1 //
   2 // Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 // Macros to extract hi & lo halves from a long pair.
 464 // G0 is not part of any long pair, so assert on that.
 465 // Prevents accidentally using G1 instead of G0.
 466 #define LONG_HI_REG(x) (x)
 467 #define LONG_LO_REG(x) (x)
 468 
 469 %}
 470 
 471 source %{
 472 #define __ _masm.
 473 
 474 // Block initializing store
 475 #define ASI_BLK_INIT_QUAD_LDD_P    0xE2
 476 
 477 // tertiary op of a LoadP or StoreP encoding
 478 #define REGP_OP true
 479 
 480 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 481 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 482 static Register reg_to_register_object(int register_encoding);
 483 
 484 // Used by the DFA in dfa_sparc.cpp.
 485 // Check for being able to use a V9 branch-on-register.  Requires a
 486 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 487 // extended.  Doesn't work following an integer ADD, for example, because of
 488 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 489 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 490 // replace them with zero, which could become sign-extension in a different OS
 491 // release.  There's no obvious reason why an interrupt will ever fill these
 492 // bits with non-zero junk (the registers are reloaded with standard LD
 493 // instructions which either zero-fill or sign-fill).
 494 bool can_branch_register( Node *bol, Node *cmp ) {
 495   if( !BranchOnRegister ) return false;
 496 #ifdef _LP64
 497   if( cmp->Opcode() == Op_CmpP )
 498     return true;  // No problems with pointer compares
 499 #endif
 500   if( cmp->Opcode() == Op_CmpL )
 501     return true;  // No problems with long compares
 502 
 503   if( !SparcV9RegsHiBitsZero ) return false;
 504   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 505       bol->as_Bool()->_test._test != BoolTest::eq )
 506      return false;
 507 
 508   // Check for comparing against a 'safe' value.  Any operation which
 509   // clears out the high word is safe.  Thus, loads and certain shifts
 510   // are safe, as are non-negative constants.  Any operation which
 511   // preserves zero bits in the high word is safe as long as each of its
 512   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 513   // inputs are safe.  At present, the only important case to recognize
 514   // seems to be loads.  Constants should fold away, and shifts &
 515   // logicals can use the 'cc' forms.
 516   Node *x = cmp->in(1);
 517   if( x->is_Load() ) return true;
 518   if( x->is_Phi() ) {
 519     for( uint i = 1; i < x->req(); i++ )
 520       if( !x->in(i)->is_Load() )
 521         return false;
 522     return true;
 523   }
 524   return false;
 525 }
 526 
 527 // ****************************************************************************
 528 
 529 // REQUIRED FUNCTIONALITY
 530 
 531 // !!!!! Special hack to get all type of calls to specify the byte offset
 532 //       from the start of the call to the point where the return address
 533 //       will point.
 534 //       The "return address" is the address of the call instruction, plus 8.
 535 
 536 int MachCallStaticJavaNode::ret_addr_offset() {
 537   int offset = NativeCall::instruction_size;  // call; delay slot
 538   if (_method_handle_invoke)
 539     offset += 4;  // restore SP
 540   return offset;
 541 }
 542 
 543 int MachCallDynamicJavaNode::ret_addr_offset() {
 544   int vtable_index = this->_vtable_index;
 545   if (vtable_index < 0) {
 546     // must be invalid_vtable_index, not nonvirtual_vtable_index
 547     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
 548     return (NativeMovConstReg::instruction_size +
 549            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 550   } else {
 551     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 552     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 553     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 554     int klass_load_size;
 555     if (UseCompressedOops) {
 556       assert(Universe::heap() != NULL, "java heap should be initialized");
 557       if (Universe::narrow_oop_base() == NULL)
 558         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
 559       else
 560         klass_load_size = 3*BytesPerInstWord;
 561     } else {
 562       klass_load_size = 1*BytesPerInstWord;
 563     }
 564     if( Assembler::is_simm13(v_off) ) {
 565       return klass_load_size +
 566              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 567              NativeCall::instruction_size);  // call; delay slot
 568     } else {
 569       return klass_load_size +
 570              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 571              NativeCall::instruction_size);  // call; delay slot
 572     }
 573   }
 574 }
 575 
 576 int MachCallRuntimeNode::ret_addr_offset() {
 577 #ifdef _LP64
 578   return NativeFarCall::instruction_size;  // farcall; delay slot
 579 #else
 580   return NativeCall::instruction_size;  // call; delay slot
 581 #endif
 582 }
 583 
 584 // Indicate if the safepoint node needs the polling page as an input.
 585 // Since Sparc does not have absolute addressing, it does.
 586 bool SafePointNode::needs_polling_address_input() {
 587   return true;
 588 }
 589 
 590 // emit an interrupt that is caught by the debugger (for debugging compiler)
 591 void emit_break(CodeBuffer &cbuf) {
 592   MacroAssembler _masm(&cbuf);
 593   __ breakpoint_trap();
 594 }
 595 
 596 #ifndef PRODUCT
 597 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 598   st->print("TA");
 599 }
 600 #endif
 601 
 602 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 603   emit_break(cbuf);
 604 }
 605 
 606 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 607   return MachNode::size(ra_);
 608 }
 609 
 610 // Traceable jump
 611 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 612   MacroAssembler _masm(&cbuf);
 613   Register rdest = reg_to_register_object(jump_target);
 614   __ JMP(rdest, 0);
 615   __ delayed()->nop();
 616 }
 617 
 618 // Traceable jump and set exception pc
 619 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 620   MacroAssembler _masm(&cbuf);
 621   Register rdest = reg_to_register_object(jump_target);
 622   __ JMP(rdest, 0);
 623   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 624 }
 625 
 626 void emit_nop(CodeBuffer &cbuf) {
 627   MacroAssembler _masm(&cbuf);
 628   __ nop();
 629 }
 630 
 631 void emit_illtrap(CodeBuffer &cbuf) {
 632   MacroAssembler _masm(&cbuf);
 633   __ illtrap(0);
 634 }
 635 
 636 
 637 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 638   assert(n->rule() != loadUB_rule, "");
 639 
 640   intptr_t offset = 0;
 641   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 642   const Node* addr = n->get_base_and_disp(offset, adr_type);
 643   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 644   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 645   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 646   atype = atype->add_offset(offset);
 647   assert(disp32 == offset, "wrong disp32");
 648   return atype->_offset;
 649 }
 650 
 651 
 652 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 653   assert(n->rule() != loadUB_rule, "");
 654 
 655   intptr_t offset = 0;
 656   Node* addr = n->in(2);
 657   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 658   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 659     Node* a = addr->in(2/*AddPNode::Address*/);
 660     Node* o = addr->in(3/*AddPNode::Offset*/);
 661     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 662     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 663     assert(atype->isa_oop_ptr(), "still an oop");
 664   }
 665   offset = atype->is_ptr()->_offset;
 666   if (offset != Type::OffsetBot)  offset += disp32;
 667   return offset;
 668 }
 669 
 670 // Standard Sparc opcode form2 field breakdown
 671 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 672   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 673   int op = (f30 << 30) |
 674            (f29 << 29) |
 675            (f25 << 25) |
 676            (f22 << 22) |
 677            (f20 << 20) |
 678            (f19 << 19) |
 679            (f0  <<  0);
 680   cbuf.insts()->emit_int32(op);
 681 }
 682 
 683 // Standard Sparc opcode form2 field breakdown
 684 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 685   f0 >>= 10;           // Drop 10 bits
 686   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 687   int op = (f30 << 30) |
 688            (f25 << 25) |
 689            (f22 << 22) |
 690            (f0  <<  0);
 691   cbuf.insts()->emit_int32(op);
 692 }
 693 
 694 // Standard Sparc opcode form3 field breakdown
 695 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 696   int op = (f30 << 30) |
 697            (f25 << 25) |
 698            (f19 << 19) |
 699            (f14 << 14) |
 700            (f5  <<  5) |
 701            (f0  <<  0);
 702   cbuf.insts()->emit_int32(op);
 703 }
 704 
 705 // Standard Sparc opcode form3 field breakdown
 706 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 707   simm13 &= (1<<13)-1; // Mask to 13 bits
 708   int op = (f30 << 30) |
 709            (f25 << 25) |
 710            (f19 << 19) |
 711            (f14 << 14) |
 712            (1   << 13) | // bit to indicate immediate-mode
 713            (simm13<<0);
 714   cbuf.insts()->emit_int32(op);
 715 }
 716 
 717 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 718   simm10 &= (1<<10)-1; // Mask to 10 bits
 719   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 720 }
 721 
 722 #ifdef ASSERT
 723 // Helper function for VerifyOops in emit_form3_mem_reg
 724 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 725   warning("VerifyOops encountered unexpected instruction:");
 726   n->dump(2);
 727   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 728 }
 729 #endif
 730 
 731 
 732 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 733                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 734 
 735 #ifdef ASSERT
 736   // The following code implements the +VerifyOops feature.
 737   // It verifies oop values which are loaded into or stored out of
 738   // the current method activation.  +VerifyOops complements techniques
 739   // like ScavengeALot, because it eagerly inspects oops in transit,
 740   // as they enter or leave the stack, as opposed to ScavengeALot,
 741   // which inspects oops "at rest", in the stack or heap, at safepoints.
 742   // For this reason, +VerifyOops can sometimes detect bugs very close
 743   // to their point of creation.  It can also serve as a cross-check
 744   // on the validity of oop maps, when used toegether with ScavengeALot.
 745 
 746   // It would be good to verify oops at other points, especially
 747   // when an oop is used as a base pointer for a load or store.
 748   // This is presently difficult, because it is hard to know when
 749   // a base address is biased or not.  (If we had such information,
 750   // it would be easy and useful to make a two-argument version of
 751   // verify_oop which unbiases the base, and performs verification.)
 752 
 753   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 754   bool is_verified_oop_base  = false;
 755   bool is_verified_oop_load  = false;
 756   bool is_verified_oop_store = false;
 757   int tmp_enc = -1;
 758   if (VerifyOops && src1_enc != R_SP_enc) {
 759     // classify the op, mainly for an assert check
 760     int st_op = 0, ld_op = 0;
 761     switch (primary) {
 762     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 763     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 764     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 765     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 766     case Assembler::std_op3:  st_op = Op_StoreL; break;
 767     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 768     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 769 
 770     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 771     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 772     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 773     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 774     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 775     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 776     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 777     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 778     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 779     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
 780     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 781 
 782     default: ShouldNotReachHere();
 783     }
 784     if (tertiary == REGP_OP) {
 785       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 786       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 787       else                          ShouldNotReachHere();
 788       if (st_op) {
 789         // a store
 790         // inputs are (0:control, 1:memory, 2:address, 3:value)
 791         Node* n2 = n->in(3);
 792         if (n2 != NULL) {
 793           const Type* t = n2->bottom_type();
 794           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 795         }
 796       } else {
 797         // a load
 798         const Type* t = n->bottom_type();
 799         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 800       }
 801     }
 802 
 803     if (ld_op) {
 804       // a Load
 805       // inputs are (0:control, 1:memory, 2:address)
 806       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 807           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
 808           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 809           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 810           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 811           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 812           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 813           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 814           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 815           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 816           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 817           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 818           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 819           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 820           !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
 821           !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
 822           !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
 823           !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
 824           !(n->rule() == loadUB_rule)) {
 825         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 826       }
 827     } else if (st_op) {
 828       // a Store
 829       // inputs are (0:control, 1:memory, 2:address, 3:value)
 830       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 831           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 832           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 833           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 834           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 835           !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
 836           !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
 837           !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
 838           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 839         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 840       }
 841     }
 842 
 843     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 844       Node* addr = n->in(2);
 845       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 846         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 847         if (atype != NULL) {
 848           intptr_t offset = get_offset_from_base(n, atype, disp32);
 849           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 850           if (offset != offset_2) {
 851             get_offset_from_base(n, atype, disp32);
 852             get_offset_from_base_2(n, atype, disp32);
 853           }
 854           assert(offset == offset_2, "different offsets");
 855           if (offset == disp32) {
 856             // we now know that src1 is a true oop pointer
 857             is_verified_oop_base = true;
 858             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 859               if( primary == Assembler::ldd_op3 ) {
 860                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 861               } else {
 862                 tmp_enc = dst_enc;
 863                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 864                 assert(src1_enc != dst_enc, "");
 865               }
 866             }
 867           }
 868           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 869                        || offset == oopDesc::mark_offset_in_bytes())) {
 870                       // loading the mark should not be allowed either, but
 871                       // we don't check this since it conflicts with InlineObjectHash
 872                       // usage of LoadINode to get the mark. We could keep the
 873                       // check if we create a new LoadMarkNode
 874             // but do not verify the object before its header is initialized
 875             ShouldNotReachHere();
 876           }
 877         }
 878       }
 879     }
 880   }
 881 #endif
 882 
 883   uint instr;
 884   instr = (Assembler::ldst_op << 30)
 885         | (dst_enc        << 25)
 886         | (primary        << 19)
 887         | (src1_enc       << 14);
 888 
 889   uint index = src2_enc;
 890   int disp = disp32;
 891 
 892   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 893     disp += STACK_BIAS;
 894 
 895   // We should have a compiler bailout here rather than a guarantee.
 896   // Better yet would be some mechanism to handle variable-size matches correctly.
 897   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 898 
 899   if( disp == 0 ) {
 900     // use reg-reg form
 901     // bit 13 is already zero
 902     instr |= index;
 903   } else {
 904     // use reg-imm form
 905     instr |= 0x00002000;          // set bit 13 to one
 906     instr |= disp & 0x1FFF;
 907   }
 908 
 909   cbuf.insts()->emit_int32(instr);
 910 
 911 #ifdef ASSERT
 912   {
 913     MacroAssembler _masm(&cbuf);
 914     if (is_verified_oop_base) {
 915       __ verify_oop(reg_to_register_object(src1_enc));
 916     }
 917     if (is_verified_oop_store) {
 918       __ verify_oop(reg_to_register_object(dst_enc));
 919     }
 920     if (tmp_enc != -1) {
 921       __ mov(O7, reg_to_register_object(tmp_enc));
 922     }
 923     if (is_verified_oop_load) {
 924       __ verify_oop(reg_to_register_object(dst_enc));
 925     }
 926   }
 927 #endif
 928 }
 929 
 930 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
 931   // The method which records debug information at every safepoint
 932   // expects the call to be the first instruction in the snippet as
 933   // it creates a PcDesc structure which tracks the offset of a call
 934   // from the start of the codeBlob. This offset is computed as
 935   // code_end() - code_begin() of the code which has been emitted
 936   // so far.
 937   // In this particular case we have skirted around the problem by
 938   // putting the "mov" instruction in the delay slot but the problem
 939   // may bite us again at some other point and a cleaner/generic
 940   // solution using relocations would be needed.
 941   MacroAssembler _masm(&cbuf);
 942   __ set_inst_mark();
 943 
 944   // We flush the current window just so that there is a valid stack copy
 945   // the fact that the current window becomes active again instantly is
 946   // not a problem there is nothing live in it.
 947 
 948 #ifdef ASSERT
 949   int startpos = __ offset();
 950 #endif /* ASSERT */
 951 
 952 #ifdef _LP64
 953   // Calls to the runtime or native may not be reachable from compiled code,
 954   // so we generate the far call sequence on 64 bit sparc.
 955   // This code sequence is relocatable to any address, even on LP64.
 956   if ( force_far_call ) {
 957     __ relocate(rtype);
 958     AddressLiteral dest(entry_point);
 959     __ jumpl_to(dest, O7, O7);
 960   }
 961   else
 962 #endif
 963   {
 964      __ call((address)entry_point, rtype);
 965   }
 966 
 967   if (preserve_g2)   __ delayed()->mov(G2, L7);
 968   else __ delayed()->nop();
 969 
 970   if (preserve_g2)   __ mov(L7, G2);
 971 
 972 #ifdef ASSERT
 973   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 974 #ifdef _LP64
 975     // Trash argument dump slots.
 976     __ set(0xb0b8ac0db0b8ac0d, G1);
 977     __ mov(G1, G5);
 978     __ stx(G1, SP, STACK_BIAS + 0x80);
 979     __ stx(G1, SP, STACK_BIAS + 0x88);
 980     __ stx(G1, SP, STACK_BIAS + 0x90);
 981     __ stx(G1, SP, STACK_BIAS + 0x98);
 982     __ stx(G1, SP, STACK_BIAS + 0xA0);
 983     __ stx(G1, SP, STACK_BIAS + 0xA8);
 984 #else // _LP64
 985     // this is also a native call, so smash the first 7 stack locations,
 986     // and the various registers
 987 
 988     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
 989     // while [SP+0x44..0x58] are the argument dump slots.
 990     __ set((intptr_t)0xbaadf00d, G1);
 991     __ mov(G1, G5);
 992     __ sllx(G1, 32, G1);
 993     __ or3(G1, G5, G1);
 994     __ mov(G1, G5);
 995     __ stx(G1, SP, 0x40);
 996     __ stx(G1, SP, 0x48);
 997     __ stx(G1, SP, 0x50);
 998     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
 999 #endif // _LP64
1000   }
1001 #endif /*ASSERT*/
1002 }
1003 
1004 //=============================================================================
1005 // REQUIRED FUNCTIONALITY for encoding
1006 void emit_lo(CodeBuffer &cbuf, int val) {  }
1007 void emit_hi(CodeBuffer &cbuf, int val) {  }
1008 
1009 
1010 //=============================================================================
1011 
1012 #ifndef PRODUCT
1013 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1014   Compile* C = ra_->C;
1015 
1016   for (int i = 0; i < OptoPrologueNops; i++) {
1017     st->print_cr("NOP"); st->print("\t");
1018   }
1019 
1020   if( VerifyThread ) {
1021     st->print_cr("Verify_Thread"); st->print("\t");
1022   }
1023 
1024   size_t framesize = C->frame_slots() << LogBytesPerInt;
1025 
1026   // Calls to C2R adapters often do not accept exceptional returns.
1027   // We require that their callers must bang for them.  But be careful, because
1028   // some VM calls (such as call site linkage) can use several kilobytes of
1029   // stack.  But the stack safety zone should account for that.
1030   // See bugs 4446381, 4468289, 4497237.
1031   if (C->need_stack_bang(framesize)) {
1032     st->print_cr("! stack bang"); st->print("\t");
1033   }
1034 
1035   if (Assembler::is_simm13(-framesize)) {
1036     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1037   } else {
1038     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1039     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1040     st->print   ("SAVE   R_SP,R_G3,R_SP");
1041   }
1042 
1043 }
1044 #endif
1045 
1046 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1047   Compile* C = ra_->C;
1048   MacroAssembler _masm(&cbuf);
1049 
1050   for (int i = 0; i < OptoPrologueNops; i++) {
1051     __ nop();
1052   }
1053 
1054   __ verify_thread();
1055 
1056   size_t framesize = C->frame_slots() << LogBytesPerInt;
1057   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1058   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1059 
1060   // Calls to C2R adapters often do not accept exceptional returns.
1061   // We require that their callers must bang for them.  But be careful, because
1062   // some VM calls (such as call site linkage) can use several kilobytes of
1063   // stack.  But the stack safety zone should account for that.
1064   // See bugs 4446381, 4468289, 4497237.
1065   if (C->need_stack_bang(framesize)) {
1066     __ generate_stack_overflow_check(framesize);
1067   }
1068 
1069   if (Assembler::is_simm13(-framesize)) {
1070     __ save(SP, -framesize, SP);
1071   } else {
1072     __ sethi(-framesize & ~0x3ff, G3);
1073     __ add(G3, -framesize & 0x3ff, G3);
1074     __ save(SP, G3, SP);
1075   }
1076   C->set_frame_complete( __ offset() );
1077 }
1078 
1079 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1080   return MachNode::size(ra_);
1081 }
1082 
1083 int MachPrologNode::reloc() const {
1084   return 10; // a large enough number
1085 }
1086 
1087 //=============================================================================
1088 #ifndef PRODUCT
1089 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1090   Compile* C = ra_->C;
1091 
1092   if( do_polling() && ra_->C->is_method_compilation() ) {
1093     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1094 #ifdef _LP64
1095     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1096 #else
1097     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1098 #endif
1099   }
1100 
1101   if( do_polling() )
1102     st->print("RET\n\t");
1103 
1104   st->print("RESTORE");
1105 }
1106 #endif
1107 
1108 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1109   MacroAssembler _masm(&cbuf);
1110   Compile* C = ra_->C;
1111 
1112   __ verify_thread();
1113 
1114   // If this does safepoint polling, then do it here
1115   if( do_polling() && ra_->C->is_method_compilation() ) {
1116     AddressLiteral polling_page(os::get_polling_page());
1117     __ sethi(polling_page, L0);
1118     __ relocate(relocInfo::poll_return_type);
1119     __ ld_ptr( L0, 0, G0 );
1120   }
1121 
1122   // If this is a return, then stuff the restore in the delay slot
1123   if( do_polling() ) {
1124     __ ret();
1125     __ delayed()->restore();
1126   } else {
1127     __ restore();
1128   }
1129 }
1130 
1131 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1132   return MachNode::size(ra_);
1133 }
1134 
1135 int MachEpilogNode::reloc() const {
1136   return 16; // a large enough number
1137 }
1138 
1139 const Pipeline * MachEpilogNode::pipeline() const {
1140   return MachNode::pipeline_class();
1141 }
1142 
1143 int MachEpilogNode::safepoint_offset() const {
1144   assert( do_polling(), "no return for this epilog node");
1145   return MacroAssembler::size_of_sethi(os::get_polling_page());
1146 }
1147 
1148 //=============================================================================
1149 
1150 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1151 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1152 static enum RC rc_class( OptoReg::Name reg ) {
1153   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1154   if (OptoReg::is_stack(reg)) return rc_stack;
1155   VMReg r = OptoReg::as_VMReg(reg);
1156   if (r->is_Register()) return rc_int;
1157   assert(r->is_FloatRegister(), "must be");
1158   return rc_float;
1159 }
1160 
1161 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1162   if( cbuf ) {
1163     // Better yet would be some mechanism to handle variable-size matches correctly
1164     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1165       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1166     } else {
1167       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1168     }
1169   }
1170 #ifndef PRODUCT
1171   else if( !do_size ) {
1172     if( size != 0 ) st->print("\n\t");
1173     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1174     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1175   }
1176 #endif
1177   return size+4;
1178 }
1179 
1180 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1181   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1182 #ifndef PRODUCT
1183   else if( !do_size ) {
1184     if( size != 0 ) st->print("\n\t");
1185     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1186   }
1187 #endif
1188   return size+4;
1189 }
1190 
1191 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1192                                         PhaseRegAlloc *ra_,
1193                                         bool do_size,
1194                                         outputStream* st ) const {
1195   // Get registers to move
1196   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1197   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1198   OptoReg::Name dst_second = ra_->get_reg_second(this );
1199   OptoReg::Name dst_first = ra_->get_reg_first(this );
1200 
1201   enum RC src_second_rc = rc_class(src_second);
1202   enum RC src_first_rc = rc_class(src_first);
1203   enum RC dst_second_rc = rc_class(dst_second);
1204   enum RC dst_first_rc = rc_class(dst_first);
1205 
1206   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1207 
1208   // Generate spill code!
1209   int size = 0;
1210 
1211   if( src_first == dst_first && src_second == dst_second )
1212     return size;            // Self copy, no move
1213 
1214   // --------------------------------------
1215   // Check for mem-mem move.  Load into unused float registers and fall into
1216   // the float-store case.
1217   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1218     int offset = ra_->reg2offset(src_first);
1219     // Further check for aligned-adjacent pair, so we can use a double load
1220     if( (src_first&1)==0 && src_first+1 == src_second ) {
1221       src_second    = OptoReg::Name(R_F31_num);
1222       src_second_rc = rc_float;
1223       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1224     } else {
1225       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1226     }
1227     src_first    = OptoReg::Name(R_F30_num);
1228     src_first_rc = rc_float;
1229   }
1230 
1231   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1232     int offset = ra_->reg2offset(src_second);
1233     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1234     src_second    = OptoReg::Name(R_F31_num);
1235     src_second_rc = rc_float;
1236   }
1237 
1238   // --------------------------------------
1239   // Check for float->int copy; requires a trip through memory
1240   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
1241     int offset = frame::register_save_words*wordSize;
1242     if( cbuf ) {
1243       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1244       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1245       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1246       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1247     }
1248 #ifndef PRODUCT
1249     else if( !do_size ) {
1250       if( size != 0 ) st->print("\n\t");
1251       st->print(  "SUB    R_SP,16,R_SP\n");
1252       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1253       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1254       st->print("\tADD    R_SP,16,R_SP\n");
1255     }
1256 #endif
1257     size += 16;
1258   }
1259 
1260   // --------------------------------------
1261   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1262   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1263   // hardware does the flop for me.  Doubles are always aligned, so no problem
1264   // there.  Misaligned sources only come from native-long-returns (handled
1265   // special below).
