1 /*
   2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_sharedRuntime.cpp.incl"
  27 #include <math.h>
  28 
  29 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
  30 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
  31                       char*, int, char*, int, char*, int);
  32 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
  33                       char*, int, char*, int, char*, int);
  34 
  35 // Implementation of SharedRuntime
  36 
  37 #ifndef PRODUCT
  38 // For statistics
  39 int SharedRuntime::_ic_miss_ctr = 0;
  40 int SharedRuntime::_wrong_method_ctr = 0;
  41 int SharedRuntime::_resolve_static_ctr = 0;
  42 int SharedRuntime::_resolve_virtual_ctr = 0;
  43 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
  44 int SharedRuntime::_implicit_null_throws = 0;
  45 int SharedRuntime::_implicit_div0_throws = 0;
  46 int SharedRuntime::_throw_null_ctr = 0;
  47 
  48 int SharedRuntime::_nof_normal_calls = 0;
  49 int SharedRuntime::_nof_optimized_calls = 0;
  50 int SharedRuntime::_nof_inlined_calls = 0;
  51 int SharedRuntime::_nof_megamorphic_calls = 0;
  52 int SharedRuntime::_nof_static_calls = 0;
  53 int SharedRuntime::_nof_inlined_static_calls = 0;
  54 int SharedRuntime::_nof_interface_calls = 0;
  55 int SharedRuntime::_nof_optimized_interface_calls = 0;
  56 int SharedRuntime::_nof_inlined_interface_calls = 0;
  57 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
  58 int SharedRuntime::_nof_removable_exceptions = 0;
  59 
  60 int SharedRuntime::_new_instance_ctr=0;
  61 int SharedRuntime::_new_array_ctr=0;
  62 int SharedRuntime::_multi1_ctr=0;
  63 int SharedRuntime::_multi2_ctr=0;
  64 int SharedRuntime::_multi3_ctr=0;
  65 int SharedRuntime::_multi4_ctr=0;
  66 int SharedRuntime::_multi5_ctr=0;
  67 int SharedRuntime::_mon_enter_stub_ctr=0;
  68 int SharedRuntime::_mon_exit_stub_ctr=0;
  69 int SharedRuntime::_mon_enter_ctr=0;
  70 int SharedRuntime::_mon_exit_ctr=0;
  71 int SharedRuntime::_partial_subtype_ctr=0;
  72 int SharedRuntime::_jbyte_array_copy_ctr=0;
  73 int SharedRuntime::_jshort_array_copy_ctr=0;
  74 int SharedRuntime::_jint_array_copy_ctr=0;
  75 int SharedRuntime::_jlong_array_copy_ctr=0;
  76 int SharedRuntime::_oop_array_copy_ctr=0;
  77 int SharedRuntime::_checkcast_array_copy_ctr=0;
  78 int SharedRuntime::_unsafe_array_copy_ctr=0;
  79 int SharedRuntime::_generic_array_copy_ctr=0;
  80 int SharedRuntime::_slow_array_copy_ctr=0;
  81 int SharedRuntime::_find_handler_ctr=0;
  82 int SharedRuntime::_rethrow_ctr=0;
  83 
  84 int     SharedRuntime::_ICmiss_index                    = 0;
  85 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
  86 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
  87 
  88 void SharedRuntime::trace_ic_miss(address at) {
  89   for (int i = 0; i < _ICmiss_index; i++) {
  90     if (_ICmiss_at[i] == at) {
  91       _ICmiss_count[i]++;
  92       return;
  93     }
  94   }
  95   int index = _ICmiss_index++;
  96   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
  97   _ICmiss_at[index] = at;
  98   _ICmiss_count[index] = 1;
  99 }
 100 
 101 void SharedRuntime::print_ic_miss_histogram() {
 102   if (ICMissHistogram) {
 103     tty->print_cr ("IC Miss Histogram:");
 104     int tot_misses = 0;
 105     for (int i = 0; i < _ICmiss_index; i++) {
 106       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 107       tot_misses += _ICmiss_count[i];
 108     }
 109     tty->print_cr ("Total IC misses: %7d", tot_misses);
 110   }
 111 }
 112 #endif // PRODUCT
 113 
 114 #ifndef SERIALGC
 115 
 116 // G1 write-barrier pre: executed before a pointer store.
 117 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 118   if (orig == NULL) {
 119     assert(false, "should be optimized out");
 120     return;
 121   }
 122   assert(orig->is_oop(true /* ignore mark word */), "Error");
 123   // store the original value that was in the field reference
 124   thread->satb_mark_queue().enqueue(orig);
 125 JRT_END
 126 
 127 // G1 write-barrier post: executed after a pointer store.
 128 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 129   thread->dirty_card_queue().enqueue(card_addr);
 130 JRT_END
 131 
 132 #endif // !SERIALGC
 133 
 134 
 135 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 136   return x * y;
 137 JRT_END
 138 
 139 
 140 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 141   if (x == min_jlong && y == CONST64(-1)) {
 142     return x;
 143   } else {
 144     return x / y;
 145   }
 146 JRT_END
 147 
 148 
 149 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 150   if (x == min_jlong && y == CONST64(-1)) {
 151     return 0;
 152   } else {
 153     return x % y;
 154   }
 155 JRT_END
 156 
 157 
 158 const juint  float_sign_mask  = 0x7FFFFFFF;
 159 const juint  float_infinity   = 0x7F800000;
 160 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 161 const julong double_infinity  = CONST64(0x7FF0000000000000);
 162 
 163 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 164 #ifdef _WIN64
 165   // 64-bit Windows on amd64 returns the wrong values for
 166   // infinity operands.
 167   union { jfloat f; juint i; } xbits, ybits;
 168   xbits.f = x;
 169   ybits.f = y;
 170   // x Mod Infinity == x unless x is infinity
 171   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 172        ((ybits.i & float_sign_mask) == float_infinity) ) {
 173     return x;
 174   }
 175 #endif
 176   return ((jfloat)fmod((double)x,(double)y));
 177 JRT_END
 178 
 179 
 180 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 181 #ifdef _WIN64
 182   union { jdouble d; julong l; } xbits, ybits;
 183   xbits.d = x;
 184   ybits.d = y;
 185   // x Mod Infinity == x unless x is infinity
 186   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 187        ((ybits.l & double_sign_mask) == double_infinity) ) {
 188     return x;
 189   }
 190 #endif
 191   return ((jdouble)fmod((double)x,(double)y));
 192 JRT_END
 193 
 194 
 195 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 196   if (g_isnan(x))
 197     return 0;
 198   if (x >= (jfloat) max_jint)
 199     return max_jint;
 200   if (x <= (jfloat) min_jint)
 201     return min_jint;
 202   return (jint) x;
 203 JRT_END
 204 
 205 
 206 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 207   if (g_isnan(x))
 208     return 0;
 209   if (x >= (jfloat) max_jlong)
 210     return max_jlong;
 211   if (x <= (jfloat) min_jlong)
 212     return min_jlong;
 213   return (jlong) x;
 214 JRT_END
 215 
 216 
 217 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 218   if (g_isnan(x))
 219     return 0;
 220   if (x >= (jdouble) max_jint)
 221     return max_jint;
 222   if (x <= (jdouble) min_jint)
 223     return min_jint;
 224   return (jint) x;
 225 JRT_END
 226 
 227 
 228 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 229   if (g_isnan(x))
 230     return 0;
 231   if (x >= (jdouble) max_jlong)
 232     return max_jlong;
 233   if (x <= (jdouble) min_jlong)
 234     return min_jlong;
 235   return (jlong) x;
 236 JRT_END
 237 
 238 
 239 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 240   return (jfloat)x;
 241 JRT_END
 242 
 243 
 244 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 245   return (jfloat)x;
 246 JRT_END
 247 
 248 
 249 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 250   return (jdouble)x;
 251 JRT_END
 252 
 253 // Exception handling accross interpreter/compiler boundaries
 254 //
 255 // exception_handler_for_return_address(...) returns the continuation address.
 256 // The continuation address is the entry point of the exception handler of the
 257 // previous frame depending on the return address.
 258 
 259 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 260   assert(frame::verify_return_pc(return_address), "must be a return pc");
 261 
 262   // Reset MethodHandle flag.
 263   thread->set_is_method_handle_return(false);
 264 
 265   // the fastest case first
 266   CodeBlob* blob = CodeCache::find_blob(return_address);
 267   if (blob != NULL && blob->is_nmethod()) {
 268     nmethod* code = (nmethod*)blob;
 269     assert(code != NULL, "nmethod must be present");
 270     // Check if the return address is a MethodHandle call site.
 271     thread->set_is_method_handle_return(code->is_method_handle_return(return_address));
 272     // native nmethods don't have exception handlers
 273     assert(!code->is_native_method(), "no exception handler");
 274     assert(code->header_begin() != code->exception_begin(), "no exception handler");
 275     if (code->is_deopt_pc(return_address)) {
 276       return SharedRuntime::deopt_blob()->unpack_with_exception();
 277     } else {
 278       return code->exception_begin();
 279     }
 280   }
 281 
 282   // Entry code
 283   if (StubRoutines::returns_to_call_stub(return_address)) {
 284     return StubRoutines::catch_exception_entry();
 285   }
 286   // Interpreted code
 287   if (Interpreter::contains(return_address)) {
 288     return Interpreter::rethrow_exception_entry();
 289   }
 290 
 291   // Compiled code
 292   if (CodeCache::contains(return_address)) {
 293     CodeBlob* blob = CodeCache::find_blob(return_address);
 294     if (blob->is_nmethod()) {
 295       nmethod* code = (nmethod*)blob;
 296       assert(code != NULL, "nmethod must be present");
 297       // Check if the return address is a MethodHandle call site.
