1 /*
   2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_output.cpp.incl"
  27 
  28 extern uint size_java_to_interp();
  29 extern uint reloc_java_to_interp();
  30 extern uint size_exception_handler();
  31 extern uint size_deopt_handler();
  32 
  33 #ifndef PRODUCT
  34 #define DEBUG_ARG(x) , x
  35 #else
  36 #define DEBUG_ARG(x)
  37 #endif
  38 
  39 extern int emit_exception_handler(CodeBuffer &cbuf);
  40 extern int emit_deopt_handler(CodeBuffer &cbuf);
  41 
  42 //------------------------------Output-----------------------------------------
  43 // Convert Nodes to instruction bits and pass off to the VM
  44 void Compile::Output() {
  45   // RootNode goes
  46   assert( _cfg->_broot->_nodes.size() == 0, "" );
  47 
  48   // The number of new nodes (mostly MachNop) is proportional to
  49   // the number of java calls and inner loops which are aligned.
  50   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
  51                             C->inner_loops()*(OptoLoopAlignment-1)),
  52                            "out of nodes before code generation" ) ) {
  53     return;
  54   }
  55   // Make sure I can find the Start Node
  56   Block_Array& bbs = _cfg->_bbs;
  57   Block *entry = _cfg->_blocks[1];
  58   Block *broot = _cfg->_broot;
  59 
  60   const StartNode *start = entry->_nodes[0]->as_Start();
  61 
  62   // Replace StartNode with prolog
  63   MachPrologNode *prolog = new (this) MachPrologNode();
  64   entry->_nodes.map( 0, prolog );
  65   bbs.map( prolog->_idx, entry );
  66   bbs.map( start->_idx, NULL ); // start is no longer in any block
  67 
  68   // Virtual methods need an unverified entry point
  69 
  70   if( is_osr_compilation() ) {
  71     if( PoisonOSREntry ) {
  72       // TODO: Should use a ShouldNotReachHereNode...
  73       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
  74     }
  75   } else {
  76     if( _method && !_method->flags().is_static() ) {
  77       // Insert unvalidated entry point
  78       _cfg->insert( broot, 0, new (this) MachUEPNode() );
  79     }
  80 
  81   }
  82 
  83 
  84   // Break before main entry point
  85   if( (_method && _method->break_at_execute())
  86 #ifndef PRODUCT
  87     ||(OptoBreakpoint && is_method_compilation())
  88     ||(OptoBreakpointOSR && is_osr_compilation())
  89     ||(OptoBreakpointC2R && !_method)
  90 #endif
  91     ) {
  92     // checking for _method means that OptoBreakpoint does not apply to
  93     // runtime stubs or frame converters
  94     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
  95   }
  96 
  97   // Insert epilogs before every return
  98   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
  99     Block *b = _cfg->_blocks[i];
 100     if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
 101       Node *m = b->end();
 102       if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
 103         MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
 104         b->add_inst( epilog );
 105         bbs.map(epilog->_idx, b);
 106         //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
 107       }
 108     }
 109   }
 110 
 111 # ifdef ENABLE_ZAP_DEAD_LOCALS
 112   if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
 113 # endif
 114 
 115   ScheduleAndBundle();
 116 
 117 #ifndef PRODUCT
 118   if (trace_opto_output()) {
 119     tty->print("\n---- After ScheduleAndBundle ----\n");
 120     for (uint i = 0; i < _cfg->_num_blocks; i++) {
 121       tty->print("\nBB#%03d:\n", i);
 122       Block *bb = _cfg->_blocks[i];
 123       for (uint j = 0; j < bb->_nodes.size(); j++) {
 124         Node *n = bb->_nodes[j];
 125         OptoReg::Name reg = _regalloc->get_reg_first(n);
 126         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
 127         n->dump();
 128       }
 129     }
 130   }
 131 #endif
 132 
 133   if (failing())  return;
 134 
 135   BuildOopMaps();
 136 
 137   if (failing())  return;
 138 
 139   Fill_buffer();
 140 }
 141 
 142 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
 143   // Determine if we need to generate a stack overflow check.
 144   // Do it if the method is not a stub function and
 145   // has java calls or has frame size > vm_page_size/8.
 146   return (stub_function() == NULL &&
 147           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
 148 }
 149 
 150 bool Compile::need_register_stack_bang() const {
 151   // Determine if we need to generate a register stack overflow check.
 152   // This is only used on architectures which have split register
 153   // and memory stacks (ie. IA64).
 154   // Bang if the method is not a stub function and has java calls
 155   return (stub_function() == NULL && has_java_calls());
 156 }
 157 
 158 # ifdef ENABLE_ZAP_DEAD_LOCALS
 159 
 160 
 161 // In order to catch compiler oop-map bugs, we have implemented
 162 // a debugging mode called ZapDeadCompilerLocals.
 163 // This mode causes the compiler to insert a call to a runtime routine,
 164 // "zap_dead_locals", right before each place in compiled code
 165 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
 166 // The runtime routine checks that locations mapped as oops are really
 167 // oops, that locations mapped as values do not look like oops,
 168 // and that locations mapped as dead are not used later
 169 // (by zapping them to an invalid address).
 170 
 171 int Compile::_CompiledZap_count = 0;
 172 
 173 void Compile::Insert_zap_nodes() {
 174   bool skip = false;
 175 
 176 
 177   // Dink with static counts because code code without the extra
 178   // runtime calls is MUCH faster for debugging purposes
 179 
 180        if ( CompileZapFirst  ==  0  ) ; // nothing special
 181   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
 182   else if ( CompileZapFirst  == CompiledZap_count() )
 183     warning("starting zap compilation after skipping");
 184 
 185        if ( CompileZapLast  ==  -1  ) ; // nothing special
 186   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
 187   else if ( CompileZapLast  ==  CompiledZap_count() )
 188     warning("about to compile last zap");
 189 
 190   ++_CompiledZap_count; // counts skipped zaps, too
 191 
 192   if ( skip )  return;
 193 
 194 
 195   if ( _method == NULL )
 196     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
 197 
 198   // Insert call to zap runtime stub before every node with an oop map
 199   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
 200     Block *b = _cfg->_blocks[i];
 201     for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
 202       Node *n = b->_nodes[j];
 203 
 204       // Determining if we should insert a zap-a-lot node in output.
 205       // We do that for all nodes that has oopmap info, except for calls
 206       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
 207       // and expect the C code to reset it.  Hence, there can be no safepoints between
 208       // the inlined-allocation and the call to new_Java, etc.
 209       // We also cannot zap monitor calls, as they must hold the microlock
 210       // during the call to Zap, which also wants to grab the microlock.
 211       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
 212       if ( insert ) { // it is MachSafePoint
 213         if ( !n->is_MachCall() ) {
 214           insert = false;
 215         } else if ( n->is_MachCall() ) {
 216           MachCallNode* call = n->as_MachCall();
 217           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
 218               call->entry_point() == OptoRuntime::new_array_Java() ||
 219               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
 220               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
 221               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
 222               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
 223               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
 224               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
 225               ) {
 226             insert = false;
 227           }
 228         }
 229         if (insert) {
 230           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
 231           b->_nodes.insert( j, zap );
 232           _cfg->_bbs.map( zap->_idx, b );
 233           ++j;
 234         }
 235       }
 236     }
 237   }
 238 }
 239 
 240 
 241 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
 242   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
 243   CallStaticJavaNode* ideal_node =
 244     new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
 245          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
 246                             "call zap dead locals stub", 0, TypePtr::BOTTOM);
 247   // We need to copy the OopMap from the site we're zapping at.
 248   // We have to make a copy, because the zap site might not be
 249   // a call site, and zap_dead is a call site.
 250   OopMap* clone = node_to_check->oop_map()->deep_copy();
 251 
 252   // Add the cloned OopMap to the zap node
 253   ideal_node->set_oop_map(clone);
 254   return _matcher->match_sfpt(ideal_node);
 255 }
 256 
 257 //------------------------------is_node_getting_a_safepoint--------------------
 258 bool Compile::is_node_getting_a_safepoint( Node* n) {
 259   // This code duplicates the logic prior to the call of add_safepoint
 260   // below in this file.
 261   if( n->is_MachSafePoint() ) return true;
 262   return false;
 263 }
 264 
 265 # endif // ENABLE_ZAP_DEAD_LOCALS
 266 
 267 //------------------------------compute_loop_first_inst_sizes------------------
 268 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
 269 // of a loop. When aligning a loop we need to provide enough instructions
 270 // in cpu's fetch buffer to feed decoders. The loop alignment could be
 271 // avoided if we have enough instructions in fetch buffer at the head of a loop.
 272 // By default, the size is set to 999999 by Block's constructor so that
 273 // a loop will be aligned if the size is not reset here.
 274 //
 275 // Note: Mach instructions could contain several HW instructions
 276 // so the size is estimated only.
 277 //
 278 void Compile::compute_loop_first_inst_sizes() {
 279   // The next condition is used to gate the loop alignment optimization.
 280   // Don't aligned a loop if there are enough instructions at the head of a loop
 281   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
 282   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
 283   // equal to 11 bytes which is the largest address NOP instruction.
 284   if( MaxLoopPad < OptoLoopAlignment-1 ) {
 285     uint last_block = _cfg->_num_blocks-1;
 286     for( uint i=1; i <= last_block; i++ ) {
 287       Block *b = _cfg->_blocks[i];
 288       // Check the first loop's block which requires an alignment.
 289       if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
 290         uint sum_size = 0;
 291         uint inst_cnt = NumberOfLoopInstrToAlign;
 292         inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 293 
 294         // Check subsequent fallthrough blocks if the loop's first
 295         // block(s) does not have enough instructions.
 296         Block *nb = b;
 297         while( inst_cnt > 0 &&
 298                i < last_block &&
 299                !_cfg->_blocks[i+1]->has_loop_alignment() &&
 300                !nb->has_successor(b) ) {
 301           i++;
 302           nb = _cfg->_blocks[i];
 303           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 304         } // while( inst_cnt > 0 && i < last_block  )
 305 
 306         b->set_first_inst_size(sum_size);
 307       } // f( b->head()->is_Loop() )
 308     } // for( i <= last_block )
 309   } // if( MaxLoopPad < OptoLoopAlignment-1 )
 310 }
 311 
 312 //----------------------Shorten_branches---------------------------------------
 313 // The architecture description provides short branch variants for some long
 314 // branch instructions. Replace eligible long branches with short branches.
 315 void Compile::Shorten_branches(Label *labels, int& code_size, int& reloc_size, int& stub_size) {
 316 
 317   // fill in the nop array for bundling computations
 318   MachNode *_nop_list[Bundle::_nop_count];
 319   Bundle::initialize_nops(_nop_list, this);
 320 
 321   // ------------------
 322   // Compute size of each block, method size, and relocation information size
 323   uint *jmp_end    = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks);
 324   uint *blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
 325   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
 326   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
 327   blk_starts[0]    = 0;
 328 
 329   // Initialize the sizes to 0
 330   code_size  = 0;          // Size in bytes of generated code
 331   stub_size  = 0;          // Size in bytes of all stub entries
 332   // Size in bytes of all relocation entries, including those in local stubs.
 333   // Start with 2-bytes of reloc info for the unvalidated entry point
 334   reloc_size = 1;          // Number of relocation entries
 335 
 336   // Make three passes.  The first computes pessimistic blk_starts,
 337   // relative jmp_end and reloc_size information.  The second performs
 338   // short branch substitution using the pessimistic sizing.  The
 339   // third inserts nops where needed.
 340 
 341   Node *nj; // tmp
 342 
 343   // Step one, perform a pessimistic sizing pass.
 344   uint i;
 345   uint min_offset_from_last_call = 1;  // init to a positive value
 346   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
 347   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
 348     Block *b = _cfg->_blocks[i];
 349 
 350     // Sum all instruction sizes to compute block size
 351     uint last_inst = b->_nodes.size();
 352     uint blk_size = 0;
 353     for( uint j = 0; j<last_inst; j++ ) {
 354       nj = b->_nodes[j];
 355       uint inst_size = nj->size(_regalloc);
 356       blk_size += inst_size;
 357       // Handle machine instruction nodes
 358       if( nj->is_Mach() ) {
 359         MachNode *mach = nj->as_Mach();
 360         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 361         reloc_size += mach->reloc();
 362         if( mach->is_MachCall() ) {
 363           MachCallNode *mcall = mach->as_MachCall();
 364           // This destination address is NOT PC-relative
 365 
 366           mcall->method_set((intptr_t)mcall->entry_point());
 367 
 368           if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
 369             stub_size  += size_java_to_interp();
 370             reloc_size += reloc_java_to_interp();
 371           }
 372         } else if (mach->is_MachSafePoint()) {
 373           // If call/safepoint are adjacent, account for possible
 374           // nop to disambiguate the two safepoints.
