1 //
   2 // Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 // Macros to extract hi & lo halves from a long pair.
 464 // G0 is not part of any long pair, so assert on that.
 465 // Prevents accidentally using G1 instead of G0.
 466 #define LONG_HI_REG(x) (x)
 467 #define LONG_LO_REG(x) (x)
 468 
 469 %}
 470 
 471 source %{
 472 #define __ _masm.
 473 
 474 // Block initializing store
 475 #define ASI_BLK_INIT_QUAD_LDD_P    0xE2
 476 
 477 // tertiary op of a LoadP or StoreP encoding
 478 #define REGP_OP true
 479 
 480 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 481 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 482 static Register reg_to_register_object(int register_encoding);
 483 
 484 // Used by the DFA in dfa_sparc.cpp.
 485 // Check for being able to use a V9 branch-on-register.  Requires a
 486 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 487 // extended.  Doesn't work following an integer ADD, for example, because of
 488 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 489 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 490 // replace them with zero, which could become sign-extension in a different OS
 491 // release.  There's no obvious reason why an interrupt will ever fill these
 492 // bits with non-zero junk (the registers are reloaded with standard LD
 493 // instructions which either zero-fill or sign-fill).
 494 bool can_branch_register( Node *bol, Node *cmp ) {
 495   if( !BranchOnRegister ) return false;
 496 #ifdef _LP64
 497   if( cmp->Opcode() == Op_CmpP )
 498     return true;  // No problems with pointer compares
 499 #endif
 500   if( cmp->Opcode() == Op_CmpL )
 501     return true;  // No problems with long compares
 502 
 503   if( !SparcV9RegsHiBitsZero ) return false;
 504   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 505       bol->as_Bool()->_test._test != BoolTest::eq )
 506      return false;
 507 
 508   // Check for comparing against a 'safe' value.  Any operation which
 509   // clears out the high word is safe.  Thus, loads and certain shifts
 510   // are safe, as are non-negative constants.  Any operation which
 511   // preserves zero bits in the high word is safe as long as each of its
 512   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 513   // inputs are safe.  At present, the only important case to recognize
 514   // seems to be loads.  Constants should fold away, and shifts &
 515   // logicals can use the 'cc' forms.
 516   Node *x = cmp->in(1);
 517   if( x->is_Load() ) return true;
 518   if( x->is_Phi() ) {
 519     for( uint i = 1; i < x->req(); i++ )
 520       if( !x->in(i)->is_Load() )
 521         return false;
 522     return true;
 523   }
 524   return false;
 525 }
 526 
 527 // ****************************************************************************
 528 
 529 // REQUIRED FUNCTIONALITY
 530 
 531 // !!!!! Special hack to get all type of calls to specify the byte offset
 532 //       from the start of the call to the point where the return address
 533 //       will point.
 534 //       The "return address" is the address of the call instruction, plus 8.
 535 
 536 int MachCallStaticJavaNode::ret_addr_offset() {
 537   int offset = NativeCall::instruction_size;  // call; delay slot
 538   if (_method_handle_invoke)
 539     offset += 4;  // restore SP
 540   return offset;
 541 }
 542 
 543 int MachCallDynamicJavaNode::ret_addr_offset() {
 544   int vtable_index = this->_vtable_index;
 545   if (vtable_index < 0) {
 546     // must be invalid_vtable_index, not nonvirtual_vtable_index
 547     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
 548     return (NativeMovConstReg::instruction_size +
 549            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 550   } else {
 551     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 552     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 553     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 554     int klass_load_size;
 555     if (UseCompressedOops) {
 556       assert(Universe::heap() != NULL, "java heap should be initialized");
 557       if (Universe::narrow_oop_base() == NULL)
 558         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
 559       else
 560         klass_load_size = 3*BytesPerInstWord;
 561     } else {
 562       klass_load_size = 1*BytesPerInstWord;
 563     }
 564     if( Assembler::is_simm13(v_off) ) {
 565       return klass_load_size +
 566              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 567              NativeCall::instruction_size);  // call; delay slot
 568     } else {
 569       return klass_load_size +
 570              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 571              NativeCall::instruction_size);  // call; delay slot
 572     }
 573   }
 574 }
 575 
 576 int MachCallRuntimeNode::ret_addr_offset() {
 577 #ifdef _LP64
 578   return NativeFarCall::instruction_size;  // farcall; delay slot
 579 #else
 580   return NativeCall::instruction_size;  // call; delay slot
 581 #endif
 582 }
 583 
 584 // Indicate if the safepoint node needs the polling page as an input.
 585 // Since Sparc does not have absolute addressing, it does.
 586 bool SafePointNode::needs_polling_address_input() {
 587   return true;
 588 }
 589 
 590 // emit an interrupt that is caught by the debugger (for debugging compiler)
 591 void emit_break(CodeBuffer &cbuf) {
 592   MacroAssembler _masm(&cbuf);
 593   __ breakpoint_trap();
 594 }
 595 
 596 #ifndef PRODUCT
 597 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 598   st->print("TA");
 599 }
 600 #endif
 601 
 602 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 603   emit_break(cbuf);
 604 }
 605 
 606 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 607   return MachNode::size(ra_);
 608 }
 609 
 610 // Traceable jump
 611 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 612   MacroAssembler _masm(&cbuf);
 613   Register rdest = reg_to_register_object(jump_target);
 614   __ JMP(rdest, 0);
 615   __ delayed()->nop();
 616 }
 617 
 618 // Traceable jump and set exception pc
 619 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 620   MacroAssembler _masm(&cbuf);
 621   Register rdest = reg_to_register_object(jump_target);
 622   __ JMP(rdest, 0);
 623   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 624 }
 625 
 626 void emit_nop(CodeBuffer &cbuf) {
 627   MacroAssembler _masm(&cbuf);
 628   __ nop();
 629 }
 630 
 631 void emit_illtrap(CodeBuffer &cbuf) {
 632   MacroAssembler _masm(&cbuf);
 633   __ illtrap(0);
 634 }
 635 
 636 
 637 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 638   assert(n->rule() != loadUB_rule, "");
 639 
 640   intptr_t offset = 0;
 641   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 642   const Node* addr = n->get_base_and_disp(offset, adr_type);
 643   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 644   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 645   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 646   atype = atype->add_offset(offset);
 647   assert(disp32 == offset, "wrong disp32");
 648   return atype->_offset;
 649 }
 650 
 651 
 652 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 653   assert(n->rule() != loadUB_rule, "");
 654 
 655   intptr_t offset = 0;
 656   Node* addr = n->in(2);
 657   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 658   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 659     Node* a = addr->in(2/*AddPNode::Address*/);
 660     Node* o = addr->in(3/*AddPNode::Offset*/);
 661     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 662     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 663     assert(atype->isa_oop_ptr(), "still an oop");
 664   }
 665   offset = atype->is_ptr()->_offset;
 666   if (offset != Type::OffsetBot)  offset += disp32;
 667   return offset;
 668 }
 669 
 670 // Standard Sparc opcode form2 field breakdown
 671 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 672   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 673   int op = (f30 << 30) |
 674            (f29 << 29) |
 675            (f25 << 25) |
 676            (f22 << 22) |
 677            (f20 << 20) |
 678            (f19 << 19) |
 679            (f0  <<  0);
 680   cbuf.insts()->emit_int32(op);
 681 }
 682 
 683 // Standard Sparc opcode form2 field breakdown
 684 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 685   f0 >>= 10;           // Drop 10 bits
 686   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 687   int op = (f30 << 30) |
 688            (f25 << 25) |
 689            (f22 << 22) |
 690            (f0  <<  0);
 691   cbuf.insts()->emit_int32(op);
 692 }
 693 
 694 // Standard Sparc opcode form3 field breakdown
 695 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 696   int op = (f30 << 30) |
 697            (f25 << 25) |
 698            (f19 << 19) |
 699            (f14 << 14) |
 700            (f5  <<  5) |
 701            (f0  <<  0);
 702   cbuf.insts()->emit_int32(op);
 703 }
 704 
 705 // Standard Sparc opcode form3 field breakdown
 706 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 707   simm13 &= (1<<13)-1; // Mask to 13 bits
 708   int op = (f30 << 30) |
 709            (f25 << 25) |
 710            (f19 << 19) |
 711            (f14 << 14) |
 712            (1   << 13) | // bit to indicate immediate-mode
 713            (simm13<<0);
 714   cbuf.insts()->emit_int32(op);
 715 }
 716 
 717 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 718   simm10 &= (1<<10)-1; // Mask to 10 bits
 719   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 720 }
 721 
 722 #ifdef ASSERT
 723 // Helper function for VerifyOops in emit_form3_mem_reg
 724 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 725   warning("VerifyOops encountered unexpected instruction:");
 726   n->dump(2);
 727   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 728 }
 729 #endif
 730 
 731 
 732 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 733                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 734 
 735 #ifdef ASSERT
 736   // The following code implements the +VerifyOops feature.
 737   // It verifies oop values which are loaded into or stored out of
 738   // the current method activation.  +VerifyOops complements techniques
 739   // like ScavengeALot, because it eagerly inspects oops in transit,
 740   // as they enter or leave the stack, as opposed to ScavengeALot,
 741   // which inspects oops "at rest", in the stack or heap, at safepoints.
 742   // For this reason, +VerifyOops can sometimes detect bugs very close
 743   // to their point of creation.  It can also serve as a cross-check
 744   // on the validity of oop maps, when used toegether with ScavengeALot.
 745 
 746   // It would be good to verify oops at other points, especially
 747   // when an oop is used as a base pointer for a load or store.
 748   // This is presently difficult, because it is hard to know when
 749   // a base address is biased or not.  (If we had such information,
 750   // it would be easy and useful to make a two-argument version of
 751   // verify_oop which unbiases the base, and performs verification.)
 752 
 753   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 754   bool is_verified_oop_base  = false;
 755   bool is_verified_oop_load  = false;
 756   bool is_verified_oop_store = false;
 757   int tmp_enc = -1;
 758   if (VerifyOops && src1_enc != R_SP_enc) {
 759     // classify the op, mainly for an assert check
 760     int st_op = 0, ld_op = 0;
 761     switch (primary) {
 762     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 763     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 764     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 765     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 766     case Assembler::std_op3:  st_op = Op_StoreL; break;
 767     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 768     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 769 
 770     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 771     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 772     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 773     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 774     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 775     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 776     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 777     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 778     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 779     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
 780     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 781 
 782     default: ShouldNotReachHere();
 783     }
 784     if (tertiary == REGP_OP) {
 785       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 786       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 787       else                          ShouldNotReachHere();
 788       if (st_op) {
 789         // a store
 790         // inputs are (0:control, 1:memory, 2:address, 3:value)
 791         Node* n2 = n->in(3);
 792         if (n2 != NULL) {
 793           const Type* t = n2->bottom_type();
 794           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 795         }
 796       } else {
 797         // a load
 798         const Type* t = n->bottom_type();
 799         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 800       }
 801     }
 802 
 803     if (ld_op) {
 804       // a Load
 805       // inputs are (0:control, 1:memory, 2:address)
 806       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 807           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
 808           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 809           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 810           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 811           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 812           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 813           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 814           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 815           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 816           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 817           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 818           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 819           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 820           !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
 821           !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
 822           !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
 823           !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
 824           !(n->rule() == loadUB_rule)) {
 825         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 826       }
 827     } else if (st_op) {
 828       // a Store
 829       // inputs are (0:control, 1:memory, 2:address, 3:value)
 830       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 831           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 832           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 833           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 834           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 835           !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
 836           !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
 837           !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
 838           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 839         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 840       }
 841     }
 842 
 843     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 844       Node* addr = n->in(2);
 845       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 846         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 847         if (atype != NULL) {
 848           intptr_t offset = get_offset_from_base(n, atype, disp32);
 849           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 850           if (offset != offset_2) {
 851             get_offset_from_base(n, atype, disp32);
 852             get_offset_from_base_2(n, atype, disp32);
 853           }
 854           assert(offset == offset_2, "different offsets");
 855           if (offset == disp32) {
 856             // we now know that src1 is a true oop pointer
 857             is_verified_oop_base = true;
 858             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 859               if( primary == Assembler::ldd_op3 ) {
 860                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 861               } else {
 862                 tmp_enc = dst_enc;
 863                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 864                 assert(src1_enc != dst_enc, "");
 865               }
 866             }
 867           }
 868           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 869                        || offset == oopDesc::mark_offset_in_bytes())) {
 870                       // loading the mark should not be allowed either, but
 871                       // we don't check this since it conflicts with InlineObjectHash
 872                       // usage of LoadINode to get the mark. We could keep the
 873                       // check if we create a new LoadMarkNode
 874             // but do not verify the object before its header is initialized
 875             ShouldNotReachHere();
 876           }
 877         }
 878       }
 879     }
 880   }
 881 #endif
 882 
 883   uint instr;
 884   instr = (Assembler::ldst_op << 30)
 885         | (dst_enc        << 25)
 886         | (primary        << 19)
 887         | (src1_enc       << 14);
 888 
 889   uint index = src2_enc;
 890   int disp = disp32;
 891 
 892   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 893     disp += STACK_BIAS;
 894 
 895   // We should have a compiler bailout here rather than a guarantee.
 896   // Better yet would be some mechanism to handle variable-size matches correctly.
 897   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 898 
 899   if( disp == 0 ) {
 900     // use reg-reg form
 901     // bit 13 is already zero
 902     instr |= index;
 903   } else {
 904     // use reg-imm form
 905     instr |= 0x00002000;          // set bit 13 to one
 906     instr |= disp & 0x1FFF;
 907   }
 908 
 909   cbuf.insts()->emit_int32(instr);
 910 
 911 #ifdef ASSERT
 912   {
 913     MacroAssembler _masm(&cbuf);
 914     if (is_verified_oop_base) {
 915       __ verify_oop(reg_to_register_object(src1_enc));
 916     }
 917     if (is_verified_oop_store) {
 918       __ verify_oop(reg_to_register_object(dst_enc));
 919     }
 920     if (tmp_enc != -1) {
 921       __ mov(O7, reg_to_register_object(tmp_enc));
 922     }
 923     if (is_verified_oop_load) {
 924       __ verify_oop(reg_to_register_object(dst_enc));
 925     }
 926   }
 927 #endif
 928 }
 929 
 930 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
 931   // The method which records debug information at every safepoint
 932   // expects the call to be the first instruction in the snippet as
 933   // it creates a PcDesc structure which tracks the offset of a call
 934   // from the start of the codeBlob. This offset is computed as
 935   // code_end() - code_begin() of the code which has been emitted
 936   // so far.
 937   // In this particular case we have skirted around the problem by
 938   // putting the "mov" instruction in the delay slot but the problem
 939   // may bite us again at some other point and a cleaner/generic
 940   // solution using relocations would be needed.
 941   MacroAssembler _masm(&cbuf);
 942   __ set_inst_mark();
 943 
 944   // We flush the current window just so that there is a valid stack copy
 945   // the fact that the current window becomes active again instantly is
 946   // not a problem there is nothing live in it.
 947 
 948 #ifdef ASSERT
 949   int startpos = __ offset();
 950 #endif /* ASSERT */
 951 
 952 #ifdef _LP64
 953   // Calls to the runtime or native may not be reachable from compiled code,
 954   // so we generate the far call sequence on 64 bit sparc.
 955   // This code sequence is relocatable to any address, even on LP64.
 956   if ( force_far_call ) {
 957     __ relocate(rtype);
 958     AddressLiteral dest(entry_point);
 959     __ jumpl_to(dest, O7, O7);
 960   }
 961   else
 962 #endif
 963   {
 964      __ call((address)entry_point, rtype);
 965   }
 966 
 967   if (preserve_g2)   __ delayed()->mov(G2, L7);
 968   else __ delayed()->nop();
 969 
 970   if (preserve_g2)   __ mov(L7, G2);
 971 
 972 #ifdef ASSERT
 973   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 974 #ifdef _LP64
 975     // Trash argument dump slots.
 976     __ set(0xb0b8ac0db0b8ac0d, G1);
 977     __ mov(G1, G5);
 978     __ stx(G1, SP, STACK_BIAS + 0x80);
 979     __ stx(G1, SP, STACK_BIAS + 0x88);
 980     __ stx(G1, SP, STACK_BIAS + 0x90);
 981     __ stx(G1, SP, STACK_BIAS + 0x98);
 982     __ stx(G1, SP, STACK_BIAS + 0xA0);
 983     __ stx(G1, SP, STACK_BIAS + 0xA8);
 984 #else // _LP64
 985     // this is also a native call, so smash the first 7 stack locations,
 986     // and the various registers
 987 
 988     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
 989     // while [SP+0x44..0x58] are the argument dump slots.
 990     __ set((intptr_t)0xbaadf00d, G1);
 991     __ mov(G1, G5);
 992     __ sllx(G1, 32, G1);
 993     __ or3(G1, G5, G1);
 994     __ mov(G1, G5);
 995     __ stx(G1, SP, 0x40);
 996     __ stx(G1, SP, 0x48);
 997     __ stx(G1, SP, 0x50);
 998     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
 999 #endif // _LP64
1000   }
1001 #endif /*ASSERT*/
1002 }
1003 
1004 //=============================================================================
1005 // REQUIRED FUNCTIONALITY for encoding
1006 void emit_lo(CodeBuffer &cbuf, int val) {  }
1007 void emit_hi(CodeBuffer &cbuf, int val) {  }
1008 
1009 
1010 //=============================================================================
1011 
1012 #ifndef PRODUCT
1013 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1014   Compile* C = ra_->C;
1015 
1016   for (int i = 0; i < OptoPrologueNops; i++) {
1017     st->print_cr("NOP"); st->print("\t");
1018   }
1019 
1020   if( VerifyThread ) {
1021     st->print_cr("Verify_Thread"); st->print("\t");
1022   }
1023 
1024   size_t framesize = C->frame_slots() << LogBytesPerInt;
1025 
1026   // Calls to C2R adapters often do not accept exceptional returns.
1027   // We require that their callers must bang for them.  But be careful, because
1028   // some VM calls (such as call site linkage) can use several kilobytes of
1029   // stack.  But the stack safety zone should account for that.
1030   // See bugs 4446381, 4468289, 4497237.
1031   if (C->need_stack_bang(framesize)) {
1032     st->print_cr("! stack bang"); st->print("\t");
1033   }
1034 
1035   if (Assembler::is_simm13(-framesize)) {
1036     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1037   } else {
1038     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1039     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1040     st->print   ("SAVE   R_SP,R_G3,R_SP");
1041   }
1042 
1043 }
1044 #endif
1045 
1046 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1047   Compile* C = ra_->C;
1048   MacroAssembler _masm(&cbuf);
1049 
1050   for (int i = 0; i < OptoPrologueNops; i++) {
1051     __ nop();
1052   }
1053 
1054   __ verify_thread();
1055 
1056   size_t framesize = C->frame_slots() << LogBytesPerInt;
1057   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1058   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1059 
1060   // Calls to C2R adapters often do not accept exceptional returns.
1061   // We require that their callers must bang for them.  But be careful, because
1062   // some VM calls (such as call site linkage) can use several kilobytes of
1063   // stack.  But the stack safety zone should account for that.
1064   // See bugs 4446381, 4468289, 4497237.
1065   if (C->need_stack_bang(framesize)) {
1066     __ generate_stack_overflow_check(framesize);
1067   }
1068 
1069   if (Assembler::is_simm13(-framesize)) {
1070     __ save(SP, -framesize, SP);
1071   } else {
1072     __ sethi(-framesize & ~0x3ff, G3);
1073     __ add(G3, -framesize & 0x3ff, G3);
1074     __ save(SP, G3, SP);
1075   }
1076   C->set_frame_complete( __ offset() );
1077 }
1078 
1079 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1080   return MachNode::size(ra_);
1081 }
1082 
1083 int MachPrologNode::reloc() const {
1084   return 10; // a large enough number
1085 }
1086 
1087 //=============================================================================
1088 #ifndef PRODUCT
1089 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1090   Compile* C = ra_->C;
1091 
1092   if( do_polling() && ra_->C->is_method_compilation() ) {
1093     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1094 #ifdef _LP64
1095     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1096 #else
1097     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1098 #endif
1099   }
1100 
1101   if( do_polling() )
1102     st->print("RET\n\t");
1103 
1104   st->print("RESTORE");
1105 }
1106 #endif
1107 
1108 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1109   MacroAssembler _masm(&cbuf);
1110   Compile* C = ra_->C;
1111 
1112   __ verify_thread();
1113 
1114   // If this does safepoint polling, then do it here
1115   if( do_polling() && ra_->C->is_method_compilation() ) {
1116     AddressLiteral polling_page(os::get_polling_page());
1117     __ sethi(polling_page, L0);
1118     __ relocate(relocInfo::poll_return_type);
1119     __ ld_ptr( L0, 0, G0 );
1120   }
1121 
1122   // If this is a return, then stuff the restore in the delay slot
1123   if( do_polling() ) {
1124     __ ret();
1125     __ delayed()->restore();
1126   } else {
1127     __ restore();
1128   }
1129 }
1130 
1131 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1132   return MachNode::size(ra_);
1133 }
1134 
1135 int MachEpilogNode::reloc() const {
1136   return 16; // a large enough number
1137 }
1138 
1139 const Pipeline * MachEpilogNode::pipeline() const {
1140   return MachNode::pipeline_class();
1141 }
1142 
1143 int MachEpilogNode::safepoint_offset() const {
1144   assert( do_polling(), "no return for this epilog node");
1145   return MacroAssembler::size_of_sethi(os::get_polling_page());
1146 }
1147 
1148 //=============================================================================
1149 
1150 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1151 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1152 static enum RC rc_class( OptoReg::Name reg ) {
1153   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1154   if (OptoReg::is_stack(reg)) return rc_stack;
1155   VMReg r = OptoReg::as_VMReg(reg);
1156   if (r->is_Register()) return rc_int;
1157   assert(r->is_FloatRegister(), "must be");
1158   return rc_float;
1159 }
1160 
1161 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1162   if( cbuf ) {
1163     // Better yet would be some mechanism to handle variable-size matches correctly
1164     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1165       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1166     } else {
1167       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1168     }
1169   }
1170 #ifndef PRODUCT
1171   else if( !do_size ) {
1172     if( size != 0 ) st->print("\n\t");
1173     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1174     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1175   }
1176 #endif
1177   return size+4;
1178 }
1179 
1180 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1181   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1182 #ifndef PRODUCT
1183   else if( !do_size ) {
1184     if( size != 0 ) st->print("\n\t");
1185     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1186   }
1187 #endif
1188   return size+4;
1189 }
1190 
1191 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1192                                         PhaseRegAlloc *ra_,
1193                                         bool do_size,
1194                                         outputStream* st ) const {
1195   // Get registers to move
1196   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1197   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1198   OptoReg::Name dst_second = ra_->get_reg_second(this );
1199   OptoReg::Name dst_first = ra_->get_reg_first(this );
1200 
1201   enum RC src_second_rc = rc_class(src_second);
1202   enum RC src_first_rc = rc_class(src_first);
1203   enum RC dst_second_rc = rc_class(dst_second);
1204   enum RC dst_first_rc = rc_class(dst_first);
1205 
1206   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1207 
1208   // Generate spill code!
1209   int size = 0;
1210 
1211   if( src_first == dst_first && src_second == dst_second )
1212     return size;            // Self copy, no move
1213 
1214   // --------------------------------------
1215   // Check for mem-mem move.  Load into unused float registers and fall into
1216   // the float-store case.
1217   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1218     int offset = ra_->reg2offset(src_first);
1219     // Further check for aligned-adjacent pair, so we can use a double load
1220     if( (src_first&1)==0 && src_first+1 == src_second ) {
1221       src_second    = OptoReg::Name(R_F31_num);
1222       src_second_rc = rc_float;
1223       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1224     } else {
1225       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1226     }
1227     src_first    = OptoReg::Name(R_F30_num);
1228     src_first_rc = rc_float;
1229   }
1230 
1231   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1232     int offset = ra_->reg2offset(src_second);
1233     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1234     src_second    = OptoReg::Name(R_F31_num);
1235     src_second_rc = rc_float;
1236   }
1237 
1238   // --------------------------------------
1239   // Check for float->int copy; requires a trip through memory
1240   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
1241     int offset = frame::register_save_words*wordSize;
1242     if( cbuf ) {
1243       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1244       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1245       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1246       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1247     }
1248 #ifndef PRODUCT
1249     else if( !do_size ) {
1250       if( size != 0 ) st->print("\n\t");
1251       st->print(  "SUB    R_SP,16,R_SP\n");
1252       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1253       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1254       st->print("\tADD    R_SP,16,R_SP\n");
1255     }
1256 #endif
1257     size += 16;
1258   }
1259 
1260   // --------------------------------------
1261   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1262   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1263   // hardware does the flop for me.  Doubles are always aligned, so no problem
1264   // there.  Misaligned sources only come from native-long-returns (handled
1265   // special below).
1266 #ifndef _LP64
1267   if( src_first_rc == rc_int &&     // source is already big-endian
1268       src_second_rc != rc_bad &&    // 64-bit move
1269       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1270     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1271     // Do the big-endian flop.
1272     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1273     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1274   }
1275 #endif
1276 
1277   // --------------------------------------
1278   // Check for integer reg-reg copy
1279   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1280 #ifndef _LP64
1281     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1282       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1283       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1284       //       operand contains the least significant word of the 64-bit value and vice versa.
1285       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1286       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1287       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1288       if( cbuf ) {
1289         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1290         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1291         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1292 #ifndef PRODUCT
1293       } else if( !do_size ) {
1294         if( size != 0 ) st->print("\n\t");
1295         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1296         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1297         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1298 #endif
1299       }
1300       return size+12;
1301     }
1302     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1303       // returning a long value in I0/I1
1304       // a SpillCopy must be able to target a return instruction's reg_class
1305       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1306       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1307       //       operand contains the least significant word of the 64-bit value and vice versa.
1308       OptoReg::Name tdest = dst_first;
1309 
1310       if (src_first == dst_first) {
1311         tdest = OptoReg::Name(R_O7_num);
1312         size += 4;
1313       }
1314 
1315       if( cbuf ) {
1316         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1317         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1318         // ShrL_reg_imm6
1319         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1320         // ShrR_reg_imm6  src, 0, dst
1321         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1322         if (tdest != dst_first) {
1323           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1324         }
1325       }
1326 #ifndef PRODUCT
1327       else if( !do_size ) {
1328         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1329         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1330         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1331         if (tdest != dst_first) {
1332           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1333         }
1334       }
1335 #endif // PRODUCT
1336       return size+8;
1337     }
1338 #endif // !_LP64
1339     // Else normal reg-reg copy
1340     assert( src_second != dst_first, "smashed second before evacuating it" );
1341     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1342     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1343     // This moves an aligned adjacent pair.
1344     // See if we are done.
1345     if( src_first+1 == src_second && dst_first+1 == dst_second )
1346       return size;
1347   }
1348 
1349   // Check for integer store
1350   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1351     int offset = ra_->reg2offset(dst_first);
1352     // Further check for aligned-adjacent pair, so we can use a double store
1353     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1354       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1355     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1356   }
1357 
1358   // Check for integer load
1359   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1360     int offset = ra_->reg2offset(src_first);
1361     // Further check for aligned-adjacent pair, so we can use a double load
1362     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1363       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1364     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1365   }
1366 
1367   // Check for float reg-reg copy
1368   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1369     // Further check for aligned-adjacent pair, so we can use a double move
1370     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1371       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1372     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1373   }
1374 
1375   // Check for float store
1376   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1377     int offset = ra_->reg2offset(dst_first);
1378     // Further check for aligned-adjacent pair, so we can use a double store
1379     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1380       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1381     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1382   }
1383 
1384   // Check for float load
1385   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1386     int offset = ra_->reg2offset(src_first);
1387     // Further check for aligned-adjacent pair, so we can use a double load
1388     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1389       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1390     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1391   }
1392 
1393   // --------------------------------------------------------------------
1394   // Check for hi bits still needing moving.  Only happens for misaligned
1395   // arguments to native calls.
1396   if( src_second == dst_second )
1397     return size;               // Self copy; no move
1398   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1399 
1400 #ifndef _LP64
1401   // In the LP64 build, all registers can be moved as aligned/adjacent
1402   // pairs, so there's never any need to move the high bits separately.
1403   // The 32-bit builds have to deal with the 32-bit ABI which can force
1404   // all sorts of silly alignment problems.
1405 
1406   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1407   // 32-bits of a 64-bit register, but are needed in low bits of another
1408   // register (else it's a hi-bits-to-hi-bits copy which should have
1409   // happened already as part of a 64-bit move)
1410   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1411     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1412     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1413     // Shift src_second down to dst_second's low bits.
1414     if( cbuf ) {
1415       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1416 #ifndef PRODUCT
1417     } else if( !do_size ) {
1418       if( size != 0 ) st->print("\n\t");
1419       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1420 #endif
1421     }
1422     return size+4;
1423   }
1424 
1425   // Check for high word integer store.  Must down-shift the hi bits
1426   // into a temp register, then fall into the case of storing int bits.
1427   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1428     // Shift src_second down to dst_second's low bits.
1429     if( cbuf ) {
1430       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1431 #ifndef PRODUCT
1432     } else if( !do_size ) {
1433       if( size != 0 ) st->print("\n\t");
1434       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1435 #endif
1436     }
1437     size+=4;
1438     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1439   }
1440 
1441   // Check for high word integer load
1442   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1443     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1444 
1445   // Check for high word integer store
1446   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1447     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1448 
1449   // Check for high word float store
1450   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1451     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1452 
1453 #endif // !_LP64
1454 
1455   Unimplemented();
1456 }
1457 
1458 #ifndef PRODUCT
1459 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1460   implementation( NULL, ra_, false, st );
1461 }
1462 #endif
1463 
1464 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1465   implementation( &cbuf, ra_, false, NULL );
1466 }
1467 
1468 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1469   return implementation( NULL, ra_, true, NULL );
1470 }
1471 
1472 //=============================================================================
1473 #ifndef PRODUCT
1474 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1475   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1476 }
1477 #endif
1478 
1479 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1480   MacroAssembler _masm(&cbuf);
1481   for(int i = 0; i < _count; i += 1) {
1482     __ nop();
1483   }
1484 }
1485 
1486 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1487   return 4 * _count;
1488 }
1489 
1490 
1491 //=============================================================================
1492 #ifndef PRODUCT
1493 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1494   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1495   int reg = ra_->get_reg_first(this);
1496   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1497 }
1498 #endif
1499 
1500 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1501   MacroAssembler _masm(&cbuf);
1502   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1503   int reg = ra_->get_encode(this);
1504 
1505   if (Assembler::is_simm13(offset)) {
1506      __ add(SP, offset, reg_to_register_object(reg));
1507   } else {
1508      __ set(offset, O7);
1509      __ add(SP, O7, reg_to_register_object(reg));
1510   }
1511 }
1512 
1513 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1514   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1515   assert(ra_ == ra_->C->regalloc(), "sanity");
1516   return ra_->C->scratch_emit_size(this);
1517 }
1518 
1519 //=============================================================================
1520 
1521 // emit call stub, compiled java to interpretor
1522 void emit_java_to_interp(CodeBuffer &cbuf ) {
1523 
1524   // Stub is fixed up when the corresponding call is converted from calling
1525   // compiled code to calling interpreted code.
1526   // set (empty), G5
1527   // jmp -1
1528 
1529   address mark = cbuf.insts_mark();  // get mark within main instrs section
1530 
1531   MacroAssembler _masm(&cbuf);
1532 
1533   address base =
1534   __ start_a_stub(Compile::MAX_stubs_size);
1535   if (base == NULL)  return;  // CodeBuffer::expand failed
1536 
1537   // static stub relocation stores the instruction address of the call
1538   __ relocate(static_stub_Relocation::spec(mark));
1539 
1540   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1541 
1542   __ set_inst_mark();
1543   AddressLiteral addrlit(-1);
1544   __ JUMP(addrlit, G3, 0);
1545 
1546   __ delayed()->nop();
1547 
1548   // Update current stubs pointer and restore code_end.
1549   __ end_a_stub();
1550 }
1551 
1552 // size of call stub, compiled java to interpretor
1553 uint size_java_to_interp() {
1554   // This doesn't need to be accurate but it must be larger or equal to
1555   // the real size of the stub.
1556   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
1557           NativeJump::instruction_size + // sethi; jmp; nop
1558           (TraceJumps ? 20 * BytesPerInstWord : 0) );
1559 }
1560 // relocation entries for call stub, compiled java to interpretor
1561 uint reloc_java_to_interp() {
1562   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
1563 }
1564 
1565 
1566 //=============================================================================
1567 #ifndef PRODUCT
1568 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1569   st->print_cr("\nUEP:");
1570 #ifdef    _LP64
1571   if (UseCompressedOops) {
1572     assert(Universe::heap() != NULL, "java heap should be initialized");
1573     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1574     st->print_cr("\tSLL    R_G5,3,R_G5");
1575     if (Universe::narrow_oop_base() != NULL)
1576       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1577   } else {
1578     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1579   }
1580   st->print_cr("\tCMP    R_G5,R_G3" );
1581   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1582 #else  // _LP64
1583   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1584   st->print_cr("\tCMP    R_G5,R_G3" );
1585   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1586 #endif // _LP64
1587 }
1588 #endif
1589 
1590 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1591   MacroAssembler _masm(&cbuf);
1592   Label L;
1593   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1594   Register temp_reg   = G3;
1595   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1596 
1597   // Load klass from receiver
1598   __ load_klass(O0, temp_reg);
1599   // Compare against expected klass
1600   __ cmp(temp_reg, G5_ic_reg);
1601   // Branch to miss code, checks xcc or icc depending
1602   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1603 }
1604 
1605 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1606   return MachNode::size(ra_);
1607 }
1608 
1609 
1610 //=============================================================================
1611 
1612 uint size_exception_handler() {
1613   if (TraceJumps) {
1614     return (400); // just a guess
1615   }
1616   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1617 }
1618 
1619 uint size_deopt_handler() {
1620   if (TraceJumps) {
1621     return (400); // just a guess
1622   }
1623   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1624 }
1625 
1626 // Emit exception handler code.
1627 int emit_exception_handler(CodeBuffer& cbuf) {
1628   Register temp_reg = G3;
1629   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1630   MacroAssembler _masm(&cbuf);
1631 
1632   address base =
1633   __ start_a_stub(size_exception_handler());
1634   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1635 
1636   int offset = __ offset();
1637 
1638   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1639   __ delayed()->nop();
1640 
1641   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1642 
1643   __ end_a_stub();
1644 
1645   return offset;
1646 }
1647 
1648 int emit_deopt_handler(CodeBuffer& cbuf) {
1649   // Can't use any of the current frame's registers as we may have deopted
1650   // at a poll and everything (including G3) can be live.
1651   Register temp_reg = L0;
1652   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1653   MacroAssembler _masm(&cbuf);
1654 
1655   address base =
1656   __ start_a_stub(size_deopt_handler());
1657   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1658 
1659   int offset = __ offset();
1660   __ save_frame(0);
1661   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1662   __ delayed()->restore();
1663 
1664   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1665 
1666   __ end_a_stub();
1667   return offset;
1668 
1669 }
1670 
1671 // Given a register encoding, produce a Integer Register object
1672 static Register reg_to_register_object(int register_encoding) {
1673   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1674   return as_Register(register_encoding);
1675 }
1676 
1677 // Given a register encoding, produce a single-precision Float Register object
1678 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1679   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1680   return as_SingleFloatRegister(register_encoding);
1681 }
1682 
1683 // Given a register encoding, produce a double-precision Float Register object
1684 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1685   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1686   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1687   return as_DoubleFloatRegister(register_encoding);
1688 }
1689 
1690 const bool Matcher::match_rule_supported(int opcode) {
1691   if (!has_match_rule(opcode))
1692     return false;
1693 
1694   switch (opcode) {
1695   case Op_CountLeadingZerosI:
1696   case Op_CountLeadingZerosL:
1697   case Op_CountTrailingZerosI:
1698   case Op_CountTrailingZerosL:
1699     if (!UsePopCountInstruction)
1700       return false;
1701     break;
1702   }
1703 
1704   return true;  // Per default match rules are supported.