 298       thread->set_is_method_handle_return(code->is_method_handle_return(return_address));
 299       assert(code->header_begin() != code->exception_begin(), "no exception handler");
 300       return code->exception_begin();
 301     }
 302     if (blob->is_runtime_stub()) {
 303       ShouldNotReachHere();   // callers are responsible for skipping runtime stub frames
 304     }
 305   }
 306   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 307 #ifndef PRODUCT
 308   { ResourceMark rm;
 309     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 310     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 311     tty->print_cr("b) other problem");
 312   }
 313 #endif // PRODUCT
 314   ShouldNotReachHere();
 315   return NULL;
 316 }
 317 
 318 
 319 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 320   return raw_exception_handler_for_return_address(thread, return_address);
 321 JRT_END
 322 
 323 
 324 address SharedRuntime::get_poll_stub(address pc) {
 325   address stub;
 326   // Look up the code blob
 327   CodeBlob *cb = CodeCache::find_blob(pc);
 328 
 329   // Should be an nmethod
 330   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 331 
 332   // Look up the relocation information
 333   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 334     "safepoint polling: type must be poll" );
 335 
 336   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 337     "Only polling locations are used for safepoint");
 338 
 339   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 340   if (at_poll_return) {
 341     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 342            "polling page return stub not created yet");
 343     stub = SharedRuntime::polling_page_return_handler_blob()->instructions_begin();
 344   } else {
 345     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 346            "polling page safepoint stub not created yet");
 347     stub = SharedRuntime::polling_page_safepoint_handler_blob()->instructions_begin();
 348   }
 349 #ifndef PRODUCT
 350   if( TraceSafepoint ) {
 351     char buf[256];
 352     jio_snprintf(buf, sizeof(buf),
 353                  "... found polling page %s exception at pc = "
 354                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 355                  at_poll_return ? "return" : "loop",
 356                  (intptr_t)pc, (intptr_t)stub);
 357     tty->print_raw_cr(buf);
 358   }
 359 #endif // PRODUCT
 360   return stub;
 361 }
 362 
 363 
 364 oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
 365   assert(caller.is_interpreted_frame(), "");
 366   int args_size = ArgumentSizeComputer(sig).size() + 1;
 367   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 368   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
 369   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 370   return result;
 371 }
 372 
 373 
 374 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 375   if (JvmtiExport::can_post_on_exceptions()) {
 376     vframeStream vfst(thread, true);
 377     methodHandle method = methodHandle(thread, vfst.method());
 378     address bcp = method()->bcp_from(vfst.bci());
 379     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 380   }
 381   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 382 }
 383 
 384 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
 385   Handle h_exception = Exceptions::new_exception(thread, name, message);
 386   throw_and_post_jvmti_exception(thread, h_exception);
 387 }
 388 
 389 // The interpreter code to call this tracing function is only
 390 // called/generated when TraceRedefineClasses has the right bits
 391 // set. Since obsolete methods are never compiled, we don't have
 392 // to modify the compilers to generate calls to this function.
 393 //
 394 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 395     JavaThread* thread, methodOopDesc* method))
 396   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 397 
 398   if (method->is_obsolete()) {
 399     // We are calling an obsolete method, but this is not necessarily
 400     // an error. Our method could have been redefined just after we
 401     // fetched the methodOop from the constant pool.
 402 
 403     // RC_TRACE macro has an embedded ResourceMark
 404     RC_TRACE_WITH_THREAD(0x00001000, thread,
 405                          ("calling obsolete method '%s'",
 406                           method->name_and_sig_as_C_string()));
 407     if (RC_TRACE_ENABLED(0x00002000)) {
 408       // this option is provided to debug calls to obsolete methods
 409       guarantee(false, "faulting at call to an obsolete method.");
 410     }
 411   }
 412   return 0;
 413 JRT_END
 414 
 415 // ret_pc points into caller; we are returning caller's exception handler
 416 // for given exception
 417 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 418                                                     bool force_unwind, bool top_frame_only) {
 419   assert(nm != NULL, "must exist");
 420   ResourceMark rm;
 421 
 422   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 423   // determine handler bci, if any
 424   EXCEPTION_MARK;
 425 
 426   int handler_bci = -1;
 427   int scope_depth = 0;
 428   if (!force_unwind) {
 429     int bci = sd->bci();
 430     do {
 431       bool skip_scope_increment = false;
 432       // exception handler lookup
 433       KlassHandle ek (THREAD, exception->klass());
 434       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
 435       if (HAS_PENDING_EXCEPTION) {
 436         // We threw an exception while trying to find the exception handler.
 437         // Transfer the new exception to the exception handle which will
 438         // be set into thread local storage, and do another lookup for an
 439         // exception handler for this exception, this time starting at the
 440         // BCI of the exception handler which caused the exception to be
 441         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 442         // argument to ensure that the correct exception is thrown (4870175).
 443         exception = Handle(THREAD, PENDING_EXCEPTION);
 444         CLEAR_PENDING_EXCEPTION;
 445         if (handler_bci >= 0) {
 446           bci = handler_bci;
 447           handler_bci = -1;
 448           skip_scope_increment = true;
 449         }
 450       }
 451       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 452         sd = sd->sender();
 453         if (sd != NULL) {
 454           bci = sd->bci();
 455         }
 456         ++scope_depth;
 457       }
 458     } while (!top_frame_only && handler_bci < 0 && sd != NULL);
 459   }
 460 
 461   // found handling method => lookup exception handler
 462   int catch_pco = ret_pc - nm->instructions_begin();
 463 
 464   ExceptionHandlerTable table(nm);
 465   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 466   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 467     // Allow abbreviated catch tables.  The idea is to allow a method
 468     // to materialize its exceptions without committing to the exact
 469     // routing of exceptions.  In particular this is needed for adding
 470     // a synthethic handler to unlock monitors when inlining
 471     // synchonized methods since the unlock path isn't represented in
 472     // the bytecodes.
 473     t = table.entry_for(catch_pco, -1, 0);
 474   }
 475 
 476 #ifdef COMPILER1
 477   if (t == NULL && nm->is_compiled_by_c1()) {
 478     assert(nm->unwind_handler_begin() != NULL, "");
 479     return nm->unwind_handler_begin();
 480   }
 481 #endif
 482 
 483   if (t == NULL) {
 484     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 485     tty->print_cr("   Exception:");
 486     exception->print();
 487     tty->cr();
 488     tty->print_cr(" Compiled exception table :");
 489     table.print();
 490     nm->print_code();
 491     guarantee(false, "missing exception handler");
 492     return NULL;
 493   }
 494 
 495   return nm->instructions_begin() + t->pco();
 496 }
 497 
 498 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 499   // These errors occur only at call sites
 500   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 501 JRT_END
 502 
 503 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 504   // These errors occur only at call sites
 505   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 506 JRT_END
 507 
 508 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 509   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 510 JRT_END
 511 
 512 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 513   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 514 JRT_END
 515 
 516 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 517   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 518   // cache sites (when the callee activation is not yet set up) so we are at a call site
 519   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 520 JRT_END
 521 
 522 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 523   // We avoid using the normal exception construction in this case because
 524   // it performs an upcall to Java, and we're already out of stack space.
 525   klassOop k = SystemDictionary::StackOverflowError_klass();
 526   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
 527   Handle exception (thread, exception_oop);
 528   if (StackTraceInThrowable) {
 529     java_lang_Throwable::fill_in_stack_trace(exception);
 530   }
 531   throw_and_post_jvmti_exception(thread, exception);
 532 JRT_END
 533 
 534 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 535                                                            address pc,
 536                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 537 {
 538   address target_pc = NULL;
 539 
 540   if (Interpreter::contains(pc)) {
 541 #ifdef CC_INTERP
 542     // C++ interpreter doesn't throw implicit exceptions
 543     ShouldNotReachHere();
 544 #else
 545     switch (exception_kind) {
 546       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 547       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 548       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 549       default:                      ShouldNotReachHere();
 550     }
 551 #endif // !CC_INTERP
 552   } else {
 553     switch (exception_kind) {
 554       case STACK_OVERFLOW: {
 555         // Stack overflow only occurs upon frame setup; the callee is
 556         // going to be unwound. Dispatch to a shared runtime stub
 557         // which will cause the StackOverflowError to be fabricated
 558         // and processed.
 559         // For stack overflow in deoptimization blob, cleanup thread.
 560         if (thread->deopt_mark() != NULL) {
 561           Deoptimization::cleanup_deopt_info(thread, NULL);
 562         }
 563         return StubRoutines::throw_StackOverflowError_entry();
 564       }
 565 
 566       case IMPLICIT_NULL: {
 567         if (VtableStubs::contains(pc)) {
 568           // We haven't yet entered the callee frame. Fabricate an
 569           // exception and begin dispatching it in the caller. Since
 570           // the caller was at a call site, it's safe to destroy all
 571           // caller-saved registers, as these entry points do.
 572           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 573 
 574           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 575           if (vt_stub == NULL) return NULL;
 576 
 577           if (vt_stub->is_abstract_method_error(pc)) {
 578             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 579             return StubRoutines::throw_AbstractMethodError_entry();
 580           } else {
 581             return StubRoutines::throw_NullPointerException_at_call_entry();
 582           }
 583         } else {
 584           CodeBlob* cb = CodeCache::find_blob(pc);
 585 
 586           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 587           if (cb == NULL) return NULL;
 588 
 589           // Exception happened in CodeCache. Must be either:
 590           // 1. Inline-cache check in C2I handler blob,
 591           // 2. Inline-cache check in nmethod, or
 592           // 3. Implict null exception in nmethod
 593 
 594           if (!cb->is_nmethod()) {
 595             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
 596                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
 597             // There is no handler here, so we will simply unwind.
 598             return StubRoutines::throw_NullPointerException_at_call_entry();
 599           }
 600 
 601           // Otherwise, it's an nmethod.  Consult its exception handlers.
 602           nmethod* nm = (nmethod*)cb;
 603           if (nm->inlinecache_check_contains(pc)) {
 604             // exception happened inside inline-cache check code
 605             // => the nmethod is not yet active (i.e., the frame
 606             // is not set up yet) => use return address pushed by
 607             // caller => don't push another return address
 608             return StubRoutines::throw_NullPointerException_at_call_entry();
 609           }
 610 
 611 #ifndef PRODUCT
 612           _implicit_null_throws++;
 613 #endif
 614           target_pc = nm->continuation_for_implicit_exception(pc);
 615           // If there's an unexpected fault, target_pc might be NULL,
 616           // in which case we want to fall through into the normal
 617           // error handling code.
 618         }
 619 
 620         break; // fall through
 621       }
 622 
 623 
 624       case IMPLICIT_DIVIDE_BY_ZERO: {
 625         nmethod* nm = CodeCache::find_nmethod(pc);
 626         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 627 #ifndef PRODUCT
 628         _implicit_div0_throws++;
 629 #endif
 630         target_pc = nm->continuation_for_implicit_exception(pc);
 631         // If there's an unexpected fault, target_pc might be NULL,
 632         // in which case we want to fall through into the normal
 633         // error handling code.
