1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
  26   jint& stub_inst = *(jint*) branch;
  27   stub_inst = patched_branch(target - branch, stub_inst, 0);
  28 }
  29 
  30 #ifndef PRODUCT
  31 inline void MacroAssembler::pd_print_patched_instruction(address branch) {
  32   jint stub_inst = *(jint*) branch;
  33   print_instruction(stub_inst);
  34   ::tty->print("%s", " (unresolved)");
  35 }
  36 #endif // PRODUCT
  37 
  38 inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
  39 
  40 
  41 inline int AddressLiteral::low10() const {
  42   return Assembler::low10(value());
  43 }
  44 
  45 
  46 // inlines for SPARC assembler -- dmu 5/97
  47 
  48 inline void Assembler::check_delay() {
  49 # ifdef CHECK_DELAY
  50   guarantee( delay_state != at_delay_slot, "must say delayed() when filling delay slot");
  51   delay_state = no_delay;
  52 # endif
  53 }
  54 
  55 inline void Assembler::emit_long(int x) {
  56   check_delay();
  57   AbstractAssembler::emit_long(x);
  58 }
  59 
  60 inline void Assembler::emit_data(int x, relocInfo::relocType rtype) {
  61   relocate(rtype);
  62   emit_long(x);
  63 }
  64 
  65 inline void Assembler::emit_data(int x, RelocationHolder const& rspec) {
  66   relocate(rspec);
  67   emit_long(x);
  68 }
  69 
  70 
  71 inline void Assembler::add(Register s1, Register s2, Register d )                             { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); }
  72 inline void Assembler::add(Register s1, int simm13a, Register d, relocInfo::relocType rtype ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rtype ); }
  73 inline void Assembler::add(Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec ); }
  74 
  75 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bpr_op2) | wdisp16(intptr_t(d), intptr_t(pc())) | predict(p) | rs1(s1), rt);  has_delay_slot(); }
  76 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, Label& L) { bpr( c, a, p, s1, target(L)); }
  77 
  78 inline void Assembler::fb( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
  79 inline void Assembler::fb( Condition c, bool a, Label& L ) { fb(c, a, target(L)); }
  80 
  81 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fbp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
  82 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) { fbp(c, a, cc, p, target(L)); }
  83 
  84 inline void Assembler::cb( Condition c, bool a, address d, relocInfo::relocType rt ) { v8_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(cb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
  85 inline void Assembler::cb( Condition c, bool a, Label& L ) { cb(c, a, target(L)); }
  86 
  87 inline void Assembler::br( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();   emit_data( op(branch_op) | annul(a) | cond(c) | op2(br_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
  88 inline void Assembler::br( Condition c, bool a, Label& L ) { br(c, a, target(L)); }
  89 
  90 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
  91 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) { bp(c, a, cc, p, target(L)); }
  92 
  93 inline void Assembler::call( address d,  relocInfo::relocType rt ) { emit_data( op(call_op) | wdisp(intptr_t(d), intptr_t(pc()), 30), rt);  has_delay_slot(); assert(rt != relocInfo::virtual_call_type, "must use virtual_call_Relocation::spec"); }
  94 inline void Assembler::call( Label& L,   relocInfo::relocType rt ) { call( target(L), rt); }
  95 
  96 inline void Assembler::flush( Register s1, Register s2) { emit_long( op(arith_op) | op3(flush_op3) | rs1(s1) | rs2(s2)); }
  97 inline void Assembler::flush( Register s1, int simm13a) { emit_data( op(arith_op) | op3(flush_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
  98 
  99 inline void Assembler::jmpl( Register s1, Register s2, Register d                          ) { emit_long( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
 100 inline void Assembler::jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec);  has_delay_slot(); }
 101 
 102 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d) {
 103   if (s2.is_register()) ldf(w, s1, s2.as_register(), d);
 104   else                  ldf(w, s1, s2.as_constant(), d);
 105 }
 106 
 107 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | rs2(s2) ); }
 108 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec); }
 109 
