1 /*
   2  * Copyright (c) 1998, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_postaloc.cpp.incl"
  27 
  28 // see if this register kind does not requires two registers
  29 static bool is_single_register(uint x) {
  30 #ifdef _LP64
  31   return (x != Op_RegD && x != Op_RegL && x != Op_RegP);
  32 #else
  33   return (x != Op_RegD && x != Op_RegL);
  34 #endif
  35 }
  36 
  37 //---------------------------may_be_copy_of_callee-----------------------------
  38 // Check to see if we can possibly be a copy of a callee-save value.
  39 bool PhaseChaitin::may_be_copy_of_callee( Node *def ) const {
  40   // Short circuit if there are no callee save registers
  41   if (_matcher.number_of_saved_registers() == 0) return false;
  42 
  43   // Expect only a spill-down and reload on exit for callee-save spills.
  44   // Chains of copies cannot be deep.
  45   // 5008997 - This is wishful thinking. Register allocator seems to
  46   // be splitting live ranges for callee save registers to such
  47   // an extent that in large methods the chains can be very long
  48   // (50+). The conservative answer is to return true if we don't
  49   // know as this prevents optimizations from occurring.
  50 
  51   const int limit = 60;
  52   int i;
  53   for( i=0; i < limit; i++ ) {
  54     if( def->is_Proj() && def->in(0)->is_Start() &&
  55         _matcher.is_save_on_entry(lrgs(n2lidx(def)).reg()) )
  56       return true;              // Direct use of callee-save proj
  57     if( def->is_Copy() )        // Copies carry value through
  58       def = def->in(def->is_Copy());
  59     else if( def->is_Phi() )    // Phis can merge it from any direction
  60       def = def->in(1);
  61     else
  62       break;
  63     guarantee(def != NULL, "must not resurrect dead copy");
  64   }
  65   // If we reached the end and didn't find a callee save proj
  66   // then this may be a callee save proj so we return true
  67   // as the conservative answer. If we didn't reach then end
  68   // we must have discovered that it was not a callee save
  69   // else we would have returned.
  70   return i == limit;
  71 }
  72 
  73 
  74 
  75 //------------------------------yank_if_dead-----------------------------------
  76 // Removed an edge from 'old'.  Yank if dead.  Return adjustment counts to
  77 // iterators in the current block.
  78 int PhaseChaitin::yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
  79   int blk_adjust=0;
  80   while (old->outcnt() == 0 && old != C->top()) {
  81     Block *oldb = _cfg._bbs[old->_idx];
  82     oldb->find_remove(old);
  83     // Count 1 if deleting an instruction from the current block
  84     if( oldb == current_block ) blk_adjust++;
  85     _cfg._bbs.map(old->_idx,NULL);
  86     OptoReg::Name old_reg = lrgs(n2lidx(old)).reg();
  87     if( regnd && (*regnd)[old_reg]==old ) { // Instruction is currently available?
  88       value->map(old_reg,NULL);  // Yank from value/regnd maps
  89       regnd->map(old_reg,NULL);  // This register's value is now unknown
  90     }
  91     assert(old->req() <= 2, "can't handle more inputs");
  92     Node *tmp = old->req() > 1 ? old->in(1) : NULL;
  93     old->disconnect_inputs(NULL);
  94     if( !tmp ) break;
  95     old = tmp;
  96   }
  97   return blk_adjust;
  98 }
  99 
 100 //------------------------------use_prior_register-----------------------------
 101 // Use the prior value instead of the current value, in an effort to make
 102 // the current value go dead.  Return block iterator adjustment, in case
 103 // we yank some instructions from this block.
 104 int PhaseChaitin::use_prior_register( Node *n, uint idx, Node *def, Block *current_block, Node_List &value, Node_List &regnd ) {
 105   // No effect?
 106   if( def == n->in(idx) ) return 0;
 107   // Def is currently dead and can be removed?  Do not resurrect
 108   if( def->outcnt() == 0 ) return 0;
 109 
 110   // Not every pair of physical registers are assignment compatible,
 111   // e.g. on sparc floating point registers are not assignable to integer
 112   // registers.
