1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_compile.cpp.incl"
  27 
  28 /// Support for intrinsics.
  29 
  30 // Return the index at which m must be inserted (or already exists).
  31 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  32 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
  33 #ifdef ASSERT
  34   for (int i = 1; i < _intrinsics->length(); i++) {
  35     CallGenerator* cg1 = _intrinsics->at(i-1);
  36     CallGenerator* cg2 = _intrinsics->at(i);
  37     assert(cg1->method() != cg2->method()
  38            ? cg1->method()     < cg2->method()
  39            : cg1->is_virtual() < cg2->is_virtual(),
  40            "compiler intrinsics list must stay sorted");
  41   }
  42 #endif
  43   // Binary search sorted list, in decreasing intervals [lo, hi].
  44   int lo = 0, hi = _intrinsics->length()-1;
  45   while (lo <= hi) {
  46     int mid = (uint)(hi + lo) / 2;
  47     ciMethod* mid_m = _intrinsics->at(mid)->method();
  48     if (m < mid_m) {
  49       hi = mid-1;
  50     } else if (m > mid_m) {
  51       lo = mid+1;
  52     } else {
  53       // look at minor sort key
  54       bool mid_virt = _intrinsics->at(mid)->is_virtual();
  55       if (is_virtual < mid_virt) {
  56         hi = mid-1;
  57       } else if (is_virtual > mid_virt) {
  58         lo = mid+1;
  59       } else {
  60         return mid;  // exact match
  61       }
  62     }
  63   }
  64   return lo;  // inexact match
  65 }
  66 
  67 void Compile::register_intrinsic(CallGenerator* cg) {
  68   if (_intrinsics == NULL) {
  69     _intrinsics = new GrowableArray<CallGenerator*>(60);
  70   }
  71   // This code is stolen from ciObjectFactory::insert.
  72   // Really, GrowableArray should have methods for
  73   // insert_at, remove_at, and binary_search.
  74   int len = _intrinsics->length();
  75   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
  76   if (index == len) {
  77     _intrinsics->append(cg);
  78   } else {
  79 #ifdef ASSERT
  80     CallGenerator* oldcg = _intrinsics->at(index);
  81     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
  82 #endif
  83     _intrinsics->append(_intrinsics->at(len-1));
  84     int pos;
  85     for (pos = len-2; pos >= index; pos--) {
  86       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
  87     }
  88     _intrinsics->at_put(index, cg);
  89   }
  90   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
  91 }
  92 
  93 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
  94   assert(m->is_loaded(), "don't try this on unloaded methods");
  95   if (_intrinsics != NULL) {
  96     int index = intrinsic_insertion_index(m, is_virtual);
  97     if (index < _intrinsics->length()
  98         && _intrinsics->at(index)->method() == m
  99         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 100       return _intrinsics->at(index);
 101     }
 102   }
 103   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 104   if (m->intrinsic_id() != vmIntrinsics::_none &&
 105       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 106     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 107     if (cg != NULL) {
 108       // Save it for next time:
 109       register_intrinsic(cg);
 110       return cg;
 111     } else {
 112       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 113     }
 114   }
 115   return NULL;
 116 }
 117 
 118 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 119 // in library_call.cpp.
 120 
 121 
 122 #ifndef PRODUCT
 123 // statistics gathering...
 124 
 125 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 126 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 127 
 128 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 129   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 130   int oflags = _intrinsic_hist_flags[id];
 131   assert(flags != 0, "what happened?");
 132   if (is_virtual) {
 133     flags |= _intrinsic_virtual;
 134   }
 135   bool changed = (flags != oflags);
 136   if ((flags & _intrinsic_worked) != 0) {
 137     juint count = (_intrinsic_hist_count[id] += 1);
 138     if (count == 1) {
 139       changed = true;           // first time
 140     }
 141     // increment the overall count also:
 142     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 143   }
 144   if (changed) {
 145     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 146       // Something changed about the intrinsic's virtuality.
 147       if ((flags & _intrinsic_virtual) != 0) {
 148         // This is the first use of this intrinsic as a virtual call.
 149         if (oflags != 0) {
 150           // We already saw it as a non-virtual, so note both cases.
 151           flags |= _intrinsic_both;
 152         }
 153       } else if ((oflags & _intrinsic_both) == 0) {
 154         // This is the first use of this intrinsic as a non-virtual
 155         flags |= _intrinsic_both;
 156       }
 157     }
 158     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 159   }
 160   // update the overall flags also:
 161   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 162   return changed;
 163 }
 164 
 165 static char* format_flags(int flags, char* buf) {
 166   buf[0] = 0;
 167   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 168   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 169   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 170   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 171   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 172   if (buf[0] == 0)  strcat(buf, ",");
 173   assert(buf[0] == ',', "must be");
 174   return &buf[1];
 175 }
 176 
 177 void Compile::print_intrinsic_statistics() {
 178   char flagsbuf[100];
 179   ttyLocker ttyl;
 180   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 181   tty->print_cr("Compiler intrinsic usage:");
 182   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 183   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 184   #define PRINT_STAT_LINE(name, c, f) \
 185     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 186   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 187     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 188     int   flags = _intrinsic_hist_flags[id];
 189     juint count = _intrinsic_hist_count[id];
 190     if ((flags | count) != 0) {
 191       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 192     }
 193   }
 194   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 195   if (xtty != NULL)  xtty->tail("statistics");
 196 }
 197 
 198 void Compile::print_statistics() {
 199   { ttyLocker ttyl;
 200     if (xtty != NULL)  xtty->head("statistics type='opto'");
 201     Parse::print_statistics();
 202     PhaseCCP::print_statistics();
 203     PhaseRegAlloc::print_statistics();
 204     Scheduling::print_statistics();
 205     PhasePeephole::print_statistics();
 206     PhaseIdealLoop::print_statistics();
 207     if (xtty != NULL)  xtty->tail("statistics");
 208   }
 209   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 210     // put this under its own <statistics> element.
 211     print_intrinsic_statistics();
 212   }
 213 }
 214 #endif //PRODUCT
 215 
 216 // Support for bundling info
 217 Bundle* Compile::node_bundling(const Node *n) {
 218   assert(valid_bundle_info(n), "oob");
 219   return &_node_bundling_base[n->_idx];
 220 }
 221 
 222 bool Compile::valid_bundle_info(const Node *n) {
 223   return (_node_bundling_limit > n->_idx);
 224 }
 225 
 226 
 227 void Compile::gvn_replace_by(Node* n, Node* nn) {
 228   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 229     Node* use = n->last_out(i);
 230     bool is_in_table = initial_gvn()->hash_delete(use);
 231     uint uses_found = 0;
 232     for (uint j = 0; j < use->len(); j++) {
 233       if (use->in(j) == n) {
 234         if (j < use->req())
 235           use->set_req(j, nn);
 236         else
 237           use->set_prec(j, nn);
 238         uses_found++;
 239       }
 240     }
 241     if (is_in_table) {
 242       // reinsert into table
 243       initial_gvn()->hash_find_insert(use);
 244     }
 245     record_for_igvn(use);
 246     i -= uses_found;    // we deleted 1 or more copies of this edge
 247   }
 248 }
 249 
 250 
 251 
 252 
 253 // Identify all nodes that are reachable from below, useful.
 254 // Use breadth-first pass that records state in a Unique_Node_List,
 255 // recursive traversal is slower.
 256 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 257   int estimated_worklist_size = unique();
 258   useful.map( estimated_worklist_size, NULL );  // preallocate space
 259 
 260   // Initialize worklist
 261   if (root() != NULL)     { useful.push(root()); }
 262   // If 'top' is cached, declare it useful to preserve cached node
 263   if( cached_top_node() ) { useful.push(cached_top_node()); }
 264 
 265   // Push all useful nodes onto the list, breadthfirst
 266   for( uint next = 0; next < useful.size(); ++next ) {
 267     assert( next < unique(), "Unique useful nodes < total nodes");
 268     Node *n  = useful.at(next);
 269     uint max = n->len();
 270     for( uint i = 0; i < max; ++i ) {
 271       Node *m = n->in(i);
 272       if( m == NULL ) continue;
 273       useful.push(m);
 274     }
 275   }
 276 }
 277 
 278 // Disconnect all useless nodes by disconnecting those at the boundary.
 279 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 280   uint next = 0;
 281   while( next < useful.size() ) {
 282     Node *n = useful.at(next++);
 283     // Use raw traversal of out edges since this code removes out edges
 284     int max = n->outcnt();
 285     for (int j = 0; j < max; ++j ) {
 286       Node* child = n->raw_out(j);
 287       if( ! useful.member(child) ) {
 288         assert( !child->is_top() || child != top(),
 289                 "If top is cached in Compile object it is in useful list");
 290         // Only need to remove this out-edge to the useless node
 291         n->raw_del_out(j);
 292         --j;
 293         --max;
 294       }
 295     }
 296     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 297       record_for_igvn( n->unique_out() );
 298     }
 299   }
 300   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 301 }
 302 
 303 //------------------------------frame_size_in_words-----------------------------
 304 // frame_slots in units of words
 305 int Compile::frame_size_in_words() const {
 306   // shift is 0 in LP32 and 1 in LP64
 307   const int shift = (LogBytesPerWord - LogBytesPerInt);
 308   int words = _frame_slots >> shift;
 309   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 310   return words;
 311 }
 312 
 313 // ============================================================================
 314 //------------------------------CompileWrapper---------------------------------
 315 class CompileWrapper : public StackObj {
 316   Compile *const _compile;
 317  public:
 318   CompileWrapper(Compile* compile);
 319 
 320   ~CompileWrapper();
 321 };
 322 
 323 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 324   // the Compile* pointer is stored in the current ciEnv:
 325   ciEnv* env = compile->env();
 326   assert(env == ciEnv::current(), "must already be a ciEnv active");
 327   assert(env->compiler_data() == NULL, "compile already active?");
 328   env->set_compiler_data(compile);
 329   assert(compile == Compile::current(), "sanity");
 330 
 331   compile->set_type_dict(NULL);
 332   compile->set_type_hwm(NULL);
 333   compile->set_type_last_size(0);
 334   compile->set_last_tf(NULL, NULL);
 335   compile->set_indexSet_arena(NULL);
 336   compile->set_indexSet_free_block_list(NULL);
 337   compile->init_type_arena();
 338   Type::Initialize(compile);
 339   _compile->set_scratch_buffer_blob(NULL);
 340   _compile->begin_method();
 341 }
 342 CompileWrapper::~CompileWrapper() {
 343   _compile->end_method();
 344   if (_compile->scratch_buffer_blob() != NULL)
 345     BufferBlob::free(_compile->scratch_buffer_blob());
 346   _compile->env()->set_compiler_data(NULL);
 347 }
 348 
 349 
 350 //----------------------------print_compile_messages---------------------------
 351 void Compile::print_compile_messages() {
 352 #ifndef PRODUCT
 353   // Check if recompiling
 354   if (_subsume_loads == false && PrintOpto) {
 355     // Recompiling without allowing machine instructions to subsume loads
 356     tty->print_cr("*********************************************************");
 357     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 358     tty->print_cr("*********************************************************");
 359   }
 360   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 361     // Recompiling without escape analysis
 362     tty->print_cr("*********************************************************");
 363     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 364     tty->print_cr("*********************************************************");
 365   }
 366   if (env()->break_at_compile()) {
 367     // Open the debugger when compiling this method.
 368     tty->print("### Breaking when compiling: ");
 369     method()->print_short_name();
 370     tty->cr();
 371     BREAKPOINT;
 372   }
 373 
 374   if( PrintOpto ) {
 375     if (is_osr_compilation()) {
 376       tty->print("[OSR]%3d", _compile_id);
 377     } else {
 378       tty->print("%3d", _compile_id);
 379     }
 380   }
 381 #endif
 382 }
 383 
 384 
 385 void Compile::init_scratch_buffer_blob() {
 386   if( scratch_buffer_blob() != NULL )  return;
 387 
 388   // Construct a temporary CodeBuffer to have it construct a BufferBlob
 389   // Cache this BufferBlob for this compile.
 390   ResourceMark rm;
 391   int size = (MAX_inst_size + MAX_stubs_size + MAX_const_size);
 392   BufferBlob* blob = BufferBlob::create("Compile::scratch_buffer", size);
 393   // Record the buffer blob for next time.