 634         break; // fall through
 635       }
 636 
 637       default: ShouldNotReachHere();
 638     }
 639 
 640     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 641 
 642     // for AbortVMOnException flag
 643     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 644     if (exception_kind == IMPLICIT_NULL) {
 645       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 646     } else {
 647       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 648     }
 649     return target_pc;
 650   }
 651 
 652   ShouldNotReachHere();
 653   return NULL;
 654 }
 655 
 656 
 657 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
 658 {
 659   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
 660 }
 661 JNI_END
 662 
 663 
 664 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 665   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 666 }
 667 
 668 
 669 #ifndef PRODUCT
 670 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 671   const frame f = thread->last_frame();
 672   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 673 #ifndef PRODUCT
 674   methodHandle mh(THREAD, f.interpreter_frame_method());
 675   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 676 #endif // !PRODUCT
 677   return preserve_this_value;
 678 JRT_END
 679 #endif // !PRODUCT
 680 
 681 
 682 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 683   os::yield_all(attempts);
 684 JRT_END
 685 
 686 
 687 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 688   assert(obj->is_oop(), "must be a valid oop");
 689   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
 690   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
 691 JRT_END
 692 
 693 
 694 jlong SharedRuntime::get_java_tid(Thread* thread) {
 695   if (thread != NULL) {
 696     if (thread->is_Java_thread()) {
 697       oop obj = ((JavaThread*)thread)->threadObj();
 698       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 699     }
 700   }
 701   return 0;
 702 }
 703 
 704 /**
 705  * This function ought to be a void function, but cannot be because
 706  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 707  * 6254741.  Once that is fixed we can remove the dummy return value.
 708  */
 709 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 710   return dtrace_object_alloc_base(Thread::current(), o);
 711 }
 712 
 713 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 714   assert(DTraceAllocProbes, "wrong call");
 715   Klass* klass = o->blueprint();
 716   int size = o->size();
 717   symbolOop name = klass->name();
 718   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 719                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 720   return 0;
 721 }
 722 
 723 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 724     JavaThread* thread, methodOopDesc* method))
 725   assert(DTraceMethodProbes, "wrong call");
 726   symbolOop kname = method->klass_name();
 727   symbolOop name = method->name();
 728   symbolOop sig = method->signature();
 729   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 730       kname->bytes(), kname->utf8_length(),
 731       name->bytes(), name->utf8_length(),
 732       sig->bytes(), sig->utf8_length());
 733   return 0;
 734 JRT_END
 735 
 736 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 737     JavaThread* thread, methodOopDesc* method))
 738   assert(DTraceMethodProbes, "wrong call");
 739   symbolOop kname = method->klass_name();
 740   symbolOop name = method->name();
 741   symbolOop sig = method->signature();
 742   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
 743       kname->bytes(), kname->utf8_length(),
 744       name->bytes(), name->utf8_length(),
 745       sig->bytes(), sig->utf8_length());
 746   return 0;
 747 JRT_END
 748 
 749 
 750 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
 751 // for a call current in progress, i.e., arguments has been pushed on stack
 752 // put callee has not been invoked yet.  Used by: resolve virtual/static,
 753 // vtable updates, etc.  Caller frame must be compiled.
 754 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
 755   ResourceMark rm(THREAD);
 756 
 757   // last java frame on stack (which includes native call frames)
 758   vframeStream vfst(thread, true);  // Do not skip and javaCalls
 759 
 760   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
 761 }
 762 
 763 
 764 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
 765 // for a call current in progress, i.e., arguments has been pushed on stack
 766 // but callee has not been invoked yet.  Caller frame must be compiled.
 767 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
 768                                               vframeStream& vfst,
 769                                               Bytecodes::Code& bc,
 770                                               CallInfo& callinfo, TRAPS) {
 771   Handle receiver;
 772   Handle nullHandle;  //create a handy null handle for exception returns
 773 
 774   assert(!vfst.at_end(), "Java frame must exist");
 775 
 776   // Find caller and bci from vframe
 777   methodHandle caller (THREAD, vfst.method());
 778   int          bci    = vfst.bci();
 779 
 780   // Find bytecode
 781   Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
 782   bc = bytecode->adjusted_invoke_code();
 783   int bytecode_index = bytecode->index();
 784 
 785   // Find receiver for non-static call
 786   if (bc != Bytecodes::_invokestatic) {
 787     // This register map must be update since we need to find the receiver for
 788     // compiled frames. The receiver might be in a register.
 789     RegisterMap reg_map2(thread);
 790     frame stubFrame   = thread->last_frame();
 791     // Caller-frame is a compiled frame
 792     frame callerFrame = stubFrame.sender(&reg_map2);
 793 
 794     methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
 795     if (callee.is_null()) {
 796       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
 797     }
 798     // Retrieve from a compiled argument list
 799     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
 800 
 801     if (receiver.is_null()) {
 802       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
 803     }
 804   }
 805 
 806   // Resolve method. This is parameterized by bytecode.
 807   constantPoolHandle constants (THREAD, caller->constants());
 808   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
 809   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
 810 
 811 #ifdef ASSERT
 812   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
 813   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
 814     assert(receiver.not_null(), "should have thrown exception");
 815     KlassHandle receiver_klass (THREAD, receiver->klass());
 816     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
 817                             // klass is already loaded
 818     KlassHandle static_receiver_klass (THREAD, rk);
 819     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
 820     if (receiver_klass->oop_is_instance()) {
 821       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
 822         tty->print_cr("ERROR: Klass not yet initialized!!");
 823         receiver_klass.print();
 824       }
 825       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
 826     }
 827   }
 828 #endif
 829 
 830   return receiver;
 831 }
 832 
 833 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
 834   ResourceMark rm(THREAD);
 835   // We need first to check if any Java activations (compiled, interpreted)
 836   // exist on the stack since last JavaCall.  If not, we need
 837   // to get the target method from the JavaCall wrapper.
 838   vframeStream vfst(thread, true);  // Do not skip any javaCalls
 839   methodHandle callee_method;
 840   if (vfst.at_end()) {
 841     // No Java frames were found on stack since we did the JavaCall.
 842     // Hence the stack can only contain an entry_frame.  We need to
 843     // find the target method from the stub frame.
 844     RegisterMap reg_map(thread, false);
 845     frame fr = thread->last_frame();
 846     assert(fr.is_runtime_frame(), "must be a runtimeStub");
 847     fr = fr.sender(&reg_map);
 848     assert(fr.is_entry_frame(), "must be");
 849     // fr is now pointing to the entry frame.
 850     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
 851     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
 852   } else {
 853     Bytecodes::Code bc;
 854     CallInfo callinfo;
 855     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
 856     callee_method = callinfo.selected_method();
 857   }
 858   assert(callee_method()->is_method(), "must be");
 859   return callee_method;
 860 }
 861 
 862 // Resolves a call.
 863 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
 864                                            bool is_virtual,
 865                                            bool is_optimized, TRAPS) {
 866   methodHandle callee_method;
 867   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
 868   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
 869     int retry_count = 0;
 870     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
 871            callee_method->method_holder() != SystemDictionary::Object_klass()) {
 872       // If has a pending exception then there is no need to re-try to
 873       // resolve this method.
 874       // If the method has been redefined, we need to try again.
 875       // Hack: we have no way to update the vtables of arrays, so don't
 876       // require that java.lang.Object has been updated.
 877 
 878       // It is very unlikely that method is redefined more than 100 times
 879       // in the middle of resolve. If it is looping here more than 100 times
 880       // means then there could be a bug here.
 881       guarantee((retry_count++ < 100),
 882                 "Could not resolve to latest version of redefined method");
 883       // method is redefined in the middle of resolve so re-try.
 884       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
 885     }
 886   }
 887   return callee_method;
 888 }
 889 
 890 // Resolves a call.  The compilers generate code for calls that go here
 891 // and are patched with the real destination of the call.
 892 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
 893                                            bool is_virtual,
 894                                            bool is_optimized, TRAPS) {
 895 
 896   ResourceMark rm(thread);
 897   RegisterMap cbl_map(thread, false);
 898   frame caller_frame = thread->last_frame().sender(&cbl_map);
 899 
 900   CodeBlob* caller_cb = caller_frame.cb();
 901   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
 902   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
 903   // make sure caller is not getting deoptimized
 904   // and removed before we are done with it.
 905   // CLEANUP - with lazy deopt shouldn't need this lock
 906   nmethodLocker caller_lock(caller_nm);
 907 
 908 
 909   // determine call info & receiver
 910   // note: a) receiver is NULL for static calls
 911   //       b) an exception is thrown if receiver is NULL for non-static calls
 912   CallInfo call_info;
 913   Bytecodes::Code invoke_code = Bytecodes::_illegal;
 914   Handle receiver = find_callee_info(thread, invoke_code,
 915                                      call_info, CHECK_(methodHandle()));
 916   methodHandle callee_method = call_info.selected_method();
 917 
 918   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
 919          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
 920 
 921 #ifndef PRODUCT
 922   // tracing/debugging/statistics
 923   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
 924                 (is_virtual) ? (&_resolve_virtual_ctr) :
 925                                (&_resolve_static_ctr);
 926   Atomic::inc(addr);
 927 
 928   if (TraceCallFixup) {
 929     ResourceMark rm(thread);
 930     tty->print("resolving %s%s (%s) call to",
 931       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
 932       Bytecodes::name(invoke_code));
 933     callee_method->print_short_name(tty);
 934     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
 935   }
 936 #endif
 937 
 938   // JSR 292
 939   // If the resolved method is a MethodHandle invoke target the call
 940   // site must be a MethodHandle call site.
 941   if (callee_method->is_method_handle_invoke()) {
 942     assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
 943   }
 944 
 945   // Compute entry points. This might require generation of C2I converter
 946   // frames, so we cannot be holding any locks here. Furthermore, the
 947   // computation of the entry points is independent of patching the call.  We
 948   // always return the entry-point, but we only patch the stub if the call has
 949   // not been deoptimized.  Return values: For a virtual call this is an
 950   // (cached_oop, destination address) pair. For a static call/optimized
 951   // virtual this is just a destination address.
 952 
 953   StaticCallInfo static_call_info;
 954   CompiledICInfo virtual_call_info;
 955 
 956   // Make sure the callee nmethod does not get deoptimized and removed before
 957   // we are done patching the code.
 958   nmethod* callee_nm = callee_method->code();
 959   nmethodLocker nl_callee(callee_nm);
 960 #ifdef ASSERT
 961   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
 962 #endif
 963 
 964   if (is_virtual) {
 965     assert(receiver.not_null(), "sanity check");
 966     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
 967     KlassHandle h_klass(THREAD, receiver->klass());
 968     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
 969                      is_optimized, static_bound, virtual_call_info,
 970                      CHECK_(methodHandle()));
 971   } else {
 972     // static call
 973     CompiledStaticCall::compute_entry(callee_method, static_call_info);
 974   }
 975 
 976   // grab lock, check for deoptimization and potentially patch caller
 977   {
 978     MutexLocker ml_patch(CompiledIC_lock);
 979 
 980     // Now that we are ready to patch if the methodOop was redefined then
 981     // don't update call site and let the caller retry.