 375           if (min_offset_from_last_call == 0) {
 376             blk_size += nop_size;
 377           }
 378         }
 379       }
 380       min_offset_from_last_call += inst_size;
 381       // Remember end of call offset
 382       if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
 383         min_offset_from_last_call = 0;
 384       }
 385     }
 386 
 387     // During short branch replacement, we store the relative (to blk_starts)
 388     // end of jump in jmp_end, rather than the absolute end of jump.  This
 389     // is so that we do not need to recompute sizes of all nodes when we compute
 390     // correct blk_starts in our next sizing pass.
 391     jmp_end[i] = blk_size;
 392     DEBUG_ONLY( jmp_target[i] = 0; )
 393 
 394     // When the next block starts a loop, we may insert pad NOP
 395     // instructions.  Since we cannot know our future alignment,
 396     // assume the worst.
 397     if( i<_cfg->_num_blocks-1 ) {
 398       Block *nb = _cfg->_blocks[i+1];
 399       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
 400       if( max_loop_pad > 0 ) {
 401         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
 402         blk_size += max_loop_pad;
 403       }
 404     }
 405 
 406     // Save block size; update total method size
 407     blk_starts[i+1] = blk_starts[i]+blk_size;
 408   }
 409 
 410   // Step two, replace eligible long jumps.
 411 
 412   // Note: this will only get the long branches within short branch
 413   //   range. Another pass might detect more branches that became
 414   //   candidates because the shortening in the first pass exposed
 415   //   more opportunities. Unfortunately, this would require
 416   //   recomputing the starting and ending positions for the blocks
 417   for( i=0; i<_cfg->_num_blocks; i++ ) {
 418     Block *b = _cfg->_blocks[i];
 419 
 420     int j;
 421     // Find the branch; ignore trailing NOPs.
 422     for( j = b->_nodes.size()-1; j>=0; j-- ) {
 423       nj = b->_nodes[j];
 424       if( !nj->is_Mach() || nj->as_Mach()->ideal_Opcode() != Op_Con )
 425         break;
 426     }
 427 
 428     if (j >= 0) {
 429       if( nj->is_Mach() && nj->as_Mach()->may_be_short_branch() ) {
 430         MachNode *mach = nj->as_Mach();
 431         // This requires the TRUE branch target be in succs[0]
 432         uint bnum = b->non_connector_successor(0)->_pre_order;
 433         uintptr_t target = blk_starts[bnum];
 434         if( mach->is_pc_relative() ) {
 435           int offset = target-(blk_starts[i] + jmp_end[i]);
 436           if (_matcher->is_short_branch_offset(mach->rule(), offset)) {
 437             // We've got a winner.  Replace this branch.
 438             MachNode* replacement = mach->short_branch_version(this);
 439             b->_nodes.map(j, replacement);
 440             mach->subsume_by(replacement);
 441 
 442             // Update the jmp_end size to save time in our
 443             // next pass.
 444             jmp_end[i] -= (mach->size(_regalloc) - replacement->size(_regalloc));
 445             DEBUG_ONLY( jmp_target[i] = bnum; );
 446             DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 447           }
 448         } else {
 449 #ifndef PRODUCT
 450           mach->dump(3);
 451 #endif
 452           Unimplemented();
 453         }
 454       }
 455     }
 456   }
 457 
 458   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
 459   // of a loop. It is used to determine the padding for loop alignment.
 460   compute_loop_first_inst_sizes();
 461 
 462   // Step 3, compute the offsets of all the labels
 463   uint last_call_adr = max_uint;
 464   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
 465     // copy the offset of the beginning to the corresponding label
 466     assert(labels[i].is_unused(), "cannot patch at this point");
 467     labels[i].bind_loc(blk_starts[i], CodeBuffer::SECT_INSTS);
 468 
 469     // insert padding for any instructions that need it
 470     Block *b = _cfg->_blocks[i];
 471     uint last_inst = b->_nodes.size();
 472     uint adr = blk_starts[i];
 473     for( uint j = 0; j<last_inst; j++ ) {
 474       nj = b->_nodes[j];
 475       if( nj->is_Mach() ) {
 476         int padding = nj->as_Mach()->compute_padding(adr);
 477         // If call/safepoint are adjacent insert a nop (5010568)
 478         if (padding == 0 && nj->is_MachSafePoint() && !nj->is_MachCall() &&
 479             adr == last_call_adr ) {
 480           padding = nop_size;
 481         }
 482         if(padding > 0) {
 483           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
 484           int nops_cnt = padding / nop_size;
 485           MachNode *nop = new (this) MachNopNode(nops_cnt);
 486           b->_nodes.insert(j++, nop);
 487           _cfg->_bbs.map( nop->_idx, b );
 488           adr += padding;
 489           last_inst++;
 490         }
 491       }
 492       adr += nj->size(_regalloc);
 493 
 494       // Remember end of call offset
 495       if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
 496         last_call_adr = adr;
 497       }
 498     }
 499 
 500     if ( i != _cfg->_num_blocks-1) {
 501       // Get the size of the block
 502       uint blk_size = adr - blk_starts[i];
 503 
 504       // When the next block is the top of a loop, we may insert pad NOP
 505       // instructions.
 506       Block *nb = _cfg->_blocks[i+1];
 507       int current_offset = blk_starts[i] + blk_size;
 508       current_offset += nb->alignment_padding(current_offset);
 509       // Save block size; update total method size
 510       blk_starts[i+1] = current_offset;
 511     }
 512   }
 513 
 514 #ifdef ASSERT
 515   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
 516     if( jmp_target[i] != 0 ) {
 517       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_end[i]);
 518       if (!_matcher->is_short_branch_offset(jmp_rule[i], offset)) {
 519         tty->print_cr("target (%d) - jmp_end(%d) = offset (%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_end[i], offset, i, jmp_target[i]);
 520       }
 521       assert(_matcher->is_short_branch_offset(jmp_rule[i], offset), "Displacement too large for short jmp");
 522     }
 523   }
 524 #endif
 525 
 526   // ------------------
 527   // Compute size for code buffer
 528   code_size   = blk_starts[i-1] + jmp_end[i-1];
 529 
 530   // Relocation records
 531   reloc_size += 1;              // Relo entry for exception handler
 532 
 533   // Adjust reloc_size to number of record of relocation info
 534   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
 535   // a relocation index.
 536   // The CodeBuffer will expand the locs array if this estimate is too low.
 537   reloc_size   *= 10 / sizeof(relocInfo);
 538 }
 539 
 540 //------------------------------FillLocArray-----------------------------------
 541 // Create a bit of debug info and append it to the array.  The mapping is from
 542 // Java local or expression stack to constant, register or stack-slot.  For
 543 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
 544 // entry has been taken care of and caller should skip it).
 545 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
 546   // This should never have accepted Bad before
 547   assert(OptoReg::is_valid(regnum), "location must be valid");
 548   return (OptoReg::is_reg(regnum))
 549     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
 550     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
 551 }
 552 
 553 
 554 ObjectValue*
 555 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
 556   for (int i = 0; i < objs->length(); i++) {
 557     assert(objs->at(i)->is_object(), "corrupt object cache");
 558     ObjectValue* sv = (ObjectValue*) objs->at(i);
 559     if (sv->id() == id) {
 560       return sv;
 561     }
 562   }
 563   // Otherwise..
 564   return NULL;
 565 }
 566 
 567 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
 568                                      ObjectValue* sv ) {
 569   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
 570   objs->append(sv);
 571 }
 572 
 573 
 574 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
 575                             GrowableArray<ScopeValue*> *array,
 576                             GrowableArray<ScopeValue*> *objs ) {
 577   assert( local, "use _top instead of null" );
 578   if (array->length() != idx) {
 579     assert(array->length() == idx + 1, "Unexpected array count");
 580     // Old functionality:
 581     //   return
 582     // New functionality:
 583     //   Assert if the local is not top. In product mode let the new node
 584     //   override the old entry.
 585     assert(local == top(), "LocArray collision");
 586     if (local == top()) {
 587       return;
 588     }
 589     array->pop();
 590   }
 591   const Type *t = local->bottom_type();
 592 
 593   // Is it a safepoint scalar object node?
 594   if (local->is_SafePointScalarObject()) {
 595     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
 596 
 597     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
 598     if (sv == NULL) {
 599       ciKlass* cik = t->is_oopptr()->klass();
 600       assert(cik->is_instance_klass() ||
 601              cik->is_array_klass(), "Not supported allocation.");
 602       sv = new ObjectValue(spobj->_idx,
 603                            new ConstantOopWriteValue(cik->constant_encoding()));
 604       Compile::set_sv_for_object_node(objs, sv);
 605 
 606       uint first_ind = spobj->first_index();
 607       for (uint i = 0; i < spobj->n_fields(); i++) {
 608         Node* fld_node = sfpt->in(first_ind+i);
 609         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
 610       }
 611     }
 612     array->append(sv);
 613     return;
 614   }
 615 
 616   // Grab the register number for the local
 617   OptoReg::Name regnum = _regalloc->get_reg_first(local);
 618   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
 619     // Record the double as two float registers.
 620     // The register mask for such a value always specifies two adjacent
 621     // float registers, with the lower register number even.
 622     // Normally, the allocation of high and low words to these registers
 623     // is irrelevant, because nearly all operations on register pairs
 624     // (e.g., StoreD) treat them as a single unit.
 625     // Here, we assume in addition that the words in these two registers
 626     // stored "naturally" (by operations like StoreD and double stores
 627     // within the interpreter) such that the lower-numbered register
 628     // is written to the lower memory address.  This may seem like
 629     // a machine dependency, but it is not--it is a requirement on
 630     // the author of the <arch>.ad file to ensure that, for every
 631     // even/odd double-register pair to which a double may be allocated,
 632     // the word in the even single-register is stored to the first
 633     // memory word.  (Note that register numbers are completely
 634     // arbitrary, and are not tied to any machine-level encodings.)
 635 #ifdef _LP64
 636     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
 637       array->append(new ConstantIntValue(0));
 638       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
 639     } else if ( t->base() == Type::Long ) {
 640       array->append(new ConstantIntValue(0));
 641       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 642     } else if ( t->base() == Type::RawPtr ) {
 643       // jsr/ret return address which must be restored into a the full
 644       // width 64-bit stack slot.
 645       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 646     }
 647 #else //_LP64
 648 #ifdef SPARC
 649     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
 650       // For SPARC we have to swap high and low words for
 651       // long values stored in a single-register (g0-g7).
 652       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 653       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 654     } else
 655 #endif //SPARC
 656     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
 657       // Repack the double/long as two jints.
 658       // The convention the interpreter uses is that the second local
 659       // holds the first raw word of the native double representation.
 660       // This is actually reasonable, since locals and stack arrays
 661       // grow downwards in all implementations.
 662       // (If, on some machine, the interpreter's Java locals or stack
 663       // were to grow upwards, the embedded doubles would be word-swapped.)
 664       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 665       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 666     }
 667 #endif //_LP64
 668     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
 669                OptoReg::is_reg(regnum) ) {
 670       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
 671                                    ? Location::float_in_dbl : Location::normal ));
 672     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
 673       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
 674                                    ? Location::int_in_long : Location::normal ));
 675     } else if( t->base() == Type::NarrowOop ) {
 676       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
 677     } else {
 678       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
 679     }
 680     return;
 681   }
 682 
 683   // No register.  It must be constant data.
 684   switch (t->base()) {
 685   case Type::Half:              // Second half of a double
 686     ShouldNotReachHere();       // Caller should skip 2nd halves
 687     break;
 688   case Type::AnyPtr:
 689     array->append(new ConstantOopWriteValue(NULL));
 690     break;
 691   case Type::AryPtr:
 692   case Type::InstPtr:
 693   case Type::KlassPtr:          // fall through
 694     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
 695     break;
 696   case Type::NarrowOop:
 697     if (t == TypeNarrowOop::NULL_PTR) {
 698       array->append(new ConstantOopWriteValue(NULL));
 699     } else {
 700       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
 701     }
 702     break;
 703   case Type::Int:
 704     array->append(new ConstantIntValue(t->is_int()->get_con()));
 705     break;
 706   case Type::RawPtr:
 707     // A return address (T_ADDRESS).