 110 inline void Assembler::ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) { relocate(a.rspec(offset)); ldf( w, a.base(), a.disp() + offset, d); }
 111 
 112 inline void Assembler::ldfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
 113 inline void Assembler::ldfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 114 inline void Assembler::ldxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
 115 inline void Assembler::ldxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 116 
 117 inline void Assembler::ldc(   Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | rs2(s2) ); }
 118 inline void Assembler::ldc(   Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 119 inline void Assembler::lddc(  Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | rs2(s2) ); }
 120 inline void Assembler::lddc(  Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 121 inline void Assembler::ldcsr( Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | rs2(s2) ); }
 122 inline void Assembler::ldcsr( Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 123 
 124 inline void Assembler::ldsb(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | rs2(s2) ); }
 125 inline void Assembler::ldsb(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 126 
 127 inline void Assembler::ldsh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | rs2(s2) ); }
 128 inline void Assembler::ldsh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 129 inline void Assembler::ldsw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | rs2(s2) ); }
 130 inline void Assembler::ldsw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 131 inline void Assembler::ldub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | rs2(s2) ); }
 132 inline void Assembler::ldub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 133 inline void Assembler::lduh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | rs2(s2) ); }
 134 inline void Assembler::lduh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 135 inline void Assembler::lduw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | rs2(s2) ); }
 136 inline void Assembler::lduw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 137 
 138 inline void Assembler::ldx(   Register s1, Register s2, Register d) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | rs2(s2) ); }
 139 inline void Assembler::ldx(   Register s1, int simm13a, Register d) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 140 inline void Assembler::ldd(   Register s1, Register s2, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | rs2(s2) ); }
 141 inline void Assembler::ldd(   Register s1, int simm13a, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 142 
 143 #ifdef _LP64
 144 // Make all 32 bit loads signed so 64 bit registers maintain proper sign
 145 inline void Assembler::ld(  Register s1, Register s2, Register d)      { ldsw( s1, s2, d); }
 146 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { ldsw( s1, simm13a, d); }
 147 #else
 148 inline void Assembler::ld(  Register s1, Register s2, Register d)      { lduw( s1, s2, d); }
 149 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { lduw( s1, simm13a, d); }
 150 #endif
 151 
 152 #ifdef ASSERT
 153   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 154 # ifdef _LP64
 155 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { ldsw( s1, in_bytes(simm13a), d); }
 156 # else
 157 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { lduw( s1, in_bytes(simm13a), d); }
 158 # endif
 159 #endif
 160 
 161 inline void Assembler::ld(  const Address& a, Register d, int offset) {
 162   if (a.has_index()) { assert(offset == 0, ""); ld(  a.base(), a.index(),         d); }
 163   else               {                          ld(  a.base(), a.disp() + offset, d); }
 164 }
 165 inline void Assembler::ldsb(const Address& a, Register d, int offset) {
 166   if (a.has_index()) { assert(offset == 0, ""); ldsb(a.base(), a.index(),         d); }
 167   else               {                          ldsb(a.base(), a.disp() + offset, d); }
 168 }
 169 inline void Assembler::ldsh(const Address& a, Register d, int offset) {
 170   if (a.has_index()) { assert(offset == 0, ""); ldsh(a.base(), a.index(),         d); }
 171   else               {                          ldsh(a.base(), a.disp() + offset, d); }
 172 }
 173 inline void Assembler::ldsw(const Address& a, Register d, int offset) {