 982 
 983     if (!callee_method->is_old()) {
 984 #ifdef ASSERT
 985       // We must not try to patch to jump to an already unloaded method.
 986       if (dest_entry_point != 0) {
 987         assert(CodeCache::find_blob(dest_entry_point) != NULL,
 988                "should not unload nmethod while locked");
 989       }
 990 #endif
 991       if (is_virtual) {
 992         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
 993         if (inline_cache->is_clean()) {
 994           inline_cache->set_to_monomorphic(virtual_call_info);
 995         }
 996       } else {
 997         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
 998         if (ssc->is_clean()) ssc->set(static_call_info);
 999       }
1000     }
1001 
1002   } // unlock CompiledIC_lock
1003 
1004   return callee_method;
1005 }
1006 
1007 
1008 // Inline caches exist only in compiled code
1009 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1010 #ifdef ASSERT
1011   RegisterMap reg_map(thread, false);
1012   frame stub_frame = thread->last_frame();
1013   assert(stub_frame.is_runtime_frame(), "sanity check");
1014   frame caller_frame = stub_frame.sender(&reg_map);
1015   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1016 #endif /* ASSERT */
1017 
1018   methodHandle callee_method;
1019   JRT_BLOCK
1020     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1021     // Return methodOop through TLS
1022     thread->set_vm_result(callee_method());
1023   JRT_BLOCK_END
1024   // return compiled code entry point after potential safepoints
1025   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1026   return callee_method->verified_code_entry();
1027 JRT_END
1028 
1029 
1030 // Handle call site that has been made non-entrant
1031 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1032   // 6243940 We might end up in here if the callee is deoptimized
1033   // as we race to call it.  We don't want to take a safepoint if
1034   // the caller was interpreted because the caller frame will look
1035   // interpreted to the stack walkers and arguments are now
1036   // "compiled" so it is much better to make this transition
1037   // invisible to the stack walking code. The i2c path will
1038   // place the callee method in the callee_target. It is stashed
1039   // there because if we try and find the callee by normal means a
1040   // safepoint is possible and have trouble gc'ing the compiled args.
1041   RegisterMap reg_map(thread, false);
1042   frame stub_frame = thread->last_frame();
1043   assert(stub_frame.is_runtime_frame(), "sanity check");
1044   frame caller_frame = stub_frame.sender(&reg_map);
1045 
1046   // MethodHandle invokes don't have a CompiledIC and should always
1047   // simply redispatch to the callee_target.
1048   address   sender_pc = caller_frame.pc();
1049   CodeBlob* sender_cb = caller_frame.cb();
1050   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
1051   bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
1052   if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
1053     // If the callee_target is set, then we have come here via an i2c
1054     // adapter.
1055     methodOop callee = thread->callee_target();
1056     if (callee != NULL) {
1057       assert(callee->is_method(), "sanity");
1058       is_mh_invoke_via_adapter = true;
1059     }
1060   }
1061 
1062   if (caller_frame.is_interpreted_frame() ||
1063       caller_frame.is_entry_frame()       ||
1064       is_mh_invoke_via_adapter) {
1065     methodOop callee = thread->callee_target();
1066     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1067     thread->set_vm_result(callee);
1068     thread->set_callee_target(NULL);
1069     return callee->get_c2i_entry();
1070   }
1071 
1072   // Must be compiled to compiled path which is safe to stackwalk
1073   methodHandle callee_method;
1074   JRT_BLOCK
1075     // Force resolving of caller (if we called from compiled frame)
1076     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1077     thread->set_vm_result(callee_method());
1078   JRT_BLOCK_END
1079   // return compiled code entry point after potential safepoints
1080   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1081   return callee_method->verified_code_entry();
1082 JRT_END
1083 
1084 
1085 // resolve a static call and patch code
1086 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1087   methodHandle callee_method;
1088   JRT_BLOCK
1089     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1090     thread->set_vm_result(callee_method());
1091   JRT_BLOCK_END
1092   // return compiled code entry point after potential safepoints
1093   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1094   return callee_method->verified_code_entry();
1095 JRT_END
1096 
1097 
1098 // resolve virtual call and update inline cache to monomorphic
1099 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1100   methodHandle callee_method;
1101   JRT_BLOCK
1102     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1103     thread->set_vm_result(callee_method());
1104   JRT_BLOCK_END
1105   // return compiled code entry point after potential safepoints
1106   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1107   return callee_method->verified_code_entry();
1108 JRT_END
1109 
1110 
1111 // Resolve a virtual call that can be statically bound (e.g., always
1112 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1113 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1114   methodHandle callee_method;
1115   JRT_BLOCK
1116     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1117     thread->set_vm_result(callee_method());
1118   JRT_BLOCK_END
1119   // return compiled code entry point after potential safepoints
1120   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1121   return callee_method->verified_code_entry();
1122 JRT_END
1123 
1124 
1125 
1126 
1127 
1128 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1129   ResourceMark rm(thread);
1130   CallInfo call_info;
1131   Bytecodes::Code bc;
1132 
1133   // receiver is NULL for static calls. An exception is thrown for NULL
1134   // receivers for non-static calls
1135   Handle receiver = find_callee_info(thread, bc, call_info,
1136                                      CHECK_(methodHandle()));
1137   // Compiler1 can produce virtual call sites that can actually be statically bound
1138   // If we fell thru to below we would think that the site was going megamorphic
1139   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1140   // we'd try and do a vtable dispatch however methods that can be statically bound
1141   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1142   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1143   // plain ic_miss) and the site will be converted to an optimized virtual call site
1144   // never to miss again. I don't believe C2 will produce code like this but if it
1145   // did this would still be the correct thing to do for it too, hence no ifdef.
1146   //
1147   if (call_info.resolved_method()->can_be_statically_bound()) {
1148     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1149     if (TraceCallFixup) {
1150       RegisterMap reg_map(thread, false);
1151       frame caller_frame = thread->last_frame().sender(&reg_map);
1152       ResourceMark rm(thread);
1153       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1154       callee_method->print_short_name(tty);
1155       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1156       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1157     }
1158     return callee_method;
1159   }
1160 
1161   methodHandle callee_method = call_info.selected_method();
1162 
1163   bool should_be_mono = false;
1164 
1165 #ifndef PRODUCT
1166   Atomic::inc(&_ic_miss_ctr);
1167 
1168   // Statistics & Tracing
1169   if (TraceCallFixup) {
1170     ResourceMark rm(thread);
1171     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1172     callee_method->print_short_name(tty);
1173     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1174   }
1175 
1176   if (ICMissHistogram) {
1177     MutexLocker m(VMStatistic_lock);
1178     RegisterMap reg_map(thread, false);
1179     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1180     // produce statistics under the lock
1181     trace_ic_miss(f.pc());
1182   }
1183 #endif
1184 
1185   // install an event collector so that when a vtable stub is created the
1186   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1187   // event can't be posted when the stub is created as locks are held
1188   // - instead the event will be deferred until the event collector goes
1189   // out of scope.
1190   JvmtiDynamicCodeEventCollector event_collector;
1191 
1192   // Update inline cache to megamorphic. Skip update if caller has been
1193   // made non-entrant or we are called from interpreted.
1194   { MutexLocker ml_patch (CompiledIC_lock);
1195     RegisterMap reg_map(thread, false);
1196     frame caller_frame = thread->last_frame().sender(&reg_map);
1197     CodeBlob* cb = caller_frame.cb();
1198     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1199       // Not a non-entrant nmethod, so find inline_cache
1200       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1201       bool should_be_mono = false;
1202       if (inline_cache->is_optimized()) {
1203         if (TraceCallFixup) {
1204           ResourceMark rm(thread);
1205           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1206           callee_method->print_short_name(tty);
1207           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1208         }
1209         should_be_mono = true;
1210       } else {
1211         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
1212         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
1213 
1214           if (receiver()->klass() == ic_oop->holder_klass()) {
1215             // This isn't a real miss. We must have seen that compiled code
1216             // is now available and we want the call site converted to a
1217             // monomorphic compiled call site.
1218             // We can't assert for callee_method->code() != NULL because it
1219             // could have been deoptimized in the meantime
1220             if (TraceCallFixup) {
1221               ResourceMark rm(thread);
1222               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1223               callee_method->print_short_name(tty);
1224               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1225             }
1226             should_be_mono = true;
1227           }
1228         }
1229       }
1230 
1231       if (should_be_mono) {
1232 
1233         // We have a path that was monomorphic but was going interpreted
1234         // and now we have (or had) a compiled entry. We correct the IC
1235         // by using a new icBuffer.
1236         CompiledICInfo info;
1237         KlassHandle receiver_klass(THREAD, receiver()->klass());
1238         inline_cache->compute_monomorphic_entry(callee_method,
1239                                                 receiver_klass,
1240                                                 inline_cache->is_optimized(),
1241                                                 false,
1242                                                 info, CHECK_(methodHandle()));
1243         inline_cache->set_to_monomorphic(info);
1244       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1245         // Change to megamorphic
1246         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1247       } else {
1248         // Either clean or megamorphic
1249       }
1250     }
1251   } // Release CompiledIC_lock
1252 
1253   return callee_method;
1254 }
1255 
1256 //
1257 // Resets a call-site in compiled code so it will get resolved again.
1258 // This routines handles both virtual call sites, optimized virtual call
1259 // sites, and static call sites. Typically used to change a call sites
1260 // destination from compiled to interpreted.
1261 //
1262 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1263   ResourceMark rm(thread);
1264   RegisterMap reg_map(thread, false);
1265   frame stub_frame = thread->last_frame();
1266   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1267   frame caller = stub_frame.sender(&reg_map);
1268 
1269   // Do nothing if the frame isn't a live compiled frame.
1270   // nmethod could be deoptimized by the time we get here
1271   // so no update to the caller is needed.
1272 
1273   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1274 
1275     address pc = caller.pc();
1276     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
1277 
1278     // Default call_addr is the location of the "basic" call.
1279     // Determine the address of the call we a reresolving. With
1280     // Inline Caches we will always find a recognizable call.
1281     // With Inline Caches disabled we may or may not find a
1282     // recognizable call. We will always find a call for static
1283     // calls and for optimized virtual calls. For vanilla virtual
1284     // calls it depends on the state of the UseInlineCaches switch.
1285     //
1286     // With Inline Caches disabled we can get here for a virtual call
1287     // for two reasons:
1288     //   1 - calling an abstract method. The vtable for abstract methods
1289     //       will run us thru handle_wrong_method and we will eventually
1290     //       end up in the interpreter to throw the ame.