 708     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
 709 #ifdef _LP64
 710     // Must be restored to the full-width 64-bit stack slot.
 711     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
 712 #else
 713     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
 714 #endif
 715     break;
 716   case Type::FloatCon: {
 717     float f = t->is_float_constant()->getf();
 718     array->append(new ConstantIntValue(jint_cast(f)));
 719     break;
 720   }
 721   case Type::DoubleCon: {
 722     jdouble d = t->is_double_constant()->getd();
 723 #ifdef _LP64
 724     array->append(new ConstantIntValue(0));
 725     array->append(new ConstantDoubleValue(d));
 726 #else
 727     // Repack the double as two jints.
 728     // The convention the interpreter uses is that the second local
 729     // holds the first raw word of the native double representation.
 730     // This is actually reasonable, since locals and stack arrays
 731     // grow downwards in all implementations.
 732     // (If, on some machine, the interpreter's Java locals or stack
 733     // were to grow upwards, the embedded doubles would be word-swapped.)
 734     jint   *dp = (jint*)&d;
 735     array->append(new ConstantIntValue(dp[1]));
 736     array->append(new ConstantIntValue(dp[0]));
 737 #endif
 738     break;
 739   }
 740   case Type::Long: {
 741     jlong d = t->is_long()->get_con();
 742 #ifdef _LP64
 743     array->append(new ConstantIntValue(0));
 744     array->append(new ConstantLongValue(d));
 745 #else
 746     // Repack the long as two jints.
 747     // The convention the interpreter uses is that the second local
 748     // holds the first raw word of the native double representation.
 749     // This is actually reasonable, since locals and stack arrays
 750     // grow downwards in all implementations.
 751     // (If, on some machine, the interpreter's Java locals or stack
 752     // were to grow upwards, the embedded doubles would be word-swapped.)
 753     jint *dp = (jint*)&d;
 754     array->append(new ConstantIntValue(dp[1]));
 755     array->append(new ConstantIntValue(dp[0]));
 756 #endif
 757     break;
 758   }
 759   case Type::Top:               // Add an illegal value here
 760     array->append(new LocationValue(Location()));
 761     break;
 762   default:
 763     ShouldNotReachHere();
 764     break;
 765   }
 766 }
 767 
 768 // Determine if this node starts a bundle
 769 bool Compile::starts_bundle(const Node *n) const {
 770   return (_node_bundling_limit > n->_idx &&
 771           _node_bundling_base[n->_idx].starts_bundle());
 772 }
 773 
 774 //--------------------------Process_OopMap_Node--------------------------------
 775 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
 776 
 777   // Handle special safepoint nodes for synchronization
 778   MachSafePointNode *sfn   = mach->as_MachSafePoint();
 779   MachCallNode      *mcall;
 780 
 781 #ifdef ENABLE_ZAP_DEAD_LOCALS
 782   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
 783 #endif
 784 
 785   int safepoint_pc_offset = current_offset;
 786   bool is_method_handle_invoke = false;
 787   bool return_oop = false;
 788 
 789   // Add the safepoint in the DebugInfoRecorder
 790   if( !mach->is_MachCall() ) {
 791     mcall = NULL;
 792     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
 793   } else {
 794     mcall = mach->as_MachCall();
 795 
 796     // Is the call a MethodHandle call?
 797     if (mcall->is_MachCallJava()) {
 798       if (mcall->as_MachCallJava()->_method_handle_invoke) {
 799         assert(has_method_handle_invokes(), "must have been set during call generation");
 800         is_method_handle_invoke = true;
 801       }
 802     }
 803 
 804     // Check if a call returns an object.
 805     if (mcall->return_value_is_used() &&
 806         mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
 807       return_oop = true;
 808     }
 809     safepoint_pc_offset += mcall->ret_addr_offset();
 810     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
 811   }
 812 
 813   // Loop over the JVMState list to add scope information
 814   // Do not skip safepoints with a NULL method, they need monitor info
 815   JVMState* youngest_jvms = sfn->jvms();
 816   int max_depth = youngest_jvms->depth();
 817 
 818   // Allocate the object pool for scalar-replaced objects -- the map from
 819   // small-integer keys (which can be recorded in the local and ostack
 820   // arrays) to descriptions of the object state.
 821   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
 822 
 823   // Visit scopes from oldest to youngest.
 824   for (int depth = 1; depth <= max_depth; depth++) {
 825     JVMState* jvms = youngest_jvms->of_depth(depth);
 826     int idx;
 827     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
 828     // Safepoints that do not have method() set only provide oop-map and monitor info
 829     // to support GC; these do not support deoptimization.
 830     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
 831     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
 832     int num_mon  = jvms->nof_monitors();
 833     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
 834            "JVMS local count must match that of the method");
 835 
 836     // Add Local and Expression Stack Information
 837 
 838     // Insert locals into the locarray
 839     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
 840     for( idx = 0; idx < num_locs; idx++ ) {
 841       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
 842     }
 843 
 844     // Insert expression stack entries into the exparray
 845     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
 846     for( idx = 0; idx < num_exps; idx++ ) {
 847       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
 848     }
 849 
 850     // Add in mappings of the monitors
 851     assert( !method ||
 852             !method->is_synchronized() ||
 853             method->is_native() ||
 854             num_mon > 0 ||
 855             !GenerateSynchronizationCode,
 856             "monitors must always exist for synchronized methods");
 857 
 858     // Build the growable array of ScopeValues for exp stack
 859     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
 860 
 861     // Loop over monitors and insert into array
 862     for(idx = 0; idx < num_mon; idx++) {
 863       // Grab the node that defines this monitor
 864       Node* box_node = sfn->monitor_box(jvms, idx);
 865       Node* obj_node = sfn->monitor_obj(jvms, idx);
 866 
 867       // Create ScopeValue for object
 868       ScopeValue *scval = NULL;
 869 
 870       if( obj_node->is_SafePointScalarObject() ) {
 871         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
 872         scval = Compile::sv_for_node_id(objs, spobj->_idx);
 873         if (scval == NULL) {
 874           const Type *t = obj_node->bottom_type();
 875           ciKlass* cik = t->is_oopptr()->klass();
 876           assert(cik->is_instance_klass() ||
 877                  cik->is_array_klass(), "Not supported allocation.");
 878           ObjectValue* sv = new ObjectValue(spobj->_idx,
 879                                 new ConstantOopWriteValue(cik->constant_encoding()));
 880           Compile::set_sv_for_object_node(objs, sv);
 881 
 882           uint first_ind = spobj->first_index();
 883           for (uint i = 0; i < spobj->n_fields(); i++) {
 884             Node* fld_node = sfn->in(first_ind+i);
 885             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
 886           }
 887           scval = sv;
 888         }
 889       } else if( !obj_node->is_Con() ) {
 890         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
 891         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
 892           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
 893         } else {
 894           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
 895         }
 896       } else {
 897         const TypePtr *tp = obj_node->bottom_type()->make_ptr();
 898         scval = new ConstantOopWriteValue(tp->is_instptr()->const_oop()->constant_encoding());
 899       }
 900 
 901       OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node);
 902       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
 903       while( !box_node->is_BoxLock() )  box_node = box_node->in(1);
 904       monarray->append(new MonitorValue(scval, basic_lock, box_node->as_BoxLock()->is_eliminated()));
 905     }
 906 
 907     // We dump the object pool first, since deoptimization reads it in first.
 908     debug_info()->dump_object_pool(objs);
 909 
 910     // Build first class objects to pass to scope
 911     DebugToken *locvals = debug_info()->create_scope_values(locarray);
 912     DebugToken *expvals = debug_info()->create_scope_values(exparray);
 913     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
 914 
 915     // Make method available for all Safepoints
 916     ciMethod* scope_method = method ? method : _method;
 917     // Describe the scope here
 918     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
 919     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
 920     // Now we can describe the scope.
 921     debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
 922   } // End jvms loop
 923 
 924   // Mark the end of the scope set.
 925   debug_info()->end_safepoint(safepoint_pc_offset);
 926 }
 927 
 928 
 929 
 930 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
 931 class NonSafepointEmitter {
 932   Compile*  C;
 933   JVMState* _pending_jvms;
 934   int       _pending_offset;
 935 
 936   void emit_non_safepoint();
 937 
 938  public:
 939   NonSafepointEmitter(Compile* compile) {
 940     this->C = compile;
 941     _pending_jvms = NULL;
 942     _pending_offset = 0;
 943   }
 944 
 945   void observe_instruction(Node* n, int pc_offset) {
 946     if (!C->debug_info()->recording_non_safepoints())  return;
 947 
 948     Node_Notes* nn = C->node_notes_at(n->_idx);
 949     if (nn == NULL || nn->jvms() == NULL)  return;
 950     if (_pending_jvms != NULL &&
 951         _pending_jvms->same_calls_as(nn->jvms())) {
 952       // Repeated JVMS?  Stretch it up here.
 953       _pending_offset = pc_offset;
 954     } else {
 955       if (_pending_jvms != NULL &&
 956           _pending_offset < pc_offset) {
 957         emit_non_safepoint();
 958       }
 959       _pending_jvms = NULL;
 960       if (pc_offset > C->debug_info()->last_pc_offset()) {
 961         // This is the only way _pending_jvms can become non-NULL:
 962         _pending_jvms = nn->jvms();
 963         _pending_offset = pc_offset;
 964       }
 965     }
 966   }
 967 
 968   // Stay out of the way of real safepoints:
 969   void observe_safepoint(JVMState* jvms, int pc_offset) {
 970     if (_pending_jvms != NULL &&
 971         !_pending_jvms->same_calls_as(jvms) &&
 972         _pending_offset < pc_offset) {
 973       emit_non_safepoint();
 974     }
 975     _pending_jvms = NULL;
 976   }
 977 
 978   void flush_at_end() {
 979     if (_pending_jvms != NULL) {
 980       emit_non_safepoint();
 981     }
 982     _pending_jvms = NULL;
 983   }
 984 };
 985 
 986 void NonSafepointEmitter::emit_non_safepoint() {
 987   JVMState* youngest_jvms = _pending_jvms;
 988   int       pc_offset     = _pending_offset;
 989 
 990   // Clear it now:
 991   _pending_jvms = NULL;
 992 
 993   DebugInformationRecorder* debug_info = C->debug_info();
 994   assert(debug_info->recording_non_safepoints(), "sanity");
 995 
 996   debug_info->add_non_safepoint(pc_offset);
 997   int max_depth = youngest_jvms->depth();
 998 
 999   // Visit scopes from oldest to youngest.
1000   for (int depth = 1; depth <= max_depth; depth++) {
1001     JVMState* jvms = youngest_jvms->of_depth(depth);
1002     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1003     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1004     debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
1005   }
1006 
1007   // Mark the end of the scope set.
1008   debug_info->end_non_safepoint(pc_offset);
1009 }
1010 
1011 
1012 
1013 // helper for Fill_buffer bailout logic
1014 static void turn_off_compiler(Compile* C) {
1015   if (CodeCache::unallocated_capacity() >= CodeCacheMinimumFreeSpace*10) {
1016     // Do not turn off compilation if a single giant method has
1017     // blown the code cache size.
1018     C->record_failure("excessive request to CodeCache");
1019   } else {
1020     // Let CompilerBroker disable further compilations.
1021     C->record_failure("CodeCache is full");
1022   }
1023 }
1024 
1025 
1026 //------------------------------Fill_buffer------------------------------------
1027 void Compile::Fill_buffer() {
1028 
1029   // Set the initially allocated size
1030   int  code_req   = initial_code_capacity;
1031   int  locs_req   = initial_locs_capacity;
1032   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
1033   int  const_req  = initial_const_capacity;
1034   bool labels_not_set = true;
1035 
1036   int  pad_req    = NativeCall::instruction_size;
1037   // The extra spacing after the code is necessary on some platforms.
1038   // Sometimes we need to patch in a jump after the last instruction,
1039   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1040 
1041   uint i;
1042   // Compute the byte offset where we can store the deopt pc.
1043   if (fixed_slots() != 0) {
1044     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1045   }
1046 
1047   // Compute prolog code size
1048   _method_size = 0;
1049   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
1050 #ifdef IA64
1051   if (save_argument_registers()) {
1052     // 4815101: this is a stub with implicit and unknown precision fp args.