 394   set_scratch_buffer_blob(blob);
 395   // Have we run out of code space?
 396   if (scratch_buffer_blob() == NULL) {
 397     // Let CompilerBroker disable further compilations.
 398     record_failure("Not enough space for scratch buffer in CodeCache");
 399     return;
 400   }
 401 
 402   // Initialize the relocation buffers
 403   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 404   set_scratch_locs_memory(locs_buf);
 405 }
 406 
 407 
 408 //-----------------------scratch_emit_size-------------------------------------
 409 // Helper function that computes size by emitting code
 410 uint Compile::scratch_emit_size(const Node* n) {
 411   // Emit into a trash buffer and count bytes emitted.
 412   // This is a pretty expensive way to compute a size,
 413   // but it works well enough if seldom used.
 414   // All common fixed-size instructions are given a size
 415   // method by the AD file.
 416   // Note that the scratch buffer blob and locs memory are
 417   // allocated at the beginning of the compile task, and
 418   // may be shared by several calls to scratch_emit_size.
 419   // The allocation of the scratch buffer blob is particularly
 420   // expensive, since it has to grab the code cache lock.
 421   BufferBlob* blob = this->scratch_buffer_blob();
 422   assert(blob != NULL, "Initialize BufferBlob at start");
 423   assert(blob->size() > MAX_inst_size, "sanity");
 424   relocInfo* locs_buf = scratch_locs_memory();
 425   address blob_begin = blob->content_begin();
 426   address blob_end   = (address)locs_buf;
 427   assert(blob->content_contains(blob_end), "sanity");
 428   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 429   buf.initialize_consts_size(MAX_const_size);
 430   buf.initialize_stubs_size(MAX_stubs_size);
 431   assert(locs_buf != NULL, "sanity");
 432   int lsize = MAX_locs_size / 2;
 433   buf.insts()->initialize_shared_locs(&locs_buf[0],     lsize);
 434   buf.stubs()->initialize_shared_locs(&locs_buf[lsize], lsize);
 435   n->emit(buf, this->regalloc());
 436   return buf.insts_size();
 437 }
 438 
 439 
 440 // ============================================================================
 441 //------------------------------Compile standard-------------------------------
 442 debug_only( int Compile::_debug_idx = 100000; )
 443 
 444 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 445 // the continuation bci for on stack replacement.
 446 
 447 
 448 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
 449                 : Phase(Compiler),
 450                   _env(ci_env),
 451                   _log(ci_env->log()),
 452                   _compile_id(ci_env->compile_id()),
 453                   _save_argument_registers(false),
 454                   _stub_name(NULL),
 455                   _stub_function(NULL),
 456                   _stub_entry_point(NULL),
 457                   _method(target),
 458                   _entry_bci(osr_bci),
 459                   _initial_gvn(NULL),
 460                   _for_igvn(NULL),
 461                   _warm_calls(NULL),
 462                   _subsume_loads(subsume_loads),
 463                   _do_escape_analysis(do_escape_analysis),
 464                   _failure_reason(NULL),
 465                   _code_buffer("Compile::Fill_buffer"),
 466                   _orig_pc_slot(0),
 467                   _orig_pc_slot_offset_in_bytes(0),
 468                   _has_method_handle_invokes(false),
 469                   _node_bundling_limit(0),
 470                   _node_bundling_base(NULL),
 471                   _java_calls(0),
 472                   _inner_loops(0),
 473 #ifndef PRODUCT
 474                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 475                   _printer(IdealGraphPrinter::printer()),
 476 #endif
 477                   _congraph(NULL) {
 478   C = this;
 479 
 480   CompileWrapper cw(this);
 481 #ifndef PRODUCT
 482   if (TimeCompiler2) {
 483     tty->print(" ");
 484     target->holder()->name()->print();
 485     tty->print(".");
 486     target->print_short_name();
 487     tty->print("  ");
 488   }
 489   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 490   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 491   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 492   if (!print_opto_assembly) {
 493     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 494     if (print_assembly && !Disassembler::can_decode()) {
 495       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 496       print_opto_assembly = true;
 497     }
 498   }
 499   set_print_assembly(print_opto_assembly);
 500   set_parsed_irreducible_loop(false);
 501 #endif
 502 
 503   if (ProfileTraps) {
 504     // Make sure the method being compiled gets its own MDO,
 505     // so we can at least track the decompile_count().
 506     method()->build_method_data();
 507   }
 508 
 509   Init(::AliasLevel);
 510 
 511 
 512   print_compile_messages();
 513 
 514   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
 515     _ilt = InlineTree::build_inline_tree_root();
 516   else
 517     _ilt = NULL;
 518 
 519   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 520   assert(num_alias_types() >= AliasIdxRaw, "");
 521 
 522 #define MINIMUM_NODE_HASH  1023
 523   // Node list that Iterative GVN will start with
 524   Unique_Node_List for_igvn(comp_arena());
 525   set_for_igvn(&for_igvn);
 526 
 527   // GVN that will be run immediately on new nodes
 528   uint estimated_size = method()->code_size()*4+64;
 529   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 530   PhaseGVN gvn(node_arena(), estimated_size);
 531   set_initial_gvn(&gvn);
 532 
 533   { // Scope for timing the parser
 534     TracePhase t3("parse", &_t_parser, true);
 535 
 536     // Put top into the hash table ASAP.
 537     initial_gvn()->transform_no_reclaim(top());
 538 
 539     // Set up tf(), start(), and find a CallGenerator.
 540     CallGenerator* cg;
 541     if (is_osr_compilation()) {
 542       const TypeTuple *domain = StartOSRNode::osr_domain();
 543       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 544       init_tf(TypeFunc::make(domain, range));
 545       StartNode* s = new (this, 2) StartOSRNode(root(), domain);
 546       initial_gvn()->set_type_bottom(s);
 547       init_start(s);
 548       cg = CallGenerator::for_osr(method(), entry_bci());
 549     } else {
 550       // Normal case.
 551       init_tf(TypeFunc::make(method()));
 552       StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
 553       initial_gvn()->set_type_bottom(s);
 554       init_start(s);
 555       float past_uses = method()->interpreter_invocation_count();
 556       float expected_uses = past_uses;
 557       cg = CallGenerator::for_inline(method(), expected_uses);
 558     }
 559     if (failing())  return;
 560     if (cg == NULL) {
 561       record_method_not_compilable_all_tiers("cannot parse method");
 562       return;
 563     }
 564     JVMState* jvms = build_start_state(start(), tf());
 565     if ((jvms = cg->generate(jvms)) == NULL) {
 566       record_method_not_compilable("method parse failed");
 567       return;
 568     }
 569     GraphKit kit(jvms);
 570 
 571     if (!kit.stopped()) {
 572       // Accept return values, and transfer control we know not where.
 573       // This is done by a special, unique ReturnNode bound to root.
 574       return_values(kit.jvms());
 575     }
 576 
 577     if (kit.has_exceptions()) {
 578       // Any exceptions that escape from this call must be rethrown
 579       // to whatever caller is dynamically above us on the stack.
 580       // This is done by a special, unique RethrowNode bound to root.
 581       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 582     }
 583 
 584     if (!failing() && has_stringbuilder()) {
 585       {
 586         // remove useless nodes to make the usage analysis simpler
 587         ResourceMark rm;
 588         PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 589       }
 590 
 591       {
 592         ResourceMark rm;
 593         print_method("Before StringOpts", 3);
 594         PhaseStringOpts pso(initial_gvn(), &for_igvn);
 595         print_method("After StringOpts", 3);
 596       }
 597 
 598       // now inline anything that we skipped the first time around
 599       while (_late_inlines.length() > 0) {
 600         CallGenerator* cg = _late_inlines.pop();
 601         cg->do_late_inline();
 602       }
 603     }
 604     assert(_late_inlines.length() == 0, "should have been processed");
 605 
 606     print_method("Before RemoveUseless", 3);
 607 
 608     // Remove clutter produced by parsing.
 609     if (!failing()) {
 610       ResourceMark rm;
 611       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 612     }
 613   }
 614 
 615   // Note:  Large methods are capped off in do_one_bytecode().
 616   if (failing())  return;
 617 
 618   // After parsing, node notes are no longer automagic.
 619   // They must be propagated by register_new_node_with_optimizer(),
 620   // clone(), or the like.
 621   set_default_node_notes(NULL);
 622 
 623   for (;;) {
 624     int successes = Inline_Warm();
 625     if (failing())  return;
 626     if (successes == 0)  break;
 627   }
 628 
 629   // Drain the list.
 630   Finish_Warm();
 631 #ifndef PRODUCT
 632   if (_printer) {
 633     _printer->print_inlining(this);
 634   }
 635 #endif
 636 
 637   if (failing())  return;
 638   NOT_PRODUCT( verify_graph_edges(); )
 639 
 640   // Now optimize
 641   Optimize();
 642   if (failing())  return;
 643   NOT_PRODUCT( verify_graph_edges(); )
 644 
 645 #ifndef PRODUCT
 646   if (PrintIdeal) {
 647     ttyLocker ttyl;  // keep the following output all in one block
 648     // This output goes directly to the tty, not the compiler log.
 649     // To enable tools to match it up with the compilation activity,
 650     // be sure to tag this tty output with the compile ID.
 651     if (xtty != NULL) {
 652       xtty->head("ideal compile_id='%d'%s", compile_id(),
 653                  is_osr_compilation()    ? " compile_kind='osr'" :
 654                  "");
 655     }
 656     root()->dump(9999);
 657     if (xtty != NULL) {
 658       xtty->tail("ideal");
 659     }
 660   }
 661 #endif
 662 
 663   // Now that we know the size of all the monitors we can add a fixed slot
 664   // for the original deopt pc.
 665 
 666   _orig_pc_slot =  fixed_slots();
 667   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 668   set_fixed_slots(next_slot);
 669 
 670   // Now generate code
 671   Code_Gen();
 672   if (failing())  return;
 673 
 674   // Check if we want to skip execution of all compiled code.