1291     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1292     //       call and between the time we fetch the entry address and
1293     //       we jump to it the target gets deoptimized. Similar to 1
1294     //       we will wind up in the interprter (thru a c2i with c2).
1295     //
1296     address call_addr = NULL;
1297     {
1298       // Get call instruction under lock because another thread may be
1299       // busy patching it.
1300       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1301       // Location of call instruction
1302       if (NativeCall::is_call_before(pc)) {
1303         NativeCall *ncall = nativeCall_before(pc);
1304         call_addr = ncall->instruction_address();
1305       }
1306     }
1307 
1308     // Check for static or virtual call
1309     bool is_static_call = false;
1310     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1311     // Make sure nmethod doesn't get deoptimized and removed until
1312     // this is done with it.
1313     // CLEANUP - with lazy deopt shouldn't need this lock
1314     nmethodLocker nmlock(caller_nm);
1315 
1316     if (call_addr != NULL) {
1317       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1318       int ret = iter.next(); // Get item
1319       if (ret) {
1320         assert(iter.addr() == call_addr, "must find call");
1321         if (iter.type() == relocInfo::static_call_type) {
1322           is_static_call = true;
1323         } else {
1324           assert(iter.type() == relocInfo::virtual_call_type ||
1325                  iter.type() == relocInfo::opt_virtual_call_type
1326                 , "unexpected relocInfo. type");
1327         }
1328       } else {
1329         assert(!UseInlineCaches, "relocation info. must exist for this address");
1330       }
1331 
1332       // Cleaning the inline cache will force a new resolve. This is more robust
1333       // than directly setting it to the new destination, since resolving of calls
1334       // is always done through the same code path. (experience shows that it
1335       // leads to very hard to track down bugs, if an inline cache gets updated
1336       // to a wrong method). It should not be performance critical, since the
1337       // resolve is only done once.
1338 
1339       MutexLocker ml(CompiledIC_lock);
1340       //
1341       // We do not patch the call site if the nmethod has been made non-entrant
1342       // as it is a waste of time
1343       //
1344       if (caller_nm->is_in_use()) {
1345         if (is_static_call) {
1346           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1347           ssc->set_to_clean();
1348         } else {
1349           // compiled, dispatched call (which used to call an interpreted method)
1350           CompiledIC* inline_cache = CompiledIC_at(call_addr);
1351           inline_cache->set_to_clean();
1352         }
1353       }
1354     }
1355 
1356   }
1357 
1358   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1359 
1360 
1361 #ifndef PRODUCT
1362   Atomic::inc(&_wrong_method_ctr);
1363 
1364   if (TraceCallFixup) {
1365     ResourceMark rm(thread);
1366     tty->print("handle_wrong_method reresolving call to");
1367     callee_method->print_short_name(tty);
1368     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1369   }
1370 #endif
1371 
1372   return callee_method;
1373 }
1374 
1375 // ---------------------------------------------------------------------------
1376 // We are calling the interpreter via a c2i. Normally this would mean that
1377 // we were called by a compiled method. However we could have lost a race
1378 // where we went int -> i2c -> c2i and so the caller could in fact be
1379 // interpreted. If the caller is compiled we attempt to patch the caller
1380 // so he no longer calls into the interpreter.
1381 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
1382   methodOop moop(method);
1383 
1384   address entry_point = moop->from_compiled_entry();
1385 
1386   // It's possible that deoptimization can occur at a call site which hasn't
1387   // been resolved yet, in which case this function will be called from
1388   // an nmethod that has been patched for deopt and we can ignore the
1389   // request for a fixup.
1390   // Also it is possible that we lost a race in that from_compiled_entry
1391   // is now back to the i2c in that case we don't need to patch and if
1392   // we did we'd leap into space because the callsite needs to use
1393   // "to interpreter" stub in order to load up the methodOop. Don't
1394   // ask me how I know this...
1395 
1396   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1397   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1398     return;
1399   }
1400 
1401   // The check above makes sure this is a nmethod.
1402   nmethod* nm = cb->as_nmethod_or_null();
1403   assert(nm, "must be");
1404 
1405   // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
1406   // to implement MethodHandle actions.
1407   if (nm->is_method_handle_return(caller_pc)) {
1408     return;
1409   }
1410 
1411   // There is a benign race here. We could be attempting to patch to a compiled
1412   // entry point at the same time the callee is being deoptimized. If that is
1413   // the case then entry_point may in fact point to a c2i and we'd patch the
1414   // call site with the same old data. clear_code will set code() to NULL
1415   // at the end of it. If we happen to see that NULL then we can skip trying
1416   // to patch. If we hit the window where the callee has a c2i in the
1417   // from_compiled_entry and the NULL isn't present yet then we lose the race
1418   // and patch the code with the same old data. Asi es la vida.
1419 
1420   if (moop->code() == NULL) return;
1421 
1422   if (nm->is_in_use()) {
1423 
1424     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1425     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1426     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
1427       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
1428       //
1429       // bug 6281185. We might get here after resolving a call site to a vanilla
1430       // virtual call. Because the resolvee uses the verified entry it may then
1431       // see compiled code and attempt to patch the site by calling us. This would
1432       // then incorrectly convert the call site to optimized and its downhill from
1433       // there. If you're lucky you'll get the assert in the bugid, if not you've
1434       // just made a call site that could be megamorphic into a monomorphic site
1435       // for the rest of its life! Just another racing bug in the life of
1436       // fixup_callers_callsite ...
1437       //
1438       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1439       iter.next();
1440       assert(iter.has_current(), "must have a reloc at java call site");
1441       relocInfo::relocType typ = iter.reloc()->type();
1442       if ( typ != relocInfo::static_call_type &&
1443            typ != relocInfo::opt_virtual_call_type &&
1444            typ != relocInfo::static_stub_type) {
1445         return;
1446       }
1447       address destination = call->destination();
1448       if (destination != entry_point) {
1449         CodeBlob* callee = CodeCache::find_blob(destination);
1450         // callee == cb seems weird. It means calling interpreter thru stub.
1451         if (callee == cb || callee->is_adapter_blob()) {
1452           // static call or optimized virtual
1453           if (TraceCallFixup) {
1454             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1455             moop->print_short_name(tty);
1456             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1457           }
1458           call->set_destination_mt_safe(entry_point);
1459         } else {
1460           if (TraceCallFixup) {
1461             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1462             moop->print_short_name(tty);
1463             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1464           }
1465           // assert is too strong could also be resolve destinations.
1466           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1467         }
1468       } else {
1469           if (TraceCallFixup) {
1470             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1471             moop->print_short_name(tty);
1472             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1473           }
1474       }
1475     }
1476   }
1477 
1478 IRT_END
1479 
1480 
1481 // same as JVM_Arraycopy, but called directly from compiled code
1482 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1483                                                 oopDesc* dest, jint dest_pos,
1484                                                 jint length,
1485                                                 JavaThread* thread)) {
1486 #ifndef PRODUCT
1487   _slow_array_copy_ctr++;
1488 #endif
1489   // Check if we have null pointers
1490   if (src == NULL || dest == NULL) {
1491     THROW(vmSymbols::java_lang_NullPointerException());
1492   }
1493   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1494   // even though the copy_array API also performs dynamic checks to ensure
1495   // that src and dest are truly arrays (and are conformable).
1496   // The copy_array mechanism is awkward and could be removed, but
1497   // the compilers don't call this function except as a last resort,
1498   // so it probably doesn't matter.
1499   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
1500                                         (arrayOopDesc*)dest, dest_pos,
1501                                         length, thread);
1502 }
1503 JRT_END
1504 
1505 char* SharedRuntime::generate_class_cast_message(
1506     JavaThread* thread, const char* objName) {
1507 
1508   // Get target class name from the checkcast instruction
1509   vframeStream vfst(thread, true);
1510   assert(!vfst.at_end(), "Java frame must exist");
1511   Bytecode_checkcast* cc = Bytecode_checkcast_at(
1512     vfst.method()->bcp_from(vfst.bci()));
1513   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
1514     cc->index(), thread));
1515   return generate_class_cast_message(objName, targetKlass->external_name());
1516 }
1517 
1518 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
1519                                                         oopDesc* required,
1520                                                         oopDesc* actual) {
1521   assert(EnableMethodHandles, "");
1522   oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
1523   if (singleKlass != NULL) {
1524     const char* objName = "argument or return value";
1525     if (actual != NULL) {
1526       // be flexible about the junk passed in:
1527       klassOop ak = (actual->is_klass()
1528                      ? (klassOop)actual
1529                      : actual->klass());
1530       objName = Klass::cast(ak)->external_name();
1531     }
1532     Klass* targetKlass = Klass::cast(required->is_klass()
1533                                      ? (klassOop)required
1534                                      : java_lang_Class::as_klassOop(required));
1535     return generate_class_cast_message(objName, targetKlass->external_name());
1536   } else {
1537     // %%% need to get the MethodType string, without messing around too much
1538     // Get a signature from the invoke instruction
1539     const char* mhName = "method handle";
1540     const char* targetType = "the required signature";
1541     vframeStream vfst(thread, true);
1542     if (!vfst.at_end()) {
1543       Bytecode_invoke* call = Bytecode_invoke_at(vfst.method(), vfst.bci());
1544       methodHandle target;
1545       {
1546         EXCEPTION_MARK;
1547         target = call->static_target(THREAD);
1548         if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
1549       }
1550       if (target.not_null()
1551           && target->is_method_handle_invoke()
1552           && required == target->method_handle_type()) {
1553         targetType = target->signature()->as_C_string();
1554       }
1555     }
1556     klassOop kignore; int fignore;
1557     methodOop actual_method = MethodHandles::decode_method(actual,
1558                                                           kignore, fignore);
1559     if (actual_method != NULL) {
1560       if (methodOopDesc::is_method_handle_invoke_name(actual_method->name()))
1561         mhName = "$";
1562       else
1563         mhName = actual_method->signature()->as_C_string();
1564       if (mhName[0] == '$')
1565         mhName = actual_method->signature()->as_C_string();
1566     }
1567     return generate_class_cast_message(mhName, targetType,
1568                                        " cannot be called as ");
1569   }
1570 }
1571 
1572 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
1573                                                             oopDesc* required) {
1574   if (required == NULL)  return NULL;
1575   if (required->klass() == SystemDictionary::Class_klass())
1576     return required;
1577   if (required->is_klass())
1578     return Klass::cast(klassOop(required))->java_mirror();
1579   return NULL;
1580 }
1581 
1582 
1583 char* SharedRuntime::generate_class_cast_message(
1584     const char* objName, const char* targetKlassName, const char* desc) {
1585   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1586 
1587   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1588   if (NULL == message) {
1589     // Shouldn't happen, but don't cause even more problems if it does
1590     message = const_cast<char*>(objName);
1591   } else {
1592     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1593   }
1594   return message;
1595 }
1596 
1597 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1598   (void) JavaThread::current()->reguard_stack();
1599 JRT_END
1600 
1601 
1602 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1603 #ifndef PRODUCT
1604 int SharedRuntime::_monitor_enter_ctr=0;
1605 #endif
1606 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1607   oop obj(_obj);
1608 #ifndef PRODUCT
1609   _monitor_enter_ctr++;             // monitor enter slow
1610 #endif
1611   if (PrintBiasedLockingStatistics) {
1612     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1613   }
1614   Handle h_obj(THREAD, obj);
1615   if (UseBiasedLocking) {
1616     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1617     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1618   } else {
1619     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1620   }
1621   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1622 JRT_END
1623 
1624 #ifndef PRODUCT
1625 int SharedRuntime::_monitor_exit_ctr=0;
1626 #endif
1627 // Handles the uncommon cases of monitor unlocking in compiled code
1628 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1629    oop obj(_obj);
1630 #ifndef PRODUCT
1631   _monitor_exit_ctr++;              // monitor exit slow
1632 #endif
1633   Thread* THREAD = JavaThread::current();
1634   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1635   // testing was unable to ever fire the assert that guarded it so I have removed it.