1053     // The usual spill mechanism can only generate stfd's in this case, which
1054     // doesn't work if the fp reg to spill contains a single-precision denorm.
1055     // Instead, we hack around the normal spill mechanism using stfspill's and
1056     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1057     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1058     //
1059     // If we ever implement 16-byte 'registers' == stack slots, we can
1060     // get rid of this hack and have SpillCopy generate stfspill/ldffill
1061     // instead of stfd/stfs/ldfd/ldfs.
1062     _frame_slots += 8*(16/BytesPerInt);
1063   }
1064 #endif
1065   assert( _frame_slots >= 0 && _frame_slots < 1000000, "sanity check" );
1066 
1067   // Create an array of unused labels, one for each basic block
1068   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, _cfg->_num_blocks+1);
1069 
1070   for( i=0; i <= _cfg->_num_blocks; i++ ) {
1071     blk_labels[i].init();
1072   }
1073 
1074   if (has_mach_constant_base_node()) {
1075     // Fill the constant table.
1076     // Note:  This must happen before Shorten_branches.
1077     for (i = 0; i < _cfg->_num_blocks; i++) {
1078       Block* b = _cfg->_blocks[i];
1079 
1080       for (uint j = 0; j < b->_nodes.size(); j++) {
1081         Node* n = b->_nodes[j];
1082 
1083         if (n->is_Mach()) {
1084           MachNode *mach = n->as_Mach();
1085 
1086           // If the MachNode is a MachConstantNode evaluate the
1087           // constant value section.
1088           if (mach->is_MachConstant()) {
1089             MachConstantNode* machcon = mach->as_MachConstant();
1090             machcon->eval_constant();
1091           }
1092         }
1093       }
1094     }
1095 
1096     // Calculate the size of the constant table (including the padding
1097     // to the next section).
1098     const_req = mach_constant_base_node()->calculate_constant_table_size();
1099   }
1100 
1101   // Initialize the space for the BufferBlob used to find and verify
1102   // instruction size in MachNode::emit_size()
1103   init_scratch_buffer_blob(const_req);
1104   if (failing())  return; // Out of memory
1105 
1106   // If this machine supports different size branch offsets, then pre-compute
1107   // the length of the blocks
1108   if( _matcher->is_short_branch_offset(-1, 0) ) {
1109     Shorten_branches(blk_labels, code_req, locs_req, stub_req);
1110     labels_not_set = false;
1111   }
1112 
1113   // nmethod and CodeBuffer count stubs & constants as part of method's code.
1114   int exception_handler_req = size_exception_handler();
1115   int deopt_handler_req = size_deopt_handler();
1116   exception_handler_req += MAX_stubs_size; // add marginal slop for handler
1117   deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
1118   stub_req += MAX_stubs_size;   // ensure per-stub margin
1119   code_req += MAX_inst_size;    // ensure per-instruction margin
1120 
1121   if (StressCodeBuffers)
1122     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1123 
1124   int total_req =
1125     const_req +
1126     code_req +
1127     pad_req +
1128     stub_req +
1129     exception_handler_req +
1130     deopt_handler_req;               // deopt handler
1131 
1132   if (has_method_handle_invokes())
1133     total_req += deopt_handler_req;  // deopt MH handler
1134 
1135   CodeBuffer* cb = code_buffer();
1136   cb->initialize(total_req, locs_req);
1137 
1138   // Have we run out of code space?
1139   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1140     turn_off_compiler(this);
1141     return;
1142   }
1143   // Configure the code buffer.
1144   cb->initialize_consts_size(const_req);
1145   cb->initialize_stubs_size(stub_req);
1146   cb->initialize_oop_recorder(env()->oop_recorder());
1147 
1148   // fill in the nop array for bundling computations
1149   MachNode *_nop_list[Bundle::_nop_count];
1150   Bundle::initialize_nops(_nop_list, this);
1151 
1152   // Create oopmap set.
1153   _oop_map_set = new OopMapSet();
1154 
1155   // !!!!! This preserves old handling of oopmaps for now
1156   debug_info()->set_oopmaps(_oop_map_set);
1157 
1158   // Count and start of implicit null check instructions
1159   uint inct_cnt = 0;
1160   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
1161 
1162   // Count and start of calls
1163   uint *call_returns = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
1164 
1165   uint  return_offset = 0;
1166   int nop_size = (new (this) MachNopNode())->size(_regalloc);
1167 
1168   int previous_offset = 0;
1169   int current_offset  = 0;
1170   int last_call_offset = -1;
1171 
1172   // Create an array of unused labels, one for each basic block, if printing is enabled
1173 #ifndef PRODUCT
1174   int *node_offsets      = NULL;
1175   uint  node_offset_limit = unique();
1176 
1177 
1178   if ( print_assembly() )
1179     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1180 #endif
1181 
1182   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1183 
1184   // ------------------
1185   // Now fill in the code buffer
1186   Node *delay_slot = NULL;
1187 
1188   for( i=0; i < _cfg->_num_blocks; i++ ) {
1189     Block *b = _cfg->_blocks[i];
1190 
1191     Node *head = b->head();
1192 
1193     // If this block needs to start aligned (i.e, can be reached other
1194     // than by falling-thru from the previous block), then force the
1195     // start of a new bundle.
1196     if( Pipeline::requires_bundling() && starts_bundle(head) )
1197       cb->flush_bundle(true);
1198 
1199     // Define the label at the beginning of the basic block
1200     if (labels_not_set) {
1201       MacroAssembler(cb).bind(blk_labels[b->_pre_order]);
1202     } else {
1203       assert(blk_labels[b->_pre_order].loc_pos() == cb->insts_size(),
1204              err_msg("label position does not match code offset: %d != %d",
1205                      blk_labels[b->_pre_order].loc_pos(), cb->insts_size()));
1206     }
1207 
1208     uint last_inst = b->_nodes.size();
1209 
1210     // Emit block normally, except for last instruction.
1211     // Emit means "dump code bits into code buffer".
1212     for( uint j = 0; j<last_inst; j++ ) {
1213 
1214       // Get the node
1215       Node* n = b->_nodes[j];
1216 
1217       // See if delay slots are supported
1218       if (valid_bundle_info(n) &&
1219           node_bundling(n)->used_in_unconditional_delay()) {
1220         assert(delay_slot == NULL, "no use of delay slot node");
1221         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1222 
1223         delay_slot = n;
1224         continue;
1225       }
1226 
1227       // If this starts a new instruction group, then flush the current one
1228       // (but allow split bundles)
1229       if( Pipeline::requires_bundling() && starts_bundle(n) )
1230         cb->flush_bundle(false);
1231 
1232       // The following logic is duplicated in the code ifdeffed for
1233       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1234       // should be factored out.  Or maybe dispersed to the nodes?
1235 
1236       // Special handling for SafePoint/Call Nodes
1237       bool is_mcall = false;
1238       if( n->is_Mach() ) {
1239         MachNode *mach = n->as_Mach();
1240         is_mcall = n->is_MachCall();
1241         bool is_sfn = n->is_MachSafePoint();
1242 
1243         // If this requires all previous instructions be flushed, then do so
1244         if( is_sfn || is_mcall || mach->alignment_required() != 1) {
1245           cb->flush_bundle(true);
1246           current_offset = cb->insts_size();
1247         }
1248 
1249         // align the instruction if necessary
1250         int padding = mach->compute_padding(current_offset);
1251         // Make sure safepoint node for polling is distinct from a call's
1252         // return by adding a nop if needed.
1253         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset ) {
1254           padding = nop_size;
1255         }
1256         assert( labels_not_set || padding == 0, "instruction should already be aligned");
1257 
1258         if(padding > 0) {
1259           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1260           int nops_cnt = padding / nop_size;
1261           MachNode *nop = new (this) MachNopNode(nops_cnt);
1262           b->_nodes.insert(j++, nop);
1263           last_inst++;
1264           _cfg->_bbs.map( nop->_idx, b );
1265           nop->emit(*cb, _regalloc);
1266           cb->flush_bundle(true);
1267           current_offset = cb->insts_size();
1268         }
1269 
1270         // Remember the start of the last call in a basic block
1271         if (is_mcall) {
1272           MachCallNode *mcall = mach->as_MachCall();
1273 
1274           // This destination address is NOT PC-relative
1275           mcall->method_set((intptr_t)mcall->entry_point());
1276 
1277           // Save the return address
1278           call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
1279 
1280           if (!mcall->is_safepoint_node()) {
1281             is_mcall = false;
1282             is_sfn = false;
1283           }
1284         }
1285 
1286         // sfn will be valid whenever mcall is valid now because of inheritance
1287         if( is_sfn || is_mcall ) {
1288 
1289           // Handle special safepoint nodes for synchronization
1290           if( !is_mcall ) {
1291             MachSafePointNode *sfn = mach->as_MachSafePoint();
1292             // !!!!! Stubs only need an oopmap right now, so bail out
1293             if( sfn->jvms()->method() == NULL) {
1294               // Write the oopmap directly to the code blob??!!
1295 #             ifdef ENABLE_ZAP_DEAD_LOCALS
1296               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1297 #             endif
1298               continue;
1299             }
1300           } // End synchronization
1301 
1302           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1303                                            current_offset);
1304           Process_OopMap_Node(mach, current_offset);
1305         } // End if safepoint
1306 
1307         // If this is a null check, then add the start of the previous instruction to the list
1308         else if( mach->is_MachNullCheck() ) {
1309           inct_starts[inct_cnt++] = previous_offset;
1310         }
1311 
1312         // If this is a branch, then fill in the label with the target BB's label
1313         else if ( mach->is_Branch() ) {
1314 
1315           if ( mach->ideal_Opcode() == Op_Jump ) {
1316             for (uint h = 0; h < b->_num_succs; h++ ) {
1317               Block* succs_block = b->_succs[h];
1318               for (uint j = 1; j < succs_block->num_preds(); j++) {
1319                 Node* jpn = succs_block->pred(j);
1320                 if ( jpn->is_JumpProj() && jpn->in(0) == mach ) {
1321                   uint block_num = succs_block->non_connector()->_pre_order;
1322                   Label *blkLabel = &blk_labels[block_num];
1323                   mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1324                 }
1325               }
1326             }
1327           } else {
1328             // For Branchs
1329             // This requires the TRUE branch target be in succs[0]
1330             uint block_num = b->non_connector_successor(0)->_pre_order;
1331             mach->label_set( blk_labels[block_num], block_num );
1332           }
1333         }
1334 
1335 #ifdef ASSERT
1336         // Check that oop-store precedes the card-mark
1337         else if( mach->ideal_Opcode() == Op_StoreCM ) {
1338           uint storeCM_idx = j;
1339           Node *oop_store = mach->in(mach->_cnt);  // First precedence edge
1340           assert( oop_store != NULL, "storeCM expects a precedence edge");
1341           uint i4;
1342           for( i4 = 0; i4 < last_inst; ++i4 ) {
1343             if( b->_nodes[i4] == oop_store ) break;
1344           }
1345           // Note: This test can provide a false failure if other precedence
1346           // edges have been added to the storeCMNode.
1347           assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1348         }
1349 #endif
1350 
1351         else if( !n->is_Proj() ) {
1352           // Remember the beginning of the previous instruction, in case
1353           // it's followed by a flag-kill and a null-check.  Happens on
1354           // Intel all the time, with add-to-memory kind of opcodes.
1355           previous_offset = current_offset;
1356         }
1357       }
1358 
1359       // Verify that there is sufficient space remaining
1360       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1361       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1362         turn_off_compiler(this);
1363         return;
1364       }
1365 
1366       // Save the offset for the listing
1367 #ifndef PRODUCT
1368       if( node_offsets && n->_idx < node_offset_limit )
1369         node_offsets[n->_idx] = cb->insts_size();
1370 #endif
1371 
1372       // "Normal" instruction case
1373       n->emit(*cb, _regalloc);
1374       current_offset  = cb->insts_size();
1375       non_safepoints.observe_instruction(n, current_offset);
1376 
1377       // mcall is last "call" that can be a safepoint
1378       // record it so we can see if a poll will directly follow it
1379       // in which case we'll need a pad to make the PcDesc sites unique
1380       // see  5010568. This can be slightly inaccurate but conservative
1381       // in the case that return address is not actually at current_offset.
1382       // This is a small price to pay.