 113   const LRG &def_lrg = lrgs(n2lidx(def));
 114   OptoReg::Name def_reg = def_lrg.reg();
 115   const RegMask &use_mask = n->in_RegMask(idx);
 116   bool can_use = ( RegMask::can_represent(def_reg) ? (use_mask.Member(def_reg) != 0)
 117                                                    : (use_mask.is_AllStack() != 0));
 118   // Check for a copy to or from a misaligned pair.
 119   can_use = can_use && !use_mask.is_misaligned_Pair() && !def_lrg.mask().is_misaligned_Pair();
 120 
 121   if (!can_use)
 122     return 0;
 123 
 124   // Capture the old def in case it goes dead...
 125   Node *old = n->in(idx);
 126 
 127   // Save-on-call copies can only be elided if the entire copy chain can go
 128   // away, lest we get the same callee-save value alive in 2 locations at
 129   // once.  We check for the obvious trivial case here.  Although it can
 130   // sometimes be elided with cooperation outside our scope, here we will just
 131   // miss the opportunity.  :-(
 132   if( may_be_copy_of_callee(def) ) {
 133     if( old->outcnt() > 1 ) return 0; // We're the not last user
 134     int idx = old->is_Copy();
 135     assert( idx, "chain of copies being removed" );
 136     Node *old2 = old->in(idx);  // Chain of copies
 137     if( old2->outcnt() > 1 ) return 0; // old is not the last user
 138     int idx2 = old2->is_Copy();
 139     if( !idx2 ) return 0;       // Not a chain of 2 copies
 140     if( def != old2->in(idx2) ) return 0; // Chain of exactly 2 copies
 141   }
 142 
 143   // Use the new def
 144   n->set_req(idx,def);
 145   _post_alloc++;
 146 
 147   // Is old def now dead?  We successfully yanked a copy?
 148   return yank_if_dead(old,current_block,&value,&regnd);
 149 }
 150 
 151 
 152 //------------------------------skip_copies------------------------------------
 153 // Skip through any number of copies (that don't mod oop-i-ness)
 154 Node *PhaseChaitin::skip_copies( Node *c ) {
 155   int idx = c->is_Copy();
 156   uint is_oop = lrgs(n2lidx(c))._is_oop;
 157   while (idx != 0) {
 158     guarantee(c->in(idx) != NULL, "must not resurrect dead copy");
 159     if (lrgs(n2lidx(c->in(idx)))._is_oop != is_oop)
 160       break;  // casting copy, not the same value
 161     c = c->in(idx);
 162     idx = c->is_Copy();
 163   }
 164   return c;
 165 }
 166 
 167 //------------------------------elide_copy-------------------------------------
 168 // Remove (bypass) copies along Node n, edge k.
 169 int PhaseChaitin::elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List &regnd, bool can_change_regs ) {
 170   int blk_adjust = 0;
 171 
 172   uint nk_idx = n2lidx(n->in(k));
 173   OptoReg::Name nk_reg = lrgs(nk_idx ).reg();
 174 
 175   // Remove obvious same-register copies
 176   Node *x = n->in(k);
 177   int idx;
 178   while( (idx=x->is_Copy()) != 0 ) {
 179     Node *copy = x->in(idx);
 180     guarantee(copy != NULL, "must not resurrect dead copy");
 181     if( lrgs(n2lidx(copy)).reg() != nk_reg ) break;
 182     blk_adjust += use_prior_register(n,k,copy,current_block,value,regnd);
 183     if( n->in(k) != copy ) break; // Failed for some cutout?
 184     x = copy;                   // Progress, try again
 185   }
 186 
 187   // Phis and 2-address instructions cannot change registers so easily - their
 188   // outputs must match their input.
 189   if( !can_change_regs )
 190     return blk_adjust;          // Only check stupid copies!