1636   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1637 #undef MIGHT_HAVE_PENDING
1638 #ifdef MIGHT_HAVE_PENDING
1639   // Save and restore any pending_exception around the exception mark.
1640   // While the slow_exit must not throw an exception, we could come into
1641   // this routine with one set.
1642   oop pending_excep = NULL;
1643   const char* pending_file;
1644   int pending_line;
1645   if (HAS_PENDING_EXCEPTION) {
1646     pending_excep = PENDING_EXCEPTION;
1647     pending_file  = THREAD->exception_file();
1648     pending_line  = THREAD->exception_line();
1649     CLEAR_PENDING_EXCEPTION;
1650   }
1651 #endif /* MIGHT_HAVE_PENDING */
1652 
1653   {
1654     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1655     EXCEPTION_MARK;
1656     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1657   }
1658 
1659 #ifdef MIGHT_HAVE_PENDING
1660   if (pending_excep != NULL) {
1661     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1662   }
1663 #endif /* MIGHT_HAVE_PENDING */
1664 JRT_END
1665 
1666 #ifndef PRODUCT
1667 
1668 void SharedRuntime::print_statistics() {
1669   ttyLocker ttyl;
1670   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1671 
1672   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1673   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1674   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1675 
1676   SharedRuntime::print_ic_miss_histogram();
1677 
1678   if (CountRemovableExceptions) {
1679     if (_nof_removable_exceptions > 0) {
1680       Unimplemented(); // this counter is not yet incremented
1681       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1682     }
1683   }
1684 
1685   // Dump the JRT_ENTRY counters
1686   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1687   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1688   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1689   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1690   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1691   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1692   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1693 
1694   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1695   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1696   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1697   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1698   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1699 
1700   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1701   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1702   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1703   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1704   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1705   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1706   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1707   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1708   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1709   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1710   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1711   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1712   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1713   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1714   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1715   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1716 
1717   AdapterHandlerLibrary::print_statistics();
1718 
1719   if (xtty != NULL)  xtty->tail("statistics");
1720 }
1721 
1722 inline double percent(int x, int y) {
1723   return 100.0 * x / MAX2(y, 1);
1724 }
1725 
1726 class MethodArityHistogram {
1727  public:
1728   enum { MAX_ARITY = 256 };
1729  private:
1730   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1731   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1732   static int _max_arity;                      // max. arity seen
1733   static int _max_size;                       // max. arg size seen
1734 
1735   static void add_method_to_histogram(nmethod* nm) {
1736     methodOop m = nm->method();
1737     ArgumentCount args(m->signature());
1738     int arity   = args.size() + (m->is_static() ? 0 : 1);
1739     int argsize = m->size_of_parameters();
1740     arity   = MIN2(arity, MAX_ARITY-1);
1741     argsize = MIN2(argsize, MAX_ARITY-1);
1742     int count = nm->method()->compiled_invocation_count();
1743     _arity_histogram[arity]  += count;
1744     _size_histogram[argsize] += count;
1745     _max_arity = MAX2(_max_arity, arity);
1746     _max_size  = MAX2(_max_size, argsize);
1747   }
1748 
1749   void print_histogram_helper(int n, int* histo, const char* name) {
1750     const int N = MIN2(5, n);
1751     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1752     double sum = 0;
1753     double weighted_sum = 0;
1754     int i;
1755     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1756     double rest = sum;
1757     double percent = sum / 100;
1758     for (i = 0; i <= N; i++) {
1759       rest -= histo[i];
1760       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1761     }
1762     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1763     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1764   }
1765 
1766   void print_histogram() {
1767     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1768     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1769     tty->print_cr("\nSame for parameter size (in words):");
1770     print_histogram_helper(_max_size, _size_histogram, "size");
1771     tty->cr();
1772   }
1773 
1774  public:
1775   MethodArityHistogram() {
1776     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1777     _max_arity = _max_size = 0;
1778     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
1779     CodeCache::nmethods_do(add_method_to_histogram);
1780     print_histogram();
1781   }
1782 };
1783 
1784 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
1785 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
1786 int MethodArityHistogram::_max_arity;
1787 int MethodArityHistogram::_max_size;
1788 
1789 void SharedRuntime::print_call_statistics(int comp_total) {
1790   tty->print_cr("Calls from compiled code:");
1791   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
1792   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
1793   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
1794   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
1795   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
1796   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
1797   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
1798   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
1799   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
1800   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
1801   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
1802   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
1803   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
1804   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
1805   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
1806   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
1807   tty->cr();
1808   tty->print_cr("Note 1: counter updates are not MT-safe.");
1809   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
1810   tty->print_cr("        %% in nested categories are relative to their category");
1811   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
1812   tty->cr();
1813 
1814   MethodArityHistogram h;
1815 }
1816 #endif
1817 
1818 
1819 // A simple wrapper class around the calling convention information
1820 // that allows sharing of adapters for the same calling convention.
1821 class AdapterFingerPrint : public CHeapObj {
1822  private:
1823   union {
1824     int  _compact[3];
1825     int* _fingerprint;
1826   } _value;
1827   int _length; // A negative length indicates the fingerprint is in the compact form,
1828                // Otherwise _value._fingerprint is the array.
1829 
1830   // Remap BasicTypes that are handled equivalently by the adapters.
1831   // These are correct for the current system but someday it might be
1832   // necessary to make this mapping platform dependent.
1833   static BasicType adapter_encoding(BasicType in) {
1834     assert((~0xf & in) == 0, "must fit in 4 bits");
1835     switch(in) {
1836       case T_BOOLEAN:
1837       case T_BYTE:
1838       case T_SHORT:
1839       case T_CHAR:
1840         // There are all promoted to T_INT in the calling convention
1841         return T_INT;
1842 
1843       case T_OBJECT:
1844       case T_ARRAY:
1845 #ifdef _LP64
1846         return T_LONG;
1847 #else
1848         return T_INT;
1849 #endif
1850 
1851       case T_INT:
1852       case T_LONG:
1853       case T_FLOAT:
1854       case T_DOUBLE:
1855       case T_VOID:
1856         return in;
1857 
1858       default:
1859         ShouldNotReachHere();
1860         return T_CONFLICT;
1861     }
1862   }
1863 
1864  public:
1865   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
1866     // The fingerprint is based on the BasicType signature encoded
1867     // into an array of ints with four entries per int.
1868     int* ptr;
1869     int len = (total_args_passed + 3) >> 2;
1870     if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
1871       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
1872       // Storing the signature encoded as signed chars hits about 98%
1873       // of the time.