1383 
1384       if (is_mcall) {
1385         last_call_offset = current_offset;
1386       }
1387 
1388       // See if this instruction has a delay slot
1389       if ( valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1390         assert(delay_slot != NULL, "expecting delay slot node");
1391 
1392         // Back up 1 instruction
1393         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1394 
1395         // Save the offset for the listing
1396 #ifndef PRODUCT
1397         if( node_offsets && delay_slot->_idx < node_offset_limit )
1398           node_offsets[delay_slot->_idx] = cb->insts_size();
1399 #endif
1400 
1401         // Support a SafePoint in the delay slot
1402         if( delay_slot->is_MachSafePoint() ) {
1403           MachNode *mach = delay_slot->as_Mach();
1404           // !!!!! Stubs only need an oopmap right now, so bail out
1405           if( !mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL ) {
1406             // Write the oopmap directly to the code blob??!!
1407 #           ifdef ENABLE_ZAP_DEAD_LOCALS
1408             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1409 #           endif
1410             delay_slot = NULL;
1411             continue;
1412           }
1413 
1414           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1415           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1416                                            adjusted_offset);
1417           // Generate an OopMap entry
1418           Process_OopMap_Node(mach, adjusted_offset);
1419         }
1420 
1421         // Insert the delay slot instruction
1422         delay_slot->emit(*cb, _regalloc);
1423 
1424         // Don't reuse it
1425         delay_slot = NULL;
1426       }
1427 
1428     } // End for all instructions in block
1429 
1430     // If the next block is the top of a loop, pad this block out to align
1431     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1432     if( i<_cfg->_num_blocks-1 ) {
1433       Block *nb = _cfg->_blocks[i+1];
1434       uint padding = nb->alignment_padding(current_offset);
1435       if( padding > 0 ) {
1436         MachNode *nop = new (this) MachNopNode(padding / nop_size);
1437         b->_nodes.insert( b->_nodes.size(), nop );
1438         _cfg->_bbs.map( nop->_idx, b );
1439         nop->emit(*cb, _regalloc);
1440         current_offset = cb->insts_size();
1441       }
1442     }
1443 
1444   } // End of for all blocks
1445 
1446   non_safepoints.flush_at_end();
1447 
1448   // Offset too large?
1449   if (failing())  return;
1450 
1451   // Define a pseudo-label at the end of the code
1452   MacroAssembler(cb).bind( blk_labels[_cfg->_num_blocks] );
1453 
1454   // Compute the size of the first block
1455   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1456 
1457   assert(cb->insts_size() < 500000, "method is unreasonably large");
1458 
1459   // ------------------
1460 
1461 #ifndef PRODUCT
1462   // Information on the size of the method, without the extraneous code
1463   Scheduling::increment_method_size(cb->insts_size());
1464 #endif
1465 
1466   // ------------------
1467   // Fill in exception table entries.
1468   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1469 
1470   // Only java methods have exception handlers and deopt handlers
1471   if (_method) {
1472     // Emit the exception handler code.
1473     _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
1474     // Emit the deopt handler code.
1475     _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
1476 
1477     // Emit the MethodHandle deopt handler code (if required).
1478     if (has_method_handle_invokes()) {
1479       // We can use the same code as for the normal deopt handler, we
1480       // just need a different entry point address.
1481       _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
1482     }
1483   }
1484 
1485   // One last check for failed CodeBuffer::expand:
1486   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1487     turn_off_compiler(this);
1488     return;
1489   }
1490 
1491 #ifndef PRODUCT
1492   // Dump the assembly code, including basic-block numbers
1493   if (print_assembly()) {
1494     ttyLocker ttyl;  // keep the following output all in one block
1495     if (!VMThread::should_terminate()) {  // test this under the tty lock
1496       // This output goes directly to the tty, not the compiler log.
1497       // To enable tools to match it up with the compilation activity,
1498       // be sure to tag this tty output with the compile ID.
1499       if (xtty != NULL) {
1500         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1501                    is_osr_compilation()    ? " compile_kind='osr'" :
1502                    "");
1503       }
1504       if (method() != NULL) {
1505         method()->print_oop();
1506         print_codes();
1507       }
1508       dump_asm(node_offsets, node_offset_limit);
1509       if (xtty != NULL) {
1510         xtty->tail("opto_assembly");
1511       }
1512     }
1513   }
1514 #endif
1515 
1516 }
1517 
1518 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1519   _inc_table.set_size(cnt);
1520 
1521   uint inct_cnt = 0;
1522   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1523     Block *b = _cfg->_blocks[i];
1524     Node *n = NULL;
1525     int j;
1526 
1527     // Find the branch; ignore trailing NOPs.
1528     for( j = b->_nodes.size()-1; j>=0; j-- ) {
1529       n = b->_nodes[j];
1530       if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
1531         break;
1532     }
1533 
1534     // If we didn't find anything, continue
1535     if( j < 0 ) continue;
1536 
1537     // Compute ExceptionHandlerTable subtable entry and add it
1538     // (skip empty blocks)
1539     if( n->is_Catch() ) {
1540 
1541       // Get the offset of the return from the call
1542       uint call_return = call_returns[b->_pre_order];
1543 #ifdef ASSERT
1544       assert( call_return > 0, "no call seen for this basic block" );
1545       while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
1546       assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
1547 #endif
1548       // last instruction is a CatchNode, find it's CatchProjNodes
1549       int nof_succs = b->_num_succs;
1550       // allocate space
1551       GrowableArray<intptr_t> handler_bcis(nof_succs);
1552       GrowableArray<intptr_t> handler_pcos(nof_succs);
1553       // iterate through all successors
1554       for (int j = 0; j < nof_succs; j++) {
1555         Block* s = b->_succs[j];
1556         bool found_p = false;
1557         for( uint k = 1; k < s->num_preds(); k++ ) {
1558           Node *pk = s->pred(k);
1559           if( pk->is_CatchProj() && pk->in(0) == n ) {
1560             const CatchProjNode* p = pk->as_CatchProj();
1561             found_p = true;
1562             // add the corresponding handler bci & pco information
1563             if( p->_con != CatchProjNode::fall_through_index ) {
1564               // p leads to an exception handler (and is not fall through)
1565               assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
1566               // no duplicates, please
1567               if( !handler_bcis.contains(p->handler_bci()) ) {
1568                 uint block_num = s->non_connector()->_pre_order;
1569                 handler_bcis.append(p->handler_bci());
1570                 handler_pcos.append(blk_labels[block_num].loc_pos());
1571               }
1572             }
1573           }
1574         }
1575         assert(found_p, "no matching predecessor found");
1576         // Note:  Due to empty block removal, one block may have
1577         // several CatchProj inputs, from the same Catch.
1578       }
1579 
1580       // Set the offset of the return from the call
1581       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1582       continue;
1583     }
1584 
1585     // Handle implicit null exception table updates
1586     if( n->is_MachNullCheck() ) {
1587       uint block_num = b->non_connector_successor(0)->_pre_order;
1588       _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
1589       continue;
1590     }
1591   } // End of for all blocks fill in exception table entries
1592 }
1593 
1594 // Static Variables
1595 #ifndef PRODUCT
1596 uint Scheduling::_total_nop_size = 0;
1597 uint Scheduling::_total_method_size = 0;
1598 uint Scheduling::_total_branches = 0;
1599 uint Scheduling::_total_unconditional_delays = 0;
1600 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1601 #endif
1602 
1603 // Initializer for class Scheduling
1604 
1605 Scheduling::Scheduling(Arena *arena, Compile &compile)
1606   : _arena(arena),
1607     _cfg(compile.cfg()),
1608     _bbs(compile.cfg()->_bbs),
1609     _regalloc(compile.regalloc()),
1610     _reg_node(arena),
1611     _bundle_instr_count(0),
1612     _bundle_cycle_number(0),
1613     _scheduled(arena),
1614     _available(arena),
1615     _next_node(NULL),
1616     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1617     _pinch_free_list(arena)
1618 #ifndef PRODUCT
1619   , _branches(0)
1620   , _unconditional_delays(0)
1621 #endif
1622 {
1623   // Create a MachNopNode
1624   _nop = new (&compile) MachNopNode();
1625 
1626   // Now that the nops are in the array, save the count
1627   // (but allow entries for the nops)
1628   _node_bundling_limit = compile.unique();
1629   uint node_max = _regalloc->node_regs_max_index();
1630 
1631   compile.set_node_bundling_limit(_node_bundling_limit);
1632 
1633   // This one is persistent within the Compile class
1634   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1635 
1636   // Allocate space for fixed-size arrays
1637   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1638   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1639   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1640 
1641   // Clear the arrays
1642   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1643   memset(_node_latency,       0, node_max * sizeof(unsigned short));
1644   memset(_uses,               0, node_max * sizeof(short));
1645   memset(_current_latency,    0, node_max * sizeof(unsigned short));
1646 
1647   // Clear the bundling information
1648   memcpy(_bundle_use_elements,
1649     Pipeline_Use::elaborated_elements,
1650     sizeof(Pipeline_Use::elaborated_elements));
1651 
1652   // Get the last node
1653   Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
1654 
1655   _next_node = bb->_nodes[bb->_nodes.size()-1];
1656 }
1657 
1658 #ifndef PRODUCT
1659 // Scheduling destructor
1660 Scheduling::~Scheduling() {
1661   _total_branches             += _branches;
1662   _total_unconditional_delays += _unconditional_delays;
1663 }
1664 #endif
1665 
1666 // Step ahead "i" cycles
1667 void Scheduling::step(uint i) {
1668 
1669   Bundle *bundle = node_bundling(_next_node);
1670   bundle->set_starts_bundle();
1671 
1672   // Update the bundle record, but leave the flags information alone
1673   if (_bundle_instr_count > 0) {
1674     bundle->set_instr_count(_bundle_instr_count);
1675     bundle->set_resources_used(_bundle_use.resourcesUsed());
1676   }
1677 
1678   // Update the state information
1679   _bundle_instr_count = 0;
1680   _bundle_cycle_number += i;
1681   _bundle_use.step(i);
1682 }
1683 
1684 void Scheduling::step_and_clear() {
1685   Bundle *bundle = node_bundling(_next_node);
1686   bundle->set_starts_bundle();
1687 
1688   // Update the bundle record
1689   if (_bundle_instr_count > 0) {
1690     bundle->set_instr_count(_bundle_instr_count);
1691     bundle->set_resources_used(_bundle_use.resourcesUsed());
1692 
1693     _bundle_cycle_number += 1;
1694   }
1695 
1696   // Clear the bundling information
1697   _bundle_instr_count = 0;
1698   _bundle_use.reset();
1699 
1700   memcpy(_bundle_use_elements,
1701     Pipeline_Use::elaborated_elements,
1702     sizeof(Pipeline_Use::elaborated_elements));
1703 }
1704 
1705 //------------------------------ScheduleAndBundle------------------------------
1706 // Perform instruction scheduling and bundling over the sequence of
1707 // instructions in backwards order.
1708 void Compile::ScheduleAndBundle() {
1709 
1710   // Don't optimize this if it isn't a method
1711   if (!_method)
1712     return;
1713 
1714   // Don't optimize this if scheduling is disabled
1715   if (!do_scheduling())
1716     return;
1717 
1718   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1719 
1720   // Create a data structure for all the scheduling information
1721   Scheduling scheduling(Thread::current()->resource_area(), *this);
1722 
1723   // Initialize the space for the BufferBlob used to find and verify
1724   // instruction size in MachNode::emit_size()
1725   init_scratch_buffer_blob(MAX_const_size);
1726   if (failing())  return;  // Out of memory
1727 
1728   // Walk backwards over each basic block, computing the needed alignment
1729   // Walk over all the basic blocks
1730   scheduling.DoScheduling();
1731 
1732   // Clear the BufferBlob used for scheduling.
1733   clear_scratch_buffer_blob();
1734 }
1735 
1736 //------------------------------ComputeLocalLatenciesForward-------------------
1737 // Compute the latency of all the instructions.  This is fairly simple,
1738 // because we already have a legal ordering.  Walk over the instructions
1739 // from first to last, and compute the latency of the instruction based
1740 // on the latency of the preceding instruction(s).
1741 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1742 #ifndef PRODUCT
1743   if (_cfg->C->trace_opto_output())
1744     tty->print("# -> ComputeLocalLatenciesForward\n");
1745 #endif
1746 
1747   // Walk over all the schedulable instructions
1748   for( uint j=_bb_start; j < _bb_end; j++ ) {
1749 
1750     // This is a kludge, forcing all latency calculations to start at 1.
