) {
  98   bool found = false;
  99   while (itr->next() && !found) {
 100     if (itr->addr() == pc) {
 101       assert(itr->type()==old_type, "wrong relocInfo type found");
 102       itr->current()->set_type(new_type);
 103       found=true;
 104     }
 105   }
 106   assert(found, "no relocInfo found for pc");
 107 }
 108 
 109 
 110 void relocInfo::remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type) {
 111   change_reloc_info_for_address(itr, pc, old_type, none);
 112 }
 113 
 114 
 115 // ----------------------------------------------------------------------------------------------------
 116 // Implementation of RelocIterator
 117 
 118 void RelocIterator::initialize(nmethod* nm, address begin, address limit) {
 119   initialize_misc();
 120 
 121   if (nm == NULL && begin != NULL) {
 122     // allow nmethod to be deduced from beginning address
 123     CodeBlob* cb = CodeCache::find_blob(begin);
 124     nm = cb->as_nmethod_or_null();
 125   }
 126   assert(nm != NULL, "must be able to deduce nmethod from other arguments");
 127 
 128   _code    = nm;
 129   _current = nm->relocation_begin() - 1;
 130   _end     = nm->relocation_end();
 131   _addr    = (address) nm->instructions_begin();
 132 
 133   assert(!has_current(), "just checking");
 134   address code_end = nm->instructions_end();
 135 
 136   assert(begin == NULL || begin >= nm->instructions_begin(), "in bounds");
 137  // FIX THIS  assert(limit == NULL || limit <= code_end,     "in bounds");
 138   set_limits(begin, limit);
 139 }
 140 
 141 
 142 RelocIterator::RelocIterator(CodeSection* cs, address begin, address limit) {
 143   initialize_misc();
 144 
 145   _current = cs->locs_start()-1;
 146   _end     = cs->locs_end();
 147   _addr    = cs->start();
 148   _code    = NULL; // Not cb->blob();
 149 
 150   CodeBuffer* cb = cs->outer();
 151   assert((int)SECT_LIMIT == CodeBuffer::SECT_LIMIT, "my copy must be equal");
 152   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 153     _section_start[n] = cb->code_section(n)->start();
 154   }
 155 
 156   assert(!has_current(), "just checking");
 157 
 158   assert(begin == NULL || begin >= cs->start(), "in bounds");
 159   assert(limit == NULL || limit <= cs->end(),   "in bounds");
 160   set_limits(begin, limit);
 161 }
 162 
 163 
 164 enum { indexCardSize = 128 };
 165 struct RelocIndexEntry {
 166   jint addr_offset;          // offset from header_end of an addr()
 167   jint reloc_offset;         // offset from header_end of a relocInfo (prefix)
 168 };
 169 
 170 
 171 static inline int num_cards(int code_size) {
 172   return (code_size-1) / indexCardSize;
 173 }
 174 
 175 
 176 int RelocIterator::locs_and_index_size(int code_size, int locs_size) {
 177   if (!UseRelocIndex)  return locs_size;   // no index
 178   code_size = round_to(code_size, oopSize);
 179   locs_size = round_to(locs_size, oopSize);
 180   int index_size = num_cards(code_size) * sizeof(RelocIndexEntry);
 181   // format of indexed relocs:
 182   //   relocation_begin:   relocInfo ...
 183   //   index:              (addr,reloc#) ...
 184   //                       indexSize           :relocation_end
 185   return locs_size + index_size + BytesPerInt;
 186 }
 187 
 188 
 189 void RelocIterator::create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end) {
 190   address relocation_begin = (address)dest_begin;
 191   address relocation_end   = (address)dest_end;
 192   int     total_size       = relocation_end - relocation_begin;
 193   int     locs_size        = dest_count * sizeof(relocInfo);
 194   if (!UseRelocIndex) {
 195     Copy::fill_to_bytes(relocation_begin + locs_size, total_size-locs_size, 0);
 196     return;
 197   }
 198   int     index_size       = total_size - locs_size - BytesPerInt;      // find out how much space is left
 199   int     ncards           = index_size / sizeof(RelocIndexEntry);
 200   assert(total_size == locs_size + index_size + BytesPerInt, "checkin'");
 201   assert(index_size >= 0 && index_size % sizeof(RelocIndexEntry) == 0, "checkin'");
 202   jint*   index_size_addr  = (jint*)relocation_end - 1;
 203 
 204   assert(sizeof(jint) == BytesPerInt, "change this code");
 205 
 206   *index_size_addr = index_size;
 207   if (index_size != 0) {
 208     assert(index_size > 0, "checkin'");
 209 
 210     RelocIndexEntry* index = (RelocIndexEntry *)(relocation_begin + locs_size);
 211     assert(index == (RelocIndexEntry*)index_size_addr - ncards, "checkin'");
 212 
 213     // walk over the relocations, and fill in index entries as we go
 214     RelocIterator iter;
 215     const address    initial_addr    = NULL;
 216     relocInfo* const initial_current = dest_begin - 1;  // biased by -1 like elsewhere
 217 
 218     iter._code    = NULL;
 219     iter._addr    = initial_addr;
 220     iter._limit   = (address)(intptr_t)(ncards * indexCardSize);
 221     iter._current = initial_current;
 222     iter._end     = dest_begin + dest_count;
 223 
 224     int i = 0;
 225     address next_card_addr = (address)indexCardSize;
 226     int addr_offset = 0;
 227     int reloc_offset = 0;
 228     while (true) {
 229       // Checkpoint the iterator before advancing it.