 191 
 192   // Loop backedges won't have a value-mapping yet
 193   if( &value == NULL ) return blk_adjust;
 194 
 195   // Skip through all copies to the _value_ being used.  Do not change from
 196   // int to pointer.  This attempts to jump through a chain of copies, where
 197   // intermediate copies might be illegal, i.e., value is stored down to stack
 198   // then reloaded BUT survives in a register the whole way.
 199   Node *val = skip_copies(n->in(k));
 200 
 201   if (val == x && nk_idx != 0 &&
 202       regnd[nk_reg] != NULL && regnd[nk_reg] != x &&
 203       n2lidx(x) == n2lidx(regnd[nk_reg])) {
 204     // When rematerialzing nodes and stretching lifetimes, the
 205     // allocator will reuse the original def for multidef LRG instead
 206     // of the current reaching def because it can't know it's safe to
 207     // do so.  After allocation completes if they are in the same LRG
 208     // then it should use the current reaching def instead.
 209     n->set_req(k, regnd[nk_reg]);
 210     blk_adjust += yank_if_dead(val, current_block, &value, &regnd);
 211     val = skip_copies(n->in(k));
 212   }
 213 
 214   if( val == x ) return blk_adjust; // No progress?
 215 
 216   bool single = is_single_register(val->ideal_reg());
 217   uint val_idx = n2lidx(val);
 218   OptoReg::Name val_reg = lrgs(val_idx).reg();
 219 
 220   // See if it happens to already be in the correct register!
 221   // (either Phi's direct register, or the common case of the name
 222   // never-clobbered original-def register)
 223   if( value[val_reg] == val &&
 224       // Doubles check both halves
 225       ( single || value[val_reg-1] == val ) ) {
 226     blk_adjust += use_prior_register(n,k,regnd[val_reg],current_block,value,regnd);
 227     if( n->in(k) == regnd[val_reg] ) // Success!  Quit trying
 228       return blk_adjust;
 229   }
 230 
 231   // See if we can skip the copy by changing registers.  Don't change from
 232   // using a register to using the stack unless we know we can remove a
 233   // copy-load.  Otherwise we might end up making a pile of Intel cisc-spill
 234   // ops reading from memory instead of just loading once and using the
 235   // register.
 236 
 237   // Also handle duplicate copies here.
 238   const Type *t = val->is_Con() ? val->bottom_type() : NULL;
 239 
 240   // Scan all registers to see if this value is around already
 241   for( uint reg = 0; reg < (uint)_max_reg; reg++ ) {
 242     if (reg == (uint)nk_reg) {
 243       // Found ourselves so check if there is only one user of this
 244       // copy and keep on searching for a better copy if so.
 245       bool ignore_self = true;
 246       x = n->in(k);
 247       DUIterator_Fast imax, i = x->fast_outs(imax);
 248       Node* first = x->fast_out(i); i++;
 249       while (i < imax && ignore_self) {
 250         Node* use = x->fast_out(i); i++;
 251         if (use != first) ignore_self = false;
 252       }
 253       if (ignore_self) continue;
 254     }
 255 
 256     Node *vv = value[reg];
 257     if( !single ) {             // Doubles check for aligned-adjacent pair
 258       if( (reg&1)==0 ) continue;  // Wrong half of a pair
 259       if( vv != value[reg-1] ) continue; // Not a complete pair
 260     }
 261     if( vv == val ||            // Got a direct hit?
 262         (t && vv && vv->bottom_type() == t && vv->is_Mach() &&
 263          vv->as_Mach()->rule() == val->as_Mach()->rule()) ) { // Or same constant?
 264       assert( !n->is_Phi(), "cannot change registers at a Phi so easily" );
 265       if( OptoReg::is_stack(nk_reg) || // CISC-loading from stack OR
 266           OptoReg::is_reg(reg) || // turning into a register use OR
 267           regnd[reg]->outcnt()==1 ) { // last use of a spill-load turns into a CISC use
 268         blk_adjust += use_prior_register(n,k,regnd[reg],current_block,value,regnd);
 269         if( n->in(k) == regnd[reg] ) // Success!  Quit trying
 270           return blk_adjust;
 271       } // End of if not degrading to a stack
 272     } // End of if found value in another register
 273   } // End of scan all machine registers
 274   return blk_adjust;
 275 }
 276 
 277 
 278 //
 279 // Check if nreg already contains the constant value val.  Normal copy
 280 // elimination doesn't doesn't work on constants because multiple
 281 // nodes can represent the same constant so the type and rule of the
 282 // MachNode must be checked to ensure equivalence.