1705 }
1706 
1707 int Matcher::regnum_to_fpu_offset(int regnum) {
1708   return regnum - 32; // The FP registers are in the second chunk
1709 }
1710 
1711 #ifdef ASSERT
1712 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1713 #endif
1714 
1715 // Vector width in bytes
1716 const uint Matcher::vector_width_in_bytes(void) {
1717   return 8;
1718 }
1719 
1720 // Vector ideal reg
1721 const uint Matcher::vector_ideal_reg(void) {
1722   return Op_RegD;
1723 }
1724 
1725 // USII supports fxtof through the whole range of number, USIII doesn't
1726 const bool Matcher::convL2FSupported(void) {
1727   return VM_Version::has_fast_fxtof();
1728 }
1729 
1730 // Is this branch offset short enough that a short branch can be used?
1731 //
1732 // NOTE: If the platform does not provide any short branch variants, then
1733 //       this method should return false for offset 0.
1734 bool Matcher::is_short_branch_offset(int rule, int offset) {
1735   return false;
1736 }
1737 
1738 const bool Matcher::isSimpleConstant64(jlong value) {
1739   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1740   // Depends on optimizations in MacroAssembler::setx.
1741   int hi = (int)(value >> 32);
1742   int lo = (int)(value & ~0);
1743   return (hi == 0) || (hi == -1) || (lo == 0);
1744 }
1745 
1746 // No scaling for the parameter the ClearArray node.
1747 const bool Matcher::init_array_count_is_in_bytes = true;
1748 
1749 // Threshold size for cleararray.
1750 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1751 
1752 // Should the Matcher clone shifts on addressing modes, expecting them to
1753 // be subsumed into complex addressing expressions or compute them into
1754 // registers?  True for Intel but false for most RISCs
1755 const bool Matcher::clone_shift_expressions = false;
1756 
1757 bool Matcher::narrow_oop_use_complex_address() {
1758   NOT_LP64(ShouldNotCallThis());
1759   assert(UseCompressedOops, "only for compressed oops code");
1760   return false;
1761 }
1762 
1763 // Is it better to copy float constants, or load them directly from memory?
1764 // Intel can load a float constant from a direct address, requiring no
1765 // extra registers.  Most RISCs will have to materialize an address into a
1766 // register first, so they would do better to copy the constant from stack.
1767 const bool Matcher::rematerialize_float_constants = false;
1768 
1769 // If CPU can load and store mis-aligned doubles directly then no fixup is
1770 // needed.  Else we split the double into 2 integer pieces and move it
1771 // piece-by-piece.  Only happens when passing doubles into C code as the
1772 // Java calling convention forces doubles to be aligned.
1773 #ifdef _LP64
1774 const bool Matcher::misaligned_doubles_ok = true;
1775 #else
1776 const bool Matcher::misaligned_doubles_ok = false;
1777 #endif
1778 
1779 // No-op on SPARC.
1780 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1781 }
1782 
1783 // Advertise here if the CPU requires explicit rounding operations
1784 // to implement the UseStrictFP mode.
1785 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1786 
1787 // Are floats conerted to double when stored to stack during deoptimization?
1788 // Sparc does not handle callee-save floats.
1789 bool Matcher::float_in_double() { return false; }
1790 
1791 // Do ints take an entire long register or just half?
1792 // Note that we if-def off of _LP64.
1793 // The relevant question is how the int is callee-saved.  In _LP64
1794 // the whole long is written but de-opt'ing will have to extract
1795 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1796 #ifdef _LP64
1797 const bool Matcher::int_in_long = true;
1798 #else
1799 const bool Matcher::int_in_long = false;
1800 #endif
1801 
1802 // Return whether or not this register is ever used as an argument.  This
1803 // function is used on startup to build the trampoline stubs in generateOptoStub.
1804 // Registers not mentioned will be killed by the VM call in the trampoline, and
1805 // arguments in those registers not be available to the callee.
1806 bool Matcher::can_be_java_arg( int reg ) {
1807   // Standard sparc 6 args in registers
1808   if( reg == R_I0_num ||
1809       reg == R_I1_num ||
1810       reg == R_I2_num ||
1811       reg == R_I3_num ||
1812       reg == R_I4_num ||
1813       reg == R_I5_num ) return true;
1814 #ifdef _LP64
1815   // 64-bit builds can pass 64-bit pointers and longs in
1816   // the high I registers
1817   if( reg == R_I0H_num ||
1818       reg == R_I1H_num ||
1819       reg == R_I2H_num ||
1820       reg == R_I3H_num ||
1821       reg == R_I4H_num ||
1822       reg == R_I5H_num ) return true;
1823 
1824   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1825     return true;
1826   }
1827 
1828 #else
1829   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1830   // Longs cannot be passed in O regs, because O regs become I regs
1831   // after a 'save' and I regs get their high bits chopped off on
1832   // interrupt.
1833   if( reg == R_G1H_num || reg == R_G1_num ) return true;
1834   if( reg == R_G4H_num || reg == R_G4_num ) return true;
1835 #endif
1836   // A few float args in registers
1837   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1838 
1839   return false;
1840 }
1841 
1842 bool Matcher::is_spillable_arg( int reg ) {
1843   return can_be_java_arg(reg);
1844 }
1845 
1846 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1847   // Use hardware SDIVX instruction when it is
1848   // faster than a code which use multiply.
1849   return VM_Version::has_fast_idiv();
1850 }
1851 
1852 // Register for DIVI projection of divmodI
1853 RegMask Matcher::divI_proj_mask() {
1854   ShouldNotReachHere();
1855   return RegMask();
1856 }
1857 
1858 // Register for MODI projection of divmodI
1859 RegMask Matcher::modI_proj_mask() {
1860   ShouldNotReachHere();
1861   return RegMask();
1862 }
1863 
1864 // Register for DIVL projection of divmodL
1865 RegMask Matcher::divL_proj_mask() {
1866   ShouldNotReachHere();
1867   return RegMask();
1868 }
1869 
1870 // Register for MODL projection of divmodL
1871 RegMask Matcher::modL_proj_mask() {
1872   ShouldNotReachHere();
1873   return RegMask();
1874 }
1875 
1876 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1877   return L7_REGP_mask;
1878 }
1879 
1880 %}
1881 
1882 
1883 // The intptr_t operand types, defined by textual substitution.
1884 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
1885 #ifdef _LP64
1886 #define immX      immL
1887 #define immX13    immL13
1888 #define immX13m7  immL13m7
1889 #define iRegX     iRegL
1890 #define g1RegX    g1RegL
1891 #else
1892 #define immX      immI
1893 #define immX13    immI13
1894 #define immX13m7  immI13m7
1895 #define iRegX     iRegI
1896 #define g1RegX    g1RegI
1897 #endif
1898 
1899 //----------ENCODING BLOCK-----------------------------------------------------
1900 // This block specifies the encoding classes used by the compiler to output
1901 // byte streams.  Encoding classes are parameterized macros used by
1902 // Machine Instruction Nodes in order to generate the bit encoding of the
1903 // instruction.  Operands specify their base encoding interface with the
1904 // interface keyword.  There are currently supported four interfaces,
1905 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1906 // operand to generate a function which returns its register number when
1907 // queried.   CONST_INTER causes an operand to generate a function which
1908 // returns the value of the constant when queried.  MEMORY_INTER causes an
1909 // operand to generate four functions which return the Base Register, the
1910 // Index Register, the Scale Value, and the Offset Value of the operand when
1911 // queried.  COND_INTER causes an operand to generate six functions which
1912 // return the encoding code (ie - encoding bits for the instruction)
1913 // associated with each basic boolean condition for a conditional instruction.
1914 //
1915 // Instructions specify two basic values for encoding.  Again, a function
1916 // is available to check if the constant displacement is an oop. They use the
1917 // ins_encode keyword to specify their encoding classes (which must be
1918 // a sequence of enc_class names, and their parameters, specified in
1919 // the encoding block), and they use the
1920 // opcode keyword to specify, in order, their primary, secondary, and
1921 // tertiary opcode.  Only the opcode sections which a particular instruction
1922 // needs for encoding need to be specified.
1923 encode %{
1924   enc_class enc_untested %{
1925 #ifdef ASSERT
1926     MacroAssembler _masm(&cbuf);
1927     __ untested("encoding");
1928 #endif
1929   %}
1930 
1931   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
1932     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
1933                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1934   %}
1935 
1936   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
1937     emit_form3_mem_reg(cbuf, this, $primary, -1,
1938                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1939   %}
1940 
1941   enc_class form3_mem_prefetch_read( memory mem ) %{
1942     emit_form3_mem_reg(cbuf, this, $primary, -1,
1943                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
1944   %}
1945 
1946   enc_class form3_mem_prefetch_write( memory mem ) %{
1947     emit_form3_mem_reg(cbuf, this, $primary, -1,
1948                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
1949   %}
1950 
1951   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
1952     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
1953     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
1954     guarantee($mem$$index == R_G0_enc, "double index?");
1955     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
1956     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
1957     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
1958     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
1959   %}
1960 
1961   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
1962     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
1963     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
1964     guarantee($mem$$index == R_G0_enc, "double index?");
1965     // Load long with 2 instructions
1966     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
1967     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
1968   %}
1969 
1970   //%%% form3_mem_plus_4_reg is a hack--get rid of it
1971   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
1972     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
1973     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
1974   %}
1975 
1976   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
1977     // Encode a reg-reg copy.  If it is useless, then empty encoding.
1978     if( $rs2$$reg != $rd$$reg )
1979       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
1980   %}
1981 
1982   // Target lo half of long
1983   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
1984     // Encode a reg-reg copy.  If it is useless, then empty encoding.
1985     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
1986       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
1987   %}
1988 
1989   // Source lo half of long
1990   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
1991     // Encode a reg-reg copy.  If it is useless, then empty encoding.
1992     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
1993       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
1994   %}
1995 
1996   // Target hi half of long
1997   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
1998     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
1999   %}
2000 
2001   // Source lo half of long, and leave it sign extended.
2002   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2003     // Sign extend low half
2004     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2005   %}
2006 
2007   // Source hi half of long, and leave it sign extended.
2008   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2009     // Shift high half to low half
2010     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2011   %}
2012 
2013   // Source hi half of long
2014   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2015     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2016     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2017       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2018   %}
2019 
2020   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2021     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2022   %}
2023 
2024   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2025     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2026     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2027   %}
2028 
2029   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2030     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2031     // clear if nothing else is happening
2032     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2033     // blt,a,pn done
2034     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2035     // mov dst,-1 in delay slot
2036     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2037   %}
2038 
2039   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2040     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2041   %}
2042 
2043   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2044     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2045   %}
2046 
2047   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2048     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2049   %}
2050 
2051   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2052     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2053   %}
2054 
2055   enc_class move_return_pc_to_o1() %{
2056     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2057   %}
2058 
2059 #ifdef _LP64
2060   /* %%% merge with enc_to_bool */
2061   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2062     MacroAssembler _masm(&cbuf);
2063 
2064     Register   src_reg = reg_to_register_object($src$$reg);
2065     Register   dst_reg = reg_to_register_object($dst$$reg);
2066     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2067   %}
2068 #endif
2069 
2070   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2071     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2072     MacroAssembler _masm(&cbuf);
2073 
2074     Register   p_reg = reg_to_register_object($p$$reg);
2075     Register   q_reg = reg_to_register_object($q$$reg);
2076     Register   y_reg = reg_to_register_object($y$$reg);
2077     Register tmp_reg = reg_to_register_object($tmp$$reg);
2078 
2079     __ subcc( p_reg, q_reg,   p_reg );
2080     __ add  ( p_reg, y_reg, tmp_reg );
2081     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2082   %}
2083 
2084   enc_class form_d2i_helper(regD src, regF dst) %{
2085     // fcmp %fcc0,$src,$src
2086     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2087     // branch %fcc0 not-nan, predict taken
2088     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2089     // fdtoi $src,$dst
2090     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2091     // fitos $dst,$dst (if nan)
2092     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2093     // clear $dst (if nan)
2094     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2095     // carry on here...
2096   %}
2097 
2098   enc_class form_d2l_helper(regD src, regD dst) %{
2099     // fcmp %fcc0,$src,$src  check for NAN
2100     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2101     // branch %fcc0 not-nan, predict taken
2102     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2103     // fdtox $src,$dst   convert in delay slot
2104     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2105     // fxtod $dst,$dst  (if nan)
2106     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2107     // clear $dst (if nan)
2108     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2109     // carry on here...
2110   %}
2111 
2112   enc_class form_f2i_helper(regF src, regF dst) %{
2113     // fcmps %fcc0,$src,$src
2114     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2115     // branch %fcc0 not-nan, predict taken
2116     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2117     // fstoi $src,$dst
2118     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2119     // fitos $dst,$dst (if nan)
2120     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2121     // clear $dst (if nan)
2122     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2123     // carry on here...
2124   %}
2125 
2126   enc_class form_f2l_helper(regF src, regD dst) %{
2127     // fcmps %fcc0,$src,$src
2128     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2129     // branch %fcc0 not-nan, predict taken
2130     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2131     // fstox $src,$dst
2132     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2133     // fxtod $dst,$dst (if nan)
2134     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2135     // clear $dst (if nan)
2136     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2137     // carry on here...
2138   %}
2139 
2140   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2141   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2142   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2143   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2144 
2145   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2146 
2147   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2148   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2149 
2150   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2151     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2152   %}
2153 
2154   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2155     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2156   %}
2157 
2158   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2159     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2160   %}
2161 
2162   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2163     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2164   %}
2165 
2166   enc_class form3_convI2F(regF rs2, regF rd) %{
2167     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2168   %}
2169 
2170   // Encloding class for traceable jumps
2171   enc_class form_jmpl(g3RegP dest) %{
2172     emit_jmpl(cbuf, $dest$$reg);
2173   %}
2174 
2175   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2176     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2177   %}
2178 
2179   enc_class form2_nop() %{
2180     emit_nop(cbuf);
2181   %}
2182 
2183   enc_class form2_illtrap() %{
2184     emit_illtrap(cbuf);
2185   %}
2186 
2187 
2188   // Compare longs and convert into -1, 0, 1.
2189   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2190     // CMP $src1,$src2
2191     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2192     // blt,a,pn done
2193     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2194     // mov dst,-1 in delay slot
2195     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2196     // bgt,a,pn done
2197     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2198     // mov dst,1 in delay slot
2199     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2200     // CLR    $dst
2201     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2202   %}
2203 
2204   enc_class enc_PartialSubtypeCheck() %{
2205     MacroAssembler _masm(&cbuf);
2206     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2207     __ delayed()->nop();
2208   %}
2209 
2210   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
2211     MacroAssembler _masm(&cbuf);
2212     Label &L = *($labl$$label);
2213     Assembler::Predict predict_taken =
2214       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2215 
2216     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
2217     __ delayed()->nop();
2218   %}
2219 
2220   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
2221     MacroAssembler _masm(&cbuf);
2222     Label &L = *($labl$$label);
2223     Assembler::Predict predict_taken =
2224       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2225 
2226     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
2227     __ delayed()->nop();
2228   %}
2229 
2230   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
2231     MacroAssembler _masm(&cbuf);
2232     Label &L = *($labl$$label);
2233     Assembler::Predict predict_taken =
2234       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2235 
2236     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
2237     __ delayed()->nop();
2238   %}
2239 
2240   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
2241     MacroAssembler _masm(&cbuf);
2242     Label &L = *($labl$$label);
2243     Assembler::Predict predict_taken =
2244       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2245 
2246     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
2247     __ delayed()->nop();
2248   %}
2249 
2250   enc_class jump_enc( iRegX switch_val, o7RegI table) %{
2251     MacroAssembler _masm(&cbuf);
2252 
2253     Register switch_reg       = as_Register($switch_val$$reg);
2254     Register table_reg        = O7;
2255 
2256     address table_base = __ address_table_constant(_index2label);
2257     RelocationHolder rspec = internal_word_Relocation::spec(table_base);
2258 
2259     // Move table address into a register.
2260     __ set(table_base, table_reg, rspec);
2261 
2262     // Jump to base address + switch value
2263     __ ld_ptr(table_reg, switch_reg, table_reg);
2264     __ jmp(table_reg, G0);
2265     __ delayed()->nop();
2266 
2267   %}
2268 
2269   enc_class enc_ba( Label labl ) %{
2270     MacroAssembler _masm(&cbuf);
2271     Label &L = *($labl$$label);
2272     __ ba(false, L);
2273     __ delayed()->nop();
2274   %}
2275 
2276   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
2277     MacroAssembler _masm(&cbuf);
2278     Label &L = *$labl$$label;
2279     Assembler::Predict predict_taken =
2280       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2281 
2282     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
2283     __ delayed()->nop();
2284   %}
2285 
2286   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2287     int op = (Assembler::arith_op << 30) |
2288              ($dst$$reg << 25) |
2289              (Assembler::movcc_op3 << 19) |
2290              (1 << 18) |                    // cc2 bit for 'icc'
2291              ($cmp$$cmpcode << 14) |
2292              (0 << 13) |                    // select register move
2293              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2294              ($src$$reg << 0);
2295     cbuf.insts()->emit_int32(op);
2296   %}
2297 
2298   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2299     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2300     int op = (Assembler::arith_op << 30) |
2301              ($dst$$reg << 25) |
2302              (Assembler::movcc_op3 << 19) |
2303              (1 << 18) |                    // cc2 bit for 'icc'
2304              ($cmp$$cmpcode << 14) |
2305              (1 << 13) |                    // select immediate move
2306              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2307              (simm11 << 0);
2308     cbuf.insts()->emit_int32(op);
2309   %}
2310 
2311   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2312     int op = (Assembler::arith_op << 30) |
2313              ($dst$$reg << 25) |
2314              (Assembler::movcc_op3 << 19) |
2315              (0 << 18) |                    // cc2 bit for 'fccX'
2316              ($cmp$$cmpcode << 14) |
2317              (0 << 13) |                    // select register move
2318              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2319              ($src$$reg << 0);
2320     cbuf.insts()->emit_int32(op);
2321   %}
2322 
2323   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2324     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2325     int op = (Assembler::arith_op << 30) |
2326              ($dst$$reg << 25) |
2327              (Assembler::movcc_op3 << 19) |
2328              (0 << 18) |                    // cc2 bit for 'fccX'
2329              ($cmp$$cmpcode << 14) |
2330              (1 << 13) |                    // select immediate move
2331              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2332              (simm11 << 0);
2333     cbuf.insts()->emit_int32(op);
2334   %}
2335 
2336   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2337     int op = (Assembler::arith_op << 30) |
2338              ($dst$$reg << 25) |
2339              (Assembler::fpop2_op3 << 19) |
2340              (0 << 18) |
2341              ($cmp$$cmpcode << 14) |
2342              (1 << 13) |                    // select register move
2343              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2344              ($primary << 5) |              // select single, double or quad
2345              ($src$$reg << 0);
2346     cbuf.insts()->emit_int32(op);
2347   %}
2348 
2349   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2350     int op = (Assembler::arith_op << 30) |
2351              ($dst$$reg << 25) |
2352              (Assembler::fpop2_op3 << 19) |
2353              (0 << 18) |
2354              ($cmp$$cmpcode << 14) |
2355              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2356              ($primary << 5) |              // select single, double or quad
2357              ($src$$reg << 0);
2358     cbuf.insts()->emit_int32(op);
2359   %}
2360 
2361   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2362   // the condition comes from opcode-field instead of an argument.
2363   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2364     int op = (Assembler::arith_op << 30) |
2365              ($dst$$reg << 25) |
2366              (Assembler::movcc_op3 << 19) |
2367              (1 << 18) |                    // cc2 bit for 'icc'
2368              ($primary << 14) |
2369              (0 << 13) |                    // select register move
2370              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2371              ($src$$reg << 0);
2372     cbuf.insts()->emit_int32(op);
2373   %}
2374 
2375   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2376     int op = (Assembler::arith_op << 30) |
2377              ($dst$$reg << 25) |
2378              (Assembler::movcc_op3 << 19) |
2379              (6 << 16) |                    // cc2 bit for 'xcc'
2380              ($primary << 14) |
2381              (0 << 13) |                    // select register move
2382              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2383              ($src$$reg << 0);
2384     cbuf.insts()->emit_int32(op);
2385   %}
2386 
2387   // Utility encoding for loading a 64 bit Pointer into a register
2388   // The 64 bit pointer is stored in the generated code stream
2389   enc_class SetPtr( immP src, iRegP rd ) %{
2390     Register dest = reg_to_register_object($rd$$reg);
2391     MacroAssembler _masm(&cbuf);
2392     // [RGV] This next line should be generated from ADLC
2393     if ( _opnds[1]->constant_is_oop() ) {
2394       intptr_t val = $src$$constant;
2395       __ set_oop_constant((jobject)val, dest);
2396     } else {          // non-oop pointers, e.g. card mark base, heap top
2397       __ set($src$$constant, dest);
2398     }
2399   %}
2400 
2401   enc_class Set13( immI13 src, iRegI rd ) %{
2402     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2403   %}
2404 
2405   enc_class SetHi22( immI src, iRegI rd ) %{
2406     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2407   %}
2408 
2409   enc_class Set32( immI src, iRegI rd ) %{
2410     MacroAssembler _masm(&cbuf);
2411     __ set($src$$constant, reg_to_register_object($rd$$reg));
2412   %}
2413 
2414   enc_class SetNull( iRegI rd ) %{
2415     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 );
2416   %}
2417 
2418   enc_class call_epilog %{
2419     if( VerifyStackAtCalls ) {
2420       MacroAssembler _masm(&cbuf);
2421       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2422       Register temp_reg = G3;
2423       __ add(SP, framesize, temp_reg);
2424       __ cmp(temp_reg, FP);
2425       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2426     }
2427   %}
2428 
2429   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2430   // to G1 so the register allocator will not have to deal with the misaligned register
2431   // pair.
2432   enc_class adjust_long_from_native_call %{
2433 #ifndef _LP64
2434     if (returns_long()) {
2435       //    sllx  O0,32,O0
2436       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2437       //    srl   O1,0,O1
2438       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2439       //    or    O0,O1,G1
2440       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2441     }
2442 #endif
2443   %}
2444 
2445   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2446     // CALL directly to the runtime
2447     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2448     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2449                     /*preserve_g2=*/true, /*force far call*/true);
2450   %}
2451 
2452   enc_class preserve_SP %{
2453     MacroAssembler _masm(&cbuf);
2454     __ mov(SP, L7_mh_SP_save);
2455   %}
2456 
2457   enc_class restore_SP %{
2458     MacroAssembler _masm(&cbuf);
2459     __ mov(L7_mh_SP_save, SP);
2460   %}
2461 
2462   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2463     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2464     // who we intended to call.
2465     if ( !_method ) {
2466       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2467     } else if (_optimized_virtual) {
2468       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2469     } else {
2470       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2471     }
2472     if( _method ) {  // Emit stub for static call
2473       emit_java_to_interp(cbuf);
2474     }
2475   %}
2476 
2477   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2478     MacroAssembler _masm(&cbuf);
2479     __ set_inst_mark();
2480     int vtable_index = this->_vtable_index;
2481     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2482     if (vtable_index < 0) {
2483       // must be invalid_vtable_index, not nonvirtual_vtable_index
2484       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
2485       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2486       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2487       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2488       // !!!!!
2489       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
2490       // emit_call_dynamic_prologue( cbuf );
2491       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
2492 
2493       address  virtual_call_oop_addr = __ inst_mark();
2494       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2495       // who we intended to call.
2496       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
2497       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
2498     } else {
2499       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2500       // Just go thru the vtable
2501       // get receiver klass (receiver already checked for non-null)
2502       // If we end up going thru a c2i adapter interpreter expects method in G5
2503       int off = __ offset();
2504       __ load_klass(O0, G3_scratch);
2505       int klass_load_size;
2506       if (UseCompressedOops) {
2507         assert(Universe::heap() != NULL, "java heap should be initialized");
2508         if (Universe::narrow_oop_base() == NULL)
2509           klass_load_size = 2*BytesPerInstWord;
2510         else
2511           klass_load_size = 3*BytesPerInstWord;
2512       } else {
2513         klass_load_size = 1*BytesPerInstWord;
2514       }
2515       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2516       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2517       if( __ is_simm13(v_off) ) {
2518         __ ld_ptr(G3, v_off, G5_method);
2519       } else {
2520         // Generate 2 instructions
2521         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2522         __ or3(G5_method, v_off & 0x3ff, G5_method);
2523         // ld_ptr, set_hi, set
2524         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2525                "Unexpected instruction size(s)");
2526         __ ld_ptr(G3, G5_method, G5_method);
2527       }
2528       // NOTE: for vtable dispatches, the vtable entry will never be null.
2529       // However it may very well end up in handle_wrong_method if the
2530       // method is abstract for the particular class.
2531       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
2532       // jump to target (either compiled code or c2iadapter)
2533       __ jmpl(G3_scratch, G0, O7);
2534       __ delayed()->nop();
2535     }
2536   %}
2537 
2538   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2539     MacroAssembler _masm(&cbuf);
2540 
2541     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2542     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2543                               // we might be calling a C2I adapter which needs it.
2544 
2545     assert(temp_reg != G5_ic_reg, "conflicting registers");
2546     // Load nmethod
2547     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
2548 
2549     // CALL to compiled java, indirect the contents of G3
2550     __ set_inst_mark();
2551     __ callr(temp_reg, G0);
2552     __ delayed()->nop();
2553   %}
2554 
2555 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2556     MacroAssembler _masm(&cbuf);
2557     Register Rdividend = reg_to_register_object($src1$$reg);
2558     Register Rdivisor = reg_to_register_object($src2$$reg);
2559     Register Rresult = reg_to_register_object($dst$$reg);
2560 
2561     __ sra(Rdivisor, 0, Rdivisor);
2562     __ sra(Rdividend, 0, Rdividend);
2563     __ sdivx(Rdividend, Rdivisor, Rresult);
2564 %}
2565 
2566 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2567     MacroAssembler _masm(&cbuf);
2568 
2569     Register Rdividend = reg_to_register_object($src1$$reg);
2570     int divisor = $imm$$constant;
2571     Register Rresult = reg_to_register_object($dst$$reg);
2572 
2573     __ sra(Rdividend, 0, Rdividend);
2574     __ sdivx(Rdividend, divisor, Rresult);
2575 %}
2576 
2577 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2578     MacroAssembler _masm(&cbuf);
2579     Register Rsrc1 = reg_to_register_object($src1$$reg);
2580     Register Rsrc2 = reg_to_register_object($src2$$reg);
2581     Register Rdst  = reg_to_register_object($dst$$reg);
2582 
2583     __ sra( Rsrc1, 0, Rsrc1 );
2584     __ sra( Rsrc2, 0, Rsrc2 );
2585     __ mulx( Rsrc1, Rsrc2, Rdst );
2586     __ srlx( Rdst, 32, Rdst );
2587 %}
2588 
2589 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2590     MacroAssembler _masm(&cbuf);
2591     Register Rdividend = reg_to_register_object($src1$$reg);
2592     Register Rdivisor = reg_to_register_object($src2$$reg);
2593     Register Rresult = reg_to_register_object($dst$$reg);
2594     Register Rscratch = reg_to_register_object($scratch$$reg);
2595 
2596     assert(Rdividend != Rscratch, "");
2597     assert(Rdivisor  != Rscratch, "");
2598 
2599     __ sra(Rdividend, 0, Rdividend);
2600     __ sra(Rdivisor, 0, Rdivisor);
2601     __ sdivx(Rdividend, Rdivisor, Rscratch);
2602     __ mulx(Rscratch, Rdivisor, Rscratch);
2603     __ sub(Rdividend, Rscratch, Rresult);
2604 %}
2605 
2606 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2607     MacroAssembler _masm(&cbuf);
2608 
2609     Register Rdividend = reg_to_register_object($src1$$reg);
2610     int divisor = $imm$$constant;
2611     Register Rresult = reg_to_register_object($dst$$reg);
2612     Register Rscratch = reg_to_register_object($scratch$$reg);
2613 
2614     assert(Rdividend != Rscratch, "");
2615 
2616     __ sra(Rdividend, 0, Rdividend);
2617     __ sdivx(Rdividend, divisor, Rscratch);
2618     __ mulx(Rscratch, divisor, Rscratch);
2619     __ sub(Rdividend, Rscratch, Rresult);
2620 %}
2621 
2622 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2623     MacroAssembler _masm(&cbuf);
2624 
2625     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2626     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2627 
2628     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2629 %}
2630 
2631 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2632     MacroAssembler _masm(&cbuf);
2633 
2634     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2635     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2636 
2637     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2638 %}
2639 
2640 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2641     MacroAssembler _masm(&cbuf);
2642 
2643     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2644     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2645 
2646     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2647 %}
2648 
2649 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2650     MacroAssembler _masm(&cbuf);
2651 
2652     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2653     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2654 
2655     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2656 %}
2657 
2658 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2659     MacroAssembler _masm(&cbuf);
2660 
2661     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2662     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2663 
2664     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2665 %}
2666 
2667 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2668     MacroAssembler _masm(&cbuf);
2669 
2670     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2671     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2672 
2673     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2674 %}
2675 
2676 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2677     MacroAssembler _masm(&cbuf);
2678 
2679     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2680     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2681 
2682     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2683 %}
2684 
2685 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2686     MacroAssembler _masm(&cbuf);
2687 
2688     Register Roop  = reg_to_register_object($oop$$reg);
2689     Register Rbox  = reg_to_register_object($box$$reg);
2690     Register Rscratch = reg_to_register_object($scratch$$reg);
2691     Register Rmark =    reg_to_register_object($scratch2$$reg);
2692 
2693     assert(Roop  != Rscratch, "");
2694     assert(Roop  != Rmark, "");
2695     assert(Rbox  != Rscratch, "");
2696     assert(Rbox  != Rmark, "");
2697 
2698     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2699 %}
2700 
2701 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2702     MacroAssembler _masm(&cbuf);
2703 
2704     Register Roop  = reg_to_register_object($oop$$reg);
2705     Register Rbox  = reg_to_register_object($box$$reg);
2706     Register Rscratch = reg_to_register_object($scratch$$reg);
2707     Register Rmark =    reg_to_register_object($scratch2$$reg);
2708 
2709     assert(Roop  != Rscratch, "");
2710     assert(Roop  != Rmark, "");
2711     assert(Rbox  != Rscratch, "");
2712     assert(Rbox  != Rmark, "");
2713 
2714     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2715   %}
2716 
2717   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2718     MacroAssembler _masm(&cbuf);
2719     Register Rmem = reg_to_register_object($mem$$reg);
2720     Register Rold = reg_to_register_object($old$$reg);
2721     Register Rnew = reg_to_register_object($new$$reg);
2722 
2723     // casx_under_lock picks 1 of 3 encodings:
2724     // For 32-bit pointers you get a 32-bit CAS
2725     // For 64-bit pointers you get a 64-bit CASX
2726     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2727     __ cmp( Rold, Rnew );
2728   %}
2729 
2730   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2731     Register Rmem = reg_to_register_object($mem$$reg);
2732     Register Rold = reg_to_register_object($old$$reg);
2733     Register Rnew = reg_to_register_object($new$$reg);
2734 
2735     MacroAssembler _masm(&cbuf);
2736     __ mov(Rnew, O7);
2737     __ casx(Rmem, Rold, O7);
2738     __ cmp( Rold, O7 );
2739   %}
2740 
2741   // raw int cas, used for compareAndSwap
2742   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2743     Register Rmem = reg_to_register_object($mem$$reg);
2744     Register Rold = reg_to_register_object($old$$reg);
2745     Register Rnew = reg_to_register_object($new$$reg);
2746 
2747     MacroAssembler _masm(&cbuf);
2748     __ mov(Rnew, O7);
2749     __ cas(Rmem, Rold, O7);
2750     __ cmp( Rold, O7 );
2751   %}
2752 
2753   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2754     Register Rres = reg_to_register_object($res$$reg);
2755 
2756     MacroAssembler _masm(&cbuf);
2757     __ mov(1, Rres);
2758     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2759   %}
2760 
2761   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2762     Register Rres = reg_to_register_object($res$$reg);
2763 
2764     MacroAssembler _masm(&cbuf);
2765     __ mov(1, Rres);
2766     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2767   %}
2768 
2769   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2770     MacroAssembler _masm(&cbuf);
2771     Register Rdst = reg_to_register_object($dst$$reg);
2772     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2773                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2774     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2775                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2776 
2777     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2778     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2779   %}
2780 
2781   enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{   // Load Immediate
2782     MacroAssembler _masm(&cbuf);
2783     Register dest = reg_to_register_object($dst$$reg);
2784     Register temp = reg_to_register_object($tmp$$reg);
2785     __ set64( $src$$constant, dest, temp );
2786   %}
2787 
2788   enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{
2789     // Load a constant replicated "count" times with width "width"
2790     int bit_width = $width$$constant * 8;
2791     jlong elt_val = $src$$constant;
2792     elt_val  &= (((jlong)1) << bit_width) - 1; // mask off sign bits
2793     jlong val = elt_val;
2794     for (int i = 0; i < $count$$constant - 1; i++) {
2795         val <<= bit_width;
2796         val |= elt_val;
2797     }
2798     jdouble dval = *(jdouble*)&val; // coerce to double type
2799     MacroAssembler _masm(&cbuf);
2800     address double_address = __ double_constant(dval);
2801     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
2802     AddressLiteral addrlit(double_address, rspec);
2803 
2804     __ sethi(addrlit, $tmp$$Register);
2805     // XXX This is a quick fix for 6833573.
2806     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
2807     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
2808   %}
2809 
2810   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
2811   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
2812     MacroAssembler _masm(&cbuf);
2813     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
2814     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
2815     Register    base_pointer_arg = reg_to_register_object($base$$reg);
2816 
2817     Label loop;
2818     __ mov(nof_bytes_arg, nof_bytes_tmp);
2819 
2820     // Loop and clear, walking backwards through the array.
2821     // nof_bytes_tmp (if >0) is always the number of bytes to zero
2822     __ bind(loop);
2823     __ deccc(nof_bytes_tmp, 8);
2824     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
2825     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
2826     // %%%% this mini-loop must not cross a cache boundary!
2827   %}
2828 
2829 
2830   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2831     Label Ldone, Lloop;
2832     MacroAssembler _masm(&cbuf);
2833 
2834     Register   str1_reg = reg_to_register_object($str1$$reg);
2835     Register   str2_reg = reg_to_register_object($str2$$reg);
2836     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2837     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2838     Register result_reg = reg_to_register_object($result$$reg);
2839 
2840     assert(result_reg != str1_reg &&
2841            result_reg != str2_reg &&
2842            result_reg != cnt1_reg &&
2843            result_reg != cnt2_reg ,
2844            "need different registers");
2845 
2846     // Compute the minimum of the string lengths(str1_reg) and the
2847     // difference of the string lengths (stack)
2848 
2849     // See if the lengths are different, and calculate min in str1_reg.
2850     // Stash diff in O7 in case we need it for a tie-breaker.
2851     Label Lskip;
2852     __ subcc(cnt1_reg, cnt2_reg, O7);
2853     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2854     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2855     // cnt2 is shorter, so use its count:
2856     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2857     __ bind(Lskip);
2858 
2859     // reallocate cnt1_reg, cnt2_reg, result_reg
2860     // Note:  limit_reg holds the string length pre-scaled by 2
2861     Register limit_reg =   cnt1_reg;
2862     Register  chr2_reg =   cnt2_reg;
2863     Register  chr1_reg = result_reg;
2864     // str{12} are the base pointers
2865 
2866     // Is the minimum length zero?