 675   {
 676 #ifndef PRODUCT
 677     if (OptoNoExecute) {
 678       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 679       return;
 680     }
 681     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 682 #endif
 683 
 684     if (is_osr_compilation()) {
 685       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 686       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 687     } else {
 688       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 689       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 690     }
 691 
 692     env()->register_method(_method, _entry_bci,
 693                            &_code_offsets,
 694                            _orig_pc_slot_offset_in_bytes,
 695                            code_buffer(),
 696                            frame_size_in_words(), _oop_map_set,
 697                            &_handler_table, &_inc_table,
 698                            compiler,
 699                            env()->comp_level(),
 700                            true, /*has_debug_info*/
 701                            has_unsafe_access()
 702                            );
 703   }
 704 }
 705 
 706 //------------------------------Compile----------------------------------------
 707 // Compile a runtime stub
 708 Compile::Compile( ciEnv* ci_env,
 709                   TypeFunc_generator generator,
 710                   address stub_function,
 711                   const char *stub_name,
 712                   int is_fancy_jump,
 713                   bool pass_tls,
 714                   bool save_arg_registers,
 715                   bool return_pc )
 716   : Phase(Compiler),
 717     _env(ci_env),
 718     _log(ci_env->log()),
 719     _compile_id(-1),
 720     _save_argument_registers(save_arg_registers),
 721     _method(NULL),
 722     _stub_name(stub_name),
 723     _stub_function(stub_function),
 724     _stub_entry_point(NULL),
 725     _entry_bci(InvocationEntryBci),
 726     _initial_gvn(NULL),
 727     _for_igvn(NULL),
 728     _warm_calls(NULL),
 729     _orig_pc_slot(0),
 730     _orig_pc_slot_offset_in_bytes(0),
 731     _subsume_loads(true),
 732     _do_escape_analysis(false),
 733     _failure_reason(NULL),
 734     _code_buffer("Compile::Fill_buffer"),
 735     _has_method_handle_invokes(false),
 736     _node_bundling_limit(0),
 737     _node_bundling_base(NULL),
 738     _java_calls(0),
 739     _inner_loops(0),
 740 #ifndef PRODUCT
 741     _trace_opto_output(TraceOptoOutput),
 742     _printer(NULL),
 743 #endif
 744     _congraph(NULL) {
 745   C = this;
 746 
 747 #ifndef PRODUCT
 748   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 749   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 750   set_print_assembly(PrintFrameConverterAssembly);
 751   set_parsed_irreducible_loop(false);
 752 #endif
 753   CompileWrapper cw(this);
 754   Init(/*AliasLevel=*/ 0);
 755   init_tf((*generator)());
 756 
 757   {
 758     // The following is a dummy for the sake of GraphKit::gen_stub
 759     Unique_Node_List for_igvn(comp_arena());
 760     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 761     PhaseGVN gvn(Thread::current()->resource_area(),255);
 762     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 763     gvn.transform_no_reclaim(top());
 764 
 765     GraphKit kit;
 766     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 767   }
 768 
 769   NOT_PRODUCT( verify_graph_edges(); )
 770   Code_Gen();
 771   if (failing())  return;
 772 
 773 
 774   // Entry point will be accessed using compile->stub_entry_point();
 775   if (code_buffer() == NULL) {
 776     Matcher::soft_match_failure();
 777   } else {
 778     if (PrintAssembly && (WizardMode || Verbose))
 779       tty->print_cr("### Stub::%s", stub_name);
 780 
 781     if (!failing()) {
 782       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
 783 
 784       // Make the NMethod
 785       // For now we mark the frame as never safe for profile stackwalking
 786       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
 787                                                       code_buffer(),
 788                                                       CodeOffsets::frame_never_safe,
 789                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
 790                                                       frame_size_in_words(),
 791                                                       _oop_map_set,
 792                                                       save_arg_registers);
 793       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
 794 
 795       _stub_entry_point = rs->entry_point();
 796     }
 797   }
 798 }
 799 
 800 #ifndef PRODUCT
 801 void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
 802   if(PrintOpto && Verbose) {
 803     tty->print("%s   ", stub_name); j_sig->print_flattened(); tty->cr();
 804   }
 805 }
 806 #endif
 807 
 808 void Compile::print_codes() {
 809 }
 810 
 811 //------------------------------Init-------------------------------------------
 812 // Prepare for a single compilation
 813 void Compile::Init(int aliaslevel) {
 814   _unique  = 0;
 815   _regalloc = NULL;
 816 
 817   _tf      = NULL;  // filled in later
 818   _top     = NULL;  // cached later
 819   _matcher = NULL;  // filled in later
 820   _cfg     = NULL;  // filled in later
 821 
 822   set_24_bit_selection_and_mode(Use24BitFP, false);
 823 
 824   _node_note_array = NULL;
 825   _default_node_notes = NULL;
 826 
 827   _immutable_memory = NULL; // filled in at first inquiry
 828 
 829   // Globally visible Nodes
 830   // First set TOP to NULL to give safe behavior during creation of RootNode
 831   set_cached_top_node(NULL);
 832   set_root(new (this, 3) RootNode());
 833   // Now that you have a Root to point to, create the real TOP
 834   set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
 835   set_recent_alloc(NULL, NULL);
 836 
 837   // Create Debug Information Recorder to record scopes, oopmaps, etc.
 838   env()->set_oop_recorder(new OopRecorder(comp_arena()));
 839   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
 840   env()->set_dependencies(new Dependencies(env()));
 841 
 842   _fixed_slots = 0;
 843   set_has_split_ifs(false);
 844   set_has_loops(has_method() && method()->has_loops()); // first approximation
 845   set_has_stringbuilder(false);
 846   _trap_can_recompile = false;  // no traps emitted yet
 847   _major_progress = true; // start out assuming good things will happen
 848   set_has_unsafe_access(false);
 849   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
 850   set_decompile_count(0);
 851 
 852   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
 853   set_num_loop_opts(LoopOptsCount);
 854   set_do_inlining(Inline);
 855   set_max_inline_size(MaxInlineSize);
 856   set_freq_inline_size(FreqInlineSize);
 857   set_do_scheduling(OptoScheduling);
 858   set_do_count_invocations(false);
 859   set_do_method_data_update(false);
 860 
 861   if (debug_info()->recording_non_safepoints()) {
 862     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
 863                         (comp_arena(), 8, 0, NULL));
 864     set_default_node_notes(Node_Notes::make(this));
 865   }
 866 
 867   // // -- Initialize types before each compile --
 868   // // Update cached type information
 869   // if( _method && _method->constants() )
 870   //   Type::update_loaded_types(_method, _method->constants());
 871 
 872   // Init alias_type map.
 873   if (!_do_escape_analysis && aliaslevel == 3)
 874     aliaslevel = 2;  // No unique types without escape analysis
 875   _AliasLevel = aliaslevel;
 876   const int grow_ats = 16;
 877   _max_alias_types = grow_ats;
 878   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
 879   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
 880   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
 881   {
 882     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
 883   }
 884   // Initialize the first few types.
 885   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
 886   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
 887   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
 888   _num_alias_types = AliasIdxRaw+1;
 889   // Zero out the alias type cache.
 890   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
 891   // A NULL adr_type hits in the cache right away.  Preload the right answer.
 892   probe_alias_cache(NULL)->_index = AliasIdxTop;
 893 
 894   _intrinsics = NULL;
 895   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
 896   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
 897   register_library_intrinsics();
 898 }
 899 
 900 //---------------------------init_start----------------------------------------
 901 // Install the StartNode on this compile object.
 902 void Compile::init_start(StartNode* s) {
 903   if (failing())
 904     return; // already failing
 905   assert(s == start(), "");
 906 }
 907 
 908 StartNode* Compile::start() const {
 909   assert(!failing(), "");
 910   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
 911     Node* start = root()->fast_out(i);
 912     if( start->is_Start() )
 913       return start->as_Start();
 914   }
 915   ShouldNotReachHere();
 916   return NULL;
 917 }
 918 
 919 //-------------------------------immutable_memory-------------------------------------
 920 // Access immutable memory
 921 Node* Compile::immutable_memory() {
 922   if (_immutable_memory != NULL) {
 923     return _immutable_memory;
 924   }
 925   StartNode* s = start();
 926   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
 927     Node *p = s->fast_out(i);
 928     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
 929       _immutable_memory = p;
 930       return _immutable_memory;
 931     }
 932   }
 933   ShouldNotReachHere();
 934   return NULL;
 935 }
 936 
 937 //----------------------set_cached_top_node------------------------------------
 938 // Install the cached top node, and make sure Node::is_top works correctly.
 939 void Compile::set_cached_top_node(Node* tn) {
 940   if (tn != NULL)  verify_top(tn);
 941   Node* old_top = _top;
 942   _top = tn;
 943   // Calling Node::setup_is_top allows the nodes the chance to adjust
 944   // their _out arrays.
 945   if (_top != NULL)     _top->setup_is_top();
 946   if (old_top != NULL)  old_top->setup_is_top();
 947   assert(_top == NULL || top()->is_top(), "");
 948 }
 949 
 950 #ifndef PRODUCT
 951 void Compile::verify_top(Node* tn) const {
 952   if (tn != NULL) {
 953     assert(tn->is_Con(), "top node must be a constant");
 954     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
 955     assert(tn->in(0) != NULL, "must have live top node");
 956   }
 957 }
 958 #endif
 959 
 960 
 961 ///-------------------Managing Per-Node Debug & Profile Info-------------------
 962 
 963 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
 964   guarantee(arr != NULL, "");
 965   int num_blocks = arr->length();
 966   if (grow_by < num_blocks)  grow_by = num_blocks;
 967   int num_notes = grow_by * _node_notes_block_size;
 968   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
 969   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
 970   while (num_notes > 0) {
 971     arr->append(notes);
 972     notes     += _node_notes_block_size;
 973     num_notes -= _node_notes_block_size;
 974   }
 975   assert(num_notes == 0, "exact multiple, please");
 976 }
 977 
 978 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
 979   if (source == NULL || dest == NULL)  return false;
 980 
 981   if (dest->is_Con())
 982     return false;               // Do not push debug info onto constants.
 983 
 984 #ifdef ASSERT
 985   // Leave a bread crumb trail pointing to the original node:
 986   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
 987     dest->set_debug_orig(source);
 988   }
 989 #endif
 990 
 991   if (node_note_array() == NULL)
 992     return false;               // Not collecting any notes now.
 993 
 994   // This is a copy onto a pre-existing node, which may already have notes.
 995   // If both nodes have notes, do not overwrite any pre-existing notes.
 996   Node_Notes* source_notes = node_notes_at(source->_idx);
 997   if (source_notes == NULL || source_notes->is_clear())  return false;
 998   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
 999   if (dest_notes == NULL || dest_notes->is_clear()) {
1000     return set_node_notes_at(dest->_idx, source_notes);
1001   }
1002 
1003   Node_Notes merged_notes = (*source_notes);
1004   // The order of operations here ensures that dest notes will win...
1005   merged_notes.update_from(dest_notes);
1006   return set_node_notes_at(dest->_idx, &merged_notes);
1007 }
1008 
1009 
1010 //--------------------------allow_range_check_smearing-------------------------
1011 // Gating condition for coalescing similar range checks.
1012 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1013 // single covering check that is at least as strong as any of them.
1014 // If the optimization succeeds, the simplified (strengthened) range check
1015 // will always succeed.  If it fails, we will deopt, and then give up
1016 // on the optimization.
1017 bool Compile::allow_range_check_smearing() const {
1018   // If this method has already thrown a range-check,
1019   // assume it was because we already tried range smearing
1020   // and it failed.
1021   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1022   return !already_trapped;
1023 }
1024 
1025 
1026 //------------------------------flatten_alias_type-----------------------------
1027 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1028   int offset = tj->offset();
1029   TypePtr::PTR ptr = tj->ptr();
1030 
1031   // Known instance (scalarizable allocation) alias only with itself.
1032   bool is_known_inst = tj->isa_oopptr() != NULL &&
1033                        tj->is_oopptr()->is_known_instance();
1034 
1035   // Process weird unsafe references.
1036   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1037     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1038     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1039     tj = TypeOopPtr::BOTTOM;
1040     ptr = tj->ptr();
1041     offset = tj->offset();
1042   }
1043 
1044   // Array pointers need some flattening
1045   const TypeAryPtr *ta = tj->isa_aryptr();
1046   if( ta && is_known_inst ) {
1047     if ( offset != Type::OffsetBot &&
1048          offset > arrayOopDesc::length_offset_in_bytes() ) {
1049       offset = Type::OffsetBot; // Flatten constant access into array body only
1050       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1051     }
1052   } else if( ta && _AliasLevel >= 2 ) {
1053     // For arrays indexed by constant indices, we flatten the alias
1054     // space to include all of the array body.  Only the header, klass
1055     // and array length can be accessed un-aliased.
1056     if( offset != Type::OffsetBot ) {
1057       if( ta->const_oop() ) { // methodDataOop or methodOop
1058         offset = Type::OffsetBot;   // Flatten constant access into array body
1059         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1060       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1061         // range is OK as-is.
1062         tj = ta = TypeAryPtr::RANGE;
1063       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1064         tj = TypeInstPtr::KLASS; // all klass loads look alike
1065         ta = TypeAryPtr::RANGE; // generic ignored junk
1066         ptr = TypePtr::BotPTR;
1067       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1068         tj = TypeInstPtr::MARK;
1069         ta = TypeAryPtr::RANGE; // generic ignored junk
1070         ptr = TypePtr::BotPTR;
1071       } else {                  // Random constant offset into array body
1072         offset = Type::OffsetBot;   // Flatten constant access into array body
1073         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1074       }
1075     }
1076     // Arrays of fixed size alias with arrays of unknown size.
1077     if (ta->size() != TypeInt::POS) {
1078       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1079       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1080     }
1081     // Arrays of known objects become arrays of unknown objects.
1082     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1083       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1084       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1085     }
1086     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1087       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1088       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1089     }
1090     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1091     // cannot be distinguished by bytecode alone.
1092     if (ta->elem() == TypeInt::BOOL) {
1093       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1094       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1095       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1096     }
1097     // During the 2nd round of IterGVN, NotNull castings are removed.
1098     // Make sure the Bottom and NotNull variants alias the same.