 283 //
 284 bool PhaseChaitin::eliminate_copy_of_constant(Node* val, Node* n,
 285                                               Block *current_block,
 286                                               Node_List& value, Node_List& regnd,
 287                                               OptoReg::Name nreg, OptoReg::Name nreg2) {
 288   if (value[nreg] != val && val->is_Con() &&
 289       value[nreg] != NULL && value[nreg]->is_Con() &&
 290       (nreg2 == OptoReg::Bad || value[nreg] == value[nreg2]) &&
 291       value[nreg]->bottom_type() == val->bottom_type() &&
 292       value[nreg]->as_Mach()->rule() == val->as_Mach()->rule()) {
 293     // This code assumes that two MachNodes representing constants
 294     // which have the same rule and the same bottom type will produce
 295     // identical effects into a register.  This seems like it must be
 296     // objectively true unless there are hidden inputs to the nodes
 297     // but if that were to change this code would need to updated.
 298     // Since they are equivalent the second one if redundant and can
 299     // be removed.
 300     //
 301     // n will be replaced with the old value but n might have
 302     // kills projections associated with it so remove them now so that
 303     // yank_if_dead will be able to eliminate the copy once the uses
 304     // have been transferred to the old[value].
 305     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 306       Node* use = n->fast_out(i);
 307       if (use->is_Proj() && use->outcnt() == 0) {
 308         // Kill projections have no users and one input
 309         use->set_req(0, C->top());
 310         yank_if_dead(use, current_block, &value, &regnd);
 311         --i; --imax;
 312       }
 313     }
 314     _post_alloc++;
 315     return true;
 316   }
 317   return false;
 318 }
 319 
 320 
 321 //------------------------------post_allocate_copy_removal---------------------
 322 // Post-Allocation peephole copy removal.  We do this in 1 pass over the
 323 // basic blocks.  We maintain a mapping of registers to Nodes (an  array of
 324 // Nodes indexed by machine register or stack slot number).  NULL means that a
 325 // register is not mapped to any Node.  We can (want to have!) have several
 326 // registers map to the same Node.  We walk forward over the instructions
 327 // updating the mapping as we go.  At merge points we force a NULL if we have
 328 // to merge 2 different Nodes into the same register.  Phi functions will give
 329 // us a new Node if there is a proper value merging.  Since the blocks are
 330 // arranged in some RPO, we will visit all parent blocks before visiting any
 331 // successor blocks (except at loops).
 332 //
 333 // If we find a Copy we look to see if the Copy's source register is a stack
 334 // slot and that value has already been loaded into some machine register; if
 335 // so we use machine register directly.  This turns a Load into a reg-reg
 336 // Move.  We also look for reloads of identical constants.
 337 //
 338 // When we see a use from a reg-reg Copy, we will attempt to use the copy's
 339 // source directly and make the copy go dead.
 340 void PhaseChaitin::post_allocate_copy_removal() {
 341   NOT_PRODUCT( Compile::TracePhase t3("postAllocCopyRemoval", &_t_postAllocCopyRemoval, TimeCompiler); )
 342   ResourceMark rm;
 343 
 344   // Need a mapping from basic block Node_Lists.  We need a Node_List to
 345   // map from register number to value-producing Node.
 346   Node_List **blk2value = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
 347   memset( blk2value, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
 348   // Need a mapping from basic block Node_Lists.  We need a Node_List to
 349   // map from register number to register-defining Node.
 350   Node_List **blk2regnd = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
 351   memset( blk2regnd, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
 352 
 353   // We keep unused Node_Lists on a free_list to avoid wasting
 354   // memory.