 174   if (a.has_index()) { assert(offset == 0, ""); ldsw(a.base(), a.index(),         d); }
 175   else               {                          ldsw(a.base(), a.disp() + offset, d); }
 176 }
 177 inline void Assembler::ldub(const Address& a, Register d, int offset) {
 178   if (a.has_index()) { assert(offset == 0, ""); ldub(a.base(), a.index(),         d); }
 179   else               {                          ldub(a.base(), a.disp() + offset, d); }
 180 }
 181 inline void Assembler::lduh(const Address& a, Register d, int offset) {
 182   if (a.has_index()) { assert(offset == 0, ""); lduh(a.base(), a.index(),         d); }
 183   else               {                          lduh(a.base(), a.disp() + offset, d); }
 184 }
 185 inline void Assembler::lduw(const Address& a, Register d, int offset) {
 186   if (a.has_index()) { assert(offset == 0, ""); lduw(a.base(), a.index(),         d); }
 187   else               {                          lduw(a.base(), a.disp() + offset, d); }
 188 }
 189 inline void Assembler::ldd( const Address& a, Register d, int offset) {
 190   if (a.has_index()) { assert(offset == 0, ""); ldd( a.base(), a.index(),         d); }
 191   else               {                          ldd( a.base(), a.disp() + offset, d); }
 192 }
 193 inline void Assembler::ldx( const Address& a, Register d, int offset) {
 194   if (a.has_index()) { assert(offset == 0, ""); ldx( a.base(), a.index(),         d); }
 195   else               {                          ldx( a.base(), a.disp() + offset, d); }
 196 }
 197 
 198 inline void Assembler::ldub(Register s1, RegisterOrConstant s2, Register d) { ldub(Address(s1, s2), d); }
 199 inline void Assembler::ldsb(Register s1, RegisterOrConstant s2, Register d) { ldsb(Address(s1, s2), d); }
 200 inline void Assembler::lduh(Register s1, RegisterOrConstant s2, Register d) { lduh(Address(s1, s2), d); }
 201 inline void Assembler::ldsh(Register s1, RegisterOrConstant s2, Register d) { ldsh(Address(s1, s2), d); }
 202 inline void Assembler::lduw(Register s1, RegisterOrConstant s2, Register d) { lduw(Address(s1, s2), d); }
 203 inline void Assembler::ldsw(Register s1, RegisterOrConstant s2, Register d) { ldsw(Address(s1, s2), d); }
 204 inline void Assembler::ldx( Register s1, RegisterOrConstant s2, Register d) { ldx( Address(s1, s2), d); }
 205 inline void Assembler::ld(  Register s1, RegisterOrConstant s2, Register d) { ld(  Address(s1, s2), d); }
 206 inline void Assembler::ldd( Register s1, RegisterOrConstant s2, Register d) { ldd( Address(s1, s2), d); }
 207 
 208 // form effective addresses this way:
 209 inline void Assembler::add(const Address& a, Register d, int offset) {
 210   if (a.has_index())   add(a.base(), a.index(),         d);
 211   else               { add(a.base(), a.disp() + offset, d, a.rspec(offset)); offset = 0; }
 212   if (offset != 0)     add(d,        offset,            d);
 213 }
 214 inline void Assembler::add(Register s1, RegisterOrConstant s2, Register d, int offset) {
 215   if (s2.is_register())  add(s1, s2.as_register(),          d);
 216   else                 { add(s1, s2.as_constant() + offset, d); offset = 0; }
 217   if (offset != 0)       add(d,  offset,                    d);
 218 }
 219 
 220 inline void Assembler::andn(Register s1, RegisterOrConstant s2, Register d) {
 221   if (s2.is_register())  andn(s1, s2.as_register(), d);
 222   else                   andn(s1, s2.as_constant(), d);
 223 }
 224 
 225 inline void Assembler::ldstub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | rs2(s2) ); }
 226 inline void Assembler::ldstub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 227 
 228 
 229 inline void Assembler::prefetch(Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
 230 inline void Assembler::prefetch(Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 231 
 232 inline void Assembler::prefetch(const Address& a, PrefetchFcn f, int offset) { v9_only(); relocate(a.rspec(offset)); prefetch(a.base(), a.disp() + offset, f); }
 233 
 234 
 235 inline void Assembler::rett( Register s1, Register s2                         ) { emit_long( op(arith_op) | op3(rett_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
 236 inline void Assembler::rett( Register s1, int simm13a, relocInfo::relocType rt) { emit_data( op(arith_op) | op3(rett_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rt);  has_delay_slot(); }