 230       addr_offset  = iter._addr    - initial_addr;
 231       reloc_offset = iter._current - initial_current;
 232       if (!iter.next())  break;
 233       while (iter.addr() >= next_card_addr) {
 234         index[i].addr_offset  = addr_offset;
 235         index[i].reloc_offset = reloc_offset;
 236         i++;
 237         next_card_addr += indexCardSize;
 238       }
 239     }
 240     while (i < ncards) {
 241       index[i].addr_offset  = addr_offset;
 242       index[i].reloc_offset = reloc_offset;
 243       i++;
 244     }
 245   }
 246 }
 247 
 248 
 249 void RelocIterator::set_limits(address begin, address limit) {
 250   int index_size = 0;
 251   if (UseRelocIndex && _code != NULL) {
 252     index_size = ((jint*)_end)[-1];
 253     _end = (relocInfo*)( (address)_end - index_size - BytesPerInt );
 254   }
 255 
 256   _limit = limit;
 257 
 258   // the limit affects this next stuff:
 259   if (begin != NULL) {
 260 #ifdef ASSERT
 261     // In ASSERT mode we do not actually use the index, but simply
 262     // check that its contents would have led us to the right answer.
 263     address addrCheck = _addr;
 264     relocInfo* infoCheck = _current;
 265 #endif // ASSERT
 266     if (index_size > 0) {
 267       // skip ahead
 268       RelocIndexEntry* index       = (RelocIndexEntry*)_end;
 269       RelocIndexEntry* index_limit = (RelocIndexEntry*)((address)index + index_size);
 270       assert(_addr == _code->instructions_begin(), "_addr must be unadjusted");
 271       int card = (begin - _addr) / indexCardSize;
 272       if (card > 0) {
 273         if (index+card-1 < index_limit)  index += card-1;
 274         else                             index = index_limit - 1;
 275 #ifdef ASSERT
 276         addrCheck = _addr    + index->addr_offset;
 277         infoCheck = _current + index->reloc_offset;
 278 #else
 279         // Advance the iterator immediately to the last valid state
 280         // for the previous card.  Calling "next" will then advance
 281         // it to the first item on the required card.
 282         _addr    += index->addr_offset;
 283         _current += index->reloc_offset;
 284 #endif // ASSERT
 285       }
 286     }
 287 
 288     relocInfo* backup;
 289     address    backup_addr;
 290     while (true) {
 291       backup      = _current;
 292       backup_addr = _addr;
 293 #ifdef ASSERT
 294       if (backup == infoCheck) {
 295         assert(backup_addr == addrCheck, "must match"); addrCheck = NULL; infoCheck = NULL;
 296       } else {
 297         assert(addrCheck == NULL || backup_addr <= addrCheck, "must not pass addrCheck");
 298       }
 299 #endif // ASSERT
 300       if (!next() || addr() >= begin) break;
 301     }
 302     assert(addrCheck == NULL || addrCheck == backup_addr, "must have matched addrCheck");
 303     assert(infoCheck == NULL || infoCheck == backup,      "must have matched infoCheck");
 304     // At this point, either we are at the first matching record,
 305     // or else there is no such record, and !has_current().
 306     // In either case, revert to the immediatly preceding state.
 307     _current = backup;
 308     _addr    = backup_addr;
 309     set_has_current(false);
 310   }
 311 }
 312 
 313 
 314 void RelocIterator::set_limit(address limit) {
 315   address code_end = (address)code() + code()->size();
 316   assert(limit == NULL || limit <= code_end, "in bounds");
 317   _limit = limit;
 318 }
 319 
 320 
 321 void PatchingRelocIterator:: prepass() {
 322   // turn breakpoints off during patching
 323   _init_state = (*this);        // save cursor
 324   while (next()) {
 325     if (type() == relocInfo::breakpoint_type) {
 326       breakpoint_reloc()->set_active(false);
 327     }
 328   }
 329   (RelocIterator&)(*this) = _init_state;        // reset cursor for client
 330 }
 331 
 332 
 333 void PatchingRelocIterator:: postpass() {
 334   // turn breakpoints back on after patching
 335   (RelocIterator&)(*this) = _init_state;        // reset cursor again
 336   while (next()) {
 337     if (type() == relocInfo::breakpoint_type) {
 338       breakpoint_Relocation* bpt = breakpoint_reloc();
 339       bpt->set_active(bpt->enabled());
 340     }
 341   }
 342 }
 343 
 344 
 345 // All the strange bit-encodings are in here.
 346 // The idea is to encode relocation data which are small integers
 347 // very efficiently (a single extra halfword).  Larger chunks of
 348 // relocation data need a halfword header to hold their size.
 349 void RelocIterator::advance_over_prefix() {
 350   if (_current->is_datalen()) {
 351     _data    = (short*) _current->data();
 352     _datalen =          _current->datalen();
 353     _current += _datalen + 1;   // skip the embedded data & header
 354   } else {
 355     _databuf = _current->immediate();
 356     _data = &_databuf;
 357     _datalen = 1;
 358     _current++;                 // skip the header
 359   }
 360   // The client will see the following relocInfo, whatever that is.