 355   GrowableArray<Node_List*> free_list = GrowableArray<Node_List*>(16);
 356 
 357   // For all blocks
 358   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
 359     uint j;
 360     Block *b = _cfg._blocks[i];
 361 
 362     // Count of Phis in block
 363     uint phi_dex;
 364     for( phi_dex = 1; phi_dex < b->_nodes.size(); phi_dex++ ) {
 365       Node *phi = b->_nodes[phi_dex];
 366       if( !phi->is_Phi() )
 367         break;
 368     }
 369 
 370     // If any predecessor has not been visited, we do not know the state
 371     // of registers at the start.  Check for this, while updating copies
 372     // along Phi input edges
 373     bool missing_some_inputs = false;
 374     Block *freed = NULL;
 375     for( j = 1; j < b->num_preds(); j++ ) {
 376       Block *pb = _cfg._bbs[b->pred(j)->_idx];
 377       // Remove copies along phi edges
 378       for( uint k=1; k<phi_dex; k++ )
 379         elide_copy( b->_nodes[k], j, b, *blk2value[pb->_pre_order], *blk2regnd[pb->_pre_order], false );
 380       if( blk2value[pb->_pre_order] ) { // Have a mapping on this edge?
 381         // See if this predecessor's mappings have been used by everybody
 382         // who wants them.  If so, free 'em.
 383         uint k;
 384         for( k=0; k<pb->_num_succs; k++ ) {
 385           Block *pbsucc = pb->_succs[k];
 386           if( !blk2value[pbsucc->_pre_order] && pbsucc != b )
 387             break;              // Found a future user
 388         }
 389         if( k >= pb->_num_succs ) { // No more uses, free!
 390           freed = pb;           // Record last block freed
 391           free_list.push(blk2value[pb->_pre_order]);
 392           free_list.push(blk2regnd[pb->_pre_order]);
 393         }
 394       } else {                  // This block has unvisited (loopback) inputs
 395         missing_some_inputs = true;
 396       }
 397     }
 398 
 399 
 400     // Extract Node_List mappings.  If 'freed' is non-zero, we just popped
 401     // 'freed's blocks off the list
 402     Node_List &regnd = *(free_list.is_empty() ? new Node_List() : free_list.pop());
 403     Node_List &value = *(free_list.is_empty() ? new Node_List() : free_list.pop());
 404     assert( !freed || blk2value[freed->_pre_order] == &value, "" );
 405     value.map(_max_reg,NULL);
 406     regnd.map(_max_reg,NULL);
 407     // Set mappings as OUR mappings
 408     blk2value[b->_pre_order] = &value;
 409     blk2regnd[b->_pre_order] = &regnd;
 410 
 411     // Initialize value & regnd for this block
 412     if( missing_some_inputs ) {
 413       // Some predecessor has not yet been visited; zap map to empty
 414       for( uint k = 0; k < (uint)_max_reg; k++ ) {
 415         value.map(k,NULL);
 416         regnd.map(k,NULL);
 417       }
 418     } else {
 419       if( !freed ) {            // Didn't get a freebie prior block
 420         // Must clone some data
 421         freed = _cfg._bbs[b->pred(1)->_idx];
 422         Node_List &f_value = *blk2value[freed->_pre_order];
 423         Node_List &f_regnd = *blk2regnd[freed->_pre_order];
 424         for( uint k = 0; k < (uint)_max_reg; k++ ) {
 425           value.map(k,f_value[k]);
 426           regnd.map(k,f_regnd[k]);
 427         }
 428       }
 429       // Merge all inputs together, setting to NULL any conflicts.
 430       for( j = 1; j < b->num_preds(); j++ ) {
 431         Block *pb = _cfg._bbs[b->pred(j)->_idx];
 432         if( pb == freed ) continue; // Did self already via freelist
 433         Node_List &p_regnd = *blk2regnd[pb->_pre_order];
 434         for( uint k = 0; k < (uint)_max_reg; k++ ) {
 435           if( regnd[k] != p_regnd[k] ) { // Conflict on reaching defs?