2867     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2868     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2869     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2870 
2871     // Load first characters
2872     __ lduh(str1_reg, 0, chr1_reg);
2873     __ lduh(str2_reg, 0, chr2_reg);
2874 
2875     // Compare first characters
2876     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2877     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2878     assert(chr1_reg == result_reg, "result must be pre-placed");
2879     __ delayed()->nop();
2880 
2881     {
2882       // Check after comparing first character to see if strings are equivalent
2883       Label LSkip2;
2884       // Check if the strings start at same location
2885       __ cmp(str1_reg, str2_reg);
2886       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2887       __ delayed()->nop();
2888 
2889       // Check if the length difference is zero (in O7)
2890       __ cmp(G0, O7);
2891       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2892       __ delayed()->mov(G0, result_reg);  // result is zero
2893 
2894       // Strings might not be equal
2895       __ bind(LSkip2);
2896     }
2897 
2898     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2899     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2900     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2901 
2902     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2903     __ add(str1_reg, limit_reg, str1_reg);
2904     __ add(str2_reg, limit_reg, str2_reg);
2905     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2906 
2907     // Compare the rest of the characters
2908     __ lduh(str1_reg, limit_reg, chr1_reg);
2909     __ bind(Lloop);
2910     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2911     __ lduh(str2_reg, limit_reg, chr2_reg);
2912     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2913     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2914     assert(chr1_reg == result_reg, "result must be pre-placed");
2915     __ delayed()->inccc(limit_reg, sizeof(jchar));
2916     // annul LDUH if branch is not taken to prevent access past end of string
2917     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2918     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2919 
2920     // If strings are equal up to min length, return the length difference.
2921     __ mov(O7, result_reg);
2922 
2923     // Otherwise, return the difference between the first mismatched chars.
2924     __ bind(Ldone);
2925   %}
2926 
2927 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2928     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2929     MacroAssembler _masm(&cbuf);
2930 
2931     Register   str1_reg = reg_to_register_object($str1$$reg);
2932     Register   str2_reg = reg_to_register_object($str2$$reg);
2933     Register    cnt_reg = reg_to_register_object($cnt$$reg);
2934     Register   tmp1_reg = O7;
2935     Register result_reg = reg_to_register_object($result$$reg);
2936 
2937     assert(result_reg != str1_reg &&
2938            result_reg != str2_reg &&
2939            result_reg !=  cnt_reg &&
2940            result_reg != tmp1_reg ,
2941            "need different registers");
2942 
2943     __ cmp(str1_reg, str2_reg); //same char[] ?
2944     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
2945     __ delayed()->add(G0, 1, result_reg);
2946 
2947     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, cnt_reg, Ldone);
2948     __ delayed()->add(G0, 1, result_reg); // count == 0
2949 
2950     //rename registers
2951     Register limit_reg =    cnt_reg;
2952     Register  chr1_reg = result_reg;
2953     Register  chr2_reg =   tmp1_reg;
2954 
2955     //check for alignment and position the pointers to the ends
2956     __ or3(str1_reg, str2_reg, chr1_reg);
2957     __ andcc(chr1_reg, 0x3, chr1_reg);
2958     // notZero means at least one not 4-byte aligned.
2959     // We could optimize the case when both arrays are not aligned
2960     // but it is not frequent case and it requires additional checks.
2961     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
2962     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
2963 
2964     // Compare char[] arrays aligned to 4 bytes.
2965     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
2966                           chr1_reg, chr2_reg, Ldone);
2967     __ ba(false,Ldone);
2968     __ delayed()->add(G0, 1, result_reg);
2969 
2970     // char by char compare
2971     __ bind(Lchar);
2972     __ add(str1_reg, limit_reg, str1_reg);
2973     __ add(str2_reg, limit_reg, str2_reg);
2974     __ neg(limit_reg); //negate count
2975 
2976     __ lduh(str1_reg, limit_reg, chr1_reg);
2977     // Lchar_loop
2978     __ bind(Lchar_loop);
2979     __ lduh(str2_reg, limit_reg, chr2_reg);
2980     __ cmp(chr1_reg, chr2_reg);
2981     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
2982     __ delayed()->mov(G0, result_reg); //not equal
2983     __ inccc(limit_reg, sizeof(jchar));
2984     // annul LDUH if branch is not taken to prevent access past end of string
2985     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
2986     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2987 
2988     __ add(G0, 1, result_reg);  //equal
2989 
2990     __ bind(Ldone);
2991   %}
2992 
2993 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
2994     Label Lvector, Ldone, Lloop;
2995     MacroAssembler _masm(&cbuf);
2996 
2997     Register   ary1_reg = reg_to_register_object($ary1$$reg);
2998     Register   ary2_reg = reg_to_register_object($ary2$$reg);
2999     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3000     Register   tmp2_reg = O7;
3001     Register result_reg = reg_to_register_object($result$$reg);
3002 
3003     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3004     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3005 
3006     // return true if the same array
3007     __ cmp(ary1_reg, ary2_reg);
3008     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3009     __ delayed()->add(G0, 1, result_reg); // equal
3010 
3011     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3012     __ delayed()->mov(G0, result_reg);    // not equal
3013 
3014     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3015     __ delayed()->mov(G0, result_reg);    // not equal
3016 
3017     //load the lengths of arrays
3018     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3019     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3020 
3021     // return false if the two arrays are not equal length
3022     __ cmp(tmp1_reg, tmp2_reg);
3023     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3024     __ delayed()->mov(G0, result_reg);     // not equal
3025 
3026     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, tmp1_reg, Ldone);
3027     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3028 
3029     // load array addresses
3030     __ add(ary1_reg, base_offset, ary1_reg);
3031     __ add(ary2_reg, base_offset, ary2_reg);
3032 
3033     // renaming registers
3034     Register chr1_reg  =  result_reg; // for characters in ary1
3035     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3036     Register limit_reg =  tmp1_reg;   // length
3037 
3038     // set byte count
3039     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3040 
3041     // Compare char[] arrays aligned to 4 bytes.
3042     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3043                           chr1_reg, chr2_reg, Ldone);
3044     __ add(G0, 1, result_reg); // equals
3045 
3046     __ bind(Ldone);
3047   %}
3048 
3049   enc_class enc_rethrow() %{
3050     cbuf.set_insts_mark();
3051     Register temp_reg = G3;
3052     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3053     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3054     MacroAssembler _masm(&cbuf);
3055 #ifdef ASSERT
3056     __ save_frame(0);
3057     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3058     __ sethi(last_rethrow_addrlit, L1);
3059     Address addr(L1, last_rethrow_addrlit.low10());
3060     __ get_pc(L2);
3061     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3062     __ st_ptr(L2, addr);
3063     __ restore();
3064 #endif
3065     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3066     __ delayed()->nop();
3067   %}
3068 
3069   enc_class emit_mem_nop() %{
3070     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3071     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3072   %}
3073 
3074   enc_class emit_fadd_nop() %{
3075     // Generates the instruction FMOVS f31,f31
3076     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3077   %}
3078 
3079   enc_class emit_br_nop() %{
3080     // Generates the instruction BPN,PN .
3081     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3082   %}
3083 
3084   enc_class enc_membar_acquire %{
3085     MacroAssembler _masm(&cbuf);
3086     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3087   %}
3088 
3089   enc_class enc_membar_release %{
3090     MacroAssembler _masm(&cbuf);
3091     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3092   %}
3093 
3094   enc_class enc_membar_volatile %{
3095     MacroAssembler _masm(&cbuf);
3096     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3097   %}
3098 
3099   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
3100     MacroAssembler _masm(&cbuf);
3101     Register src_reg = reg_to_register_object($src$$reg);
3102     Register dst_reg = reg_to_register_object($dst$$reg);
3103     __ sllx(src_reg, 56, dst_reg);
3104     __ srlx(dst_reg,  8, O7);
3105     __ or3 (dst_reg, O7, dst_reg);
3106     __ srlx(dst_reg, 16, O7);
3107     __ or3 (dst_reg, O7, dst_reg);
3108     __ srlx(dst_reg, 32, O7);
3109     __ or3 (dst_reg, O7, dst_reg);
3110   %}
3111 
3112   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
3113     MacroAssembler _masm(&cbuf);
3114     Register src_reg = reg_to_register_object($src$$reg);
3115     Register dst_reg = reg_to_register_object($dst$$reg);
3116     __ sll(src_reg, 24, dst_reg);
3117     __ srl(dst_reg,  8, O7);
3118     __ or3(dst_reg, O7, dst_reg);
3119     __ srl(dst_reg, 16, O7);
3120     __ or3(dst_reg, O7, dst_reg);
3121   %}
3122 
3123   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
3124     MacroAssembler _masm(&cbuf);
3125     Register src_reg = reg_to_register_object($src$$reg);
3126     Register dst_reg = reg_to_register_object($dst$$reg);
3127     __ sllx(src_reg, 48, dst_reg);
3128     __ srlx(dst_reg, 16, O7);
3129     __ or3 (dst_reg, O7, dst_reg);
3130     __ srlx(dst_reg, 32, O7);
3131     __ or3 (dst_reg, O7, dst_reg);
3132   %}
3133 
3134   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
3135     MacroAssembler _masm(&cbuf);
3136     Register src_reg = reg_to_register_object($src$$reg);
3137     Register dst_reg = reg_to_register_object($dst$$reg);
3138     __ sllx(src_reg, 32, dst_reg);
3139     __ srlx(dst_reg, 32, O7);
3140     __ or3 (dst_reg, O7, dst_reg);
3141   %}
3142 
3143 %}
3144 
3145 //----------FRAME--------------------------------------------------------------
3146 // Definition of frame structure and management information.
3147 //
3148 //  S T A C K   L A Y O U T    Allocators stack-slot number
3149 //                             |   (to get allocators register number
3150 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3151 //  r   CALLER     |        |
3152 //  o     |        +--------+      pad to even-align allocators stack-slot
3153 //  w     V        |  pad0  |        numbers; owned by CALLER
3154 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3155 //  h     ^        |   in   |  5
3156 //        |        |  args  |  4   Holes in incoming args owned by SELF
3157 //  |     |        |        |  3
3158 //  |     |        +--------+
3159 //  V     |        | old out|      Empty on Intel, window on Sparc
3160 //        |    old |preserve|      Must be even aligned.
3161 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3162 //        |        |   in   |  3   area for Intel ret address
3163 //     Owned by    |preserve|      Empty on Sparc.
3164 //       SELF      +--------+
3165 //        |        |  pad2  |  2   pad to align old SP
3166 //        |        +--------+  1
3167 //        |        | locks  |  0
3168 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3169 //        |        |  pad1  | 11   pad to align new SP
3170 //        |        +--------+
3171 //        |        |        | 10
3172 //        |        | spills |  9   spills
3173 //        V        |        |  8   (pad0 slot for callee)
3174 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3175 //        ^        |  out   |  7
3176 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3177 //     Owned by    +--------+
3178 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3179 //        |    new |preserve|      Must be even-aligned.
3180 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3181 //        |        |        |
3182 //
3183 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3184 //         known from SELF's arguments and the Java calling convention.
3185 //         Region 6-7 is determined per call site.
3186 // Note 2: If the calling convention leaves holes in the incoming argument
3187 //         area, those holes are owned by SELF.  Holes in the outgoing area
3188 //         are owned by the CALLEE.  Holes should not be nessecary in the
3189 //         incoming area, as the Java calling convention is completely under
3190 //         the control of the AD file.  Doubles can be sorted and packed to
3191 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3192 //         varargs C calling conventions.
3193 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3194 //         even aligned with pad0 as needed.
3195 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3196 //         region 6-11 is even aligned; it may be padded out more so that
3197 //         the region from SP to FP meets the minimum stack alignment.
3198 
3199 frame %{
3200   // What direction does stack grow in (assumed to be same for native & Java)
3201   stack_direction(TOWARDS_LOW);
3202 
3203   // These two registers define part of the calling convention
3204   // between compiled code and the interpreter.
3205   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
3206   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3207 
3208   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3209   cisc_spilling_operand_name(indOffset);
3210 
3211   // Number of stack slots consumed by a Monitor enter
3212 #ifdef _LP64
3213   sync_stack_slots(2);
3214 #else
3215   sync_stack_slots(1);
3216 #endif
3217 
3218   // Compiled code's Frame Pointer
3219   frame_pointer(R_SP);
3220 
3221   // Stack alignment requirement
3222   stack_alignment(StackAlignmentInBytes);
3223   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3224   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3225 
3226   // Number of stack slots between incoming argument block and the start of
3227   // a new frame.  The PROLOG must add this many slots to the stack.  The
3228   // EPILOG must remove this many slots.
3229   in_preserve_stack_slots(0);
3230 
3231   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3232   // for calls to C.  Supports the var-args backing area for register parms.
3233   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3234 #ifdef _LP64
3235   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3236   varargs_C_out_slots_killed(12);
3237 #else
3238   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3239   varargs_C_out_slots_killed( 7);
3240 #endif
3241 
3242   // The after-PROLOG location of the return address.  Location of
3243   // return address specifies a type (REG or STACK) and a number
3244   // representing the register number (i.e. - use a register name) or
3245   // stack slot.
3246   return_addr(REG R_I7);          // Ret Addr is in register I7
3247 
3248   // Body of function which returns an OptoRegs array locating
3249   // arguments either in registers or in stack slots for calling
3250   // java
3251   calling_convention %{
3252     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3253 
3254   %}
3255 
3256   // Body of function which returns an OptoRegs array locating
3257   // arguments either in registers or in stack slots for callin
3258   // C.
3259   c_calling_convention %{
3260     // This is obviously always outgoing
3261     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3262   %}
3263 
3264   // Location of native (C/C++) and interpreter return values.  This is specified to
3265   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3266   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3267   // to and from the register pairs is done by the appropriate call and epilog
3268   // opcodes.  This simplifies the register allocator.
3269   c_return_value %{
3270     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3271 #ifdef     _LP64
3272     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3273     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3274     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3275     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3276 #else  // !_LP64
3277     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3278     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3279     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3280     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3281 #endif
3282     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3283                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3284   %}
3285 
3286   // Location of compiled Java return values.  Same as C
3287   return_value %{
3288     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3289 #ifdef     _LP64
3290     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3291     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3292     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3293     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3294 #else  // !_LP64
3295     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3296     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3297     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3298     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3299 #endif
3300     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3301                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3302   %}
3303 
3304 %}
3305 
3306 
3307 //----------ATTRIBUTES---------------------------------------------------------
3308 //----------Operand Attributes-------------------------------------------------
3309 op_attrib op_cost(1);          // Required cost attribute
3310 
3311 //----------Instruction Attributes---------------------------------------------
3312 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3313 ins_attrib ins_size(32);       // Required size attribute (in bits)
3314 ins_attrib ins_pc_relative(0); // Required PC Relative flag
3315 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3316                                 // non-matching short branch variant of some
3317                                                             // long branch?
3318 
3319 //----------OPERANDS-----------------------------------------------------------
3320 // Operand definitions must precede instruction definitions for correct parsing
3321 // in the ADLC because operands constitute user defined types which are used in
3322 // instruction definitions.
3323 
3324 //----------Simple Operands----------------------------------------------------
3325 // Immediate Operands
3326 // Integer Immediate: 32-bit
3327 operand immI() %{
3328   match(ConI);
3329 
3330   op_cost(0);
3331   // formats are generated automatically for constants and base registers
3332   format %{ %}
3333   interface(CONST_INTER);
3334 %}
3335 
3336 // Integer Immediate: 8-bit
3337 operand immI8() %{
3338   predicate(Assembler::is_simm(n->get_int(), 8));
3339   match(ConI);
3340   op_cost(0);
3341   format %{ %}
3342   interface(CONST_INTER);
3343 %}
3344 
3345 // Integer Immediate: 13-bit
3346 operand immI13() %{
3347   predicate(Assembler::is_simm13(n->get_int()));
3348   match(ConI);
3349   op_cost(0);
3350 
3351   format %{ %}
3352   interface(CONST_INTER);
3353 %}
3354 
3355 // Integer Immediate: 13-bit minus 7
3356 operand immI13m7() %{
3357   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3358   match(ConI);
3359   op_cost(0);
3360 
3361   format %{ %}
3362   interface(CONST_INTER);
3363 %}
3364 
3365 // Integer Immediate: 16-bit
3366 operand immI16() %{
3367   predicate(Assembler::is_simm(n->get_int(), 16));
3368   match(ConI);
3369   op_cost(0);
3370   format %{ %}
3371   interface(CONST_INTER);
3372 %}
3373 
3374 // Unsigned (positive) Integer Immediate: 13-bit
3375 operand immU13() %{
3376   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3377   match(ConI);
3378   op_cost(0);
3379 
3380   format %{ %}
3381   interface(CONST_INTER);
3382 %}
3383 
3384 // Integer Immediate: 6-bit
3385 operand immU6() %{
3386   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3387   match(ConI);
3388   op_cost(0);
3389   format %{ %}
3390   interface(CONST_INTER);
3391 %}
3392 
3393 // Integer Immediate: 11-bit
3394 operand immI11() %{
3395   predicate(Assembler::is_simm(n->get_int(),11));
3396   match(ConI);
3397   op_cost(0);
3398   format %{ %}
3399   interface(CONST_INTER);
3400 %}
3401 
3402 // Integer Immediate: 0-bit
3403 operand immI0() %{
3404   predicate(n->get_int() == 0);
3405   match(ConI);
3406   op_cost(0);
3407 
3408   format %{ %}
3409   interface(CONST_INTER);
3410 %}
3411 
3412 // Integer Immediate: the value 10
3413 operand immI10() %{
3414   predicate(n->get_int() == 10);
3415   match(ConI);
3416   op_cost(0);
3417 
3418   format %{ %}
3419   interface(CONST_INTER);
3420 %}
3421 
3422 // Integer Immediate: the values 0-31
3423 operand immU5() %{
3424   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3425   match(ConI);
3426   op_cost(0);
3427 
3428   format %{ %}
3429   interface(CONST_INTER);
3430 %}
3431 
3432 // Integer Immediate: the values 1-31
3433 operand immI_1_31() %{
3434   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3435   match(ConI);
3436   op_cost(0);
3437 
3438   format %{ %}
3439   interface(CONST_INTER);
3440 %}
3441 
3442 // Integer Immediate: the values 32-63
3443 operand immI_32_63() %{
3444   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3445   match(ConI);
3446   op_cost(0);
3447 
3448   format %{ %}
3449   interface(CONST_INTER);
3450 %}
3451 
3452 // Immediates for special shifts (sign extend)
3453 
3454 // Integer Immediate: the value 16
3455 operand immI_16() %{
3456   predicate(n->get_int() == 16);
3457   match(ConI);
3458   op_cost(0);
3459 
3460   format %{ %}
3461   interface(CONST_INTER);
3462 %}
3463 
3464 // Integer Immediate: the value 24
3465 operand immI_24() %{
3466   predicate(n->get_int() == 24);
3467   match(ConI);
3468   op_cost(0);
3469 
3470   format %{ %}
3471   interface(CONST_INTER);
3472 %}
3473 
3474 // Integer Immediate: the value 255
3475 operand immI_255() %{
3476   predicate( n->get_int() == 255 );
3477   match(ConI);
3478   op_cost(0);
3479 
3480   format %{ %}
3481   interface(CONST_INTER);
3482 %}
3483 
3484 // Integer Immediate: the value 65535
3485 operand immI_65535() %{
3486   predicate(n->get_int() == 65535);
3487   match(ConI);
3488   op_cost(0);
3489 
3490   format %{ %}
3491   interface(CONST_INTER);
3492 %}
3493 
3494 // Long Immediate: the value FF
3495 operand immL_FF() %{
3496   predicate( n->get_long() == 0xFFL );
3497   match(ConL);
3498   op_cost(0);
3499 
3500   format %{ %}
3501   interface(CONST_INTER);
3502 %}
3503 
3504 // Long Immediate: the value FFFF
3505 operand immL_FFFF() %{
3506   predicate( n->get_long() == 0xFFFFL );
3507   match(ConL);
3508   op_cost(0);
3509 
3510   format %{ %}
3511   interface(CONST_INTER);
3512 %}
3513 
3514 // Pointer Immediate: 32 or 64-bit
3515 operand immP() %{
3516   match(ConP);
3517 
3518   op_cost(5);
3519   // formats are generated automatically for constants and base registers
3520   format %{ %}
3521   interface(CONST_INTER);
3522 %}
3523 
3524 operand immP13() %{
3525   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3526   match(ConP);
3527   op_cost(0);
3528 
3529   format %{ %}
3530   interface(CONST_INTER);
3531 %}
3532 
3533 operand immP0() %{
3534   predicate(n->get_ptr() == 0);
3535   match(ConP);
3536   op_cost(0);
3537 
3538   format %{ %}
3539   interface(CONST_INTER);
3540 %}
3541 
3542 operand immP_poll() %{
3543   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3544   match(ConP);
3545 
3546   // formats are generated automatically for constants and base registers
3547   format %{ %}
3548   interface(CONST_INTER);
3549 %}
3550 
3551 // Pointer Immediate
3552 operand immN()
3553 %{
3554   match(ConN);
3555 
3556   op_cost(10);
3557   format %{ %}
3558   interface(CONST_INTER);
3559 %}
3560 
3561 // NULL Pointer Immediate
3562 operand immN0()
3563 %{
3564   predicate(n->get_narrowcon() == 0);
3565   match(ConN);
3566 
3567   op_cost(0);
3568   format %{ %}
3569   interface(CONST_INTER);
3570 %}
3571 
3572 operand immL() %{
3573   match(ConL);
3574   op_cost(40);
3575   // formats are generated automatically for constants and base registers
3576   format %{ %}
3577   interface(CONST_INTER);
3578 %}
3579 
3580 operand immL0() %{
3581   predicate(n->get_long() == 0L);
3582   match(ConL);
3583   op_cost(0);
3584   // formats are generated automatically for constants and base registers
3585   format %{ %}
3586   interface(CONST_INTER);
3587 %}
3588 
3589 // Long Immediate: 13-bit
3590 operand immL13() %{
3591   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3592   match(ConL);
3593   op_cost(0);
3594 
3595   format %{ %}
3596   interface(CONST_INTER);
3597 %}
3598 
3599 // Long Immediate: 13-bit minus 7
3600 operand immL13m7() %{
3601   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3602   match(ConL);
3603   op_cost(0);
3604 
3605   format %{ %}
3606   interface(CONST_INTER);
3607 %}
3608 
3609 // Long Immediate: low 32-bit mask
3610 operand immL_32bits() %{
3611   predicate(n->get_long() == 0xFFFFFFFFL);
3612   match(ConL);
3613   op_cost(0);
3614 
3615   format %{ %}
3616   interface(CONST_INTER);
3617 %}
3618 
3619 // Double Immediate
3620 operand immD() %{
3621   match(ConD);
3622 
3623   op_cost(40);
3624   format %{ %}
3625   interface(CONST_INTER);
3626 %}
3627 
3628 operand immD0() %{
3629 #ifdef _LP64
3630   // on 64-bit architectures this comparision is faster
3631   predicate(jlong_cast(n->getd()) == 0);
3632 #else
3633   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3634 #endif
3635   match(ConD);
3636 
3637   op_cost(0);
3638   format %{ %}
3639   interface(CONST_INTER);
3640 %}
3641 
3642 // Float Immediate
3643 operand immF() %{
3644   match(ConF);
3645 
3646   op_cost(20);
3647   format %{ %}
3648   interface(CONST_INTER);
3649 %}
3650 
3651 // Float Immediate: 0
3652 operand immF0() %{
3653   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3654   match(ConF);
3655 
3656   op_cost(0);
3657   format %{ %}
3658   interface(CONST_INTER);
3659 %}
3660 
3661 // Integer Register Operands
3662 // Integer Register
3663 operand iRegI() %{
3664   constraint(ALLOC_IN_RC(int_reg));
3665   match(RegI);
3666 
3667   match(notemp_iRegI);
3668   match(g1RegI);
3669   match(o0RegI);
3670   match(iRegIsafe);
3671 
3672   format %{ %}
3673   interface(REG_INTER);
3674 %}
3675 
3676 operand notemp_iRegI() %{
3677   constraint(ALLOC_IN_RC(notemp_int_reg));
3678   match(RegI);
3679 
3680   match(o0RegI);
3681 
3682   format %{ %}
3683   interface(REG_INTER);
3684 %}
3685 
3686 operand o0RegI() %{
3687   constraint(ALLOC_IN_RC(o0_regI));
3688   match(iRegI);
3689 
3690   format %{ %}
3691   interface(REG_INTER);
3692 %}
3693 
3694 // Pointer Register
3695 operand iRegP() %{
3696   constraint(ALLOC_IN_RC(ptr_reg));
3697   match(RegP);
3698 
3699   match(lock_ptr_RegP);
3700   match(g1RegP);
3701   match(g2RegP);
3702   match(g3RegP);
3703   match(g4RegP);
3704   match(i0RegP);
3705   match(o0RegP);
3706   match(o1RegP);
3707   match(l7RegP);
3708 
3709   format %{ %}
3710   interface(REG_INTER);
3711 %}
3712 
3713 operand sp_ptr_RegP() %{
3714   constraint(ALLOC_IN_RC(sp_ptr_reg));
3715   match(RegP);
3716   match(iRegP);
3717 
3718   format %{ %}
3719   interface(REG_INTER);
3720 %}
3721 
3722 operand lock_ptr_RegP() %{
3723   constraint(ALLOC_IN_RC(lock_ptr_reg));
3724   match(RegP);
3725   match(i0RegP);
3726   match(o0RegP);
3727   match(o1RegP);
3728   match(l7RegP);
3729 
3730   format %{ %}
3731   interface(REG_INTER);
3732 %}
3733 
3734 operand g1RegP() %{
3735   constraint(ALLOC_IN_RC(g1_regP));
3736   match(iRegP);
3737 
3738   format %{ %}
3739   interface(REG_INTER);
3740 %}
3741 
3742 operand g2RegP() %{
3743   constraint(ALLOC_IN_RC(g2_regP));
3744   match(iRegP);
3745 
3746   format %{ %}
3747   interface(REG_INTER);
3748 %}
3749 
3750 operand g3RegP() %{
3751   constraint(ALLOC_IN_RC(g3_regP));
3752   match(iRegP);
3753 
3754   format %{ %}
3755   interface(REG_INTER);
3756 %}
3757 
3758 operand g1RegI() %{
3759   constraint(ALLOC_IN_RC(g1_regI));
3760   match(iRegI);
3761 
3762   format %{ %}
3763   interface(REG_INTER);
3764 %}
3765 
3766 operand g3RegI() %{
3767   constraint(ALLOC_IN_RC(g3_regI));
3768   match(iRegI);
3769 
3770   format %{ %}
3771   interface(REG_INTER);
3772 %}
3773 
3774 operand g4RegI() %{
3775   constraint(ALLOC_IN_RC(g4_regI));
3776   match(iRegI);
3777 
3778   format %{ %}
3779   interface(REG_INTER);
3780 %}
3781 
3782 operand g4RegP() %{
3783   constraint(ALLOC_IN_RC(g4_regP));
3784   match(iRegP);
3785 
3786   format %{ %}
3787   interface(REG_INTER);
3788 %}
3789 
3790 operand i0RegP() %{
3791   constraint(ALLOC_IN_RC(i0_regP));
3792   match(iRegP);
3793 
3794   format %{ %}
3795   interface(REG_INTER);
3796 %}
3797 
3798 operand o0RegP() %{
3799   constraint(ALLOC_IN_RC(o0_regP));
3800   match(iRegP);
3801 
3802   format %{ %}
3803   interface(REG_INTER);
3804 %}
3805 
3806 operand o1RegP() %{
3807   constraint(ALLOC_IN_RC(o1_regP));
3808   match(iRegP);
3809 
3810   format %{ %}
3811   interface(REG_INTER);
3812 %}
3813 
3814 operand o2RegP() %{
3815   constraint(ALLOC_IN_RC(o2_regP));
3816   match(iRegP);
3817 
3818   format %{ %}
3819   interface(REG_INTER);
3820 %}
3821 
3822 operand o7RegP() %{
3823   constraint(ALLOC_IN_RC(o7_regP));
3824   match(iRegP);
3825 
3826   format %{ %}
3827   interface(REG_INTER);
3828 %}
3829 
3830 operand l7RegP() %{
3831   constraint(ALLOC_IN_RC(l7_regP));
3832   match(iRegP);
3833 
3834   format %{ %}
3835   interface(REG_INTER);
3836 %}
3837 
3838 operand o7RegI() %{
3839   constraint(ALLOC_IN_RC(o7_regI));
3840   match(iRegI);
3841 
3842   format %{ %}
3843   interface(REG_INTER);
3844 %}
3845 
3846 operand iRegN() %{
3847   constraint(ALLOC_IN_RC(int_reg));
3848   match(RegN);
3849 
3850   format %{ %}
3851   interface(REG_INTER);
3852 %}
3853 
3854 // Long Register
3855 operand iRegL() %{
3856   constraint(ALLOC_IN_RC(long_reg));
3857   match(RegL);
3858 
3859   format %{ %}
3860   interface(REG_INTER);
3861 %}
3862 
3863 operand o2RegL() %{
3864   constraint(ALLOC_IN_RC(o2_regL));
3865   match(iRegL);
3866 
3867   format %{ %}
3868   interface(REG_INTER);
3869 %}
3870 
3871 operand o7RegL() %{
3872   constraint(ALLOC_IN_RC(o7_regL));
3873   match(iRegL);
3874 
3875   format %{ %}
3876   interface(REG_INTER);
3877 %}
3878 
3879 operand g1RegL() %{
3880   constraint(ALLOC_IN_RC(g1_regL));
3881   match(iRegL);
3882 
3883   format %{ %}
3884   interface(REG_INTER);
3885 %}
3886 
3887 operand g3RegL() %{
3888   constraint(ALLOC_IN_RC(g3_regL));
3889   match(iRegL);
3890 
3891   format %{ %}
3892   interface(REG_INTER);
3893 %}
3894 
3895 // Int Register safe
3896 // This is 64bit safe
3897 operand iRegIsafe() %{
3898   constraint(ALLOC_IN_RC(long_reg));
3899 
3900   match(iRegI);
3901 
3902   format %{ %}
3903   interface(REG_INTER);
3904 %}
3905 
3906 // Condition Code Flag Register
3907 operand flagsReg() %{
3908   constraint(ALLOC_IN_RC(int_flags));
3909   match(RegFlags);
3910 
3911   format %{ "ccr" %} // both ICC and XCC
3912   interface(REG_INTER);
3913 %}
3914 
3915 // Condition Code Register, unsigned comparisons.
3916 operand flagsRegU() %{
3917   constraint(ALLOC_IN_RC(int_flags));
3918   match(RegFlags);
3919 
3920   format %{ "icc_U" %}
3921   interface(REG_INTER);
3922 %}
3923 
3924 // Condition Code Register, pointer comparisons.
3925 operand flagsRegP() %{
3926   constraint(ALLOC_IN_RC(int_flags));
3927   match(RegFlags);
3928 
3929 #ifdef _LP64
3930   format %{ "xcc_P" %}
3931 #else
3932   format %{ "icc_P" %}
3933 #endif
3934   interface(REG_INTER);
3935 %}
3936 
3937 // Condition Code Register, long comparisons.
3938 operand flagsRegL() %{
3939   constraint(ALLOC_IN_RC(int_flags));
3940   match(RegFlags);
3941 
3942   format %{ "xcc_L" %}
3943   interface(REG_INTER);
3944 %}
3945 
3946 // Condition Code Register, floating comparisons, unordered same as "less".
3947 operand flagsRegF() %{
3948   constraint(ALLOC_IN_RC(float_flags));
3949   match(RegFlags);
3950   match(flagsRegF0);
3951 
3952   format %{ %}
3953   interface(REG_INTER);
3954 %}
3955 
3956 operand flagsRegF0() %{
3957   constraint(ALLOC_IN_RC(float_flag0));
3958   match(RegFlags);
3959 
3960   format %{ %}
3961   interface(REG_INTER);
3962 %}
3963 
3964 
3965 // Condition Code Flag Register used by long compare
3966 operand flagsReg_long_LTGE() %{
3967   constraint(ALLOC_IN_RC(int_flags));
3968   match(RegFlags);
3969   format %{ "icc_LTGE" %}
3970   interface(REG_INTER);
3971 %}
3972 operand flagsReg_long_EQNE() %{
3973   constraint(ALLOC_IN_RC(int_flags));
3974   match(RegFlags);
3975   format %{ "icc_EQNE" %}
3976   interface(REG_INTER);
3977 %}
3978 operand flagsReg_long_LEGT() %{
3979   constraint(ALLOC_IN_RC(int_flags));
3980   match(RegFlags);
3981   format %{ "icc_LEGT" %}
3982   interface(REG_INTER);
3983 %}
3984 
3985 
3986 operand regD() %{
3987   constraint(ALLOC_IN_RC(dflt_reg));
3988   match(RegD);
3989 
3990   match(regD_low);
3991 
3992   format %{ %}
3993   interface(REG_INTER);
3994 %}
3995 
3996 operand regF() %{
3997   constraint(ALLOC_IN_RC(sflt_reg));
3998   match(RegF);
3999 
4000   format %{ %}
4001   interface(REG_INTER);
4002 %}
4003 
4004 operand regD_low() %{
4005   constraint(ALLOC_IN_RC(dflt_low_reg));
4006   match(regD);
4007 
4008   format %{ %}
4009   interface(REG_INTER);
4010 %}
4011 
4012 // Special Registers
4013 
4014 // Method Register
4015 operand inline_cache_regP(iRegP reg) %{
4016   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4017   match(reg);
4018   format %{ %}
4019   interface(REG_INTER);
4020 %}
4021 
4022 operand interpreter_method_oop_regP(iRegP reg) %{
4023   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4024   match(reg);
4025   format %{ %}
4026   interface(REG_INTER);
4027 %}
4028 
4029 
4030 //----------Complex Operands---------------------------------------------------
4031 // Indirect Memory Reference
4032 operand indirect(sp_ptr_RegP reg) %{
4033   constraint(ALLOC_IN_RC(sp_ptr_reg));
4034   match(reg);
4035 
4036   op_cost(100);
4037   format %{ "[$reg]" %}
4038   interface(MEMORY_INTER) %{
4039     base($reg);
4040     index(0x0);
4041     scale(0x0);
4042     disp(0x0);
4043   %}
4044 %}
4045 
4046 // Indirect with simm13 Offset
4047 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4048   constraint(ALLOC_IN_RC(sp_ptr_reg));
4049   match(AddP reg offset);
4050 
4051   op_cost(100);
4052   format %{ "[$reg + $offset]" %}
4053   interface(MEMORY_INTER) %{
4054     base($reg);
4055     index(0x0);
4056     scale(0x0);
4057     disp($offset);
4058   %}
4059 %}
4060 
4061 // Indirect with simm13 Offset minus 7
4062 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4063   constraint(ALLOC_IN_RC(sp_ptr_reg));
4064   match(AddP reg offset);
4065 
4066   op_cost(100);
4067   format %{ "[$reg + $offset]" %}
4068   interface(MEMORY_INTER) %{
4069     base($reg);
4070     index(0x0);
4071     scale(0x0);
4072     disp($offset);
4073   %}
4074 %}
4075 
4076 // Note:  Intel has a swapped version also, like this:
4077 //operand indOffsetX(iRegI reg, immP offset) %{
4078 //  constraint(ALLOC_IN_RC(int_reg));
4079 //  match(AddP offset reg);
4080 //
4081 //  op_cost(100);
4082 //  format %{ "[$reg + $offset]" %}
4083 //  interface(MEMORY_INTER) %{
4084 //    base($reg);
4085 //    index(0x0);
4086 //    scale(0x0);
4087 //    disp($offset);
4088 //  %}
4089 //%}
4090 //// However, it doesn't make sense for SPARC, since
4091 // we have no particularly good way to embed oops in
4092 // single instructions.