 361   // It is the reloc to which the preceding data applies.
 362 }
 363 
 364 
 365 address RelocIterator::compute_section_start(int n) const {
 366 // This routine not only computes a section start, but also
 367 // memoizes it for later.
 368 #define CACHE ((RelocIterator*)this)->_section_start[n]
 369   CodeBlob* cb = code();
 370   guarantee(cb != NULL, "must have a code blob");
 371   if (n == CodeBuffer::SECT_INSTS)
 372     return CACHE = cb->instructions_begin();
 373   assert(cb->is_nmethod(), "only nmethods have these sections");
 374   nmethod* nm = (nmethod*) cb;
 375   address res = NULL;
 376   switch (n) {
 377   case CodeBuffer::SECT_STUBS:
 378     res = nm->stub_begin();
 379     break;
 380   case CodeBuffer::SECT_CONSTS:
 381     res = nm->consts_begin();
 382     break;
 383   default:
 384     ShouldNotReachHere();
 385   }
 386   assert(nm->contains(res) || res == nm->instructions_end(), "tame pointer");
 387   CACHE = res;
 388   return res;
 389 #undef CACHE
 390 }
 391 
 392 
 393 Relocation* RelocIterator::reloc() {
 394   // (take the "switch" out-of-line)
 395   relocInfo::relocType t = type();
 396   if (false) {}
 397   #define EACH_TYPE(name)                             \
 398   else if (t == relocInfo::name##_type) {             \
 399     return name##_reloc();                            \
 400   }
 401   APPLY_TO_RELOCATIONS(EACH_TYPE);
 402   #undef EACH_TYPE
 403   assert(t == relocInfo::none, "must be padding");
 404   return new(_rh) Relocation();
 405 }
 406 
 407 
 408 //////// Methods for flyweight Relocation types
 409 
 410 
 411 RelocationHolder RelocationHolder::plus(int offset) const {
 412   if (offset != 0) {
 413     switch (type()) {
 414     case relocInfo::none:
 415       break;
 416     case relocInfo::oop_type:
 417       {
 418         oop_Relocation* r = (oop_Relocation*)reloc();
 419         return oop_Relocation::spec(r->oop_index(), r->offset() + offset);
 420       }
 421     default:
 422       ShouldNotReachHere();
 423     }
 424   }
 425   return (*this);
 426 }
 427 
 428 
 429 void Relocation::guarantee_size() {
 430   guarantee(false, "Make _relocbuf bigger!");
 431 }
 432 
 433     // some relocations can compute their own values
 434 address Relocation::value() {
 435   ShouldNotReachHere();
 436   return NULL;
 437 }
 438 
 439 
 440 void Relocation::set_value(address x) {
 441   ShouldNotReachHere();
 442 }
 443 
 444 
 445 RelocationHolder Relocation::spec_simple(relocInfo::relocType rtype) {
 446   if (rtype == relocInfo::none)  return RelocationHolder::none;
 447   relocInfo ri = relocInfo(rtype, 0);
 448   RelocIterator itr;
 449   itr.set_current(ri);
 450   itr.reloc();
 451   return itr._rh;
 452 }
 453 
 454 
 455 static inline bool is_index(intptr_t index) {
 456   return 0 < index && index < os::vm_page_size();
 457 }
 458 
 459 
 460 int32_t Relocation::runtime_address_to_index(address runtime_address) {
 461   assert(!is_index((intptr_t)runtime_address), "must not look like an index");
 462 
 463   if (runtime_address == NULL)  return 0;
 464 
 465   StubCodeDesc* p = StubCodeDesc::desc_for(runtime_address);
 466   if (p != NULL && p->begin() == runtime_address) {
 467     assert(is_index(p->index()), "there must not be too many stubs");
 468     return (int32_t)p->index();
 469   } else {
 470     // Known "miscellaneous" non-stub pointers:
 471     // os::get_polling_page(), SafepointSynchronize::address_of_state()
 472     if (PrintRelocations) {
 473       tty->print_cr("random unregistered address in relocInfo: " INTPTR_FORMAT, runtime_address);
 474     }
 475 #ifndef _LP64
 476     return (int32_t) (intptr_t)runtime_address;
 477 #else
 478     // didn't fit return non-index
 479     return -1;
 480 #endif /* _LP64 */
 481   }
 482 }
 483 
 484 
 485 address Relocation::index_to_runtime_address(int32_t index) {
 486   if (index == 0)  return NULL;
 487 
 488   if (is_index(index)) {
 489     StubCodeDesc* p = StubCodeDesc::desc_for_index(index);
 490     assert(p != NULL, "there must be a stub for this index");
 491     return p->begin();
 492   } else {
 493 #ifndef _LP64
 494     // this only works on 32bit machines
 495     return (address) ((intptr_t) index);
 496 #else
 497     fatal("Relocation::index_to_runtime_address, int32_t not pointer sized");
 498     return NULL;
 499 #endif /* _LP64 */
 500   }
 501 }
 502 
 503 address Relocation::old_addr_for(address newa,
 504                                  const CodeBuffer* src, CodeBuffer* dest) {
 505   int sect = dest->section_index_of(newa);
 506   guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
 507   address ostart = src->code_section(sect)->start();
 508   address nstart = dest->code_section(sect)->start();
 509   return ostart + (newa - nstart);
 510 }
 511 
 512 address Relocation::new_addr_for(address olda,
 513                                  const CodeBuffer* src, CodeBuffer* dest) {
 514   debug_only(const CodeBuffer* src0 = src);
 515   int sect = CodeBuffer::SECT_NONE;
 516   // Look for olda in the source buffer, and all previous incarnations
 517   // if the source buffer has been expanded.