 237 
 238 inline void Assembler::sethi( int imm22a, Register d, RelocationHolder const& rspec ) { emit_data( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(imm22a), rspec); }
 239 
 240   // pp 222
 241 
 242 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2) {
 243   if (s2.is_register()) stf(w, d, s1, s2.as_register());
 244   else                  stf(w, d, s1, s2.as_constant());
 245 }
 246 
 247 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); }
 248 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 249 
 250 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) { relocate(a.rspec(offset)); stf(w, d, a.base(), a.disp() + offset); }
 251 
 252 inline void Assembler::stfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
 253 inline void Assembler::stfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 254 inline void Assembler::stxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
 255 inline void Assembler::stxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 256 
 257   // p 226
 258 
 259 inline void Assembler::stb(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | rs2(s2) ); }
 260 inline void Assembler::stb(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 261 inline void Assembler::sth(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | rs2(s2) ); }
 262 inline void Assembler::sth(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 263 inline void Assembler::stw(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | rs2(s2) ); }
 264 inline void Assembler::stw(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 265 
 266 
 267 inline void Assembler::stx(  Register d, Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | rs2(s2) ); }
 268 inline void Assembler::stx(  Register d, Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 269 inline void Assembler::std(  Register d, Register s1, Register s2) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | rs2(s2) ); }
 270 inline void Assembler::std(  Register d, Register s1, int simm13a) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 271 
 272 inline void Assembler::st( Register d, Register s1, Register s2)      { stw(d, s1, s2); }
 273 inline void Assembler::st( Register d, Register s1, int simm13a)      { stw(d, s1, simm13a); }
 274 
 275 #ifdef ASSERT
 276 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 277 inline void Assembler::st( Register d, Register s1, ByteSize simm13a) { stw(d, s1, in_bytes(simm13a)); }
 278 #endif
 279 
 280 inline void Assembler::stb(Register d, const Address& a, int offset) {
 281   if (a.has_index()) { assert(offset == 0, ""); stb(d, a.base(), a.index()        ); }
 282   else               {                          stb(d, a.base(), a.disp() + offset); }
 283 }
 284 inline void Assembler::sth(Register d, const Address& a, int offset) {
 285   if (a.has_index()) { assert(offset == 0, ""); sth(d, a.base(), a.index()        ); }
 286   else               {                          sth(d, a.base(), a.disp() + offset); }
 287 }
 288 inline void Assembler::stw(Register d, const Address& a, int offset) {
 289   if (a.has_index()) { assert(offset == 0, ""); stw(d, a.base(), a.index()        ); }
 290   else               {                          stw(d, a.base(), a.disp() + offset); }
 291 }
 292 inline void Assembler::st( Register d, const Address& a, int offset) {
 293   if (a.has_index()) { assert(offset == 0, ""); st( d, a.base(), a.index()        ); }
 294   else               {                          st( d, a.base(), a.disp() + offset); }
 295 }
 296 inline void Assembler::std(Register d, const Address& a, int offset) {
 297   if (a.has_index()) { assert(offset == 0, ""); std(d, a.base(), a.index()        ); }
 298   else               {                          std(d, a.base(), a.disp() + offset); }
 299 }
 300 inline void Assembler::stx(Register d, const Address& a, int offset) {
 301   if (a.has_index()) { assert(offset == 0, ""); stx(d, a.base(), a.index()        ); }
 302   else               {                          stx(d, a.base(), a.disp() + offset); }
 303 }
 304 
 305 inline void Assembler::stb(Register d, Register s1, RegisterOrConstant s2) { stb(d, Address(s1, s2)); }
 306 inline void Assembler::sth(Register d, Register s1, RegisterOrConstant s2) { sth(d, Address(s1, s2)); }
 307 inline void Assembler::stw(Register d, Register s1, RegisterOrConstant s2) { stw(d, Address(s1, s2)); }