1266 #ifndef _LP64
1267   if( src_first_rc == rc_int &&     // source is already big-endian
1268       src_second_rc != rc_bad &&    // 64-bit move
1269       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1270     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1271     // Do the big-endian flop.
1272     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1273     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1274   }
1275 #endif
1276 
1277   // --------------------------------------
1278   // Check for integer reg-reg copy
1279   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1280 #ifndef _LP64
1281     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1282       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1283       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1284       //       operand contains the least significant word of the 64-bit value and vice versa.
1285       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1286       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1287       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1288       if( cbuf ) {
1289         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1290         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1291         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1292 #ifndef PRODUCT
1293       } else if( !do_size ) {
1294         if( size != 0 ) st->print("\n\t");
1295         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1296         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1297         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1298 #endif
1299       }
1300       return size+12;
1301     }
1302     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1303       // returning a long value in I0/I1
1304       // a SpillCopy must be able to target a return instruction's reg_class
1305       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1306       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1307       //       operand contains the least significant word of the 64-bit value and vice versa.
1308       OptoReg::Name tdest = dst_first;
1309 
1310       if (src_first == dst_first) {
1311         tdest = OptoReg::Name(R_O7_num);
1312         size += 4;
1313       }
1314 
1315       if( cbuf ) {
1316         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1317         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1318         // ShrL_reg_imm6
1319         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1320         // ShrR_reg_imm6  src, 0, dst
1321         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1322         if (tdest != dst_first) {
1323           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1324         }
1325       }
1326 #ifndef PRODUCT
1327       else if( !do_size ) {
1328         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1329         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1330         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1331         if (tdest != dst_first) {
1332           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1333         }
1334       }
1335 #endif // PRODUCT
1336       return size+8;
1337     }
1338 #endif // !_LP64
1339     // Else normal reg-reg copy
1340     assert( src_second != dst_first, "smashed second before evacuating it" );
1341     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1342     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1343     // This moves an aligned adjacent pair.
1344     // See if we are done.
1345     if( src_first+1 == src_second && dst_first+1 == dst_second )
1346       return size;
1347   }
1348 
1349   // Check for integer store
1350   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1351     int offset = ra_->reg2offset(dst_first);
1352     // Further check for aligned-adjacent pair, so we can use a double store
1353     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1354       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1355     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1356   }
1357 
1358   // Check for integer load
1359   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1360     int offset = ra_->reg2offset(src_first);
1361     // Further check for aligned-adjacent pair, so we can use a double load
1362     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1363       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1364     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1365   }
1366 
1367   // Check for float reg-reg copy
1368   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1369     // Further check for aligned-adjacent pair, so we can use a double move
1370     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1371       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1372     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1373   }
1374 
1375   // Check for float store
1376   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1377     int offset = ra_->reg2offset(dst_first);
1378     // Further check for aligned-adjacent pair, so we can use a double store
1379     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1380       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1381     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1382   }
1383 
1384   // Check for float load
1385   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1386     int offset = ra_->reg2offset(src_first);
1387     // Further check for aligned-adjacent pair, so we can use a double load
1388     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1389       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1390     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1391   }
1392 
1393   // --------------------------------------------------------------------
1394   // Check for hi bits still needing moving.  Only happens for misaligned
1395   // arguments to native calls.
1396   if( src_second == dst_second )
1397     return size;               // Self copy; no move
1398   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1399 
1400 #ifndef _LP64
1401   // In the LP64 build, all registers can be moved as aligned/adjacent
1402   // pairs, so there's never any need to move the high bits separately.
1403   // The 32-bit builds have to deal with the 32-bit ABI which can force
1404   // all sorts of silly alignment problems.
1405 
1406   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1407   // 32-bits of a 64-bit register, but are needed in low bits of another
1408   // register (else it's a hi-bits-to-hi-bits copy which should have
1409   // happened already as part of a 64-bit move)
1410   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1411     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1412     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1413     // Shift src_second down to dst_second's low bits.
1414     if( cbuf ) {
1415       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1416 #ifndef PRODUCT
1417     } else if( !do_size ) {
1418       if( size != 0 ) st->print("\n\t");
1419       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1420 #endif
1421     }
1422     return size+4;
1423   }
1424 
1425   // Check for high word integer store.  Must down-shift the hi bits
1426   // into a temp register, then fall into the case of storing int bits.
1427   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1428     // Shift src_second down to dst_second's low bits.
1429     if( cbuf ) {
1430       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1431 #ifndef PRODUCT
1432     } else if( !do_size ) {
1433       if( size != 0 ) st->print("\n\t");
1434       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1435 #endif
1436     }
1437     size+=4;
1438     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1439   }
1440 
1441   // Check for high word integer load
1442   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1443     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1444 
1445   // Check for high word integer store
1446   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1447     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1448 
1449   // Check for high word float store
1450   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1451     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1452 
1453 #endif // !_LP64
1454 
1455   Unimplemented();
1456 }
1457 
1458 #ifndef PRODUCT
1459 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1460   implementation( NULL, ra_, false, st );
1461 }
1462 #endif
1463 
1464 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1465   implementation( &cbuf, ra_, false, NULL );
1466 }
1467 
1468 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1469   return implementation( NULL, ra_, true, NULL );
1470 }
1471 
1472 //=============================================================================
1473 #ifndef PRODUCT
1474 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1475   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1476 }
1477 #endif
1478 
1479 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1480   MacroAssembler _masm(&cbuf);
1481   for(int i = 0; i < _count; i += 1) {
1482     __ nop();
1483   }
1484 }
1485 
1486 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1487   return 4 * _count;
1488 }
1489 
1490 
1491 //=============================================================================
1492 #ifndef PRODUCT
1493 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1494   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1495   int reg = ra_->get_reg_first(this);
1496   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1497 }
1498 #endif
1499 
1500 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1501   MacroAssembler _masm(&cbuf);
1502   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1503   int reg = ra_->get_encode(this);
1504 
1505   if (Assembler::is_simm13(offset)) {
1506      __ add(SP, offset, reg_to_register_object(reg));
1507   } else {
1508      __ set(offset, O7);
1509      __ add(SP, O7, reg_to_register_object(reg));
1510   }
1511 }
1512 
1513 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1514   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1515   assert(ra_ == ra_->C->regalloc(), "sanity");
1516   return ra_->C->scratch_emit_size(this);
1517 }
1518 
1519 //=============================================================================
1520 
1521 // emit call stub, compiled java to interpretor
1522 void emit_java_to_interp(CodeBuffer &cbuf ) {
1523 
1524   // Stub is fixed up when the corresponding call is converted from calling
1525   // compiled code to calling interpreted code.
1526   // set (empty), G5
1527   // jmp -1
1528 
1529   address mark = cbuf.insts_mark();  // get mark within main instrs section
1530 
1531   MacroAssembler _masm(&cbuf);
1532 
1533   address base =
1534   __ start_a_stub(Compile::MAX_stubs_size);
1535   if (base == NULL)  return;  // CodeBuffer::expand failed
1536 
1537   // static stub relocation stores the instruction address of the call
1538   __ relocate(static_stub_Relocation::spec(mark));
1539 
1540   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1541 
1542   __ set_inst_mark();
1543   AddressLiteral addrlit(-1);
1544   __ JUMP(addrlit, G3, 0);
1545 
1546   __ delayed()->nop();
1547 
1548   // Update current stubs pointer and restore code_end.
1549   __ end_a_stub();
1550 }
1551 
1552 // size of call stub, compiled java to interpretor
1553 uint size_java_to_interp() {
1554   // This doesn't need to be accurate but it must be larger or equal to
1555   // the real size of the stub.
1556   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
1557           NativeJump::instruction_size + // sethi; jmp; nop
1558           (TraceJumps ? 20 * BytesPerInstWord : 0) );
1559 }
1560 // relocation entries for call stub, compiled java to interpretor
1561 uint reloc_java_to_interp() {
1562   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
1563 }
1564 
1565 
1566 //=============================================================================
1567 #ifndef PRODUCT
1568 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1569   st->print_cr("\nUEP:");
1570 #ifdef    _LP64
1571   if (UseCompressedOops) {
1572     assert(Universe::heap() != NULL, "java heap should be initialized");
1573     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1574     st->print_cr("\tSLL    R_G5,3,R_G5");
1575     if (Universe::narrow_oop_base() != NULL)
1576       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1577   } else {
1578     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1579   }
1580   st->print_cr("\tCMP    R_G5,R_G3" );
1581   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1582 #else  // _LP64
1583   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1584   st->print_cr("\tCMP    R_G5,R_G3" );
1585   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1586 #endif // _LP64
1587 }
1588 #endif
1589 
1590 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1591   MacroAssembler _masm(&cbuf);
1592   Label L;
1593   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1594   Register temp_reg   = G3;
1595   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1596 
1597   // Load klass from receiver
1598   __ load_klass(O0, temp_reg);
1599   // Compare against expected klass
1600   __ cmp(temp_reg, G5_ic_reg);
1601   // Branch to miss code, checks xcc or icc depending
1602   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1603 }
1604 
1605 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1606   return MachNode::size(ra_);
1607 }
1608 
1609 
1610 //=============================================================================
1611 
1612 uint size_exception_handler() {
1613   if (TraceJumps) {
1614     return (400); // just a guess
1615   }
1616   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1617 }
1618 
1619 uint size_deopt_handler() {
1620   if (TraceJumps) {
1621     return (400); // just a guess
1622   }
1623   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1624 }
1625 
1626 // Emit exception handler code.
1627 int emit_exception_handler(CodeBuffer& cbuf) {
1628   Register temp_reg = G3;
1629   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1630   MacroAssembler _masm(&cbuf);
1631 
1632   address base =
1633   __ start_a_stub(size_exception_handler());
1634   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1635 
1636   int offset = __ offset();
1637 
1638   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1639   __ delayed()->nop();
1640 
1641   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1642 
1643   __ end_a_stub();
1644 
1645   return offset;
1646 }
1647 
1648 int emit_deopt_handler(CodeBuffer& cbuf) {
1649   // Can't use any of the current frame's registers as we may have deopted
1650   // at a poll and everything (including G3) can be live.
1651   Register temp_reg = L0;
1652   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1653   MacroAssembler _masm(&cbuf);
1654 
1655   address base =
1656   __ start_a_stub(size_deopt_handler());
1657   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1658 
1659   int offset = __ offset();
1660   __ save_frame(0);
1661   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1662   __ delayed()->restore();
1663 
1664   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1665 
1666   __ end_a_stub();
1667   return offset;
1668 
1669 }
1670 
1671 // Given a register encoding, produce a Integer Register object
1672 static Register reg_to_register_object(int register_encoding) {
1673   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1674   return as_Register(register_encoding);
1675 }
1676 
1677 // Given a register encoding, produce a single-precision Float Register object
1678 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1679   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1680   return as_SingleFloatRegister(register_encoding);
1681 }
1682 
1683 // Given a register encoding, produce a double-precision Float Register object
1684 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1685   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1686   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1687   return as_DoubleFloatRegister(register_encoding);
1688 }
1689 
1690 const bool Matcher::match_rule_supported(int opcode) {
1691   if (!has_match_rule(opcode))
1692     return false;
1693 
1694   switch (opcode) {
1695   case Op_CountLeadingZerosI:
1696   case Op_CountLeadingZerosL:
1697   case Op_CountTrailingZerosI:
1698   case Op_CountTrailingZerosL:
1699     if (!UsePopCountInstruction)
1700       return false;
1701     break;
1702   }
1703 
1704   return true;  // Per default match rules are supported.
1705 }
1706 
1707 int Matcher::regnum_to_fpu_offset(int regnum) {
1708   return regnum - 32; // The FP registers are in the second chunk
1709 }
1710 
1711 #ifdef ASSERT
1712 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1713 #endif
1714 
1715 // Vector width in bytes
1716 const uint Matcher::vector_width_in_bytes(void) {
1717   return 8;
1718 }
1719 
1720 // Vector ideal reg
1721 const uint Matcher::vector_ideal_reg(void) {
1722   return Op_RegD;
1723 }
1724 
1725 // USII supports fxtof through the whole range of number, USIII doesn't
1726 const bool Matcher::convL2FSupported(void) {
1727   return VM_Version::has_fast_fxtof();
1728 }
1729 
1730 // Is this branch offset short enough that a short branch can be used?
1731 //
1732 // NOTE: If the platform does not provide any short branch variants, then
1733 //       this method should return false for offset 0.
1734 bool Matcher::is_short_branch_offset(int rule, int offset) {
1735   return false;
1736 }
1737 
1738 const bool Matcher::isSimpleConstant64(jlong value) {
1739   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1740   // Depends on optimizations in MacroAssembler::setx.
1741   int hi = (int)(value >> 32);
1742   int lo = (int)(value & ~0);
1743   return (hi == 0) || (hi == -1) || (lo == 0);
1744 }
1745 
1746 // No scaling for the parameter the ClearArray node.
1747 const bool Matcher::init_array_count_is_in_bytes = true;
1748 
1749 // Threshold size for cleararray.
1750 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1751 
1752 // Should the Matcher clone shifts on addressing modes, expecting them to
1753 // be subsumed into complex addressing expressions or compute them into
1754 // registers?  True for Intel but false for most RISCs
1755 const bool Matcher::clone_shift_expressions = false;
1756 
1757 bool Matcher::narrow_oop_use_complex_address() {
1758   NOT_LP64(ShouldNotCallThis());
1759   assert(UseCompressedOops, "only for compressed oops code");
1760   return false;
1761 }
1762 
1763 // Is it better to copy float constants, or load them directly from memory?
1764 // Intel can load a float constant from a direct address, requiring no
1765 // extra registers.  Most RISCs will have to materialize an address into a
1766 // register first, so they would do better to copy the constant from stack.
1767 const bool Matcher::rematerialize_float_constants = false;
1768 
1769 // If CPU can load and store mis-aligned doubles directly then no fixup is
1770 // needed.  Else we split the double into 2 integer pieces and move it
1771 // piece-by-piece.  Only happens when passing doubles into C code as the
1772 // Java calling convention forces doubles to be aligned.
1773 #ifdef _LP64
1774 const bool Matcher::misaligned_doubles_ok = true;
1775 #else
1776 const bool Matcher::misaligned_doubles_ok = false;
1777 #endif
1778 
1779 // No-op on SPARC.
1780 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1781 }
1782 
1783 // Advertise here if the CPU requires explicit rounding operations
1784 // to implement the UseStrictFP mode.
1785 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1786 
1787 // Are floats conerted to double when stored to stack during deoptimization?
1788 // Sparc does not handle callee-save floats.
1789 bool Matcher::float_in_double() { return false; }
1790 
1791 // Do ints take an entire long register or just half?
1792 // Note that we if-def off of _LP64.
1793 // The relevant question is how the int is callee-saved.  In _LP64
1794 // the whole long is written but de-opt'ing will have to extract
1795 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1796 #ifdef _LP64
1797 const bool Matcher::int_in_long = true;
1798 #else
1799 const bool Matcher::int_in_long = false;
1800 #endif
1801 
1802 // Return whether or not this register is ever used as an argument.  This
1803 // function is used on startup to build the trampoline stubs in generateOptoStub.
1804 // Registers not mentioned will be killed by the VM call in the trampoline, and
1805 // arguments in those registers not be available to the callee.
1806 bool Matcher::can_be_java_arg( int reg ) {
1807   // Standard sparc 6 args in registers
1808   if( reg == R_I0_num ||
1809       reg == R_I1_num ||
1810       reg == R_I2_num ||
1811       reg == R_I3_num ||
1812       reg == R_I4_num ||
1813       reg == R_I5_num ) return true;
1814 #ifdef _LP64
1815   // 64-bit builds can pass 64-bit pointers and longs in
1816   // the high I registers
1817   if( reg == R_I0H_num ||
1818       reg == R_I1H_num ||
1819       reg == R_I2H_num ||
1820       reg == R_I3H_num ||
1821       reg == R_I4H_num ||
1822       reg == R_I5H_num ) return true;
1823 
1824   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1825     return true;
1826   }
1827 
1828 #else
1829   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1830   // Longs cannot be passed in O regs, because O regs become I regs
1831   // after a 'save' and I regs get their high bits chopped off on
1832   // interrupt.
1833   if( reg == R_G1H_num || reg == R_G1_num ) return true;
1834   if( reg == R_G4H_num || reg == R_G4_num ) return true;
1835 #endif
1836   // A few float args in registers
1837   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1838 
1839   return false;
1840 }
1841 
1842 bool Matcher::is_spillable_arg( int reg ) {
1843   return can_be_java_arg(reg);
1844 }
1845 
1846 // Register for DIVI projection of divmodI
1847 RegMask Matcher::divI_proj_mask() {
1848   ShouldNotReachHere();
1849   return RegMask();
1850 }
1851 
1852 // Register for MODI projection of divmodI
1853 RegMask Matcher::modI_proj_mask() {
1854   ShouldNotReachHere();
1855   return RegMask();
1856 }
1857 
1858 // Register for DIVL projection of divmodL
1859 RegMask Matcher::divL_proj_mask() {
1860   ShouldNotReachHere();
1861   return RegMask();
1862 }
1863 
1864 // Register for MODL projection of divmodL
1865 RegMask Matcher::modL_proj_mask() {
1866   ShouldNotReachHere();
1867   return RegMask();
1868 }
1869 
1870 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1871   return L7_REGP_mask;
1872 }
1873 
1874 %}
1875 
1876 
1877 // The intptr_t operand types, defined by textual substitution.
1878 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
1879 #ifdef _LP64
1880 #define immX      immL
1881 #define immX13    immL13
1882 #define immX13m7  immL13m7
1883 #define iRegX     iRegL
1884 #define g1RegX    g1RegL
1885 #else
1886 #define immX      immI
1887 #define immX13    immI13
1888 #define immX13m7  immI13m7
1889 #define iRegX     iRegI
1890 #define g1RegX    g1RegI
1891 #endif
1892 
1893 //----------ENCODING BLOCK-----------------------------------------------------
1894 // This block specifies the encoding classes used by the compiler to output
1895 // byte streams.  Encoding classes are parameterized macros used by
1896 // Machine Instruction Nodes in order to generate the bit encoding of the
1897 // instruction.  Operands specify their base encoding interface with the
1898 // interface keyword.  There are currently supported four interfaces,
1899 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1900 // operand to generate a function which returns its register number when
1901 // queried.   CONST_INTER causes an operand to generate a function which
1902 // returns the value of the constant when queried.  MEMORY_INTER causes an
1903 // operand to generate four functions which return the Base Register, the
1904 // Index Register, the Scale Value, and the Offset Value of the operand when
1905 // queried.  COND_INTER causes an operand to generate six functions which
1906 // return the encoding code (ie - encoding bits for the instruction)
1907 // associated with each basic boolean condition for a conditional instruction.
1908 //
1909 // Instructions specify two basic values for encoding.  Again, a function
1910 // is available to check if the constant displacement is an oop. They use the
1911 // ins_encode keyword to specify their encoding classes (which must be
1912 // a sequence of enc_class names, and their parameters, specified in
1913 // the encoding block), and they use the
1914 // opcode keyword to specify, in order, their primary, secondary, and
1915 // tertiary opcode.  Only the opcode sections which a particular instruction
1916 // needs for encoding need to be specified.
1917 encode %{
1918   enc_class enc_untested %{
1919 #ifdef ASSERT
1920     MacroAssembler _masm(&cbuf);
1921     __ untested("encoding");
1922 #endif
1923   %}
1924 
1925   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
1926     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
1927                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1928   %}
1929 
1930   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
1931     emit_form3_mem_reg(cbuf, this, $primary, -1,
1932                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1933   %}
1934 
1935   enc_class form3_mem_prefetch_read( memory mem ) %{
1936     emit_form3_mem_reg(cbuf, this, $primary, -1,
1937                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
1938   %}
1939 
1940   enc_class form3_mem_prefetch_write( memory mem ) %{
1941     emit_form3_mem_reg(cbuf, this, $primary, -1,
1942                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
1943   %}
1944 
1945   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
1946     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
1947     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
1948     guarantee($mem$$index == R_G0_enc, "double index?");
1949     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
1950     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
1951     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
1952     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
1953   %}
1954 
1955   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
1956     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
1957     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
1958     guarantee($mem$$index == R_G0_enc, "double index?");
1959     // Load long with 2 instructions
1960     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
1961     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
1962   %}
1963 
1964   //%%% form3_mem_plus_4_reg is a hack--get rid of it
1965   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
1966     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
1967     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
1968   %}
1969 
1970   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
1971     // Encode a reg-reg copy.  If it is useless, then empty encoding.
1972     if( $rs2$$reg != $rd$$reg )
1973       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
1974   %}
1975 
1976   // Target lo half of long
1977   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
1978     // Encode a reg-reg copy.  If it is useless, then empty encoding.
1979     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
1980       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
1981   %}
1982 
1983   // Source lo half of long
1984   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
1985     // Encode a reg-reg copy.  If it is useless, then empty encoding.
1986     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
1987       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
1988   %}
1989 
1990   // Target hi half of long
1991   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
1992     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
1993   %}
1994 
1995   // Source lo half of long, and leave it sign extended.
1996   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
1997     // Sign extend low half
1998     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
1999   %}
2000 
2001   // Source hi half of long, and leave it sign extended.
2002   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2003     // Shift high half to low half
2004     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2005   %}
2006 
2007   // Source hi half of long
2008   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2009     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2010     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2011       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2012   %}
2013 
2014   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2015     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2016   %}
2017 
2018   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2019     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2020     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2021   %}
2022 
2023   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2024     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2025     // clear if nothing else is happening
2026     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2027     // blt,a,pn done
2028     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2029     // mov dst,-1 in delay slot
2030     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2031   %}
2032 
2033   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2034     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2035   %}
2036 
2037   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2038     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2039   %}
2040 
2041   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2042     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2043   %}
2044 
2045   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2046     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2047   %}
2048 
2049   enc_class move_return_pc_to_o1() %{
2050     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2051   %}
2052 
2053 #ifdef _LP64
2054   /* %%% merge with enc_to_bool */
2055   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2056     MacroAssembler _masm(&cbuf);
2057 
2058     Register   src_reg = reg_to_register_object($src$$reg);
2059     Register   dst_reg = reg_to_register_object($dst$$reg);
2060     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2061   %}
2062 #endif
2063 
2064   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2065     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2066     MacroAssembler _masm(&cbuf);
2067 
2068     Register   p_reg = reg_to_register_object($p$$reg);
2069     Register   q_reg = reg_to_register_object($q$$reg);
2070     Register   y_reg = reg_to_register_object($y$$reg);
2071     Register tmp_reg = reg_to_register_object($tmp$$reg);
2072 
2073     __ subcc( p_reg, q_reg,   p_reg );
2074     __ add  ( p_reg, y_reg, tmp_reg );
2075     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2076   %}
2077 
2078   enc_class form_d2i_helper(regD src, regF dst) %{
2079     // fcmp %fcc0,$src,$src
2080     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2081     // branch %fcc0 not-nan, predict taken
2082     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2083     // fdtoi $src,$dst
2084     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2085     // fitos $dst,$dst (if nan)
2086     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2087     // clear $dst (if nan)
2088     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2089     // carry on here...
2090   %}
2091 
2092   enc_class form_d2l_helper(regD src, regD dst) %{
2093     // fcmp %fcc0,$src,$src  check for NAN
2094     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2095     // branch %fcc0 not-nan, predict taken
2096     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2097     // fdtox $src,$dst   convert in delay slot
2098     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2099     // fxtod $dst,$dst  (if nan)
2100     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2101     // clear $dst (if nan)
2102     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2103     // carry on here...
2104   %}
2105 
2106   enc_class form_f2i_helper(regF src, regF dst) %{
2107     // fcmps %fcc0,$src,$src
2108     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2109     // branch %fcc0 not-nan, predict taken
2110     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2111     // fstoi $src,$dst
2112     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2113     // fitos $dst,$dst (if nan)
2114     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2115     // clear $dst (if nan)
2116     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2117     // carry on here...
2118   %}
2119 
2120   enc_class form_f2l_helper(regF src, regD dst) %{
2121     // fcmps %fcc0,$src,$src
2122     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2123     // branch %fcc0 not-nan, predict taken
2124     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2125     // fstox $src,$dst
2126     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2127     // fxtod $dst,$dst (if nan)
2128     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2129     // clear $dst (if nan)
2130     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2131     // carry on here...
2132   %}
2133 
2134   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2135   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2136   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2137   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2138 
2139   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2140 
2141   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2142   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2143 
2144   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2145     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2146   %}
2147 
2148   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2149     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2150   %}
2151 
2152   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2153     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2154   %}
2155 
2156   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2157     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2158   %}
2159 
2160   enc_class form3_convI2F(regF rs2, regF rd) %{
2161     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2162   %}
2163 
2164   // Encloding class for traceable jumps
2165   enc_class form_jmpl(g3RegP dest) %{
2166     emit_jmpl(cbuf, $dest$$reg);
2167   %}
2168 
2169   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2170     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2171   %}
2172 
2173   enc_class form2_nop() %{
2174     emit_nop(cbuf);
2175   %}
2176 
2177   enc_class form2_illtrap() %{
2178     emit_illtrap(cbuf);
2179   %}
2180 
2181 
2182   // Compare longs and convert into -1, 0, 1.