 518   for (; src != NULL; src = src->before_expand()) {
 519     sect = src->section_index_of(olda);
 520     if (sect != CodeBuffer::SECT_NONE)  break;
 521   }
 522   guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
 523   address ostart = src->code_section(sect)->start();
 524   address nstart = dest->code_section(sect)->start();
 525   return nstart + (olda - ostart);
 526 }
 527 
 528 void Relocation::normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections) {
 529   address addr0 = addr;
 530   if (addr0 == NULL || dest->allocates2(addr0))  return;
 531   CodeBuffer* cb = dest->outer();
 532   addr = new_addr_for(addr0, cb, cb);
 533   assert(allow_other_sections || dest->contains2(addr),
 534          "addr must be in required section");
 535 }
 536 
 537 
 538 void CallRelocation::set_destination(address x) {
 539   pd_set_call_destination(x);
 540 }
 541 
 542 void CallRelocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
 543   // Usually a self-relative reference to an external routine.
 544   // On some platforms, the reference is absolute (not self-relative).
 545   // The enhanced use of pd_call_destination sorts this all out.
 546   address orig_addr = old_addr_for(addr(), src, dest);
 547   address callee    = pd_call_destination(orig_addr);
 548   // Reassert the callee address, this time in the new copy of the code.
 549   pd_set_call_destination(callee);
 550 }
 551 
 552 
 553 //// pack/unpack methods
 554 
 555 void oop_Relocation::pack_data_to(CodeSection* dest) {
 556   short* p = (short*) dest->locs_end();
 557   p = pack_2_ints_to(p, _oop_index, _offset);
 558   dest->set_locs_end((relocInfo*) p);
 559 }
 560 
 561 
 562 void oop_Relocation::unpack_data() {
 563   unpack_2_ints(_oop_index, _offset);
 564 }
 565 
 566 
 567 void virtual_call_Relocation::pack_data_to(CodeSection* dest) {
 568   short*  p     = (short*) dest->locs_end();
 569   address point =          dest->locs_point();
 570 
 571   // Try to make a pointer NULL first.
 572   if (_oop_limit >= point &&
 573       _oop_limit <= point + NativeCall::instruction_size) {
 574     _oop_limit = NULL;
 575   }
 576   // If the _oop_limit is NULL, it "defaults" to the end of the call.
 577   // See ic_call_Relocation::oop_limit() below.
 578 
 579   normalize_address(_first_oop, dest);
 580   normalize_address(_oop_limit, dest);
 581   jint x0 = scaled_offset_null_special(_first_oop, point);
 582   jint x1 = scaled_offset_null_special(_oop_limit, point);
 583   p = pack_2_ints_to(p, x0, x1);
 584   dest->set_locs_end((relocInfo*) p);
 585 }
 586 
 587 
 588 void virtual_call_Relocation::unpack_data() {
 589   jint x0, x1; unpack_2_ints(x0, x1);
 590   address point = addr();
 591   _first_oop = x0==0? NULL: address_from_scaled_offset(x0, point);
 592   _oop_limit = x1==0? NULL: address_from_scaled_offset(x1, point);
 593 }
 594 
 595 
 596 void static_stub_Relocation::pack_data_to(CodeSection* dest) {
 597   short* p = (short*) dest->locs_end();
 598   CodeSection* insts = dest->outer()->insts();
 599   normalize_address(_static_call, insts);
 600   p = pack_1_int_to(p, scaled_offset(_static_call, insts->start()));
 601   dest->set_locs_end((relocInfo*) p);
 602 }
 603 
 604 void static_stub_Relocation::unpack_data() {
 605   address base = binding()->section_start(CodeBuffer::SECT_INSTS);
 606   _static_call = address_from_scaled_offset(unpack_1_int(), base);
 607 }
 608 
 609 
 610 void external_word_Relocation::pack_data_to(CodeSection* dest) {
 611   short* p = (short*) dest->locs_end();
 612   int32_t index = runtime_address_to_index(_target);
 613 #ifndef _LP64
 614   p = pack_1_int_to(p, index);
 615 #else
 616   if (is_index(index)) {
 617     p = pack_2_ints_to(p, index, 0);
 618   } else {
 619     jlong t = (jlong) _target;
 620     int32_t lo = low(t);
 621     int32_t hi = high(t);
 622     p = pack_2_ints_to(p, lo, hi);
 623     DEBUG_ONLY(jlong t1 = jlong_from(hi, lo));
 624     assert(!is_index(t1) && (address) t1 == _target, "not symmetric");
 625   }
 626 #endif /* _LP64 */
 627   dest->set_locs_end((relocInfo*) p);
 628 }
 629 
 630 
 631 void external_word_Relocation::unpack_data() {
 632 #ifndef _LP64
 633   _target = index_to_runtime_address(unpack_1_int());
 634 #else
 635   int32_t lo, hi;
 636   unpack_2_ints(lo, hi);
 637   jlong t = jlong_from(hi, lo);;
 638   if (is_index(t)) {
 639     _target = index_to_runtime_address(t);
 640   } else {
 641     _target = (address) t;
 642   }
 643 #endif /* _LP64 */
 644 }
 645 
 646 
 647 void internal_word_Relocation::pack_data_to(CodeSection* dest) {
 648   short* p = (short*) dest->locs_end();
 649   normalize_address(_target, dest, true);
 650 
 651   // Check whether my target address is valid within this section.