 308 inline void Assembler::stx(Register d, Register s1, RegisterOrConstant s2) { stx(d, Address(s1, s2)); }
 309 inline void Assembler::std(Register d, Register s1, RegisterOrConstant s2) { std(d, Address(s1, s2)); }
 310 inline void Assembler::st( Register d, Register s1, RegisterOrConstant s2) { st( d, Address(s1, s2)); }
 311 
 312 // v8 p 99
 313 
 314 inline void Assembler::stc(    int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | rs2(s2) ); }
 315 inline void Assembler::stc(    int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 316 inline void Assembler::stdc(   int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | rs2(s2) ); }
 317 inline void Assembler::stdc(   int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 318 inline void Assembler::stcsr(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | rs2(s2) ); }
 319 inline void Assembler::stcsr(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 320 inline void Assembler::stdcq(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | rs2(s2) ); }
 321 inline void Assembler::stdcq(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 322 
 323 
 324 // pp 231
 325 
 326 inline void Assembler::swap(    Register s1, Register s2, Register d) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | rs2(s2) ); }
 327 inline void Assembler::swap(    Register s1, int simm13a, Register d) { v9_dep();  emit_data( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 328 
 329 inline void Assembler::swap(    Address& a, Register d, int offset ) { relocate(a.rspec(offset)); swap(  a.base(), a.disp() + offset, d ); }
 330 
 331 
 332 // Use the right loads/stores for the platform
 333 inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
 334 #ifdef _LP64
 335   Assembler::ldx(s1, s2, d);
 336 #else
 337   Assembler::ld( s1, s2, d);
 338 #endif
 339 }
 340 
 341 inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
 342 #ifdef _LP64
 343   Assembler::ldx(s1, simm13a, d);
 344 #else
 345   Assembler::ld( s1, simm13a, d);
 346 #endif
 347 }
 348 
 349 #ifdef ASSERT
 350 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 351 inline void MacroAssembler::ld_ptr( Register s1, ByteSize simm13a, Register d ) {
 352   ld_ptr(s1, in_bytes(simm13a), d);
 353 }
 354 #endif
 355 
 356 inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) {
 357 #ifdef _LP64
 358   Assembler::ldx(s1, s2, d);
 359 #else
 360   Assembler::ld( s1, s2, d);
 361 #endif
 362 }
 363 
 364 inline void MacroAssembler::ld_ptr(const Address& a, Register d, int offset) {
 365 #ifdef _LP64
 366   Assembler::ldx(a, d, offset);
 367 #else
 368   Assembler::ld( a, d, offset);
 369 #endif
 370 }
 371 
 372 inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
 373 #ifdef _LP64
 374   Assembler::stx(d, s1, s2);
 375 #else
 376   Assembler::st( d, s1, s2);
 377 #endif
 378 }
 379 
 380 inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
 381 #ifdef _LP64
 382   Assembler::stx(d, s1, simm13a);
 383 #else
 384   Assembler::st( d, s1, simm13a);
 385 #endif
 386 }
 387 
 388 #ifdef ASSERT
 389 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 390 inline void MacroAssembler::st_ptr( Register d, Register s1, ByteSize simm13a ) {
 391   st_ptr(d, s1, in_bytes(simm13a));
 392 }
 393 #endif
 394 
 395 inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) {
 396 #ifdef _LP64
 397   Assembler::stx(d, s1, s2);
 398 #else
 399   Assembler::st( d, s1, s2);
 400 #endif
 401 }
 402 
 403 inline void MacroAssembler::st_ptr(Register d, const Address& a, int offset) {
 404 #ifdef _LP64
 405   Assembler::stx(d, a, offset);
 406 #else
 407   Assembler::st( d, a, offset);
 408 #endif
 409 }
 410 
 411 // Use the right loads/stores for the platform
 412 inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
 413 #ifdef _LP64
 414   Assembler::ldx(s1, s2, d);
 415 #else
 416   Assembler::ldd(s1, s2, d);
 417 #endif
 418 }
 419 
 420 inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
 421 #ifdef _LP64
 422   Assembler::ldx(s1, simm13a, d);
 423 #else
 424   Assembler::ldd(s1, simm13a, d);
 425 #endif
 426 }
 427 
 428 inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) {
 429 #ifdef _LP64
 430   Assembler::ldx(s1, s2, d);
 431 #else
 432   Assembler::ldd(s1, s2, d);
 433 #endif
 434 }
 435 
 436 inline void MacroAssembler::ld_long(const Address& a, Register d, int offset) {