2183   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2184     // CMP $src1,$src2
2185     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2186     // blt,a,pn done
2187     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2188     // mov dst,-1 in delay slot
2189     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2190     // bgt,a,pn done
2191     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2192     // mov dst,1 in delay slot
2193     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2194     // CLR    $dst
2195     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2196   %}
2197 
2198   enc_class enc_PartialSubtypeCheck() %{
2199     MacroAssembler _masm(&cbuf);
2200     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2201     __ delayed()->nop();
2202   %}
2203 
2204   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
2205     MacroAssembler _masm(&cbuf);
2206     Label &L = *($labl$$label);
2207     Assembler::Predict predict_taken =
2208       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2209 
2210     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
2211     __ delayed()->nop();
2212   %}
2213 
2214   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
2215     MacroAssembler _masm(&cbuf);
2216     Label &L = *($labl$$label);
2217     Assembler::Predict predict_taken =
2218       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2219 
2220     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
2221     __ delayed()->nop();
2222   %}
2223 
2224   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
2225     MacroAssembler _masm(&cbuf);
2226     Label &L = *($labl$$label);
2227     Assembler::Predict predict_taken =
2228       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2229 
2230     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
2231     __ delayed()->nop();
2232   %}
2233 
2234   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
2235     MacroAssembler _masm(&cbuf);
2236     Label &L = *($labl$$label);
2237     Assembler::Predict predict_taken =
2238       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2239 
2240     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
2241     __ delayed()->nop();
2242   %}
2243 
2244   enc_class jump_enc( iRegX switch_val, o7RegI table) %{
2245     MacroAssembler _masm(&cbuf);
2246 
2247     Register switch_reg       = as_Register($switch_val$$reg);
2248     Register table_reg        = O7;
2249 
2250     address table_base = __ address_table_constant(_index2label);
2251     RelocationHolder rspec = internal_word_Relocation::spec(table_base);
2252 
2253     // Move table address into a register.
2254     __ set(table_base, table_reg, rspec);
2255 
2256     // Jump to base address + switch value
2257     __ ld_ptr(table_reg, switch_reg, table_reg);
2258     __ jmp(table_reg, G0);
2259     __ delayed()->nop();
2260 
2261   %}
2262 
2263   enc_class enc_ba( Label labl ) %{
2264     MacroAssembler _masm(&cbuf);
2265     Label &L = *($labl$$label);
2266     __ ba(false, L);
2267     __ delayed()->nop();
2268   %}
2269 
2270   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
2271     MacroAssembler _masm(&cbuf);
2272     Label &L = *$labl$$label;
2273     Assembler::Predict predict_taken =
2274       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2275 
2276     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
2277     __ delayed()->nop();
2278   %}
2279 
2280   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2281     int op = (Assembler::arith_op << 30) |
2282              ($dst$$reg << 25) |
2283              (Assembler::movcc_op3 << 19) |
2284              (1 << 18) |                    // cc2 bit for 'icc'
2285              ($cmp$$cmpcode << 14) |
2286              (0 << 13) |                    // select register move
2287              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2288              ($src$$reg << 0);
2289     cbuf.insts()->emit_int32(op);
2290   %}
2291 
2292   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2293     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2294     int op = (Assembler::arith_op << 30) |
2295              ($dst$$reg << 25) |
2296              (Assembler::movcc_op3 << 19) |
2297              (1 << 18) |                    // cc2 bit for 'icc'
2298              ($cmp$$cmpcode << 14) |
2299              (1 << 13) |                    // select immediate move
2300              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2301              (simm11 << 0);
2302     cbuf.insts()->emit_int32(op);
2303   %}
2304 
2305   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2306     int op = (Assembler::arith_op << 30) |
2307              ($dst$$reg << 25) |
2308              (Assembler::movcc_op3 << 19) |
2309              (0 << 18) |                    // cc2 bit for 'fccX'
2310              ($cmp$$cmpcode << 14) |
2311              (0 << 13) |                    // select register move
2312              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2313              ($src$$reg << 0);
2314     cbuf.insts()->emit_int32(op);
2315   %}
2316 
2317   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2318     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2319     int op = (Assembler::arith_op << 30) |
2320              ($dst$$reg << 25) |
2321              (Assembler::movcc_op3 << 19) |
2322              (0 << 18) |                    // cc2 bit for 'fccX'
2323              ($cmp$$cmpcode << 14) |
2324              (1 << 13) |                    // select immediate move
2325              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2326              (simm11 << 0);
2327     cbuf.insts()->emit_int32(op);
2328   %}
2329 
2330   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2331     int op = (Assembler::arith_op << 30) |
2332              ($dst$$reg << 25) |
2333              (Assembler::fpop2_op3 << 19) |
2334              (0 << 18) |
2335              ($cmp$$cmpcode << 14) |
2336              (1 << 13) |                    // select register move
2337              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2338              ($primary << 5) |              // select single, double or quad
2339              ($src$$reg << 0);
2340     cbuf.insts()->emit_int32(op);
2341   %}
2342 
2343   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2344     int op = (Assembler::arith_op << 30) |
2345              ($dst$$reg << 25) |
2346              (Assembler::fpop2_op3 << 19) |
2347              (0 << 18) |
2348              ($cmp$$cmpcode << 14) |
2349              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2350              ($primary << 5) |              // select single, double or quad
2351              ($src$$reg << 0);
2352     cbuf.insts()->emit_int32(op);
2353   %}
2354 
2355   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2356   // the condition comes from opcode-field instead of an argument.
2357   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2358     int op = (Assembler::arith_op << 30) |
2359              ($dst$$reg << 25) |
2360              (Assembler::movcc_op3 << 19) |
2361              (1 << 18) |                    // cc2 bit for 'icc'
2362              ($primary << 14) |
2363              (0 << 13) |                    // select register move
2364              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2365              ($src$$reg << 0);
2366     cbuf.insts()->emit_int32(op);
2367   %}
2368 
2369   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2370     int op = (Assembler::arith_op << 30) |
2371              ($dst$$reg << 25) |
2372              (Assembler::movcc_op3 << 19) |
2373              (6 << 16) |                    // cc2 bit for 'xcc'
2374              ($primary << 14) |
2375              (0 << 13) |                    // select register move
2376              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2377              ($src$$reg << 0);
2378     cbuf.insts()->emit_int32(op);
2379   %}
2380 
2381   // Utility encoding for loading a 64 bit Pointer into a register
2382   // The 64 bit pointer is stored in the generated code stream
2383   enc_class SetPtr( immP src, iRegP rd ) %{
2384     Register dest = reg_to_register_object($rd$$reg);
2385     MacroAssembler _masm(&cbuf);
2386     // [RGV] This next line should be generated from ADLC
2387     if ( _opnds[1]->constant_is_oop() ) {
2388       intptr_t val = $src$$constant;
2389       __ set_oop_constant((jobject)val, dest);
2390     } else {          // non-oop pointers, e.g. card mark base, heap top
2391       __ set($src$$constant, dest);
2392     }
2393   %}
2394 
2395   enc_class Set13( immI13 src, iRegI rd ) %{
2396     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2397   %}
2398 
2399   enc_class SetHi22( immI src, iRegI rd ) %{
2400     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2401   %}
2402 
2403   enc_class Set32( immI src, iRegI rd ) %{
2404     MacroAssembler _masm(&cbuf);
2405     __ set($src$$constant, reg_to_register_object($rd$$reg));
2406   %}
2407 
2408   enc_class SetNull( iRegI rd ) %{
2409     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 );
2410   %}
2411 
2412   enc_class call_epilog %{
2413     if( VerifyStackAtCalls ) {
2414       MacroAssembler _masm(&cbuf);
2415       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2416       Register temp_reg = G3;
2417       __ add(SP, framesize, temp_reg);
2418       __ cmp(temp_reg, FP);
2419       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2420     }
2421   %}
2422 
2423   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2424   // to G1 so the register allocator will not have to deal with the misaligned register
2425   // pair.
2426   enc_class adjust_long_from_native_call %{
2427 #ifndef _LP64
2428     if (returns_long()) {
2429       //    sllx  O0,32,O0
2430       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2431       //    srl   O1,0,O1
2432       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2433       //    or    O0,O1,G1
2434       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2435     }
2436 #endif
2437   %}
2438 
2439   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2440     // CALL directly to the runtime
2441     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2442     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2443                     /*preserve_g2=*/true, /*force far call*/true);
2444   %}
2445 
2446   enc_class preserve_SP %{
2447     MacroAssembler _masm(&cbuf);
2448     __ mov(SP, L7_mh_SP_save);
2449   %}
2450 
2451   enc_class restore_SP %{
2452     MacroAssembler _masm(&cbuf);
2453     __ mov(L7_mh_SP_save, SP);
2454   %}
2455 
2456   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2457     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2458     // who we intended to call.
2459     if ( !_method ) {
2460       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2461     } else if (_optimized_virtual) {
2462       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2463     } else {
2464       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2465     }
2466     if( _method ) {  // Emit stub for static call
2467       emit_java_to_interp(cbuf);
2468     }
2469   %}
2470 
2471   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2472     MacroAssembler _masm(&cbuf);
2473     __ set_inst_mark();
2474     int vtable_index = this->_vtable_index;
2475     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2476     if (vtable_index < 0) {
2477       // must be invalid_vtable_index, not nonvirtual_vtable_index
2478       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
2479       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2480       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2481       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2482       // !!!!!
2483       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
2484       // emit_call_dynamic_prologue( cbuf );
2485       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
2486 
2487       address  virtual_call_oop_addr = __ inst_mark();
2488       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2489       // who we intended to call.
2490       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
2491       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
2492     } else {
2493       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2494       // Just go thru the vtable
2495       // get receiver klass (receiver already checked for non-null)
2496       // If we end up going thru a c2i adapter interpreter expects method in G5
2497       int off = __ offset();
2498       __ load_klass(O0, G3_scratch);
2499       int klass_load_size;
2500       if (UseCompressedOops) {
2501         assert(Universe::heap() != NULL, "java heap should be initialized");
2502         if (Universe::narrow_oop_base() == NULL)
2503           klass_load_size = 2*BytesPerInstWord;
2504         else
2505           klass_load_size = 3*BytesPerInstWord;
2506       } else {
2507         klass_load_size = 1*BytesPerInstWord;
2508       }
2509       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2510       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2511       if( __ is_simm13(v_off) ) {
2512         __ ld_ptr(G3, v_off, G5_method);
2513       } else {
2514         // Generate 2 instructions
2515         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2516         __ or3(G5_method, v_off & 0x3ff, G5_method);
2517         // ld_ptr, set_hi, set
2518         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2519                "Unexpected instruction size(s)");
2520         __ ld_ptr(G3, G5_method, G5_method);
2521       }
2522       // NOTE: for vtable dispatches, the vtable entry will never be null.
2523       // However it may very well end up in handle_wrong_method if the
2524       // method is abstract for the particular class.
2525       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
2526       // jump to target (either compiled code or c2iadapter)
2527       __ jmpl(G3_scratch, G0, O7);
2528       __ delayed()->nop();
2529     }
2530   %}
2531 
2532   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2533     MacroAssembler _masm(&cbuf);
2534 
2535     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2536     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2537                               // we might be calling a C2I adapter which needs it.
2538 
2539     assert(temp_reg != G5_ic_reg, "conflicting registers");
2540     // Load nmethod
2541     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
2542 
2543     // CALL to compiled java, indirect the contents of G3
2544     __ set_inst_mark();
2545     __ callr(temp_reg, G0);
2546     __ delayed()->nop();
2547   %}
2548 
2549 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2550     MacroAssembler _masm(&cbuf);
2551     Register Rdividend = reg_to_register_object($src1$$reg);
2552     Register Rdivisor = reg_to_register_object($src2$$reg);
2553     Register Rresult = reg_to_register_object($dst$$reg);
2554 
2555     __ sra(Rdivisor, 0, Rdivisor);
2556     __ sra(Rdividend, 0, Rdividend);
2557     __ sdivx(Rdividend, Rdivisor, Rresult);
2558 %}
2559 
2560 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2561     MacroAssembler _masm(&cbuf);
2562 
2563     Register Rdividend = reg_to_register_object($src1$$reg);
2564     int divisor = $imm$$constant;
2565     Register Rresult = reg_to_register_object($dst$$reg);
2566 
2567     __ sra(Rdividend, 0, Rdividend);
2568     __ sdivx(Rdividend, divisor, Rresult);
2569 %}
2570 
2571 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2572     MacroAssembler _masm(&cbuf);
2573     Register Rsrc1 = reg_to_register_object($src1$$reg);
2574     Register Rsrc2 = reg_to_register_object($src2$$reg);
2575     Register Rdst  = reg_to_register_object($dst$$reg);
2576 
2577     __ sra( Rsrc1, 0, Rsrc1 );
2578     __ sra( Rsrc2, 0, Rsrc2 );
2579     __ mulx( Rsrc1, Rsrc2, Rdst );
2580     __ srlx( Rdst, 32, Rdst );
2581 %}
2582 
2583 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2584     MacroAssembler _masm(&cbuf);
2585     Register Rdividend = reg_to_register_object($src1$$reg);
2586     Register Rdivisor = reg_to_register_object($src2$$reg);
2587     Register Rresult = reg_to_register_object($dst$$reg);
2588     Register Rscratch = reg_to_register_object($scratch$$reg);
2589 
2590     assert(Rdividend != Rscratch, "");
2591     assert(Rdivisor  != Rscratch, "");
2592 
2593     __ sra(Rdividend, 0, Rdividend);
2594     __ sra(Rdivisor, 0, Rdivisor);
2595     __ sdivx(Rdividend, Rdivisor, Rscratch);
2596     __ mulx(Rscratch, Rdivisor, Rscratch);
2597     __ sub(Rdividend, Rscratch, Rresult);
2598 %}
2599 
2600 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2601     MacroAssembler _masm(&cbuf);
2602 
2603     Register Rdividend = reg_to_register_object($src1$$reg);
2604     int divisor = $imm$$constant;
2605     Register Rresult = reg_to_register_object($dst$$reg);
2606     Register Rscratch = reg_to_register_object($scratch$$reg);
2607 
2608     assert(Rdividend != Rscratch, "");
2609 
2610     __ sra(Rdividend, 0, Rdividend);
2611     __ sdivx(Rdividend, divisor, Rscratch);
2612     __ mulx(Rscratch, divisor, Rscratch);
2613     __ sub(Rdividend, Rscratch, Rresult);
2614 %}
2615 
2616 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2617     MacroAssembler _masm(&cbuf);
2618 
2619     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2620     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2621 
2622     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2623 %}
2624 
2625 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2626     MacroAssembler _masm(&cbuf);
2627 
2628     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2629     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2630 
2631     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2632 %}
2633 
2634 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2635     MacroAssembler _masm(&cbuf);
2636 
2637     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2638     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2639 
2640     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2641 %}
2642 
2643 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2644     MacroAssembler _masm(&cbuf);
2645 
2646     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2647     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2648 
2649     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2650 %}
2651 
2652 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2653     MacroAssembler _masm(&cbuf);
2654 
2655     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2656     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2657 
2658     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2659 %}
2660 
2661 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2662     MacroAssembler _masm(&cbuf);
2663 
2664     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2665     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2666 
2667     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2668 %}
2669 
2670 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2671     MacroAssembler _masm(&cbuf);
2672 
2673     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2674     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2675 
2676     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2677 %}
2678 
2679 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2680     MacroAssembler _masm(&cbuf);
2681 
2682     Register Roop  = reg_to_register_object($oop$$reg);
2683     Register Rbox  = reg_to_register_object($box$$reg);
2684     Register Rscratch = reg_to_register_object($scratch$$reg);
2685     Register Rmark =    reg_to_register_object($scratch2$$reg);
2686 
2687     assert(Roop  != Rscratch, "");
2688     assert(Roop  != Rmark, "");
2689     assert(Rbox  != Rscratch, "");
2690     assert(Rbox  != Rmark, "");
2691 
2692     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2693 %}
2694 
2695 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2696     MacroAssembler _masm(&cbuf);
2697 
2698     Register Roop  = reg_to_register_object($oop$$reg);
2699     Register Rbox  = reg_to_register_object($box$$reg);
2700     Register Rscratch = reg_to_register_object($scratch$$reg);
2701     Register Rmark =    reg_to_register_object($scratch2$$reg);
2702 
2703     assert(Roop  != Rscratch, "");
2704     assert(Roop  != Rmark, "");
2705     assert(Rbox  != Rscratch, "");
2706     assert(Rbox  != Rmark, "");
2707 
2708     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2709   %}
2710 
2711   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2712     MacroAssembler _masm(&cbuf);
2713     Register Rmem = reg_to_register_object($mem$$reg);
2714     Register Rold = reg_to_register_object($old$$reg);
2715     Register Rnew = reg_to_register_object($new$$reg);
2716 
2717     // casx_under_lock picks 1 of 3 encodings:
2718     // For 32-bit pointers you get a 32-bit CAS
2719     // For 64-bit pointers you get a 64-bit CASX
2720     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2721     __ cmp( Rold, Rnew );
2722   %}
2723 
2724   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2725     Register Rmem = reg_to_register_object($mem$$reg);
2726     Register Rold = reg_to_register_object($old$$reg);
2727     Register Rnew = reg_to_register_object($new$$reg);
2728 
2729     MacroAssembler _masm(&cbuf);
2730     __ mov(Rnew, O7);
2731     __ casx(Rmem, Rold, O7);
2732     __ cmp( Rold, O7 );
2733   %}
2734 
2735   // raw int cas, used for compareAndSwap
2736   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2737     Register Rmem = reg_to_register_object($mem$$reg);
2738     Register Rold = reg_to_register_object($old$$reg);
2739     Register Rnew = reg_to_register_object($new$$reg);
2740 
2741     MacroAssembler _masm(&cbuf);
2742     __ mov(Rnew, O7);
2743     __ cas(Rmem, Rold, O7);
2744     __ cmp( Rold, O7 );
2745   %}
2746 
2747   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2748     Register Rres = reg_to_register_object($res$$reg);
2749 
2750     MacroAssembler _masm(&cbuf);
2751     __ mov(1, Rres);
2752     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2753   %}
2754 
2755   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2756     Register Rres = reg_to_register_object($res$$reg);
2757 
2758     MacroAssembler _masm(&cbuf);
2759     __ mov(1, Rres);
2760     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2761   %}
2762 
2763   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2764     MacroAssembler _masm(&cbuf);
2765     Register Rdst = reg_to_register_object($dst$$reg);
2766     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2767                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2768     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2769                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2770 
2771     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2772     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2773   %}
2774 
2775   enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{   // Load Immediate
2776     MacroAssembler _masm(&cbuf);
2777     Register dest = reg_to_register_object($dst$$reg);
2778     Register temp = reg_to_register_object($tmp$$reg);
2779     __ set64( $src$$constant, dest, temp );
2780   %}
2781 
2782   enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{
2783     // Load a constant replicated "count" times with width "width"
2784     int bit_width = $width$$constant * 8;
2785     jlong elt_val = $src$$constant;
2786     elt_val  &= (((jlong)1) << bit_width) - 1; // mask off sign bits
2787     jlong val = elt_val;
2788     for (int i = 0; i < $count$$constant - 1; i++) {
2789         val <<= bit_width;
2790         val |= elt_val;
2791     }
2792     jdouble dval = *(jdouble*)&val; // coerce to double type
2793     MacroAssembler _masm(&cbuf);
2794     address double_address = __ double_constant(dval);
2795     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
2796     AddressLiteral addrlit(double_address, rspec);
2797 
2798     __ sethi(addrlit, $tmp$$Register);
2799     // XXX This is a quick fix for 6833573.
2800     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
2801     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
2802   %}
2803 
2804   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
2805   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
2806     MacroAssembler _masm(&cbuf);
2807     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
2808     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
2809     Register    base_pointer_arg = reg_to_register_object($base$$reg);
2810 
2811     Label loop;
2812     __ mov(nof_bytes_arg, nof_bytes_tmp);
2813 
2814     // Loop and clear, walking backwards through the array.
2815     // nof_bytes_tmp (if >0) is always the number of bytes to zero
2816     __ bind(loop);
2817     __ deccc(nof_bytes_tmp, 8);
2818     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
2819     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
2820     // %%%% this mini-loop must not cross a cache boundary!
2821   %}
2822 
2823 
2824   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2825     Label Ldone, Lloop;
2826     MacroAssembler _masm(&cbuf);
2827 
2828     Register   str1_reg = reg_to_register_object($str1$$reg);
2829     Register   str2_reg = reg_to_register_object($str2$$reg);
2830     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2831     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2832     Register result_reg = reg_to_register_object($result$$reg);
2833 
2834     assert(result_reg != str1_reg &&
2835            result_reg != str2_reg &&
2836            result_reg != cnt1_reg &&
2837            result_reg != cnt2_reg ,
2838            "need different registers");
2839 
2840     // Compute the minimum of the string lengths(str1_reg) and the
2841     // difference of the string lengths (stack)
2842 
2843     // See if the lengths are different, and calculate min in str1_reg.
2844     // Stash diff in O7 in case we need it for a tie-breaker.
2845     Label Lskip;
2846     __ subcc(cnt1_reg, cnt2_reg, O7);
2847     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2848     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2849     // cnt2 is shorter, so use its count:
2850     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2851     __ bind(Lskip);
2852 
2853     // reallocate cnt1_reg, cnt2_reg, result_reg
2854     // Note:  limit_reg holds the string length pre-scaled by 2
2855     Register limit_reg =   cnt1_reg;
2856     Register  chr2_reg =   cnt2_reg;
2857     Register  chr1_reg = result_reg;
2858     // str{12} are the base pointers
2859 
2860     // Is the minimum length zero?
2861     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2862     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2863     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2864 
2865     // Load first characters
2866     __ lduh(str1_reg, 0, chr1_reg);
2867     __ lduh(str2_reg, 0, chr2_reg);
2868 
2869     // Compare first characters
2870     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2871     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2872     assert(chr1_reg == result_reg, "result must be pre-placed");
2873     __ delayed()->nop();
2874 
2875     {
2876       // Check after comparing first character to see if strings are equivalent
2877       Label LSkip2;
2878       // Check if the strings start at same location
2879       __ cmp(str1_reg, str2_reg);
2880       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2881       __ delayed()->nop();
2882 
2883       // Check if the length difference is zero (in O7)
2884       __ cmp(G0, O7);
2885       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2886       __ delayed()->mov(G0, result_reg);  // result is zero
2887 
2888       // Strings might not be equal
2889       __ bind(LSkip2);
2890     }
2891 
2892     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2893     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2894     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2895 
2896     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2897     __ add(str1_reg, limit_reg, str1_reg);
2898     __ add(str2_reg, limit_reg, str2_reg);
2899     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2900 
2901     // Compare the rest of the characters
2902     __ lduh(str1_reg, limit_reg, chr1_reg);
2903     __ bind(Lloop);
2904     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2905     __ lduh(str2_reg, limit_reg, chr2_reg);
2906     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2907     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2908     assert(chr1_reg == result_reg, "result must be pre-placed");
2909     __ delayed()->inccc(limit_reg, sizeof(jchar));
2910     // annul LDUH if branch is not taken to prevent access past end of string
2911     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2912     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2913 
2914     // If strings are equal up to min length, return the length difference.
2915     __ mov(O7, result_reg);
2916 
2917     // Otherwise, return the difference between the first mismatched chars.
2918     __ bind(Ldone);
2919   %}
2920 
2921 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2922     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2923     MacroAssembler _masm(&cbuf);
2924 
2925     Register   str1_reg = reg_to_register_object($str1$$reg);
2926     Register   str2_reg = reg_to_register_object($str2$$reg);
2927     Register    cnt_reg = reg_to_register_object($cnt$$reg);
2928     Register   tmp1_reg = O7;
2929     Register result_reg = reg_to_register_object($result$$reg);
2930 
2931     assert(result_reg != str1_reg &&
2932            result_reg != str2_reg &&
2933            result_reg !=  cnt_reg &&
2934            result_reg != tmp1_reg ,
2935            "need different registers");
2936 
2937     __ cmp(str1_reg, str2_reg); //same char[] ?
2938     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
2939     __ delayed()->add(G0, 1, result_reg);
2940 
2941     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, cnt_reg, Ldone);
2942     __ delayed()->add(G0, 1, result_reg); // count == 0
2943 
2944     //rename registers
2945     Register limit_reg =    cnt_reg;
2946     Register  chr1_reg = result_reg;
2947     Register  chr2_reg =   tmp1_reg;
2948 
2949     //check for alignment and position the pointers to the ends
2950     __ or3(str1_reg, str2_reg, chr1_reg);
2951     __ andcc(chr1_reg, 0x3, chr1_reg);
2952     // notZero means at least one not 4-byte aligned.