4093 
4094 // Indirect with Register Index
4095 operand indIndex(iRegP addr, iRegX index) %{
4096   constraint(ALLOC_IN_RC(ptr_reg));
4097   match(AddP addr index);
4098 
4099   op_cost(100);
4100   format %{ "[$addr + $index]" %}
4101   interface(MEMORY_INTER) %{
4102     base($addr);
4103     index($index);
4104     scale(0x0);
4105     disp(0x0);
4106   %}
4107 %}
4108 
4109 //----------Special Memory Operands--------------------------------------------
4110 // Stack Slot Operand - This operand is used for loading and storing temporary
4111 //                      values on the stack where a match requires a value to
4112 //                      flow through memory.
4113 operand stackSlotI(sRegI reg) %{
4114   constraint(ALLOC_IN_RC(stack_slots));
4115   op_cost(100);
4116   //match(RegI);
4117   format %{ "[$reg]" %}
4118   interface(MEMORY_INTER) %{
4119     base(0xE);   // R_SP
4120     index(0x0);
4121     scale(0x0);
4122     disp($reg);  // Stack Offset
4123   %}
4124 %}
4125 
4126 operand stackSlotP(sRegP reg) %{
4127   constraint(ALLOC_IN_RC(stack_slots));
4128   op_cost(100);
4129   //match(RegP);
4130   format %{ "[$reg]" %}
4131   interface(MEMORY_INTER) %{
4132     base(0xE);   // R_SP
4133     index(0x0);
4134     scale(0x0);
4135     disp($reg);  // Stack Offset
4136   %}
4137 %}
4138 
4139 operand stackSlotF(sRegF reg) %{
4140   constraint(ALLOC_IN_RC(stack_slots));
4141   op_cost(100);
4142   //match(RegF);
4143   format %{ "[$reg]" %}
4144   interface(MEMORY_INTER) %{
4145     base(0xE);   // R_SP
4146     index(0x0);
4147     scale(0x0);
4148     disp($reg);  // Stack Offset
4149   %}
4150 %}
4151 operand stackSlotD(sRegD reg) %{
4152   constraint(ALLOC_IN_RC(stack_slots));
4153   op_cost(100);
4154   //match(RegD);
4155   format %{ "[$reg]" %}
4156   interface(MEMORY_INTER) %{
4157     base(0xE);   // R_SP
4158     index(0x0);
4159     scale(0x0);
4160     disp($reg);  // Stack Offset
4161   %}
4162 %}
4163 operand stackSlotL(sRegL reg) %{
4164   constraint(ALLOC_IN_RC(stack_slots));
4165   op_cost(100);
4166   //match(RegL);
4167   format %{ "[$reg]" %}
4168   interface(MEMORY_INTER) %{
4169     base(0xE);   // R_SP
4170     index(0x0);
4171     scale(0x0);
4172     disp($reg);  // Stack Offset
4173   %}
4174 %}
4175 
4176 // Operands for expressing Control Flow
4177 // NOTE:  Label is a predefined operand which should not be redefined in
4178 //        the AD file.  It is generically handled within the ADLC.
4179 
4180 //----------Conditional Branch Operands----------------------------------------
4181 // Comparison Op  - This is the operation of the comparison, and is limited to
4182 //                  the following set of codes:
4183 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4184 //
4185 // Other attributes of the comparison, such as unsignedness, are specified
4186 // by the comparison instruction that sets a condition code flags register.
4187 // That result is represented by a flags operand whose subtype is appropriate
4188 // to the unsignedness (etc.) of the comparison.
4189 //
4190 // Later, the instruction which matches both the Comparison Op (a Bool) and
4191 // the flags (produced by the Cmp) specifies the coding of the comparison op
4192 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4193 
4194 operand cmpOp() %{
4195   match(Bool);
4196 
4197   format %{ "" %}
4198   interface(COND_INTER) %{
4199     equal(0x1);
4200     not_equal(0x9);
4201     less(0x3);
4202     greater_equal(0xB);
4203     less_equal(0x2);
4204     greater(0xA);
4205   %}
4206 %}
4207 
4208 // Comparison Op, unsigned
4209 operand cmpOpU() %{
4210   match(Bool);
4211 
4212   format %{ "u" %}
4213   interface(COND_INTER) %{
4214     equal(0x1);
4215     not_equal(0x9);
4216     less(0x5);
4217     greater_equal(0xD);
4218     less_equal(0x4);
4219     greater(0xC);
4220   %}
4221 %}
4222 
4223 // Comparison Op, pointer (same as unsigned)
4224 operand cmpOpP() %{
4225   match(Bool);
4226 
4227   format %{ "p" %}
4228   interface(COND_INTER) %{
4229     equal(0x1);
4230     not_equal(0x9);
4231     less(0x5);
4232     greater_equal(0xD);
4233     less_equal(0x4);
4234     greater(0xC);
4235   %}
4236 %}
4237 
4238 // Comparison Op, branch-register encoding
4239 operand cmpOp_reg() %{
4240   match(Bool);
4241 
4242   format %{ "" %}
4243   interface(COND_INTER) %{
4244     equal        (0x1);
4245     not_equal    (0x5);
4246     less         (0x3);
4247     greater_equal(0x7);
4248     less_equal   (0x2);
4249     greater      (0x6);
4250   %}
4251 %}
4252 
4253 // Comparison Code, floating, unordered same as less
4254 operand cmpOpF() %{
4255   match(Bool);
4256 
4257   format %{ "fl" %}
4258   interface(COND_INTER) %{
4259     equal(0x9);
4260     not_equal(0x1);
4261     less(0x3);
4262     greater_equal(0xB);
4263     less_equal(0xE);
4264     greater(0x6);
4265   %}
4266 %}
4267 
4268 // Used by long compare
4269 operand cmpOp_commute() %{
4270   match(Bool);
4271 
4272   format %{ "" %}
4273   interface(COND_INTER) %{
4274     equal(0x1);
4275     not_equal(0x9);
4276     less(0xA);
4277     greater_equal(0x2);
4278     less_equal(0xB);
4279     greater(0x3);
4280   %}
4281 %}
4282 
4283 //----------OPERAND CLASSES----------------------------------------------------
4284 // Operand Classes are groups of operands that are used to simplify
4285 // instruction definitions by not requiring the AD writer to specify separate
4286 // instructions for every form of operand when the instruction accepts
4287 // multiple operand types with the same basic encoding and format.  The classic
4288 // case of this is memory operands.
4289 opclass memory( indirect, indOffset13, indIndex );
4290 opclass indIndexMemory( indIndex );
4291 
4292 //----------PIPELINE-----------------------------------------------------------
4293 pipeline %{
4294 
4295 //----------ATTRIBUTES---------------------------------------------------------
4296 attributes %{
4297   fixed_size_instructions;           // Fixed size instructions
4298   branch_has_delay_slot;             // Branch has delay slot following
4299   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4300   instruction_unit_size = 4;         // An instruction is 4 bytes long
4301   instruction_fetch_unit_size = 16;  // The processor fetches one line
4302   instruction_fetch_units = 1;       // of 16 bytes
4303 
4304   // List of nop instructions
4305   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4306 %}
4307 
4308 //----------RESOURCES----------------------------------------------------------
4309 // Resources are the functional units available to the machine
4310 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4311 
4312 //----------PIPELINE DESCRIPTION-----------------------------------------------
4313 // Pipeline Description specifies the stages in the machine's pipeline
4314 
4315 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4316 
4317 //----------PIPELINE CLASSES---------------------------------------------------
4318 // Pipeline Classes describe the stages in which input and output are
4319 // referenced by the hardware pipeline.
4320 
4321 // Integer ALU reg-reg operation
4322 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4323     single_instruction;
4324     dst   : E(write);
4325     src1  : R(read);
4326     src2  : R(read);
4327     IALU  : R;
4328 %}
4329 
4330 // Integer ALU reg-reg long operation
4331 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4332     instruction_count(2);
4333     dst   : E(write);
4334     src1  : R(read);
4335     src2  : R(read);
4336     IALU  : R;
4337     IALU  : R;
4338 %}
4339 
4340 // Integer ALU reg-reg long dependent operation
4341 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4342     instruction_count(1); multiple_bundles;
4343     dst   : E(write);
4344     src1  : R(read);
4345     src2  : R(read);
4346     cr    : E(write);
4347     IALU  : R(2);
4348 %}
4349 
4350 // Integer ALU reg-imm operaion
4351 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4352     single_instruction;
4353     dst   : E(write);
4354     src1  : R(read);
4355     IALU  : R;
4356 %}
4357 
4358 // Integer ALU reg-reg operation with condition code
4359 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4360     single_instruction;
4361     dst   : E(write);
4362     cr    : E(write);
4363     src1  : R(read);
4364     src2  : R(read);
4365     IALU  : R;
4366 %}
4367 
4368 // Integer ALU reg-imm operation with condition code
4369 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4370     single_instruction;
4371     dst   : E(write);
4372     cr    : E(write);
4373     src1  : R(read);
4374     IALU  : R;
4375 %}
4376 
4377 // Integer ALU zero-reg operation
4378 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4379     single_instruction;
4380     dst   : E(write);
4381     src2  : R(read);
4382     IALU  : R;
4383 %}
4384 
4385 // Integer ALU zero-reg operation with condition code only
4386 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4387     single_instruction;
4388     cr    : E(write);
4389     src   : R(read);
4390     IALU  : R;
4391 %}
4392 
4393 // Integer ALU reg-reg operation with condition code only
4394 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4395     single_instruction;
4396     cr    : E(write);
4397     src1  : R(read);
4398     src2  : R(read);
4399     IALU  : R;
4400 %}
4401 
4402 // Integer ALU reg-imm operation with condition code only
4403 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4404     single_instruction;
4405     cr    : E(write);
4406     src1  : R(read);
4407     IALU  : R;
4408 %}
4409 
4410 // Integer ALU reg-reg-zero operation with condition code only
4411 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4412     single_instruction;
4413     cr    : E(write);
4414     src1  : R(read);
4415     src2  : R(read);
4416     IALU  : R;
4417 %}
4418 
4419 // Integer ALU reg-imm-zero operation with condition code only
4420 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4421     single_instruction;
4422     cr    : E(write);
4423     src1  : R(read);
4424     IALU  : R;
4425 %}
4426 
4427 // Integer ALU reg-reg operation with condition code, src1 modified
4428 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4429     single_instruction;
4430     cr    : E(write);
4431     src1  : E(write);
4432     src1  : R(read);
4433     src2  : R(read);
4434     IALU  : R;
4435 %}
4436 
4437 // Integer ALU reg-imm operation with condition code, src1 modified
4438 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4439     single_instruction;
4440     cr    : E(write);
4441     src1  : E(write);
4442     src1  : R(read);
4443     IALU  : R;
4444 %}
4445 
4446 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4447     multiple_bundles;
4448     dst   : E(write)+4;
4449     cr    : E(write);
4450     src1  : R(read);
4451     src2  : R(read);
4452     IALU  : R(3);
4453     BR    : R(2);
4454 %}
4455 
4456 // Integer ALU operation
4457 pipe_class ialu_none(iRegI dst) %{
4458     single_instruction;
4459     dst   : E(write);
4460     IALU  : R;
4461 %}
4462 
4463 // Integer ALU reg operation
4464 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4465     single_instruction; may_have_no_code;
4466     dst   : E(write);
4467     src   : R(read);
4468     IALU  : R;
4469 %}
4470 
4471 // Integer ALU reg conditional operation
4472 // This instruction has a 1 cycle stall, and cannot execute
4473 // in the same cycle as the instruction setting the condition
4474 // code. We kludge this by pretending to read the condition code
4475 // 1 cycle earlier, and by marking the functional units as busy
4476 // for 2 cycles with the result available 1 cycle later than
4477 // is really the case.
4478 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4479     single_instruction;
4480     op2_out : C(write);
4481     op1     : R(read);
4482     cr      : R(read);       // This is really E, with a 1 cycle stall
4483     BR      : R(2);
4484     MS      : R(2);
4485 %}
4486 
4487 #ifdef _LP64
4488 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4489     instruction_count(1); multiple_bundles;
4490     dst     : C(write)+1;
4491     src     : R(read)+1;
4492     IALU    : R(1);
4493     BR      : E(2);
4494     MS      : E(2);
4495 %}
4496 #endif
4497 
4498 // Integer ALU reg operation
4499 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4500     single_instruction; may_have_no_code;
4501     dst   : E(write);
4502     src   : R(read);
4503     IALU  : R;
4504 %}
4505 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4506     single_instruction; may_have_no_code;
4507     dst   : E(write);
4508     src   : R(read);
4509     IALU  : R;
4510 %}
4511 
4512 // Two integer ALU reg operations
4513 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4514     instruction_count(2);
4515     dst   : E(write);
4516     src   : R(read);
4517     A0    : R;
4518     A1    : R;
4519 %}
4520 
4521 // Two integer ALU reg operations
4522 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4523     instruction_count(2); may_have_no_code;
4524     dst   : E(write);
4525     src   : R(read);
4526     A0    : R;
4527     A1    : R;
4528 %}
4529 
4530 // Integer ALU imm operation
4531 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4532     single_instruction;
4533     dst   : E(write);
4534     IALU  : R;
4535 %}
4536 
4537 // Integer ALU reg-reg with carry operation
4538 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4539     single_instruction;
4540     dst   : E(write);
4541     src1  : R(read);
4542     src2  : R(read);
4543     IALU  : R;
4544 %}
4545 
4546 // Integer ALU cc operation
4547 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4548     single_instruction;
4549     dst   : E(write);
4550     cc    : R(read);
4551     IALU  : R;
4552 %}
4553 
4554 // Integer ALU cc / second IALU operation
4555 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4556     instruction_count(1); multiple_bundles;
4557     dst   : E(write)+1;
4558     src   : R(read);
4559     IALU  : R;
4560 %}
4561 
4562 // Integer ALU cc / second IALU operation
4563 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4564     instruction_count(1); multiple_bundles;
4565     dst   : E(write)+1;
4566     p     : R(read);
4567     q     : R(read);
4568     IALU  : R;
4569 %}
4570 
4571 // Integer ALU hi-lo-reg operation
4572 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4573     instruction_count(1); multiple_bundles;
4574     dst   : E(write)+1;
4575     IALU  : R(2);
4576 %}
4577 
4578 // Float ALU hi-lo-reg operation (with temp)
4579 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4580     instruction_count(1); multiple_bundles;
4581     dst   : E(write)+1;
4582     IALU  : R(2);
4583 %}
4584 
4585 // Long Constant
4586 pipe_class loadConL( iRegL dst, immL src ) %{
4587     instruction_count(2); multiple_bundles;
4588     dst   : E(write)+1;
4589     IALU  : R(2);
4590     IALU  : R(2);
4591 %}
4592 
4593 // Pointer Constant
4594 pipe_class loadConP( iRegP dst, immP src ) %{
4595     instruction_count(0); multiple_bundles;
4596     fixed_latency(6);
4597 %}
4598 
4599 // Polling Address
4600 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4601 #ifdef _LP64
4602     instruction_count(0); multiple_bundles;
4603     fixed_latency(6);
4604 #else
4605     dst   : E(write);
4606     IALU  : R;
4607 #endif
4608 %}
4609 
4610 // Long Constant small
4611 pipe_class loadConLlo( iRegL dst, immL src ) %{
4612     instruction_count(2);
4613     dst   : E(write);
4614     IALU  : R;
4615     IALU  : R;
4616 %}
4617 
4618 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4619 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4620     instruction_count(1); multiple_bundles;
4621     src   : R(read);
4622     dst   : M(write)+1;
4623     IALU  : R;
4624     MS    : E;
4625 %}
4626 
4627 // Integer ALU nop operation
4628 pipe_class ialu_nop() %{
4629     single_instruction;
4630     IALU  : R;
4631 %}
4632 
4633 // Integer ALU nop operation
4634 pipe_class ialu_nop_A0() %{
4635     single_instruction;
4636     A0    : R;
4637 %}
4638 
4639 // Integer ALU nop operation
4640 pipe_class ialu_nop_A1() %{
4641     single_instruction;
4642     A1    : R;
4643 %}
4644 
4645 // Integer Multiply reg-reg operation
4646 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4647     single_instruction;
4648     dst   : E(write);
4649     src1  : R(read);
4650     src2  : R(read);
4651     MS    : R(5);
4652 %}
4653 
4654 // Integer Multiply reg-imm operation
4655 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4656     single_instruction;
4657     dst   : E(write);
4658     src1  : R(read);
4659     MS    : R(5);
4660 %}
4661 
4662 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4663     single_instruction;
4664     dst   : E(write)+4;
4665     src1  : R(read);
4666     src2  : R(read);
4667     MS    : R(6);
4668 %}
4669 
4670 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4671     single_instruction;
4672     dst   : E(write)+4;
4673     src1  : R(read);
4674     MS    : R(6);
4675 %}
4676 
4677 // Integer Divide reg-reg
4678 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4679     instruction_count(1); multiple_bundles;
4680     dst   : E(write);
4681     temp  : E(write);
4682     src1  : R(read);
4683     src2  : R(read);
4684     temp  : R(read);
4685     MS    : R(38);
4686 %}
4687 
4688 // Integer Divide reg-imm
4689 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4690     instruction_count(1); multiple_bundles;
4691     dst   : E(write);
4692     temp  : E(write);
4693     src1  : R(read);
4694     temp  : R(read);
4695     MS    : R(38);
4696 %}
4697 
4698 // Long Divide
4699 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4700     dst  : E(write)+71;
4701     src1 : R(read);
4702     src2 : R(read)+1;
4703     MS   : R(70);
4704 %}
4705 
4706 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4707     dst  : E(write)+71;
4708     src1 : R(read);
4709     MS   : R(70);
4710 %}
4711 
4712 // Floating Point Add Float
4713 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4714     single_instruction;
4715     dst   : X(write);
4716     src1  : E(read);
4717     src2  : E(read);
4718     FA    : R;
4719 %}
4720 
4721 // Floating Point Add Double
4722 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4723     single_instruction;
4724     dst   : X(write);
4725     src1  : E(read);
4726     src2  : E(read);
4727     FA    : R;
4728 %}
4729 
4730 // Floating Point Conditional Move based on integer flags
4731 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4732     single_instruction;
4733     dst   : X(write);
4734     src   : E(read);
4735     cr    : R(read);
4736     FA    : R(2);
4737     BR    : R(2);
4738 %}
4739 
4740 // Floating Point Conditional Move based on integer flags
4741 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4742     single_instruction;
4743     dst   : X(write);
4744     src   : E(read);
4745     cr    : R(read);
4746     FA    : R(2);
4747     BR    : R(2);
4748 %}
4749 
4750 // Floating Point Multiply Float
4751 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4752     single_instruction;
4753     dst   : X(write);
4754     src1  : E(read);
4755     src2  : E(read);
4756     FM    : R;
4757 %}
4758 
4759 // Floating Point Multiply Double
4760 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4761     single_instruction;
4762     dst   : X(write);
4763     src1  : E(read);
4764     src2  : E(read);
4765     FM    : R;
4766 %}
4767 
4768 // Floating Point Divide Float
4769 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4770     single_instruction;
4771     dst   : X(write);
4772     src1  : E(read);
4773     src2  : E(read);
4774     FM    : R;
4775     FDIV  : C(14);
4776 %}
4777 
4778 // Floating Point Divide Double
4779 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4780     single_instruction;
4781     dst   : X(write);
4782     src1  : E(read);
4783     src2  : E(read);
4784     FM    : R;
4785     FDIV  : C(17);
4786 %}
4787 
4788 // Floating Point Move/Negate/Abs Float
4789 pipe_class faddF_reg(regF dst, regF src) %{
4790     single_instruction;
4791     dst   : W(write);
4792     src   : E(read);
4793     FA    : R(1);
4794 %}
4795 
4796 // Floating Point Move/Negate/Abs Double
4797 pipe_class faddD_reg(regD dst, regD src) %{
4798     single_instruction;
4799     dst   : W(write);
4800     src   : E(read);
4801     FA    : R;
4802 %}
4803 
4804 // Floating Point Convert F->D
4805 pipe_class fcvtF2D(regD dst, regF src) %{
4806     single_instruction;
4807     dst   : X(write);
4808     src   : E(read);
4809     FA    : R;
4810 %}
4811 
4812 // Floating Point Convert I->D
4813 pipe_class fcvtI2D(regD dst, regF src) %{
4814     single_instruction;
4815     dst   : X(write);
4816     src   : E(read);
4817     FA    : R;
4818 %}
4819 
4820 // Floating Point Convert LHi->D
4821 pipe_class fcvtLHi2D(regD dst, regD src) %{
4822     single_instruction;
4823     dst   : X(write);
4824     src   : E(read);
4825     FA    : R;
4826 %}
4827 
4828 // Floating Point Convert L->D
4829 pipe_class fcvtL2D(regD dst, regF src) %{
4830     single_instruction;
4831     dst   : X(write);
4832     src   : E(read);
4833     FA    : R;
4834 %}
4835 
4836 // Floating Point Convert L->F
4837 pipe_class fcvtL2F(regD dst, regF src) %{
4838     single_instruction;
4839     dst   : X(write);
4840     src   : E(read);
4841     FA    : R;
4842 %}
4843 
4844 // Floating Point Convert D->F
4845 pipe_class fcvtD2F(regD dst, regF src) %{
4846     single_instruction;
4847     dst   : X(write);
4848     src   : E(read);
4849     FA    : R;
4850 %}
4851 
4852 // Floating Point Convert I->L
4853 pipe_class fcvtI2L(regD dst, regF src) %{
4854     single_instruction;
4855     dst   : X(write);
4856     src   : E(read);
4857     FA    : R;
4858 %}
4859 
4860 // Floating Point Convert D->F
4861 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4862     instruction_count(1); multiple_bundles;
4863     dst   : X(write)+6;
4864     src   : E(read);
4865     FA    : R;
4866 %}
4867 
4868 // Floating Point Convert D->L
4869 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4870     instruction_count(1); multiple_bundles;
4871     dst   : X(write)+6;
4872     src   : E(read);
4873     FA    : R;
4874 %}
4875 
4876 // Floating Point Convert F->I
4877 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4878     instruction_count(1); multiple_bundles;
4879     dst   : X(write)+6;
4880     src   : E(read);
4881     FA    : R;
4882 %}
4883 
4884 // Floating Point Convert F->L
4885 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4886     instruction_count(1); multiple_bundles;
4887     dst   : X(write)+6;
4888     src   : E(read);
4889     FA    : R;
4890 %}
4891 
4892 // Floating Point Convert I->F
4893 pipe_class fcvtI2F(regF dst, regF src) %{
4894     single_instruction;
4895     dst   : X(write);
4896     src   : E(read);
4897     FA    : R;
4898 %}
4899 
4900 // Floating Point Compare
4901 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4902     single_instruction;
4903     cr    : X(write);
4904     src1  : E(read);
4905     src2  : E(read);
4906     FA    : R;
4907 %}
4908 
4909 // Floating Point Compare
4910 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4911     single_instruction;
4912     cr    : X(write);
4913     src1  : E(read);
4914     src2  : E(read);
4915     FA    : R;
4916 %}
4917 
4918 // Floating Add Nop
4919 pipe_class fadd_nop() %{
4920     single_instruction;
4921     FA  : R;
4922 %}
4923 
4924 // Integer Store to Memory
4925 pipe_class istore_mem_reg(memory mem, iRegI src) %{
4926     single_instruction;
4927     mem   : R(read);
4928     src   : C(read);
4929     MS    : R;
4930 %}
4931 
4932 // Integer Store to Memory
4933 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
4934     single_instruction;
4935     mem   : R(read);
4936     src   : C(read);
4937     MS    : R;
4938 %}
4939 
4940 // Integer Store Zero to Memory
4941 pipe_class istore_mem_zero(memory mem, immI0 src) %{
4942     single_instruction;
4943     mem   : R(read);
4944     MS    : R;
4945 %}
4946 
4947 // Special Stack Slot Store
4948 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
4949     single_instruction;
4950     stkSlot : R(read);
4951     src     : C(read);
4952     MS      : R;
4953 %}
4954 
4955 // Special Stack Slot Store
4956 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
4957     instruction_count(2); multiple_bundles;
4958     stkSlot : R(read);
4959     src     : C(read);
4960     MS      : R(2);
4961 %}
4962 
4963 // Float Store
4964 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
4965     single_instruction;
4966     mem : R(read);
4967     src : C(read);
4968     MS  : R;
4969 %}
4970 
4971 // Float Store
4972 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
4973     single_instruction;
4974     mem : R(read);
4975     MS  : R;
4976 %}
4977 
4978 // Double Store
4979 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
4980     instruction_count(1);
4981     mem : R(read);
4982     src : C(read);
4983     MS  : R;
4984 %}
4985 
4986 // Double Store
4987 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
4988     single_instruction;
4989     mem : R(read);
4990     MS  : R;
4991 %}
4992 
4993 // Special Stack Slot Float Store
4994 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
4995     single_instruction;
4996     stkSlot : R(read);
4997     src     : C(read);
4998     MS      : R;
4999 %}
5000 
5001 // Special Stack Slot Double Store
5002 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5003     single_instruction;
5004     stkSlot : R(read);
5005     src     : C(read);
5006     MS      : R;
5007 %}
5008 
5009 // Integer Load (when sign bit propagation not needed)
5010 pipe_class iload_mem(iRegI dst, memory mem) %{
5011     single_instruction;
5012     mem : R(read);
5013     dst : C(write);
5014     MS  : R;
5015 %}
5016 
5017 // Integer Load from stack operand
5018 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5019     single_instruction;
5020     mem : R(read);
5021     dst : C(write);
5022     MS  : R;
5023 %}
5024 
5025 // Integer Load (when sign bit propagation or masking is needed)
5026 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5027     single_instruction;
5028     mem : R(read);
5029     dst : M(write);
5030     MS  : R;
5031 %}
5032 
5033 // Float Load
5034 pipe_class floadF_mem(regF dst, memory mem) %{
5035     single_instruction;
5036     mem : R(read);
5037     dst : M(write);
5038     MS  : R;
5039 %}
5040 
5041 // Float Load
5042 pipe_class floadD_mem(regD dst, memory mem) %{
5043     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5044     mem : R(read);
5045     dst : M(write);
5046     MS  : R;
5047 %}
5048 
5049 // Float Load
5050 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5051     single_instruction;
5052     stkSlot : R(read);
5053     dst : M(write);
5054     MS  : R;
5055 %}
5056 
5057 // Float Load
5058 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5059     single_instruction;
5060     stkSlot : R(read);
5061     dst : M(write);
5062     MS  : R;
5063 %}
5064 
5065 // Memory Nop
5066 pipe_class mem_nop() %{
5067     single_instruction;
5068     MS  : R;
5069 %}
5070 
5071 pipe_class sethi(iRegP dst, immI src) %{
5072     single_instruction;
5073     dst  : E(write);
5074     IALU : R;
5075 %}
5076 
5077 pipe_class loadPollP(iRegP poll) %{
5078     single_instruction;
5079     poll : R(read);
5080     MS   : R;
5081 %}
5082 
5083 pipe_class br(Universe br, label labl) %{
5084     single_instruction_with_delay_slot;
5085     BR  : R;
5086 %}
5087 
5088 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5089     single_instruction_with_delay_slot;
5090     cr    : E(read);
5091     BR    : R;
5092 %}
5093 
5094 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5095     single_instruction_with_delay_slot;
5096     op1 : E(read);
5097     BR  : R;
5098     MS  : R;
5099 %}
5100 
5101 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5102     single_instruction_with_delay_slot;
5103     cr    : E(read);
5104     BR    : R;
5105 %}
5106 
5107 pipe_class br_nop() %{
5108     single_instruction;
5109     BR  : R;
5110 %}
5111 
5112 pipe_class simple_call(method meth) %{
5113     instruction_count(2); multiple_bundles; force_serialization;
5114     fixed_latency(100);
5115     BR  : R(1);
5116     MS  : R(1);
5117     A0  : R(1);
5118 %}
5119 
5120 pipe_class compiled_call(method meth) %{
5121     instruction_count(1); multiple_bundles; force_serialization;
5122     fixed_latency(100);
5123     MS  : R(1);
5124 %}
5125 
5126 pipe_class call(method meth) %{
5127     instruction_count(0); multiple_bundles; force_serialization;
5128     fixed_latency(100);
5129 %}
5130 
5131 pipe_class tail_call(Universe ignore, label labl) %{
5132     single_instruction; has_delay_slot;
5133     fixed_latency(100);
5134     BR  : R(1);
5135     MS  : R(1);
5136 %}
5137 
5138 pipe_class ret(Universe ignore) %{
5139     single_instruction; has_delay_slot;
5140     BR  : R(1);
5141     MS  : R(1);
5142 %}
5143 
5144 pipe_class ret_poll(g3RegP poll) %{
5145     instruction_count(3); has_delay_slot;
5146     poll : E(read);
5147     MS   : R;
5148 %}
5149 
5150 // The real do-nothing guy
5151 pipe_class empty( ) %{
5152     instruction_count(0);
5153 %}
5154 
5155 pipe_class long_memory_op() %{
5156     instruction_count(0); multiple_bundles; force_serialization;
5157     fixed_latency(25);
5158     MS  : R(1);
5159 %}
5160 
5161 // Check-cast
5162 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5163     array : R(read);
5164     match  : R(read);
5165     IALU   : R(2);
5166     BR     : R(2);
5167     MS     : R;
5168 %}
5169 
5170 // Convert FPU flags into +1,0,-1
5171 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5172     src1  : E(read);
5173     src2  : E(read);
5174     dst   : E(write);
5175     FA    : R;
5176     MS    : R(2);
5177     BR    : R(2);
5178 %}
5179 
5180 // Compare for p < q, and conditionally add y
5181 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5182     p     : E(read);
5183     q     : E(read);
5184     y     : E(read);
5185     IALU  : R(3)
5186 %}
5187 
5188 // Perform a compare, then move conditionally in a branch delay slot.
5189 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5190     src2   : E(read);
5191     srcdst : E(read);
5192     IALU   : R;
5193     BR     : R;
5194 %}
5195 
5196 // Define the class for the Nop node
5197 define %{
5198    MachNop = ialu_nop;
5199 %}
5200 
5201 %}
5202 
5203 //----------INSTRUCTIONS-------------------------------------------------------
5204 
5205 //------------Special Stack Slot instructions - no match rules-----------------
5206 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5207   // No match rule to avoid chain rule match.
5208   effect(DEF dst, USE src);
5209   ins_cost(MEMORY_REF_COST);
5210   size(4);
5211   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5212   opcode(Assembler::ldf_op3);
5213   ins_encode(simple_form3_mem_reg(src, dst));
5214   ins_pipe(floadF_stk);
5215 %}
5216 
5217 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5218   // No match rule to avoid chain rule match.
5219   effect(DEF dst, USE src);
5220   ins_cost(MEMORY_REF_COST);
5221   size(4);
5222   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5223   opcode(Assembler::lddf_op3);
5224   ins_encode(simple_form3_mem_reg(src, dst));
5225   ins_pipe(floadD_stk);
5226 %}
5227 
5228 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5229   // No match rule to avoid chain rule match.
5230   effect(DEF dst, USE src);
5231   ins_cost(MEMORY_REF_COST);
5232   size(4);
5233   format %{ "STF    $src,$dst\t! regF to stkI" %}
5234   opcode(Assembler::stf_op3);
5235   ins_encode(simple_form3_mem_reg(dst, src));
5236   ins_pipe(fstoreF_stk_reg);
5237 %}
5238 
5239 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5240   // No match rule to avoid chain rule match.
5241   effect(DEF dst, USE src);
5242   ins_cost(MEMORY_REF_COST);
5243   size(4);
5244   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5245   opcode(Assembler::stdf_op3);
5246   ins_encode(simple_form3_mem_reg(dst, src));
5247   ins_pipe(fstoreD_stk_reg);
5248 %}
5249 
5250 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5251   effect(DEF dst, USE src);
5252   ins_cost(MEMORY_REF_COST*2);
5253   size(8);
5254   format %{ "STW    $src,$dst.hi\t! long\n\t"
5255             "STW    R_G0,$dst.lo" %}
5256   opcode(Assembler::stw_op3);
5257   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5258   ins_pipe(lstoreI_stk_reg);
5259 %}
5260 
5261 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5262   // No match rule to avoid chain rule match.