1099     // Also, make sure exact and non-exact variants alias the same.
1100     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
1101       if (ta->const_oop()) {
1102         tj = ta = TypeAryPtr::make(TypePtr::Constant,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1103       } else {
1104         tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1105       }
1106     }
1107   }
1108 
1109   // Oop pointers need some flattening
1110   const TypeInstPtr *to = tj->isa_instptr();
1111   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1112     if( ptr == TypePtr::Constant ) {
1113       // No constant oop pointers (such as Strings); they alias with
1114       // unknown strings.
1115       assert(!is_known_inst, "not scalarizable allocation");
1116       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1117     } else if( is_known_inst ) {
1118       tj = to; // Keep NotNull and klass_is_exact for instance type
1119     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1120       // During the 2nd round of IterGVN, NotNull castings are removed.
1121       // Make sure the Bottom and NotNull variants alias the same.
1122       // Also, make sure exact and non-exact variants alias the same.
1123       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1124     }
1125     // Canonicalize the holder of this field
1126     ciInstanceKlass *k = to->klass()->as_instance_klass();
1127     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1128       // First handle header references such as a LoadKlassNode, even if the
1129       // object's klass is unloaded at compile time (4965979).
1130       if (!is_known_inst) { // Do it only for non-instance types
1131         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1132       }
1133     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1134       to = NULL;
1135       tj = TypeOopPtr::BOTTOM;
1136       offset = tj->offset();
1137     } else {
1138       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1139       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1140         if( is_known_inst ) {
1141           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1142         } else {
1143           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1144         }
1145       }
1146     }
1147   }
1148 
1149   // Klass pointers to object array klasses need some flattening
1150   const TypeKlassPtr *tk = tj->isa_klassptr();
1151   if( tk ) {
1152     // If we are referencing a field within a Klass, we need
1153     // to assume the worst case of an Object.  Both exact and
1154     // inexact types must flatten to the same alias class.
1155     // Since the flattened result for a klass is defined to be
1156     // precisely java.lang.Object, use a constant ptr.
1157     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1158 
1159       tj = tk = TypeKlassPtr::make(TypePtr::Constant,
1160                                    TypeKlassPtr::OBJECT->klass(),
1161                                    offset);
1162     }
1163 
1164     ciKlass* klass = tk->klass();
1165     if( klass->is_obj_array_klass() ) {
1166       ciKlass* k = TypeAryPtr::OOPS->klass();
1167       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1168         k = TypeInstPtr::BOTTOM->klass();
1169       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1170     }
1171 
1172     // Check for precise loads from the primary supertype array and force them
1173     // to the supertype cache alias index.  Check for generic array loads from
1174     // the primary supertype array and also force them to the supertype cache
1175     // alias index.  Since the same load can reach both, we need to merge
1176     // these 2 disparate memories into the same alias class.  Since the
1177     // primary supertype array is read-only, there's no chance of confusion
1178     // where we bypass an array load and an array store.
1179     uint off2 = offset - Klass::primary_supers_offset_in_bytes();
1180     if( offset == Type::OffsetBot ||
1181         off2 < Klass::primary_super_limit()*wordSize ) {
1182       offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
1183       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1184     }
1185   }
1186 
1187   // Flatten all Raw pointers together.
1188   if (tj->base() == Type::RawPtr)
1189     tj = TypeRawPtr::BOTTOM;
1190 
1191   if (tj->base() == Type::AnyPtr)
1192     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1193 
1194   // Flatten all to bottom for now
1195   switch( _AliasLevel ) {
1196   case 0:
1197     tj = TypePtr::BOTTOM;
1198     break;
1199   case 1:                       // Flatten to: oop, static, field or array
1200     switch (tj->base()) {
1201     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1202     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1203     case Type::AryPtr:   // do not distinguish arrays at all
1204     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1205     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1206     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1207     default: ShouldNotReachHere();
1208     }
1209     break;
1210   case 2:                       // No collapsing at level 2; keep all splits
1211   case 3:                       // No collapsing at level 3; keep all splits
1212     break;
1213   default:
1214     Unimplemented();
1215   }
1216 
1217   offset = tj->offset();
1218   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1219 
1220   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1221           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1222           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1223           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1224           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1225           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1226           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1227           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1228   assert( tj->ptr() != TypePtr::TopPTR &&
1229           tj->ptr() != TypePtr::AnyNull &&
1230           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1231 //    assert( tj->ptr() != TypePtr::Constant ||
1232 //            tj->base() == Type::RawPtr ||
1233 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1234 
1235   return tj;
1236 }
1237 
1238 void Compile::AliasType::Init(int i, const TypePtr* at) {
1239   _index = i;
1240   _adr_type = at;
1241   _field = NULL;
1242   _is_rewritable = true; // default
1243   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1244   if (atoop != NULL && atoop->is_known_instance()) {
1245     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1246     _general_index = Compile::current()->get_alias_index(gt);
1247   } else {
1248     _general_index = 0;
1249   }
1250 }
1251 
1252 //---------------------------------print_on------------------------------------
1253 #ifndef PRODUCT
1254 void Compile::AliasType::print_on(outputStream* st) {
1255   if (index() < 10)
1256         st->print("@ <%d> ", index());
1257   else  st->print("@ <%d>",  index());
1258   st->print(is_rewritable() ? "   " : " RO");
1259   int offset = adr_type()->offset();
1260   if (offset == Type::OffsetBot)
1261         st->print(" +any");
1262   else  st->print(" +%-3d", offset);
1263   st->print(" in ");
1264   adr_type()->dump_on(st);
1265   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1266   if (field() != NULL && tjp) {
1267     if (tjp->klass()  != field()->holder() ||
1268         tjp->offset() != field()->offset_in_bytes()) {
1269       st->print(" != ");
1270       field()->print();
1271       st->print(" ***");
1272     }
1273   }
1274 }
1275 
1276 void print_alias_types() {
1277   Compile* C = Compile::current();
1278   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1279   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1280     C->alias_type(idx)->print_on(tty);
1281     tty->cr();
1282   }
1283 }
1284 #endif
1285 
1286 
1287 //----------------------------probe_alias_cache--------------------------------
1288 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1289   intptr_t key = (intptr_t) adr_type;
1290   key ^= key >> logAliasCacheSize;
1291   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1292 }
1293 
1294 
1295 //-----------------------------grow_alias_types--------------------------------
1296 void Compile::grow_alias_types() {
1297   const int old_ats  = _max_alias_types; // how many before?
1298   const int new_ats  = old_ats;          // how many more?
1299   const int grow_ats = old_ats+new_ats;  // how many now?
1300   _max_alias_types = grow_ats;
1301   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1302   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1303   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1304   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1305 }
1306 
1307 
1308 //--------------------------------find_alias_type------------------------------
1309 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create) {
1310   if (_AliasLevel == 0)
1311     return alias_type(AliasIdxBot);
1312 
1313   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1314   if (ace->_adr_type == adr_type) {
1315     return alias_type(ace->_index);
1316   }
1317 
1318   // Handle special cases.
1319   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1320   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1321 
1322   // Do it the slow way.
1323   const TypePtr* flat = flatten_alias_type(adr_type);
1324 
1325 #ifdef ASSERT
1326   assert(flat == flatten_alias_type(flat), "idempotent");
1327   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1328   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1329     const TypeOopPtr* foop = flat->is_oopptr();
1330     // Scalarizable allocations have exact klass always.
1331     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1332     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1333     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1334   }
1335   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1336 #endif
1337 
1338   int idx = AliasIdxTop;
1339   for (int i = 0; i < num_alias_types(); i++) {
1340     if (alias_type(i)->adr_type() == flat) {
1341       idx = i;
1342       break;
1343     }
1344   }
1345 
1346   if (idx == AliasIdxTop) {
1347     if (no_create)  return NULL;
1348     // Grow the array if necessary.
1349     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1350     // Add a new alias type.
1351     idx = _num_alias_types++;
1352     _alias_types[idx]->Init(idx, flat);
1353     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1354     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1355     if (flat->isa_instptr()) {
1356       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1357           && flat->is_instptr()->klass() == env()->Class_klass())
1358         alias_type(idx)->set_rewritable(false);
1359     }
1360     if (flat->isa_klassptr()) {
1361       if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
1362         alias_type(idx)->set_rewritable(false);
1363       if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1364         alias_type(idx)->set_rewritable(false);
1365       if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1366         alias_type(idx)->set_rewritable(false);
1367       if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
1368         alias_type(idx)->set_rewritable(false);
1369     }
1370     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1371     // but the base pointer type is not distinctive enough to identify
1372     // references into JavaThread.)
1373 
1374     // Check for final instance fields.
1375     const TypeInstPtr* tinst = flat->isa_instptr();
1376     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1377       ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1378       ciField* field = k->get_field_by_offset(tinst->offset(), false);
1379       // Set field() and is_rewritable() attributes.
1380       if (field != NULL)  alias_type(idx)->set_field(field);
1381     }
1382     const TypeKlassPtr* tklass = flat->isa_klassptr();
1383     // Check for final static fields.
1384     if (tklass && tklass->klass()->is_instance_klass()) {
1385       ciInstanceKlass *k = tklass->klass()->as_instance_klass();
1386       ciField* field = k->get_field_by_offset(tklass->offset(), true);
1387       // Set field() and is_rewritable() attributes.
1388       if (field != NULL)   alias_type(idx)->set_field(field);
1389     }
1390   }
1391 
1392   // Fill the cache for next time.
1393   ace->_adr_type = adr_type;
1394   ace->_index    = idx;
1395   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1396 
1397   // Might as well try to fill the cache for the flattened version, too.
1398   AliasCacheEntry* face = probe_alias_cache(flat);
1399   if (face->_adr_type == NULL) {
1400     face->_adr_type = flat;
1401     face->_index    = idx;
1402     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1403   }
1404 
1405   return alias_type(idx);
1406 }
1407 
1408 
1409 Compile::AliasType* Compile::alias_type(ciField* field) {
1410   const TypeOopPtr* t;
1411   if (field->is_static())
1412     t = TypeKlassPtr::make(field->holder());
1413   else
1414     t = TypeOopPtr::make_from_klass_raw(field->holder());
1415   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()));
1416   assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
1417   return atp;
1418 }
1419 
1420 
1421 //------------------------------have_alias_type--------------------------------
1422 bool Compile::have_alias_type(const TypePtr* adr_type) {
1423   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1424   if (ace->_adr_type == adr_type) {
1425     return true;
1426   }
1427 
1428   // Handle special cases.
1429   if (adr_type == NULL)             return true;
1430   if (adr_type == TypePtr::BOTTOM)  return true;
1431 
1432   return find_alias_type(adr_type, true) != NULL;
1433 }
1434 
1435 //-----------------------------must_alias--------------------------------------
1436 // True if all values of the given address type are in the given alias category.
1437 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1438   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1439   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1440   if (alias_idx == AliasIdxTop)         return false; // the empty category
1441   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1442 
1443   // the only remaining possible overlap is identity
1444   int adr_idx = get_alias_index(adr_type);
1445   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1446   assert(adr_idx == alias_idx ||
1447          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1448           && adr_type                       != TypeOopPtr::BOTTOM),
1449          "should not be testing for overlap with an unsafe pointer");
1450   return adr_idx == alias_idx;
1451 }
1452 
1453 //------------------------------can_alias--------------------------------------
1454 // True if any values of the given address type are in the given alias category.
1455 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1456   if (alias_idx == AliasIdxTop)         return false; // the empty category
1457   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1458   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1459   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1460 
1461   // the only remaining possible overlap is identity
1462   int adr_idx = get_alias_index(adr_type);
1463   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1464   return adr_idx == alias_idx;
1465 }
1466 
1467 
1468 
1469 //---------------------------pop_warm_call-------------------------------------
1470 WarmCallInfo* Compile::pop_warm_call() {
1471   WarmCallInfo* wci = _warm_calls;
1472   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1473   return wci;
1474 }
1475 
1476 //----------------------------Inline_Warm--------------------------------------
1477 int Compile::Inline_Warm() {
1478   // If there is room, try to inline some more warm call sites.
1479   // %%% Do a graph index compaction pass when we think we're out of space?