2953     // We could optimize the case when both arrays are not aligned
2954     // but it is not frequent case and it requires additional checks.
2955     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
2956     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
2957 
2958     // Compare char[] arrays aligned to 4 bytes.
2959     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
2960                           chr1_reg, chr2_reg, Ldone);
2961     __ ba(false,Ldone);
2962     __ delayed()->add(G0, 1, result_reg);
2963 
2964     // char by char compare
2965     __ bind(Lchar);
2966     __ add(str1_reg, limit_reg, str1_reg);
2967     __ add(str2_reg, limit_reg, str2_reg);
2968     __ neg(limit_reg); //negate count
2969 
2970     __ lduh(str1_reg, limit_reg, chr1_reg);
2971     // Lchar_loop
2972     __ bind(Lchar_loop);
2973     __ lduh(str2_reg, limit_reg, chr2_reg);
2974     __ cmp(chr1_reg, chr2_reg);
2975     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
2976     __ delayed()->mov(G0, result_reg); //not equal
2977     __ inccc(limit_reg, sizeof(jchar));
2978     // annul LDUH if branch is not taken to prevent access past end of string
2979     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
2980     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2981 
2982     __ add(G0, 1, result_reg);  //equal
2983 
2984     __ bind(Ldone);
2985   %}
2986 
2987 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
2988     Label Lvector, Ldone, Lloop;
2989     MacroAssembler _masm(&cbuf);
2990 
2991     Register   ary1_reg = reg_to_register_object($ary1$$reg);
2992     Register   ary2_reg = reg_to_register_object($ary2$$reg);
2993     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
2994     Register   tmp2_reg = O7;
2995     Register result_reg = reg_to_register_object($result$$reg);
2996 
2997     int length_offset  = arrayOopDesc::length_offset_in_bytes();
2998     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
2999 
3000     // return true if the same array
3001     __ cmp(ary1_reg, ary2_reg);
3002     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3003     __ delayed()->add(G0, 1, result_reg); // equal
3004 
3005     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3006     __ delayed()->mov(G0, result_reg);    // not equal
3007 
3008     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3009     __ delayed()->mov(G0, result_reg);    // not equal
3010 
3011     //load the lengths of arrays
3012     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3013     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3014 
3015     // return false if the two arrays are not equal length
3016     __ cmp(tmp1_reg, tmp2_reg);
3017     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3018     __ delayed()->mov(G0, result_reg);     // not equal
3019 
3020     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, tmp1_reg, Ldone);
3021     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3022 
3023     // load array addresses
3024     __ add(ary1_reg, base_offset, ary1_reg);
3025     __ add(ary2_reg, base_offset, ary2_reg);
3026 
3027     // renaming registers
3028     Register chr1_reg  =  result_reg; // for characters in ary1
3029     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3030     Register limit_reg =  tmp1_reg;   // length
3031 
3032     // set byte count
3033     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3034 
3035     // Compare char[] arrays aligned to 4 bytes.
3036     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3037                           chr1_reg, chr2_reg, Ldone);
3038     __ add(G0, 1, result_reg); // equals
3039 
3040     __ bind(Ldone);
3041   %}
3042 
3043   enc_class enc_rethrow() %{
3044     cbuf.set_insts_mark();
3045     Register temp_reg = G3;
3046     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3047     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3048     MacroAssembler _masm(&cbuf);
3049 #ifdef ASSERT
3050     __ save_frame(0);
3051     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3052     __ sethi(last_rethrow_addrlit, L1);
3053     Address addr(L1, last_rethrow_addrlit.low10());
3054     __ get_pc(L2);
3055     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3056     __ st_ptr(L2, addr);
3057     __ restore();
3058 #endif
3059     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3060     __ delayed()->nop();
3061   %}
3062 
3063   enc_class emit_mem_nop() %{
3064     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3065     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3066   %}
3067 
3068   enc_class emit_fadd_nop() %{
3069     // Generates the instruction FMOVS f31,f31
3070     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3071   %}
3072 
3073   enc_class emit_br_nop() %{
3074     // Generates the instruction BPN,PN .
3075     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3076   %}
3077 
3078   enc_class enc_membar_acquire %{
3079     MacroAssembler _masm(&cbuf);
3080     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3081   %}
3082 
3083   enc_class enc_membar_release %{
3084     MacroAssembler _masm(&cbuf);
3085     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3086   %}
3087 
3088   enc_class enc_membar_volatile %{
3089     MacroAssembler _masm(&cbuf);
3090     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3091   %}
3092 
3093   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
3094     MacroAssembler _masm(&cbuf);
3095     Register src_reg = reg_to_register_object($src$$reg);
3096     Register dst_reg = reg_to_register_object($dst$$reg);
3097     __ sllx(src_reg, 56, dst_reg);
3098     __ srlx(dst_reg,  8, O7);
3099     __ or3 (dst_reg, O7, dst_reg);
3100     __ srlx(dst_reg, 16, O7);
3101     __ or3 (dst_reg, O7, dst_reg);
3102     __ srlx(dst_reg, 32, O7);
3103     __ or3 (dst_reg, O7, dst_reg);
3104   %}
3105 
3106   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
3107     MacroAssembler _masm(&cbuf);
3108     Register src_reg = reg_to_register_object($src$$reg);
3109     Register dst_reg = reg_to_register_object($dst$$reg);
3110     __ sll(src_reg, 24, dst_reg);
3111     __ srl(dst_reg,  8, O7);
3112     __ or3(dst_reg, O7, dst_reg);
3113     __ srl(dst_reg, 16, O7);
3114     __ or3(dst_reg, O7, dst_reg);
3115   %}
3116 
3117   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
3118     MacroAssembler _masm(&cbuf);
3119     Register src_reg = reg_to_register_object($src$$reg);
3120     Register dst_reg = reg_to_register_object($dst$$reg);
3121     __ sllx(src_reg, 48, dst_reg);
3122     __ srlx(dst_reg, 16, O7);
3123     __ or3 (dst_reg, O7, dst_reg);
3124     __ srlx(dst_reg, 32, O7);
3125     __ or3 (dst_reg, O7, dst_reg);
3126   %}
3127 
3128   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
3129     MacroAssembler _masm(&cbuf);
3130     Register src_reg = reg_to_register_object($src$$reg);
3131     Register dst_reg = reg_to_register_object($dst$$reg);
3132     __ sllx(src_reg, 32, dst_reg);
3133     __ srlx(dst_reg, 32, O7);
3134     __ or3 (dst_reg, O7, dst_reg);
3135   %}
3136 
3137 %}
3138 
3139 //----------FRAME--------------------------------------------------------------
3140 // Definition of frame structure and management information.
3141 //
3142 //  S T A C K   L A Y O U T    Allocators stack-slot number
3143 //                             |   (to get allocators register number
3144 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3145 //  r   CALLER     |        |
3146 //  o     |        +--------+      pad to even-align allocators stack-slot
3147 //  w     V        |  pad0  |        numbers; owned by CALLER
3148 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3149 //  h     ^        |   in   |  5
3150 //        |        |  args  |  4   Holes in incoming args owned by SELF
3151 //  |     |        |        |  3
3152 //  |     |        +--------+
3153 //  V     |        | old out|      Empty on Intel, window on Sparc
3154 //        |    old |preserve|      Must be even aligned.
3155 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3156 //        |        |   in   |  3   area for Intel ret address
3157 //     Owned by    |preserve|      Empty on Sparc.
3158 //       SELF      +--------+
3159 //        |        |  pad2  |  2   pad to align old SP
3160 //        |        +--------+  1
3161 //        |        | locks  |  0
3162 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3163 //        |        |  pad1  | 11   pad to align new SP
3164 //        |        +--------+
3165 //        |        |        | 10
3166 //        |        | spills |  9   spills
3167 //        V        |        |  8   (pad0 slot for callee)
3168 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3169 //        ^        |  out   |  7
3170 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3171 //     Owned by    +--------+
3172 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3173 //        |    new |preserve|      Must be even-aligned.
3174 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3175 //        |        |        |
3176 //
3177 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3178 //         known from SELF's arguments and the Java calling convention.
3179 //         Region 6-7 is determined per call site.
3180 // Note 2: If the calling convention leaves holes in the incoming argument
3181 //         area, those holes are owned by SELF.  Holes in the outgoing area
3182 //         are owned by the CALLEE.  Holes should not be nessecary in the
3183 //         incoming area, as the Java calling convention is completely under
3184 //         the control of the AD file.  Doubles can be sorted and packed to
3185 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3186 //         varargs C calling conventions.
3187 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3188 //         even aligned with pad0 as needed.
3189 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3190 //         region 6-11 is even aligned; it may be padded out more so that
3191 //         the region from SP to FP meets the minimum stack alignment.
3192 
3193 frame %{
3194   // What direction does stack grow in (assumed to be same for native & Java)
3195   stack_direction(TOWARDS_LOW);
3196 
3197   // These two registers define part of the calling convention
3198   // between compiled code and the interpreter.
3199   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
3200   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3201 
3202   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3203   cisc_spilling_operand_name(indOffset);
3204 
3205   // Number of stack slots consumed by a Monitor enter
3206 #ifdef _LP64
3207   sync_stack_slots(2);
3208 #else
3209   sync_stack_slots(1);
3210 #endif
3211 
3212   // Compiled code's Frame Pointer
3213   frame_pointer(R_SP);
3214 
3215   // Stack alignment requirement
3216   stack_alignment(StackAlignmentInBytes);
3217   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3218   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3219 
3220   // Number of stack slots between incoming argument block and the start of
3221   // a new frame.  The PROLOG must add this many slots to the stack.  The
3222   // EPILOG must remove this many slots.
3223   in_preserve_stack_slots(0);
3224 
3225   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3226   // for calls to C.  Supports the var-args backing area for register parms.
3227   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3228 #ifdef _LP64
3229   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3230   varargs_C_out_slots_killed(12);
3231 #else
3232   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3233   varargs_C_out_slots_killed( 7);
3234 #endif
3235 
3236   // The after-PROLOG location of the return address.  Location of
3237   // return address specifies a type (REG or STACK) and a number
3238   // representing the register number (i.e. - use a register name) or
3239   // stack slot.
3240   return_addr(REG R_I7);          // Ret Addr is in register I7
3241 
3242   // Body of function which returns an OptoRegs array locating
3243   // arguments either in registers or in stack slots for calling
3244   // java
3245   calling_convention %{
3246     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3247 
3248   %}
3249 
3250   // Body of function which returns an OptoRegs array locating
3251   // arguments either in registers or in stack slots for callin
3252   // C.
3253   c_calling_convention %{
3254     // This is obviously always outgoing
3255     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3256   %}
3257 
3258   // Location of native (C/C++) and interpreter return values.  This is specified to
3259   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3260   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3261   // to and from the register pairs is done by the appropriate call and epilog
3262   // opcodes.  This simplifies the register allocator.
3263   c_return_value %{
3264     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3265 #ifdef     _LP64
3266     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3267     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3268     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3269     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3270 #else  // !_LP64
3271     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3272     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3273     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3274     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3275 #endif
3276     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3277                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3278   %}
3279 
3280   // Location of compiled Java return values.  Same as C
3281   return_value %{
3282     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3283 #ifdef     _LP64
3284     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3285     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3286     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3287     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3288 #else  // !_LP64
3289     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3290     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3291     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3292     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3293 #endif
3294     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3295                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3296   %}
3297 
3298 %}
3299 
3300 
3301 //----------ATTRIBUTES---------------------------------------------------------
3302 //----------Operand Attributes-------------------------------------------------
3303 op_attrib op_cost(1);          // Required cost attribute
3304 
3305 //----------Instruction Attributes---------------------------------------------
3306 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3307 ins_attrib ins_size(32);       // Required size attribute (in bits)
3308 ins_attrib ins_pc_relative(0); // Required PC Relative flag
3309 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3310                                 // non-matching short branch variant of some
3311                                                             // long branch?
3312 
3313 //----------OPERANDS-----------------------------------------------------------
3314 // Operand definitions must precede instruction definitions for correct parsing
3315 // in the ADLC because operands constitute user defined types which are used in
3316 // instruction definitions.
3317 
3318 //----------Simple Operands----------------------------------------------------
3319 // Immediate Operands
3320 // Integer Immediate: 32-bit
3321 operand immI() %{
3322   match(ConI);
3323 
3324   op_cost(0);
3325   // formats are generated automatically for constants and base registers
3326   format %{ %}
3327   interface(CONST_INTER);
3328 %}
3329 
3330 // Integer Immediate: 8-bit
3331 operand immI8() %{
3332   predicate(Assembler::is_simm(n->get_int(), 8));
3333   match(ConI);
3334   op_cost(0);
3335   format %{ %}
3336   interface(CONST_INTER);
3337 %}
3338 
3339 // Integer Immediate: 13-bit
3340 operand immI13() %{
3341   predicate(Assembler::is_simm13(n->get_int()));
3342   match(ConI);
3343   op_cost(0);
3344 
3345   format %{ %}
3346   interface(CONST_INTER);
3347 %}
3348 
3349 // Integer Immediate: 13-bit minus 7
3350 operand immI13m7() %{
3351   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3352   match(ConI);
3353   op_cost(0);
3354 
3355   format %{ %}
3356   interface(CONST_INTER);
3357 %}
3358 
3359 // Integer Immediate: 16-bit
3360 operand immI16() %{
3361   predicate(Assembler::is_simm(n->get_int(), 16));
3362   match(ConI);
3363   op_cost(0);
3364   format %{ %}
3365   interface(CONST_INTER);
3366 %}
3367 
3368 // Unsigned (positive) Integer Immediate: 13-bit
3369 operand immU13() %{
3370   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3371   match(ConI);
3372   op_cost(0);
3373 
3374   format %{ %}
3375   interface(CONST_INTER);
3376 %}
3377 
3378 // Integer Immediate: 6-bit
3379 operand immU6() %{
3380   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3381   match(ConI);
3382   op_cost(0);
3383   format %{ %}
3384   interface(CONST_INTER);
3385 %}
3386 
3387 // Integer Immediate: 11-bit
3388 operand immI11() %{
3389   predicate(Assembler::is_simm(n->get_int(),11));
3390   match(ConI);
3391   op_cost(0);
3392   format %{ %}
3393   interface(CONST_INTER);
3394 %}
3395 
3396 // Integer Immediate: 0-bit
3397 operand immI0() %{
3398   predicate(n->get_int() == 0);
3399   match(ConI);
3400   op_cost(0);
3401 
3402   format %{ %}
3403   interface(CONST_INTER);
3404 %}
3405 
3406 // Integer Immediate: the value 10
3407 operand immI10() %{
3408   predicate(n->get_int() == 10);
3409   match(ConI);
3410   op_cost(0);
3411 
3412   format %{ %}
3413   interface(CONST_INTER);
3414 %}
3415 
3416 // Integer Immediate: the values 0-31
3417 operand immU5() %{
3418   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3419   match(ConI);
3420   op_cost(0);
3421 
3422   format %{ %}
3423   interface(CONST_INTER);
3424 %}
3425 
3426 // Integer Immediate: the values 1-31
3427 operand immI_1_31() %{
3428   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3429   match(ConI);
3430   op_cost(0);
3431 
3432   format %{ %}
3433   interface(CONST_INTER);
3434 %}
3435 
3436 // Integer Immediate: the values 32-63
3437 operand immI_32_63() %{
3438   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3439   match(ConI);
3440   op_cost(0);
3441 
3442   format %{ %}
3443   interface(CONST_INTER);
3444 %}
3445 
3446 // Immediates for special shifts (sign extend)
3447 
3448 // Integer Immediate: the value 16
3449 operand immI_16() %{
3450   predicate(n->get_int() == 16);
3451   match(ConI);
3452   op_cost(0);
3453 
3454   format %{ %}
3455   interface(CONST_INTER);
3456 %}
3457 
3458 // Integer Immediate: the value 24
3459 operand immI_24() %{
3460   predicate(n->get_int() == 24);
3461   match(ConI);
3462   op_cost(0);
3463 
3464   format %{ %}
3465   interface(CONST_INTER);
3466 %}
3467 
3468 // Integer Immediate: the value 255
3469 operand immI_255() %{
3470   predicate( n->get_int() == 255 );
3471   match(ConI);
3472   op_cost(0);
3473 
3474   format %{ %}
3475   interface(CONST_INTER);
3476 %}
3477 
3478 // Integer Immediate: the value 65535
3479 operand immI_65535() %{
3480   predicate(n->get_int() == 65535);
3481   match(ConI);
3482   op_cost(0);
3483 
3484   format %{ %}
3485   interface(CONST_INTER);
3486 %}
3487 
3488 // Long Immediate: the value FF
3489 operand immL_FF() %{
3490   predicate( n->get_long() == 0xFFL );
3491   match(ConL);
3492   op_cost(0);
3493 
3494   format %{ %}
3495   interface(CONST_INTER);
3496 %}
3497 
3498 // Long Immediate: the value FFFF
3499 operand immL_FFFF() %{
3500   predicate( n->get_long() == 0xFFFFL );
3501   match(ConL);
3502   op_cost(0);
3503 
3504   format %{ %}
3505   interface(CONST_INTER);
3506 %}
3507 
3508 // Pointer Immediate: 32 or 64-bit
3509 operand immP() %{
3510   match(ConP);
3511 
3512   op_cost(5);
3513   // formats are generated automatically for constants and base registers
3514   format %{ %}
3515   interface(CONST_INTER);
3516 %}
3517 
3518 operand immP13() %{
3519   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3520   match(ConP);
3521   op_cost(0);
3522 
3523   format %{ %}
3524   interface(CONST_INTER);
3525 %}
3526 
3527 operand immP0() %{
3528   predicate(n->get_ptr() == 0);
3529   match(ConP);
3530   op_cost(0);
3531 
3532   format %{ %}
3533   interface(CONST_INTER);
3534 %}
3535 
3536 operand immP_poll() %{
3537   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3538   match(ConP);
3539 
3540   // formats are generated automatically for constants and base registers
3541   format %{ %}
3542   interface(CONST_INTER);
3543 %}
3544 
3545 // Pointer Immediate
3546 operand immN()
3547 %{
3548   match(ConN);
3549 
3550   op_cost(10);
3551   format %{ %}
3552   interface(CONST_INTER);
3553 %}
3554 
3555 // NULL Pointer Immediate
3556 operand immN0()
3557 %{
3558   predicate(n->get_narrowcon() == 0);
3559   match(ConN);
3560 
3561   op_cost(0);
3562   format %{ %}
3563   interface(CONST_INTER);
3564 %}
3565 
3566 operand immL() %{
3567   match(ConL);
3568   op_cost(40);
3569   // formats are generated automatically for constants and base registers
3570   format %{ %}
3571   interface(CONST_INTER);
3572 %}
3573 
3574 operand immL0() %{
3575   predicate(n->get_long() == 0L);
3576   match(ConL);
3577   op_cost(0);
3578   // formats are generated automatically for constants and base registers
3579   format %{ %}
3580   interface(CONST_INTER);
3581 %}
3582 
3583 // Long Immediate: 13-bit
3584 operand immL13() %{
3585   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3586   match(ConL);
3587   op_cost(0);
3588 
3589   format %{ %}
3590   interface(CONST_INTER);
3591 %}
3592 
3593 // Long Immediate: 13-bit minus 7
3594 operand immL13m7() %{
3595   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3596   match(ConL);
3597   op_cost(0);
3598 
3599   format %{ %}
3600   interface(CONST_INTER);
3601 %}
3602 
3603 // Long Immediate: low 32-bit mask
3604 operand immL_32bits() %{
3605   predicate(n->get_long() == 0xFFFFFFFFL);
3606   match(ConL);
3607   op_cost(0);
3608 
3609   format %{ %}
3610   interface(CONST_INTER);
3611 %}
3612 
3613 // Double Immediate
3614 operand immD() %{
3615   match(ConD);
3616 
3617   op_cost(40);
3618   format %{ %}
3619   interface(CONST_INTER);
3620 %}
3621 
3622 operand immD0() %{
3623 #ifdef _LP64
3624   // on 64-bit architectures this comparision is faster
3625   predicate(jlong_cast(n->getd()) == 0);
3626 #else
3627   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3628 #endif
3629   match(ConD);
3630 
3631   op_cost(0);
3632   format %{ %}
3633   interface(CONST_INTER);
3634 %}
3635 
3636 // Float Immediate
3637 operand immF() %{
3638   match(ConF);
3639 
3640   op_cost(20);
3641   format %{ %}
3642   interface(CONST_INTER);
3643 %}
3644 
3645 // Float Immediate: 0
3646 operand immF0() %{
3647   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3648   match(ConF);
3649 
3650   op_cost(0);
3651   format %{ %}
3652   interface(CONST_INTER);
3653 %}
3654 
3655 // Integer Register Operands
3656 // Integer Register
3657 operand iRegI() %{
3658   constraint(ALLOC_IN_RC(int_reg));
3659   match(RegI);
3660 
3661   match(notemp_iRegI);
3662   match(g1RegI);
3663   match(o0RegI);
3664   match(iRegIsafe);
3665 
3666   format %{ %}
3667   interface(REG_INTER);
3668 %}
3669 
3670 operand notemp_iRegI() %{
3671   constraint(ALLOC_IN_RC(notemp_int_reg));
3672   match(RegI);
3673 
3674   match(o0RegI);
3675 
3676   format %{ %}
3677   interface(REG_INTER);
3678 %}
3679 
3680 operand o0RegI() %{
3681   constraint(ALLOC_IN_RC(o0_regI));
3682   match(iRegI);
3683 
3684   format %{ %}
3685   interface(REG_INTER);
3686 %}
3687 
3688 // Pointer Register
3689 operand iRegP() %{
3690   constraint(ALLOC_IN_RC(ptr_reg));
3691   match(RegP);
3692 
3693   match(lock_ptr_RegP);
3694   match(g1RegP);
3695   match(g2RegP);
3696   match(g3RegP);
3697   match(g4RegP);
3698   match(i0RegP);
3699   match(o0RegP);
3700   match(o1RegP);
3701   match(l7RegP);
3702 
3703   format %{ %}
3704   interface(REG_INTER);
3705 %}
3706 
3707 operand sp_ptr_RegP() %{
3708   constraint(ALLOC_IN_RC(sp_ptr_reg));
3709   match(RegP);
3710   match(iRegP);
3711 
3712   format %{ %}
3713   interface(REG_INTER);
3714 %}
3715 
3716 operand lock_ptr_RegP() %{
3717   constraint(ALLOC_IN_RC(lock_ptr_reg));
3718   match(RegP);
3719   match(i0RegP);
3720   match(o0RegP);
3721   match(o1RegP);
3722   match(l7RegP);
3723 
3724   format %{ %}
3725   interface(REG_INTER);
3726 %}
3727 
3728 operand g1RegP() %{
3729   constraint(ALLOC_IN_RC(g1_regP));
3730   match(iRegP);
3731 
3732   format %{ %}
3733   interface(REG_INTER);
3734 %}
3735 
3736 operand g2RegP() %{
3737   constraint(ALLOC_IN_RC(g2_regP));
3738   match(iRegP);
3739 
3740   format %{ %}
3741   interface(REG_INTER);
3742 %}
3743 
3744 operand g3RegP() %{
3745   constraint(ALLOC_IN_RC(g3_regP));
3746   match(iRegP);
3747 
3748   format %{ %}
3749   interface(REG_INTER);
3750 %}
3751 
3752 operand g1RegI() %{
3753   constraint(ALLOC_IN_RC(g1_regI));
3754   match(iRegI);
3755 
3756   format %{ %}
3757   interface(REG_INTER);
3758 %}
3759 
3760 operand g3RegI() %{
3761   constraint(ALLOC_IN_RC(g3_regI));
3762   match(iRegI);
3763 
3764   format %{ %}
3765   interface(REG_INTER);
3766 %}
3767 
3768 operand g4RegI() %{
3769   constraint(ALLOC_IN_RC(g4_regI));
3770   match(iRegI);
3771 
3772   format %{ %}
3773   interface(REG_INTER);
3774 %}
3775 
3776 operand g4RegP() %{
3777   constraint(ALLOC_IN_RC(g4_regP));
3778   match(iRegP);
3779 
3780   format %{ %}
3781   interface(REG_INTER);
3782 %}
3783 
3784 operand i0RegP() %{
3785   constraint(ALLOC_IN_RC(i0_regP));
3786   match(iRegP);
3787 
3788   format %{ %}
3789   interface(REG_INTER);
3790 %}
3791 
3792 operand o0RegP() %{
3793   constraint(ALLOC_IN_RC(o0_regP));
3794   match(iRegP);
3795 
3796   format %{ %}
3797   interface(REG_INTER);
3798 %}
3799 
3800 operand o1RegP() %{
3801   constraint(ALLOC_IN_RC(o1_regP));
3802   match(iRegP);
3803 
3804   format %{ %}
3805   interface(REG_INTER);
3806 %}
3807 
3808 operand o2RegP() %{
3809   constraint(ALLOC_IN_RC(o2_regP));
3810   match(iRegP);
3811 
3812   format %{ %}
3813   interface(REG_INTER);
3814 %}
3815 
3816 operand o7RegP() %{
3817   constraint(ALLOC_IN_RC(o7_regP));
3818   match(iRegP);
3819 
3820   format %{ %}
3821   interface(REG_INTER);
3822 %}
3823 
3824 operand l7RegP() %{
3825   constraint(ALLOC_IN_RC(l7_regP));
3826   match(iRegP);
3827 
3828   format %{ %}
3829   interface(REG_INTER);
3830 %}
3831 
3832 operand o7RegI() %{
3833   constraint(ALLOC_IN_RC(o7_regI));
3834   match(iRegI);
3835 
3836   format %{ %}
3837   interface(REG_INTER);
3838 %}
3839 
3840 operand iRegN() %{
3841   constraint(ALLOC_IN_RC(int_reg));
3842   match(RegN);
3843 
3844   format %{ %}
3845   interface(REG_INTER);
3846 %}
3847 
3848 // Long Register
3849 operand iRegL() %{
3850   constraint(ALLOC_IN_RC(long_reg));
3851   match(RegL);
3852 
3853   format %{ %}
3854   interface(REG_INTER);
3855 %}
3856 
3857 operand o2RegL() %{
3858   constraint(ALLOC_IN_RC(o2_regL));
3859   match(iRegL);
3860 
3861   format %{ %}
3862   interface(REG_INTER);
3863 %}
3864 
3865 operand o7RegL() %{
3866   constraint(ALLOC_IN_RC(o7_regL));
3867   match(iRegL);
3868 
3869   format %{ %}
3870   interface(REG_INTER);
3871 %}
3872 
3873 operand g1RegL() %{
3874   constraint(ALLOC_IN_RC(g1_regL));
3875   match(iRegL);
3876 
3877   format %{ %}
3878   interface(REG_INTER);
3879 %}
3880 
3881 operand g3RegL() %{
3882   constraint(ALLOC_IN_RC(g3_regL));
3883   match(iRegL);
3884 
3885   format %{ %}
3886   interface(REG_INTER);
3887 %}
3888 
3889 // Int Register safe
3890 // This is 64bit safe
3891 operand iRegIsafe() %{
3892   constraint(ALLOC_IN_RC(long_reg));
3893 
3894   match(iRegI);
3895 
3896   format %{ %}
3897   interface(REG_INTER);
3898 %}
3899 
3900 // Condition Code Flag Register
3901 operand flagsReg() %{
3902   constraint(ALLOC_IN_RC(int_flags));
3903   match(RegFlags);
3904 
3905   format %{ "ccr" %} // both ICC and XCC
3906   interface(REG_INTER);
3907 %}
3908 
3909 // Condition Code Register, unsigned comparisons.