 652   // If not, strengthen the relocation type to point to another section.
 653   int sindex = _section;
 654   if (sindex == CodeBuffer::SECT_NONE && _target != NULL
 655       && (!dest->allocates(_target) || _target == dest->locs_point())) {
 656     sindex = dest->outer()->section_index_of(_target);
 657     guarantee(sindex != CodeBuffer::SECT_NONE, "must belong somewhere");
 658     relocInfo* base = dest->locs_end() - 1;
 659     assert(base->type() == this->type(), "sanity");
 660     // Change the written type, to be section_word_type instead.
 661     base->set_type(relocInfo::section_word_type);
 662   }
 663 
 664   // Note: An internal_word relocation cannot refer to its own instruction,
 665   // because we reserve "0" to mean that the pointer itself is embedded
 666   // in the code stream.  We use a section_word relocation for such cases.
 667 
 668   if (sindex == CodeBuffer::SECT_NONE) {
 669     assert(type() == relocInfo::internal_word_type, "must be base class");
 670     guarantee(_target == NULL || dest->allocates2(_target), "must be within the given code section");
 671     jint x0 = scaled_offset_null_special(_target, dest->locs_point());
 672     assert(!(x0 == 0 && _target != NULL), "correct encoding of null target");
 673     p = pack_1_int_to(p, x0);
 674   } else {
 675     assert(_target != NULL, "sanity");
 676     CodeSection* sect = dest->outer()->code_section(sindex);
 677     guarantee(sect->allocates2(_target), "must be in correct section");
 678     address base = sect->start();
 679     jint offset = scaled_offset(_target, base);
 680     assert((uint)sindex < (uint)CodeBuffer::SECT_LIMIT, "sanity");
 681     assert(CodeBuffer::SECT_LIMIT <= (1 << section_width), "section_width++");
 682     p = pack_1_int_to(p, (offset << section_width) | sindex);
 683   }
 684 
 685   dest->set_locs_end((relocInfo*) p);
 686 }
 687 
 688 
 689 void internal_word_Relocation::unpack_data() {
 690   jint x0 = unpack_1_int();
 691   _target = x0==0? NULL: address_from_scaled_offset(x0, addr());
 692   _section = CodeBuffer::SECT_NONE;
 693 }
 694 
 695 
 696 void section_word_Relocation::unpack_data() {
 697   jint    x      = unpack_1_int();
 698   jint    offset = (x >> section_width);
 699   int     sindex = (x & ((1<<section_width)-1));
 700   address base   = binding()->section_start(sindex);
 701 
 702   _section = sindex;
 703   _target  = address_from_scaled_offset(offset, base);
 704 }
 705 
 706 
 707 void breakpoint_Relocation::pack_data_to(CodeSection* dest) {
 708   short* p = (short*) dest->locs_end();
 709   address point = dest->locs_point();
 710 
 711   *p++ = _bits;
 712 
 713   assert(_target != NULL, "sanity");
 714 
 715   if (internal())  normalize_address(_target, dest);
 716 
 717   jint target_bits =
 718     (jint)( internal() ? scaled_offset           (_target, point)
 719                        : runtime_address_to_index(_target) );
 720   if (settable()) {
 721     // save space for set_target later
 722     p = add_jint(p, target_bits);
 723   } else {
 724     p = add_var_int(p, target_bits);
 725   }
 726 
 727   for (int i = 0; i < instrlen(); i++) {
 728     // put placeholder words until bytes can be saved
 729     p = add_short(p, (short)0x7777);
 730   }
 731 
 732   dest->set_locs_end((relocInfo*) p);
 733 }
 734 
 735 
 736 void breakpoint_Relocation::unpack_data() {
 737   _bits = live_bits();
 738 
 739   int targetlen = datalen() - 1 - instrlen();
 740   jint target_bits = 0;
 741   if (targetlen == 0)       target_bits = 0;
 742   else if (targetlen == 1)  target_bits = *(data()+1);
 743   else if (targetlen == 2)  target_bits = relocInfo::jint_from_data(data()+1);
 744   else                      { ShouldNotReachHere(); }
 745 
 746   _target = internal() ? address_from_scaled_offset(target_bits, addr())
 747                        : index_to_runtime_address  (target_bits);
 748 }
 749 
 750 
 751 //// miscellaneous methods
 752 oop* oop_Relocation::oop_addr() {
 753   int n = _oop_index;
 754   if (n == 0) {
 755     // oop is stored in the code stream
 756     return (oop*) pd_address_in_code();
 757   } else {
 758     // oop is stored in table at nmethod::oops_begin
 759     return code()->oop_addr_at(n);
 760   }
 761 }
 762 
 763 
 764 oop oop_Relocation::oop_value() {
 765   oop v = *oop_addr();
 766   // clean inline caches store a special pseudo-null
 767   if (v == (oop)Universe::non_oop_word())  v = NULL;
 768   return v;
 769 }
 770 
 771 
 772 void oop_Relocation::fix_oop_relocation() {
 773   if (!oop_is_immediate()) {
 774     // get the oop from the pool, and re-insert it into the instruction:
 775     set_value(value());
 776   }
 777 }
 778 
 779 
 780 RelocIterator virtual_call_Relocation::parse_ic(nmethod* &nm, address &ic_call, address &first_oop,
 781                                                 oop* &oop_addr, bool *is_optimized) {