1751     // Used to allow latency 0 to force an instruction to the beginning
1752     // of the bb
1753     uint latency = 1;
1754     Node *use = bb->_nodes[j];
1755     uint nlen = use->len();
1756 
1757     // Walk over all the inputs
1758     for ( uint k=0; k < nlen; k++ ) {
1759       Node *def = use->in(k);
1760       if (!def)
1761         continue;
1762 
1763       uint l = _node_latency[def->_idx] + use->latency(k);
1764       if (latency < l)
1765         latency = l;
1766     }
1767 
1768     _node_latency[use->_idx] = latency;
1769 
1770 #ifndef PRODUCT
1771     if (_cfg->C->trace_opto_output()) {
1772       tty->print("# latency %4d: ", latency);
1773       use->dump();
1774     }
1775 #endif
1776   }
1777 
1778 #ifndef PRODUCT
1779   if (_cfg->C->trace_opto_output())
1780     tty->print("# <- ComputeLocalLatenciesForward\n");
1781 #endif
1782 
1783 } // end ComputeLocalLatenciesForward
1784 
1785 // See if this node fits into the present instruction bundle
1786 bool Scheduling::NodeFitsInBundle(Node *n) {
1787   uint n_idx = n->_idx;
1788 
1789   // If this is the unconditional delay instruction, then it fits
1790   if (n == _unconditional_delay_slot) {
1791 #ifndef PRODUCT
1792     if (_cfg->C->trace_opto_output())
1793       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1794 #endif
1795     return (true);
1796   }
1797 
1798   // If the node cannot be scheduled this cycle, skip it
1799   if (_current_latency[n_idx] > _bundle_cycle_number) {
1800 #ifndef PRODUCT
1801     if (_cfg->C->trace_opto_output())
1802       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1803         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1804 #endif
1805     return (false);
1806   }
1807 
1808   const Pipeline *node_pipeline = n->pipeline();
1809 
1810   uint instruction_count = node_pipeline->instructionCount();
1811   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1812     instruction_count = 0;
1813   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1814     instruction_count++;
1815 
1816   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1817 #ifndef PRODUCT
1818     if (_cfg->C->trace_opto_output())
1819       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1820         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1821 #endif
1822     return (false);
1823   }
1824 
1825   // Don't allow non-machine nodes to be handled this way
1826   if (!n->is_Mach() && instruction_count == 0)
1827     return (false);
1828 
1829   // See if there is any overlap
1830   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1831 
1832   if (delay > 0) {
1833 #ifndef PRODUCT
1834     if (_cfg->C->trace_opto_output())
1835       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1836 #endif
1837     return false;
1838   }
1839 
1840 #ifndef PRODUCT
1841   if (_cfg->C->trace_opto_output())
1842     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
1843 #endif
1844 
1845   return true;
1846 }
1847 
1848 Node * Scheduling::ChooseNodeToBundle() {
1849   uint siz = _available.size();
1850 
1851   if (siz == 0) {
1852 
1853 #ifndef PRODUCT
1854     if (_cfg->C->trace_opto_output())
1855       tty->print("#   ChooseNodeToBundle: NULL\n");
1856 #endif
1857     return (NULL);
1858   }
1859 
1860   // Fast path, if only 1 instruction in the bundle
1861   if (siz == 1) {
1862 #ifndef PRODUCT
1863     if (_cfg->C->trace_opto_output()) {
1864       tty->print("#   ChooseNodeToBundle (only 1): ");
1865       _available[0]->dump();
1866     }
1867 #endif
1868     return (_available[0]);
1869   }
1870 
1871   // Don't bother, if the bundle is already full
1872   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
1873     for ( uint i = 0; i < siz; i++ ) {
1874       Node *n = _available[i];
1875 
1876       // Skip projections, we'll handle them another way
1877       if (n->is_Proj())
1878         continue;
1879 
1880       // This presupposed that instructions are inserted into the
1881       // available list in a legality order; i.e. instructions that
1882       // must be inserted first are at the head of the list
1883       if (NodeFitsInBundle(n)) {
1884 #ifndef PRODUCT
1885         if (_cfg->C->trace_opto_output()) {
1886           tty->print("#   ChooseNodeToBundle: ");
1887           n->dump();
1888         }
1889 #endif
1890         return (n);
1891       }
1892     }
1893   }
1894 
1895   // Nothing fits in this bundle, choose the highest priority
1896 #ifndef PRODUCT
1897   if (_cfg->C->trace_opto_output()) {
1898     tty->print("#   ChooseNodeToBundle: ");
1899     _available[0]->dump();
1900   }
1901 #endif
1902 
1903   return _available[0];
1904 }
1905 
1906 //------------------------------AddNodeToAvailableList-------------------------
1907 void Scheduling::AddNodeToAvailableList(Node *n) {
1908   assert( !n->is_Proj(), "projections never directly made available" );
1909 #ifndef PRODUCT
1910   if (_cfg->C->trace_opto_output()) {
1911     tty->print("#   AddNodeToAvailableList: ");
1912     n->dump();
1913   }
1914 #endif
1915 
1916   int latency = _current_latency[n->_idx];
1917 
1918   // Insert in latency order (insertion sort)
1919   uint i;
1920   for ( i=0; i < _available.size(); i++ )
1921     if (_current_latency[_available[i]->_idx] > latency)
1922       break;
1923 
1924   // Special Check for compares following branches
1925   if( n->is_Mach() && _scheduled.size() > 0 ) {
1926     int op = n->as_Mach()->ideal_Opcode();
1927     Node *last = _scheduled[0];
1928     if( last->is_MachIf() && last->in(1) == n &&
1929         ( op == Op_CmpI ||
1930           op == Op_CmpU ||
1931           op == Op_CmpP ||
1932           op == Op_CmpF ||
1933           op == Op_CmpD ||
1934           op == Op_CmpL ) ) {
1935 
1936       // Recalculate position, moving to front of same latency
1937       for ( i=0 ; i < _available.size(); i++ )
1938         if (_current_latency[_available[i]->_idx] >= latency)
1939           break;
1940     }
1941   }
1942 
1943   // Insert the node in the available list
1944   _available.insert(i, n);
1945 
1946 #ifndef PRODUCT
1947   if (_cfg->C->trace_opto_output())
1948     dump_available();
1949 #endif
1950 }
1951 
1952 //------------------------------DecrementUseCounts-----------------------------
1953 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
1954   for ( uint i=0; i < n->len(); i++ ) {
1955     Node *def = n->in(i);
1956     if (!def) continue;
1957     if( def->is_Proj() )        // If this is a machine projection, then
1958       def = def->in(0);         // propagate usage thru to the base instruction
1959 
1960     if( _bbs[def->_idx] != bb ) // Ignore if not block-local
1961       continue;
1962 
1963     // Compute the latency
1964     uint l = _bundle_cycle_number + n->latency(i);
1965     if (_current_latency[def->_idx] < l)
1966       _current_latency[def->_idx] = l;
1967 
1968     // If this does not have uses then schedule it
1969     if ((--_uses[def->_idx]) == 0)
1970       AddNodeToAvailableList(def);
1971   }
1972 }
1973 
1974 //------------------------------AddNodeToBundle--------------------------------
1975 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
1976 #ifndef PRODUCT
1977   if (_cfg->C->trace_opto_output()) {
1978     tty->print("#   AddNodeToBundle: ");
1979     n->dump();
1980   }
1981 #endif
1982 
1983   // Remove this from the available list
1984   uint i;
1985   for (i = 0; i < _available.size(); i++)
1986     if (_available[i] == n)
1987       break;
1988   assert(i < _available.size(), "entry in _available list not found");
1989   _available.remove(i);
1990 
1991   // See if this fits in the current bundle
1992   const Pipeline *node_pipeline = n->pipeline();
1993   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
1994 
1995   // Check for instructions to be placed in the delay slot. We
1996   // do this before we actually schedule the current instruction,
1997   // because the delay slot follows the current instruction.
1998   if (Pipeline::_branch_has_delay_slot &&
1999       node_pipeline->hasBranchDelay() &&
2000       !_unconditional_delay_slot) {
2001 
2002     uint siz = _available.size();
2003 
2004     // Conditional branches can support an instruction that
2005     // is unconditionally executed and not dependent by the
2006     // branch, OR a conditionally executed instruction if
2007     // the branch is taken.  In practice, this means that
2008     // the first instruction at the branch target is
2009     // copied to the delay slot, and the branch goes to
2010     // the instruction after that at the branch target
2011     if ( n->is_Mach() && n->is_Branch() ) {
2012 
2013       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2014       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2015 
2016 #ifndef PRODUCT
2017       _branches++;
2018 #endif
2019 
2020       // At least 1 instruction is on the available list
2021       // that is not dependent on the branch
2022       for (uint i = 0; i < siz; i++) {
2023         Node *d = _available[i];
2024         const Pipeline *avail_pipeline = d->pipeline();
2025 
2026         // Don't allow safepoints in the branch shadow, that will
2027         // cause a number of difficulties
2028         if ( avail_pipeline->instructionCount() == 1 &&
2029             !avail_pipeline->hasMultipleBundles() &&
2030             !avail_pipeline->hasBranchDelay() &&
2031             Pipeline::instr_has_unit_size() &&
2032             d->size(_regalloc) == Pipeline::instr_unit_size() &&
2033             NodeFitsInBundle(d) &&
2034             !node_bundling(d)->used_in_delay()) {
2035 
2036           if (d->is_Mach() && !d->is_MachSafePoint()) {
2037             // A node that fits in the delay slot was found, so we need to
2038             // set the appropriate bits in the bundle pipeline information so
2039             // that it correctly indicates resource usage.  Later, when we
2040             // attempt to add this instruction to the bundle, we will skip
2041             // setting the resource usage.
2042             _unconditional_delay_slot = d;
2043             node_bundling(n)->set_use_unconditional_delay();
2044             node_bundling(d)->set_used_in_unconditional_delay();
2045             _bundle_use.add_usage(avail_pipeline->resourceUse());
2046             _current_latency[d->_idx] = _bundle_cycle_number;
2047             _next_node = d;
2048             ++_bundle_instr_count;
2049 #ifndef PRODUCT
2050             _unconditional_delays++;
2051 #endif
2052             break;
2053           }
2054         }
2055       }
2056     }
2057 
2058     // No delay slot, add a nop to the usage
2059     if (!_unconditional_delay_slot) {
2060       // See if adding an instruction in the delay slot will overflow
2061       // the bundle.
2062       if (!NodeFitsInBundle(_nop)) {
2063 #ifndef PRODUCT
2064         if (_cfg->C->trace_opto_output())
2065           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2066 #endif
2067         step(1);
2068       }
2069 
2070       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2071       _next_node = _nop;
2072       ++_bundle_instr_count;
2073     }
2074 
2075     // See if the instruction in the delay slot requires a
2076     // step of the bundles
2077     if (!NodeFitsInBundle(n)) {
2078 #ifndef PRODUCT
2079         if (_cfg->C->trace_opto_output())
2080           tty->print("#  *** STEP(branch won't fit) ***\n");
2081 #endif
2082         // Update the state information
2083         _bundle_instr_count = 0;
2084         _bundle_cycle_number += 1;
2085         _bundle_use.step(1);
2086     }
2087   }
2088 
2089   // Get the number of instructions
2090   uint instruction_count = node_pipeline->instructionCount();
2091   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2092     instruction_count = 0;
2093 
2094   // Compute the latency information
2095   uint delay = 0;
2096 
2097   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2098     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2099     if (relative_latency < 0)
2100       relative_latency = 0;
2101 
2102     delay = _bundle_use.full_latency(relative_latency, node_usage);
2103 
2104     // Does not fit in this bundle, start a new one
2105     if (delay > 0) {
2106       step(delay);
2107 
2108 #ifndef PRODUCT
2109       if (_cfg->C->trace_opto_output())
2110         tty->print("#  *** STEP(%d) ***\n", delay);
2111 #endif
2112     }
2113   }
2114 
2115   // If this was placed in the delay slot, ignore it
2116   if (n != _unconditional_delay_slot) {
2117 
2118     if (delay == 0) {
2119       if (node_pipeline->hasMultipleBundles()) {
2120 #ifndef PRODUCT
2121         if (_cfg->C->trace_opto_output())
2122           tty->print("#  *** STEP(multiple instructions) ***\n");
2123 #endif
2124         step(1);
2125       }
2126 
2127       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2128 #ifndef PRODUCT
2129         if (_cfg->C->trace_opto_output())
2130           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2131             instruction_count + _bundle_instr_count,
2132             Pipeline::_max_instrs_per_cycle);
2133 #endif
2134         step(1);
2135       }
2136     }
2137 
2138     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2139       _bundle_instr_count++;
2140 
2141     // Set the node's latency
2142     _current_latency[n->_idx] = _bundle_cycle_number;
2143 
2144     // Now merge the functional unit information
2145     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2146       _bundle_use.add_usage(node_usage);
2147 
2148     // Increment the number of instructions in this bundle
2149     _bundle_instr_count += instruction_count;
2150 
2151     // Remember this node for later
2152     if (n->is_Mach())
2153       _next_node = n;
2154   }
2155 
2156   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2157   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2158   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2159   // into the block.  All other scheduled nodes get put in the schedule here.