1480   if (!InlineWarmCalls)  return 0;
1481 
1482   int calls_made_hot = 0;
1483   int room_to_grow   = NodeCountInliningCutoff - unique();
1484   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1485   int amount_grown   = 0;
1486   WarmCallInfo* call;
1487   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1488     int est_size = (int)call->size();
1489     if (est_size > (room_to_grow - amount_grown)) {
1490       // This one won't fit anyway.  Get rid of it.
1491       call->make_cold();
1492       continue;
1493     }
1494     call->make_hot();
1495     calls_made_hot++;
1496     amount_grown   += est_size;
1497     amount_to_grow -= est_size;
1498   }
1499 
1500   if (calls_made_hot > 0)  set_major_progress();
1501   return calls_made_hot;
1502 }
1503 
1504 
1505 //----------------------------Finish_Warm--------------------------------------
1506 void Compile::Finish_Warm() {
1507   if (!InlineWarmCalls)  return;
1508   if (failing())  return;
1509   if (warm_calls() == NULL)  return;
1510 
1511   // Clean up loose ends, if we are out of space for inlining.
1512   WarmCallInfo* call;
1513   while ((call = pop_warm_call()) != NULL) {
1514     call->make_cold();
1515   }
1516 }
1517 
1518 //---------------------cleanup_loop_predicates-----------------------
1519 // Remove the opaque nodes that protect the predicates so that all unused
1520 // checks and uncommon_traps will be eliminated from the ideal graph
1521 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1522   if (predicate_count()==0) return;
1523   for (int i = predicate_count(); i > 0; i--) {
1524     Node * n = predicate_opaque1_node(i-1);
1525     assert(n->Opcode() == Op_Opaque1, "must be");
1526     igvn.replace_node(n, n->in(1));
1527   }
1528   assert(predicate_count()==0, "should be clean!");
1529   igvn.optimize();
1530 }
1531 
1532 //------------------------------Optimize---------------------------------------
1533 // Given a graph, optimize it.
1534 void Compile::Optimize() {
1535   TracePhase t1("optimizer", &_t_optimizer, true);
1536 
1537 #ifndef PRODUCT
1538   if (env()->break_at_compile()) {
1539     BREAKPOINT;
1540   }
1541 
1542 #endif
1543 
1544   ResourceMark rm;
1545   int          loop_opts_cnt;
1546 
1547   NOT_PRODUCT( verify_graph_edges(); )
1548 
1549   print_method("After Parsing");
1550 
1551  {
1552   // Iterative Global Value Numbering, including ideal transforms
1553   // Initialize IterGVN with types and values from parse-time GVN
1554   PhaseIterGVN igvn(initial_gvn());
1555   {
1556     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
1557     igvn.optimize();
1558   }
1559 
1560   print_method("Iter GVN 1", 2);
1561 
1562   if (failing())  return;
1563 
1564   // Perform escape analysis
1565   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
1566     TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, true);
1567     ConnectionGraph::do_analysis(this, &igvn);
1568 
1569     if (failing())  return;
1570 
1571     igvn.optimize();
1572     print_method("Iter GVN 3", 2);
1573 
1574     if (failing())  return;
1575 
1576   }
1577 
1578   // Loop transforms on the ideal graph.  Range Check Elimination,
1579   // peeling, unrolling, etc.
1580 
1581   // Set loop opts counter
1582   loop_opts_cnt = num_loop_opts();
1583   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
1584     {
1585       TracePhase t2("idealLoop", &_t_idealLoop, true);
1586       PhaseIdealLoop ideal_loop( igvn, true, UseLoopPredicate);
1587       loop_opts_cnt--;
1588       if (major_progress()) print_method("PhaseIdealLoop 1", 2);
1589       if (failing())  return;
1590     }
1591     // Loop opts pass if partial peeling occurred in previous pass
1592     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
1593       TracePhase t3("idealLoop", &_t_idealLoop, true);
1594       PhaseIdealLoop ideal_loop( igvn, false, UseLoopPredicate);
1595       loop_opts_cnt--;
1596       if (major_progress()) print_method("PhaseIdealLoop 2", 2);
1597       if (failing())  return;
1598     }
1599     // Loop opts pass for loop-unrolling before CCP
1600     if(major_progress() && (loop_opts_cnt > 0)) {
1601       TracePhase t4("idealLoop", &_t_idealLoop, true);
1602       PhaseIdealLoop ideal_loop( igvn, false, UseLoopPredicate);
1603       loop_opts_cnt--;
1604       if (major_progress()) print_method("PhaseIdealLoop 3", 2);
1605     }
1606     if (!failing()) {
1607       // Verify that last round of loop opts produced a valid graph
1608       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
1609       PhaseIdealLoop::verify(igvn);
1610     }
1611   }
1612   if (failing())  return;
1613 
1614   // Conditional Constant Propagation;
1615   PhaseCCP ccp( &igvn );
1616   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
1617   {
1618     TracePhase t2("ccp", &_t_ccp, true);
1619     ccp.do_transform();
1620   }
1621   print_method("PhaseCPP 1", 2);
1622 
1623   assert( true, "Break here to ccp.dump_old2new_map()");
1624 
1625   // Iterative Global Value Numbering, including ideal transforms
1626   {
1627     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
1628     igvn = ccp;
1629     igvn.optimize();
1630   }
1631 
1632   print_method("Iter GVN 2", 2);
1633 
1634   if (failing())  return;
1635 
1636   // Loop transforms on the ideal graph.  Range Check Elimination,
1637   // peeling, unrolling, etc.
1638   if(loop_opts_cnt > 0) {
1639     debug_only( int cnt = 0; );
1640     bool loop_predication = UseLoopPredicate;
1641     while(major_progress() && (loop_opts_cnt > 0)) {
1642       TracePhase t2("idealLoop", &_t_idealLoop, true);
1643       assert( cnt++ < 40, "infinite cycle in loop optimization" );
1644       PhaseIdealLoop ideal_loop( igvn, true, loop_predication);
1645       loop_opts_cnt--;
1646       if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
1647       if (failing())  return;
1648       // Perform loop predication optimization during first iteration after CCP.
1649       // After that switch it off and cleanup unused loop predicates.
1650       if (loop_predication) {
1651         loop_predication = false;
1652         cleanup_loop_predicates(igvn);
1653         if (failing())  return;
1654       }
1655     }
1656   }
1657 
1658   {
1659     // Verify that all previous optimizations produced a valid graph
1660     // at least to this point, even if no loop optimizations were done.
1661     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
1662     PhaseIdealLoop::verify(igvn);
1663   }
1664 
1665   {
1666     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
1667     PhaseMacroExpand  mex(igvn);
1668     if (mex.expand_macro_nodes()) {
1669       assert(failing(), "must bail out w/ explicit message");
1670       return;
1671     }
1672   }
1673 
1674  } // (End scope of igvn; run destructor if necessary for asserts.)
1675 
1676   // A method with only infinite loops has no edges entering loops from root
1677   {
1678     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
1679     if (final_graph_reshaping()) {
1680       assert(failing(), "must bail out w/ explicit message");
1681       return;
1682     }
1683   }
1684 
1685   print_method("Optimize finished", 2);
1686 }
1687 
1688 
1689 //------------------------------Code_Gen---------------------------------------
1690 // Given a graph, generate code for it
1691 void Compile::Code_Gen() {
1692   if (failing())  return;
1693 
1694   // Perform instruction selection.  You might think we could reclaim Matcher
1695   // memory PDQ, but actually the Matcher is used in generating spill code.
1696   // Internals of the Matcher (including some VectorSets) must remain live
1697   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
1698   // set a bit in reclaimed memory.
1699 
1700   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1701   // nodes.  Mapping is only valid at the root of each matched subtree.
1702   NOT_PRODUCT( verify_graph_edges(); )
1703 
1704   Node_List proj_list;
1705   Matcher m(proj_list);
1706   _matcher = &m;
1707   {
1708     TracePhase t2("matcher", &_t_matcher, true);
1709     m.match();
1710   }
1711   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1712   // nodes.  Mapping is only valid at the root of each matched subtree.
1713   NOT_PRODUCT( verify_graph_edges(); )
1714 
1715   // If you have too many nodes, or if matching has failed, bail out
1716   check_node_count(0, "out of nodes matching instructions");
1717   if (failing())  return;
1718 
1719   // Build a proper-looking CFG
1720   PhaseCFG cfg(node_arena(), root(), m);
1721   _cfg = &cfg;
1722   {
1723     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
1724     cfg.Dominators();
1725     if (failing())  return;
1726 
1727     NOT_PRODUCT( verify_graph_edges(); )
1728 
1729     cfg.Estimate_Block_Frequency();
1730     cfg.GlobalCodeMotion(m,unique(),proj_list);
1731 
1732     print_method("Global code motion", 2);
1733 
1734     if (failing())  return;
1735     NOT_PRODUCT( verify_graph_edges(); )
1736 
1737     debug_only( cfg.verify(); )
1738   }
1739   NOT_PRODUCT( verify_graph_edges(); )
1740 
1741   PhaseChaitin regalloc(unique(),cfg,m);
1742   _regalloc = &regalloc;
1743   {
1744     TracePhase t2("regalloc", &_t_registerAllocation, true);
1745     // Perform any platform dependent preallocation actions.  This is used,
1746     // for example, to avoid taking an implicit null pointer exception
1747     // using the frame pointer on win95.
1748     _regalloc->pd_preallocate_hook();
1749 
1750     // Perform register allocation.  After Chaitin, use-def chains are
1751     // no longer accurate (at spill code) and so must be ignored.
1752     // Node->LRG->reg mappings are still accurate.
1753     _regalloc->Register_Allocate();
1754 
1755     // Bail out if the allocator builds too many nodes
1756     if (failing())  return;
1757   }
1758 
1759   // Prior to register allocation we kept empty basic blocks in case the
1760   // the allocator needed a place to spill.  After register allocation we
1761   // are not adding any new instructions.  If any basic block is empty, we
1762   // can now safely remove it.
1763   {
1764     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
1765     cfg.remove_empty();
1766     if (do_freq_based_layout()) {
1767       PhaseBlockLayout layout(cfg);
1768     } else {
1769       cfg.set_loop_alignment();
1770     }
1771     cfg.fixup_flow();
1772   }
1773 
1774   // Perform any platform dependent postallocation verifications.
1775   debug_only( _regalloc->pd_postallocate_verify_hook(); )
1776 
1777   // Apply peephole optimizations
1778   if( OptoPeephole ) {
1779     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
1780     PhasePeephole peep( _regalloc, cfg);
1781     peep.do_transform();
1782   }
1783 
1784   // Convert Nodes to instruction bits in a buffer
1785   {
1786     // %%%% workspace merge brought two timers together for one job
1787     TracePhase t2a("output", &_t_output, true);
1788     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
1789     Output();
1790   }
1791 
1792   print_method("Final Code");
1793 
1794   // He's dead, Jim.