 782   assert(ic_call != NULL, "ic_call address must be set");
 783   assert(ic_call != NULL || first_oop != NULL, "must supply a non-null input");
 784   if (nm == NULL) {
 785     CodeBlob* code;
 786     if (ic_call != NULL) {
 787       code = CodeCache::find_blob(ic_call);
 788     } else if (first_oop != NULL) {
 789       code = CodeCache::find_blob(first_oop);
 790     }
 791     nm = code->as_nmethod_or_null();
 792     assert(nm != NULL, "address to parse must be in nmethod");
 793   }
 794   assert(ic_call   == NULL || nm->contains(ic_call),   "must be in nmethod");
 795   assert(first_oop == NULL || nm->contains(first_oop), "must be in nmethod");
 796 
 797   address oop_limit = NULL;
 798 
 799   if (ic_call != NULL) {
 800     // search for the ic_call at the given address
 801     RelocIterator iter(nm, ic_call, ic_call+1);
 802     bool ret = iter.next();
 803     assert(ret == true, "relocInfo must exist at this address");
 804     assert(iter.addr() == ic_call, "must find ic_call");
 805     if (iter.type() == relocInfo::virtual_call_type) {
 806       virtual_call_Relocation* r = iter.virtual_call_reloc();
 807       first_oop = r->first_oop();
 808       oop_limit = r->oop_limit();
 809       *is_optimized = false;
 810     } else {
 811       assert(iter.type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
 812       *is_optimized = true;
 813       oop_addr = NULL;
 814       first_oop = NULL;
 815       return iter;
 816     }
 817   }
 818 
 819   // search for the first_oop, to get its oop_addr
 820   RelocIterator all_oops(nm, first_oop);
 821   RelocIterator iter = all_oops;
 822   iter.set_limit(first_oop+1);
 823   bool found_oop = false;
 824   while (iter.next()) {
 825     if (iter.type() == relocInfo::oop_type) {
 826       assert(iter.addr() == first_oop, "must find first_oop");
 827       oop_addr = iter.oop_reloc()->oop_addr();
 828       found_oop = true;
 829       break;
 830     }
 831   }
 832   assert(found_oop, "must find first_oop");
 833 
 834   bool did_reset = false;
 835   while (ic_call == NULL) {
 836     // search forward for the ic_call matching the given first_oop
 837     while (iter.next()) {
 838       if (iter.type() == relocInfo::virtual_call_type) {
 839         virtual_call_Relocation* r = iter.virtual_call_reloc();
 840         if (r->first_oop() == first_oop) {
 841           ic_call   = r->addr();
 842           oop_limit = r->oop_limit();
 843           break;
 844         }
 845       }
 846     }
 847     guarantee(!did_reset, "cannot find ic_call");
 848     iter = RelocIterator(nm); // search the whole nmethod
 849     did_reset = true;
 850   }
 851 
 852   assert(oop_limit != NULL && first_oop != NULL && ic_call != NULL, "");
 853   all_oops.set_limit(oop_limit);
 854   return all_oops;
 855 }
 856 
 857 
 858 address virtual_call_Relocation::first_oop() {
 859   assert(_first_oop != NULL && _first_oop < addr(), "must precede ic_call");
 860   return _first_oop;
 861 }
 862 
 863 
 864 address virtual_call_Relocation::oop_limit() {
 865   if (_oop_limit == NULL)
 866     return addr() + NativeCall::instruction_size;
 867   else
 868     return _oop_limit;
 869 }
 870 
 871 
 872 
 873 void virtual_call_Relocation::clear_inline_cache() {
 874   // No stubs for ICs
 875   // Clean IC
 876   ResourceMark rm;
 877   CompiledIC* icache = CompiledIC_at(this);
 878   icache->set_to_clean();
 879 }
 880 
 881 
 882 void opt_virtual_call_Relocation::clear_inline_cache() {
 883   // No stubs for ICs
 884   // Clean IC
 885   ResourceMark rm;
 886   CompiledIC* icache = CompiledIC_at(this);
 887   icache->set_to_clean();
 888 }
 889 
 890 
 891 address opt_virtual_call_Relocation::static_stub() {
 892   // search for the static stub who points back to this static call
 893   address static_call_addr = addr();
 894   RelocIterator iter(code());
 895   while (iter.next()) {
 896     if (iter.type() == relocInfo::static_stub_type) {
 897       if (iter.static_stub_reloc()->static_call() == static_call_addr) {
 898         return iter.addr();
 899       }
 900     }
 901   }
 902   return NULL;
 903 }
 904 
 905 
 906 void static_call_Relocation::clear_inline_cache() {
 907   // Safe call site info
 908   CompiledStaticCall* handler = compiledStaticCall_at(this);
 909   handler->set_to_clean();
 910 }
 911 
 912 
 913 address static_call_Relocation::static_stub() {
 914   // search for the static stub who points back to this static call
 915   address static_call_addr = addr();
 916   RelocIterator iter(code());
 917   while (iter.next()) {
 918     if (iter.type() == relocInfo::static_stub_type) {
 919       if (iter.static_stub_reloc()->static_call() == static_call_addr) {
 920         return iter.addr();
 921       }
 922     }
 923   }
 924   return NULL;
 925 }
 926 
 927 
 928 void static_stub_Relocation::clear_inline_cache() {
 929   // Call stub is only used when calling the interpreted code.