1874       _length = -len;
1875       ptr = _value._compact;
1876     } else {
1877       _length = len;
1878       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
1879       ptr = _value._fingerprint;
1880     }
1881 
1882     // Now pack the BasicTypes with 4 per int
1883     int sig_index = 0;
1884     for (int index = 0; index < len; index++) {
1885       int value = 0;
1886       for (int byte = 0; byte < 4; byte++) {
1887         if (sig_index < total_args_passed) {
1888           value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
1889         }
1890       }
1891       ptr[index] = value;
1892     }
1893   }
1894 
1895   ~AdapterFingerPrint() {
1896     if (_length > 0) {
1897       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
1898     }
1899   }
1900 
1901   int value(int index) {
1902     if (_length < 0) {
1903       return _value._compact[index];
1904     }
1905     return _value._fingerprint[index];
1906   }
1907   int length() {
1908     if (_length < 0) return -_length;
1909     return _length;
1910   }
1911 
1912   bool is_compact() {
1913     return _length <= 0;
1914   }
1915 
1916   unsigned int compute_hash() {
1917     int hash = 0;
1918     for (int i = 0; i < length(); i++) {
1919       int v = value(i);
1920       hash = (hash << 8) ^ v ^ (hash >> 5);
1921     }
1922     return (unsigned int)hash;
1923   }
1924 
1925   const char* as_string() {
1926     stringStream st;
1927     for (int i = 0; i < length(); i++) {
1928       st.print(PTR_FORMAT, value(i));
1929     }
1930     return st.as_string();
1931   }
1932 
1933   bool equals(AdapterFingerPrint* other) {
1934     if (other->_length != _length) {
1935       return false;
1936     }
1937     if (_length < 0) {
1938       return _value._compact[0] == other->_value._compact[0] &&
1939              _value._compact[1] == other->_value._compact[1] &&
1940              _value._compact[2] == other->_value._compact[2];
1941     } else {
1942       for (int i = 0; i < _length; i++) {
1943         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
1944           return false;
1945         }
1946       }
1947     }
1948     return true;
1949   }
1950 };
1951 
1952 
1953 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
1954 class AdapterHandlerTable : public BasicHashtable {
1955   friend class AdapterHandlerTableIterator;
1956 
1957  private:
1958 
1959 #ifndef PRODUCT
1960   static int _lookups; // number of calls to lookup
1961   static int _buckets; // number of buckets checked
1962   static int _equals;  // number of buckets checked with matching hash
1963   static int _hits;    // number of successful lookups
1964   static int _compact; // number of equals calls with compact signature
1965 #endif
1966 
1967   AdapterHandlerEntry* bucket(int i) {
1968     return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
1969   }
1970 
1971  public:
1972   AdapterHandlerTable()
1973     : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
1974 
1975   // Create a new entry suitable for insertion in the table
1976   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
1977     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
1978     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
1979     return entry;
1980   }
1981 
1982   // Insert an entry into the table
1983   void add(AdapterHandlerEntry* entry) {
1984     int index = hash_to_index(entry->hash());
1985     add_entry(index, entry);
1986   }
1987 
1988   void free_entry(AdapterHandlerEntry* entry) {
1989     entry->deallocate();
1990     BasicHashtable::free_entry(entry);
1991   }
1992 
1993   // Find a entry with the same fingerprint if it exists
1994   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
1995     NOT_PRODUCT(_lookups++);
1996     AdapterFingerPrint fp(total_args_passed, sig_bt);
1997     unsigned int hash = fp.compute_hash();
1998     int index = hash_to_index(hash);
1999     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2000       NOT_PRODUCT(_buckets++);
2001       if (e->hash() == hash) {
2002         NOT_PRODUCT(_equals++);
2003         if (fp.equals(e->fingerprint())) {
2004 #ifndef PRODUCT
2005           if (fp.is_compact()) _compact++;
2006           _hits++;
2007 #endif
2008           return e;
2009         }
2010       }
2011     }
2012     return NULL;
2013   }
2014 
2015 #ifndef PRODUCT
2016   void print_statistics() {
2017     ResourceMark rm;
2018     int longest = 0;
2019     int empty = 0;
2020     int total = 0;
2021     int nonempty = 0;
2022     for (int index = 0; index < table_size(); index++) {
2023       int count = 0;
2024       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2025         count++;
2026       }
2027       if (count != 0) nonempty++;
2028       if (count == 0) empty++;
2029       if (count > longest) longest = count;
2030       total += count;
2031     }
2032     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2033                   empty, longest, total, total / (double)nonempty);
2034     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2035                   _lookups, _buckets, _equals, _hits, _compact);
2036   }
2037 #endif
2038 };
2039 
2040 
2041 #ifndef PRODUCT
2042 
2043 int AdapterHandlerTable::_lookups;
2044 int AdapterHandlerTable::_buckets;
2045 int AdapterHandlerTable::_equals;
2046 int AdapterHandlerTable::_hits;
2047 int AdapterHandlerTable::_compact;
2048 
2049 class AdapterHandlerTableIterator : public StackObj {
2050  private:
2051   AdapterHandlerTable* _table;
2052   int _index;
2053   AdapterHandlerEntry* _current;
2054 
2055   void scan() {
2056     while (_index < _table->table_size()) {
2057       AdapterHandlerEntry* a = _table->bucket(_index);
2058       if (a != NULL) {
2059         _current = a;
2060         return;
2061       }
2062       _index++;
2063     }
2064   }
2065 
2066  public:
2067   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2068     scan();
2069   }
2070   bool has_next() {
2071     return _current != NULL;
2072   }
2073   AdapterHandlerEntry* next() {
2074     if (_current != NULL) {
2075       AdapterHandlerEntry* result = _current;
2076       _current = _current->next();
2077       if (_current == NULL) scan();
2078       return result;
2079     } else {
2080       return NULL;
2081     }
2082   }
2083 };
2084 #endif
2085 
2086 
2087 // ---------------------------------------------------------------------------
2088 // Implementation of AdapterHandlerLibrary
2089 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2090 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2091 const int AdapterHandlerLibrary_size = 16*K;
2092 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2093 
2094 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2095   // Should be called only when AdapterHandlerLibrary_lock is active.
2096   if (_buffer == NULL) // Initialize lazily
2097       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2098   return _buffer;
2099 }
2100 
2101 void AdapterHandlerLibrary::initialize() {
2102   if (_adapters != NULL) return;
2103   _adapters = new AdapterHandlerTable();
2104 
2105   // Create a special handler for abstract methods.  Abstract methods
2106   // are never compiled so an i2c entry is somewhat meaningless, but
2107   // fill it in with something appropriate just in case.  Pass handle
2108   // wrong method for the c2i transitions.
2109   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2110   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2111                                                               StubRoutines::throw_AbstractMethodError_entry(),
2112                                                               wrong_method, wrong_method);
2113 }
2114 
2115 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2116                                                       address i2c_entry,
2117                                                       address c2i_entry,
2118                                                       address c2i_unverified_entry) {
2119   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2120 }
2121 
2122 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2123   // Use customized signature handler.  Need to lock around updates to
2124   // the AdapterHandlerTable (it is not safe for concurrent readers
2125   // and a single writer: this could be fixed if it becomes a
2126   // problem).
2127 
2128   // Get the address of the ic_miss handlers before we grab the
2129   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2130   // was caused by the initialization of the stubs happening
2131   // while we held the lock and then notifying jvmti while
2132   // holding it. This just forces the initialization to be a little
2133   // earlier.
2134   address ic_miss = SharedRuntime::get_ic_miss_stub();
2135   assert(ic_miss != NULL, "must have handler");
2136 
2137   ResourceMark rm;
2138 
2139   NOT_PRODUCT(int code_size);
2140   AdapterBlob* B = NULL;
2141   AdapterHandlerEntry* entry = NULL;
2142   AdapterFingerPrint* fingerprint = NULL;
2143   {
2144     MutexLocker mu(AdapterHandlerLibrary_lock);
2145     // make sure data structure is initialized
2146     initialize();
2147 
2148     if (method->is_abstract()) {
2149       return _abstract_method_handler;
2150     }
2151 
2152     // Fill in the signature array, for the calling-convention call.
2153     int total_args_passed = method->size_of_parameters(); // All args on stack
2154 
2155     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2156     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2157     int i = 0;
2158     if (!method->is_static())  // Pass in receiver first
2159       sig_bt[i++] = T_OBJECT;
2160     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2161       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2162       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2163         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2164     }
2165     assert(i == total_args_passed, "");
2166 
2167     // Lookup method signature's fingerprint
2168     entry = _adapters->lookup(total_args_passed, sig_bt);
2169 
2170 #ifdef ASSERT
2171     AdapterHandlerEntry* shared_entry = NULL;
2172     if (VerifyAdapterSharing && entry != NULL) {
2173       shared_entry = entry;
2174       entry = NULL;
2175     }
2176 #endif
2177 
2178     if (entry != NULL) {
2179       return entry;
2180     }
2181 
2182     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2183     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2184 
2185     // Make a C heap allocated version of the fingerprint to store in the adapter
2186     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2187 
2188     // Create I2C & C2I handlers
2189 
2190     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2191     if (buf != NULL) {
2192       CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
2193       short buffer_locs[20];
2194       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2195                                              sizeof(buffer_locs)/sizeof(relocInfo));
2196       MacroAssembler _masm(&buffer);
2197 
2198       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2199                                                      total_args_passed,
2200                                                      comp_args_on_stack,
2201                                                      sig_bt,
2202                                                      regs,
2203                                                      fingerprint);
2204 
2205 #ifdef ASSERT
2206       if (VerifyAdapterSharing) {
2207         if (shared_entry != NULL) {
2208           assert(shared_entry->compare_code(buf->instructions_begin(), buffer.code_size(), total_args_passed, sig_bt),
2209                  "code must match");
2210           // Release the one just created and return the original
2211           _adapters->free_entry(entry);
2212           return shared_entry;
2213         } else  {
2214           entry->save_code(buf->instructions_begin(), buffer.code_size(), total_args_passed, sig_bt);
2215         }
2216       }
2217 #endif
2218 
2219       B = AdapterBlob::create(&buffer);
2220       NOT_PRODUCT(code_size = buffer.code_size());
2221     }
2222     if (B == NULL) {
2223       // CodeCache is full, disable compilation
2224       // Ought to log this but compile log is only per compile thread
2225       // and we're some non descript Java thread.
2226       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2227       CompileBroker::handle_full_code_cache();
2228       return NULL; // Out of CodeCache space
2229     }
2230     entry->relocate(B->instructions_begin());
2231 #ifndef PRODUCT
2232     // debugging suppport
2233     if (PrintAdapterHandlers) {
2234       tty->cr();
2235       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
2236                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2237                     method->signature()->as_C_string(), fingerprint->as_string(), code_size );
2238       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2239       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + code_size);
2240     }
2241 #endif
2242 
2243     _adapters->add(entry);
2244   }
2245   // Outside of the lock
2246   if (B != NULL) {
2247     char blob_id[256];
2248     jio_snprintf(blob_id,
2249                  sizeof(blob_id),
2250                  "%s(%s)@" PTR_FORMAT,
2251                  B->name(),
2252                  fingerprint->as_string(),
2253                  B->instructions_begin());
2254     VTune::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
2255     Forte::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
2256 
2257     if (JvmtiExport::should_post_dynamic_code_generated()) {
2258       JvmtiExport::post_dynamic_code_generated(blob_id,
2259                                                B->instructions_begin(),
2260                                                B->instructions_end());
2261     }
2262   }
2263   return entry;
2264 }
2265 
2266 void AdapterHandlerEntry::relocate(address new_base) {
2267     ptrdiff_t delta = new_base - _i2c_entry;
2268     _i2c_entry += delta;
2269     _c2i_entry += delta;
2270     _c2i_unverified_entry += delta;
2271 }
2272 
2273 
2274 void AdapterHandlerEntry::deallocate() {
2275   delete _fingerprint;
2276 #ifdef ASSERT
2277   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2278   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
2279 #endif
2280 }
2281 
2282 
2283 #ifdef ASSERT
2284 // Capture the code before relocation so that it can be compared
2285 // against other versions.  If the code is captured after relocation
2286 // then relative instructions won't be equivalent.
2287 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2288   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
2289   _code_length = length;
2290   memcpy(_saved_code, buffer, length);
2291   _total_args_passed = total_args_passed;
2292   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
2293   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2294 }
2295 
2296 
2297 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2298   if (length != _code_length) {
2299     return false;
2300   }
2301   for (int i = 0; i < length; i++) {
2302     if (buffer[i] != _saved_code[i]) {
2303       return false;
2304     }
2305   }
2306   return true;
2307 }
2308 #endif
2309 
2310 
2311 // Create a native wrapper for this native method.  The wrapper converts the
2312 // java compiled calling convention to the native convention, handlizes
2313 // arguments, and transitions to native.  On return from the native we transition
2314 // back to java blocking if a safepoint is in progress.