1795   _cfg     = (PhaseCFG*)0xdeadbeef;
1796   _regalloc = (PhaseChaitin*)0xdeadbeef;
1797 }
1798 
1799 
1800 //------------------------------dump_asm---------------------------------------
1801 // Dump formatted assembly
1802 #ifndef PRODUCT
1803 void Compile::dump_asm(int *pcs, uint pc_limit) {
1804   bool cut_short = false;
1805   tty->print_cr("#");
1806   tty->print("#  ");  _tf->dump();  tty->cr();
1807   tty->print_cr("#");
1808 
1809   // For all blocks
1810   int pc = 0x0;                 // Program counter
1811   char starts_bundle = ' ';
1812   _regalloc->dump_frame();
1813 
1814   Node *n = NULL;
1815   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1816     if (VMThread::should_terminate()) { cut_short = true; break; }
1817     Block *b = _cfg->_blocks[i];
1818     if (b->is_connector() && !Verbose) continue;
1819     n = b->_nodes[0];
1820     if (pcs && n->_idx < pc_limit)
1821       tty->print("%3.3x   ", pcs[n->_idx]);
1822     else
1823       tty->print("      ");
1824     b->dump_head( &_cfg->_bbs );
1825     if (b->is_connector()) {
1826       tty->print_cr("        # Empty connector block");
1827     } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
1828       tty->print_cr("        # Block is sole successor of call");
1829     }
1830 
1831     // For all instructions
1832     Node *delay = NULL;
1833     for( uint j = 0; j<b->_nodes.size(); j++ ) {
1834       if (VMThread::should_terminate()) { cut_short = true; break; }
1835       n = b->_nodes[j];
1836       if (valid_bundle_info(n)) {
1837         Bundle *bundle = node_bundling(n);
1838         if (bundle->used_in_unconditional_delay()) {
1839           delay = n;
1840           continue;
1841         }
1842         if (bundle->starts_bundle())
1843           starts_bundle = '+';
1844       }
1845 
1846       if (WizardMode) n->dump();
1847 
1848       if( !n->is_Region() &&    // Dont print in the Assembly
1849           !n->is_Phi() &&       // a few noisely useless nodes
1850           !n->is_Proj() &&
1851           !n->is_MachTemp() &&
1852           !n->is_SafePointScalarObject() &&
1853           !n->is_Catch() &&     // Would be nice to print exception table targets
1854           !n->is_MergeMem() &&  // Not very interesting
1855           !n->is_top() &&       // Debug info table constants
1856           !(n->is_Con() && !n->is_Mach())// Debug info table constants
1857           ) {
1858         if (pcs && n->_idx < pc_limit)
1859           tty->print("%3.3x", pcs[n->_idx]);
1860         else
1861           tty->print("   ");
1862         tty->print(" %c ", starts_bundle);
1863         starts_bundle = ' ';
1864         tty->print("\t");
1865         n->format(_regalloc, tty);
1866         tty->cr();
1867       }
1868 
1869       // If we have an instruction with a delay slot, and have seen a delay,
1870       // then back up and print it
1871       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1872         assert(delay != NULL, "no unconditional delay instruction");
1873         if (WizardMode) delay->dump();
1874 
1875         if (node_bundling(delay)->starts_bundle())
1876           starts_bundle = '+';
1877         if (pcs && n->_idx < pc_limit)
1878           tty->print("%3.3x", pcs[n->_idx]);
1879         else
1880           tty->print("   ");
1881         tty->print(" %c ", starts_bundle);
1882         starts_bundle = ' ';
1883         tty->print("\t");
1884         delay->format(_regalloc, tty);
1885         tty->print_cr("");
1886         delay = NULL;
1887       }
1888 
1889       // Dump the exception table as well
1890       if( n->is_Catch() && (Verbose || WizardMode) ) {
1891         // Print the exception table for this offset
1892         _handler_table.print_subtable_for(pc);
1893       }
1894     }
1895 
1896     if (pcs && n->_idx < pc_limit)
1897       tty->print_cr("%3.3x", pcs[n->_idx]);
1898     else
1899       tty->print_cr("");
1900 
1901     assert(cut_short || delay == NULL, "no unconditional delay branch");
1902 
1903   } // End of per-block dump
1904   tty->print_cr("");
1905 
1906   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
1907 }
1908 #endif
1909 
1910 //------------------------------Final_Reshape_Counts---------------------------
1911 // This class defines counters to help identify when a method
1912 // may/must be executed using hardware with only 24-bit precision.
1913 struct Final_Reshape_Counts : public StackObj {
1914   int  _call_count;             // count non-inlined 'common' calls
1915   int  _float_count;            // count float ops requiring 24-bit precision
1916   int  _double_count;           // count double ops requiring more precision
1917   int  _java_call_count;        // count non-inlined 'java' calls
1918   int  _inner_loop_count;       // count loops which need alignment
1919   VectorSet _visited;           // Visitation flags
1920   Node_List _tests;             // Set of IfNodes & PCTableNodes
1921 
1922   Final_Reshape_Counts() :
1923     _call_count(0), _float_count(0), _double_count(0),
1924     _java_call_count(0), _inner_loop_count(0),
1925     _visited( Thread::current()->resource_area() ) { }
1926 
1927   void inc_call_count  () { _call_count  ++; }
1928   void inc_float_count () { _float_count ++; }
1929   void inc_double_count() { _double_count++; }
1930   void inc_java_call_count() { _java_call_count++; }
1931   void inc_inner_loop_count() { _inner_loop_count++; }
1932 
1933   int  get_call_count  () const { return _call_count  ; }
1934   int  get_float_count () const { return _float_count ; }
1935   int  get_double_count() const { return _double_count; }
1936   int  get_java_call_count() const { return _java_call_count; }
1937   int  get_inner_loop_count() const { return _inner_loop_count; }
1938 };
1939 
1940 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
1941   ciInstanceKlass *k = tp->klass()->as_instance_klass();
1942   // Make sure the offset goes inside the instance layout.
1943   return k->contains_field_offset(tp->offset());
1944   // Note that OffsetBot and OffsetTop are very negative.
1945 }
1946 
1947 //------------------------------final_graph_reshaping_impl----------------------
1948 // Implement items 1-5 from final_graph_reshaping below.
1949 static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc ) {
1950 
1951   if ( n->outcnt() == 0 ) return; // dead node
1952   uint nop = n->Opcode();
1953 
1954   // Check for 2-input instruction with "last use" on right input.
1955   // Swap to left input.  Implements item (2).
1956   if( n->req() == 3 &&          // two-input instruction
1957       n->in(1)->outcnt() > 1 && // left use is NOT a last use
1958       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
1959       n->in(2)->outcnt() == 1 &&// right use IS a last use
1960       !n->in(2)->is_Con() ) {   // right use is not a constant
1961     // Check for commutative opcode
1962     switch( nop ) {
1963     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
1964     case Op_MaxI:  case Op_MinI:
1965     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
1966     case Op_AndL:  case Op_XorL:  case Op_OrL:
1967     case Op_AndI:  case Op_XorI:  case Op_OrI: {
1968       // Move "last use" input to left by swapping inputs
1969       n->swap_edges(1, 2);
1970       break;
1971     }
1972     default:
1973       break;
1974     }
1975   }
1976 
1977 #ifdef ASSERT
1978   if( n->is_Mem() ) {
1979     Compile* C = Compile::current();
1980     int alias_idx = C->get_alias_index(n->as_Mem()->adr_type());
1981     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
1982             // oop will be recorded in oop map if load crosses safepoint
1983             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
1984                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
1985             "raw memory operations should have control edge");
1986   }
1987 #endif
1988   // Count FPU ops and common calls, implements item (3)
1989   switch( nop ) {
1990   // Count all float operations that may use FPU
1991   case Op_AddF:
1992   case Op_SubF:
1993   case Op_MulF:
1994   case Op_DivF:
1995   case Op_NegF:
1996   case Op_ModF:
1997   case Op_ConvI2F:
1998   case Op_ConF:
1999   case Op_CmpF:
2000   case Op_CmpF3:
2001   // case Op_ConvL2F: // longs are split into 32-bit halves
2002     frc.inc_float_count();
2003     break;
2004 
2005   case Op_ConvF2D:
2006   case Op_ConvD2F:
2007     frc.inc_float_count();
2008     frc.inc_double_count();
2009     break;
2010 
2011   // Count all double operations that may use FPU
2012   case Op_AddD:
2013   case Op_SubD:
2014   case Op_MulD:
2015   case Op_DivD:
2016   case Op_NegD:
2017   case Op_ModD:
2018   case Op_ConvI2D:
2019   case Op_ConvD2I:
2020   // case Op_ConvL2D: // handled by leaf call
2021   // case Op_ConvD2L: // handled by leaf call
2022   case Op_ConD:
2023   case Op_CmpD:
2024   case Op_CmpD3:
2025     frc.inc_double_count();
2026     break;
2027   case Op_Opaque1:              // Remove Opaque Nodes before matching
2028   case Op_Opaque2:              // Remove Opaque Nodes before matching
2029     n->subsume_by(n->in(1));
2030     break;
2031   case Op_CallStaticJava:
2032   case Op_CallJava:
2033   case Op_CallDynamicJava:
2034     frc.inc_java_call_count(); // Count java call site;
2035   case Op_CallRuntime:
2036   case Op_CallLeaf:
2037   case Op_CallLeafNoFP: {
2038     assert( n->is_Call(), "" );
2039     CallNode *call = n->as_Call();
2040     // Count call sites where the FP mode bit would have to be flipped.
2041     // Do not count uncommon runtime calls:
2042     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2043     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2044     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2045       frc.inc_call_count();   // Count the call site
2046     } else {                  // See if uncommon argument is shared
2047       Node *n = call->in(TypeFunc::Parms);
2048       int nop = n->Opcode();
2049       // Clone shared simple arguments to uncommon calls, item (1).
2050       if( n->outcnt() > 1 &&
2051           !n->is_Proj() &&
2052           nop != Op_CreateEx &&
2053           nop != Op_CheckCastPP &&
2054           nop != Op_DecodeN &&
2055           !n->is_Mem() ) {
2056         Node *x = n->clone();
2057         call->set_req( TypeFunc::Parms, x );
2058       }
2059     }
2060     break;
2061   }
2062 
2063   case Op_StoreD:
2064   case Op_LoadD:
2065   case Op_LoadD_unaligned:
2066     frc.inc_double_count();
2067     goto handle_mem;
2068   case Op_StoreF:
2069   case Op_LoadF:
2070     frc.inc_float_count();
2071     goto handle_mem;
2072 
2073   case Op_StoreB:
2074   case Op_StoreC:
2075   case Op_StoreCM:
2076   case Op_StorePConditional:
2077   case Op_StoreI:
2078   case Op_StoreL:
2079   case Op_StoreIConditional:
2080   case Op_StoreLConditional:
2081   case Op_CompareAndSwapI:
2082   case Op_CompareAndSwapL:
2083   case Op_CompareAndSwapP:
2084   case Op_CompareAndSwapN:
2085   case Op_StoreP:
2086   case Op_StoreN:
2087   case Op_LoadB:
2088   case Op_LoadUB:
2089   case Op_LoadUS:
2090   case Op_LoadI:
2091   case Op_LoadUI2L:
2092   case Op_LoadKlass:
2093   case Op_LoadNKlass:
2094   case Op_LoadL:
2095   case Op_LoadL_unaligned:
2096   case Op_LoadPLocked:
2097   case Op_LoadLLocked:
2098   case Op_LoadP:
2099   case Op_LoadN:
2100   case Op_LoadRange:
2101   case Op_LoadS: {
2102   handle_mem:
2103 #ifdef ASSERT
2104     if( VerifyOptoOopOffsets ) {
2105       assert( n->is_Mem(), "" );
2106       MemNode *mem  = (MemNode*)n;
2107       // Check to see if address types have grounded out somehow.
2108       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2109       assert( !tp || oop_offset_is_sane(tp), "" );
2110     }
2111 #endif
2112     break;
2113   }
2114 
2115   case Op_AddP: {               // Assert sane base pointers
2116     Node *addp = n->in(AddPNode::Address);
2117     assert( !addp->is_AddP() ||
2118             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2119             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2120             "Base pointers must match" );
2121 #ifdef _LP64
2122     if (UseCompressedOops &&
2123         addp->Opcode() == Op_ConP &&
2124         addp == n->in(AddPNode::Base) &&
2125         n->in(AddPNode::Offset)->is_Con()) {
2126       // Use addressing with narrow klass to load with offset on x86.
2127       // On sparc loading 32-bits constant and decoding it have less
2128       // instructions (4) then load 64-bits constant (7).
2129       // Do this transformation here since IGVN will convert ConN back to ConP.
2130       const Type* t = addp->bottom_type();
2131       if (t->isa_oopptr()) {
2132         Node* nn = NULL;
2133 
2134         // Look for existing ConN node of the same exact type.