 437 #ifdef _LP64
 438   Assembler::ldx(a, d, offset);
 439 #else
 440   Assembler::ldd(a, d, offset);
 441 #endif
 442 }
 443 
 444 inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
 445 #ifdef _LP64
 446   Assembler::stx(d, s1, s2);
 447 #else
 448   Assembler::std(d, s1, s2);
 449 #endif
 450 }
 451 
 452 inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
 453 #ifdef _LP64
 454   Assembler::stx(d, s1, simm13a);
 455 #else
 456   Assembler::std(d, s1, simm13a);
 457 #endif
 458 }
 459 
 460 inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) {
 461 #ifdef _LP64
 462   Assembler::stx(d, s1, s2);
 463 #else
 464   Assembler::std(d, s1, s2);
 465 #endif
 466 }
 467 
 468 inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
 469 #ifdef _LP64
 470   Assembler::stx(d, a, offset);
 471 #else
 472   Assembler::std(d, a, offset);
 473 #endif
 474 }
 475 
 476 // Functions for isolating 64 bit shifts for LP64
 477 
 478 inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
 479 #ifdef _LP64
 480   Assembler::sllx(s1, s2, d);
 481 #else
 482   Assembler::sll( s1, s2, d);
 483 #endif
 484 }
 485 
 486 inline void MacroAssembler::sll_ptr( Register s1, int imm6a,   Register d ) {
 487 #ifdef _LP64
 488   Assembler::sllx(s1, imm6a, d);
 489 #else
 490   Assembler::sll( s1, imm6a, d);
 491 #endif
 492 }
 493 
 494 inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
 495 #ifdef _LP64
 496   Assembler::srlx(s1, s2, d);
 497 #else
 498   Assembler::srl( s1, s2, d);
 499 #endif
 500 }
 501 
 502 inline void MacroAssembler::srl_ptr( Register s1, int imm6a,   Register d ) {
 503 #ifdef _LP64
 504   Assembler::srlx(s1, imm6a, d);
 505 #else
 506   Assembler::srl( s1, imm6a, d);
 507 #endif
 508 }
 509 
 510 inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) {
 511   if (s2.is_register())  sll_ptr(s1, s2.as_register(), d);
 512   else                   sll_ptr(s1, s2.as_constant(), d);
 513 }
 514 
 515 // Use the right branch for the platform
 516 
 517 inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
 518   if (VM_Version::v9_instructions_work())
 519     Assembler::bp(c, a, icc, p, d, rt);
 520   else
 521     Assembler::br(c, a, d, rt);
 522 }
 523 
 524 inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
 525   br(c, a, p, target(L));
 526 }
 527 
 528 
 529 // Branch that tests either xcc or icc depending on the
 530 // architecture compiled (LP64 or not)
 531 inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
 532 #ifdef _LP64
 533     Assembler::bp(c, a, xcc, p, d, rt);
 534 #else
 535     MacroAssembler::br(c, a, p, d, rt);
 536 #endif
 537 }
 538 
 539 inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
 540   brx(c, a, p, target(L));
 541 }
 542 
 543 inline void MacroAssembler::ba( bool a, Label& L ) {
 544   br(always, a, pt, L);
 545 }
 546 
 547 // Warning: V9 only functions
 548 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
 549   Assembler::bp(c, a, cc, p, d, rt);
 550 }
 551 
 552 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
 553   Assembler::bp(c, a, cc, p, L);
 554 }
 555 
 556 inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
 557   if (VM_Version::v9_instructions_work())
 558     fbp(c, a, fcc0, p, d, rt);
 559   else
 560     Assembler::fb(c, a, d, rt);
 561 }
 562 
 563 inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
 564   fb(c, a, p, target(L));
 565 }
 566 
 567 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
 568   Assembler::fbp(c, a, cc, p, d, rt);
 569 }
 570 
 571 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
 572   Assembler::fbp(c, a, cc, p, L);
 573 }
 574 
 575 inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
 576 inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
 577 
 578 // Call with a check to see if we need to deal with the added
 579 // expense of relocation and if we overflow the displacement
 580 // of the quick call instruction./
 581 // Check to see if we have to deal with relocations
 582 inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
 583 #ifdef _LP64
 584   intptr_t disp;
 585   // NULL is ok because it will be relocated later.
 586   // Must change NULL to a reachable address in order to
 587   // pass asserts here and in wdisp.
 588   if ( d == NULL )
 589     d = pc();
 590 
 591   // Is this address within range of the call instruction?