3910 operand flagsRegU() %{
3911   constraint(ALLOC_IN_RC(int_flags));
3912   match(RegFlags);
3913 
3914   format %{ "icc_U" %}
3915   interface(REG_INTER);
3916 %}
3917 
3918 // Condition Code Register, pointer comparisons.
3919 operand flagsRegP() %{
3920   constraint(ALLOC_IN_RC(int_flags));
3921   match(RegFlags);
3922 
3923 #ifdef _LP64
3924   format %{ "xcc_P" %}
3925 #else
3926   format %{ "icc_P" %}
3927 #endif
3928   interface(REG_INTER);
3929 %}
3930 
3931 // Condition Code Register, long comparisons.
3932 operand flagsRegL() %{
3933   constraint(ALLOC_IN_RC(int_flags));
3934   match(RegFlags);
3935 
3936   format %{ "xcc_L" %}
3937   interface(REG_INTER);
3938 %}
3939 
3940 // Condition Code Register, floating comparisons, unordered same as "less".
3941 operand flagsRegF() %{
3942   constraint(ALLOC_IN_RC(float_flags));
3943   match(RegFlags);
3944   match(flagsRegF0);
3945 
3946   format %{ %}
3947   interface(REG_INTER);
3948 %}
3949 
3950 operand flagsRegF0() %{
3951   constraint(ALLOC_IN_RC(float_flag0));
3952   match(RegFlags);
3953 
3954   format %{ %}
3955   interface(REG_INTER);
3956 %}
3957 
3958 
3959 // Condition Code Flag Register used by long compare
3960 operand flagsReg_long_LTGE() %{
3961   constraint(ALLOC_IN_RC(int_flags));
3962   match(RegFlags);
3963   format %{ "icc_LTGE" %}
3964   interface(REG_INTER);
3965 %}
3966 operand flagsReg_long_EQNE() %{
3967   constraint(ALLOC_IN_RC(int_flags));
3968   match(RegFlags);
3969   format %{ "icc_EQNE" %}
3970   interface(REG_INTER);
3971 %}
3972 operand flagsReg_long_LEGT() %{
3973   constraint(ALLOC_IN_RC(int_flags));
3974   match(RegFlags);
3975   format %{ "icc_LEGT" %}
3976   interface(REG_INTER);
3977 %}
3978 
3979 
3980 operand regD() %{
3981   constraint(ALLOC_IN_RC(dflt_reg));
3982   match(RegD);
3983 
3984   match(regD_low);
3985 
3986   format %{ %}
3987   interface(REG_INTER);
3988 %}
3989 
3990 operand regF() %{
3991   constraint(ALLOC_IN_RC(sflt_reg));
3992   match(RegF);
3993 
3994   format %{ %}
3995   interface(REG_INTER);
3996 %}
3997 
3998 operand regD_low() %{
3999   constraint(ALLOC_IN_RC(dflt_low_reg));
4000   match(regD);
4001 
4002   format %{ %}
4003   interface(REG_INTER);
4004 %}
4005 
4006 // Special Registers
4007 
4008 // Method Register
4009 operand inline_cache_regP(iRegP reg) %{
4010   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4011   match(reg);
4012   format %{ %}
4013   interface(REG_INTER);
4014 %}
4015 
4016 operand interpreter_method_oop_regP(iRegP reg) %{
4017   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4018   match(reg);
4019   format %{ %}
4020   interface(REG_INTER);
4021 %}
4022 
4023 
4024 //----------Complex Operands---------------------------------------------------
4025 // Indirect Memory Reference
4026 operand indirect(sp_ptr_RegP reg) %{
4027   constraint(ALLOC_IN_RC(sp_ptr_reg));
4028   match(reg);
4029 
4030   op_cost(100);
4031   format %{ "[$reg]" %}
4032   interface(MEMORY_INTER) %{
4033     base($reg);
4034     index(0x0);
4035     scale(0x0);
4036     disp(0x0);
4037   %}
4038 %}
4039 
4040 // Indirect with simm13 Offset
4041 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4042   constraint(ALLOC_IN_RC(sp_ptr_reg));
4043   match(AddP reg offset);
4044 
4045   op_cost(100);
4046   format %{ "[$reg + $offset]" %}
4047   interface(MEMORY_INTER) %{
4048     base($reg);
4049     index(0x0);
4050     scale(0x0);
4051     disp($offset);
4052   %}
4053 %}
4054 
4055 // Indirect with simm13 Offset minus 7
4056 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4057   constraint(ALLOC_IN_RC(sp_ptr_reg));
4058   match(AddP reg offset);
4059 
4060   op_cost(100);
4061   format %{ "[$reg + $offset]" %}
4062   interface(MEMORY_INTER) %{
4063     base($reg);
4064     index(0x0);
4065     scale(0x0);
4066     disp($offset);
4067   %}
4068 %}
4069 
4070 // Note:  Intel has a swapped version also, like this:
4071 //operand indOffsetX(iRegI reg, immP offset) %{
4072 //  constraint(ALLOC_IN_RC(int_reg));
4073 //  match(AddP offset reg);
4074 //
4075 //  op_cost(100);
4076 //  format %{ "[$reg + $offset]" %}
4077 //  interface(MEMORY_INTER) %{
4078 //    base($reg);
4079 //    index(0x0);
4080 //    scale(0x0);
4081 //    disp($offset);
4082 //  %}
4083 //%}
4084 //// However, it doesn't make sense for SPARC, since
4085 // we have no particularly good way to embed oops in
4086 // single instructions.
4087 
4088 // Indirect with Register Index
4089 operand indIndex(iRegP addr, iRegX index) %{
4090   constraint(ALLOC_IN_RC(ptr_reg));
4091   match(AddP addr index);
4092 
4093   op_cost(100);
4094   format %{ "[$addr + $index]" %}
4095   interface(MEMORY_INTER) %{
4096     base($addr);
4097     index($index);
4098     scale(0x0);
4099     disp(0x0);
4100   %}
4101 %}
4102 
4103 //----------Special Memory Operands--------------------------------------------
4104 // Stack Slot Operand - This operand is used for loading and storing temporary
4105 //                      values on the stack where a match requires a value to
4106 //                      flow through memory.
4107 operand stackSlotI(sRegI reg) %{
4108   constraint(ALLOC_IN_RC(stack_slots));
4109   op_cost(100);
4110   //match(RegI);
4111   format %{ "[$reg]" %}
4112   interface(MEMORY_INTER) %{
4113     base(0xE);   // R_SP
4114     index(0x0);
4115     scale(0x0);
4116     disp($reg);  // Stack Offset
4117   %}
4118 %}
4119 
4120 operand stackSlotP(sRegP reg) %{
4121   constraint(ALLOC_IN_RC(stack_slots));
4122   op_cost(100);
4123   //match(RegP);
4124   format %{ "[$reg]" %}
4125   interface(MEMORY_INTER) %{
4126     base(0xE);   // R_SP
4127     index(0x0);
4128     scale(0x0);
4129     disp($reg);  // Stack Offset
4130   %}
4131 %}
4132 
4133 operand stackSlotF(sRegF reg) %{
4134   constraint(ALLOC_IN_RC(stack_slots));
4135   op_cost(100);
4136   //match(RegF);
4137   format %{ "[$reg]" %}
4138   interface(MEMORY_INTER) %{
4139     base(0xE);   // R_SP
4140     index(0x0);
4141     scale(0x0);
4142     disp($reg);  // Stack Offset
4143   %}
4144 %}
4145 operand stackSlotD(sRegD reg) %{
4146   constraint(ALLOC_IN_RC(stack_slots));
4147   op_cost(100);
4148   //match(RegD);
4149   format %{ "[$reg]" %}
4150   interface(MEMORY_INTER) %{
4151     base(0xE);   // R_SP
4152     index(0x0);
4153     scale(0x0);
4154     disp($reg);  // Stack Offset
4155   %}
4156 %}
4157 operand stackSlotL(sRegL reg) %{
4158   constraint(ALLOC_IN_RC(stack_slots));
4159   op_cost(100);
4160   //match(RegL);
4161   format %{ "[$reg]" %}
4162   interface(MEMORY_INTER) %{
4163     base(0xE);   // R_SP
4164     index(0x0);
4165     scale(0x0);
4166     disp($reg);  // Stack Offset
4167   %}
4168 %}
4169 
4170 // Operands for expressing Control Flow
4171 // NOTE:  Label is a predefined operand which should not be redefined in
4172 //        the AD file.  It is generically handled within the ADLC.
4173 
4174 //----------Conditional Branch Operands----------------------------------------
4175 // Comparison Op  - This is the operation of the comparison, and is limited to
4176 //                  the following set of codes:
4177 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4178 //
4179 // Other attributes of the comparison, such as unsignedness, are specified
4180 // by the comparison instruction that sets a condition code flags register.
4181 // That result is represented by a flags operand whose subtype is appropriate
4182 // to the unsignedness (etc.) of the comparison.
4183 //
4184 // Later, the instruction which matches both the Comparison Op (a Bool) and
4185 // the flags (produced by the Cmp) specifies the coding of the comparison op
4186 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4187 
4188 operand cmpOp() %{
4189   match(Bool);
4190 
4191   format %{ "" %}
4192   interface(COND_INTER) %{
4193     equal(0x1);
4194     not_equal(0x9);
4195     less(0x3);
4196     greater_equal(0xB);
4197     less_equal(0x2);
4198     greater(0xA);
4199   %}
4200 %}
4201 
4202 // Comparison Op, unsigned
4203 operand cmpOpU() %{
4204   match(Bool);
4205 
4206   format %{ "u" %}
4207   interface(COND_INTER) %{
4208     equal(0x1);
4209     not_equal(0x9);
4210     less(0x5);
4211     greater_equal(0xD);
4212     less_equal(0x4);
4213     greater(0xC);
4214   %}
4215 %}
4216 
4217 // Comparison Op, pointer (same as unsigned)
4218 operand cmpOpP() %{
4219   match(Bool);
4220 
4221   format %{ "p" %}
4222   interface(COND_INTER) %{
4223     equal(0x1);
4224     not_equal(0x9);
4225     less(0x5);
4226     greater_equal(0xD);
4227     less_equal(0x4);
4228     greater(0xC);
4229   %}
4230 %}
4231 
4232 // Comparison Op, branch-register encoding
4233 operand cmpOp_reg() %{
4234   match(Bool);
4235 
4236   format %{ "" %}
4237   interface(COND_INTER) %{
4238     equal        (0x1);
4239     not_equal    (0x5);
4240     less         (0x3);
4241     greater_equal(0x7);
4242     less_equal   (0x2);
4243     greater      (0x6);
4244   %}
4245 %}
4246 
4247 // Comparison Code, floating, unordered same as less
4248 operand cmpOpF() %{
4249   match(Bool);
4250 
4251   format %{ "fl" %}
4252   interface(COND_INTER) %{
4253     equal(0x9);
4254     not_equal(0x1);
4255     less(0x3);
4256     greater_equal(0xB);
4257     less_equal(0xE);
4258     greater(0x6);
4259   %}
4260 %}
4261 
4262 // Used by long compare
4263 operand cmpOp_commute() %{
4264   match(Bool);
4265 
4266   format %{ "" %}
4267   interface(COND_INTER) %{
4268     equal(0x1);
4269     not_equal(0x9);
4270     less(0xA);
4271     greater_equal(0x2);
4272     less_equal(0xB);
4273     greater(0x3);
4274   %}
4275 %}
4276 
4277 //----------OPERAND CLASSES----------------------------------------------------
4278 // Operand Classes are groups of operands that are used to simplify
4279 // instruction definitions by not requiring the AD writer to specify separate
4280 // instructions for every form of operand when the instruction accepts
4281 // multiple operand types with the same basic encoding and format.  The classic
4282 // case of this is memory operands.
4283 opclass memory( indirect, indOffset13, indIndex );
4284 opclass indIndexMemory( indIndex );
4285 
4286 //----------PIPELINE-----------------------------------------------------------
4287 pipeline %{
4288 
4289 //----------ATTRIBUTES---------------------------------------------------------
4290 attributes %{
4291   fixed_size_instructions;           // Fixed size instructions
4292   branch_has_delay_slot;             // Branch has delay slot following
4293   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4294   instruction_unit_size = 4;         // An instruction is 4 bytes long
4295   instruction_fetch_unit_size = 16;  // The processor fetches one line
4296   instruction_fetch_units = 1;       // of 16 bytes
4297 
4298   // List of nop instructions
4299   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4300 %}
4301 
4302 //----------RESOURCES----------------------------------------------------------
4303 // Resources are the functional units available to the machine
4304 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4305 
4306 //----------PIPELINE DESCRIPTION-----------------------------------------------
4307 // Pipeline Description specifies the stages in the machine's pipeline
4308 
4309 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4310 
4311 //----------PIPELINE CLASSES---------------------------------------------------
4312 // Pipeline Classes describe the stages in which input and output are
4313 // referenced by the hardware pipeline.
4314 
4315 // Integer ALU reg-reg operation
4316 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4317     single_instruction;
4318     dst   : E(write);
4319     src1  : R(read);
4320     src2  : R(read);
4321     IALU  : R;
4322 %}
4323 
4324 // Integer ALU reg-reg long operation
4325 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4326     instruction_count(2);
4327     dst   : E(write);
4328     src1  : R(read);
4329     src2  : R(read);
4330     IALU  : R;
4331     IALU  : R;
4332 %}
4333 
4334 // Integer ALU reg-reg long dependent operation
4335 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4336     instruction_count(1); multiple_bundles;
4337     dst   : E(write);
4338     src1  : R(read);
4339     src2  : R(read);
4340     cr    : E(write);
4341     IALU  : R(2);
4342 %}
4343 
4344 // Integer ALU reg-imm operaion
4345 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4346     single_instruction;
4347     dst   : E(write);
4348     src1  : R(read);
4349     IALU  : R;
4350 %}
4351 
4352 // Integer ALU reg-reg operation with condition code
4353 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4354     single_instruction;
4355     dst   : E(write);
4356     cr    : E(write);
4357     src1  : R(read);
4358     src2  : R(read);
4359     IALU  : R;
4360 %}
4361 
4362 // Integer ALU reg-imm operation with condition code
4363 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4364     single_instruction;
4365     dst   : E(write);
4366     cr    : E(write);
4367     src1  : R(read);
4368     IALU  : R;
4369 %}
4370 
4371 // Integer ALU zero-reg operation
4372 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4373     single_instruction;
4374     dst   : E(write);
4375     src2  : R(read);
4376     IALU  : R;
4377 %}
4378 
4379 // Integer ALU zero-reg operation with condition code only
4380 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4381     single_instruction;
4382     cr    : E(write);
4383     src   : R(read);
4384     IALU  : R;
4385 %}
4386 
4387 // Integer ALU reg-reg operation with condition code only
4388 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4389     single_instruction;
4390     cr    : E(write);
4391     src1  : R(read);
4392     src2  : R(read);
4393     IALU  : R;
4394 %}
4395 
4396 // Integer ALU reg-imm operation with condition code only
4397 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4398     single_instruction;
4399     cr    : E(write);
4400     src1  : R(read);
4401     IALU  : R;
4402 %}
4403 
4404 // Integer ALU reg-reg-zero operation with condition code only
4405 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4406     single_instruction;
4407     cr    : E(write);
4408     src1  : R(read);
4409     src2  : R(read);
4410     IALU  : R;
4411 %}
4412 
4413 // Integer ALU reg-imm-zero operation with condition code only
4414 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4415     single_instruction;
4416     cr    : E(write);
4417     src1  : R(read);
4418     IALU  : R;
4419 %}
4420 
4421 // Integer ALU reg-reg operation with condition code, src1 modified
4422 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4423     single_instruction;
4424     cr    : E(write);
4425     src1  : E(write);
4426     src1  : R(read);
4427     src2  : R(read);
4428     IALU  : R;
4429 %}
4430 
4431 // Integer ALU reg-imm operation with condition code, src1 modified
4432 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4433     single_instruction;
4434     cr    : E(write);
4435     src1  : E(write);
4436     src1  : R(read);
4437     IALU  : R;
4438 %}
4439 
4440 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4441     multiple_bundles;
4442     dst   : E(write)+4;
4443     cr    : E(write);
4444     src1  : R(read);
4445     src2  : R(read);
4446     IALU  : R(3);
4447     BR    : R(2);
4448 %}
4449 
4450 // Integer ALU operation
4451 pipe_class ialu_none(iRegI dst) %{
4452     single_instruction;
4453     dst   : E(write);
4454     IALU  : R;
4455 %}
4456 
4457 // Integer ALU reg operation
4458 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4459     single_instruction; may_have_no_code;
4460     dst   : E(write);
4461     src   : R(read);
4462     IALU  : R;
4463 %}
4464 
4465 // Integer ALU reg conditional operation
4466 // This instruction has a 1 cycle stall, and cannot execute
4467 // in the same cycle as the instruction setting the condition
4468 // code. We kludge this by pretending to read the condition code
4469 // 1 cycle earlier, and by marking the functional units as busy
4470 // for 2 cycles with the result available 1 cycle later than
4471 // is really the case.