 930   // It does not really need to be cleared, except that we want to clean out the methodoop.
 931   CompiledStaticCall::set_stub_to_clean(this);
 932 }
 933 
 934 
 935 void external_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
 936   address target = _target;
 937   if (target == NULL) {
 938     // An absolute embedded reference to an external location,
 939     // which means there is nothing to fix here.
 940     return;
 941   }
 942   // Probably this reference is absolute, not relative, so the
 943   // following is probably a no-op.
 944   assert(src->section_index_of(target) == CodeBuffer::SECT_NONE, "sanity");
 945   set_value(target);
 946 }
 947 
 948 
 949 address external_word_Relocation::target() {
 950   address target = _target;
 951   if (target == NULL) {
 952     target = pd_get_address_from_code();
 953   }
 954   return target;
 955 }
 956 
 957 
 958 void internal_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
 959   address target = _target;
 960   if (target == NULL) {
 961     if (addr_in_const()) {
 962       target = new_addr_for(*(address*)addr(), src, dest);
 963     } else {
 964       target = new_addr_for(pd_get_address_from_code(), src, dest);
 965     }
 966   }
 967   set_value(target);
 968 }
 969 
 970 
 971 address internal_word_Relocation::target() {
 972   address target = _target;
 973   if (target == NULL) {
 974     target = pd_get_address_from_code();
 975   }
 976   return target;
 977 }
 978 
 979 
 980 breakpoint_Relocation::breakpoint_Relocation(int kind, address target, bool internal) {
 981   bool active    = false;
 982   bool enabled   = (kind == initialization);
 983   bool removable = (kind != safepoint);
 984   bool settable  = (target == NULL);
 985 
 986   int bits = kind;
 987   if (enabled)    bits |= enabled_state;
 988   if (internal)   bits |= internal_attr;
 989   if (removable)  bits |= removable_attr;
 990   if (settable)   bits |= settable_attr;
 991 
 992   _bits = bits | high_bit;
 993   _target = target;
 994 
 995   assert(this->kind()      == kind,      "kind encoded");
 996   assert(this->enabled()   == enabled,   "enabled encoded");
 997   assert(this->active()    == active,    "active encoded");
 998   assert(this->internal()  == internal,  "internal encoded");
 999   assert(this->removable() == removable, "removable encoded");
1000   assert(this->settable()  == settable,  "settable encoded");
1001 }
1002 
1003 
1004 address breakpoint_Relocation::target() const {
1005   return _target;
1006 }
1007 
1008 
1009 void breakpoint_Relocation::set_target(address x) {
1010   assert(settable(), "must be settable");
1011   jint target_bits =
1012     (jint)(internal() ? scaled_offset           (x, addr())
1013                       : runtime_address_to_index(x));
1014   short* p = &live_bits() + 1;
1015   p = add_jint(p, target_bits);
1016   assert(p == instrs(), "new target must fit");
1017   _target = x;
1018 }
1019 
1020 
1021 void breakpoint_Relocation::set_enabled(bool b) {
1022   if (enabled() == b) return;
1023 
1024   if (b) {
1025     set_bits(bits() | enabled_state);
1026   } else {
1027     set_active(false);          // remove the actual breakpoint insn, if any
1028     set_bits(bits() & ~enabled_state);
1029   }
1030 }
1031 
1032 
1033 void breakpoint_Relocation::set_active(bool b) {
1034   assert(!b || enabled(), "cannot activate a disabled breakpoint");
1035 
1036   if (active() == b) return;
1037 
1038   // %%% should probably seize a lock here (might not be the right lock)
1039   //MutexLockerEx ml_patch(Patching_lock, true);
1040   //if (active() == b)  return;         // recheck state after locking
1041 
1042   if (b) {
1043     set_bits(bits() | active_state);
1044     if (instrlen() == 0)
1045       fatal("breakpoints in original code must be undoable");
1046     pd_swap_in_breakpoint (addr(), instrs(), instrlen());
1047   } else {
1048     set_bits(bits() & ~active_state);
1049     pd_swap_out_breakpoint(addr(), instrs(), instrlen());
1050   }
1051 }
1052 
1053 
1054 //---------------------------------------------------------------------------------
1055 // Non-product code
1056 
1057 #ifndef PRODUCT
1058 
1059 static const char* reloc_type_string(relocInfo::relocType t) {
1060   switch (t) {