 592   // If not, use the expensive instruction sequence
 593   disp = (intptr_t)d - (intptr_t)pc();
 594   if ( disp != (intptr_t)(int32_t)disp ) {
 595     relocate(rt);
 596     AddressLiteral dest(d);
 597     jumpl_to(dest, O7, O7);
 598   }
 599   else {
 600     Assembler::call( d, rt );
 601   }
 602 #else
 603   Assembler::call( d, rt );
 604 #endif
 605 }
 606 
 607 inline void MacroAssembler::call( Label& L,   relocInfo::relocType rt ) {
 608   MacroAssembler::call( target(L), rt);
 609 }
 610 
 611 
 612 
 613 inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
 614 inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
 615 
 616 // prefetch instruction
 617 inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
 618   if (VM_Version::v9_instructions_work())
 619     Assembler::bp( never, true, xcc, pt, d, rt );
 620 }
 621 inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
 622 
 623 
 624 // clobbers o7 on V8!!
 625 // returns delta from gotten pc to addr after
 626 inline int MacroAssembler::get_pc( Register d ) {
 627   int x = offset();
 628   if (VM_Version::v9_instructions_work())
 629     rdpc(d);
 630   else {
 631     Label lbl;
 632     Assembler::call(lbl, relocInfo::none);  // No relocation as this is call to pc+0x8
 633     if (d == O7)  delayed()->nop();
 634     else          delayed()->mov(O7, d);
 635     bind(lbl);
 636   }
 637   return offset() - x;
 638 }
 639 
 640 
 641 // Note:  All MacroAssembler::set_foo functions are defined out-of-line.
 642 
 643 
 644 // Loads the current PC of the following instruction as an immediate value in
 645 // 2 instructions.  All PCs in the CodeCache are within 2 Gig of each other.
 646 inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
 647   intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
 648 #ifdef _LP64
 649   Unimplemented();
 650 #else
 651   Assembler::sethi(  thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
 652   Assembler::add(reg,thepc &  0x3ff, reg, internal_word_Relocation::spec((address)thepc));
 653 #endif
 654   return thepc;
 655 }
 656 
 657 
 658 inline void MacroAssembler::load_contents(const AddressLiteral& addrlit, Register d, int offset) {
 659   assert_not_delayed();
 660   sethi(addrlit, d);
 661   ld(d, addrlit.low10() + offset, d);
 662 }
 663 
 664 
 665 inline void MacroAssembler::load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset) {
 666   assert_not_delayed();
 667   sethi(addrlit, d);
 668   ld_ptr(d, addrlit.low10() + offset, d);
 669 }
 670 
 671 
 672 inline void MacroAssembler::store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
 673   assert_not_delayed();
 674   sethi(addrlit, temp);
 675   st(s, temp, addrlit.low10() + offset);
 676 }
 677 
 678 
 679 inline void MacroAssembler::store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
 680   assert_not_delayed();
 681   sethi(addrlit, temp);
 682   st_ptr(s, temp, addrlit.low10() + offset);
 683 }
 684 
 685 
 686 // This code sequence is relocatable to any address, even on LP64.
 687 inline void MacroAssembler::jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset) {
 688   assert_not_delayed();
 689   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
 690   // variable length instruction streams.
 691   patchable_sethi(addrlit, temp);
 692   jmpl(temp, addrlit.low10() + offset, d);
 693 }
 694 
 695 
 696 inline void MacroAssembler::jump_to(const AddressLiteral& addrlit, Register temp, int offset) {
 697   jumpl_to(addrlit, temp, G0, offset);
 698 }
 699 
 700 
 701 inline void MacroAssembler::jump_indirect_to(Address& a, Register temp,
 702                                              int ld_offset, int jmp_offset) {
 703   assert_not_delayed();
 704   //sethi(al);                   // sethi is caller responsibility for this one
 705   ld_ptr(a, temp, ld_offset);
 706   jmp(temp, jmp_offset);
 707 }
 708 
 709 
 710 inline void MacroAssembler::set_oop(jobject obj, Register d) {
 711   set_oop(allocate_oop_address(obj), d);
 712 }
 713 
 714 
 715 inline void MacroAssembler::set_oop_constant(jobject obj, Register d) {
 716   set_oop(constant_oop_address(obj), d);
 717 }
 718 
 719 
 720 inline void MacroAssembler::set_oop(const AddressLiteral& obj_addr, Register d) {
 721   assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
 722   set(obj_addr, d);
 723 }
 724 
 725 
 726 inline void MacroAssembler::load_argument( Argument& a, Register  d ) {
 727   if (a.is_register())
 728     mov(a.as_register(), d);
 729   else
 730     ld (a.as_address(),  d);
 731 }
 732 
 733 inline void MacroAssembler::store_argument( Register s, Argument& a ) {
 734   if (a.is_register())
 735     mov(s, a.as_register());
 736   else
 737     st_ptr (s, a.as_address());         // ABI says everything is right justified.