4472 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4473     single_instruction;
4474     op2_out : C(write);
4475     op1     : R(read);
4476     cr      : R(read);       // This is really E, with a 1 cycle stall
4477     BR      : R(2);
4478     MS      : R(2);
4479 %}
4480 
4481 #ifdef _LP64
4482 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4483     instruction_count(1); multiple_bundles;
4484     dst     : C(write)+1;
4485     src     : R(read)+1;
4486     IALU    : R(1);
4487     BR      : E(2);
4488     MS      : E(2);
4489 %}
4490 #endif
4491 
4492 // Integer ALU reg operation
4493 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4494     single_instruction; may_have_no_code;
4495     dst   : E(write);
4496     src   : R(read);
4497     IALU  : R;
4498 %}
4499 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4500     single_instruction; may_have_no_code;
4501     dst   : E(write);
4502     src   : R(read);
4503     IALU  : R;
4504 %}
4505 
4506 // Two integer ALU reg operations
4507 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4508     instruction_count(2);
4509     dst   : E(write);
4510     src   : R(read);
4511     A0    : R;
4512     A1    : R;
4513 %}
4514 
4515 // Two integer ALU reg operations
4516 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4517     instruction_count(2); may_have_no_code;
4518     dst   : E(write);
4519     src   : R(read);
4520     A0    : R;
4521     A1    : R;
4522 %}
4523 
4524 // Integer ALU imm operation
4525 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4526     single_instruction;
4527     dst   : E(write);
4528     IALU  : R;
4529 %}
4530 
4531 // Integer ALU reg-reg with carry operation
4532 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4533     single_instruction;
4534     dst   : E(write);
4535     src1  : R(read);
4536     src2  : R(read);
4537     IALU  : R;
4538 %}
4539 
4540 // Integer ALU cc operation
4541 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4542     single_instruction;
4543     dst   : E(write);
4544     cc    : R(read);
4545     IALU  : R;
4546 %}
4547 
4548 // Integer ALU cc / second IALU operation
4549 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4550     instruction_count(1); multiple_bundles;
4551     dst   : E(write)+1;
4552     src   : R(read);
4553     IALU  : R;
4554 %}
4555 
4556 // Integer ALU cc / second IALU operation
4557 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4558     instruction_count(1); multiple_bundles;
4559     dst   : E(write)+1;
4560     p     : R(read);
4561     q     : R(read);
4562     IALU  : R;
4563 %}
4564 
4565 // Integer ALU hi-lo-reg operation
4566 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4567     instruction_count(1); multiple_bundles;
4568     dst   : E(write)+1;
4569     IALU  : R(2);
4570 %}
4571 
4572 // Float ALU hi-lo-reg operation (with temp)
4573 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4574     instruction_count(1); multiple_bundles;
4575     dst   : E(write)+1;
4576     IALU  : R(2);
4577 %}
4578 
4579 // Long Constant
4580 pipe_class loadConL( iRegL dst, immL src ) %{
4581     instruction_count(2); multiple_bundles;
4582     dst   : E(write)+1;
4583     IALU  : R(2);
4584     IALU  : R(2);
4585 %}
4586 
4587 // Pointer Constant
4588 pipe_class loadConP( iRegP dst, immP src ) %{
4589     instruction_count(0); multiple_bundles;
4590     fixed_latency(6);
4591 %}
4592 
4593 // Polling Address
4594 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4595 #ifdef _LP64
4596     instruction_count(0); multiple_bundles;
4597     fixed_latency(6);
4598 #else
4599     dst   : E(write);
4600     IALU  : R;
4601 #endif
4602 %}
4603 
4604 // Long Constant small
4605 pipe_class loadConLlo( iRegL dst, immL src ) %{
4606     instruction_count(2);
4607     dst   : E(write);
4608     IALU  : R;
4609     IALU  : R;
4610 %}
4611 
4612 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4613 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4614     instruction_count(1); multiple_bundles;
4615     src   : R(read);
4616     dst   : M(write)+1;
4617     IALU  : R;
4618     MS    : E;
4619 %}
4620 
4621 // Integer ALU nop operation
4622 pipe_class ialu_nop() %{
4623     single_instruction;
4624     IALU  : R;
4625 %}
4626 
4627 // Integer ALU nop operation
4628 pipe_class ialu_nop_A0() %{
4629     single_instruction;
4630     A0    : R;
4631 %}
4632 
4633 // Integer ALU nop operation
4634 pipe_class ialu_nop_A1() %{
4635     single_instruction;
4636     A1    : R;
4637 %}
4638 
4639 // Integer Multiply reg-reg operation
4640 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4641     single_instruction;
4642     dst   : E(write);
4643     src1  : R(read);
4644     src2  : R(read);
4645     MS    : R(5);
4646 %}
4647 
4648 // Integer Multiply reg-imm operation
4649 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4650     single_instruction;
4651     dst   : E(write);
4652     src1  : R(read);
4653     MS    : R(5);
4654 %}
4655 
4656 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4657     single_instruction;
4658     dst   : E(write)+4;
4659     src1  : R(read);
4660     src2  : R(read);
4661     MS    : R(6);
4662 %}
4663 
4664 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4665     single_instruction;
4666     dst   : E(write)+4;
4667     src1  : R(read);
4668     MS    : R(6);
4669 %}
4670 
4671 // Integer Divide reg-reg
4672 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4673     instruction_count(1); multiple_bundles;
4674     dst   : E(write);
4675     temp  : E(write);
4676     src1  : R(read);
4677     src2  : R(read);
4678     temp  : R(read);
4679     MS    : R(38);
4680 %}
4681 
4682 // Integer Divide reg-imm
4683 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4684     instruction_count(1); multiple_bundles;
4685     dst   : E(write);
4686     temp  : E(write);
4687     src1  : R(read);
4688     temp  : R(read);
4689     MS    : R(38);
4690 %}
4691 
4692 // Long Divide
4693 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4694     dst  : E(write)+71;
4695     src1 : R(read);
4696     src2 : R(read)+1;
4697     MS   : R(70);
4698 %}
4699 
4700 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4701     dst  : E(write)+71;
4702     src1 : R(read);
4703     MS   : R(70);
4704 %}
4705 
4706 // Floating Point Add Float
4707 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4708     single_instruction;
4709     dst   : X(write);
4710     src1  : E(read);
4711     src2  : E(read);
4712     FA    : R;
4713 %}
4714 
4715 // Floating Point Add Double
4716 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4717     single_instruction;
4718     dst   : X(write);
4719     src1  : E(read);
4720     src2  : E(read);
4721     FA    : R;
4722 %}
4723 
4724 // Floating Point Conditional Move based on integer flags
4725 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4726     single_instruction;
4727     dst   : X(write);
4728     src   : E(read);
4729     cr    : R(read);
4730     FA    : R(2);
4731     BR    : R(2);
4732 %}
4733 
4734 // Floating Point Conditional Move based on integer flags
4735 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4736     single_instruction;
4737     dst   : X(write);
4738     src   : E(read);
4739     cr    : R(read);
4740     FA    : R(2);
4741     BR    : R(2);
4742 %}
4743 
4744 // Floating Point Multiply Float
4745 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4746     single_instruction;
4747     dst   : X(write);
4748     src1  : E(read);
4749     src2  : E(read);
4750     FM    : R;
4751 %}
4752 
4753 // Floating Point Multiply Double
4754 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4755     single_instruction;
4756     dst   : X(write);
4757     src1  : E(read);
4758     src2  : E(read);
4759     FM    : R;
4760 %}
4761 
4762 // Floating Point Divide Float
4763 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4764     single_instruction;
4765     dst   : X(write);
4766     src1  : E(read);
4767     src2  : E(read);
4768     FM    : R;
4769     FDIV  : C(14);
4770 %}
4771 
4772 // Floating Point Divide Double
4773 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4774     single_instruction;
4775     dst   : X(write);
4776     src1  : E(read);
4777     src2  : E(read);
4778     FM    : R;
4779     FDIV  : C(17);
4780 %}
4781 
4782 // Floating Point Move/Negate/Abs Float
4783 pipe_class faddF_reg(regF dst, regF src) %{
4784     single_instruction;
4785     dst   : W(write);
4786     src   : E(read);
4787     FA    : R(1);
4788 %}
4789 
4790 // Floating Point Move/Negate/Abs Double
4791 pipe_class faddD_reg(regD dst, regD src) %{
4792     single_instruction;
4793     dst   : W(write);
4794     src   : E(read);
4795     FA    : R;
4796 %}
4797 
4798 // Floating Point Convert F->D
4799 pipe_class fcvtF2D(regD dst, regF src) %{
4800     single_instruction;
4801     dst   : X(write);
4802     src   : E(read);
4803     FA    : R;
4804 %}
4805 
4806 // Floating Point Convert I->D
4807 pipe_class fcvtI2D(regD dst, regF src) %{
4808     single_instruction;
4809     dst   : X(write);
4810     src   : E(read);
4811     FA    : R;
4812 %}
4813 
4814 // Floating Point Convert LHi->D
4815 pipe_class fcvtLHi2D(regD dst, regD src) %{
4816     single_instruction;
4817     dst   : X(write);
4818     src   : E(read);
4819     FA    : R;
4820 %}
4821 
4822 // Floating Point Convert L->D
4823 pipe_class fcvtL2D(regD dst, regF src) %{
4824     single_instruction;
4825     dst   : X(write);
4826     src   : E(read);
4827     FA    : R;
4828 %}
4829 
4830 // Floating Point Convert L->F
4831 pipe_class fcvtL2F(regD dst, regF src) %{
4832     single_instruction;
4833     dst   : X(write);
4834     src   : E(read);
4835     FA    : R;
4836 %}
4837 
4838 // Floating Point Convert D->F
4839 pipe_class fcvtD2F(regD dst, regF src) %{
4840     single_instruction;
4841     dst   : X(write);
4842     src   : E(read);
4843     FA    : R;
4844 %}
4845 
4846 // Floating Point Convert I->L
4847 pipe_class fcvtI2L(regD dst, regF src) %{
4848     single_instruction;
4849     dst   : X(write);
4850     src   : E(read);
4851     FA    : R;
4852 %}
4853 
4854 // Floating Point Convert D->F
4855 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4856     instruction_count(1); multiple_bundles;
4857     dst   : X(write)+6;
4858     src   : E(read);
4859     FA    : R;
4860 %}
4861 
4862 // Floating Point Convert D->L
4863 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4864     instruction_count(1); multiple_bundles;
4865     dst   : X(write)+6;
4866     src   : E(read);
4867     FA    : R;
4868 %}
4869 
4870 // Floating Point Convert F->I
4871 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4872     instruction_count(1); multiple_bundles;
4873     dst   : X(write)+6;
4874     src   : E(read);
4875     FA    : R;
4876 %}
4877 
4878 // Floating Point Convert F->L
4879 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4880     instruction_count(1); multiple_bundles;
4881     dst   : X(write)+6;
4882     src   : E(read);
4883     FA    : R;
4884 %}
4885 
4886 // Floating Point Convert I->F
4887 pipe_class fcvtI2F(regF dst, regF src) %{
4888     single_instruction;
4889     dst   : X(write);
4890     src   : E(read);
4891     FA    : R;
4892 %}
4893 
4894 // Floating Point Compare
4895 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4896     single_instruction;
4897     cr    : X(write);
4898     src1  : E(read);
4899     src2  : E(read);
4900     FA    : R;
4901 %}
4902 
4903 // Floating Point Compare
4904 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4905     single_instruction;
4906     cr    : X(write);
4907     src1  : E(read);
4908     src2  : E(read);
4909     FA    : R;
4910 %}
4911 
4912 // Floating Add Nop
4913 pipe_class fadd_nop() %{
4914     single_instruction;
4915     FA  : R;
4916 %}
4917 
4918 // Integer Store to Memory
4919 pipe_class istore_mem_reg(memory mem, iRegI src) %{
4920     single_instruction;
4921     mem   : R(read);
4922     src   : C(read);
4923     MS    : R;
4924 %}
4925 
4926 // Integer Store to Memory
4927 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
4928     single_instruction;
4929     mem   : R(read);
4930     src   : C(read);
4931     MS    : R;
4932 %}
4933 
4934 // Integer Store Zero to Memory
4935 pipe_class istore_mem_zero(memory mem, immI0 src) %{
4936     single_instruction;
4937     mem   : R(read);
4938     MS    : R;
4939 %}
4940 
4941 // Special Stack Slot Store
4942 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
4943     single_instruction;
4944     stkSlot : R(read);
4945     src     : C(read);
4946     MS      : R;
4947 %}
4948 
4949 // Special Stack Slot Store
4950 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
4951     instruction_count(2); multiple_bundles;
4952     stkSlot : R(read);
4953     src     : C(read);
4954     MS      : R(2);
4955 %}
4956 
4957 // Float Store
4958 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
4959     single_instruction;
4960     mem : R(read);
4961     src : C(read);
4962     MS  : R;
4963 %}
4964 
4965 // Float Store
4966 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
4967     single_instruction;
4968     mem : R(read);
4969     MS  : R;
4970 %}
4971 
4972 // Double Store
4973 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
4974     instruction_count(1);
4975     mem : R(read);
4976     src : C(read);
4977     MS  : R;
4978 %}
4979 
4980 // Double Store
4981 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
4982     single_instruction;
4983     mem : R(read);
4984     MS  : R;
4985 %}
4986 
4987 // Special Stack Slot Float Store
4988 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
4989     single_instruction;
4990     stkSlot : R(read);
4991     src     : C(read);
4992     MS      : R;
4993 %}
4994 
4995 // Special Stack Slot Double Store
4996 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
4997     single_instruction;
4998     stkSlot : R(read);
4999     src     : C(read);
5000     MS      : R;
5001 %}
5002 
5003 // Integer Load (when sign bit propagation not needed)
5004 pipe_class iload_mem(iRegI dst, memory mem) %{
5005     single_instruction;
5006     mem : R(read);
5007     dst : C(write);
5008     MS  : R;
5009 %}
5010 
5011 // Integer Load from stack operand
5012 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5013     single_instruction;
5014     mem : R(read);
5015     dst : C(write);
5016     MS  : R;
5017 %}
5018 
5019 // Integer Load (when sign bit propagation or masking is needed)
5020 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5021     single_instruction;
5022     mem : R(read);
5023     dst : M(write);
5024     MS  : R;
5025 %}
5026 
5027 // Float Load
5028 pipe_class floadF_mem(regF dst, memory mem) %{
5029     single_instruction;
5030     mem : R(read);
5031     dst : M(write);
5032     MS  : R;
5033 %}
5034 
5035 // Float Load
5036 pipe_class floadD_mem(regD dst, memory mem) %{
5037     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5038     mem : R(read);
5039     dst : M(write);
5040     MS  : R;
5041 %}
5042 
5043 // Float Load
5044 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5045     single_instruction;
5046     stkSlot : R(read);
5047     dst : M(write);
5048     MS  : R;
5049 %}
5050 
5051 // Float Load
5052 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5053     single_instruction;
5054     stkSlot : R(read);
5055     dst : M(write);
5056     MS  : R;
5057 %}
5058 
5059 // Memory Nop
5060 pipe_class mem_nop() %{
5061     single_instruction;
5062     MS  : R;
5063 %}
5064 
5065 pipe_class sethi(iRegP dst, immI src) %{
5066     single_instruction;
5067     dst  : E(write);
5068     IALU : R;
5069 %}
5070 
5071 pipe_class loadPollP(iRegP poll) %{
5072     single_instruction;
5073     poll : R(read);
5074     MS   : R;
5075 %}
5076 
5077 pipe_class br(Universe br, label labl) %{
5078     single_instruction_with_delay_slot;
5079     BR  : R;
5080 %}
5081 
5082 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5083     single_instruction_with_delay_slot;
5084     cr    : E(read);
5085     BR    : R;
5086 %}
5087 
5088 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5089     single_instruction_with_delay_slot;
5090     op1 : E(read);
5091     BR  : R;
5092     MS  : R;
5093 %}
5094 
5095 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5096     single_instruction_with_delay_slot;
5097     cr    : E(read);
5098     BR    : R;
5099 %}
5100 
5101 pipe_class br_nop() %{
5102     single_instruction;
5103     BR  : R;
5104 %}
5105 
5106 pipe_class simple_call(method meth) %{
5107     instruction_count(2); multiple_bundles; force_serialization;
5108     fixed_latency(100);
5109     BR  : R(1);
5110     MS  : R(1);
5111     A0  : R(1);
5112 %}
5113 
5114 pipe_class compiled_call(method meth) %{
5115     instruction_count(1); multiple_bundles; force_serialization;
5116     fixed_latency(100);
5117     MS  : R(1);
5118 %}
5119 
5120 pipe_class call(method meth) %{
5121     instruction_count(0); multiple_bundles; force_serialization;
5122     fixed_latency(100);
5123 %}
5124 
5125 pipe_class tail_call(Universe ignore, label labl) %{
5126     single_instruction; has_delay_slot;
5127     fixed_latency(100);
5128     BR  : R(1);
5129     MS  : R(1);
5130 %}
5131 
5132 pipe_class ret(Universe ignore) %{
5133     single_instruction; has_delay_slot;
5134     BR  : R(1);
5135     MS  : R(1);
5136 %}
5137 
5138 pipe_class ret_poll(g3RegP poll) %{
5139     instruction_count(3); has_delay_slot;
5140     poll : E(read);
5141     MS   : R;
5142 %}
5143 
5144 // The real do-nothing guy
5145 pipe_class empty( ) %{
5146     instruction_count(0);
5147 %}
5148 
5149 pipe_class long_memory_op() %{
5150     instruction_count(0); multiple_bundles; force_serialization;
5151     fixed_latency(25);
5152     MS  : R(1);
5153 %}
5154 
5155 // Check-cast
5156 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5157     array : R(read);
5158     match  : R(read);
5159     IALU   : R(2);
5160     BR     : R(2);
5161     MS     : R;
5162 %}
5163 
5164 // Convert FPU flags into +1,0,-1
5165 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5166     src1  : E(read);
5167     src2  : E(read);
5168     dst   : E(write);
5169     FA    : R;
5170     MS    : R(2);
5171     BR    : R(2);
5172 %}
5173 
5174 // Compare for p < q, and conditionally add y
5175 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5176     p     : E(read);
5177     q     : E(read);
5178     y     : E(read);
5179     IALU  : R(3)
5180 %}
5181 
5182 // Perform a compare, then move conditionally in a branch delay slot.
5183 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5184     src2   : E(read);
5185     srcdst : E(read);
5186     IALU   : R;
5187     BR     : R;
5188 %}
5189 
5190 // Define the class for the Nop node
5191 define %{
5192    MachNop = ialu_nop;
5193 %}
5194 
5195 %}
5196 
5197 //----------INSTRUCTIONS-------------------------------------------------------
5198 
5199 //------------Special Stack Slot instructions - no match rules-----------------
5200 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5201   // No match rule to avoid chain rule match.
5202   effect(DEF dst, USE src);
5203   ins_cost(MEMORY_REF_COST);
5204   size(4);
5205   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5206   opcode(Assembler::ldf_op3);
5207   ins_encode(simple_form3_mem_reg(src, dst));
5208   ins_pipe(floadF_stk);
5209 %}
5210 
5211 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5212   // No match rule to avoid chain rule match.
5213   effect(DEF dst, USE src);
5214   ins_cost(MEMORY_REF_COST);
5215   size(4);
5216   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5217   opcode(Assembler::lddf_op3);
5218   ins_encode(simple_form3_mem_reg(src, dst));
5219   ins_pipe(floadD_stk);
5220 %}
5221 
5222 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5223   // No match rule to avoid chain rule match.
5224   effect(DEF dst, USE src);
5225   ins_cost(MEMORY_REF_COST);
5226   size(4);
5227   format %{ "STF    $src,$dst\t! regF to stkI" %}
5228   opcode(Assembler::stf_op3);
5229   ins_encode(simple_form3_mem_reg(dst, src));
5230   ins_pipe(fstoreF_stk_reg);
5231 %}
5232 
5233 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5234   // No match rule to avoid chain rule match.
5235   effect(DEF dst, USE src);
5236   ins_cost(MEMORY_REF_COST);
5237   size(4);
5238   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5239   opcode(Assembler::stdf_op3);
5240   ins_encode(simple_form3_mem_reg(dst, src));
5241   ins_pipe(fstoreD_stk_reg);
5242 %}
5243 
5244 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5245   effect(DEF dst, USE src);
5246   ins_cost(MEMORY_REF_COST*2);
5247   size(8);
5248   format %{ "STW    $src,$dst.hi\t! long\n\t"
5249             "STW    R_G0,$dst.lo" %}
5250   opcode(Assembler::stw_op3);
5251   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5252   ins_pipe(lstoreI_stk_reg);
5253 %}
5254 
5255 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5256   // No match rule to avoid chain rule match.
5257   effect(DEF dst, USE src);
5258   ins_cost(MEMORY_REF_COST);
5259   size(4);
5260   format %{ "STX    $src,$dst\t! regL to stkD" %}
5261   opcode(Assembler::stx_op3);
5262   ins_encode(simple_form3_mem_reg( dst, src ) );
5263   ins_pipe(istore_stk_reg);
5264 %}
5265 
5266 //---------- Chain stack slots between similar types --------
5267 
5268 // Load integer from stack slot
5269 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5270   match(Set dst src);
5271   ins_cost(MEMORY_REF_COST);
5272 
5273   size(4);
5274   format %{ "LDUW   $src,$dst\t!stk" %}
5275   opcode(Assembler::lduw_op3);
5276   ins_encode(simple_form3_mem_reg( src, dst ) );
5277   ins_pipe(iload_mem);
5278 %}
5279 
5280 // Store integer to stack slot
5281 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5282   match(Set dst src);
5283   ins_cost(MEMORY_REF_COST);
5284 
5285   size(4);
5286   format %{ "STW    $src,$dst\t!stk" %}
5287   opcode(Assembler::stw_op3);
5288   ins_encode(simple_form3_mem_reg( dst, src ) );
5289   ins_pipe(istore_mem_reg);
5290 %}
5291 
5292 // Load long from stack slot
5293 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5294   match(Set dst src);
5295 
5296   ins_cost(MEMORY_REF_COST);
5297   size(4);
5298   format %{ "LDX    $src,$dst\t! long" %}
5299   opcode(Assembler::ldx_op3);
5300   ins_encode(simple_form3_mem_reg( src, dst ) );
5301   ins_pipe(iload_mem);
5302 %}
5303 
5304 // Store long to stack slot
5305 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5306   match(Set dst src);
5307 
5308   ins_cost(MEMORY_REF_COST);
5309   size(4);
5310   format %{ "STX    $src,$dst\t! long" %}
5311   opcode(Assembler::stx_op3);
5312   ins_encode(simple_form3_mem_reg( dst, src ) );
5313   ins_pipe(istore_mem_reg);
5314 %}
5315 
5316 #ifdef _LP64
5317 // Load pointer from stack slot, 64-bit encoding
5318 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5319   match(Set dst src);
5320   ins_cost(MEMORY_REF_COST);
5321   size(4);
5322   format %{ "LDX    $src,$dst\t!ptr" %}
5323   opcode(Assembler::ldx_op3);
5324   ins_encode(simple_form3_mem_reg( src, dst ) );
5325   ins_pipe(iload_mem);
5326 %}
5327 
5328 // Store pointer to stack slot
5329 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5330   match(Set dst src);
5331   ins_cost(MEMORY_REF_COST);
5332   size(4);
5333   format %{ "STX    $src,$dst\t!ptr" %}
5334   opcode(Assembler::stx_op3);
5335   ins_encode(simple_form3_mem_reg( dst, src ) );
5336   ins_pipe(istore_mem_reg);
5337 %}
5338 #else // _LP64
5339 // Load pointer from stack slot, 32-bit encoding
5340 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5341   match(Set dst src);
5342   ins_cost(MEMORY_REF_COST);
5343   format %{ "LDUW   $src,$dst\t!ptr" %}
5344   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5345   ins_encode(simple_form3_mem_reg( src, dst ) );
5346   ins_pipe(iload_mem);
5347 %}
5348 
5349 // Store pointer to stack slot
5350 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5351   match(Set dst src);
5352   ins_cost(MEMORY_REF_COST);
5353   format %{ "STW    $src,$dst\t!ptr" %}
5354   opcode(Assembler::stw_op3, Assembler::ldst_op);
5355   ins_encode(simple_form3_mem_reg( dst, src ) );
5356   ins_pipe(istore_mem_reg);
5357 %}
5358 #endif // _LP64
5359 
5360 //------------Special Nop instructions for bundling - no match rules-----------
5361 // Nop using the A0 functional unit
5362 instruct Nop_A0() %{
5363   ins_cost(0);
5364 
5365   format %{ "NOP    ! Alu Pipeline" %}
5366   opcode(Assembler::or_op3, Assembler::arith_op);
5367   ins_encode( form2_nop() );
5368   ins_pipe(ialu_nop_A0);
5369 %}
5370 
5371 // Nop using the A1 functional unit
5372 instruct Nop_A1( ) %{
5373   ins_cost(0);
5374 
5375   format %{ "NOP    ! Alu Pipeline" %}
5376   opcode(Assembler::or_op3, Assembler::arith_op);
5377   ins_encode( form2_nop() );
5378   ins_pipe(ialu_nop_A1);
5379 %}
5380 
5381 // Nop using the memory functional unit
5382 instruct Nop_MS( ) %{
5383   ins_cost(0);
5384 
5385   format %{ "NOP    ! Memory Pipeline" %}
5386   ins_encode( emit_mem_nop );
5387   ins_pipe(mem_nop);
5388 %}
5389 
5390 // Nop using the floating add functional unit
5391 instruct Nop_FA( ) %{
5392   ins_cost(0);
5393 
5394   format %{ "NOP    ! Floating Add Pipeline" %}
5395   ins_encode( emit_fadd_nop );
5396   ins_pipe(fadd_nop);
5397 %}
5398 
5399 // Nop using the branch functional unit
5400 instruct Nop_BR( ) %{
5401   ins_cost(0);
5402 
5403   format %{ "NOP    ! Branch Pipeline" %}
5404   ins_encode( emit_br_nop );
5405   ins_pipe(br_nop);
5406 %}
5407 
5408 //----------Load/Store/Move Instructions---------------------------------------
5409 //----------Load Instructions--------------------------------------------------
5410 // Load Byte (8bit signed)
5411 instruct loadB(iRegI dst, memory mem) %{
5412   match(Set dst (LoadB mem));
5413   ins_cost(MEMORY_REF_COST);
5414 
5415   size(4);
5416   format %{ "LDSB   $mem,$dst\t! byte" %}
5417   ins_encode %{
5418     __ ldsb($mem$$Address, $dst$$Register);
5419   %}
5420   ins_pipe(iload_mask_mem);
5421 %}
5422 
5423 // Load Byte (8bit signed) into a Long Register
5424 instruct loadB2L(iRegL dst, memory mem) %{
5425   match(Set dst (ConvI2L (LoadB mem)));
5426   ins_cost(MEMORY_REF_COST);
5427 
5428   size(4);
5429   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5430   ins_encode %{
5431     __ ldsb($mem$$Address, $dst$$Register);
5432   %}
5433   ins_pipe(iload_mask_mem);
5434 %}
5435 
5436 // Load Unsigned Byte (8bit UNsigned) into an int reg
5437 instruct loadUB(iRegI dst, memory mem) %{
5438   match(Set dst (LoadUB mem));
5439   ins_cost(MEMORY_REF_COST);
5440 
5441   size(4);
5442   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5443   ins_encode %{
5444     __ ldub($mem$$Address, $dst$$Register);
5445   %}
5446   ins_pipe(iload_mem);
5447 %}
5448 
5449 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5450 instruct loadUB2L(iRegL dst, memory mem) %{
5451   match(Set dst (ConvI2L (LoadUB mem)));
5452   ins_cost(MEMORY_REF_COST);
5453 
5454   size(4);
5455   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5456   ins_encode %{
5457     __ ldub($mem$$Address, $dst$$Register);
5458   %}
5459   ins_pipe(iload_mem);
5460 %}
5461 
5462 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5463 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5464   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5465   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5466 
5467   size(2*4);
5468   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5469             "AND    $dst,$mask,$dst" %}
5470   ins_encode %{
5471     __ ldub($mem$$Address, $dst$$Register);
5472     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5473   %}
5474   ins_pipe(iload_mem);
5475 %}
5476 
5477 // Load Short (16bit signed)
5478 instruct loadS(iRegI dst, memory mem) %{
5479   match(Set dst (LoadS mem));
5480   ins_cost(MEMORY_REF_COST);
5481 
5482   size(4);
5483   format %{ "LDSH   $mem,$dst\t! short" %}
5484   ins_encode %{
5485     __ ldsh($mem$$Address, $dst$$Register);
5486   %}
5487   ins_pipe(iload_mask_mem);
5488 %}
5489 
5490 // Load Short (16 bit signed) to Byte (8 bit signed)
5491 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5492   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5493   ins_cost(MEMORY_REF_COST);
5494 
5495   size(4);
5496 
5497   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5498   ins_encode %{
5499     __ ldsb($mem$$Address, $dst$$Register, 1);
5500   %}
5501   ins_pipe(iload_mask_mem);
5502 %}
5503 
5504 // Load Short (16bit signed) into a Long Register
5505 instruct loadS2L(iRegL dst, memory mem) %{
5506   match(Set dst (ConvI2L (LoadS mem)));
5507   ins_cost(MEMORY_REF_COST);
5508 
5509   size(4);
5510   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5511   ins_encode %{
5512     __ ldsh($mem$$Address, $dst$$Register);
5513   %}
5514   ins_pipe(iload_mask_mem);
5515 %}
5516 
5517 // Load Unsigned Short/Char (16bit UNsigned)
5518 instruct loadUS(iRegI dst, memory mem) %{
5519   match(Set dst (LoadUS mem));
5520   ins_cost(MEMORY_REF_COST);
5521 
5522   size(4);
5523   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5524   ins_encode %{
5525     __ lduh($mem$$Address, $dst$$Register);
5526   %}
5527   ins_pipe(iload_mem);
5528 %}
5529 
5530 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5531 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5532   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5533   ins_cost(MEMORY_REF_COST);
5534 
5535   size(4);
5536   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5537   ins_encode %{
5538     __ ldsb($mem$$Address, $dst$$Register, 1);
5539   %}
5540   ins_pipe(iload_mask_mem);
5541 %}
5542 
5543 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5544 instruct loadUS2L(iRegL dst, memory mem) %{
5545   match(Set dst (ConvI2L (LoadUS mem)));
5546   ins_cost(MEMORY_REF_COST);
5547 
5548   size(4);
5549   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5550   ins_encode %{
5551     __ lduh($mem$$Address, $dst$$Register);
5552   %}
5553   ins_pipe(iload_mem);
5554 %}
5555 
5556 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5557 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5558   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5559   ins_cost(MEMORY_REF_COST);
5560 
5561   size(4);
5562   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5563   ins_encode %{
5564     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5565   %}
5566   ins_pipe(iload_mem);
5567 %}
5568 
5569 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5570 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5571   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5572   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5573 
5574   size(2*4);
5575   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5576             "AND    $dst,$mask,$dst" %}
5577   ins_encode %{
5578     Register Rdst = $dst$$Register;
5579     __ lduh($mem$$Address, Rdst);
5580     __ and3(Rdst, $mask$$constant, Rdst);
5581   %}
5582   ins_pipe(iload_mem);
5583 %}
5584 
5585 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5586 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5587   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5588   effect(TEMP dst, TEMP tmp);
5589   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5590 
5591   size((3+1)*4);  // set may use two instructions.