2135         Compile* C = Compile::current();
2136         Node* r  = C->root();
2137         uint cnt = r->outcnt();
2138         for (uint i = 0; i < cnt; i++) {
2139           Node* m = r->raw_out(i);
2140           if (m!= NULL && m->Opcode() == Op_ConN &&
2141               m->bottom_type()->make_ptr() == t) {
2142             nn = m;
2143             break;
2144           }
2145         }
2146         if (nn != NULL) {
2147           // Decode a narrow oop to match address
2148           // [R12 + narrow_oop_reg<<3 + offset]
2149           nn = new (C,  2) DecodeNNode(nn, t);
2150           n->set_req(AddPNode::Base, nn);
2151           n->set_req(AddPNode::Address, nn);
2152           if (addp->outcnt() == 0) {
2153             addp->disconnect_inputs(NULL);
2154           }
2155         }
2156       }
2157     }
2158 #endif
2159     break;
2160   }
2161 
2162 #ifdef _LP64
2163   case Op_CastPP:
2164     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2165       Compile* C = Compile::current();
2166       Node* in1 = n->in(1);
2167       const Type* t = n->bottom_type();
2168       Node* new_in1 = in1->clone();
2169       new_in1->as_DecodeN()->set_type(t);
2170 
2171       if (!Matcher::narrow_oop_use_complex_address()) {
2172         //
2173         // x86, ARM and friends can handle 2 adds in addressing mode
2174         // and Matcher can fold a DecodeN node into address by using
2175         // a narrow oop directly and do implicit NULL check in address:
2176         //
2177         // [R12 + narrow_oop_reg<<3 + offset]
2178         // NullCheck narrow_oop_reg
2179         //
2180         // On other platforms (Sparc) we have to keep new DecodeN node and
2181         // use it to do implicit NULL check in address:
2182         //
2183         // decode_not_null narrow_oop_reg, base_reg
2184         // [base_reg + offset]
2185         // NullCheck base_reg
2186         //
2187         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2188         // to keep the information to which NULL check the new DecodeN node
2189         // corresponds to use it as value in implicit_null_check().
2190         //
2191         new_in1->set_req(0, n->in(0));
2192       }
2193 
2194       n->subsume_by(new_in1);
2195       if (in1->outcnt() == 0) {
2196         in1->disconnect_inputs(NULL);
2197       }
2198     }
2199     break;
2200 
2201   case Op_CmpP:
2202     // Do this transformation here to preserve CmpPNode::sub() and
2203     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2204     if (n->in(1)->is_DecodeN() || n->in(2)->is_DecodeN()) {
2205       Node* in1 = n->in(1);
2206       Node* in2 = n->in(2);
2207       if (!in1->is_DecodeN()) {
2208         in2 = in1;
2209         in1 = n->in(2);
2210       }
2211       assert(in1->is_DecodeN(), "sanity");
2212 
2213       Compile* C = Compile::current();
2214       Node* new_in2 = NULL;
2215       if (in2->is_DecodeN()) {
2216         new_in2 = in2->in(1);
2217       } else if (in2->Opcode() == Op_ConP) {
2218         const Type* t = in2->bottom_type();
2219         if (t == TypePtr::NULL_PTR) {
2220           // Don't convert CmpP null check into CmpN if compressed
2221           // oops implicit null check is not generated.
2222           // This will allow to generate normal oop implicit null check.
2223           if (Matcher::gen_narrow_oop_implicit_null_checks())
2224             new_in2 = ConNode::make(C, TypeNarrowOop::NULL_PTR);
2225           //
2226           // This transformation together with CastPP transformation above
2227           // will generated code for implicit NULL checks for compressed oops.
2228           //
2229           // The original code after Optimize()
2230           //
2231           //    LoadN memory, narrow_oop_reg
2232           //    decode narrow_oop_reg, base_reg
2233           //    CmpP base_reg, NULL
2234           //    CastPP base_reg // NotNull
2235           //    Load [base_reg + offset], val_reg
2236           //
2237           // after these transformations will be
2238           //
2239           //    LoadN memory, narrow_oop_reg
2240           //    CmpN narrow_oop_reg, NULL
2241           //    decode_not_null narrow_oop_reg, base_reg
2242           //    Load [base_reg + offset], val_reg
2243           //
2244           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2245           // since narrow oops can be used in debug info now (see the code in
2246           // final_graph_reshaping_walk()).
2247           //
2248           // At the end the code will be matched to
2249           // on x86:
2250           //
2251           //    Load_narrow_oop memory, narrow_oop_reg
2252           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2253           //    NullCheck narrow_oop_reg
2254           //
2255           // and on sparc:
2256           //
2257           //    Load_narrow_oop memory, narrow_oop_reg
2258           //    decode_not_null narrow_oop_reg, base_reg
2259           //    Load [base_reg + offset], val_reg
2260           //    NullCheck base_reg
2261           //
2262         } else if (t->isa_oopptr()) {
2263           new_in2 = ConNode::make(C, t->make_narrowoop());
2264         }
2265       }
2266       if (new_in2 != NULL) {
2267         Node* cmpN = new (C, 3) CmpNNode(in1->in(1), new_in2);
2268         n->subsume_by( cmpN );
2269         if (in1->outcnt() == 0) {
2270           in1->disconnect_inputs(NULL);
2271         }
2272         if (in2->outcnt() == 0) {
2273           in2->disconnect_inputs(NULL);
2274         }
2275       }
2276     }
2277     break;
2278 
2279   case Op_DecodeN:
2280     assert(!n->in(1)->is_EncodeP(), "should be optimized out");
2281     // DecodeN could be pinned when it can't be fold into
2282     // an address expression, see the code for Op_CastPP above.
2283     assert(n->in(0) == NULL || !Matcher::narrow_oop_use_complex_address(), "no control");
2284     break;
2285 
2286   case Op_EncodeP: {
2287     Node* in1 = n->in(1);
2288     if (in1->is_DecodeN()) {
2289       n->subsume_by(in1->in(1));
2290     } else if (in1->Opcode() == Op_ConP) {
2291       Compile* C = Compile::current();
2292       const Type* t = in1->bottom_type();
2293       if (t == TypePtr::NULL_PTR) {
2294         n->subsume_by(ConNode::make(C, TypeNarrowOop::NULL_PTR));
2295       } else if (t->isa_oopptr()) {
2296         n->subsume_by(ConNode::make(C, t->make_narrowoop()));
2297       }
2298     }
2299     if (in1->outcnt() == 0) {
2300       in1->disconnect_inputs(NULL);
2301     }
2302     break;
2303   }
2304 
2305   case Op_Proj: {
2306     if (OptimizeStringConcat) {
2307       ProjNode* p = n->as_Proj();
2308       if (p->_is_io_use) {
2309         // Separate projections were used for the exception path which
2310         // are normally removed by a late inline.  If it wasn't inlined
2311         // then they will hang around and should just be replaced with
2312         // the original one.
2313         Node* proj = NULL;
2314         // Replace with just one
2315         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2316           Node *use = i.get();
2317           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2318             proj = use;
2319             break;
2320           }
2321         }
2322         assert(p != NULL, "must be found");
2323         p->subsume_by(proj);
2324       }
2325     }
2326     break;
2327   }
2328 
2329   case Op_Phi:
2330     if (n->as_Phi()->bottom_type()->isa_narrowoop()) {
2331       // The EncodeP optimization may create Phi with the same edges
2332       // for all paths. It is not handled well by Register Allocator.
2333       Node* unique_in = n->in(1);
2334       assert(unique_in != NULL, "");
2335       uint cnt = n->req();
2336       for (uint i = 2; i < cnt; i++) {
2337         Node* m = n->in(i);
2338         assert(m != NULL, "");
2339         if (unique_in != m)
2340           unique_in = NULL;
2341       }
2342       if (unique_in != NULL) {
2343         n->subsume_by(unique_in);
2344       }
2345     }
2346     break;
2347 
2348 #endif
2349 
2350   case Op_ModI:
2351     if (UseDivMod) {
2352       // Check if a%b and a/b both exist
2353       Node* d = n->find_similar(Op_DivI);
2354       if (d) {
2355         // Replace them with a fused divmod if supported
2356         Compile* C = Compile::current();
2357         if (Matcher::has_match_rule(Op_DivModI)) {
2358           DivModINode* divmod = DivModINode::make(C, n);
2359           d->subsume_by(divmod->div_proj());
2360           n->subsume_by(divmod->mod_proj());
2361         } else {
2362           // replace a%b with a-((a/b)*b)
2363           Node* mult = new (C, 3) MulINode(d, d->in(2));
2364           Node* sub  = new (C, 3) SubINode(d->in(1), mult);
2365           n->subsume_by( sub );
2366         }
2367       }
2368     }
2369     break;
2370 
2371   case Op_ModL:
2372     if (UseDivMod) {
2373       // Check if a%b and a/b both exist
2374       Node* d = n->find_similar(Op_DivL);
2375       if (d) {
2376         // Replace them with a fused divmod if supported
2377         Compile* C = Compile::current();
2378         if (Matcher::has_match_rule(Op_DivModL)) {
2379           DivModLNode* divmod = DivModLNode::make(C, n);
2380           d->subsume_by(divmod->div_proj());
2381           n->subsume_by(divmod->mod_proj());
2382         } else {
2383           // replace a%b with a-((a/b)*b)
2384           Node* mult = new (C, 3) MulLNode(d, d->in(2));
2385           Node* sub  = new (C, 3) SubLNode(d->in(1), mult);
2386           n->subsume_by( sub );
2387         }
2388       }
2389     }
2390     break;
2391 
2392   case Op_Load16B:
2393   case Op_Load8B:
2394   case Op_Load4B:
2395   case Op_Load8S:
2396   case Op_Load4S:
2397   case Op_Load2S:
2398   case Op_Load8C:
2399   case Op_Load4C:
2400   case Op_Load2C:
2401   case Op_Load4I:
2402   case Op_Load2I:
2403   case Op_Load2L:
2404   case Op_Load4F:
2405   case Op_Load2F:
2406   case Op_Load2D:
2407   case Op_Store16B:
2408   case Op_Store8B:
2409   case Op_Store4B:
2410   case Op_Store8C:
2411   case Op_Store4C:
2412   case Op_Store2C:
2413   case Op_Store4I:
2414   case Op_Store2I:
2415   case Op_Store2L:
2416   case Op_Store4F:
2417   case Op_Store2F:
2418   case Op_Store2D:
2419     break;
2420 
2421   case Op_PackB:
2422   case Op_PackS:
2423   case Op_PackC:
2424   case Op_PackI:
2425   case Op_PackF:
2426   case Op_PackL:
2427   case Op_PackD:
2428     if (n->req()-1 > 2) {
2429       // Replace many operand PackNodes with a binary tree for matching
2430       PackNode* p = (PackNode*) n;
2431       Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
2432       n->subsume_by(btp);
2433     }
2434     break;
2435   case Op_Loop:
2436   case Op_CountedLoop:
2437     if (n->as_Loop()->is_inner_loop()) {
2438       frc.inc_inner_loop_count();
2439     }
2440     break;
2441   default:
2442     assert( !n->is_Call(), "" );
2443     assert( !n->is_Mem(), "" );
2444     break;
2445   }
2446 
2447   // Collect CFG split points
2448   if (n->is_MultiBranch())
2449     frc._tests.push(n);
2450 }
2451 
2452 //------------------------------final_graph_reshaping_walk---------------------
2453 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
2454 // requires that the walk visits a node's inputs before visiting the node.
2455 static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
2456   ResourceArea *area = Thread::current()->resource_area();
2457   Unique_Node_List sfpt(area);
2458 
2459   frc._visited.set(root->_idx); // first, mark node as visited
2460   uint cnt = root->req();
2461   Node *n = root;
2462   uint  i = 0;
2463   while (true) {
2464     if (i < cnt) {
2465       // Place all non-visited non-null inputs onto stack
2466       Node* m = n->in(i);
2467       ++i;
2468       if (m != NULL && !frc._visited.test_set(m->_idx)) {
2469         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
2470           sfpt.push(m);
2471         cnt = m->req();
2472         nstack.push(n, i); // put on stack parent and next input's index
2473         n = m;
2474         i = 0;
2475       }
2476     } else {
2477       // Now do post-visit work
2478       final_graph_reshaping_impl( n, frc );
2479       if (nstack.is_empty())
2480         break;             // finished
2481       n = nstack.node();   // Get node from stack
2482       cnt = n->req();
2483       i = nstack.index();
2484       nstack.pop();        // Shift to the next node on stack
2485     }
2486   }
2487 
2488   // Skip next transformation if compressed oops are not used.
2489   if (!UseCompressedOops || !Matcher::gen_narrow_oop_implicit_null_checks())
2490     return;
2491 
2492   // Go over safepoints nodes to skip DecodeN nodes for debug edges.