5263   effect(DEF dst, USE src);
5264   ins_cost(MEMORY_REF_COST);
5265   size(4);
5266   format %{ "STX    $src,$dst\t! regL to stkD" %}
5267   opcode(Assembler::stx_op3);
5268   ins_encode(simple_form3_mem_reg( dst, src ) );
5269   ins_pipe(istore_stk_reg);
5270 %}
5271 
5272 //---------- Chain stack slots between similar types --------
5273 
5274 // Load integer from stack slot
5275 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5276   match(Set dst src);
5277   ins_cost(MEMORY_REF_COST);
5278 
5279   size(4);
5280   format %{ "LDUW   $src,$dst\t!stk" %}
5281   opcode(Assembler::lduw_op3);
5282   ins_encode(simple_form3_mem_reg( src, dst ) );
5283   ins_pipe(iload_mem);
5284 %}
5285 
5286 // Store integer to stack slot
5287 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5288   match(Set dst src);
5289   ins_cost(MEMORY_REF_COST);
5290 
5291   size(4);
5292   format %{ "STW    $src,$dst\t!stk" %}
5293   opcode(Assembler::stw_op3);
5294   ins_encode(simple_form3_mem_reg( dst, src ) );
5295   ins_pipe(istore_mem_reg);
5296 %}
5297 
5298 // Load long from stack slot
5299 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5300   match(Set dst src);
5301 
5302   ins_cost(MEMORY_REF_COST);
5303   size(4);
5304   format %{ "LDX    $src,$dst\t! long" %}
5305   opcode(Assembler::ldx_op3);
5306   ins_encode(simple_form3_mem_reg( src, dst ) );
5307   ins_pipe(iload_mem);
5308 %}
5309 
5310 // Store long to stack slot
5311 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5312   match(Set dst src);
5313 
5314   ins_cost(MEMORY_REF_COST);
5315   size(4);
5316   format %{ "STX    $src,$dst\t! long" %}
5317   opcode(Assembler::stx_op3);
5318   ins_encode(simple_form3_mem_reg( dst, src ) );
5319   ins_pipe(istore_mem_reg);
5320 %}
5321 
5322 #ifdef _LP64
5323 // Load pointer from stack slot, 64-bit encoding
5324 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5325   match(Set dst src);
5326   ins_cost(MEMORY_REF_COST);
5327   size(4);
5328   format %{ "LDX    $src,$dst\t!ptr" %}
5329   opcode(Assembler::ldx_op3);
5330   ins_encode(simple_form3_mem_reg( src, dst ) );
5331   ins_pipe(iload_mem);
5332 %}
5333 
5334 // Store pointer to stack slot
5335 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5336   match(Set dst src);
5337   ins_cost(MEMORY_REF_COST);
5338   size(4);
5339   format %{ "STX    $src,$dst\t!ptr" %}
5340   opcode(Assembler::stx_op3);
5341   ins_encode(simple_form3_mem_reg( dst, src ) );
5342   ins_pipe(istore_mem_reg);
5343 %}
5344 #else // _LP64
5345 // Load pointer from stack slot, 32-bit encoding
5346 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5347   match(Set dst src);
5348   ins_cost(MEMORY_REF_COST);
5349   format %{ "LDUW   $src,$dst\t!ptr" %}
5350   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5351   ins_encode(simple_form3_mem_reg( src, dst ) );
5352   ins_pipe(iload_mem);
5353 %}
5354 
5355 // Store pointer to stack slot
5356 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5357   match(Set dst src);
5358   ins_cost(MEMORY_REF_COST);
5359   format %{ "STW    $src,$dst\t!ptr" %}
5360   opcode(Assembler::stw_op3, Assembler::ldst_op);
5361   ins_encode(simple_form3_mem_reg( dst, src ) );
5362   ins_pipe(istore_mem_reg);
5363 %}
5364 #endif // _LP64
5365 
5366 //------------Special Nop instructions for bundling - no match rules-----------
5367 // Nop using the A0 functional unit
5368 instruct Nop_A0() %{
5369   ins_cost(0);
5370 
5371   format %{ "NOP    ! Alu Pipeline" %}
5372   opcode(Assembler::or_op3, Assembler::arith_op);
5373   ins_encode( form2_nop() );
5374   ins_pipe(ialu_nop_A0);
5375 %}
5376 
5377 // Nop using the A1 functional unit
5378 instruct Nop_A1( ) %{
5379   ins_cost(0);
5380 
5381   format %{ "NOP    ! Alu Pipeline" %}
5382   opcode(Assembler::or_op3, Assembler::arith_op);
5383   ins_encode( form2_nop() );
5384   ins_pipe(ialu_nop_A1);
5385 %}
5386 
5387 // Nop using the memory functional unit
5388 instruct Nop_MS( ) %{
5389   ins_cost(0);
5390 
5391   format %{ "NOP    ! Memory Pipeline" %}
5392   ins_encode( emit_mem_nop );
5393   ins_pipe(mem_nop);
5394 %}
5395 
5396 // Nop using the floating add functional unit
5397 instruct Nop_FA( ) %{
5398   ins_cost(0);
5399 
5400   format %{ "NOP    ! Floating Add Pipeline" %}
5401   ins_encode( emit_fadd_nop );
5402   ins_pipe(fadd_nop);
5403 %}
5404 
5405 // Nop using the branch functional unit
5406 instruct Nop_BR( ) %{
5407   ins_cost(0);
5408 
5409   format %{ "NOP    ! Branch Pipeline" %}
5410   ins_encode( emit_br_nop );
5411   ins_pipe(br_nop);
5412 %}
5413 
5414 //----------Load/Store/Move Instructions---------------------------------------
5415 //----------Load Instructions--------------------------------------------------
5416 // Load Byte (8bit signed)
5417 instruct loadB(iRegI dst, memory mem) %{
5418   match(Set dst (LoadB mem));
5419   ins_cost(MEMORY_REF_COST);
5420 
5421   size(4);
5422   format %{ "LDSB   $mem,$dst\t! byte" %}
5423   ins_encode %{
5424     __ ldsb($mem$$Address, $dst$$Register);
5425   %}
5426   ins_pipe(iload_mask_mem);
5427 %}
5428 
5429 // Load Byte (8bit signed) into a Long Register
5430 instruct loadB2L(iRegL dst, memory mem) %{
5431   match(Set dst (ConvI2L (LoadB mem)));
5432   ins_cost(MEMORY_REF_COST);
5433 
5434   size(4);
5435   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5436   ins_encode %{
5437     __ ldsb($mem$$Address, $dst$$Register);
5438   %}
5439   ins_pipe(iload_mask_mem);
5440 %}
5441 
5442 // Load Unsigned Byte (8bit UNsigned) into an int reg
5443 instruct loadUB(iRegI dst, memory mem) %{
5444   match(Set dst (LoadUB mem));
5445   ins_cost(MEMORY_REF_COST);
5446 
5447   size(4);
5448   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5449   ins_encode %{
5450     __ ldub($mem$$Address, $dst$$Register);
5451   %}
5452   ins_pipe(iload_mem);
5453 %}
5454 
5455 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5456 instruct loadUB2L(iRegL dst, memory mem) %{
5457   match(Set dst (ConvI2L (LoadUB mem)));
5458   ins_cost(MEMORY_REF_COST);
5459 
5460   size(4);
5461   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5462   ins_encode %{
5463     __ ldub($mem$$Address, $dst$$Register);
5464   %}
5465   ins_pipe(iload_mem);
5466 %}
5467 
5468 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5469 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5470   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5471   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5472 
5473   size(2*4);
5474   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5475             "AND    $dst,$mask,$dst" %}
5476   ins_encode %{
5477     __ ldub($mem$$Address, $dst$$Register);
5478     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5479   %}
5480   ins_pipe(iload_mem);
5481 %}
5482 
5483 // Load Short (16bit signed)
5484 instruct loadS(iRegI dst, memory mem) %{
5485   match(Set dst (LoadS mem));
5486   ins_cost(MEMORY_REF_COST);
5487 
5488   size(4);
5489   format %{ "LDSH   $mem,$dst\t! short" %}
5490   ins_encode %{
5491     __ ldsh($mem$$Address, $dst$$Register);
5492   %}
5493   ins_pipe(iload_mask_mem);
5494 %}
5495 
5496 // Load Short (16 bit signed) to Byte (8 bit signed)
5497 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5498   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5499   ins_cost(MEMORY_REF_COST);
5500 
5501   size(4);
5502 
5503   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5504   ins_encode %{
5505     __ ldsb($mem$$Address, $dst$$Register, 1);
5506   %}
5507   ins_pipe(iload_mask_mem);
5508 %}
5509 
5510 // Load Short (16bit signed) into a Long Register
5511 instruct loadS2L(iRegL dst, memory mem) %{
5512   match(Set dst (ConvI2L (LoadS mem)));
5513   ins_cost(MEMORY_REF_COST);
5514 
5515   size(4);
5516   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5517   ins_encode %{
5518     __ ldsh($mem$$Address, $dst$$Register);
5519   %}
5520   ins_pipe(iload_mask_mem);
5521 %}
5522 
5523 // Load Unsigned Short/Char (16bit UNsigned)
5524 instruct loadUS(iRegI dst, memory mem) %{
5525   match(Set dst (LoadUS mem));
5526   ins_cost(MEMORY_REF_COST);
5527 
5528   size(4);
5529   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5530   ins_encode %{
5531     __ lduh($mem$$Address, $dst$$Register);
5532   %}
5533   ins_pipe(iload_mem);
5534 %}
5535 
5536 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5537 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5538   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5539   ins_cost(MEMORY_REF_COST);
5540 
5541   size(4);
5542   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5543   ins_encode %{
5544     __ ldsb($mem$$Address, $dst$$Register, 1);
5545   %}
5546   ins_pipe(iload_mask_mem);
5547 %}
5548 
5549 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5550 instruct loadUS2L(iRegL dst, memory mem) %{
5551   match(Set dst (ConvI2L (LoadUS mem)));
5552   ins_cost(MEMORY_REF_COST);
5553 
5554   size(4);
5555   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5556   ins_encode %{
5557     __ lduh($mem$$Address, $dst$$Register);
5558   %}
5559   ins_pipe(iload_mem);
5560 %}
5561 
5562 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5563 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5564   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5565   ins_cost(MEMORY_REF_COST);
5566 
5567   size(4);
5568   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5569   ins_encode %{
5570     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5571   %}
5572   ins_pipe(iload_mem);
5573 %}
5574 
5575 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5576 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5577   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5578   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5579 
5580   size(2*4);
5581   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5582             "AND    $dst,$mask,$dst" %}
5583   ins_encode %{
5584     Register Rdst = $dst$$Register;
5585     __ lduh($mem$$Address, Rdst);
5586     __ and3(Rdst, $mask$$constant, Rdst);
5587   %}
5588   ins_pipe(iload_mem);
5589 %}
5590 
5591 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5592 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5593   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5594   effect(TEMP dst, TEMP tmp);
5595   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5596 
5597   size((3+1)*4);  // set may use two instructions.
5598   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5599             "SET    $mask,$tmp\n\t"
5600             "AND    $dst,$tmp,$dst" %}
5601   ins_encode %{
5602     Register Rdst = $dst$$Register;
5603     Register Rtmp = $tmp$$Register;
5604     __ lduh($mem$$Address, Rdst);
5605     __ set($mask$$constant, Rtmp);
5606     __ and3(Rdst, Rtmp, Rdst);
5607   %}
5608   ins_pipe(iload_mem);
5609 %}
5610 
5611 // Load Integer
5612 instruct loadI(iRegI dst, memory mem) %{
5613   match(Set dst (LoadI mem));
5614   ins_cost(MEMORY_REF_COST);
5615 
5616   size(4);
5617   format %{ "LDUW   $mem,$dst\t! int" %}
5618   ins_encode %{
5619     __ lduw($mem$$Address, $dst$$Register);
5620   %}
5621   ins_pipe(iload_mem);
5622 %}
5623 
5624 // Load Integer to Byte (8 bit signed)
5625 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5626   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5627   ins_cost(MEMORY_REF_COST);
5628 
5629   size(4);
5630 
5631   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5632   ins_encode %{
5633     __ ldsb($mem$$Address, $dst$$Register, 3);
5634   %}
5635   ins_pipe(iload_mask_mem);
5636 %}
5637 
5638 // Load Integer to Unsigned Byte (8 bit UNsigned)
5639 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5640   match(Set dst (AndI (LoadI mem) mask));
5641   ins_cost(MEMORY_REF_COST);
5642 
5643   size(4);
5644 
5645   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5646   ins_encode %{
5647     __ ldub($mem$$Address, $dst$$Register, 3);
5648   %}
5649   ins_pipe(iload_mask_mem);
5650 %}
5651 
5652 // Load Integer to Short (16 bit signed)
5653 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5654   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5655   ins_cost(MEMORY_REF_COST);
5656 
5657   size(4);
5658 
5659   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5660   ins_encode %{
5661     __ ldsh($mem$$Address, $dst$$Register, 2);
5662   %}
5663   ins_pipe(iload_mask_mem);
5664 %}
5665 
5666 // Load Integer to Unsigned Short (16 bit UNsigned)
5667 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5668   match(Set dst (AndI (LoadI mem) mask));
5669   ins_cost(MEMORY_REF_COST);
5670 
5671   size(4);
5672 
5673   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5674   ins_encode %{
5675     __ lduh($mem$$Address, $dst$$Register, 2);
5676   %}
5677   ins_pipe(iload_mask_mem);
5678 %}
5679 
5680 // Load Integer into a Long Register
5681 instruct loadI2L(iRegL dst, memory mem) %{
5682   match(Set dst (ConvI2L (LoadI mem)));
5683   ins_cost(MEMORY_REF_COST);
5684 
5685   size(4);
5686   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5687   ins_encode %{
5688     __ ldsw($mem$$Address, $dst$$Register);
5689   %}
5690   ins_pipe(iload_mask_mem);
5691 %}
5692 
5693 // Load Integer with mask 0xFF into a Long Register
5694 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5695   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5696   ins_cost(MEMORY_REF_COST);
5697 
5698   size(4);
5699   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5700   ins_encode %{
5701     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5702   %}
5703   ins_pipe(iload_mem);
5704 %}
5705 
5706 // Load Integer with mask 0xFFFF into a Long Register
5707 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5708   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5709   ins_cost(MEMORY_REF_COST);
5710 
5711   size(4);
5712   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5713   ins_encode %{
5714     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5715   %}
5716   ins_pipe(iload_mem);
5717 %}
5718 
5719 // Load Integer with a 13-bit mask into a Long Register
5720 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5721   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5722   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5723 
5724   size(2*4);
5725   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
5726             "AND    $dst,$mask,$dst" %}
5727   ins_encode %{
5728     Register Rdst = $dst$$Register;
5729     __ lduw($mem$$Address, Rdst);
5730     __ and3(Rdst, $mask$$constant, Rdst);
5731   %}
5732   ins_pipe(iload_mem);
5733 %}
5734 
5735 // Load Integer with a 32-bit mask into a Long Register
5736 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5737   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5738   effect(TEMP dst, TEMP tmp);
5739   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5740 
5741   size((3+1)*4);  // set may use two instructions.
5742   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
5743             "SET    $mask,$tmp\n\t"
5744             "AND    $dst,$tmp,$dst" %}
5745   ins_encode %{
5746     Register Rdst = $dst$$Register;
5747     Register Rtmp = $tmp$$Register;
5748     __ lduw($mem$$Address, Rdst);
5749     __ set($mask$$constant, Rtmp);
5750     __ and3(Rdst, Rtmp, Rdst);
5751   %}
5752   ins_pipe(iload_mem);
5753 %}
5754 
5755 // Load Unsigned Integer into a Long Register
5756 instruct loadUI2L(iRegL dst, memory mem) %{
5757   match(Set dst (LoadUI2L mem));
5758   ins_cost(MEMORY_REF_COST);
5759 
5760   size(4);
5761   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5762   ins_encode %{
5763     __ lduw($mem$$Address, $dst$$Register);
5764   %}
5765   ins_pipe(iload_mem);
5766 %}
5767 
5768 // Load Long - aligned
5769 instruct loadL(iRegL dst, memory mem ) %{
5770   match(Set dst (LoadL mem));
5771   ins_cost(MEMORY_REF_COST);
5772 
5773   size(4);
5774   format %{ "LDX    $mem,$dst\t! long" %}
5775   ins_encode %{
5776     __ ldx($mem$$Address, $dst$$Register);
5777   %}
5778   ins_pipe(iload_mem);
5779 %}
5780 
5781 // Load Long - UNaligned
5782 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5783   match(Set dst (LoadL_unaligned mem));
5784   effect(KILL tmp);
5785   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5786   size(16);
5787   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5788           "\tLDUW   $mem  ,$dst\n"
5789           "\tSLLX   #32, $dst, $dst\n"
5790           "\tOR     $dst, R_O7, $dst" %}
5791   opcode(Assembler::lduw_op3);
5792   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5793   ins_pipe(iload_mem);
5794 %}
5795 
5796 // Load Aligned Packed Byte into a Double Register
5797 instruct loadA8B(regD dst, memory mem) %{
5798   match(Set dst (Load8B mem));
5799   ins_cost(MEMORY_REF_COST);
5800   size(4);
5801   format %{ "LDDF   $mem,$dst\t! packed8B" %}
5802   opcode(Assembler::lddf_op3);
5803   ins_encode(simple_form3_mem_reg( mem, dst ) );
5804   ins_pipe(floadD_mem);
5805 %}
5806 
5807 // Load Aligned Packed Char into a Double Register
5808 instruct loadA4C(regD dst, memory mem) %{
5809   match(Set dst (Load4C mem));
5810   ins_cost(MEMORY_REF_COST);
5811   size(4);
5812   format %{ "LDDF   $mem,$dst\t! packed4C" %}
5813   opcode(Assembler::lddf_op3);
5814   ins_encode(simple_form3_mem_reg( mem, dst ) );
5815   ins_pipe(floadD_mem);
5816 %}
5817 
5818 // Load Aligned Packed Short into a Double Register
5819 instruct loadA4S(regD dst, memory mem) %{
5820   match(Set dst (Load4S mem));
5821   ins_cost(MEMORY_REF_COST);
5822   size(4);
5823   format %{ "LDDF   $mem,$dst\t! packed4S" %}
5824   opcode(Assembler::lddf_op3);
5825   ins_encode(simple_form3_mem_reg( mem, dst ) );
5826   ins_pipe(floadD_mem);
5827 %}
5828 
5829 // Load Aligned Packed Int into a Double Register
5830 instruct loadA2I(regD dst, memory mem) %{
5831   match(Set dst (Load2I mem));
5832   ins_cost(MEMORY_REF_COST);
5833   size(4);
5834   format %{ "LDDF   $mem,$dst\t! packed2I" %}
5835   opcode(Assembler::lddf_op3);
5836   ins_encode(simple_form3_mem_reg( mem, dst ) );
5837   ins_pipe(floadD_mem);
5838 %}
5839 
5840 // Load Range
5841 instruct loadRange(iRegI dst, memory mem) %{
5842   match(Set dst (LoadRange mem));
5843   ins_cost(MEMORY_REF_COST);
5844 
5845   size(4);
5846   format %{ "LDUW   $mem,$dst\t! range" %}
5847   opcode(Assembler::lduw_op3);
5848   ins_encode(simple_form3_mem_reg( mem, dst ) );
5849   ins_pipe(iload_mem);
5850 %}
5851 
5852 // Load Integer into %f register (for fitos/fitod)
5853 instruct loadI_freg(regF dst, memory mem) %{
5854   match(Set dst (LoadI mem));
5855   ins_cost(MEMORY_REF_COST);
5856   size(4);
5857 
5858   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5859   opcode(Assembler::ldf_op3);
5860   ins_encode(simple_form3_mem_reg( mem, dst ) );
5861   ins_pipe(floadF_mem);
5862 %}
5863 
5864 // Load Pointer
5865 instruct loadP(iRegP dst, memory mem) %{
5866   match(Set dst (LoadP mem));
5867   ins_cost(MEMORY_REF_COST);
5868   size(4);
5869 
5870 #ifndef _LP64
5871   format %{ "LDUW   $mem,$dst\t! ptr" %}
5872   ins_encode %{
5873     __ lduw($mem$$Address, $dst$$Register);
5874   %}
5875 #else
5876   format %{ "LDX    $mem,$dst\t! ptr" %}
5877   ins_encode %{
5878     __ ldx($mem$$Address, $dst$$Register);
5879   %}
5880 #endif
5881   ins_pipe(iload_mem);
5882 %}
5883 
5884 // Load Compressed Pointer
5885 instruct loadN(iRegN dst, memory mem) %{
5886   match(Set dst (LoadN mem));
5887   ins_cost(MEMORY_REF_COST);
5888   size(4);
5889 
5890   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5891   ins_encode %{
5892     __ lduw($mem$$Address, $dst$$Register);
5893   %}
5894   ins_pipe(iload_mem);
5895 %}
5896 
5897 // Load Klass Pointer
5898 instruct loadKlass(iRegP dst, memory mem) %{
5899   match(Set dst (LoadKlass mem));
5900   ins_cost(MEMORY_REF_COST);
5901   size(4);
5902 
5903 #ifndef _LP64
5904   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5905   ins_encode %{
5906     __ lduw($mem$$Address, $dst$$Register);
5907   %}
5908 #else
5909   format %{ "LDX    $mem,$dst\t! klass ptr" %}
5910   ins_encode %{
5911     __ ldx($mem$$Address, $dst$$Register);
5912   %}
5913 #endif
5914   ins_pipe(iload_mem);
5915 %}
5916 
5917 // Load narrow Klass Pointer
5918 instruct loadNKlass(iRegN dst, memory mem) %{
5919   match(Set dst (LoadNKlass mem));
5920   ins_cost(MEMORY_REF_COST);
5921   size(4);
5922 
5923   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
5924   ins_encode %{
5925     __ lduw($mem$$Address, $dst$$Register);
5926   %}
5927   ins_pipe(iload_mem);
5928 %}
5929 
5930 // Load Double
5931 instruct loadD(regD dst, memory mem) %{
5932   match(Set dst (LoadD mem));
5933   ins_cost(MEMORY_REF_COST);
5934 
5935   size(4);
5936   format %{ "LDDF   $mem,$dst" %}
5937   opcode(Assembler::lddf_op3);
5938   ins_encode(simple_form3_mem_reg( mem, dst ) );
5939   ins_pipe(floadD_mem);
5940 %}
5941 
5942 // Load Double - UNaligned
5943 instruct loadD_unaligned(regD_low dst, memory mem ) %{
5944   match(Set dst (LoadD_unaligned mem));
5945   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5946   size(8);
5947   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
5948           "\tLDF    $mem+4,$dst.lo\t!" %}
5949   opcode(Assembler::ldf_op3);
5950   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
5951   ins_pipe(iload_mem);
5952 %}
5953 
5954 // Load Float
5955 instruct loadF(regF dst, memory mem) %{
5956   match(Set dst (LoadF mem));
5957   ins_cost(MEMORY_REF_COST);
5958 
5959   size(4);
5960   format %{ "LDF    $mem,$dst" %}
5961   opcode(Assembler::ldf_op3);
5962   ins_encode(simple_form3_mem_reg( mem, dst ) );
5963   ins_pipe(floadF_mem);
5964 %}
5965 
5966 // Load Constant
5967 instruct loadConI( iRegI dst, immI src ) %{
5968   match(Set dst src);
5969   ins_cost(DEFAULT_COST * 3/2);
5970   format %{ "SET    $src,$dst" %}
5971   ins_encode( Set32(src, dst) );
5972   ins_pipe(ialu_hi_lo_reg);
5973 %}
5974 
5975 instruct loadConI13( iRegI dst, immI13 src ) %{
5976   match(Set dst src);
5977 
5978   size(4);
5979   format %{ "MOV    $src,$dst" %}
5980   ins_encode( Set13( src, dst ) );
5981   ins_pipe(ialu_imm);
5982 %}
5983 
5984 instruct loadConP(iRegP dst, immP src) %{
5985   match(Set dst src);
5986   ins_cost(DEFAULT_COST * 3/2);
5987   format %{ "SET    $src,$dst\t!ptr" %}
5988   // This rule does not use "expand" unlike loadConI because then
5989   // the result type is not known to be an Oop.  An ADLC
5990   // enhancement will be needed to make that work - not worth it!
5991 
5992   ins_encode( SetPtr( src, dst ) );
5993   ins_pipe(loadConP);
5994 
5995 %}
5996 
5997 instruct loadConP0(iRegP dst, immP0 src) %{
5998   match(Set dst src);
5999 
6000   size(4);
6001   format %{ "CLR    $dst\t!ptr" %}
6002   ins_encode( SetNull( dst ) );
6003   ins_pipe(ialu_imm);
6004 %}
6005 
6006 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6007   match(Set dst src);
6008   ins_cost(DEFAULT_COST);
6009   format %{ "SET    $src,$dst\t!ptr" %}
6010   ins_encode %{
6011     AddressLiteral polling_page(os::get_polling_page());
6012     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6013   %}
6014   ins_pipe(loadConP_poll);
6015 %}
6016 
6017 instruct loadConN0(iRegN dst, immN0 src) %{
6018   match(Set dst src);
6019 
6020   size(4);
6021   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6022   ins_encode( SetNull( dst ) );
6023   ins_pipe(ialu_imm);
6024 %}
6025 
6026 instruct loadConN(iRegN dst, immN src) %{
6027   match(Set dst src);
6028   ins_cost(DEFAULT_COST * 3/2);
6029   format %{ "SET    $src,$dst\t! compressed ptr" %}
6030   ins_encode %{
6031     Register dst = $dst$$Register;
6032     __ set_narrow_oop((jobject)$src$$constant, dst);
6033   %}
6034   ins_pipe(ialu_hi_lo_reg);
6035 %}
6036 
6037 instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{
6038   // %%% maybe this should work like loadConD
6039   match(Set dst src);
6040   effect(KILL tmp);
6041   ins_cost(DEFAULT_COST * 4);
6042   format %{ "SET64   $src,$dst KILL $tmp\t! long" %}
6043   ins_encode( LdImmL(src, dst, tmp) );
6044   ins_pipe(loadConL);
6045 %}
6046 
6047 instruct loadConL0( iRegL dst, immL0 src ) %{
6048   match(Set dst src);
6049   ins_cost(DEFAULT_COST);
6050   size(4);
6051   format %{ "CLR    $dst\t! long" %}
6052   ins_encode( Set13( src, dst ) );
6053   ins_pipe(ialu_imm);
6054 %}
6055 
6056 instruct loadConL13( iRegL dst, immL13 src ) %{
6057   match(Set dst src);
6058   ins_cost(DEFAULT_COST * 2);
6059 
6060   size(4);
6061   format %{ "MOV    $src,$dst\t! long" %}
6062   ins_encode( Set13( src, dst ) );
6063   ins_pipe(ialu_imm);
6064 %}
6065 
6066 instruct loadConF(regF dst, immF src, o7RegP tmp) %{
6067   match(Set dst src);
6068   effect(KILL tmp);
6069 
6070 #ifdef _LP64
6071   size(8*4);
6072 #else
6073   size(2*4);
6074 #endif
6075 
6076   format %{ "SETHI  hi(&$src),$tmp\t!get float $src from table\n\t"
6077             "LDF    [$tmp+lo(&$src)],$dst" %}
6078   ins_encode %{
6079     address float_address = __ float_constant($src$$constant);
6080     RelocationHolder rspec = internal_word_Relocation::spec(float_address);
6081     AddressLiteral addrlit(float_address, rspec);
6082 
6083     __ sethi(addrlit, $tmp$$Register);
6084     __ ldf(FloatRegisterImpl::S, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
6085   %}
6086   ins_pipe(loadConFD);
6087 %}
6088 
6089 instruct loadConD(regD dst, immD src, o7RegP tmp) %{
6090   match(Set dst src);
6091   effect(KILL tmp);
6092 
6093 #ifdef _LP64
6094   size(8*4);
6095 #else
6096   size(2*4);
6097 #endif
6098 
6099   format %{ "SETHI  hi(&$src),$tmp\t!get double $src from table\n\t"
6100             "LDDF   [$tmp+lo(&$src)],$dst" %}
6101   ins_encode %{
6102     address double_address = __ double_constant($src$$constant);
6103     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
6104     AddressLiteral addrlit(double_address, rspec);
6105 
6106     __ sethi(addrlit, $tmp$$Register);
6107     // XXX This is a quick fix for 6833573.
6108     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
6109     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
6110   %}
6111   ins_pipe(loadConFD);
6112 %}
6113 
6114 // Prefetch instructions.
6115 // Must be safe to execute with invalid address (cannot fault).
6116 
6117 instruct prefetchr( memory mem ) %{
6118   match( PrefetchRead mem );
6119   ins_cost(MEMORY_REF_COST);
6120 
6121   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6122   opcode(Assembler::prefetch_op3);
6123   ins_encode( form3_mem_prefetch_read( mem ) );
6124   ins_pipe(iload_mem);
6125 %}
6126 
6127 instruct prefetchw( memory mem ) %{
6128   predicate(AllocatePrefetchStyle != 3 );
6129   match( PrefetchWrite mem );
6130   ins_cost(MEMORY_REF_COST);
6131 
6132   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6133   opcode(Assembler::prefetch_op3);
6134   ins_encode( form3_mem_prefetch_write( mem ) );
6135   ins_pipe(iload_mem);
6136 %}
6137 
6138 // Use BIS instruction to prefetch.
6139 instruct prefetchw_bis( memory mem ) %{
6140   predicate(AllocatePrefetchStyle == 3);
6141   match( PrefetchWrite mem );
6142   ins_cost(MEMORY_REF_COST);
6143 
6144   format %{ "STXA   G0,$mem\t! // Block initializing store" %}
6145   ins_encode %{
6146      Register base = as_Register($mem$$base);
6147      int disp = $mem$$disp;
6148      if (disp != 0) {
6149        __ add(base, AllocatePrefetchStepSize, base);
6150      }
6151      __ stxa(G0, base, G0, ASI_BLK_INIT_QUAD_LDD_P);
6152   %}
6153   ins_pipe(istore_mem_reg);
6154 %}
6155 
6156 //----------Store Instructions-------------------------------------------------
6157 // Store Byte
6158 instruct storeB(memory mem, iRegI src) %{
6159   match(Set mem (StoreB mem src));
6160   ins_cost(MEMORY_REF_COST);
6161 
6162   size(4);
6163   format %{ "STB    $src,$mem\t! byte" %}
6164   opcode(Assembler::stb_op3);
6165   ins_encode(simple_form3_mem_reg( mem, src ) );
6166   ins_pipe(istore_mem_reg);
6167 %}
6168 
6169 instruct storeB0(memory mem, immI0 src) %{
6170   match(Set mem (StoreB mem src));
6171   ins_cost(MEMORY_REF_COST);
6172 
6173   size(4);
6174   format %{ "STB    $src,$mem\t! byte" %}
6175   opcode(Assembler::stb_op3);
6176   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6177   ins_pipe(istore_mem_zero);
6178 %}
6179 
6180 instruct storeCM0(memory mem, immI0 src) %{
6181   match(Set mem (StoreCM mem src));
6182   ins_cost(MEMORY_REF_COST);
6183 
6184   size(4);
6185   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6186   opcode(Assembler::stb_op3);
6187   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6188   ins_pipe(istore_mem_zero);
6189 %}
6190 
6191 // Store Char/Short
6192 instruct storeC(memory mem, iRegI src) %{
6193   match(Set mem (StoreC mem src));
6194   ins_cost(MEMORY_REF_COST);
6195 
6196   size(4);
6197   format %{ "STH    $src,$mem\t! short" %}
6198   opcode(Assembler::sth_op3);
6199   ins_encode(simple_form3_mem_reg( mem, src ) );
6200   ins_pipe(istore_mem_reg);
6201 %}
6202 
6203 instruct storeC0(memory mem, immI0 src) %{
6204   match(Set mem (StoreC mem src));
6205   ins_cost(MEMORY_REF_COST);
6206 
6207   size(4);
6208   format %{ "STH    $src,$mem\t! short" %}
6209   opcode(Assembler::sth_op3);
6210   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6211   ins_pipe(istore_mem_zero);
6212 %}
6213 
6214 // Store Integer
6215 instruct storeI(memory mem, iRegI src) %{
6216   match(Set mem (StoreI mem src));
6217   ins_cost(MEMORY_REF_COST);
6218 
6219   size(4);
6220   format %{ "STW    $src,$mem" %}
6221   opcode(Assembler::stw_op3);
6222   ins_encode(simple_form3_mem_reg( mem, src ) );
6223   ins_pipe(istore_mem_reg);
6224 %}
6225 
6226 // Store Long
6227 instruct storeL(memory mem, iRegL src) %{
6228   match(Set mem (StoreL mem src));
6229   ins_cost(MEMORY_REF_COST);
6230   size(4);
6231   format %{ "STX    $src,$mem\t! long" %}
6232   opcode(Assembler::stx_op3);
6233   ins_encode(simple_form3_mem_reg( mem, src ) );
6234   ins_pipe(istore_mem_reg);
6235 %}
6236 
6237 instruct storeI0(memory mem, immI0 src) %{
6238   match(Set mem (StoreI mem src));
6239   ins_cost(MEMORY_REF_COST);
6240 
6241   size(4);
6242   format %{ "STW    $src,$mem" %}
6243   opcode(Assembler::stw_op3);
6244   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6245   ins_pipe(istore_mem_zero);
6246 %}
6247 
6248 instruct storeL0(memory mem, immL0 src) %{
6249   match(Set mem (StoreL mem src));
6250   ins_cost(MEMORY_REF_COST);
6251 
6252   size(4);
6253   format %{ "STX    $src,$mem" %}
6254   opcode(Assembler::stx_op3);
6255   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6256   ins_pipe(istore_mem_zero);
6257 %}
6258 
6259 // Store Integer from float register (used after fstoi)
6260 instruct storeI_Freg(memory mem, regF src) %{
6261   match(Set mem (StoreI mem src));
6262   ins_cost(MEMORY_REF_COST);
6263 
6264   size(4);
6265   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6266   opcode(Assembler::stf_op3);
6267   ins_encode(simple_form3_mem_reg( mem, src ) );
6268   ins_pipe(fstoreF_mem_reg);
6269 %}
6270 
6271 // Store Pointer
6272 instruct storeP(memory dst, sp_ptr_RegP src) %{
6273   match(Set dst (StoreP dst src));
6274   ins_cost(MEMORY_REF_COST);
6275   size(4);
6276 
6277 #ifndef _LP64
6278   format %{ "STW    $src,$dst\t! ptr" %}
6279   opcode(Assembler::stw_op3, 0, REGP_OP);
6280 #else
6281   format %{ "STX    $src,$dst\t! ptr" %}
6282   opcode(Assembler::stx_op3, 0, REGP_OP);
6283 #endif
6284   ins_encode( form3_mem_reg( dst, src ) );
6285   ins_pipe(istore_mem_spORreg);
6286 %}
6287 
6288 instruct storeP0(memory dst, immP0 src) %{
6289   match(Set dst (StoreP dst src));
6290   ins_cost(MEMORY_REF_COST);
6291   size(4);
6292 
6293 #ifndef _LP64
6294   format %{ "STW    $src,$dst\t! ptr" %}
6295   opcode(Assembler::stw_op3, 0, REGP_OP);
6296 #else
6297   format %{ "STX    $src,$dst\t! ptr" %}
6298   opcode(Assembler::stx_op3, 0, REGP_OP);
6299 #endif
6300   ins_encode( form3_mem_reg( dst, R_G0 ) );
6301   ins_pipe(istore_mem_zero);
6302 %}
6303 
6304 // Store Compressed Pointer
6305 instruct storeN(memory dst, iRegN src) %{
6306    match(Set dst (StoreN dst src));
6307    ins_cost(MEMORY_REF_COST);
6308    size(4);
6309 
6310    format %{ "STW    $src,$dst\t! compressed ptr" %}
6311    ins_encode %{
6312      Register base = as_Register($dst$$base);
6313      Register index = as_Register($dst$$index);
6314      Register src = $src$$Register;
6315      if (index != G0) {
6316        __ stw(src, base, index);
6317      } else {
6318        __ stw(src, base, $dst$$disp);
6319      }
6320    %}
6321    ins_pipe(istore_mem_spORreg);
6322 %}
6323 
6324 instruct storeN0(memory dst, immN0 src) %{
6325    match(Set dst (StoreN dst src));
6326    ins_cost(MEMORY_REF_COST);
6327    size(4);
6328 
6329    format %{ "STW    $src,$dst\t! compressed ptr" %}
6330    ins_encode %{
6331      Register base = as_Register($dst$$base);
6332      Register index = as_Register($dst$$index);
6333      if (index != G0) {
6334        __ stw(0, base, index);
6335      } else {
6336        __ stw(0, base, $dst$$disp);
6337      }
6338    %}
6339    ins_pipe(istore_mem_zero);
6340 %}
6341 
6342 // Store Double
6343 instruct storeD( memory mem, regD src) %{
6344   match(Set mem (StoreD mem src));
6345   ins_cost(MEMORY_REF_COST);
6346 
6347   size(4);
6348   format %{ "STDF   $src,$mem" %}
6349   opcode(Assembler::stdf_op3);
6350   ins_encode(simple_form3_mem_reg( mem, src ) );
6351   ins_pipe(fstoreD_mem_reg);
6352 %}
6353 
6354 instruct storeD0( memory mem, immD0 src) %{
6355   match(Set mem (StoreD mem src));
6356   ins_cost(MEMORY_REF_COST);
6357 
6358   size(4);
6359   format %{ "STX    $src,$mem" %}
6360   opcode(Assembler::stx_op3);
6361   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6362   ins_pipe(fstoreD_mem_zero);
6363 %}
6364 
6365 // Store Float
6366 instruct storeF( memory mem, regF src) %{
6367   match(Set mem (StoreF mem src));
6368   ins_cost(MEMORY_REF_COST);
6369 
6370   size(4);
6371   format %{ "STF    $src,$mem" %}
6372   opcode(Assembler::stf_op3);
6373   ins_encode(simple_form3_mem_reg( mem, src ) );
6374   ins_pipe(fstoreF_mem_reg);
6375 %}
6376 
6377 instruct storeF0( memory mem, immF0 src) %{
6378   match(Set mem (StoreF mem src));
6379   ins_cost(MEMORY_REF_COST);
6380 
6381   size(4);
6382   format %{ "STW    $src,$mem\t! storeF0" %}
6383   opcode(Assembler::stw_op3);
6384   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6385   ins_pipe(fstoreF_mem_zero);
6386 %}
6387 
6388 // Store Aligned Packed Bytes in Double register to memory
6389 instruct storeA8B(memory mem, regD src) %{
6390   match(Set mem (Store8B mem src));
6391   ins_cost(MEMORY_REF_COST);
6392   size(4);
6393   format %{ "STDF   $src,$mem\t! packed8B" %}
6394   opcode(Assembler::stdf_op3);
6395   ins_encode(simple_form3_mem_reg( mem, src ) );
6396   ins_pipe(fstoreD_mem_reg);
6397 %}
6398 
6399 // Convert oop pointer into compressed form
6400 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6401   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6402   match(Set dst (EncodeP src));
6403   format %{ "encode_heap_oop $src, $dst" %}
6404   ins_encode %{
6405     __ encode_heap_oop($src$$Register, $dst$$Register);
6406   %}
6407   ins_pipe(ialu_reg);
6408 %}
6409 
6410 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6411   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6412   match(Set dst (EncodeP src));
6413   format %{ "encode_heap_oop_not_null $src, $dst" %}
6414   ins_encode %{
6415     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6416   %}
6417   ins_pipe(ialu_reg);
6418 %}
6419 
6420 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6421   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6422             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6423   match(Set dst (DecodeN src));
6424   format %{ "decode_heap_oop $src, $dst" %}
6425   ins_encode %{
6426     __ decode_heap_oop($src$$Register, $dst$$Register);
6427   %}
6428   ins_pipe(ialu_reg);
6429 %}
6430 
6431 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6432   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6433             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6434   match(Set dst (DecodeN src));
6435   format %{ "decode_heap_oop_not_null $src, $dst" %}
6436   ins_encode %{
6437     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6438   %}
6439   ins_pipe(ialu_reg);
6440 %}
6441 
6442 
6443 // Store Zero into Aligned Packed Bytes
6444 instruct storeA8B0(memory mem, immI0 zero) %{
6445   match(Set mem (Store8B mem zero));
6446   ins_cost(MEMORY_REF_COST);
6447   size(4);
6448   format %{ "STX    $zero,$mem\t! packed8B" %}
6449   opcode(Assembler::stx_op3);
6450   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6451   ins_pipe(fstoreD_mem_zero);
6452 %}
6453 
6454 // Store Aligned Packed Chars/Shorts in Double register to memory
6455 instruct storeA4C(memory mem, regD src) %{
6456   match(Set mem (Store4C mem src));
6457   ins_cost(MEMORY_REF_COST);
6458   size(4);
6459   format %{ "STDF   $src,$mem\t! packed4C" %}
6460   opcode(Assembler::stdf_op3);
6461   ins_encode(simple_form3_mem_reg( mem, src ) );
6462   ins_pipe(fstoreD_mem_reg);
6463 %}
6464 
6465 // Store Zero into Aligned Packed Chars/Shorts
6466 instruct storeA4C0(memory mem, immI0 zero) %{
6467   match(Set mem (Store4C mem (Replicate4C zero)));
6468   ins_cost(MEMORY_REF_COST);
6469   size(4);
6470   format %{ "STX    $zero,$mem\t! packed4C" %}
6471   opcode(Assembler::stx_op3);
6472   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6473   ins_pipe(fstoreD_mem_zero);
6474 %}
6475 
6476 // Store Aligned Packed Ints in Double register to memory
6477 instruct storeA2I(memory mem, regD src) %{
6478   match(Set mem (Store2I mem src));
6479   ins_cost(MEMORY_REF_COST);
6480   size(4);
6481   format %{ "STDF   $src,$mem\t! packed2I" %}
6482   opcode(Assembler::stdf_op3);
6483   ins_encode(simple_form3_mem_reg( mem, src ) );
6484   ins_pipe(fstoreD_mem_reg);
6485 %}
6486 
6487 // Store Zero into Aligned Packed Ints
6488 instruct storeA2I0(memory mem, immI0 zero) %{
6489   match(Set mem (Store2I mem zero));
6490   ins_cost(MEMORY_REF_COST);
6491   size(4);
6492   format %{ "STX    $zero,$mem\t! packed2I" %}
6493   opcode(Assembler::stx_op3);
6494   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6495   ins_pipe(fstoreD_mem_zero);
6496 %}
6497 
6498 
6499 //----------MemBar Instructions-----------------------------------------------
6500 // Memory barrier flavors
6501 
6502 instruct membar_acquire() %{
6503   match(MemBarAcquire);
6504   ins_cost(4*MEMORY_REF_COST);
6505 
6506   size(0);
6507   format %{ "MEMBAR-acquire" %}
6508   ins_encode( enc_membar_acquire );
6509   ins_pipe(long_memory_op);
6510 %}
6511 
6512 instruct membar_acquire_lock() %{
6513   match(MemBarAcquire);
6514   predicate(Matcher::prior_fast_lock(n));
6515   ins_cost(0);
6516 
6517   size(0);
6518   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6519   ins_encode( );
6520   ins_pipe(empty);
6521 %}
6522 
6523 instruct membar_release() %{
6524   match(MemBarRelease);
6525   ins_cost(4*MEMORY_REF_COST);
6526 
6527   size(0);
6528   format %{ "MEMBAR-release" %}
6529   ins_encode( enc_membar_release );
6530   ins_pipe(long_memory_op);
6531 %}
6532 
6533 instruct membar_release_lock() %{
6534   match(MemBarRelease);
6535   predicate(Matcher::post_fast_unlock(n));
6536   ins_cost(0);
6537 
6538   size(0);
6539   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6540   ins_encode( );
6541   ins_pipe(empty);
6542 %}
6543 
6544 instruct membar_volatile() %{
6545   match(MemBarVolatile);
6546   ins_cost(4*MEMORY_REF_COST);
6547 
6548   size(4);
6549   format %{ "MEMBAR-volatile" %}
6550   ins_encode( enc_membar_volatile );
6551   ins_pipe(long_memory_op);
6552 %}
6553 
6554 instruct unnecessary_membar_volatile() %{
6555   match(MemBarVolatile);
6556   predicate(Matcher::post_store_load_barrier(n));
6557   ins_cost(0);
6558 
6559   size(0);
6560   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6561   ins_encode( );
6562   ins_pipe(empty);
6563 %}
6564 
6565 //----------Register Move Instructions-----------------------------------------
6566 instruct roundDouble_nop(regD dst) %{
6567   match(Set dst (RoundDouble dst));
6568   ins_cost(0);
6569   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6570   ins_encode( );
6571   ins_pipe(empty);
6572 %}
6573 
6574 
6575 instruct roundFloat_nop(regF dst) %{
6576   match(Set dst (RoundFloat dst));
6577   ins_cost(0);
6578   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6579   ins_encode( );
6580   ins_pipe(empty);
6581 %}
6582 
6583 
6584 // Cast Index to Pointer for unsafe natives
6585 instruct castX2P(iRegX src, iRegP dst) %{
6586   match(Set dst (CastX2P src));
6587 
6588   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6589   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6590   ins_pipe(ialu_reg);
6591 %}
6592 
6593 // Cast Pointer to Index for unsafe natives
6594 instruct castP2X(iRegP src, iRegX dst) %{
6595   match(Set dst (CastP2X src));
6596 
6597   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6598   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6599   ins_pipe(ialu_reg);
6600 %}
6601 
6602 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6603   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6604   match(Set stkSlot src);   // chain rule
6605   ins_cost(MEMORY_REF_COST);
6606   format %{ "STDF   $src,$stkSlot\t!stk" %}
6607   opcode(Assembler::stdf_op3);
6608   ins_encode(simple_form3_mem_reg(stkSlot, src));
6609   ins_pipe(fstoreD_stk_reg);
6610 %}
6611 
6612 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6613   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6614   match(Set dst stkSlot);   // chain rule
6615   ins_cost(MEMORY_REF_COST);
6616   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6617   opcode(Assembler::lddf_op3);
6618   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6619   ins_pipe(floadD_stk);
6620 %}
6621 
6622 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6623   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6624   match(Set stkSlot src);   // chain rule
6625   ins_cost(MEMORY_REF_COST);
6626   format %{ "STF   $src,$stkSlot\t!stk" %}
6627   opcode(Assembler::stf_op3);
6628   ins_encode(simple_form3_mem_reg(stkSlot, src));
6629   ins_pipe(fstoreF_stk_reg);
6630 %}
6631 
6632 //----------Conditional Move---------------------------------------------------
6633 // Conditional move
6634 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6635   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6636   ins_cost(150);
6637   format %{ "MOV$cmp $pcc,$src,$dst" %}
6638   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6639   ins_pipe(ialu_reg);
6640 %}
6641 
6642 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6643   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6644   ins_cost(140);
6645   format %{ "MOV$cmp $pcc,$src,$dst" %}
6646   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6647   ins_pipe(ialu_imm);
6648 %}
6649 
6650 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6651   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6652   ins_cost(150);
6653   size(4);
6654   format %{ "MOV$cmp  $icc,$src,$dst" %}
6655   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6656   ins_pipe(ialu_reg);
6657 %}
6658 
6659 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6660   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6661   ins_cost(140);
6662   size(4);
6663   format %{ "MOV$cmp  $icc,$src,$dst" %}
6664   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6665   ins_pipe(ialu_imm);
6666 %}
6667 
6668 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6669   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6670   ins_cost(150);
6671   size(4);
6672   format %{ "MOV$cmp  $icc,$src,$dst" %}
6673   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6674   ins_pipe(ialu_reg);
6675 %}
6676 
6677 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6678   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6679   ins_cost(140);
6680   size(4);
6681   format %{ "MOV$cmp  $icc,$src,$dst" %}
6682   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6683   ins_pipe(ialu_imm);
6684 %}
6685 
6686 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6687   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6688   ins_cost(150);
6689   size(4);
6690   format %{ "MOV$cmp $fcc,$src,$dst" %}
6691   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6692   ins_pipe(ialu_reg);
6693 %}
6694 
6695 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6696   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6697   ins_cost(140);
6698   size(4);
6699   format %{ "MOV$cmp $fcc,$src,$dst" %}
6700   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6701   ins_pipe(ialu_imm);
6702 %}
6703 
6704 // Conditional move for RegN. Only cmov(reg,reg).