 436             value.map(k,NULL); // Then no value handy
 437             regnd.map(k,NULL);
 438           }
 439         }
 440       }
 441     }
 442 
 443     // For all Phi's
 444     for( j = 1; j < phi_dex; j++ ) {
 445       uint k;
 446       Node *phi = b->_nodes[j];
 447       uint pidx = n2lidx(phi);
 448       OptoReg::Name preg = lrgs(n2lidx(phi)).reg();
 449 
 450       // Remove copies remaining on edges.  Check for junk phi.
 451       Node *u = NULL;
 452       for( k=1; k<phi->req(); k++ ) {
 453         Node *x = phi->in(k);
 454         if( phi != x && u != x ) // Found a different input
 455           u = u ? NodeSentinel : x; // Capture unique input, or NodeSentinel for 2nd input
 456       }
 457       if( u != NodeSentinel ) {    // Junk Phi.  Remove
 458         b->_nodes.remove(j--); phi_dex--;
 459         _cfg._bbs.map(phi->_idx,NULL);
 460         phi->replace_by(u);
 461         phi->disconnect_inputs(NULL);
 462         continue;
 463       }
 464       // Note that if value[pidx] exists, then we merged no new values here
 465       // and the phi is useless.  This can happen even with the above phi
 466       // removal for complex flows.  I cannot keep the better known value here
 467       // because locally the phi appears to define a new merged value.  If I
 468       // keep the better value then a copy of the phi, being unable to use the
 469       // global flow analysis, can't "peek through" the phi to the original
 470       // reaching value and so will act like it's defining a new value.  This
 471       // can lead to situations where some uses are from the old and some from
 472       // the new values.  Not illegal by itself but throws the over-strong
 473       // assert in scheduling.
 474       if( pidx ) {
 475         value.map(preg,phi);
 476         regnd.map(preg,phi);
 477         OptoReg::Name preg_lo = OptoReg::add(preg,-1);
 478         if( !is_single_register(phi->ideal_reg()) ) {
 479           value.map(preg_lo,phi);
 480           regnd.map(preg_lo,phi);
 481         }
 482       }
 483     }
 484 
 485     // For all remaining instructions
 486     for( j = phi_dex; j < b->_nodes.size(); j++ ) {
 487       Node *n = b->_nodes[j];
 488 
 489       if( n->outcnt() == 0 &&   // Dead?
 490           n != C->top() &&      // (ignore TOP, it has no du info)
 491           !n->is_Proj() ) {     // fat-proj kills
 492         j -= yank_if_dead(n,b,&value,&regnd);
 493         continue;
 494       }
 495 
 496       // Improve reaching-def info.  Occasionally post-alloc's liveness gives
 497       // up (at loop backedges, because we aren't doing a full flow pass).
 498       // The presence of a live use essentially asserts that the use's def is
 499       // alive and well at the use (or else the allocator fubar'd).  Take
 500       // advantage of this info to set a reaching def for the use-reg.
 501       uint k;
 502       for( k = 1; k < n->req(); k++ ) {
 503         Node *def = n->in(k);   // n->in(k) is a USE; def is the DEF for this USE
 504         guarantee(def != NULL, "no disconnected nodes at this point");
 505         uint useidx = n2lidx(def); // useidx is the live range index for this USE
 506 
 507         if( useidx ) {
 508           OptoReg::Name ureg = lrgs(useidx).reg();
 509           if( !value[ureg] ) {
 510             int idx;            // Skip occasional useless copy
 511             while( (idx=def->is_Copy()) != 0 &&
 512                    def->in(idx) != NULL &&  // NULL should not happen
 513                    ureg == lrgs(n2lidx(def->in(idx))).reg() )
 514               def = def->in(idx);
 515             Node *valdef = skip_copies(def); // tighten up val through non-useless copies
 516             value.map(ureg,valdef); // record improved reaching-def info
 517             regnd.map(ureg,   def);
 518             // Record other half of doubles
 519             OptoReg::Name ureg_lo = OptoReg::add(ureg,-1);
 520             if( !is_single_register(def->ideal_reg()) &&
 521                 ( !RegMask::can_represent(ureg_lo) ||
 522                   lrgs(useidx).mask().Member(ureg_lo) ) && // Nearly always adjacent
 523                 !value[ureg_lo] ) {
 524               value.map(ureg_lo,valdef); // record improved reaching-def info
 525               regnd.map(ureg_lo,   def);
 526             }
 527           }
 528         }
 529       }
 530 
 531       const uint two_adr = n->is_Mach() ? n->as_Mach()->two_adr() : 0;
 532 
 533       // Remove copies along input edges
 534       for( k = 1; k < n->req(); k++ )
 535         j -= elide_copy( n, k, b, value, regnd, two_adr!=k );
 536 
 537       // Unallocated Nodes define no registers
 538       uint lidx = n2lidx(n);
 539       if( !lidx ) continue;
 540 
 541       // Update the register defined by this instruction
 542       OptoReg::Name nreg = lrgs(lidx).reg();
 543       // Skip through all copies to the _value_ being defined.