 738 }
 739 
 740 inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
 741   if (a.is_register())
 742     mov(s, a.as_register());
 743   else
 744     st_ptr (s, a.as_address());
 745 }
 746 
 747 
 748 #ifdef _LP64
 749 inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
 750   if (a.is_float_register())
 751 // V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
 752     fmov(FloatRegisterImpl::S, s, a.as_float_register() );
 753   else
 754     // Floats are stored in the high half of the stack entry
 755     // The low half is undefined per the ABI.
 756     stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
 757 }
 758 
 759 inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
 760   if (a.is_float_register())
 761 // V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
 762     fmov(FloatRegisterImpl::D, s, a.as_double_register() );
 763   else
 764     stf(FloatRegisterImpl::D, s, a.as_address());
 765 }
 766 
 767 inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
 768   if (a.is_register())
 769     mov(s, a.as_register());
 770   else
 771     stx(s, a.as_address());
 772 }
 773 #endif
 774 
 775 inline void MacroAssembler::clrb( Register s1, Register s2) {  stb( G0, s1, s2 ); }
 776 inline void MacroAssembler::clrh( Register s1, Register s2) {  sth( G0, s1, s2 ); }
 777 inline void MacroAssembler::clr(  Register s1, Register s2) {  stw( G0, s1, s2 ); }
 778 inline void MacroAssembler::clrx( Register s1, Register s2) {  stx( G0, s1, s2 ); }
 779 
 780 inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
 781 inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
 782 inline void MacroAssembler::clr(  Register s1, int simm13a) { stw( G0, s1, simm13a); }
 783 inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
 784 
 785 // returns if membar generates anything, obviously this code should mirror
 786 // membar below.
 787 inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
 788   if( !os::is_MP() ) return false;  // Not needed on single CPU
 789   if( VM_Version::v9_instructions_work() ) {
 790     const Membar_mask_bits effective_mask =
 791         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
 792     return (effective_mask != 0);
 793   } else {
 794     return true;
 795   }
 796 }
 797 
 798 inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
 799   // Uniprocessors do not need memory barriers
 800   if (!os::is_MP()) return;
 801   // Weakened for current Sparcs and TSO.  See the v9 manual, sections 8.4.3,
 802   // 8.4.4.3, a.31 and a.50.
 803   if( VM_Version::v9_instructions_work() ) {
 804     // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
 805     // of the mmask subfield of const7a that does anything that isn't done
 806     // implicitly is StoreLoad.
 807     const Membar_mask_bits effective_mask =
 808         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
 809     if ( effective_mask != 0 ) {
 810       Assembler::membar( effective_mask );
 811     }
 812   } else {
 813     // stbar is the closest there is on v8.  Equivalent to membar(StoreStore).  We
 814     // do not issue the stbar because to my knowledge all v8 machines implement TSO,
 815     // which guarantees that all stores behave as if an stbar were issued just after
 816     // each one of them.  On these machines, stbar ought to be a nop.  There doesn't
 817     // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
 818     // it can't be specified by stbar, nor have I come up with a way to simulate it.
 819     //
 820     // Addendum.  Dave says that ldstub guarantees a write buffer flush to coherent
 821     // space.  Put one here to be on the safe side.
 822     Assembler::ldstub(SP, 0, G0);
 823   }
 824 }