6705 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6706   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6707   ins_cost(150);
6708   format %{ "MOV$cmp $pcc,$src,$dst" %}
6709   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6710   ins_pipe(ialu_reg);
6711 %}
6712 
6713 // This instruction also works with CmpN so we don't need cmovNN_reg.
6714 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6715   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6716   ins_cost(150);
6717   size(4);
6718   format %{ "MOV$cmp  $icc,$src,$dst" %}
6719   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6720   ins_pipe(ialu_reg);
6721 %}
6722 
6723 // This instruction also works with CmpN so we don't need cmovNN_reg.
6724 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6725   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6726   ins_cost(150);
6727   size(4);
6728   format %{ "MOV$cmp  $icc,$src,$dst" %}
6729   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6730   ins_pipe(ialu_reg);
6731 %}
6732 
6733 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6734   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6735   ins_cost(150);
6736   size(4);
6737   format %{ "MOV$cmp $fcc,$src,$dst" %}
6738   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6739   ins_pipe(ialu_reg);
6740 %}
6741 
6742 // Conditional move
6743 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6744   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6745   ins_cost(150);
6746   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6747   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6748   ins_pipe(ialu_reg);
6749 %}
6750 
6751 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6752   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6753   ins_cost(140);
6754   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6755   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6756   ins_pipe(ialu_imm);
6757 %}
6758 
6759 // This instruction also works with CmpN so we don't need cmovPN_reg.
6760 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6761   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6762   ins_cost(150);
6763 
6764   size(4);
6765   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6766   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6767   ins_pipe(ialu_reg);
6768 %}
6769 
6770 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6771   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6772   ins_cost(150);
6773 
6774   size(4);
6775   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6776   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6777   ins_pipe(ialu_reg);
6778 %}
6779 
6780 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6781   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6782   ins_cost(140);
6783 
6784   size(4);
6785   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6786   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6787   ins_pipe(ialu_imm);
6788 %}
6789 
6790 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6791   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6792   ins_cost(140);
6793 
6794   size(4);
6795   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6796   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6797   ins_pipe(ialu_imm);
6798 %}
6799 
6800 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6801   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6802   ins_cost(150);
6803   size(4);
6804   format %{ "MOV$cmp $fcc,$src,$dst" %}
6805   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6806   ins_pipe(ialu_imm);
6807 %}
6808 
6809 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6810   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6811   ins_cost(140);
6812   size(4);
6813   format %{ "MOV$cmp $fcc,$src,$dst" %}
6814   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6815   ins_pipe(ialu_imm);
6816 %}
6817 
6818 // Conditional move
6819 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6820   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6821   ins_cost(150);
6822   opcode(0x101);
6823   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6824   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6825   ins_pipe(int_conditional_float_move);
6826 %}
6827 
6828 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6829   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6830   ins_cost(150);
6831 
6832   size(4);
6833   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6834   opcode(0x101);
6835   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6836   ins_pipe(int_conditional_float_move);
6837 %}
6838 
6839 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
6840   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6841   ins_cost(150);
6842 
6843   size(4);
6844   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6845   opcode(0x101);
6846   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6847   ins_pipe(int_conditional_float_move);
6848 %}
6849 
6850 // Conditional move,
6851 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6852   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6853   ins_cost(150);
6854   size(4);
6855   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6856   opcode(0x1);
6857   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6858   ins_pipe(int_conditional_double_move);
6859 %}
6860 
6861 // Conditional move
6862 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6863   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6864   ins_cost(150);
6865   size(4);
6866   opcode(0x102);
6867   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6868   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6869   ins_pipe(int_conditional_double_move);
6870 %}
6871 
6872 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
6873   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6874   ins_cost(150);
6875 
6876   size(4);
6877   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6878   opcode(0x102);
6879   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6880   ins_pipe(int_conditional_double_move);
6881 %}
6882 
6883 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
6884   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6885   ins_cost(150);
6886 
6887   size(4);
6888   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6889   opcode(0x102);
6890   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6891   ins_pipe(int_conditional_double_move);
6892 %}
6893 
6894 // Conditional move,
6895 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
6896   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
6897   ins_cost(150);
6898   size(4);
6899   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
6900   opcode(0x2);
6901   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6902   ins_pipe(int_conditional_double_move);
6903 %}
6904 
6905 // Conditional move
6906 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
6907   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6908   ins_cost(150);
6909   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6910   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6911   ins_pipe(ialu_reg);
6912 %}
6913 
6914 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
6915   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6916   ins_cost(140);
6917   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6918   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6919   ins_pipe(ialu_imm);
6920 %}
6921 
6922 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
6923   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6924   ins_cost(150);
6925 
6926   size(4);
6927   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6928   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6929   ins_pipe(ialu_reg);
6930 %}
6931 
6932 
6933 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
6934   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6935   ins_cost(150);
6936 
6937   size(4);
6938   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6939   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6940   ins_pipe(ialu_reg);
6941 %}
6942 
6943 
6944 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
6945   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
6946   ins_cost(150);
6947 
6948   size(4);
6949   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
6950   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6951   ins_pipe(ialu_reg);
6952 %}
6953 
6954 
6955 
6956 //----------OS and Locking Instructions----------------------------------------
6957 
6958 // This name is KNOWN by the ADLC and cannot be changed.
6959 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
6960 // for this guy.
6961 instruct tlsLoadP(g2RegP dst) %{
6962   match(Set dst (ThreadLocal));
6963 
6964   size(0);
6965   ins_cost(0);
6966   format %{ "# TLS is in G2" %}
6967   ins_encode( /*empty encoding*/ );
6968   ins_pipe(ialu_none);
6969 %}
6970 
6971 instruct checkCastPP( iRegP dst ) %{
6972   match(Set dst (CheckCastPP dst));
6973 
6974   size(0);
6975   format %{ "# checkcastPP of $dst" %}
6976   ins_encode( /*empty encoding*/ );
6977   ins_pipe(empty);
6978 %}
6979 
6980 
6981 instruct castPP( iRegP dst ) %{
6982   match(Set dst (CastPP dst));
6983   format %{ "# castPP of $dst" %}
6984   ins_encode( /*empty encoding*/ );
6985   ins_pipe(empty);
6986 %}
6987 
6988 instruct castII( iRegI dst ) %{
6989   match(Set dst (CastII dst));
6990   format %{ "# castII of $dst" %}
6991   ins_encode( /*empty encoding*/ );
6992   ins_cost(0);
6993   ins_pipe(empty);
6994 %}
6995 
6996 //----------Arithmetic Instructions--------------------------------------------
6997 // Addition Instructions
6998 // Register Addition
6999 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7000   match(Set dst (AddI src1 src2));
7001 
7002   size(4);
7003   format %{ "ADD    $src1,$src2,$dst" %}
7004   ins_encode %{
7005     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7006   %}
7007   ins_pipe(ialu_reg_reg);
7008 %}
7009 
7010 // Immediate Addition
7011 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7012   match(Set dst (AddI src1 src2));
7013 
7014   size(4);
7015   format %{ "ADD    $src1,$src2,$dst" %}
7016   opcode(Assembler::add_op3, Assembler::arith_op);
7017   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7018   ins_pipe(ialu_reg_imm);
7019 %}
7020 
7021 // Pointer Register Addition
7022 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7023   match(Set dst (AddP src1 src2));
7024 
7025   size(4);
7026   format %{ "ADD    $src1,$src2,$dst" %}
7027   opcode(Assembler::add_op3, Assembler::arith_op);
7028   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7029   ins_pipe(ialu_reg_reg);
7030 %}
7031 
7032 // Pointer Immediate Addition
7033 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7034   match(Set dst (AddP src1 src2));
7035 
7036   size(4);
7037   format %{ "ADD    $src1,$src2,$dst" %}
7038   opcode(Assembler::add_op3, Assembler::arith_op);
7039   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7040   ins_pipe(ialu_reg_imm);
7041 %}
7042 
7043 // Long Addition
7044 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7045   match(Set dst (AddL src1 src2));
7046 
7047   size(4);
7048   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7049   opcode(Assembler::add_op3, Assembler::arith_op);
7050   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7051   ins_pipe(ialu_reg_reg);
7052 %}
7053 
7054 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7055   match(Set dst (AddL src1 con));
7056 
7057   size(4);
7058   format %{ "ADD    $src1,$con,$dst" %}
7059   opcode(Assembler::add_op3, Assembler::arith_op);
7060   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7061   ins_pipe(ialu_reg_imm);
7062 %}
7063 
7064 //----------Conditional_store--------------------------------------------------
7065 // Conditional-store of the updated heap-top.
7066 // Used during allocation of the shared heap.
7067 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7068 
7069 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7070 instruct loadPLocked(iRegP dst, memory mem) %{
7071   match(Set dst (LoadPLocked mem));
7072   ins_cost(MEMORY_REF_COST);
7073 
7074 #ifndef _LP64
7075   size(4);
7076   format %{ "LDUW   $mem,$dst\t! ptr" %}
7077   opcode(Assembler::lduw_op3, 0, REGP_OP);
7078 #else
7079   format %{ "LDX    $mem,$dst\t! ptr" %}
7080   opcode(Assembler::ldx_op3, 0, REGP_OP);
7081 #endif
7082   ins_encode( form3_mem_reg( mem, dst ) );
7083   ins_pipe(iload_mem);
7084 %}
7085 
7086 // LoadL-locked.  Same as a regular long load when used with a compare-swap
7087 instruct loadLLocked(iRegL dst, memory mem) %{
7088   match(Set dst (LoadLLocked mem));
7089   ins_cost(MEMORY_REF_COST);
7090   size(4);
7091   format %{ "LDX    $mem,$dst\t! long" %}
7092   opcode(Assembler::ldx_op3);
7093   ins_encode(simple_form3_mem_reg( mem, dst ) );
7094   ins_pipe(iload_mem);
7095 %}
7096 
7097 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7098   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7099   effect( KILL newval );
7100   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7101             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7102   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7103   ins_pipe( long_memory_op );
7104 %}
7105 
7106 // Conditional-store of an int value.
7107 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7108   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7109   effect( KILL newval );
7110   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7111             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7112   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7113   ins_pipe( long_memory_op );
7114 %}
7115 
7116 // Conditional-store of a long value.
7117 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7118   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7119   effect( KILL newval );
7120   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7121             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7122   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7123   ins_pipe( long_memory_op );
7124 %}
7125 
7126 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7127 
7128 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7129   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7130   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7131   format %{
7132             "MOV    $newval,O7\n\t"
7133             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7134             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7135             "MOV    1,$res\n\t"
7136             "MOVne  xcc,R_G0,$res"
7137   %}
7138   ins_encode( enc_casx(mem_ptr, oldval, newval),
7139               enc_lflags_ne_to_boolean(res) );
7140   ins_pipe( long_memory_op );
7141 %}
7142 
7143 
7144 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7145   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7146   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7147   format %{
7148             "MOV    $newval,O7\n\t"
7149             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7150             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7151             "MOV    1,$res\n\t"
7152             "MOVne  icc,R_G0,$res"
7153   %}
7154   ins_encode( enc_casi(mem_ptr, oldval, newval),
7155               enc_iflags_ne_to_boolean(res) );
7156   ins_pipe( long_memory_op );
7157 %}
7158 
7159 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7160   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7161   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7162   format %{
7163             "MOV    $newval,O7\n\t"
7164             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7165             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7166             "MOV    1,$res\n\t"
7167             "MOVne  xcc,R_G0,$res"
7168   %}
7169 #ifdef _LP64
7170   ins_encode( enc_casx(mem_ptr, oldval, newval),
7171               enc_lflags_ne_to_boolean(res) );
7172 #else
7173   ins_encode( enc_casi(mem_ptr, oldval, newval),
7174               enc_iflags_ne_to_boolean(res) );
7175 #endif
7176   ins_pipe( long_memory_op );
7177 %}
7178 
7179 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7180   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7181   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7182   format %{
7183             "MOV    $newval,O7\n\t"
7184             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7185             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7186             "MOV    1,$res\n\t"
7187             "MOVne  icc,R_G0,$res"
7188   %}
7189   ins_encode( enc_casi(mem_ptr, oldval, newval),
7190               enc_iflags_ne_to_boolean(res) );
7191   ins_pipe( long_memory_op );
7192 %}
7193 
7194 //---------------------
7195 // Subtraction Instructions
7196 // Register Subtraction
7197 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7198   match(Set dst (SubI src1 src2));
7199 
7200   size(4);
7201   format %{ "SUB    $src1,$src2,$dst" %}
7202   opcode(Assembler::sub_op3, Assembler::arith_op);
7203   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7204   ins_pipe(ialu_reg_reg);
7205 %}
7206 
7207 // Immediate Subtraction
7208 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7209   match(Set dst (SubI src1 src2));
7210 
7211   size(4);
7212   format %{ "SUB    $src1,$src2,$dst" %}
7213   opcode(Assembler::sub_op3, Assembler::arith_op);
7214   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7215   ins_pipe(ialu_reg_imm);
7216 %}
7217 
7218 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7219   match(Set dst (SubI zero src2));
7220 
7221   size(4);
7222   format %{ "NEG    $src2,$dst" %}
7223   opcode(Assembler::sub_op3, Assembler::arith_op);
7224   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7225   ins_pipe(ialu_zero_reg);
7226 %}
7227 
7228 // Long subtraction
7229 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7230   match(Set dst (SubL src1 src2));
7231 
7232   size(4);
7233   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7234   opcode(Assembler::sub_op3, Assembler::arith_op);
7235   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7236   ins_pipe(ialu_reg_reg);
7237 %}
7238 
7239 // Immediate Subtraction
7240 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7241   match(Set dst (SubL src1 con));
7242 
7243   size(4);
7244   format %{ "SUB    $src1,$con,$dst\t! long" %}
7245   opcode(Assembler::sub_op3, Assembler::arith_op);
7246   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7247   ins_pipe(ialu_reg_imm);
7248 %}
7249 
7250 // Long negation
7251 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7252   match(Set dst (SubL zero src2));
7253 
7254   size(4);
7255   format %{ "NEG    $src2,$dst\t! long" %}
7256   opcode(Assembler::sub_op3, Assembler::arith_op);
7257   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7258   ins_pipe(ialu_zero_reg);
7259 %}
7260 
7261 // Multiplication Instructions
7262 // Integer Multiplication
7263 // Register Multiplication
7264 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7265   match(Set dst (MulI src1 src2));
7266 
7267   size(4);
7268   format %{ "MULX   $src1,$src2,$dst" %}
7269   opcode(Assembler::mulx_op3, Assembler::arith_op);
7270   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7271   ins_pipe(imul_reg_reg);
7272 %}
7273 
7274 // Immediate Multiplication
7275 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7276   match(Set dst (MulI src1 src2));
7277 
7278   size(4);
7279   format %{ "MULX   $src1,$src2,$dst" %}
7280   opcode(Assembler::mulx_op3, Assembler::arith_op);
7281   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7282   ins_pipe(imul_reg_imm);
7283 %}
7284 
7285 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7286   match(Set dst (MulL src1 src2));
7287   ins_cost(DEFAULT_COST * 5);
7288   size(4);
7289   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7290   opcode(Assembler::mulx_op3, Assembler::arith_op);
7291   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7292   ins_pipe(mulL_reg_reg);
7293 %}
7294 
7295 // Immediate Multiplication
7296 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7297   match(Set dst (MulL src1 src2));
7298   ins_cost(DEFAULT_COST * 5);
7299   size(4);
7300   format %{ "MULX   $src1,$src2,$dst" %}
7301   opcode(Assembler::mulx_op3, Assembler::arith_op);
7302   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7303   ins_pipe(mulL_reg_imm);
7304 %}
7305 
7306 // Integer Division
7307 // Register Division
7308 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7309   match(Set dst (DivI src1 src2));
7310   ins_cost((2+71)*DEFAULT_COST);
7311 
7312   format %{ "SRA     $src2,0,$src2\n\t"
7313             "SRA     $src1,0,$src1\n\t"
7314             "SDIVX   $src1,$src2,$dst" %}
7315   ins_encode( idiv_reg( src1, src2, dst ) );
7316   ins_pipe(sdiv_reg_reg);
7317 %}
7318 
7319 // Immediate Division
7320 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7321   match(Set dst (DivI src1 src2));
7322   ins_cost((2+71)*DEFAULT_COST);
7323 
7324   format %{ "SRA     $src1,0,$src1\n\t"
7325             "SDIVX   $src1,$src2,$dst" %}
7326   ins_encode( idiv_imm( src1, src2, dst ) );
7327   ins_pipe(sdiv_reg_imm);
7328 %}
7329 
7330 //----------Div-By-10-Expansion------------------------------------------------
7331 // Extract hi bits of a 32x32->64 bit multiply.