2315 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2316   ResourceMark rm;
2317   nmethod* nm = NULL;
2318 
2319   if (PrintCompilation) {
2320     ttyLocker ttyl;
2321     tty->print("---   n%s ", (method->is_synchronized() ? "s" : " "));
2322     method->print_short_name(tty);
2323     if (method->is_static()) {
2324       tty->print(" (static)");
2325     }
2326     tty->cr();
2327   }
2328 
2329   assert(method->has_native_function(), "must have something valid to call!");
2330 
2331   {
2332     // perform the work while holding the lock, but perform any printing outside the lock
2333     MutexLocker mu(AdapterHandlerLibrary_lock);
2334     // See if somebody beat us to it
2335     nm = method->code();
2336     if (nm) {
2337       return nm;
2338     }
2339 
2340     ResourceMark rm;
2341 
2342     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2343     if (buf != NULL) {
2344       CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
2345       double locs_buf[20];
2346       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2347       MacroAssembler _masm(&buffer);
2348 
2349       // Fill in the signature array, for the calling-convention call.
2350       int total_args_passed = method->size_of_parameters();
2351 
2352       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
2353       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
2354       int i=0;
2355       if( !method->is_static() )  // Pass in receiver first
2356         sig_bt[i++] = T_OBJECT;
2357       SignatureStream ss(method->signature());
2358       for( ; !ss.at_return_type(); ss.next()) {
2359         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2360         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2361           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2362       }
2363       assert( i==total_args_passed, "" );
2364       BasicType ret_type = ss.type();
2365 
2366       // Now get the compiled-Java layout as input arguments
2367       int comp_args_on_stack;
2368       comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2369 
2370       // Generate the compiled-to-native wrapper code
2371       nm = SharedRuntime::generate_native_wrapper(&_masm,
2372                                                   method,
2373                                                   total_args_passed,
2374                                                   comp_args_on_stack,
2375                                                   sig_bt,regs,
2376                                                   ret_type);
2377     }
2378   }
2379 
2380   // Must unlock before calling set_code
2381   // Install the generated code.
2382   if (nm != NULL) {
2383     method->set_code(method, nm);
2384     nm->post_compiled_method_load_event();
2385   } else {
2386     // CodeCache is full, disable compilation
2387     // Ought to log this but compile log is only per compile thread
2388     // and we're some non descript Java thread.
2389     MutexUnlocker mu(AdapterHandlerLibrary_lock);
2390     CompileBroker::handle_full_code_cache();
2391   }
2392   return nm;
2393 }
2394 
2395 #ifdef HAVE_DTRACE_H
2396 // Create a dtrace nmethod for this method.  The wrapper converts the
2397 // java compiled calling convention to the native convention, makes a dummy call
2398 // (actually nops for the size of the call instruction, which become a trap if
2399 // probe is enabled). The returns to the caller. Since this all looks like a
2400 // leaf no thread transition is needed.
2401 
2402 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2403   ResourceMark rm;
2404   nmethod* nm = NULL;
2405 
2406   if (PrintCompilation) {
2407     ttyLocker ttyl;
2408     tty->print("---   n%s  ");
2409     method->print_short_name(tty);
2410     if (method->is_static()) {
2411       tty->print(" (static)");
2412     }
2413     tty->cr();
2414   }
2415 
2416   {
2417     // perform the work while holding the lock, but perform any printing
2418     // outside the lock
2419     MutexLocker mu(AdapterHandlerLibrary_lock);
2420     // See if somebody beat us to it
2421     nm = method->code();
2422     if (nm) {
2423       return nm;
2424     }
2425 
2426     ResourceMark rm;
2427 
2428     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2429     if (buf != NULL) {
2430       CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
2431       // Need a few relocation entries
2432       double locs_buf[20];
2433       buffer.insts()->initialize_shared_locs(
2434         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2435       MacroAssembler _masm(&buffer);
2436 
2437       // Generate the compiled-to-native wrapper code
2438       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2439     }
2440   }
2441   return nm;
2442 }
2443 
2444 // the dtrace method needs to convert java lang string to utf8 string.
2445 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2446   typeArrayOop jlsValue  = java_lang_String::value(src);
2447   int          jlsOffset = java_lang_String::offset(src);
2448   int          jlsLen    = java_lang_String::length(src);
2449   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2450                                            jlsValue->char_at_addr(jlsOffset);
2451   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2452 }
2453 #endif // ndef HAVE_DTRACE_H
2454 
2455 // -------------------------------------------------------------------------
2456 // Java-Java calling convention
2457 // (what you use when Java calls Java)
2458 
2459 //------------------------------name_for_receiver----------------------------------
2460 // For a given signature, return the VMReg for parameter 0.
2461 VMReg SharedRuntime::name_for_receiver() {
2462   VMRegPair regs;
2463   BasicType sig_bt = T_OBJECT;
2464   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2465   // Return argument 0 register.  In the LP64 build pointers
2466   // take 2 registers, but the VM wants only the 'main' name.
2467   return regs.first();
2468 }
2469 
2470 VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool has_receiver, int* arg_size) {
2471   // This method is returning a data structure allocating as a
2472   // ResourceObject, so do not put any ResourceMarks in here.
2473   char *s = sig->as_C_string();
2474   int len = (int)strlen(s);
2475   *s++; len--;                  // Skip opening paren
2476   char *t = s+len;
2477   while( *(--t) != ')' ) ;      // Find close paren
2478 
2479   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2480   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2481   int cnt = 0;
2482   if (has_receiver) {
2483     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2484   }
2485 
2486   while( s < t ) {
2487     switch( *s++ ) {            // Switch on signature character
2488     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2489     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2490     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2491     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2492     case 'I': sig_bt[cnt++] = T_INT;     break;
2493     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2494     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2495     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2496     case 'V': sig_bt[cnt++] = T_VOID;    break;
2497     case 'L':                   // Oop
2498       while( *s++ != ';'  ) ;   // Skip signature
2499       sig_bt[cnt++] = T_OBJECT;
2500       break;
2501     case '[': {                 // Array
2502       do {                      // Skip optional size
2503         while( *s >= '0' && *s <= '9' ) s++;
2504       } while( *s++ == '[' );   // Nested arrays?
2505       // Skip element type
2506       if( s[-1] == 'L' )
2507         while( *s++ != ';'  ) ; // Skip signature
2508       sig_bt[cnt++] = T_ARRAY;
2509       break;
2510     }
2511     default : ShouldNotReachHere();
2512     }
2513   }
2514   assert( cnt < 256, "grow table size" );
2515 
2516   int comp_args_on_stack;
2517   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2518 
2519   // the calling convention doesn't count out_preserve_stack_slots so
2520   // we must add that in to get "true" stack offsets.
2521 
2522   if (comp_args_on_stack) {
2523     for (int i = 0; i < cnt; i++) {
2524       VMReg reg1 = regs[i].first();
2525       if( reg1->is_stack()) {
2526         // Yuck
2527         reg1 = reg1->bias(out_preserve_stack_slots());
2528       }
2529       VMReg reg2 = regs[i].second();
2530       if( reg2->is_stack()) {
2531         // Yuck
2532         reg2 = reg2->bias(out_preserve_stack_slots());
2533       }
2534       regs[i].set_pair(reg2, reg1);
2535     }
2536   }
2537 
2538   // results
2539   *arg_size = cnt;
2540   return regs;
2541 }
2542 
2543 // OSR Migration Code
2544 //
2545 // This code is used convert interpreter frames into compiled frames.  It is
2546 // called from very start of a compiled OSR nmethod.  A temp array is
2547 // allocated to hold the interesting bits of the interpreter frame.  All
2548 // active locks are inflated to allow them to move.  The displaced headers and
2549 // active interpeter locals are copied into the temp buffer.  Then we return
2550 // back to the compiled code.  The compiled code then pops the current
2551 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2552 // copies the interpreter locals and displaced headers where it wants.
2553 // Finally it calls back to free the temp buffer.
2554 //
2555 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2556 
2557 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2558 
2559 #ifdef IA64
2560   ShouldNotReachHere(); // NYI
2561 #endif /* IA64 */
2562 
2563   //
2564   // This code is dependent on the memory layout of the interpreter local
2565   // array and the monitors. On all of our platforms the layout is identical
2566   // so this code is shared. If some platform lays the their arrays out
2567   // differently then this code could move to platform specific code or
2568   // the code here could be modified to copy items one at a time using
2569   // frame accessor methods and be platform independent.
2570 
2571   frame fr = thread->last_frame();
2572   assert( fr.is_interpreted_frame(), "" );
2573   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2574 
2575   // Figure out how many monitors are active.
2576   int active_monitor_count = 0;
2577   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2578        kptr < fr.interpreter_frame_monitor_begin();
2579        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2580     if( kptr->obj() != NULL ) active_monitor_count++;
2581   }
2582 
2583   // QQQ we could place number of active monitors in the array so that compiled code
2584   // could double check it.
2585 
2586   methodOop moop = fr.interpreter_frame_method();
2587   int max_locals = moop->max_locals();
2588   // Allocate temp buffer, 1 word per local & 2 per active monitor
2589   int buf_size_words = max_locals + active_monitor_count*2;
2590   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
2591 
2592   // Copy the locals.  Order is preserved so that loading of longs works.
2593   // Since there's no GC I can copy the oops blindly.
2594   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2595   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2596                        (HeapWord*)&buf[0],
2597                        max_locals);
2598 
2599   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2600   int i = max_locals;
2601   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2602        kptr2 < fr.interpreter_frame_monitor_begin();
2603        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2604     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2605       BasicLock *lock = kptr2->lock();
2606       // Inflate so the displaced header becomes position-independent
2607       if (lock->displaced_header()->is_unlocked())
2608         ObjectSynchronizer::inflate_helper(kptr2->obj());
2609       // Now the displaced header is free to move
2610       buf[i++] = (intptr_t)lock->displaced_header();
2611       buf[i++] = (intptr_t)kptr2->obj();
2612     }
2613   }
2614   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2615 
2616   return buf;
2617 JRT_END
2618 
2619 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2620   FREE_C_HEAP_ARRAY(intptr_t,buf);
2621 JRT_END
2622 
2623 #ifndef PRODUCT
2624 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2625   AdapterHandlerTableIterator iter(_adapters);
2626   while (iter.has_next()) {
2627     AdapterHandlerEntry* a = iter.next();
2628     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2629   }
2630   return false;
2631 }
2632 
2633 void AdapterHandlerLibrary::print_handler(CodeBlob* b) {
2634   AdapterHandlerTableIterator iter(_adapters);
2635   while (iter.has_next()) {
2636     AdapterHandlerEntry* a = iter.next();
2637     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
2638       tty->print("Adapter for signature: ");
2639       tty->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2640                     a->fingerprint()->as_string(),
2641                     a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
2642       return;
2643     }
2644   }
2645   assert(false, "Should have found handler");
2646 }
2647 
2648 void AdapterHandlerLibrary::print_statistics() {
2649   _adapters->print_statistics();
2650 }
2651 
2652 #endif /* PRODUCT */