5592   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5593             "SET    $mask,$tmp\n\t"
5594             "AND    $dst,$tmp,$dst" %}
5595   ins_encode %{
5596     Register Rdst = $dst$$Register;
5597     Register Rtmp = $tmp$$Register;
5598     __ lduh($mem$$Address, Rdst);
5599     __ set($mask$$constant, Rtmp);
5600     __ and3(Rdst, Rtmp, Rdst);
5601   %}
5602   ins_pipe(iload_mem);
5603 %}
5604 
5605 // Load Integer
5606 instruct loadI(iRegI dst, memory mem) %{
5607   match(Set dst (LoadI mem));
5608   ins_cost(MEMORY_REF_COST);
5609 
5610   size(4);
5611   format %{ "LDUW   $mem,$dst\t! int" %}
5612   ins_encode %{
5613     __ lduw($mem$$Address, $dst$$Register);
5614   %}
5615   ins_pipe(iload_mem);
5616 %}
5617 
5618 // Load Integer to Byte (8 bit signed)
5619 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5620   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5621   ins_cost(MEMORY_REF_COST);
5622 
5623   size(4);
5624 
5625   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5626   ins_encode %{
5627     __ ldsb($mem$$Address, $dst$$Register, 3);
5628   %}
5629   ins_pipe(iload_mask_mem);
5630 %}
5631 
5632 // Load Integer to Unsigned Byte (8 bit UNsigned)
5633 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5634   match(Set dst (AndI (LoadI mem) mask));
5635   ins_cost(MEMORY_REF_COST);
5636 
5637   size(4);
5638 
5639   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5640   ins_encode %{
5641     __ ldub($mem$$Address, $dst$$Register, 3);
5642   %}
5643   ins_pipe(iload_mask_mem);
5644 %}
5645 
5646 // Load Integer to Short (16 bit signed)
5647 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5648   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5649   ins_cost(MEMORY_REF_COST);
5650 
5651   size(4);
5652 
5653   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5654   ins_encode %{
5655     __ ldsh($mem$$Address, $dst$$Register, 2);
5656   %}
5657   ins_pipe(iload_mask_mem);
5658 %}
5659 
5660 // Load Integer to Unsigned Short (16 bit UNsigned)
5661 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5662   match(Set dst (AndI (LoadI mem) mask));
5663   ins_cost(MEMORY_REF_COST);
5664 
5665   size(4);
5666 
5667   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5668   ins_encode %{
5669     __ lduh($mem$$Address, $dst$$Register, 2);
5670   %}
5671   ins_pipe(iload_mask_mem);
5672 %}
5673 
5674 // Load Integer into a Long Register
5675 instruct loadI2L(iRegL dst, memory mem) %{
5676   match(Set dst (ConvI2L (LoadI mem)));
5677   ins_cost(MEMORY_REF_COST);
5678 
5679   size(4);
5680   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5681   ins_encode %{
5682     __ ldsw($mem$$Address, $dst$$Register);
5683   %}
5684   ins_pipe(iload_mask_mem);
5685 %}
5686 
5687 // Load Integer with mask 0xFF into a Long Register
5688 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5689   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5690   ins_cost(MEMORY_REF_COST);
5691 
5692   size(4);
5693   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5694   ins_encode %{
5695     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5696   %}
5697   ins_pipe(iload_mem);
5698 %}
5699 
5700 // Load Integer with mask 0xFFFF into a Long Register
5701 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5702   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5703   ins_cost(MEMORY_REF_COST);
5704 
5705   size(4);
5706   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5707   ins_encode %{
5708     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5709   %}
5710   ins_pipe(iload_mem);
5711 %}
5712 
5713 // Load Integer with a 13-bit mask into a Long Register
5714 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5715   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5716   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5717 
5718   size(2*4);
5719   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
5720             "AND    $dst,$mask,$dst" %}
5721   ins_encode %{
5722     Register Rdst = $dst$$Register;
5723     __ lduw($mem$$Address, Rdst);
5724     __ and3(Rdst, $mask$$constant, Rdst);
5725   %}
5726   ins_pipe(iload_mem);
5727 %}
5728 
5729 // Load Integer with a 32-bit mask into a Long Register
5730 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5731   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5732   effect(TEMP dst, TEMP tmp);
5733   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5734 
5735   size((3+1)*4);  // set may use two instructions.
5736   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
5737             "SET    $mask,$tmp\n\t"
5738             "AND    $dst,$tmp,$dst" %}
5739   ins_encode %{
5740     Register Rdst = $dst$$Register;
5741     Register Rtmp = $tmp$$Register;
5742     __ lduw($mem$$Address, Rdst);
5743     __ set($mask$$constant, Rtmp);
5744     __ and3(Rdst, Rtmp, Rdst);
5745   %}
5746   ins_pipe(iload_mem);
5747 %}
5748 
5749 // Load Unsigned Integer into a Long Register
5750 instruct loadUI2L(iRegL dst, memory mem) %{
5751   match(Set dst (LoadUI2L mem));
5752   ins_cost(MEMORY_REF_COST);
5753 
5754   size(4);
5755   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5756   ins_encode %{
5757     __ lduw($mem$$Address, $dst$$Register);
5758   %}
5759   ins_pipe(iload_mem);
5760 %}
5761 
5762 // Load Long - aligned
5763 instruct loadL(iRegL dst, memory mem ) %{
5764   match(Set dst (LoadL mem));
5765   ins_cost(MEMORY_REF_COST);
5766 
5767   size(4);
5768   format %{ "LDX    $mem,$dst\t! long" %}
5769   ins_encode %{
5770     __ ldx($mem$$Address, $dst$$Register);
5771   %}
5772   ins_pipe(iload_mem);
5773 %}
5774 
5775 // Load Long - UNaligned
5776 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5777   match(Set dst (LoadL_unaligned mem));
5778   effect(KILL tmp);
5779   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5780   size(16);
5781   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5782           "\tLDUW   $mem  ,$dst\n"
5783           "\tSLLX   #32, $dst, $dst\n"
5784           "\tOR     $dst, R_O7, $dst" %}
5785   opcode(Assembler::lduw_op3);
5786   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5787   ins_pipe(iload_mem);
5788 %}
5789 
5790 // Load Aligned Packed Byte into a Double Register
5791 instruct loadA8B(regD dst, memory mem) %{
5792   match(Set dst (Load8B mem));
5793   ins_cost(MEMORY_REF_COST);
5794   size(4);
5795   format %{ "LDDF   $mem,$dst\t! packed8B" %}
5796   opcode(Assembler::lddf_op3);
5797   ins_encode(simple_form3_mem_reg( mem, dst ) );
5798   ins_pipe(floadD_mem);
5799 %}
5800 
5801 // Load Aligned Packed Char into a Double Register
5802 instruct loadA4C(regD dst, memory mem) %{
5803   match(Set dst (Load4C mem));
5804   ins_cost(MEMORY_REF_COST);
5805   size(4);
5806   format %{ "LDDF   $mem,$dst\t! packed4C" %}
5807   opcode(Assembler::lddf_op3);
5808   ins_encode(simple_form3_mem_reg( mem, dst ) );
5809   ins_pipe(floadD_mem);
5810 %}
5811 
5812 // Load Aligned Packed Short into a Double Register
5813 instruct loadA4S(regD dst, memory mem) %{
5814   match(Set dst (Load4S mem));
5815   ins_cost(MEMORY_REF_COST);
5816   size(4);
5817   format %{ "LDDF   $mem,$dst\t! packed4S" %}
5818   opcode(Assembler::lddf_op3);
5819   ins_encode(simple_form3_mem_reg( mem, dst ) );
5820   ins_pipe(floadD_mem);
5821 %}
5822 
5823 // Load Aligned Packed Int into a Double Register
5824 instruct loadA2I(regD dst, memory mem) %{
5825   match(Set dst (Load2I mem));
5826   ins_cost(MEMORY_REF_COST);
5827   size(4);
5828   format %{ "LDDF   $mem,$dst\t! packed2I" %}
5829   opcode(Assembler::lddf_op3);
5830   ins_encode(simple_form3_mem_reg( mem, dst ) );
5831   ins_pipe(floadD_mem);
5832 %}
5833 
5834 // Load Range
5835 instruct loadRange(iRegI dst, memory mem) %{
5836   match(Set dst (LoadRange mem));
5837   ins_cost(MEMORY_REF_COST);
5838 
5839   size(4);
5840   format %{ "LDUW   $mem,$dst\t! range" %}
5841   opcode(Assembler::lduw_op3);
5842   ins_encode(simple_form3_mem_reg( mem, dst ) );
5843   ins_pipe(iload_mem);
5844 %}
5845 
5846 // Load Integer into %f register (for fitos/fitod)
5847 instruct loadI_freg(regF dst, memory mem) %{
5848   match(Set dst (LoadI mem));
5849   ins_cost(MEMORY_REF_COST);
5850   size(4);
5851 
5852   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5853   opcode(Assembler::ldf_op3);
5854   ins_encode(simple_form3_mem_reg( mem, dst ) );
5855   ins_pipe(floadF_mem);
5856 %}
5857 
5858 // Load Pointer
5859 instruct loadP(iRegP dst, memory mem) %{
5860   match(Set dst (LoadP mem));
5861   ins_cost(MEMORY_REF_COST);
5862   size(4);
5863 
5864 #ifndef _LP64
5865   format %{ "LDUW   $mem,$dst\t! ptr" %}
5866   ins_encode %{
5867     __ lduw($mem$$Address, $dst$$Register);
5868   %}
5869 #else
5870   format %{ "LDX    $mem,$dst\t! ptr" %}
5871   ins_encode %{
5872     __ ldx($mem$$Address, $dst$$Register);
5873   %}
5874 #endif
5875   ins_pipe(iload_mem);
5876 %}
5877 
5878 // Load Compressed Pointer
5879 instruct loadN(iRegN dst, memory mem) %{
5880   match(Set dst (LoadN mem));
5881   ins_cost(MEMORY_REF_COST);
5882   size(4);
5883 
5884   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5885   ins_encode %{
5886     __ lduw($mem$$Address, $dst$$Register);
5887   %}
5888   ins_pipe(iload_mem);
5889 %}
5890 
5891 // Load Klass Pointer
5892 instruct loadKlass(iRegP dst, memory mem) %{
5893   match(Set dst (LoadKlass mem));
5894   ins_cost(MEMORY_REF_COST);
5895   size(4);
5896 
5897 #ifndef _LP64
5898   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5899   ins_encode %{
5900     __ lduw($mem$$Address, $dst$$Register);
5901   %}
5902 #else
5903   format %{ "LDX    $mem,$dst\t! klass ptr" %}
5904   ins_encode %{
5905     __ ldx($mem$$Address, $dst$$Register);
5906   %}
5907 #endif
5908   ins_pipe(iload_mem);
5909 %}
5910 
5911 // Load narrow Klass Pointer
5912 instruct loadNKlass(iRegN dst, memory mem) %{
5913   match(Set dst (LoadNKlass mem));
5914   ins_cost(MEMORY_REF_COST);
5915   size(4);
5916 
5917   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
5918   ins_encode %{
5919     __ lduw($mem$$Address, $dst$$Register);
5920   %}
5921   ins_pipe(iload_mem);
5922 %}
5923 
5924 // Load Double
5925 instruct loadD(regD dst, memory mem) %{
5926   match(Set dst (LoadD mem));
5927   ins_cost(MEMORY_REF_COST);
5928 
5929   size(4);
5930   format %{ "LDDF   $mem,$dst" %}
5931   opcode(Assembler::lddf_op3);
5932   ins_encode(simple_form3_mem_reg( mem, dst ) );
5933   ins_pipe(floadD_mem);
5934 %}
5935 
5936 // Load Double - UNaligned
5937 instruct loadD_unaligned(regD_low dst, memory mem ) %{
5938   match(Set dst (LoadD_unaligned mem));
5939   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5940   size(8);
5941   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
5942           "\tLDF    $mem+4,$dst.lo\t!" %}
5943   opcode(Assembler::ldf_op3);
5944   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
5945   ins_pipe(iload_mem);
5946 %}
5947 
5948 // Load Float
5949 instruct loadF(regF dst, memory mem) %{
5950   match(Set dst (LoadF mem));
5951   ins_cost(MEMORY_REF_COST);
5952 
5953   size(4);
5954   format %{ "LDF    $mem,$dst" %}
5955   opcode(Assembler::ldf_op3);
5956   ins_encode(simple_form3_mem_reg( mem, dst ) );
5957   ins_pipe(floadF_mem);
5958 %}
5959 
5960 // Load Constant
5961 instruct loadConI( iRegI dst, immI src ) %{
5962   match(Set dst src);
5963   ins_cost(DEFAULT_COST * 3/2);
5964   format %{ "SET    $src,$dst" %}
5965   ins_encode( Set32(src, dst) );
5966   ins_pipe(ialu_hi_lo_reg);
5967 %}
5968 
5969 instruct loadConI13( iRegI dst, immI13 src ) %{
5970   match(Set dst src);
5971 
5972   size(4);
5973   format %{ "MOV    $src,$dst" %}
5974   ins_encode( Set13( src, dst ) );
5975   ins_pipe(ialu_imm);
5976 %}
5977 
5978 instruct loadConP(iRegP dst, immP src) %{
5979   match(Set dst src);
5980   ins_cost(DEFAULT_COST * 3/2);
5981   format %{ "SET    $src,$dst\t!ptr" %}
5982   // This rule does not use "expand" unlike loadConI because then
5983   // the result type is not known to be an Oop.  An ADLC
5984   // enhancement will be needed to make that work - not worth it!
5985 
5986   ins_encode( SetPtr( src, dst ) );
5987   ins_pipe(loadConP);
5988 
5989 %}
5990 
5991 instruct loadConP0(iRegP dst, immP0 src) %{
5992   match(Set dst src);
5993 
5994   size(4);
5995   format %{ "CLR    $dst\t!ptr" %}
5996   ins_encode( SetNull( dst ) );
5997   ins_pipe(ialu_imm);
5998 %}
5999 
6000 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6001   match(Set dst src);
6002   ins_cost(DEFAULT_COST);
6003   format %{ "SET    $src,$dst\t!ptr" %}
6004   ins_encode %{
6005     AddressLiteral polling_page(os::get_polling_page());
6006     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6007   %}
6008   ins_pipe(loadConP_poll);
6009 %}
6010 
6011 instruct loadConN0(iRegN dst, immN0 src) %{
6012   match(Set dst src);
6013 
6014   size(4);
6015   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6016   ins_encode( SetNull( dst ) );
6017   ins_pipe(ialu_imm);
6018 %}
6019 
6020 instruct loadConN(iRegN dst, immN src) %{
6021   match(Set dst src);
6022   ins_cost(DEFAULT_COST * 3/2);
6023   format %{ "SET    $src,$dst\t! compressed ptr" %}
6024   ins_encode %{
6025     Register dst = $dst$$Register;
6026     __ set_narrow_oop((jobject)$src$$constant, dst);
6027   %}
6028   ins_pipe(ialu_hi_lo_reg);
6029 %}
6030 
6031 instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{
6032   // %%% maybe this should work like loadConD
6033   match(Set dst src);
6034   effect(KILL tmp);
6035   ins_cost(DEFAULT_COST * 4);
6036   format %{ "SET64   $src,$dst KILL $tmp\t! long" %}
6037   ins_encode( LdImmL(src, dst, tmp) );
6038   ins_pipe(loadConL);
6039 %}
6040 
6041 instruct loadConL0( iRegL dst, immL0 src ) %{
6042   match(Set dst src);
6043   ins_cost(DEFAULT_COST);
6044   size(4);
6045   format %{ "CLR    $dst\t! long" %}
6046   ins_encode( Set13( src, dst ) );
6047   ins_pipe(ialu_imm);
6048 %}
6049 
6050 instruct loadConL13( iRegL dst, immL13 src ) %{
6051   match(Set dst src);
6052   ins_cost(DEFAULT_COST * 2);
6053 
6054   size(4);
6055   format %{ "MOV    $src,$dst\t! long" %}
6056   ins_encode( Set13( src, dst ) );
6057   ins_pipe(ialu_imm);
6058 %}
6059 
6060 instruct loadConF(regF dst, immF src, o7RegP tmp) %{
6061   match(Set dst src);
6062   effect(KILL tmp);
6063 
6064 #ifdef _LP64
6065   size(8*4);
6066 #else
6067   size(2*4);
6068 #endif
6069 
6070   format %{ "SETHI  hi(&$src),$tmp\t!get float $src from table\n\t"
6071             "LDF    [$tmp+lo(&$src)],$dst" %}
6072   ins_encode %{
6073     address float_address = __ float_constant($src$$constant);
6074     RelocationHolder rspec = internal_word_Relocation::spec(float_address);
6075     AddressLiteral addrlit(float_address, rspec);
6076 
6077     __ sethi(addrlit, $tmp$$Register);
6078     __ ldf(FloatRegisterImpl::S, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
6079   %}
6080   ins_pipe(loadConFD);
6081 %}
6082 
6083 instruct loadConD(regD dst, immD src, o7RegP tmp) %{
6084   match(Set dst src);
6085   effect(KILL tmp);
6086 
6087 #ifdef _LP64
6088   size(8*4);
6089 #else
6090   size(2*4);
6091 #endif
6092 
6093   format %{ "SETHI  hi(&$src),$tmp\t!get double $src from table\n\t"
6094             "LDDF   [$tmp+lo(&$src)],$dst" %}
6095   ins_encode %{
6096     address double_address = __ double_constant($src$$constant);
6097     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
6098     AddressLiteral addrlit(double_address, rspec);
6099 
6100     __ sethi(addrlit, $tmp$$Register);
6101     // XXX This is a quick fix for 6833573.
6102     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
6103     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
6104   %}
6105   ins_pipe(loadConFD);
6106 %}
6107 
6108 // Prefetch instructions.
6109 // Must be safe to execute with invalid address (cannot fault).
6110 
6111 instruct prefetchr( memory mem ) %{
6112   match( PrefetchRead mem );
6113   ins_cost(MEMORY_REF_COST);
6114 
6115   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6116   opcode(Assembler::prefetch_op3);
6117   ins_encode( form3_mem_prefetch_read( mem ) );
6118   ins_pipe(iload_mem);
6119 %}
6120 
6121 instruct prefetchw( memory mem ) %{
6122   predicate(AllocatePrefetchStyle != 3 );
6123   match( PrefetchWrite mem );
6124   ins_cost(MEMORY_REF_COST);
6125 
6126   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6127   opcode(Assembler::prefetch_op3);
6128   ins_encode( form3_mem_prefetch_write( mem ) );
6129   ins_pipe(iload_mem);
6130 %}
6131 
6132 // Use BIS instruction to prefetch.