7332 // Expand rule only, not matched
7333 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7334   effect( DEF dst, USE src1, USE src2 );
7335   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7336             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7337   ins_encode( enc_mul_hi(dst,src1,src2));
7338   ins_pipe(sdiv_reg_reg);
7339 %}
7340 
7341 // Magic constant, reciprocal of 10
7342 instruct loadConI_x66666667(iRegIsafe dst) %{
7343   effect( DEF dst );
7344 
7345   size(8);
7346   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7347   ins_encode( Set32(0x66666667, dst) );
7348   ins_pipe(ialu_hi_lo_reg);
7349 %}
7350 
7351 // Register Shift Right Arithmetic Long by 32-63
7352 instruct sra_31( iRegI dst, iRegI src ) %{
7353   effect( DEF dst, USE src );
7354   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7355   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7356   ins_pipe(ialu_reg_reg);
7357 %}
7358 
7359 // Arithmetic Shift Right by 8-bit immediate
7360 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7361   effect( DEF dst, USE src );
7362   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7363   opcode(Assembler::sra_op3, Assembler::arith_op);
7364   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7365   ins_pipe(ialu_reg_imm);
7366 %}
7367 
7368 // Integer DIV with 10
7369 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7370   match(Set dst (DivI src div));
7371   ins_cost((6+6)*DEFAULT_COST);
7372   expand %{
7373     iRegIsafe tmp1;               // Killed temps;
7374     iRegIsafe tmp2;               // Killed temps;
7375     iRegI tmp3;                   // Killed temps;
7376     iRegI tmp4;                   // Killed temps;
7377     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7378     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7379     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7380     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7381     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7382   %}
7383 %}
7384 
7385 // Register Long Division
7386 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7387   match(Set dst (DivL src1 src2));
7388   ins_cost(DEFAULT_COST*71);
7389   size(4);
7390   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7391   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7392   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7393   ins_pipe(divL_reg_reg);
7394 %}
7395 
7396 // Register Long Division
7397 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7398   match(Set dst (DivL src1 src2));
7399   ins_cost(DEFAULT_COST*71);
7400   size(4);
7401   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7402   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7403   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7404   ins_pipe(divL_reg_imm);
7405 %}
7406 
7407 // Integer Remainder
7408 // Register Remainder
7409 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7410   match(Set dst (ModI src1 src2));
7411   effect( KILL ccr, KILL temp);
7412 
7413   format %{ "SREM   $src1,$src2,$dst" %}
7414   ins_encode( irem_reg(src1, src2, dst, temp) );
7415   ins_pipe(sdiv_reg_reg);
7416 %}
7417 
7418 // Immediate Remainder
7419 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7420   match(Set dst (ModI src1 src2));
7421   effect( KILL ccr, KILL temp);
7422 
7423   format %{ "SREM   $src1,$src2,$dst" %}
7424   ins_encode( irem_imm(src1, src2, dst, temp) );
7425   ins_pipe(sdiv_reg_imm);
7426 %}
7427 
7428 // Register Long Remainder
7429 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7430   effect(DEF dst, USE src1, USE src2);
7431   size(4);
7432   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7433   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7434   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7435   ins_pipe(divL_reg_reg);
7436 %}
7437 
7438 // Register Long Division
7439 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7440   effect(DEF dst, USE src1, USE src2);
7441   size(4);
7442   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7443   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7444   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7445   ins_pipe(divL_reg_imm);
7446 %}
7447 
7448 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7449   effect(DEF dst, USE src1, USE src2);
7450   size(4);
7451   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7452   opcode(Assembler::mulx_op3, Assembler::arith_op);
7453   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7454   ins_pipe(mulL_reg_reg);
7455 %}
7456 
7457 // Immediate Multiplication
7458 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7459   effect(DEF dst, USE src1, USE src2);
7460   size(4);
7461   format %{ "MULX   $src1,$src2,$dst" %}
7462   opcode(Assembler::mulx_op3, Assembler::arith_op);
7463   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7464   ins_pipe(mulL_reg_imm);
7465 %}
7466 
7467 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7468   effect(DEF dst, USE src1, USE src2);
7469   size(4);
7470   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7471   opcode(Assembler::sub_op3, Assembler::arith_op);
7472   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7473   ins_pipe(ialu_reg_reg);
7474 %}
7475 
7476 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7477   effect(DEF dst, USE src1, USE src2);
7478   size(4);
7479   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7480   opcode(Assembler::sub_op3, Assembler::arith_op);
7481   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7482   ins_pipe(ialu_reg_reg);
7483 %}
7484 
7485 // Register Long Remainder
7486 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7487   match(Set dst (ModL src1 src2));
7488   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7489   expand %{
7490     iRegL tmp1;
7491     iRegL tmp2;
7492     divL_reg_reg_1(tmp1, src1, src2);
7493     mulL_reg_reg_1(tmp2, tmp1, src2);
7494     subL_reg_reg_1(dst,  src1, tmp2);
7495   %}
7496 %}
7497 
7498 // Register Long Remainder
7499 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7500   match(Set dst (ModL src1 src2));
7501   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7502   expand %{
7503     iRegL tmp1;
7504     iRegL tmp2;
7505     divL_reg_imm13_1(tmp1, src1, src2);
7506     mulL_reg_imm13_1(tmp2, tmp1, src2);
7507     subL_reg_reg_2  (dst,  src1, tmp2);
7508   %}
7509 %}
7510 
7511 // Integer Shift Instructions
7512 // Register Shift Left
7513 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7514   match(Set dst (LShiftI src1 src2));
7515 
7516   size(4);
7517   format %{ "SLL    $src1,$src2,$dst" %}
7518   opcode(Assembler::sll_op3, Assembler::arith_op);
7519   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7520   ins_pipe(ialu_reg_reg);
7521 %}
7522 
7523 // Register Shift Left Immediate
7524 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7525   match(Set dst (LShiftI src1 src2));
7526 
7527   size(4);
7528   format %{ "SLL    $src1,$src2,$dst" %}
7529   opcode(Assembler::sll_op3, Assembler::arith_op);
7530   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7531   ins_pipe(ialu_reg_imm);
7532 %}
7533 
7534 // Register Shift Left
7535 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7536   match(Set dst (LShiftL src1 src2));
7537 
7538   size(4);
7539   format %{ "SLLX   $src1,$src2,$dst" %}
7540   opcode(Assembler::sllx_op3, Assembler::arith_op);
7541   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7542   ins_pipe(ialu_reg_reg);
7543 %}
7544 
7545 // Register Shift Left Immediate
7546 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7547   match(Set dst (LShiftL src1 src2));
7548 
7549   size(4);
7550   format %{ "SLLX   $src1,$src2,$dst" %}
7551   opcode(Assembler::sllx_op3, Assembler::arith_op);
7552   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7553   ins_pipe(ialu_reg_imm);
7554 %}
7555 
7556 // Register Arithmetic Shift Right
7557 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7558   match(Set dst (RShiftI src1 src2));
7559   size(4);
7560   format %{ "SRA    $src1,$src2,$dst" %}
7561   opcode(Assembler::sra_op3, Assembler::arith_op);
7562   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7563   ins_pipe(ialu_reg_reg);
7564 %}
7565 
7566 // Register Arithmetic Shift Right Immediate
7567 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7568   match(Set dst (RShiftI src1 src2));
7569 
7570   size(4);
7571   format %{ "SRA    $src1,$src2,$dst" %}
7572   opcode(Assembler::sra_op3, Assembler::arith_op);
7573   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7574   ins_pipe(ialu_reg_imm);
7575 %}
7576 
7577 // Register Shift Right Arithmatic Long
7578 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7579   match(Set dst (RShiftL src1 src2));
7580 
7581   size(4);
7582   format %{ "SRAX   $src1,$src2,$dst" %}
7583   opcode(Assembler::srax_op3, Assembler::arith_op);
7584   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7585   ins_pipe(ialu_reg_reg);
7586 %}
7587 
7588 // Register Shift Left Immediate
7589 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7590   match(Set dst (RShiftL src1 src2));
7591 
7592   size(4);
7593   format %{ "SRAX   $src1,$src2,$dst" %}
7594   opcode(Assembler::srax_op3, Assembler::arith_op);
7595   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7596   ins_pipe(ialu_reg_imm);
7597 %}
7598 
7599 // Register Shift Right
7600 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7601   match(Set dst (URShiftI src1 src2));
7602 
7603   size(4);
7604   format %{ "SRL    $src1,$src2,$dst" %}
7605   opcode(Assembler::srl_op3, Assembler::arith_op);
7606   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7607   ins_pipe(ialu_reg_reg);
7608 %}
7609 
7610 // Register Shift Right Immediate
7611 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7612   match(Set dst (URShiftI src1 src2));
7613 
7614   size(4);
7615   format %{ "SRL    $src1,$src2,$dst" %}
7616   opcode(Assembler::srl_op3, Assembler::arith_op);
7617   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7618   ins_pipe(ialu_reg_imm);
7619 %}
7620 
7621 // Register Shift Right
7622 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7623   match(Set dst (URShiftL src1 src2));
7624 
7625   size(4);
7626   format %{ "SRLX   $src1,$src2,$dst" %}
7627   opcode(Assembler::srlx_op3, Assembler::arith_op);
7628   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7629   ins_pipe(ialu_reg_reg);
7630 %}
7631 
7632 // Register Shift Right Immediate
7633 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7634   match(Set dst (URShiftL src1 src2));
7635 
7636   size(4);
7637   format %{ "SRLX   $src1,$src2,$dst" %}
7638   opcode(Assembler::srlx_op3, Assembler::arith_op);
7639   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7640   ins_pipe(ialu_reg_imm);
7641 %}
7642 
7643 // Register Shift Right Immediate with a CastP2X
7644 #ifdef _LP64
7645 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7646   match(Set dst (URShiftL (CastP2X src1) src2));
7647   size(4);
7648   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7649   opcode(Assembler::srlx_op3, Assembler::arith_op);
7650   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7651   ins_pipe(ialu_reg_imm);
7652 %}
7653 #else
7654 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7655   match(Set dst (URShiftI (CastP2X src1) src2));
7656   size(4);
7657   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7658   opcode(Assembler::srl_op3, Assembler::arith_op);
7659   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7660   ins_pipe(ialu_reg_imm);
7661 %}
7662 #endif
7663 
7664 
7665 //----------Floating Point Arithmetic Instructions-----------------------------
7666 
7667 //  Add float single precision
7668 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7669   match(Set dst (AddF src1 src2));
7670 
7671   size(4);
7672   format %{ "FADDS  $src1,$src2,$dst" %}
7673   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7674   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7675   ins_pipe(faddF_reg_reg);
7676 %}
7677 
7678 //  Add float double precision
7679 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7680   match(Set dst (AddD src1 src2));
7681 
7682   size(4);
7683   format %{ "FADDD  $src1,$src2,$dst" %}
7684   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7685   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7686   ins_pipe(faddD_reg_reg);
7687 %}
7688 
7689 //  Sub float single precision
7690 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7691   match(Set dst (SubF src1 src2));
7692 
7693   size(4);
7694   format %{ "FSUBS  $src1,$src2,$dst" %}
7695   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7696   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7697   ins_pipe(faddF_reg_reg);
7698 %}
7699 
7700 //  Sub float double precision
7701 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7702   match(Set dst (SubD src1 src2));
7703 
7704   size(4);
7705   format %{ "FSUBD  $src1,$src2,$dst" %}
7706   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7707   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7708   ins_pipe(faddD_reg_reg);
7709 %}
7710 
7711 //  Mul float single precision
7712 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7713   match(Set dst (MulF src1 src2));
7714 
7715   size(4);
7716   format %{ "FMULS  $src1,$src2,$dst" %}
7717   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7718   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7719   ins_pipe(fmulF_reg_reg);
7720 %}
7721 
7722 //  Mul float double precision
7723 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7724   match(Set dst (MulD src1 src2));
7725 
7726   size(4);
7727   format %{ "FMULD  $src1,$src2,$dst" %}
7728   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7729   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7730   ins_pipe(fmulD_reg_reg);
7731 %}
7732 
7733 //  Div float single precision
7734 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7735   match(Set dst (DivF src1 src2));
7736 
7737   size(4);
7738   format %{ "FDIVS  $src1,$src2,$dst" %}
7739   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7740   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7741   ins_pipe(fdivF_reg_reg);
7742 %}
7743 
7744 //  Div float double precision
7745 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7746   match(Set dst (DivD src1 src2));
7747 
7748   size(4);
7749   format %{ "FDIVD  $src1,$src2,$dst" %}
7750   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7751   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7752   ins_pipe(fdivD_reg_reg);
7753 %}
7754 
7755 //  Absolute float double precision
7756 instruct absD_reg(regD dst, regD src) %{
7757   match(Set dst (AbsD src));
7758 
7759   format %{ "FABSd  $src,$dst" %}
7760   ins_encode(fabsd(dst, src));
7761   ins_pipe(faddD_reg);
7762 %}
7763 
7764 //  Absolute float single precision
7765 instruct absF_reg(regF dst, regF src) %{
7766   match(Set dst (AbsF src));
7767 
7768   format %{ "FABSs  $src,$dst" %}
7769   ins_encode(fabss(dst, src));
7770   ins_pipe(faddF_reg);
7771 %}
7772 
7773 instruct negF_reg(regF dst, regF src) %{
7774   match(Set dst (NegF src));
7775 
7776   size(4);
7777   format %{ "FNEGs  $src,$dst" %}
7778   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7779   ins_encode(form3_opf_rs2F_rdF(src, dst));
7780   ins_pipe(faddF_reg);
7781 %}
7782 
7783 instruct negD_reg(regD dst, regD src) %{
7784   match(Set dst (NegD src));
7785 
7786   format %{ "FNEGd  $src,$dst" %}
7787   ins_encode(fnegd(dst, src));
7788   ins_pipe(faddD_reg);
7789 %}
7790 
7791 //  Sqrt float double precision
7792 instruct sqrtF_reg_reg(regF dst, regF src) %{
7793   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7794 
7795   size(4);
7796   format %{ "FSQRTS $src,$dst" %}
7797   ins_encode(fsqrts(dst, src));
7798   ins_pipe(fdivF_reg_reg);
7799 %}
7800 
7801 //  Sqrt float double precision
7802 instruct sqrtD_reg_reg(regD dst, regD src) %{
7803   match(Set dst (SqrtD src));
7804 
7805   size(4);
7806   format %{ "FSQRTD $src,$dst" %}
7807   ins_encode(fsqrtd(dst, src));
7808   ins_pipe(fdivD_reg_reg);
7809 %}
7810 
7811 //----------Logical Instructions-----------------------------------------------
7812 // And Instructions
7813 // Register And
7814 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7815   match(Set dst (AndI src1 src2));
7816 
7817   size(4);
7818   format %{ "AND    $src1,$src2,$dst" %}
7819   opcode(Assembler::and_op3, Assembler::arith_op);
7820   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7821   ins_pipe(ialu_reg_reg);
7822 %}
7823 
7824 // Immediate And
7825 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7826   match(Set dst (AndI src1 src2));
7827 
7828   size(4);
7829   format %{ "AND    $src1,$src2,$dst" %}
7830   opcode(Assembler::and_op3, Assembler::arith_op);
7831   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7832   ins_pipe(ialu_reg_imm);
7833 %}
7834 
7835 // Register And Long
7836 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7837   match(Set dst (AndL src1 src2));
7838 
7839   ins_cost(DEFAULT_COST);
7840   size(4);
7841   format %{ "AND    $src1,$src2,$dst\t! long" %}
7842   opcode(Assembler::and_op3, Assembler::arith_op);
7843   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7844   ins_pipe(ialu_reg_reg);
7845 %}
7846 
7847 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7848   match(Set dst (AndL src1 con));
7849 
7850   ins_cost(DEFAULT_COST);
7851   size(4);
7852   format %{ "AND    $src1,$con,$dst\t! long" %}
7853   opcode(Assembler::and_op3, Assembler::arith_op);
7854   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7855   ins_pipe(ialu_reg_imm);
7856 %}
7857 
7858 // Or Instructions
7859 // Register Or
7860 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7861   match(Set dst (OrI src1 src2));
7862 
7863   size(4);
7864   format %{ "OR     $src1,$src2,$dst" %}
7865   opcode(Assembler::or_op3, Assembler::arith_op);
7866   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7867   ins_pipe(ialu_reg_reg);
7868 %}
7869 
7870 // Immediate Or
7871 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7872   match(Set dst (OrI src1 src2));
7873 
7874   size(4);
7875   format %{ "OR     $src1,$src2,$dst" %}
7876   opcode(Assembler::or_op3, Assembler::arith_op);
7877   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7878   ins_pipe(ialu_reg_imm);
7879 %}
7880 
7881 // Register Or Long
7882 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7883   match(Set dst (OrL src1 src2));
7884 
7885   ins_cost(DEFAULT_COST);
7886   size(4);
7887   format %{ "OR     $src1,$src2,$dst\t! long" %}
7888   opcode(Assembler::or_op3, Assembler::arith_op);
7889   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7890   ins_pipe(ialu_reg_reg);
7891 %}
7892 
7893 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7894   match(Set dst (OrL src1 con));
7895   ins_cost(DEFAULT_COST*2);
7896 
7897   ins_cost(DEFAULT_COST);
7898   size(4);
7899   format %{ "OR     $src1,$con,$dst\t! long" %}
7900   opcode(Assembler::or_op3, Assembler::arith_op);
7901   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7902   ins_pipe(ialu_reg_imm);
7903 %}
7904 
7905 #ifndef _LP64
7906 
7907 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
7908 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
7909   match(Set dst (OrI src1 (CastP2X src2)));
7910 
7911   size(4);
7912   format %{ "OR     $src1,$src2,$dst" %}
7913   opcode(Assembler::or_op3, Assembler::arith_op);
7914   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7915   ins_pipe(ialu_reg_reg);
7916 %}
7917 
7918 #else
7919 
7920 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
7921   match(Set dst (OrL src1 (CastP2X src2)));
7922 
7923   ins_cost(DEFAULT_COST);
7924   size(4);
7925   format %{ "OR     $src1,$src2,$dst\t! long" %}
7926   opcode(Assembler::or_op3, Assembler::arith_op);
7927   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7928   ins_pipe(ialu_reg_reg);
7929 %}
7930 
7931 #endif
7932 
7933 // Xor Instructions
7934 // Register Xor
7935 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7936   match(Set dst (XorI src1 src2));
7937 
7938   size(4);
7939   format %{ "XOR    $src1,$src2,$dst" %}
7940   opcode(Assembler::xor_op3, Assembler::arith_op);
7941   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7942   ins_pipe(ialu_reg_reg);
7943 %}
7944 
7945 // Immediate Xor
7946 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7947   match(Set dst (XorI src1 src2));
7948 
7949   size(4);
7950   format %{ "XOR    $src1,$src2,$dst" %}
7951   opcode(Assembler::xor_op3, Assembler::arith_op);
7952   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7953   ins_pipe(ialu_reg_imm);
7954 %}
7955 
7956 // Register Xor Long
7957 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7958   match(Set dst (XorL src1 src2));
7959 
7960   ins_cost(DEFAULT_COST);
7961   size(4);
7962   format %{ "XOR    $src1,$src2,$dst\t! long" %}
7963   opcode(Assembler::xor_op3, Assembler::arith_op);
7964   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7965   ins_pipe(ialu_reg_reg);
7966 %}
7967 
7968 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7969   match(Set dst (XorL src1 con));
7970 
7971   ins_cost(DEFAULT_COST);
7972   size(4);
7973   format %{ "XOR    $src1,$con,$dst\t! long" %}
7974   opcode(Assembler::xor_op3, Assembler::arith_op);
7975   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7976   ins_pipe(ialu_reg_imm);
7977 %}
7978 
7979 //----------Convert to Boolean-------------------------------------------------
7980 // Nice hack for 32-bit tests but doesn't work for
7981 // 64-bit pointers.
7982 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
7983   match(Set dst (Conv2B src));
7984   effect( KILL ccr );
7985   ins_cost(DEFAULT_COST*2);
7986   format %{ "CMP    R_G0,$src\n\t"
7987             "ADDX   R_G0,0,$dst" %}
7988   ins_encode( enc_to_bool( src, dst ) );
7989   ins_pipe(ialu_reg_ialu);
7990 %}
7991 
7992 #ifndef _LP64
7993 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
7994   match(Set dst (Conv2B src));
7995   effect( KILL ccr );
7996   ins_cost(DEFAULT_COST*2);
7997   format %{ "CMP    R_G0,$src\n\t"
7998             "ADDX   R_G0,0,$dst" %}
7999   ins_encode( enc_to_bool( src, dst ) );
8000   ins_pipe(ialu_reg_ialu);
8001 %}
8002 #else
8003 instruct convP2B( iRegI dst, iRegP src ) %{
8004   match(Set dst (Conv2B src));
8005   ins_cost(DEFAULT_COST*2);
8006   format %{ "MOV    $src,$dst\n\t"
8007             "MOVRNZ $src,1,$dst" %}
8008   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8009   ins_pipe(ialu_clr_and_mover);
8010 %}
8011 #endif
8012 
8013 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8014   match(Set dst (CmpLTMask p q));
8015   effect( KILL ccr );
8016   ins_cost(DEFAULT_COST*4);
8017   format %{ "CMP    $p,$q\n\t"
8018             "MOV    #0,$dst\n\t"
8019             "BLT,a  .+8\n\t"
8020             "MOV    #-1,$dst" %}
8021   ins_encode( enc_ltmask(p,q,dst) );
8022   ins_pipe(ialu_reg_reg_ialu);
8023 %}
8024 
8025 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8026   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8027   effect(KILL ccr, TEMP tmp);
8028   ins_cost(DEFAULT_COST*3);
8029 
8030   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8031             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8032             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8033   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
8034   ins_pipe( cadd_cmpltmask );
8035 %}
8036 
8037 instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8038   match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
8039   effect( KILL ccr, TEMP tmp);
8040   ins_cost(DEFAULT_COST*3);
8041 
8042   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8043             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8044             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8045   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
8046   ins_pipe( cadd_cmpltmask );
8047 %}
8048 
8049 //----------Arithmetic Conversion Instructions---------------------------------
8050 // The conversions operations are all Alpha sorted.  Please keep it that way!
8051 
8052 instruct convD2F_reg(regF dst, regD src) %{
8053   match(Set dst (ConvD2F src));
8054   size(4);
8055   format %{ "FDTOS  $src,$dst" %}
8056   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8057   ins_encode(form3_opf_rs2D_rdF(src, dst));
8058   ins_pipe(fcvtD2F);
8059 %}
8060 
8061 
8062 // Convert a double to an int in a float register.
8063 // If the double is a NAN, stuff a zero in instead.
8064 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8065   effect(DEF dst, USE src, KILL fcc0);
8066   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8067             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8068             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8069             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8070             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8071       "skip:" %}
8072   ins_encode(form_d2i_helper(src,dst));
8073   ins_pipe(fcvtD2I);
8074 %}
8075 
8076 instruct convD2I_reg(stackSlotI dst, regD src) %{
8077   match(Set dst (ConvD2I src));
8078   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8079   expand %{
8080     regF tmp;
8081     convD2I_helper(tmp, src);
8082     regF_to_stkI(dst, tmp);
8083   %}
8084 %}
8085 
8086 // Convert a double to a long in a double register.
8087 // If the double is a NAN, stuff a zero in instead.
8088 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8089   effect(DEF dst, USE src, KILL fcc0);
8090   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8091             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8092             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8093             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8094             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8095       "skip:" %}
8096   ins_encode(form_d2l_helper(src,dst));
8097   ins_pipe(fcvtD2L);
8098 %}
8099 
8100 
8101 // Double to Long conversion
8102 instruct convD2L_reg(stackSlotL dst, regD src) %{
8103   match(Set dst (ConvD2L src));
8104   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8105   expand %{
8106     regD tmp;
8107     convD2L_helper(tmp, src);
8108     regD_to_stkL(dst, tmp);
8109   %}
8110 %}
8111 
8112 
8113 instruct convF2D_reg(regD dst, regF src) %{
8114   match(Set dst (ConvF2D src));
8115   format %{ "FSTOD  $src,$dst" %}
8116   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8117   ins_encode(form3_opf_rs2F_rdD(src, dst));
8118   ins_pipe(fcvtF2D);
8119 %}
8120 
8121 
8122 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8123   effect(DEF dst, USE src, KILL fcc0);
8124   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8125             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8126             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8127             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8128             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8129       "skip:" %}
8130   ins_encode(form_f2i_helper(src,dst));
8131   ins_pipe(fcvtF2I);
8132 %}
8133 
8134 instruct convF2I_reg(stackSlotI dst, regF src) %{
8135   match(Set dst (ConvF2I src));
8136   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8137   expand %{
8138     regF tmp;
8139     convF2I_helper(tmp, src);
8140     regF_to_stkI(dst, tmp);
8141   %}
8142 %}
8143 
8144 
8145 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8146   effect(DEF dst, USE src, KILL fcc0);
8147   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8148             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8149             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8150             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8151             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8152       "skip:" %}
8153   ins_encode(form_f2l_helper(src,dst));
8154   ins_pipe(fcvtF2L);
8155 %}
8156 
8157 // Float to Long conversion
8158 instruct convF2L_reg(stackSlotL dst, regF src) %{
8159   match(Set dst (ConvF2L src));
8160   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8161   expand %{
8162     regD tmp;
8163     convF2L_helper(tmp, src);
8164     regD_to_stkL(dst, tmp);
8165   %}
8166 %}
8167 
8168 
8169 instruct convI2D_helper(regD dst, regF tmp) %{
8170   effect(USE tmp, DEF dst);
8171   format %{ "FITOD  $tmp,$dst" %}
8172   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8173   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8174   ins_pipe(fcvtI2D);
8175 %}
8176 
8177 instruct convI2D_reg(stackSlotI src, regD dst) %{
8178   match(Set dst (ConvI2D src));
8179   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8180   expand %{
8181     regF tmp;
8182     stkI_to_regF( tmp, src);
8183     convI2D_helper( dst, tmp);
8184   %}
8185 %}
8186 
8187 instruct convI2D_mem( regD_low dst, memory mem ) %{
8188   match(Set dst (ConvI2D (LoadI mem)));
8189   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8190   size(8);
8191   format %{ "LDF    $mem,$dst\n\t"
8192             "FITOD  $dst,$dst" %}
8193   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8194   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8195   ins_pipe(floadF_mem);
8196 %}
8197 
8198 
8199 instruct convI2F_helper(regF dst, regF tmp) %{
8200   effect(DEF dst, USE tmp);
8201   format %{ "FITOS  $tmp,$dst" %}
8202   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8203   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8204   ins_pipe(fcvtI2F);
8205 %}
8206 
8207 instruct convI2F_reg( regF dst, stackSlotI src ) %{
8208   match(Set dst (ConvI2F src));
8209   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8210   expand %{
8211     regF tmp;
8212     stkI_to_regF(tmp,src);
8213     convI2F_helper(dst, tmp);
8214   %}
8215 %}
8216 
8217 instruct convI2F_mem( regF dst, memory mem ) %{
8218   match(Set dst (ConvI2F (LoadI mem)));
8219   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8220   size(8);
8221   format %{ "LDF    $mem,$dst\n\t"
8222             "FITOS  $dst,$dst" %}
8223   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8224   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8225   ins_pipe(floadF_mem);
8226 %}
8227 
8228 
8229 instruct convI2L_reg(iRegL dst, iRegI src) %{
8230   match(Set dst (ConvI2L src));
8231   size(4);
8232   format %{ "SRA    $src,0,$dst\t! int->long" %}
8233   opcode(Assembler::sra_op3, Assembler::arith_op);
8234   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8235   ins_pipe(ialu_reg_reg);
8236 %}
8237 
8238 // Zero-extend convert int to long
8239 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8240   match(Set dst (AndL (ConvI2L src) mask) );
8241   size(4);
8242   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8243   opcode(Assembler::srl_op3, Assembler::arith_op);
8244   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8245   ins_pipe(ialu_reg_reg);
8246 %}
8247 
8248 // Zero-extend long
8249 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8250   match(Set dst (AndL src mask) );
8251   size(4);
8252   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8253   opcode(Assembler::srl_op3, Assembler::arith_op);
8254   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8255   ins_pipe(ialu_reg_reg);
8256 %}
8257 
8258 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8259   match(Set dst (MoveF2I src));
8260   effect(DEF dst, USE src);
8261   ins_cost(MEMORY_REF_COST);
8262 
8263   size(4);
8264   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8265   opcode(Assembler::lduw_op3);
8266   ins_encode(simple_form3_mem_reg( src, dst ) );
8267   ins_pipe(iload_mem);
8268 %}
8269 
8270 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8271   match(Set dst (MoveI2F src));
8272   effect(DEF dst, USE src);
8273   ins_cost(MEMORY_REF_COST);
8274 
8275   size(4);
8276   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8277   opcode(Assembler::ldf_op3);
8278   ins_encode(simple_form3_mem_reg(src, dst));
8279   ins_pipe(floadF_stk);
8280 %}
8281 
8282 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8283   match(Set dst (MoveD2L src));
8284   effect(DEF dst, USE src);
8285   ins_cost(MEMORY_REF_COST);
8286 
8287   size(4);
8288   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8289   opcode(Assembler::ldx_op3);
8290   ins_encode(simple_form3_mem_reg( src, dst ) );
8291   ins_pipe(iload_mem);
8292 %}
8293 
8294 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8295   match(Set dst (MoveL2D src));
8296   effect(DEF dst, USE src);
8297   ins_cost(MEMORY_REF_COST);
8298 
8299   size(4);
8300   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8301   opcode(Assembler::lddf_op3);
8302   ins_encode(simple_form3_mem_reg(src, dst));
8303   ins_pipe(floadD_stk);
8304 %}
8305 
8306 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8307   match(Set dst (MoveF2I src));
8308   effect(DEF dst, USE src);
8309   ins_cost(MEMORY_REF_COST);
8310 
8311   size(4);
8312   format %{ "STF   $src,$dst\t!MoveF2I" %}
8313   opcode(Assembler::stf_op3);
8314   ins_encode(simple_form3_mem_reg(dst, src));
8315   ins_pipe(fstoreF_stk_reg);
8316 %}
8317 
8318 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8319   match(Set dst (MoveI2F src));
8320   effect(DEF dst, USE src);
8321   ins_cost(MEMORY_REF_COST);
8322 
8323   size(4);
8324   format %{ "STW    $src,$dst\t!MoveI2F" %}
8325   opcode(Assembler::stw_op3);
8326   ins_encode(simple_form3_mem_reg( dst, src ) );
8327   ins_pipe(istore_mem_reg);
8328 %}
8329 
8330 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8331   match(Set dst (MoveD2L src));
8332   effect(DEF dst, USE src);
8333   ins_cost(MEMORY_REF_COST);
8334 
8335   size(4);
8336   format %{ "STDF   $src,$dst\t!MoveD2L" %}
8337   opcode(Assembler::stdf_op3);
8338   ins_encode(simple_form3_mem_reg(dst, src));
8339   ins_pipe(fstoreD_stk_reg);
8340 %}
8341 
8342 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8343   match(Set dst (MoveL2D src));
8344   effect(DEF dst, USE src);
8345   ins_cost(MEMORY_REF_COST);
8346 
8347   size(4);
8348   format %{ "STX    $src,$dst\t!MoveL2D" %}
8349   opcode(Assembler::stx_op3);
8350   ins_encode(simple_form3_mem_reg( dst, src ) );
8351   ins_pipe(istore_mem_reg);
8352 %}
8353 
8354 
8355 //-----------
8356 // Long to Double conversion using V8 opcodes.
8357 // Still useful because cheetah traps and becomes
8358 // amazingly slow for some common numbers.
8359 
8360 // Magic constant, 0x43300000
8361 instruct loadConI_x43300000(iRegI dst) %{
8362   effect(DEF dst);
8363   size(4);
8364   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8365   ins_encode(SetHi22(0x43300000, dst));
8366   ins_pipe(ialu_none);
8367 %}
8368 
8369 // Magic constant, 0x41f00000
8370 instruct loadConI_x41f00000(iRegI dst) %{
8371   effect(DEF dst);
8372   size(4);
8373   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8374   ins_encode(SetHi22(0x41f00000, dst));
8375   ins_pipe(ialu_none);
8376 %}
8377 
8378 // Construct a double from two float halves
8379 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8380   effect(DEF dst, USE src1, USE src2);
8381   size(8);
8382   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8383             "FMOVS  $src2.lo,$dst.lo" %}
8384   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8385   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8386   ins_pipe(faddD_reg_reg);
8387 %}
8388 
8389 // Convert integer in high half of a double register (in the lower half of
8390 // the double register file) to double
8391 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8392   effect(DEF dst, USE src);
8393   size(4);
8394   format %{ "FITOD  $src,$dst" %}
8395   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8396   ins_encode(form3_opf_rs2D_rdD(src, dst));
8397   ins_pipe(fcvtLHi2D);
8398 %}
8399 
8400 // Add float double precision
8401 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8402   effect(DEF dst, USE src1, USE src2);
8403   size(4);
8404   format %{ "FADDD  $src1,$src2,$dst" %}
8405   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8406   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8407   ins_pipe(faddD_reg_reg);
8408 %}
8409 
8410 // Sub float double precision
8411 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8412   effect(DEF dst, USE src1, USE src2);
8413   size(4);
8414   format %{ "FSUBD  $src1,$src2,$dst" %}
8415   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8416   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8417   ins_pipe(faddD_reg_reg);
8418 %}
8419 
8420 // Mul float double precision
8421 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8422   effect(DEF dst, USE src1, USE src2);
8423   size(4);
8424   format %{ "FMULD  $src1,$src2,$dst" %}
8425   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8426   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8427   ins_pipe(fmulD_reg_reg);
8428 %}
8429 
8430 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8431   match(Set dst (ConvL2D src));
8432   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8433 
8434   expand %{
8435     regD_low   tmpsrc;
8436     iRegI      ix43300000;
8437     iRegI      ix41f00000;
8438     stackSlotL lx43300000;
8439     stackSlotL lx41f00000;
8440     regD_low   dx43300000;
8441     regD       dx41f00000;
8442     regD       tmp1;
8443     regD_low   tmp2;
8444     regD       tmp3;
8445     regD       tmp4;
8446 
8447     stkL_to_regD(tmpsrc, src);
8448 
8449     loadConI_x43300000(ix43300000);
8450     loadConI_x41f00000(ix41f00000);
8451     regI_to_stkLHi(lx43300000, ix43300000);
8452     regI_to_stkLHi(lx41f00000, ix41f00000);
8453     stkL_to_regD(dx43300000, lx43300000);
8454     stkL_to_regD(dx41f00000, lx41f00000);
8455 
8456     convI2D_regDHi_regD(tmp1, tmpsrc);
8457     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8458     subD_regD_regD(tmp3, tmp2, dx43300000);
8459     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8460     addD_regD_regD(dst, tmp3, tmp4);
8461   %}
8462 %}
8463 
8464 // Long to Double conversion using fast fxtof
8465 instruct convL2D_helper(regD dst, regD tmp) %{
8466   effect(DEF dst, USE tmp);
8467   size(4);
8468   format %{ "FXTOD  $tmp,$dst" %}
8469   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8470   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8471   ins_pipe(fcvtL2D);
8472 %}
8473 
8474 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
8475   predicate(VM_Version::has_fast_fxtof());
8476   match(Set dst (ConvL2D src));
8477   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8478   expand %{
8479     regD tmp;
8480     stkL_to_regD(tmp, src);
8481     convL2D_helper(dst, tmp);
8482   %}
8483 %}
8484 
8485 //-----------
8486 // Long to Float conversion using V8 opcodes.
8487 // Still useful because cheetah traps and becomes
8488 // amazingly slow for some common numbers.
8489 
8490 // Long to Float conversion using fast fxtof
8491 instruct convL2F_helper(regF dst, regD tmp) %{
8492   effect(DEF dst, USE tmp);
8493   size(4);
8494   format %{ "FXTOS  $tmp,$dst" %}
8495   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8496   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8497   ins_pipe(fcvtL2F);
8498 %}
8499 
8500 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
8501   match(Set dst (ConvL2F src));
8502   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8503   expand %{
8504     regD tmp;
8505     stkL_to_regD(tmp, src);
8506     convL2F_helper(dst, tmp);
8507   %}
8508 %}
8509 //-----------
8510 
8511 instruct convL2I_reg(iRegI dst, iRegL src) %{
8512   match(Set dst (ConvL2I src));
8513 #ifndef _LP64
8514   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8515   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8516   ins_pipe(ialu_move_reg_I_to_L);
8517 #else
8518   size(4);
8519   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8520   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8521   ins_pipe(ialu_reg);
8522 #endif
8523 %}
8524 
8525 // Register Shift Right Immediate
8526 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8527   match(Set dst (ConvL2I (RShiftL src cnt)));
8528 
8529   size(4);
8530   format %{ "SRAX   $src,$cnt,$dst" %}
8531   opcode(Assembler::srax_op3, Assembler::arith_op);
8532   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8533   ins_pipe(ialu_reg_imm);
8534 %}
8535 
8536 // Replicate scalar to packed byte values in Double register
8537 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
8538   effect(DEF dst, USE src);
8539   format %{ "SLLX  $src,56,$dst\n\t"
8540             "SRLX  $dst, 8,O7\n\t"
8541             "OR    $dst,O7,$dst\n\t"
8542             "SRLX  $dst,16,O7\n\t"
8543             "OR    $dst,O7,$dst\n\t"
8544             "SRLX  $dst,32,O7\n\t"
8545             "OR    $dst,O7,$dst\t! replicate8B" %}
8546   ins_encode( enc_repl8b(src, dst));
8547   ins_pipe(ialu_reg);
8548 %}
8549 
8550 // Replicate scalar to packed byte values in Double register
8551 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
8552   match(Set dst (Replicate8B src));
8553   expand %{
8554     iRegL tmp;
8555     Repl8B_reg_helper(tmp, src);
8556     regL_to_stkD(dst, tmp);
8557   %}
8558 %}
8559 
8560 // Replicate scalar constant to packed byte values in Double register
8561 instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{
8562   match(Set dst (Replicate8B src));
8563 #ifdef _LP64
8564   size(36);
8565 #else
8566   size(8);
8567 #endif
8568   format %{ "SETHI  hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t"
8569             "LDDF   [$tmp+lo(&Repl8($src))],$dst" %}
8570   ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) );
8571   ins_pipe(loadConFD);
8572 %}
8573 
8574 // Replicate scalar to packed char values into stack slot
8575 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
8576   effect(DEF dst, USE src);
8577   format %{ "SLLX  $src,48,$dst\n\t"
8578             "SRLX  $dst,16,O7\n\t"
8579             "OR    $dst,O7,$dst\n\t"
8580             "SRLX  $dst,32,O7\n\t"
8581             "OR    $dst,O7,$dst\t! replicate4C" %}
8582   ins_encode( enc_repl4s(src, dst) );
8583   ins_pipe(ialu_reg);
8584 %}
8585 
8586 // Replicate scalar to packed char values into stack slot
8587 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
8588   match(Set dst (Replicate4C src));
8589   expand %{
8590     iRegL tmp;
8591     Repl4C_reg_helper(tmp, src);
8592     regL_to_stkD(dst, tmp);
8593   %}
8594 %}
8595 
8596 // Replicate scalar constant to packed char values in Double register
8597 instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{
8598   match(Set dst (Replicate4C src));
8599 #ifdef _LP64
8600   size(36);
8601 #else
8602   size(8);
8603 #endif
8604   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t"
8605             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
8606   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
8607   ins_pipe(loadConFD);
8608 %}
8609 
8610 // Replicate scalar to packed short values into stack slot
8611 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
8612   effect(DEF dst, USE src);
8613   format %{ "SLLX  $src,48,$dst\n\t"
8614             "SRLX  $dst,16,O7\n\t"
8615             "OR    $dst,O7,$dst\n\t"
8616             "SRLX  $dst,32,O7\n\t"
8617             "OR    $dst,O7,$dst\t! replicate4S" %}
8618   ins_encode( enc_repl4s(src, dst) );
8619   ins_pipe(ialu_reg);
8620 %}
8621 
8622 // Replicate scalar to packed short values into stack slot
8623 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
8624   match(Set dst (Replicate4S src));
8625   expand %{
8626     iRegL tmp;
8627     Repl4S_reg_helper(tmp, src);
8628     regL_to_stkD(dst, tmp);
8629   %}
8630 %}
8631 
8632 // Replicate scalar constant to packed short values in Double register
8633 instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{
8634   match(Set dst (Replicate4S src));
8635 #ifdef _LP64
8636   size(36);
8637 #else
8638   size(8);
8639 #endif
8640   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t"
8641             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
8642   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
8643   ins_pipe(loadConFD);
8644 %}
8645 
8646 // Replicate scalar to packed int values in Double register
8647 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
8648   effect(DEF dst, USE src);
8649   format %{ "SLLX  $src,32,$dst\n\t"
8650             "SRLX  $dst,32,O7\n\t"
8651             "OR    $dst,O7,$dst\t! replicate2I" %}
8652   ins_encode( enc_repl2i(src, dst));
8653   ins_pipe(ialu_reg);
8654 %}
8655 
8656 // Replicate scalar to packed int values in Double register
8657 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
8658   match(Set dst (Replicate2I src));
8659   expand %{
8660     iRegL tmp;
8661     Repl2I_reg_helper(tmp, src);
8662     regL_to_stkD(dst, tmp);
8663   %}
8664 %}
8665 
8666 // Replicate scalar zero constant to packed int values in Double register
8667 instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{
8668   match(Set dst (Replicate2I src));
8669 #ifdef _LP64
8670   size(36);
8671 #else
8672   size(8);
8673 #endif
8674   format %{ "SETHI  hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t"
8675             "LDDF   [$tmp+lo(&Repl2($src))],$dst" %}
8676   ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) );
8677   ins_pipe(loadConFD);
8678 %}
8679 
8680 //----------Control Flow Instructions------------------------------------------
8681 // Compare Instructions
8682 // Compare Integers
8683 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8684   match(Set icc (CmpI op1 op2));
8685   effect( DEF icc, USE op1, USE op2 );
8686 
8687   size(4);
8688   format %{ "CMP    $op1,$op2" %}
8689   opcode(Assembler::subcc_op3, Assembler::arith_op);
8690   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8691   ins_pipe(ialu_cconly_reg_reg);
8692 %}
8693 
8694 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8695   match(Set icc (CmpU op1 op2));
8696 
8697   size(4);
8698   format %{ "CMP    $op1,$op2\t! unsigned" %}
8699   opcode(Assembler::subcc_op3, Assembler::arith_op);
8700   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8701   ins_pipe(ialu_cconly_reg_reg);
8702 %}
8703 
8704 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8705   match(Set icc (CmpI op1 op2));
8706   effect( DEF icc, USE op1 );
8707 
8708   size(4);
8709   format %{ "CMP    $op1,$op2" %}
8710   opcode(Assembler::subcc_op3, Assembler::arith_op);
8711   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8712   ins_pipe(ialu_cconly_reg_imm);
8713 %}
8714 
8715 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8716   match(Set icc (CmpI (AndI op1 op2) zero));
8717 
8718   size(4);
8719   format %{ "BTST   $op2,$op1" %}
8720   opcode(Assembler::andcc_op3, Assembler::arith_op);
8721   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8722   ins_pipe(ialu_cconly_reg_reg_zero);
8723 %}
8724 
8725 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8726   match(Set icc (CmpI (AndI op1 op2) zero));
8727 
8728   size(4);
8729   format %{ "BTST   $op2,$op1" %}
8730   opcode(Assembler::andcc_op3, Assembler::arith_op);
8731   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8732   ins_pipe(ialu_cconly_reg_imm_zero);
8733 %}
8734 
8735 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8736   match(Set xcc (CmpL op1 op2));
8737   effect( DEF xcc, USE op1, USE op2 );
8738 
8739   size(4);
8740   format %{ "CMP    $op1,$op2\t\t! long" %}
8741   opcode(Assembler::subcc_op3, Assembler::arith_op);
8742   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8743   ins_pipe(ialu_cconly_reg_reg);
8744 %}
8745 
8746 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8747   match(Set xcc (CmpL op1 con));
8748   effect( DEF xcc, USE op1, USE con );
8749 
8750   size(4);
8751   format %{ "CMP    $op1,$con\t\t! long" %}
8752   opcode(Assembler::subcc_op3, Assembler::arith_op);
8753   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8754   ins_pipe(ialu_cconly_reg_reg);
8755 %}
8756 
8757 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8758   match(Set xcc (CmpL (AndL op1 op2) zero));
8759   effect( DEF xcc, USE op1, USE op2 );
8760 
8761   size(4);
8762   format %{ "BTST   $op1,$op2\t\t! long" %}
8763   opcode(Assembler::andcc_op3, Assembler::arith_op);
8764   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8765   ins_pipe(ialu_cconly_reg_reg);
8766 %}
8767 
8768 // useful for checking the alignment of a pointer:
8769 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8770   match(Set xcc (CmpL (AndL op1 con) zero));
8771   effect( DEF xcc, USE op1, USE con );
8772 
8773   size(4);
8774   format %{ "BTST   $op1,$con\t\t! long" %}
8775   opcode(Assembler::andcc_op3, Assembler::arith_op);
8776   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8777   ins_pipe(ialu_cconly_reg_reg);
8778 %}
8779 
8780 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
8781   match(Set icc (CmpU op1 op2));
8782 
8783   size(4);
8784   format %{ "CMP    $op1,$op2\t! unsigned" %}
8785   opcode(Assembler::subcc_op3, Assembler::arith_op);
8786   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8787   ins_pipe(ialu_cconly_reg_imm);
8788 %}
8789 
8790 // Compare Pointers
8791 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8792   match(Set pcc (CmpP op1 op2));
8793 
8794   size(4);
8795   format %{ "CMP    $op1,$op2\t! ptr" %}
8796   opcode(Assembler::subcc_op3, Assembler::arith_op);
8797   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8798   ins_pipe(ialu_cconly_reg_reg);
8799 %}
8800 
8801 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8802   match(Set pcc (CmpP op1 op2));
8803 
8804   size(4);
8805   format %{ "CMP    $op1,$op2\t! ptr" %}
8806   opcode(Assembler::subcc_op3, Assembler::arith_op);
8807   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8808   ins_pipe(ialu_cconly_reg_imm);
8809 %}
8810 
8811 // Compare Narrow oops
8812 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
8813   match(Set icc (CmpN op1 op2));
8814 
8815   size(4);
8816   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8817   opcode(Assembler::subcc_op3, Assembler::arith_op);
8818   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8819   ins_pipe(ialu_cconly_reg_reg);
8820 %}
8821 
8822 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
8823   match(Set icc (CmpN op1 op2));
8824 
8825   size(4);
8826   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8827   opcode(Assembler::subcc_op3, Assembler::arith_op);
8828   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8829   ins_pipe(ialu_cconly_reg_imm);
8830 %}
8831 
8832 //----------Max and Min--------------------------------------------------------
8833 // Min Instructions
8834 // Conditional move for min
8835 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
8836   effect( USE_DEF op2, USE op1, USE icc );
8837 
8838   size(4);
8839   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
8840   opcode(Assembler::less);
8841   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8842   ins_pipe(ialu_reg_flags);
8843 %}
8844 
8845 // Min Register with Register.