 544       // Do not change from int to pointer
 545       Node *val = skip_copies(n);
 546 
 547       // Clear out a dead definition before starting so that the
 548       // elimination code doesn't have to guard against it.  The
 549       // definition could in fact be a kill projection with a count of
 550       // 0 which is safe but since those are uninteresting for copy
 551       // elimination just delete them as well.
 552       if (regnd[nreg] != NULL && regnd[nreg]->outcnt() == 0) {
 553         regnd.map(nreg, NULL);
 554         value.map(nreg, NULL);
 555       }
 556 
 557       uint n_ideal_reg = n->ideal_reg();
 558       if( is_single_register(n_ideal_reg) ) {
 559         // If Node 'n' does not change the value mapped by the register,
 560         // then 'n' is a useless copy.  Do not update the register->node
 561         // mapping so 'n' will go dead.
 562         if( value[nreg] != val ) {
 563           if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, OptoReg::Bad)) {
 564             j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
 565           } else {
 566             // Update the mapping: record new Node defined by the register
 567             regnd.map(nreg,n);
 568             // Update mapping for defined *value*, which is the defined
 569             // Node after skipping all copies.
 570             value.map(nreg,val);
 571           }
 572         } else if( !may_be_copy_of_callee(n) ) {
 573           assert( n->is_Copy(), "" );
 574           j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
 575         }
 576       } else {
 577         // If the value occupies a register pair, record same info
 578         // in both registers.
 579         OptoReg::Name nreg_lo = OptoReg::add(nreg,-1);
 580         if( RegMask::can_represent(nreg_lo) &&     // Either a spill slot, or
 581             !lrgs(lidx).mask().Member(nreg_lo) ) { // Nearly always adjacent
 582           // Sparc occasionally has non-adjacent pairs.
 583           // Find the actual other value
 584           RegMask tmp = lrgs(lidx).mask();
 585           tmp.Remove(nreg);
 586           nreg_lo = tmp.find_first_elem();
 587         }
 588         if( value[nreg] != val || value[nreg_lo] != val ) {
 589           if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, nreg_lo)) {
 590             j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
 591           } else {
 592             regnd.map(nreg   , n );
 593             regnd.map(nreg_lo, n );
 594             value.map(nreg   ,val);
 595             value.map(nreg_lo,val);
 596           }
 597         } else if( !may_be_copy_of_callee(n) ) {
 598           assert( n->is_Copy(), "" );
 599           j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
 600         }
 601       }
 602 
 603       // Fat projections kill many registers
 604       if( n_ideal_reg == MachProjNode::fat_proj ) {
 605         RegMask rm = n->out_RegMask();
 606         // wow, what an expensive iterator...
 607         nreg = rm.find_first_elem();
 608         while( OptoReg::is_valid(nreg)) {
 609           rm.Remove(nreg);
 610           value.map(nreg,n);
 611           regnd.map(nreg,n);
 612           nreg = rm.find_first_elem();
 613         }
 614       }
 615 
 616     } // End of for all instructions in the block
 617 
 618   } // End for all blocks
 619 }