2160   int op = n->Opcode();
2161   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2162       (op != Op_Node &&         // Not an unused antidepedence node and
2163        // not an unallocated boxlock
2164        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2165 
2166     // Push any trailing projections
2167     if( bb->_nodes[bb->_nodes.size()-1] != n ) {
2168       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2169         Node *foi = n->fast_out(i);
2170         if( foi->is_Proj() )
2171           _scheduled.push(foi);
2172       }
2173     }
2174 
2175     // Put the instruction in the schedule list
2176     _scheduled.push(n);
2177   }
2178 
2179 #ifndef PRODUCT
2180   if (_cfg->C->trace_opto_output())
2181     dump_available();
2182 #endif
2183 
2184   // Walk all the definitions, decrementing use counts, and
2185   // if a definition has a 0 use count, place it in the available list.
2186   DecrementUseCounts(n,bb);
2187 }
2188 
2189 //------------------------------ComputeUseCount--------------------------------
2190 // This method sets the use count within a basic block.  We will ignore all
2191 // uses outside the current basic block.  As we are doing a backwards walk,
2192 // any node we reach that has a use count of 0 may be scheduled.  This also
2193 // avoids the problem of cyclic references from phi nodes, as long as phi
2194 // nodes are at the front of the basic block.  This method also initializes
2195 // the available list to the set of instructions that have no uses within this
2196 // basic block.
2197 void Scheduling::ComputeUseCount(const Block *bb) {
2198 #ifndef PRODUCT
2199   if (_cfg->C->trace_opto_output())
2200     tty->print("# -> ComputeUseCount\n");
2201 #endif
2202 
2203   // Clear the list of available and scheduled instructions, just in case
2204   _available.clear();
2205   _scheduled.clear();
2206 
2207   // No delay slot specified
2208   _unconditional_delay_slot = NULL;
2209 
2210 #ifdef ASSERT
2211   for( uint i=0; i < bb->_nodes.size(); i++ )
2212     assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
2213 #endif
2214 
2215   // Force the _uses count to never go to zero for unscheduable pieces
2216   // of the block
2217   for( uint k = 0; k < _bb_start; k++ )
2218     _uses[bb->_nodes[k]->_idx] = 1;
2219   for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
2220     _uses[bb->_nodes[l]->_idx] = 1;
2221 
2222   // Iterate backwards over the instructions in the block.  Don't count the
2223   // branch projections at end or the block header instructions.
2224   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2225     Node *n = bb->_nodes[j];
2226     if( n->is_Proj() ) continue; // Projections handled another way
2227 
2228     // Account for all uses
2229     for ( uint k = 0; k < n->len(); k++ ) {
2230       Node *inp = n->in(k);
2231       if (!inp) continue;
2232       assert(inp != n, "no cycles allowed" );
2233       if( _bbs[inp->_idx] == bb ) { // Block-local use?
2234         if( inp->is_Proj() )    // Skip through Proj's
2235           inp = inp->in(0);
2236         ++_uses[inp->_idx];     // Count 1 block-local use
2237       }
2238     }
2239 
2240     // If this instruction has a 0 use count, then it is available
2241     if (!_uses[n->_idx]) {
2242       _current_latency[n->_idx] = _bundle_cycle_number;
2243       AddNodeToAvailableList(n);
2244     }
2245 
2246 #ifndef PRODUCT
2247     if (_cfg->C->trace_opto_output()) {
2248       tty->print("#   uses: %3d: ", _uses[n->_idx]);
2249       n->dump();
2250     }
2251 #endif
2252   }
2253 
2254 #ifndef PRODUCT
2255   if (_cfg->C->trace_opto_output())
2256     tty->print("# <- ComputeUseCount\n");
2257 #endif
2258 }
2259 
2260 // This routine performs scheduling on each basic block in reverse order,
2261 // using instruction latencies and taking into account function unit
2262 // availability.
2263 void Scheduling::DoScheduling() {
2264 #ifndef PRODUCT
2265   if (_cfg->C->trace_opto_output())
2266     tty->print("# -> DoScheduling\n");
2267 #endif
2268 
2269   Block *succ_bb = NULL;
2270   Block *bb;
2271 
2272   // Walk over all the basic blocks in reverse order
2273   for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
2274     bb = _cfg->_blocks[i];
2275 
2276 #ifndef PRODUCT
2277     if (_cfg->C->trace_opto_output()) {
2278       tty->print("#  Schedule BB#%03d (initial)\n", i);
2279       for (uint j = 0; j < bb->_nodes.size(); j++)
2280         bb->_nodes[j]->dump();
2281     }
2282 #endif
2283 
2284     // On the head node, skip processing
2285     if( bb == _cfg->_broot )
2286       continue;
2287 
2288     // Skip empty, connector blocks
2289     if (bb->is_connector())
2290       continue;
2291 
2292     // If the following block is not the sole successor of
2293     // this one, then reset the pipeline information
2294     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2295 #ifndef PRODUCT
2296       if (_cfg->C->trace_opto_output()) {
2297         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2298                    _next_node->_idx, _bundle_instr_count);
2299       }
2300 #endif
2301       step_and_clear();
2302     }
2303 
2304     // Leave untouched the starting instruction, any Phis, a CreateEx node
2305     // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
2306     _bb_end = bb->_nodes.size()-1;
2307     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2308       Node *n = bb->_nodes[_bb_start];
2309       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2310       // Also, MachIdealNodes do not get scheduled
2311       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2312       MachNode *mach = n->as_Mach();
2313       int iop = mach->ideal_Opcode();
2314       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2315       if( iop == Op_Con ) continue;      // Do not schedule Top
2316       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2317           mach->pipeline() == MachNode::pipeline_class() &&
2318           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2319         continue;
2320       break;                    // Funny loop structure to be sure...
2321     }
2322     // Compute last "interesting" instruction in block - last instruction we
2323     // might schedule.  _bb_end points just after last schedulable inst.  We
2324     // normally schedule conditional branches (despite them being forced last
2325     // in the block), because they have delay slots we can fill.  Calls all
2326     // have their delay slots filled in the template expansions, so we don't
2327     // bother scheduling them.
2328     Node *last = bb->_nodes[_bb_end];
2329     if( last->is_Catch() ||
2330        // Exclude unreachable path case when Halt node is in a separate block.
2331        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2332       // There must be a prior call.  Skip it.
2333       while( !bb->_nodes[--_bb_end]->is_Call() ) {
2334         assert( bb->_nodes[_bb_end]->is_Proj(), "skipping projections after expected call" );
2335       }
2336     } else if( last->is_MachNullCheck() ) {
2337       // Backup so the last null-checked memory instruction is
2338       // outside the schedulable range. Skip over the nullcheck,
2339       // projection, and the memory nodes.
2340       Node *mem = last->in(1);
2341       do {
2342         _bb_end--;
2343       } while (mem != bb->_nodes[_bb_end]);
2344     } else {
2345       // Set _bb_end to point after last schedulable inst.
2346       _bb_end++;
2347     }
2348 
2349     assert( _bb_start <= _bb_end, "inverted block ends" );
2350 
2351     // Compute the register antidependencies for the basic block
2352     ComputeRegisterAntidependencies(bb);
2353     if (_cfg->C->failing())  return;  // too many D-U pinch points
2354 
2355     // Compute intra-bb latencies for the nodes
2356     ComputeLocalLatenciesForward(bb);
2357 
2358     // Compute the usage within the block, and set the list of all nodes
2359     // in the block that have no uses within the block.
2360     ComputeUseCount(bb);
2361 
2362     // Schedule the remaining instructions in the block
2363     while ( _available.size() > 0 ) {
2364       Node *n = ChooseNodeToBundle();
2365       AddNodeToBundle(n,bb);
2366     }
2367 
2368     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2369 #ifdef ASSERT
2370     for( uint l = _bb_start; l < _bb_end; l++ ) {
2371       Node *n = bb->_nodes[l];
2372       uint m;
2373       for( m = 0; m < _bb_end-_bb_start; m++ )
2374         if( _scheduled[m] == n )
2375           break;
2376       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2377     }
2378 #endif
2379 
2380     // Now copy the instructions (in reverse order) back to the block
2381     for ( uint k = _bb_start; k < _bb_end; k++ )
2382       bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
2383 
2384 #ifndef PRODUCT
2385     if (_cfg->C->trace_opto_output()) {
2386       tty->print("#  Schedule BB#%03d (final)\n", i);
2387       uint current = 0;
2388       for (uint j = 0; j < bb->_nodes.size(); j++) {
2389         Node *n = bb->_nodes[j];
2390         if( valid_bundle_info(n) ) {
2391           Bundle *bundle = node_bundling(n);
2392           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2393             tty->print("*** Bundle: ");
2394             bundle->dump();
2395           }
2396           n->dump();
2397         }
2398       }
2399     }
2400 #endif
2401 #ifdef ASSERT
2402   verify_good_schedule(bb,"after block local scheduling");
2403 #endif
2404   }
2405 
2406 #ifndef PRODUCT
2407   if (_cfg->C->trace_opto_output())
2408     tty->print("# <- DoScheduling\n");
2409 #endif
2410 
2411   // Record final node-bundling array location
2412   _regalloc->C->set_node_bundling_base(_node_bundling_base);
2413 
2414 } // end DoScheduling
2415 
2416 //------------------------------verify_good_schedule---------------------------
2417 // Verify that no live-range used in the block is killed in the block by a
2418 // wrong DEF.  This doesn't verify live-ranges that span blocks.
2419 
2420 // Check for edge existence.  Used to avoid adding redundant precedence edges.
2421 static bool edge_from_to( Node *from, Node *to ) {
2422   for( uint i=0; i<from->len(); i++ )
2423     if( from->in(i) == to )
2424       return true;
2425   return false;
2426 }
2427 
2428 #ifdef ASSERT
2429 //------------------------------verify_do_def----------------------------------
2430 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2431   // Check for bad kills
2432   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2433     Node *prior_use = _reg_node[def];
2434     if( prior_use && !edge_from_to(prior_use,n) ) {
2435       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2436       n->dump();
2437       tty->print_cr("...");
2438       prior_use->dump();
2439       assert(edge_from_to(prior_use,n),msg);
2440     }
2441     _reg_node.map(def,NULL); // Kill live USEs
2442   }
2443 }
2444 
2445 //------------------------------verify_good_schedule---------------------------
2446 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2447 
2448   // Zap to something reasonable for the verify code
2449   _reg_node.clear();
2450 
2451   // Walk over the block backwards.  Check to make sure each DEF doesn't
2452   // kill a live value (other than the one it's supposed to).  Add each
2453   // USE to the live set.
2454   for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
2455     Node *n = b->_nodes[i];
2456     int n_op = n->Opcode();
2457     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2458       // Fat-proj kills a slew of registers
2459       RegMask rm = n->out_RegMask();// Make local copy
2460       while( rm.is_NotEmpty() ) {
2461         OptoReg::Name kill = rm.find_first_elem();
2462         rm.Remove(kill);
2463         verify_do_def( n, kill, msg );
2464       }
2465     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2466       // Get DEF'd registers the normal way
2467       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2468       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2469     }
2470 
2471     // Now make all USEs live
2472     for( uint i=1; i<n->req(); i++ ) {
2473       Node *def = n->in(i);
2474       assert(def != 0, "input edge required");
2475       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2476       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2477       if( OptoReg::is_valid(reg_lo) ) {
2478         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
2479         _reg_node.map(reg_lo,n);
2480       }
2481       if( OptoReg::is_valid(reg_hi) ) {
2482         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
2483         _reg_node.map(reg_hi,n);
2484       }
2485     }
2486 
2487   }
2488 
2489   // Zap to something reasonable for the Antidependence code
2490   _reg_node.clear();
2491 }
2492 #endif
2493 
2494 // Conditionally add precedence edges.  Avoid putting edges on Projs.