1061   #define EACH_CASE(name) \
1062   case relocInfo::name##_type: \
1063     return #name;
1064 
1065   APPLY_TO_RELOCATIONS(EACH_CASE);
1066   #undef EACH_CASE
1067 
1068   case relocInfo::none:
1069     return "none";
1070   case relocInfo::data_prefix_tag:
1071     return "prefix";
1072   default:
1073     return "UNKNOWN RELOC TYPE";
1074   }
1075 }
1076 
1077 
1078 void RelocIterator::print_current() {
1079   if (!has_current()) {
1080     tty->print_cr("(no relocs)");
1081     return;
1082   }
1083   tty->print("relocInfo@" INTPTR_FORMAT " [type=%d(%s) addr=" INTPTR_FORMAT,
1084              _current, type(), reloc_type_string((relocInfo::relocType) type()), _addr);
1085   if (current()->format() != 0)
1086     tty->print(" format=%d", current()->format());
1087   if (datalen() == 1) {
1088     tty->print(" data=%d", data()[0]);
1089   } else if (datalen() > 0) {
1090     tty->print(" data={");
1091     for (int i = 0; i < datalen(); i++) {
1092       tty->print("%04x", data()[i] & 0xFFFF);
1093     }
1094     tty->print("}");
1095   }
1096   tty->print("]");
1097   switch (type()) {
1098   case relocInfo::oop_type:
1099     {
1100       oop_Relocation* r = oop_reloc();
1101       oop* oop_addr  = NULL;
1102       oop  raw_oop   = NULL;
1103       oop  oop_value = NULL;
1104       if (code() != NULL || r->oop_is_immediate()) {
1105         oop_addr  = r->oop_addr();
1106         raw_oop   = *oop_addr;
1107         oop_value = r->oop_value();
1108       }
1109       tty->print(" | [oop_addr=" INTPTR_FORMAT " *=" INTPTR_FORMAT " offset=%d]",
1110                  oop_addr, (address)raw_oop, r->offset());
1111       // Do not print the oop by default--we want this routine to
1112       // work even during GC or other inconvenient times.
1113       if (WizardMode && oop_value != NULL) {
1114         tty->print("oop_value=" INTPTR_FORMAT ": ", (address)oop_value);
1115         oop_value->print_value_on(tty);
1116       }
1117       break;
1118     }
1119   case relocInfo::external_word_type:
1120   case relocInfo::internal_word_type:
1121   case relocInfo::section_word_type:
1122     {
1123       DataRelocation* r = (DataRelocation*) reloc();
1124       tty->print(" | [target=" INTPTR_FORMAT "]", r->value()); //value==target
1125       break;
1126     }
1127   case relocInfo::static_call_type:
1128   case relocInfo::runtime_call_type:
1129     {
1130       CallRelocation* r = (CallRelocation*) reloc();
1131       tty->print(" | [destination=" INTPTR_FORMAT "]", r->destination());
1132       break;
1133     }
1134   case relocInfo::virtual_call_type:
1135     {
1136       virtual_call_Relocation* r = (virtual_call_Relocation*) reloc();
1137       tty->print(" | [destination=" INTPTR_FORMAT " first_oop=" INTPTR_FORMAT " oop_limit=" INTPTR_FORMAT "]",
1138                  r->destination(), r->first_oop(), r->oop_limit());
1139       break;
1140     }
1141   case relocInfo::static_stub_type:
1142     {
1143       static_stub_Relocation* r = (static_stub_Relocation*) reloc();
1144       tty->print(" | [static_call=" INTPTR_FORMAT "]", r->static_call());
1145       break;
1146     }
1147   }
1148   tty->cr();
1149 }
1150 
1151 
1152 void RelocIterator::print() {
1153   RelocIterator save_this = (*this);
1154   relocInfo* scan = _current;
1155   if (!has_current())  scan += 1;  // nothing to scan here!
1156 
1157   bool skip_next = has_current();
1158   bool got_next;
1159   while (true) {
1160     got_next = (skip_next || next());
1161     skip_next = false;
1162 
1163     tty->print("         @" INTPTR_FORMAT ": ", scan);
1164     relocInfo* newscan = _current+1;
1165     if (!has_current())  newscan -= 1;  // nothing to scan here!
1166     while (scan < newscan) {
1167       tty->print("%04x", *(short*)scan & 0xFFFF);
1168       scan++;
1169     }
1170     tty->cr();
1171 
1172     if (!got_next)  break;
1173     print_current();
1174   }
1175 
1176   (*this) = save_this;
1177 }
1178 
1179 // For the debugger:
1180 extern "C"
1181 void print_blob_locs(nmethod* nm) {
1182   nm->print();
1183   RelocIterator iter(nm);
1184   iter.print();
1185 }
1186 extern "C"
1187 void print_buf_locs(CodeBuffer* cb) {
1188   FlagSetting fs(PrintRelocations, true);
1189   cb->print();
1190 }
1191 #endif // !PRODUCT