8846 instruct minI_eReg(iRegI op1, iRegI op2) %{
8847   match(Set op2 (MinI op1 op2));
8848   ins_cost(DEFAULT_COST*2);
8849   expand %{
8850     flagsReg icc;
8851     compI_iReg(icc,op1,op2);
8852     cmovI_reg_lt(op2,op1,icc);
8853   %}
8854 %}
8855 
8856 // Max Instructions
8857 // Conditional move for max
8858 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
8859   effect( USE_DEF op2, USE op1, USE icc );
8860   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
8861   opcode(Assembler::greater);
8862   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8863   ins_pipe(ialu_reg_flags);
8864 %}
8865 
8866 // Max Register with Register
8867 instruct maxI_eReg(iRegI op1, iRegI op2) %{
8868   match(Set op2 (MaxI op1 op2));
8869   ins_cost(DEFAULT_COST*2);
8870   expand %{
8871     flagsReg icc;
8872     compI_iReg(icc,op1,op2);
8873     cmovI_reg_gt(op2,op1,icc);
8874   %}
8875 %}
8876 
8877 
8878 //----------Float Compares----------------------------------------------------
8879 // Compare floating, generate condition code
8880 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
8881   match(Set fcc (CmpF src1 src2));
8882 
8883   size(4);
8884   format %{ "FCMPs  $fcc,$src1,$src2" %}
8885   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
8886   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
8887   ins_pipe(faddF_fcc_reg_reg_zero);
8888 %}
8889 
8890 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
8891   match(Set fcc (CmpD src1 src2));
8892 
8893   size(4);
8894   format %{ "FCMPd  $fcc,$src1,$src2" %}
8895   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
8896   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
8897   ins_pipe(faddD_fcc_reg_reg_zero);
8898 %}
8899 
8900 
8901 // Compare floating, generate -1,0,1
8902 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
8903   match(Set dst (CmpF3 src1 src2));
8904   effect(KILL fcc0);
8905   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8906   format %{ "fcmpl  $dst,$src1,$src2" %}
8907   // Primary = float
8908   opcode( true );
8909   ins_encode( floating_cmp( dst, src1, src2 ) );
8910   ins_pipe( floating_cmp );
8911 %}
8912 
8913 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
8914   match(Set dst (CmpD3 src1 src2));
8915   effect(KILL fcc0);
8916   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8917   format %{ "dcmpl  $dst,$src1,$src2" %}
8918   // Primary = double (not float)
8919   opcode( false );
8920   ins_encode( floating_cmp( dst, src1, src2 ) );
8921   ins_pipe( floating_cmp );
8922 %}
8923 
8924 //----------Branches---------------------------------------------------------
8925 // Jump
8926 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
8927 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
8928   match(Jump switch_val);
8929 
8930   ins_cost(350);
8931 
8932   format %{  "SETHI  [hi(table_base)],O7\n\t"
8933              "ADD    O7, lo(table_base), O7\n\t"
8934              "LD     [O7+$switch_val], O7\n\t"
8935              "JUMP   O7"
8936          %}
8937   ins_encode( jump_enc( switch_val, table) );
8938   ins_pc_relative(1);
8939   ins_pipe(ialu_reg_reg);
8940 %}
8941 
8942 // Direct Branch.  Use V8 version with longer range.
8943 instruct branch(label labl) %{
8944   match(Goto);
8945   effect(USE labl);
8946 
8947   size(8);
8948   ins_cost(BRANCH_COST);
8949   format %{ "BA     $labl" %}
8950   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
8951   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
8952   ins_encode( enc_ba( labl ) );
8953   ins_pc_relative(1);
8954   ins_pipe(br);
8955 %}
8956 
8957 // Conditional Direct Branch
8958 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
8959   match(If cmp icc);
8960   effect(USE labl);
8961 
8962   size(8);
8963   ins_cost(BRANCH_COST);
8964   format %{ "BP$cmp   $icc,$labl" %}
8965   // Prim = bits 24-22, Secnd = bits 31-30
8966   ins_encode( enc_bp( labl, cmp, icc ) );
8967   ins_pc_relative(1);
8968   ins_pipe(br_cc);
8969 %}
8970 
8971 // Branch-on-register tests all 64 bits.  We assume that values
8972 // in 64-bit registers always remains zero or sign extended
8973 // unless our code munges the high bits.  Interrupts can chop
8974 // the high order bits to zero or sign at any time.
8975 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
8976   match(If cmp (CmpI op1 zero));
8977   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8978   effect(USE labl);
8979 
8980   size(8);
8981   ins_cost(BRANCH_COST);
8982   format %{ "BR$cmp   $op1,$labl" %}
8983   ins_encode( enc_bpr( labl, cmp, op1 ) );
8984   ins_pc_relative(1);
8985   ins_pipe(br_reg);
8986 %}
8987 
8988 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
8989   match(If cmp (CmpP op1 null));
8990   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8991   effect(USE labl);
8992 
8993   size(8);
8994   ins_cost(BRANCH_COST);
8995   format %{ "BR$cmp   $op1,$labl" %}
8996   ins_encode( enc_bpr( labl, cmp, op1 ) );
8997   ins_pc_relative(1);
8998   ins_pipe(br_reg);
8999 %}
9000 
9001 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9002   match(If cmp (CmpL op1 zero));
9003   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9004   effect(USE labl);
9005 
9006   size(8);
9007   ins_cost(BRANCH_COST);
9008   format %{ "BR$cmp   $op1,$labl" %}
9009   ins_encode( enc_bpr( labl, cmp, op1 ) );
9010   ins_pc_relative(1);
9011   ins_pipe(br_reg);
9012 %}
9013 
9014 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9015   match(If cmp icc);
9016   effect(USE labl);
9017 
9018   format %{ "BP$cmp  $icc,$labl" %}
9019   // Prim = bits 24-22, Secnd = bits 31-30
9020   ins_encode( enc_bp( labl, cmp, icc ) );
9021   ins_pc_relative(1);
9022   ins_pipe(br_cc);
9023 %}
9024 
9025 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9026   match(If cmp pcc);
9027   effect(USE labl);
9028 
9029   size(8);
9030   ins_cost(BRANCH_COST);
9031   format %{ "BP$cmp  $pcc,$labl" %}
9032   // Prim = bits 24-22, Secnd = bits 31-30
9033   ins_encode( enc_bpx( labl, cmp, pcc ) );
9034   ins_pc_relative(1);
9035   ins_pipe(br_cc);
9036 %}
9037 
9038 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9039   match(If cmp fcc);
9040   effect(USE labl);
9041 
9042   size(8);
9043   ins_cost(BRANCH_COST);
9044   format %{ "FBP$cmp $fcc,$labl" %}
9045   // Prim = bits 24-22, Secnd = bits 31-30
9046   ins_encode( enc_fbp( labl, cmp, fcc ) );
9047   ins_pc_relative(1);
9048   ins_pipe(br_fcc);
9049 %}
9050 
9051 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9052   match(CountedLoopEnd cmp icc);
9053   effect(USE labl);
9054 
9055   size(8);
9056   ins_cost(BRANCH_COST);
9057   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9058   // Prim = bits 24-22, Secnd = bits 31-30
9059   ins_encode( enc_bp( labl, cmp, icc ) );
9060   ins_pc_relative(1);
9061   ins_pipe(br_cc);
9062 %}
9063 
9064 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9065   match(CountedLoopEnd cmp icc);
9066   effect(USE labl);
9067 
9068   size(8);
9069   ins_cost(BRANCH_COST);
9070   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9071   // Prim = bits 24-22, Secnd = bits 31-30
9072   ins_encode( enc_bp( labl, cmp, icc ) );
9073   ins_pc_relative(1);
9074   ins_pipe(br_cc);
9075 %}
9076 
9077 // ============================================================================
9078 // Long Compare
9079 //
9080 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9081 // is tricky.  The flavor of compare used depends on whether we are testing
9082 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9083 // The GE test is the negated LT test.  The LE test can be had by commuting
9084 // the operands (yielding a GE test) and then negating; negate again for the
9085 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9086 // NE test is negated from that.
9087 
9088 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9089 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9090 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9091 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9092 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9093 // foo match ends up with the wrong leaf.  One fix is to not match both
9094 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9095 // both forms beat the trinary form of long-compare and both are very useful
9096 // on Intel which has so few registers.
9097 
9098 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9099   match(If cmp xcc);
9100   effect(USE labl);
9101 
9102   size(8);
9103   ins_cost(BRANCH_COST);
9104   format %{ "BP$cmp   $xcc,$labl" %}
9105   // Prim = bits 24-22, Secnd = bits 31-30
9106   ins_encode( enc_bpl( labl, cmp, xcc ) );
9107   ins_pc_relative(1);
9108   ins_pipe(br_cc);
9109 %}
9110 
9111 // Manifest a CmpL3 result in an integer register.  Very painful.
9112 // This is the test to avoid.
9113 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9114   match(Set dst (CmpL3 src1 src2) );
9115   effect( KILL ccr );
9116   ins_cost(6*DEFAULT_COST);
9117   size(24);
9118   format %{ "CMP    $src1,$src2\t\t! long\n"
9119           "\tBLT,a,pn done\n"
9120           "\tMOV    -1,$dst\t! delay slot\n"
9121           "\tBGT,a,pn done\n"
9122           "\tMOV    1,$dst\t! delay slot\n"
9123           "\tCLR    $dst\n"
9124     "done:"     %}
9125   ins_encode( cmpl_flag(src1,src2,dst) );
9126   ins_pipe(cmpL_reg);
9127 %}
9128 
9129 // Conditional move
9130 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9131   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9132   ins_cost(150);
9133   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9134   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9135   ins_pipe(ialu_reg);
9136 %}
9137 
9138 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9139   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9140   ins_cost(140);
9141   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9142   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9143   ins_pipe(ialu_imm);
9144 %}
9145 
9146 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9147   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9148   ins_cost(150);
9149   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9150   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9151   ins_pipe(ialu_reg);
9152 %}
9153 
9154 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9155   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9156   ins_cost(140);
9157   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9158   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9159   ins_pipe(ialu_imm);
9160 %}
9161 
9162 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9163   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9164   ins_cost(150);
9165   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9166   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9167   ins_pipe(ialu_reg);
9168 %}
9169 
9170 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9171   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9172   ins_cost(150);
9173   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9174   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9175   ins_pipe(ialu_reg);
9176 %}
9177 
9178 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9179   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9180   ins_cost(140);
9181   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9182   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9183   ins_pipe(ialu_imm);
9184 %}
9185 
9186 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9187   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9188   ins_cost(150);
9189   opcode(0x101);
9190   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9191   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9192   ins_pipe(int_conditional_float_move);
9193 %}
9194 
9195 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9196   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9197   ins_cost(150);
9198   opcode(0x102);
9199   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9200   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9201   ins_pipe(int_conditional_float_move);
9202 %}
9203 
9204 // ============================================================================
9205 // Safepoint Instruction
9206 instruct safePoint_poll(iRegP poll) %{
9207   match(SafePoint poll);
9208   effect(USE poll);
9209 
9210   size(4);
9211 #ifdef _LP64
9212   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9213 #else
9214   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9215 #endif
9216   ins_encode %{
9217     __ relocate(relocInfo::poll_type);
9218     __ ld_ptr($poll$$Register, 0, G0);
9219   %}
9220   ins_pipe(loadPollP);
9221 %}
9222 
9223 // ============================================================================
9224 // Call Instructions
9225 // Call Java Static Instruction
9226 instruct CallStaticJavaDirect( method meth ) %{
9227   match(CallStaticJava);
9228   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9229   effect(USE meth);
9230 
9231   size(8);
9232   ins_cost(CALL_COST);
9233   format %{ "CALL,static  ; NOP ==> " %}
9234   ins_encode( Java_Static_Call( meth ), call_epilog );
9235   ins_pc_relative(1);
9236   ins_pipe(simple_call);
9237 %}
9238 
9239 // Call Java Static Instruction (method handle version)
9240 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9241   match(CallStaticJava);
9242   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9243   effect(USE meth, KILL l7_mh_SP_save);
9244 
9245   size(8);
9246   ins_cost(CALL_COST);
9247   format %{ "CALL,static/MethodHandle" %}
9248   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
9249   ins_pc_relative(1);
9250   ins_pipe(simple_call);
9251 %}
9252 
9253 // Call Java Dynamic Instruction
9254 instruct CallDynamicJavaDirect( method meth ) %{
9255   match(CallDynamicJava);
9256   effect(USE meth);
9257 
9258   ins_cost(CALL_COST);
9259   format %{ "SET    (empty),R_G5\n\t"
9260             "CALL,dynamic  ; NOP ==> " %}
9261   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9262   ins_pc_relative(1);
9263   ins_pipe(call);
9264 %}
9265 
9266 // Call Runtime Instruction
9267 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9268   match(CallRuntime);
9269   effect(USE meth, KILL l7);
9270   ins_cost(CALL_COST);
9271   format %{ "CALL,runtime" %}
9272   ins_encode( Java_To_Runtime( meth ),
9273               call_epilog, adjust_long_from_native_call );
9274   ins_pc_relative(1);
9275   ins_pipe(simple_call);
9276 %}
9277 
9278 // Call runtime without safepoint - same as CallRuntime
9279 instruct CallLeafDirect(method meth, l7RegP l7) %{
9280   match(CallLeaf);
9281   effect(USE meth, KILL l7);
9282   ins_cost(CALL_COST);
9283   format %{ "CALL,runtime leaf" %}
9284   ins_encode( Java_To_Runtime( meth ),
9285               call_epilog,
9286               adjust_long_from_native_call );
9287   ins_pc_relative(1);
9288   ins_pipe(simple_call);
9289 %}
9290 
9291 // Call runtime without safepoint - same as CallLeaf
9292 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9293   match(CallLeafNoFP);
9294   effect(USE meth, KILL l7);
9295   ins_cost(CALL_COST);
9296   format %{ "CALL,runtime leaf nofp" %}
9297   ins_encode( Java_To_Runtime( meth ),
9298               call_epilog,
9299               adjust_long_from_native_call );
9300   ins_pc_relative(1);
9301   ins_pipe(simple_call);
9302 %}
9303 
9304 // Tail Call; Jump from runtime stub to Java code.
9305 // Also known as an 'interprocedural jump'.
9306 // Target of jump will eventually return to caller.
9307 // TailJump below removes the return address.
9308 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9309   match(TailCall jump_target method_oop );
9310 
9311   ins_cost(CALL_COST);
9312   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9313   ins_encode(form_jmpl(jump_target));
9314   ins_pipe(tail_call);
9315 %}
9316 
9317 
9318 // Return Instruction
9319 instruct Ret() %{
9320   match(Return);
9321 
9322   // The epilogue node did the ret already.
9323   size(0);
9324   format %{ "! return" %}
9325   ins_encode();
9326   ins_pipe(empty);
9327 %}
9328 
9329 
9330 // Tail Jump; remove the return address; jump to target.
9331 // TailCall above leaves the return address around.
9332 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
9333 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
9334 // "restore" before this instruction (in Epilogue), we need to materialize it
9335 // in %i0.
9336 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
9337   match( TailJump jump_target ex_oop );
9338   ins_cost(CALL_COST);
9339   format %{ "! discard R_O7\n\t"
9340             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
9341   ins_encode(form_jmpl_set_exception_pc(jump_target));
9342   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
9343   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
9344   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
9345   ins_pipe(tail_call);
9346 %}
9347 
9348 // Create exception oop: created by stack-crawling runtime code.
9349 // Created exception is now available to this handler, and is setup
9350 // just prior to jumping to this handler.  No code emitted.
9351 instruct CreateException( o0RegP ex_oop )
9352 %{
9353   match(Set ex_oop (CreateEx));
9354   ins_cost(0);
9355 
9356   size(0);
9357   // use the following format syntax
9358   format %{ "! exception oop is in R_O0; no code emitted" %}
9359   ins_encode();
9360   ins_pipe(empty);
9361 %}
9362 
9363 
9364 // Rethrow exception:
9365 // The exception oop will come in the first argument position.
9366 // Then JUMP (not call) to the rethrow stub code.
9367 instruct RethrowException()
9368 %{
9369   match(Rethrow);
9370   ins_cost(CALL_COST);
9371 
9372   // use the following format syntax
9373   format %{ "Jmp    rethrow_stub" %}
9374   ins_encode(enc_rethrow);
9375   ins_pipe(tail_call);
9376 %}
9377 
9378 
9379 // Die now
9380 instruct ShouldNotReachHere( )
9381 %{
9382   match(Halt);
9383   ins_cost(CALL_COST);
9384 
9385   size(4);
9386   // Use the following format syntax
9387   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
9388   ins_encode( form2_illtrap() );
9389   ins_pipe(tail_call);
9390 %}
9391 
9392 // ============================================================================
9393 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
9394 // array for an instance of the superklass.  Set a hidden internal cache on a
9395 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
9396 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
9397 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
9398   match(Set index (PartialSubtypeCheck sub super));
9399   effect( KILL pcc, KILL o7 );
9400   ins_cost(DEFAULT_COST*10);
9401   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
9402   ins_encode( enc_PartialSubtypeCheck() );
9403   ins_pipe(partial_subtype_check_pipe);
9404 %}
9405 
9406 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
9407   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
9408   effect( KILL idx, KILL o7 );
9409   ins_cost(DEFAULT_COST*10);
9410   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
9411   ins_encode( enc_PartialSubtypeCheck() );
9412   ins_pipe(partial_subtype_check_pipe);
9413 %}
9414 
9415 
9416 // ============================================================================
9417 // inlined locking and unlocking
9418 
9419 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9420   match(Set pcc (FastLock object box));
9421 
9422   effect(KILL scratch, TEMP scratch2);
9423   ins_cost(100);
9424 
9425   size(4*112);       // conservative overestimation ...
9426   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9427   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
9428   ins_pipe(long_memory_op);
9429 %}
9430 
9431 
9432 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9433   match(Set pcc (FastUnlock object box));
9434   effect(KILL scratch, TEMP scratch2);
9435   ins_cost(100);
9436 
9437   size(4*120);       // conservative overestimation ...
9438   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9439   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
9440   ins_pipe(long_memory_op);
9441 %}
9442 
9443 // Count and Base registers are fixed because the allocator cannot
9444 // kill unknown registers.  The encodings are generic.
9445 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
9446   match(Set dummy (ClearArray cnt base));
9447   effect(TEMP temp, KILL ccr);
9448   ins_cost(300);
9449   format %{ "MOV    $cnt,$temp\n"
9450     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
9451     "        BRge   loop\t\t! Clearing loop\n"
9452     "        STX    G0,[$base+$temp]\t! delay slot" %}
9453   ins_encode( enc_Clear_Array(cnt, base, temp) );
9454   ins_pipe(long_memory_op);
9455 %}
9456 
9457 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
9458                         o7RegI tmp, flagsReg ccr) %{
9459   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
9460   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
9461   ins_cost(300);
9462   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
9463   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
9464   ins_pipe(long_memory_op);
9465 %}
9466 
9467 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
9468                        o7RegI tmp, flagsReg ccr) %{
9469   match(Set result (StrEquals (Binary str1 str2) cnt));
9470   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
9471   ins_cost(300);
9472   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
9473   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
9474   ins_pipe(long_memory_op);
9475 %}
9476 
9477 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
9478                       o7RegI tmp2, flagsReg ccr) %{
9479   match(Set result (AryEq ary1 ary2));
9480   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
9481   ins_cost(300);
9482   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
9483   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
9484   ins_pipe(long_memory_op);
9485 %}
9486 
9487 
9488 //---------- Zeros Count Instructions ------------------------------------------
9489 
9490 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
9491   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9492   match(Set dst (CountLeadingZerosI src));
9493   effect(TEMP dst, TEMP tmp, KILL cr);
9494 
9495   // x |= (x >> 1);
9496   // x |= (x >> 2);
9497   // x |= (x >> 4);
9498   // x |= (x >> 8);
9499   // x |= (x >> 16);
9500   // return (WORDBITS - popc(x));
9501   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
9502             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
9503             "OR      $dst,$tmp,$dst\n\t"
9504             "SRL     $dst,2,$tmp\n\t"
9505             "OR      $dst,$tmp,$dst\n\t"
9506             "SRL     $dst,4,$tmp\n\t"
9507             "OR      $dst,$tmp,$dst\n\t"
9508             "SRL     $dst,8,$tmp\n\t"
9509             "OR      $dst,$tmp,$dst\n\t"
9510             "SRL     $dst,16,$tmp\n\t"
9511             "OR      $dst,$tmp,$dst\n\t"
9512             "POPC    $dst,$dst\n\t"
9513             "MOV     32,$tmp\n\t"
9514             "SUB     $tmp,$dst,$dst" %}
9515   ins_encode %{
9516     Register Rdst = $dst$$Register;
9517     Register Rsrc = $src$$Register;
9518     Register Rtmp = $tmp$$Register;
9519     __ srl(Rsrc, 1,    Rtmp);
9520     __ srl(Rsrc, 0,    Rdst);
9521     __ or3(Rdst, Rtmp, Rdst);
9522     __ srl(Rdst, 2,    Rtmp);
9523     __ or3(Rdst, Rtmp, Rdst);
9524     __ srl(Rdst, 4,    Rtmp);
9525     __ or3(Rdst, Rtmp, Rdst);
9526     __ srl(Rdst, 8,    Rtmp);
9527     __ or3(Rdst, Rtmp, Rdst);
9528     __ srl(Rdst, 16,   Rtmp);
9529     __ or3(Rdst, Rtmp, Rdst);
9530     __ popc(Rdst, Rdst);
9531     __ mov(BitsPerInt, Rtmp);
9532     __ sub(Rtmp, Rdst, Rdst);
9533   %}
9534   ins_pipe(ialu_reg);
9535 %}
9536 
9537 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
9538   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9539   match(Set dst (CountLeadingZerosL src));
9540   effect(TEMP dst, TEMP tmp, KILL cr);
9541 
9542   // x |= (x >> 1);
9543   // x |= (x >> 2);
9544   // x |= (x >> 4);
9545   // x |= (x >> 8);
9546   // x |= (x >> 16);
9547   // x |= (x >> 32);
9548   // return (WORDBITS - popc(x));
9549   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
9550             "OR      $src,$tmp,$dst\n\t"
9551             "SRLX    $dst,2,$tmp\n\t"
9552             "OR      $dst,$tmp,$dst\n\t"
9553             "SRLX    $dst,4,$tmp\n\t"
9554             "OR      $dst,$tmp,$dst\n\t"
9555             "SRLX    $dst,8,$tmp\n\t"
9556             "OR      $dst,$tmp,$dst\n\t"
9557             "SRLX    $dst,16,$tmp\n\t"
9558             "OR      $dst,$tmp,$dst\n\t"
9559             "SRLX    $dst,32,$tmp\n\t"
9560             "OR      $dst,$tmp,$dst\n\t"
9561             "POPC    $dst,$dst\n\t"
9562             "MOV     64,$tmp\n\t"
9563             "SUB     $tmp,$dst,$dst" %}
9564   ins_encode %{
9565     Register Rdst = $dst$$Register;
9566     Register Rsrc = $src$$Register;
9567     Register Rtmp = $tmp$$Register;
9568     __ srlx(Rsrc, 1,    Rtmp);
9569     __ or3( Rsrc, Rtmp, Rdst);
9570     __ srlx(Rdst, 2,    Rtmp);
9571     __ or3( Rdst, Rtmp, Rdst);
9572     __ srlx(Rdst, 4,    Rtmp);
9573     __ or3( Rdst, Rtmp, Rdst);
9574     __ srlx(Rdst, 8,    Rtmp);
9575     __ or3( Rdst, Rtmp, Rdst);
9576     __ srlx(Rdst, 16,   Rtmp);
9577     __ or3( Rdst, Rtmp, Rdst);
9578     __ srlx(Rdst, 32,   Rtmp);
9579     __ or3( Rdst, Rtmp, Rdst);
9580     __ popc(Rdst, Rdst);
9581     __ mov(BitsPerLong, Rtmp);
9582     __ sub(Rtmp, Rdst, Rdst);
9583   %}
9584   ins_pipe(ialu_reg);
9585 %}
9586 
9587 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
9588   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9589   match(Set dst (CountTrailingZerosI src));
9590   effect(TEMP dst, KILL cr);
9591 
9592   // return popc(~x & (x - 1));
9593   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
9594             "ANDN    $dst,$src,$dst\n\t"
9595             "SRL     $dst,R_G0,$dst\n\t"
9596             "POPC    $dst,$dst" %}
9597   ins_encode %{
9598     Register Rdst = $dst$$Register;
9599     Register Rsrc = $src$$Register;
9600     __ sub(Rsrc, 1, Rdst);
9601     __ andn(Rdst, Rsrc, Rdst);
9602     __ srl(Rdst, G0, Rdst);
9603     __ popc(Rdst, Rdst);
9604   %}
9605   ins_pipe(ialu_reg);
9606 %}
9607 
9608 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
9609   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9610   match(Set dst (CountTrailingZerosL src));
9611   effect(TEMP dst, KILL cr);
9612 
9613   // return popc(~x & (x - 1));
9614   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
9615             "ANDN    $dst,$src,$dst\n\t"
9616             "POPC    $dst,$dst" %}
9617   ins_encode %{
9618     Register Rdst = $dst$$Register;
9619     Register Rsrc = $src$$Register;
9620     __ sub(Rsrc, 1, Rdst);
9621     __ andn(Rdst, Rsrc, Rdst);
9622     __ popc(Rdst, Rdst);
9623   %}
9624   ins_pipe(ialu_reg);
9625 %}
9626 
9627 
9628 //---------- Population Count Instructions -------------------------------------
9629 
9630 instruct popCountI(iRegI dst, iRegI src) %{
9631   predicate(UsePopCountInstruction);
9632   match(Set dst (PopCountI src));
9633 
9634   format %{ "POPC   $src, $dst" %}
9635   ins_encode %{
9636     __ popc($src$$Register, $dst$$Register);
9637   %}
9638   ins_pipe(ialu_reg);
9639 %}
9640 
9641 // Note: Long.bitCount(long) returns an int.
9642 instruct popCountL(iRegI dst, iRegL src) %{
9643   predicate(UsePopCountInstruction);
9644   match(Set dst (PopCountL src));
9645 
9646   format %{ "POPC   $src, $dst" %}
9647   ins_encode %{
9648     __ popc($src$$Register, $dst$$Register);
9649   %}
9650   ins_pipe(ialu_reg);
9651 %}
9652 
9653 
9654 // ============================================================================
9655 //------------Bytes reverse--------------------------------------------------
9656 
9657 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
9658   match(Set dst (ReverseBytesI src));
9659 
9660   // Op cost is artificially doubled to make sure that load or store
9661   // instructions are preferred over this one which requires a spill
9662   // onto a stack slot.
9663   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9664   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9665 
9666   ins_encode %{
9667     __ set($src$$disp + STACK_BIAS, O7);
9668     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9669   %}
9670   ins_pipe( iload_mem );
9671 %}
9672 
9673 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
9674   match(Set dst (ReverseBytesL src));
9675 
9676   // Op cost is artificially doubled to make sure that load or store
9677   // instructions are preferred over this one which requires a spill
9678   // onto a stack slot.
9679   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9680   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9681 
9682   ins_encode %{
9683     __ set($src$$disp + STACK_BIAS, O7);
9684     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9685   %}
9686   ins_pipe( iload_mem );
9687 %}
9688 
9689 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
9690   match(Set dst (ReverseBytesUS src));
9691 
9692   // Op cost is artificially doubled to make sure that load or store
9693   // instructions are preferred over this one which requires a spill
9694   // onto a stack slot.
9695   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9696   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
9697 
9698   ins_encode %{
9699     // the value was spilled as an int so bias the load
9700     __ set($src$$disp + STACK_BIAS + 2, O7);
9701     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9702   %}
9703   ins_pipe( iload_mem );
9704 %}
9705 
9706 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
9707   match(Set dst (ReverseBytesS src));
9708 
9709   // Op cost is artificially doubled to make sure that load or store
9710   // instructions are preferred over this one which requires a spill
9711   // onto a stack slot.
9712   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9713   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
9714 
9715   ins_encode %{
9716     // the value was spilled as an int so bias the load
9717     __ set($src$$disp + STACK_BIAS + 2, O7);
9718     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9719   %}
9720   ins_pipe( iload_mem );
9721 %}
9722 
9723 // Load Integer reversed byte order
9724 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
9725   match(Set dst (ReverseBytesI (LoadI src)));
9726 
9727   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
9728   size(4);
9729   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9730 
9731   ins_encode %{
9732     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9733   %}
9734   ins_pipe(iload_mem);
9735 %}
9736 
9737 // Load Long - aligned and reversed
9738 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
9739   match(Set dst (ReverseBytesL (LoadL src)));
9740 
9741   ins_cost(MEMORY_REF_COST);
9742   size(4);
9743   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9744 
9745   ins_encode %{
9746     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9747   %}
9748   ins_pipe(iload_mem);
9749 %}
9750 
9751 // Load unsigned short / char reversed byte order
9752 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
9753   match(Set dst (ReverseBytesUS (LoadUS src)));
9754 
9755   ins_cost(MEMORY_REF_COST);
9756   size(4);
9757   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
9758 
9759   ins_encode %{
9760     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9761   %}
9762   ins_pipe(iload_mem);
9763 %}
9764 
9765 // Load short reversed byte order
9766 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
9767   match(Set dst (ReverseBytesS (LoadS src)));
9768 
9769   ins_cost(MEMORY_REF_COST);
9770   size(4);
9771   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
9772 
9773   ins_encode %{
9774     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9775   %}
9776   ins_pipe(iload_mem);
9777 %}
9778 
9779 // Store Integer reversed byte order
9780 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
9781   match(Set dst (StoreI dst (ReverseBytesI src)));
9782 
9783   ins_cost(MEMORY_REF_COST);
9784   size(4);
9785   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
9786 
9787   ins_encode %{
9788     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
9789   %}
9790   ins_pipe(istore_mem_reg);
9791 %}
9792 
9793 // Store Long reversed byte order
9794 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
9795   match(Set dst (StoreL dst (ReverseBytesL src)));
9796 
9797   ins_cost(MEMORY_REF_COST);
9798   size(4);
9799   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
9800 
9801   ins_encode %{
9802     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
9803   %}
9804   ins_pipe(istore_mem_reg);
9805 %}
9806 
9807 // Store unsighed short/char reversed byte order
9808 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
9809   match(Set dst (StoreC dst (ReverseBytesUS src)));
9810 
9811   ins_cost(MEMORY_REF_COST);
9812   size(4);
9813   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
9814 
9815   ins_encode %{
9816     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
9817   %}
9818   ins_pipe(istore_mem_reg);
9819 %}
9820 
9821 // Store short reversed byte order
9822 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
9823   match(Set dst (StoreC dst (ReverseBytesS src)));
9824 
9825   ins_cost(MEMORY_REF_COST);
9826   size(4);
9827   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
9828 
9829   ins_encode %{
9830     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
9831   %}
9832   ins_pipe(istore_mem_reg);
9833 %}
9834 
9835 //----------PEEPHOLE RULES-----------------------------------------------------
9836 // These must follow all instruction definitions as they use the names
9837 // defined in the instructions definitions.
9838 //
9839 // peepmatch ( root_instr_name [preceding_instruction]* );
9840 //
9841 // peepconstraint %{
9842 // (instruction_number.operand_name relational_op instruction_number.operand_name
9843 //  [, ...] );
9844 // // instruction numbers are zero-based using left to right order in peepmatch
9845 //
9846 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
9847 // // provide an instruction_number.operand_name for each operand that appears
9848 // // in the replacement instruction's match rule
9849 //
9850 // ---------VM FLAGS---------------------------------------------------------
9851 //
9852 // All peephole optimizations can be turned off using -XX:-OptoPeephole
9853 //
9854 // Each peephole rule is given an identifying number starting with zero and
9855 // increasing by one in the order seen by the parser.  An individual peephole
9856 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
9857 // on the command-line.
9858 //
9859 // ---------CURRENT LIMITATIONS----------------------------------------------
9860 //
9861 // Only match adjacent instructions in same basic block
9862 // Only equality constraints
9863 // Only constraints between operands, not (0.dest_reg == EAX_enc)
9864 // Only one replacement instruction
9865 //
9866 // ---------EXAMPLE----------------------------------------------------------
9867 //
9868 // // pertinent parts of existing instructions in architecture description
9869 // instruct movI(eRegI dst, eRegI src) %{
9870 //   match(Set dst (CopyI src));
9871 // %}
9872 //
9873 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
9874 //   match(Set dst (AddI dst src));
9875 //   effect(KILL cr);
9876 // %}
9877 //
9878 // // Change (inc mov) to lea
9879 // peephole %{
9880 //   // increment preceeded by register-register move
9881 //   peepmatch ( incI_eReg movI );
9882 //   // require that the destination register of the increment
9883 //   // match the destination register of the move
9884 //   peepconstraint ( 0.dst == 1.dst );
9885 //   // construct a replacement instruction that sets
9886 //   // the destination to ( move's source register + one )
9887 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
9888 // %}
9889 //
9890 
9891 // // Change load of spilled value to only a spill
9892 // instruct storeI(memory mem, eRegI src) %{
9893 //   match(Set mem (StoreI mem src));
9894 // %}
9895 //
9896 // instruct loadI(eRegI dst, memory mem) %{
9897 //   match(Set dst (LoadI mem));
9898 // %}
9899 //
9900 // peephole %{
9901 //   peepmatch ( loadI storeI );
9902 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
9903 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
9904 // %}
9905 
9906 //----------SMARTSPILL RULES---------------------------------------------------
9907 // These must follow all instruction definitions as they use the names
9908 // defined in the instructions definitions.
9909 //
9910 // SPARC will probably not have any of these rules due to RISC instruction set.
9911 
9912 //----------PIPELINE-----------------------------------------------------------
9913 // Rules which define the behavior of the target architectures pipeline.