2495 static void add_prec_edge_from_to( Node *from, Node *to ) {
2496   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2497     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2498     from = from->in(0);
2499   }
2500   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2501       !edge_from_to( from, to ) ) // Avoid duplicate edge
2502     from->add_prec(to);
2503 }
2504 
2505 //------------------------------anti_do_def------------------------------------
2506 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2507   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2508     return;
2509 
2510   Node *pinch = _reg_node[def_reg]; // Get pinch point
2511   if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
2512       is_def ) {    // Check for a true def (not a kill)
2513     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2514     return;
2515   }
2516 
2517   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2518   debug_only( def = (Node*)0xdeadbeef; )
2519 
2520   // After some number of kills there _may_ be a later def
2521   Node *later_def = NULL;
2522 
2523   // Finding a kill requires a real pinch-point.
2524   // Check for not already having a pinch-point.
2525   // Pinch points are Op_Node's.
2526   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2527     later_def = pinch;            // Must be def/kill as optimistic pinch-point
2528     if ( _pinch_free_list.size() > 0) {
2529       pinch = _pinch_free_list.pop();
2530     } else {
2531       pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
2532     }
2533     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2534       _cfg->C->record_method_not_compilable("too many D-U pinch points");
2535       return;
2536     }
2537     _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
2538     _reg_node.map(def_reg,pinch); // Record pinch-point
2539     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2540     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2541       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2542       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2543       later_def = NULL;           // and no later def
2544     }
2545     pinch->set_req(0,later_def);  // Hook later def so we can find it
2546   } else {                        // Else have valid pinch point
2547     if( pinch->in(0) )            // If there is a later-def
2548       later_def = pinch->in(0);   // Get it
2549   }
2550 
2551   // Add output-dependence edge from later def to kill
2552   if( later_def )               // If there is some original def
2553     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2554 
2555   // See if current kill is also a use, and so is forced to be the pinch-point.
2556   if( pinch->Opcode() == Op_Node ) {
2557     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2558     for( uint i=1; i<uses->req(); i++ ) {
2559       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2560           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2561         // Yes, found a use/kill pinch-point
2562         pinch->set_req(0,NULL);  //
2563         pinch->replace_by(kill); // Move anti-dep edges up
2564         pinch = kill;
2565         _reg_node.map(def_reg,pinch);
2566         return;
2567       }
2568     }
2569   }
2570 
2571   // Add edge from kill to pinch-point
2572   add_prec_edge_from_to(kill,pinch);
2573 }
2574 
2575 //------------------------------anti_do_use------------------------------------
2576 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2577   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2578     return;
2579   Node *pinch = _reg_node[use_reg]; // Get pinch point
2580   // Check for no later def_reg/kill in block
2581   if( pinch && _bbs[pinch->_idx] == b &&
2582       // Use has to be block-local as well
2583       _bbs[use->_idx] == b ) {
2584     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2585         pinch->req() == 1 ) {   // pinch not yet in block?
2586       pinch->del_req(0);        // yank pointer to later-def, also set flag
2587       // Insert the pinch-point in the block just after the last use
2588       b->_nodes.insert(b->find_node(use)+1,pinch);
2589       _bb_end++;                // Increase size scheduled region in block
2590     }
2591 
2592     add_prec_edge_from_to(pinch,use);
2593   }
2594 }
2595 
2596 //------------------------------ComputeRegisterAntidependences-----------------
2597 // We insert antidependences between the reads and following write of
2598 // allocated registers to prevent illegal code motion. Hopefully, the
2599 // number of added references should be fairly small, especially as we
2600 // are only adding references within the current basic block.
2601 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2602 
2603 #ifdef ASSERT
2604   verify_good_schedule(b,"before block local scheduling");
2605 #endif
2606 
2607   // A valid schedule, for each register independently, is an endless cycle
2608   // of: a def, then some uses (connected to the def by true dependencies),
2609   // then some kills (defs with no uses), finally the cycle repeats with a new
2610   // def.  The uses are allowed to float relative to each other, as are the
2611   // kills.  No use is allowed to slide past a kill (or def).  This requires
2612   // antidependencies between all uses of a single def and all kills that
2613   // follow, up to the next def.  More edges are redundant, because later defs
2614   // & kills are already serialized with true or antidependencies.  To keep
2615   // the edge count down, we add a 'pinch point' node if there's more than
2616   // one use or more than one kill/def.
2617 
2618   // We add dependencies in one bottom-up pass.
2619 
2620   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2621 
2622   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2623   // register.  If not, we record the DEF/KILL in _reg_node, the
2624   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2625   // "pinch point", a new Node that's in the graph but not in the block.
2626   // We put edges from the prior and current DEF/KILLs to the pinch point.
2627   // We put the pinch point in _reg_node.  If there's already a pinch point
2628   // we merely add an edge from the current DEF/KILL to the pinch point.
2629 
2630   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2631   // put an edge from the pinch point to the USE.
2632 
2633   // To be expedient, the _reg_node array is pre-allocated for the whole
2634   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2635   // or a valid def/kill/pinch-point, or a leftover node from some prior
2636   // block.  Leftover node from some prior block is treated like a NULL (no
2637   // prior def, so no anti-dependence needed).  Valid def is distinguished by
2638   // it being in the current block.
2639   bool fat_proj_seen = false;
2640   uint last_safept = _bb_end-1;
2641   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
2642   Node* last_safept_node = end_node;
2643   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2644     Node *n = b->_nodes[i];
2645     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2646     if( n->Opcode() == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2647       // Fat-proj kills a slew of registers
2648       // This can add edges to 'n' and obscure whether or not it was a def,
2649       // hence the is_def flag.
2650       fat_proj_seen = true;
2651       RegMask rm = n->out_RegMask();// Make local copy
2652       while( rm.is_NotEmpty() ) {
2653         OptoReg::Name kill = rm.find_first_elem();
2654         rm.Remove(kill);
2655         anti_do_def( b, n, kill, is_def );
2656       }
2657     } else {
2658       // Get DEF'd registers the normal way
2659       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2660       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2661     }
2662 
2663     // Check each register used by this instruction for a following DEF/KILL
2664     // that must occur afterward and requires an anti-dependence edge.
2665     for( uint j=0; j<n->req(); j++ ) {
2666       Node *def = n->in(j);
2667       if( def ) {
2668         assert( def->Opcode() != Op_MachProj || def->ideal_reg() != MachProjNode::fat_proj, "" );
2669         anti_do_use( b, n, _regalloc->get_reg_first(def) );
2670         anti_do_use( b, n, _regalloc->get_reg_second(def) );
2671       }
2672     }
2673     // Do not allow defs of new derived values to float above GC
2674     // points unless the base is definitely available at the GC point.
2675 
2676     Node *m = b->_nodes[i];
2677 
2678     // Add precedence edge from following safepoint to use of derived pointer
2679     if( last_safept_node != end_node &&
2680         m != last_safept_node) {
2681       for (uint k = 1; k < m->req(); k++) {
2682         const Type *t = m->in(k)->bottom_type();
2683         if( t->isa_oop_ptr() &&
2684             t->is_ptr()->offset() != 0 ) {
2685           last_safept_node->add_prec( m );
2686           break;
2687         }
2688       }
2689     }
2690 
2691     if( n->jvms() ) {           // Precedence edge from derived to safept
2692       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2693       if( b->_nodes[last_safept] != last_safept_node ) {
2694         last_safept = b->find_node(last_safept_node);
2695       }
2696       for( uint j=last_safept; j > i; j-- ) {
2697         Node *mach = b->_nodes[j];
2698         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2699           mach->add_prec( n );
2700       }
2701       last_safept = i;
2702       last_safept_node = m;
2703     }
2704   }
2705 
2706   if (fat_proj_seen) {
2707     // Garbage collect pinch nodes that were not consumed.
2708     // They are usually created by a fat kill MachProj for a call.
2709     garbage_collect_pinch_nodes();
2710   }
2711 }
2712 
2713 //------------------------------garbage_collect_pinch_nodes-------------------------------
2714 
2715 // Garbage collect pinch nodes for reuse by other blocks.
2716 //
2717 // The block scheduler's insertion of anti-dependence
2718 // edges creates many pinch nodes when the block contains
2719 // 2 or more Calls.  A pinch node is used to prevent a
2720 // combinatorial explosion of edges.  If a set of kills for a
2721 // register is anti-dependent on a set of uses (or defs), rather
2722 // than adding an edge in the graph between each pair of kill
2723 // and use (or def), a pinch is inserted between them:
2724 //
2725 //            use1   use2  use3
2726 //                \   |   /
2727 //                 \  |  /
2728 //                  pinch
2729 //                 /  |  \
2730 //                /   |   \
2731 //            kill1 kill2 kill3
2732 //
2733 // One pinch node is created per register killed when
2734 // the second call is encountered during a backwards pass
2735 // over the block.  Most of these pinch nodes are never
2736 // wired into the graph because the register is never
2737 // used or def'ed in the block.
2738 //
2739 void Scheduling::garbage_collect_pinch_nodes() {
2740 #ifndef PRODUCT
2741     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2742 #endif
2743     int trace_cnt = 0;
2744     for (uint k = 0; k < _reg_node.Size(); k++) {
2745       Node* pinch = _reg_node[k];
2746       if (pinch != NULL && pinch->Opcode() == Op_Node &&
2747           // no predecence input edges
2748           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2749         cleanup_pinch(pinch);
2750         _pinch_free_list.push(pinch);
2751         _reg_node.map(k, NULL);
2752 #ifndef PRODUCT
2753         if (_cfg->C->trace_opto_output()) {
2754           trace_cnt++;
2755           if (trace_cnt > 40) {
2756             tty->print("\n");
2757             trace_cnt = 0;
2758           }
2759           tty->print(" %d", pinch->_idx);
2760         }
2761 #endif
2762       }
2763     }
2764 #ifndef PRODUCT
2765     if (_cfg->C->trace_opto_output()) tty->print("\n");
2766 #endif
2767 }
2768 
2769 // Clean up a pinch node for reuse.
2770 void Scheduling::cleanup_pinch( Node *pinch ) {
2771   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2772 
2773   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2774     Node* use = pinch->last_out(i);
2775     uint uses_found = 0;
2776     for (uint j = use->req(); j < use->len(); j++) {
2777       if (use->in(j) == pinch) {
2778         use->rm_prec(j);
2779         uses_found++;
2780       }
2781     }
2782     assert(uses_found > 0, "must be a precedence edge");
2783     i -= uses_found;    // we deleted 1 or more copies of this edge
2784   }
2785   // May have a later_def entry
2786   pinch->set_req(0, NULL);
2787 }
2788 
2789 //------------------------------print_statistics-------------------------------
2790 #ifndef PRODUCT
2791 
2792 void Scheduling::dump_available() const {
2793   tty->print("#Availist  ");
2794   for (uint i = 0; i < _available.size(); i++)
2795     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2796   tty->cr();
2797 }
2798 
2799 // Print Scheduling Statistics
2800 void Scheduling::print_statistics() {
2801   // Print the size added by nops for bundling
2802   tty->print("Nops added %d bytes to total of %d bytes",
2803     _total_nop_size, _total_method_size);
2804   if (_total_method_size > 0)
2805     tty->print(", for %.2f%%",
2806       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2807   tty->print("\n");
2808 
2809   // Print the number of branch shadows filled
2810   if (Pipeline::_branch_has_delay_slot) {
2811     tty->print("Of %d branches, %d had unconditional delay slots filled",
2812       _total_branches, _total_unconditional_delays);
2813     if (_total_branches > 0)
2814       tty->print(", for %.2f%%",
2815         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2816     tty->print("\n");
2817   }
2818 
2819   uint total_instructions = 0, total_bundles = 0;
2820 
2821   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2822     uint bundle_count   = _total_instructions_per_bundle[i];
2823     total_instructions += bundle_count * i;
2824     total_bundles      += bundle_count;
2825   }
2826 
2827   if (total_bundles > 0)
2828     tty->print("Average ILP (excluding nops) is %.2f\n",
2829       ((double)total_instructions) / ((double)total_bundles));
2830 }
2831 #endif