2493   // It could be done for an uncommon traps or any safepoints/calls
2494   // if the DecodeN node is referenced only in a debug info.
2495   while (sfpt.size() > 0) {
2496     n = sfpt.pop();
2497     JVMState *jvms = n->as_SafePoint()->jvms();
2498     assert(jvms != NULL, "sanity");
2499     int start = jvms->debug_start();
2500     int end   = n->req();
2501     bool is_uncommon = (n->is_CallStaticJava() &&
2502                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
2503     for (int j = start; j < end; j++) {
2504       Node* in = n->in(j);
2505       if (in->is_DecodeN()) {
2506         bool safe_to_skip = true;
2507         if (!is_uncommon ) {
2508           // Is it safe to skip?
2509           for (uint i = 0; i < in->outcnt(); i++) {
2510             Node* u = in->raw_out(i);
2511             if (!u->is_SafePoint() ||
2512                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
2513               safe_to_skip = false;
2514             }
2515           }
2516         }
2517         if (safe_to_skip) {
2518           n->set_req(j, in->in(1));
2519         }
2520         if (in->outcnt() == 0) {
2521           in->disconnect_inputs(NULL);
2522         }
2523       }
2524     }
2525   }
2526 }
2527 
2528 //------------------------------final_graph_reshaping--------------------------
2529 // Final Graph Reshaping.
2530 //
2531 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
2532 //     and not commoned up and forced early.  Must come after regular
2533 //     optimizations to avoid GVN undoing the cloning.  Clone constant
2534 //     inputs to Loop Phis; these will be split by the allocator anyways.
2535 //     Remove Opaque nodes.
2536 // (2) Move last-uses by commutative operations to the left input to encourage
2537 //     Intel update-in-place two-address operations and better register usage
2538 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
2539 //     calls canonicalizing them back.
2540 // (3) Count the number of double-precision FP ops, single-precision FP ops
2541 //     and call sites.  On Intel, we can get correct rounding either by
2542 //     forcing singles to memory (requires extra stores and loads after each
2543 //     FP bytecode) or we can set a rounding mode bit (requires setting and
2544 //     clearing the mode bit around call sites).  The mode bit is only used
2545 //     if the relative frequency of single FP ops to calls is low enough.
2546 //     This is a key transform for SPEC mpeg_audio.
2547 // (4) Detect infinite loops; blobs of code reachable from above but not
2548 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
2549 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
2550 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
2551 //     Detection is by looking for IfNodes where only 1 projection is
2552 //     reachable from below or CatchNodes missing some targets.
2553 // (5) Assert for insane oop offsets in debug mode.
2554 
2555 bool Compile::final_graph_reshaping() {
2556   // an infinite loop may have been eliminated by the optimizer,
2557   // in which case the graph will be empty.
2558   if (root()->req() == 1) {
2559     record_method_not_compilable("trivial infinite loop");
2560     return true;
2561   }
2562 
2563   Final_Reshape_Counts frc;
2564 
2565   // Visit everybody reachable!
2566   // Allocate stack of size C->unique()/2 to avoid frequent realloc
2567   Node_Stack nstack(unique() >> 1);
2568   final_graph_reshaping_walk(nstack, root(), frc);
2569 
2570   // Check for unreachable (from below) code (i.e., infinite loops).
2571   for( uint i = 0; i < frc._tests.size(); i++ ) {
2572     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
2573     // Get number of CFG targets.
2574     // Note that PCTables include exception targets after calls.
2575     uint required_outcnt = n->required_outcnt();
2576     if (n->outcnt() != required_outcnt) {
2577       // Check for a few special cases.  Rethrow Nodes never take the
2578       // 'fall-thru' path, so expected kids is 1 less.
2579       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
2580         if (n->in(0)->in(0)->is_Call()) {
2581           CallNode *call = n->in(0)->in(0)->as_Call();
2582           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2583             required_outcnt--;      // Rethrow always has 1 less kid
2584           } else if (call->req() > TypeFunc::Parms &&
2585                      call->is_CallDynamicJava()) {
2586             // Check for null receiver. In such case, the optimizer has
2587             // detected that the virtual call will always result in a null
2588             // pointer exception. The fall-through projection of this CatchNode
2589             // will not be populated.
2590             Node *arg0 = call->in(TypeFunc::Parms);
2591             if (arg0->is_Type() &&
2592                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
2593               required_outcnt--;
2594             }
2595           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
2596                      call->req() > TypeFunc::Parms+1 &&
2597                      call->is_CallStaticJava()) {
2598             // Check for negative array length. In such case, the optimizer has
2599             // detected that the allocation attempt will always result in an
2600             // exception. There is no fall-through projection of this CatchNode .
2601             Node *arg1 = call->in(TypeFunc::Parms+1);
2602             if (arg1->is_Type() &&
2603                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
2604               required_outcnt--;
2605             }
2606           }
2607         }
2608       }
2609       // Recheck with a better notion of 'required_outcnt'
2610       if (n->outcnt() != required_outcnt) {
2611         record_method_not_compilable("malformed control flow");
2612         return true;            // Not all targets reachable!
2613       }
2614     }
2615     // Check that I actually visited all kids.  Unreached kids
2616     // must be infinite loops.
2617     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
2618       if (!frc._visited.test(n->fast_out(j)->_idx)) {
2619         record_method_not_compilable("infinite loop");
2620         return true;            // Found unvisited kid; must be unreach
2621       }
2622   }
2623 
2624   // If original bytecodes contained a mixture of floats and doubles
2625   // check if the optimizer has made it homogenous, item (3).
2626   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
2627       frc.get_float_count() > 32 &&
2628       frc.get_double_count() == 0 &&
2629       (10 * frc.get_call_count() < frc.get_float_count()) ) {
2630     set_24_bit_selection_and_mode( false,  true );
2631   }
2632 
2633   set_java_calls(frc.get_java_call_count());
2634   set_inner_loops(frc.get_inner_loop_count());
2635 
2636   // No infinite loops, no reason to bail out.
2637   return false;
2638 }
2639 
2640 //-----------------------------too_many_traps----------------------------------
2641 // Report if there are too many traps at the current method and bci.
2642 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
2643 bool Compile::too_many_traps(ciMethod* method,
2644                              int bci,
2645                              Deoptimization::DeoptReason reason) {
2646   ciMethodData* md = method->method_data();
2647   if (md->is_empty()) {
2648     // Assume the trap has not occurred, or that it occurred only
2649     // because of a transient condition during start-up in the interpreter.
2650     return false;
2651   }
2652   if (md->has_trap_at(bci, reason) != 0) {
2653     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
2654     // Also, if there are multiple reasons, or if there is no per-BCI record,
2655     // assume the worst.
2656     if (log())
2657       log()->elem("observe trap='%s' count='%d'",
2658                   Deoptimization::trap_reason_name(reason),
2659                   md->trap_count(reason));
2660     return true;
2661   } else {
2662     // Ignore method/bci and see if there have been too many globally.
2663     return too_many_traps(reason, md);
2664   }
2665 }
2666 
2667 // Less-accurate variant which does not require a method and bci.
2668 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
2669                              ciMethodData* logmd) {
2670  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
2671     // Too many traps globally.
2672     // Note that we use cumulative trap_count, not just md->trap_count.
2673     if (log()) {
2674       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
2675       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
2676                   Deoptimization::trap_reason_name(reason),
2677                   mcount, trap_count(reason));
2678     }
2679     return true;
2680   } else {
2681     // The coast is clear.
2682     return false;
2683   }
2684 }
2685 
2686 //--------------------------too_many_recompiles--------------------------------
2687 // Report if there are too many recompiles at the current method and bci.
2688 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
2689 // Is not eager to return true, since this will cause the compiler to use
2690 // Action_none for a trap point, to avoid too many recompilations.
2691 bool Compile::too_many_recompiles(ciMethod* method,
2692                                   int bci,
2693                                   Deoptimization::DeoptReason reason) {
2694   ciMethodData* md = method->method_data();
2695   if (md->is_empty()) {
2696     // Assume the trap has not occurred, or that it occurred only
2697     // because of a transient condition during start-up in the interpreter.
2698     return false;
2699   }
2700   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
2701   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
2702   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
2703   Deoptimization::DeoptReason per_bc_reason
2704     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
2705   if ((per_bc_reason == Deoptimization::Reason_none
2706        || md->has_trap_at(bci, reason) != 0)
2707       // The trap frequency measure we care about is the recompile count:
2708       && md->trap_recompiled_at(bci)
2709       && md->overflow_recompile_count() >= bc_cutoff) {
2710     // Do not emit a trap here if it has already caused recompilations.
2711     // Also, if there are multiple reasons, or if there is no per-BCI record,
2712     // assume the worst.
2713     if (log())
2714       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
2715                   Deoptimization::trap_reason_name(reason),
2716                   md->trap_count(reason),
2717                   md->overflow_recompile_count());
2718     return true;
2719   } else if (trap_count(reason) != 0
2720              && decompile_count() >= m_cutoff) {
2721     // Too many recompiles globally, and we have seen this sort of trap.
2722     // Use cumulative decompile_count, not just md->decompile_count.
2723     if (log())
2724       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
2725                   Deoptimization::trap_reason_name(reason),
2726                   md->trap_count(reason), trap_count(reason),
2727                   md->decompile_count(), decompile_count());
2728     return true;
2729   } else {
2730     // The coast is clear.
2731     return false;
2732   }
2733 }
2734 
2735 
2736 #ifndef PRODUCT
2737 //------------------------------verify_graph_edges---------------------------
2738 // Walk the Graph and verify that there is a one-to-one correspondence
2739 // between Use-Def edges and Def-Use edges in the graph.
2740 void Compile::verify_graph_edges(bool no_dead_code) {
2741   if (VerifyGraphEdges) {
2742     ResourceArea *area = Thread::current()->resource_area();
2743     Unique_Node_List visited(area);
2744     // Call recursive graph walk to check edges
2745     _root->verify_edges(visited);
2746     if (no_dead_code) {
2747       // Now make sure that no visited node is used by an unvisited node.
2748       bool dead_nodes = 0;
2749       Unique_Node_List checked(area);
2750       while (visited.size() > 0) {
2751         Node* n = visited.pop();
2752         checked.push(n);
2753         for (uint i = 0; i < n->outcnt(); i++) {
2754           Node* use = n->raw_out(i);
2755           if (checked.member(use))  continue;  // already checked
2756           if (visited.member(use))  continue;  // already in the graph
2757           if (use->is_Con())        continue;  // a dead ConNode is OK
2758           // At this point, we have found a dead node which is DU-reachable.
2759           if (dead_nodes++ == 0)
2760             tty->print_cr("*** Dead nodes reachable via DU edges:");
2761           use->dump(2);
2762           tty->print_cr("---");
2763           checked.push(use);  // No repeats; pretend it is now checked.
2764         }
2765       }
2766       assert(dead_nodes == 0, "using nodes must be reachable from root");
2767     }
2768   }
2769 }
2770 #endif
2771 
2772 // The Compile object keeps track of failure reasons separately from the ciEnv.
2773 // This is required because there is not quite a 1-1 relation between the
2774 // ciEnv and its compilation task and the Compile object.  Note that one
2775 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
2776 // to backtrack and retry without subsuming loads.  Other than this backtracking
2777 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
2778 // by the logic in C2Compiler.
2779 void Compile::record_failure(const char* reason) {
2780   if (log() != NULL) {
2781     log()->elem("failure reason='%s' phase='compile'", reason);
2782   }
2783   if (_failure_reason == NULL) {
2784     // Record the first failure reason.
2785     _failure_reason = reason;
2786   }
2787   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
2788     C->print_method(_failure_reason);
2789   }
2790   _root = NULL;  // flush the graph, too
2791 }
2792 
2793 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
2794   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
2795 {
2796   if (dolog) {
2797     C = Compile::current();
2798     _log = C->log();
2799   } else {
2800     C = NULL;
2801     _log = NULL;
2802   }
2803   if (_log != NULL) {
2804     _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
2805     _log->stamp();
2806     _log->end_head();
2807   }
2808 }
2809 
2810 Compile::TracePhase::~TracePhase() {
2811   if (_log != NULL) {
2812     _log->done("phase nodes='%d'", C->unique());
2813   }
2814 }