6133 instruct prefetchw_bis( memory mem ) %{
6134   predicate(AllocatePrefetchStyle == 3);
6135   match( PrefetchWrite mem );
6136   ins_cost(MEMORY_REF_COST);
6137 
6138   format %{ "STXA   G0,$mem\t! // Block initializing store" %}
6139   ins_encode %{
6140      Register base = as_Register($mem$$base);
6141      int disp = $mem$$disp;
6142      if (disp != 0) {
6143        __ add(base, AllocatePrefetchStepSize, base);
6144      }
6145      __ stxa(G0, base, G0, ASI_BLK_INIT_QUAD_LDD_P);
6146   %}
6147   ins_pipe(istore_mem_reg);
6148 %}
6149 
6150 //----------Store Instructions-------------------------------------------------
6151 // Store Byte
6152 instruct storeB(memory mem, iRegI src) %{
6153   match(Set mem (StoreB mem src));
6154   ins_cost(MEMORY_REF_COST);
6155 
6156   size(4);
6157   format %{ "STB    $src,$mem\t! byte" %}
6158   opcode(Assembler::stb_op3);
6159   ins_encode(simple_form3_mem_reg( mem, src ) );
6160   ins_pipe(istore_mem_reg);
6161 %}
6162 
6163 instruct storeB0(memory mem, immI0 src) %{
6164   match(Set mem (StoreB mem src));
6165   ins_cost(MEMORY_REF_COST);
6166 
6167   size(4);
6168   format %{ "STB    $src,$mem\t! byte" %}
6169   opcode(Assembler::stb_op3);
6170   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6171   ins_pipe(istore_mem_zero);
6172 %}
6173 
6174 instruct storeCM0(memory mem, immI0 src) %{
6175   match(Set mem (StoreCM mem src));
6176   ins_cost(MEMORY_REF_COST);
6177 
6178   size(4);
6179   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6180   opcode(Assembler::stb_op3);
6181   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6182   ins_pipe(istore_mem_zero);
6183 %}
6184 
6185 // Store Char/Short
6186 instruct storeC(memory mem, iRegI src) %{
6187   match(Set mem (StoreC mem src));
6188   ins_cost(MEMORY_REF_COST);
6189 
6190   size(4);
6191   format %{ "STH    $src,$mem\t! short" %}
6192   opcode(Assembler::sth_op3);
6193   ins_encode(simple_form3_mem_reg( mem, src ) );
6194   ins_pipe(istore_mem_reg);
6195 %}
6196 
6197 instruct storeC0(memory mem, immI0 src) %{
6198   match(Set mem (StoreC mem src));
6199   ins_cost(MEMORY_REF_COST);
6200 
6201   size(4);
6202   format %{ "STH    $src,$mem\t! short" %}
6203   opcode(Assembler::sth_op3);
6204   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6205   ins_pipe(istore_mem_zero);
6206 %}
6207 
6208 // Store Integer
6209 instruct storeI(memory mem, iRegI src) %{
6210   match(Set mem (StoreI mem src));
6211   ins_cost(MEMORY_REF_COST);
6212 
6213   size(4);
6214   format %{ "STW    $src,$mem" %}
6215   opcode(Assembler::stw_op3);
6216   ins_encode(simple_form3_mem_reg( mem, src ) );
6217   ins_pipe(istore_mem_reg);
6218 %}
6219 
6220 // Store Long
6221 instruct storeL(memory mem, iRegL src) %{
6222   match(Set mem (StoreL mem src));
6223   ins_cost(MEMORY_REF_COST);
6224   size(4);
6225   format %{ "STX    $src,$mem\t! long" %}
6226   opcode(Assembler::stx_op3);
6227   ins_encode(simple_form3_mem_reg( mem, src ) );
6228   ins_pipe(istore_mem_reg);
6229 %}
6230 
6231 instruct storeI0(memory mem, immI0 src) %{
6232   match(Set mem (StoreI mem src));
6233   ins_cost(MEMORY_REF_COST);
6234 
6235   size(4);
6236   format %{ "STW    $src,$mem" %}
6237   opcode(Assembler::stw_op3);
6238   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6239   ins_pipe(istore_mem_zero);
6240 %}
6241 
6242 instruct storeL0(memory mem, immL0 src) %{
6243   match(Set mem (StoreL mem src));
6244   ins_cost(MEMORY_REF_COST);
6245 
6246   size(4);
6247   format %{ "STX    $src,$mem" %}
6248   opcode(Assembler::stx_op3);
6249   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6250   ins_pipe(istore_mem_zero);
6251 %}
6252 
6253 // Store Integer from float register (used after fstoi)
6254 instruct storeI_Freg(memory mem, regF src) %{
6255   match(Set mem (StoreI mem src));
6256   ins_cost(MEMORY_REF_COST);
6257 
6258   size(4);
6259   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6260   opcode(Assembler::stf_op3);
6261   ins_encode(simple_form3_mem_reg( mem, src ) );
6262   ins_pipe(fstoreF_mem_reg);
6263 %}
6264 
6265 // Store Pointer
6266 instruct storeP(memory dst, sp_ptr_RegP src) %{
6267   match(Set dst (StoreP dst src));
6268   ins_cost(MEMORY_REF_COST);
6269   size(4);
6270 
6271 #ifndef _LP64
6272   format %{ "STW    $src,$dst\t! ptr" %}
6273   opcode(Assembler::stw_op3, 0, REGP_OP);
6274 #else
6275   format %{ "STX    $src,$dst\t! ptr" %}
6276   opcode(Assembler::stx_op3, 0, REGP_OP);
6277 #endif
6278   ins_encode( form3_mem_reg( dst, src ) );
6279   ins_pipe(istore_mem_spORreg);
6280 %}
6281 
6282 instruct storeP0(memory dst, immP0 src) %{
6283   match(Set dst (StoreP dst src));
6284   ins_cost(MEMORY_REF_COST);
6285   size(4);
6286 
6287 #ifndef _LP64
6288   format %{ "STW    $src,$dst\t! ptr" %}
6289   opcode(Assembler::stw_op3, 0, REGP_OP);
6290 #else
6291   format %{ "STX    $src,$dst\t! ptr" %}
6292   opcode(Assembler::stx_op3, 0, REGP_OP);
6293 #endif
6294   ins_encode( form3_mem_reg( dst, R_G0 ) );
6295   ins_pipe(istore_mem_zero);
6296 %}
6297 
6298 // Store Compressed Pointer
6299 instruct storeN(memory dst, iRegN src) %{
6300    match(Set dst (StoreN dst src));
6301    ins_cost(MEMORY_REF_COST);
6302    size(4);
6303 
6304    format %{ "STW    $src,$dst\t! compressed ptr" %}
6305    ins_encode %{
6306      Register base = as_Register($dst$$base);
6307      Register index = as_Register($dst$$index);
6308      Register src = $src$$Register;
6309      if (index != G0) {
6310        __ stw(src, base, index);
6311      } else {
6312        __ stw(src, base, $dst$$disp);
6313      }
6314    %}
6315    ins_pipe(istore_mem_spORreg);
6316 %}
6317 
6318 instruct storeN0(memory dst, immN0 src) %{
6319    match(Set dst (StoreN dst src));
6320    ins_cost(MEMORY_REF_COST);
6321    size(4);
6322 
6323    format %{ "STW    $src,$dst\t! compressed ptr" %}
6324    ins_encode %{
6325      Register base = as_Register($dst$$base);
6326      Register index = as_Register($dst$$index);
6327      if (index != G0) {
6328        __ stw(0, base, index);
6329      } else {
6330        __ stw(0, base, $dst$$disp);
6331      }
6332    %}
6333    ins_pipe(istore_mem_zero);
6334 %}
6335 
6336 // Store Double
6337 instruct storeD( memory mem, regD src) %{
6338   match(Set mem (StoreD mem src));
6339   ins_cost(MEMORY_REF_COST);
6340 
6341   size(4);
6342   format %{ "STDF   $src,$mem" %}
6343   opcode(Assembler::stdf_op3);
6344   ins_encode(simple_form3_mem_reg( mem, src ) );
6345   ins_pipe(fstoreD_mem_reg);
6346 %}
6347 
6348 instruct storeD0( memory mem, immD0 src) %{
6349   match(Set mem (StoreD mem src));
6350   ins_cost(MEMORY_REF_COST);
6351 
6352   size(4);
6353   format %{ "STX    $src,$mem" %}
6354   opcode(Assembler::stx_op3);
6355   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6356   ins_pipe(fstoreD_mem_zero);
6357 %}
6358 
6359 // Store Float
6360 instruct storeF( memory mem, regF src) %{
6361   match(Set mem (StoreF mem src));
6362   ins_cost(MEMORY_REF_COST);
6363 
6364   size(4);
6365   format %{ "STF    $src,$mem" %}
6366   opcode(Assembler::stf_op3);
6367   ins_encode(simple_form3_mem_reg( mem, src ) );
6368   ins_pipe(fstoreF_mem_reg);
6369 %}
6370 
6371 instruct storeF0( memory mem, immF0 src) %{
6372   match(Set mem (StoreF mem src));
6373   ins_cost(MEMORY_REF_COST);
6374 
6375   size(4);
6376   format %{ "STW    $src,$mem\t! storeF0" %}
6377   opcode(Assembler::stw_op3);
6378   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6379   ins_pipe(fstoreF_mem_zero);
6380 %}
6381 
6382 // Store Aligned Packed Bytes in Double register to memory
6383 instruct storeA8B(memory mem, regD src) %{
6384   match(Set mem (Store8B mem src));
6385   ins_cost(MEMORY_REF_COST);
6386   size(4);
6387   format %{ "STDF   $src,$mem\t! packed8B" %}
6388   opcode(Assembler::stdf_op3);
6389   ins_encode(simple_form3_mem_reg( mem, src ) );
6390   ins_pipe(fstoreD_mem_reg);
6391 %}
6392 
6393 // Convert oop pointer into compressed form
6394 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6395   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6396   match(Set dst (EncodeP src));
6397   format %{ "encode_heap_oop $src, $dst" %}
6398   ins_encode %{
6399     __ encode_heap_oop($src$$Register, $dst$$Register);
6400   %}
6401   ins_pipe(ialu_reg);
6402 %}
6403 
6404 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6405   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6406   match(Set dst (EncodeP src));
6407   format %{ "encode_heap_oop_not_null $src, $dst" %}
6408   ins_encode %{
6409     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6410   %}
6411   ins_pipe(ialu_reg);
6412 %}
6413 
6414 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6415   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6416             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6417   match(Set dst (DecodeN src));
6418   format %{ "decode_heap_oop $src, $dst" %}
6419   ins_encode %{
6420     __ decode_heap_oop($src$$Register, $dst$$Register);
6421   %}
6422   ins_pipe(ialu_reg);
6423 %}
6424 
6425 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6426   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6427             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6428   match(Set dst (DecodeN src));
6429   format %{ "decode_heap_oop_not_null $src, $dst" %}
6430   ins_encode %{
6431     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6432   %}
6433   ins_pipe(ialu_reg);
6434 %}
6435 
6436 
6437 // Store Zero into Aligned Packed Bytes
6438 instruct storeA8B0(memory mem, immI0 zero) %{
6439   match(Set mem (Store8B mem zero));
6440   ins_cost(MEMORY_REF_COST);
6441   size(4);
6442   format %{ "STX    $zero,$mem\t! packed8B" %}
6443   opcode(Assembler::stx_op3);
6444   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6445   ins_pipe(fstoreD_mem_zero);
6446 %}
6447 
6448 // Store Aligned Packed Chars/Shorts in Double register to memory
6449 instruct storeA4C(memory mem, regD src) %{
6450   match(Set mem (Store4C mem src));
6451   ins_cost(MEMORY_REF_COST);
6452   size(4);
6453   format %{ "STDF   $src,$mem\t! packed4C" %}
6454   opcode(Assembler::stdf_op3);
6455   ins_encode(simple_form3_mem_reg( mem, src ) );
6456   ins_pipe(fstoreD_mem_reg);
6457 %}
6458 
6459 // Store Zero into Aligned Packed Chars/Shorts
6460 instruct storeA4C0(memory mem, immI0 zero) %{
6461   match(Set mem (Store4C mem (Replicate4C zero)));
6462   ins_cost(MEMORY_REF_COST);
6463   size(4);
6464   format %{ "STX    $zero,$mem\t! packed4C" %}
6465   opcode(Assembler::stx_op3);
6466   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6467   ins_pipe(fstoreD_mem_zero);
6468 %}
6469 
6470 // Store Aligned Packed Ints in Double register to memory
6471 instruct storeA2I(memory mem, regD src) %{
6472   match(Set mem (Store2I mem src));
6473   ins_cost(MEMORY_REF_COST);
6474   size(4);
6475   format %{ "STDF   $src,$mem\t! packed2I" %}
6476   opcode(Assembler::stdf_op3);
6477   ins_encode(simple_form3_mem_reg( mem, src ) );
6478   ins_pipe(fstoreD_mem_reg);
6479 %}
6480 
6481 // Store Zero into Aligned Packed Ints
6482 instruct storeA2I0(memory mem, immI0 zero) %{
6483   match(Set mem (Store2I mem zero));
6484   ins_cost(MEMORY_REF_COST);
6485   size(4);
6486   format %{ "STX    $zero,$mem\t! packed2I" %}
6487   opcode(Assembler::stx_op3);
6488   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6489   ins_pipe(fstoreD_mem_zero);
6490 %}
6491 
6492 
6493 //----------MemBar Instructions-----------------------------------------------
6494 // Memory barrier flavors
6495 
6496 instruct membar_acquire() %{
6497   match(MemBarAcquire);
6498   ins_cost(4*MEMORY_REF_COST);
6499 
6500   size(0);
6501   format %{ "MEMBAR-acquire" %}
6502   ins_encode( enc_membar_acquire );
6503   ins_pipe(long_memory_op);
6504 %}
6505 
6506 instruct membar_acquire_lock() %{
6507   match(MemBarAcquire);
6508   predicate(Matcher::prior_fast_lock(n));
6509   ins_cost(0);
6510 
6511   size(0);
6512   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6513   ins_encode( );
6514   ins_pipe(empty);
6515 %}
6516 
6517 instruct membar_release() %{
6518   match(MemBarRelease);
6519   ins_cost(4*MEMORY_REF_COST);
6520 
6521   size(0);
6522   format %{ "MEMBAR-release" %}
6523   ins_encode( enc_membar_release );
6524   ins_pipe(long_memory_op);
6525 %}
6526 
6527 instruct membar_release_lock() %{
6528   match(MemBarRelease);
6529   predicate(Matcher::post_fast_unlock(n));
6530   ins_cost(0);
6531 
6532   size(0);
6533   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6534   ins_encode( );
6535   ins_pipe(empty);
6536 %}
6537 
6538 instruct membar_volatile() %{
6539   match(MemBarVolatile);
6540   ins_cost(4*MEMORY_REF_COST);
6541 
6542   size(4);
6543   format %{ "MEMBAR-volatile" %}
6544   ins_encode( enc_membar_volatile );
6545   ins_pipe(long_memory_op);
6546 %}
6547 
6548 instruct unnecessary_membar_volatile() %{
6549   match(MemBarVolatile);
6550   predicate(Matcher::post_store_load_barrier(n));
6551   ins_cost(0);
6552 
6553   size(0);
6554   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6555   ins_encode( );
6556   ins_pipe(empty);
6557 %}
6558 
6559 //----------Register Move Instructions-----------------------------------------
6560 instruct roundDouble_nop(regD dst) %{
6561   match(Set dst (RoundDouble dst));
6562   ins_cost(0);
6563   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6564   ins_encode( );
6565   ins_pipe(empty);
6566 %}
6567 
6568 
6569 instruct roundFloat_nop(regF dst) %{
6570   match(Set dst (RoundFloat dst));
6571   ins_cost(0);
6572   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6573   ins_encode( );
6574   ins_pipe(empty);
6575 %}
6576 
6577 
6578 // Cast Index to Pointer for unsafe natives
6579 instruct castX2P(iRegX src, iRegP dst) %{
6580   match(Set dst (CastX2P src));
6581 
6582   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6583   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6584   ins_pipe(ialu_reg);
6585 %}
6586 
6587 // Cast Pointer to Index for unsafe natives
6588 instruct castP2X(iRegP src, iRegX dst) %{
6589   match(Set dst (CastP2X src));
6590 
6591   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6592   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6593   ins_pipe(ialu_reg);
6594 %}
6595 
6596 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6597   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6598   match(Set stkSlot src);   // chain rule
6599   ins_cost(MEMORY_REF_COST);
6600   format %{ "STDF   $src,$stkSlot\t!stk" %}
6601   opcode(Assembler::stdf_op3);
6602   ins_encode(simple_form3_mem_reg(stkSlot, src));
6603   ins_pipe(fstoreD_stk_reg);
6604 %}
6605 
6606 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6607   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6608   match(Set dst stkSlot);   // chain rule
6609   ins_cost(MEMORY_REF_COST);
6610   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6611   opcode(Assembler::lddf_op3);
6612   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6613   ins_pipe(floadD_stk);
6614 %}
6615 
6616 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6617   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6618   match(Set stkSlot src);   // chain rule
6619   ins_cost(MEMORY_REF_COST);
6620   format %{ "STF   $src,$stkSlot\t!stk" %}
6621   opcode(Assembler::stf_op3);
6622   ins_encode(simple_form3_mem_reg(stkSlot, src));
6623   ins_pipe(fstoreF_stk_reg);
6624 %}
6625 
6626 //----------Conditional Move---------------------------------------------------
6627 // Conditional move
6628 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6629   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6630   ins_cost(150);
6631   format %{ "MOV$cmp $pcc,$src,$dst" %}
6632   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6633   ins_pipe(ialu_reg);
6634 %}
6635 
6636 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6637   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6638   ins_cost(140);
6639   format %{ "MOV$cmp $pcc,$src,$dst" %}
6640   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6641   ins_pipe(ialu_imm);
6642 %}
6643 
6644 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6645   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6646   ins_cost(150);
6647   size(4);
6648   format %{ "MOV$cmp  $icc,$src,$dst" %}
6649   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6650   ins_pipe(ialu_reg);
6651 %}
6652 
6653 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6654   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6655   ins_cost(140);
6656   size(4);
6657   format %{ "MOV$cmp  $icc,$src,$dst" %}
6658   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6659   ins_pipe(ialu_imm);
6660 %}
6661 
6662 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6663   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6664   ins_cost(150);
6665   size(4);
6666   format %{ "MOV$cmp  $icc,$src,$dst" %}
6667   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6668   ins_pipe(ialu_reg);
6669 %}
6670 
6671 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6672   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6673   ins_cost(140);
6674   size(4);
6675   format %{ "MOV$cmp  $icc,$src,$dst" %}
6676   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6677   ins_pipe(ialu_imm);
6678 %}
6679 
6680 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6681   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6682   ins_cost(150);
6683   size(4);
6684   format %{ "MOV$cmp $fcc,$src,$dst" %}
6685   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6686   ins_pipe(ialu_reg);
6687 %}
6688 
6689 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6690   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6691   ins_cost(140);
6692   size(4);
6693   format %{ "MOV$cmp $fcc,$src,$dst" %}
6694   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6695   ins_pipe(ialu_imm);
6696 %}
6697 
6698 // Conditional move for RegN. Only cmov(reg,reg).
6699 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6700   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6701   ins_cost(150);
6702   format %{ "MOV$cmp $pcc,$src,$dst" %}
6703   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6704   ins_pipe(ialu_reg);
6705 %}
6706 
6707 // This instruction also works with CmpN so we don't need cmovNN_reg.
6708 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6709   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6710   ins_cost(150);
6711   size(4);
6712   format %{ "MOV$cmp  $icc,$src,$dst" %}
6713   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6714   ins_pipe(ialu_reg);
6715 %}
6716 
6717 // This instruction also works with CmpN so we don't need cmovNN_reg.
6718 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6719   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6720   ins_cost(150);
6721   size(4);
6722   format %{ "MOV$cmp  $icc,$src,$dst" %}
6723   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6724   ins_pipe(ialu_reg);
6725 %}
6726 
6727 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6728   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6729   ins_cost(150);
6730   size(4);
6731   format %{ "MOV$cmp $fcc,$src,$dst" %}
6732   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6733   ins_pipe(ialu_reg);
6734 %}
6735 
6736 // Conditional move
6737 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6738   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6739   ins_cost(150);
6740   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6741   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6742   ins_pipe(ialu_reg);
6743 %}
6744 
6745 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6746   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6747   ins_cost(140);
6748   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6749   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6750   ins_pipe(ialu_imm);
6751 %}
6752 
6753 // This instruction also works with CmpN so we don't need cmovPN_reg.
6754 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6755   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6756   ins_cost(150);
6757 
6758   size(4);
6759   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6760   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6761   ins_pipe(ialu_reg);
6762 %}
6763 
6764 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6765   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6766   ins_cost(150);
6767 
6768   size(4);
6769   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6770   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6771   ins_pipe(ialu_reg);
6772 %}
6773 
6774 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6775   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6776   ins_cost(140);
6777 
6778   size(4);
6779   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6780   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6781   ins_pipe(ialu_imm);
6782 %}
6783 
6784 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6785   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6786   ins_cost(140);
6787 
6788   size(4);
6789   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6790   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6791   ins_pipe(ialu_imm);
6792 %}
6793 
6794 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6795   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6796   ins_cost(150);
6797   size(4);
6798   format %{ "MOV$cmp $fcc,$src,$dst" %}
6799   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6800   ins_pipe(ialu_imm);
6801 %}
6802 
6803 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6804   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6805   ins_cost(140);
6806   size(4);
6807   format %{ "MOV$cmp $fcc,$src,$dst" %}
6808   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6809   ins_pipe(ialu_imm);
6810 %}
6811 
6812 // Conditional move
6813 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6814   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6815   ins_cost(150);
6816   opcode(0x101);
6817   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6818   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6819   ins_pipe(int_conditional_float_move);
6820 %}
6821 
6822 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6823   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6824   ins_cost(150);
6825 
6826   size(4);
6827   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6828   opcode(0x101);
6829   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6830   ins_pipe(int_conditional_float_move);
6831 %}
6832 
6833 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
6834   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6835   ins_cost(150);
6836 
6837   size(4);
6838   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6839   opcode(0x101);
6840   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6841   ins_pipe(int_conditional_float_move);
6842 %}
6843 
6844 // Conditional move,
6845 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6846   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6847   ins_cost(150);
6848   size(4);
6849   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6850   opcode(0x1);
6851   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6852   ins_pipe(int_conditional_double_move);
6853 %}
6854 
6855 // Conditional move
6856 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6857   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6858   ins_cost(150);
6859   size(4);
6860   opcode(0x102);
6861   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6862   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6863   ins_pipe(int_conditional_double_move);
6864 %}
6865 
6866 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
6867   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6868   ins_cost(150);
6869 
6870   size(4);
6871   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6872   opcode(0x102);
6873   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6874   ins_pipe(int_conditional_double_move);
6875 %}
6876 
6877 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
6878   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6879   ins_cost(150);
6880 
6881   size(4);
6882   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6883   opcode(0x102);
6884   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6885   ins_pipe(int_conditional_double_move);
6886 %}
6887 
6888 // Conditional move,
6889 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
6890   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
6891   ins_cost(150);
6892   size(4);
6893   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
6894   opcode(0x2);
6895   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6896   ins_pipe(int_conditional_double_move);
6897 %}
6898 
6899 // Conditional move
6900 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
6901   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6902   ins_cost(150);
6903   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6904   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6905   ins_pipe(ialu_reg);
6906 %}
6907 
6908 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
6909   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6910   ins_cost(140);
6911   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6912   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6913   ins_pipe(ialu_imm);
6914 %}
6915 
6916 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
6917   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6918   ins_cost(150);
6919 
6920   size(4);
6921   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6922   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6923   ins_pipe(ialu_reg);
6924 %}
6925 
6926 
6927 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
6928   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6929   ins_cost(150);
6930 
6931   size(4);
6932   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6933   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6934   ins_pipe(ialu_reg);
6935 %}
6936 
6937 
6938 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
6939   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
6940   ins_cost(150);
6941 
6942   size(4);
6943   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
6944   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6945   ins_pipe(ialu_reg);
6946 %}
6947 
6948 
6949 
6950 //----------OS and Locking Instructions----------------------------------------
6951 
6952 // This name is KNOWN by the ADLC and cannot be changed.
6953 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
6954 // for this guy.
6955 instruct tlsLoadP(g2RegP dst) %{
6956   match(Set dst (ThreadLocal));
6957 
6958   size(0);
6959   ins_cost(0);
6960   format %{ "# TLS is in G2" %}
6961   ins_encode( /*empty encoding*/ );
6962   ins_pipe(ialu_none);
6963 %}
6964 
6965 instruct checkCastPP( iRegP dst ) %{
6966   match(Set dst (CheckCastPP dst));
6967 
6968   size(0);
6969   format %{ "# checkcastPP of $dst" %}
6970   ins_encode( /*empty encoding*/ );
6971   ins_pipe(empty);
6972 %}
6973 
6974 
6975 instruct castPP( iRegP dst ) %{
6976   match(Set dst (CastPP dst));
6977   format %{ "# castPP of $dst" %}
6978   ins_encode( /*empty encoding*/ );
6979   ins_pipe(empty);
6980 %}
6981 
6982 instruct castII( iRegI dst ) %{
6983   match(Set dst (CastII dst));
6984   format %{ "# castII of $dst" %}
6985   ins_encode( /*empty encoding*/ );
6986   ins_cost(0);
6987   ins_pipe(empty);
6988 %}
6989 
6990 //----------Arithmetic Instructions--------------------------------------------
6991 // Addition Instructions
6992 // Register Addition
6993 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6994   match(Set dst (AddI src1 src2));
6995 
6996   size(4);
6997   format %{ "ADD    $src1,$src2,$dst" %}
6998   ins_encode %{
6999     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7000   %}
7001   ins_pipe(ialu_reg_reg);
7002 %}
7003 
7004 // Immediate Addition
7005 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7006   match(Set dst (AddI src1 src2));
7007 
7008   size(4);
7009   format %{ "ADD    $src1,$src2,$dst" %}
7010   opcode(Assembler::add_op3, Assembler::arith_op);
7011   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7012   ins_pipe(ialu_reg_imm);
7013 %}
7014 
7015 // Pointer Register Addition
7016 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7017   match(Set dst (AddP src1 src2));
7018 
7019   size(4);
7020   format %{ "ADD    $src1,$src2,$dst" %}
7021   opcode(Assembler::add_op3, Assembler::arith_op);
7022   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7023   ins_pipe(ialu_reg_reg);
7024 %}
7025 
7026 // Pointer Immediate Addition
7027 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7028   match(Set dst (AddP src1 src2));
7029 
7030   size(4);
7031   format %{ "ADD    $src1,$src2,$dst" %}
7032   opcode(Assembler::add_op3, Assembler::arith_op);
7033   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7034   ins_pipe(ialu_reg_imm);
7035 %}
7036 
7037 // Long Addition
7038 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7039   match(Set dst (AddL src1 src2));
7040 
7041   size(4);
7042   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7043   opcode(Assembler::add_op3, Assembler::arith_op);
7044   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7045   ins_pipe(ialu_reg_reg);
7046 %}
7047 
7048 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7049   match(Set dst (AddL src1 con));
7050 
7051   size(4);
7052   format %{ "ADD    $src1,$con,$dst" %}
7053   opcode(Assembler::add_op3, Assembler::arith_op);
7054   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7055   ins_pipe(ialu_reg_imm);
7056 %}
7057 
7058 //----------Conditional_store--------------------------------------------------
7059 // Conditional-store of the updated heap-top.
7060 // Used during allocation of the shared heap.
7061 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7062 
7063 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7064 instruct loadPLocked(iRegP dst, memory mem) %{
7065   match(Set dst (LoadPLocked mem));
7066   ins_cost(MEMORY_REF_COST);
7067 
7068 #ifndef _LP64
7069   size(4);
7070   format %{ "LDUW   $mem,$dst\t! ptr" %}
7071   opcode(Assembler::lduw_op3, 0, REGP_OP);
7072 #else
7073   format %{ "LDX    $mem,$dst\t! ptr" %}
7074   opcode(Assembler::ldx_op3, 0, REGP_OP);
7075 #endif
7076   ins_encode( form3_mem_reg( mem, dst ) );
7077   ins_pipe(iload_mem);
7078 %}
7079 
7080 // LoadL-locked.  Same as a regular long load when used with a compare-swap
7081 instruct loadLLocked(iRegL dst, memory mem) %{
7082   match(Set dst (LoadLLocked mem));
7083   ins_cost(MEMORY_REF_COST);
7084   size(4);
7085   format %{ "LDX    $mem,$dst\t! long" %}
7086   opcode(Assembler::ldx_op3);
7087   ins_encode(simple_form3_mem_reg( mem, dst ) );
7088   ins_pipe(iload_mem);
7089 %}
7090 
7091 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7092   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7093   effect( KILL newval );
7094   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7095             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7096   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7097   ins_pipe( long_memory_op );
7098 %}
7099 
7100 // Conditional-store of an int value.
7101 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7102   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7103   effect( KILL newval );
7104   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7105             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7106   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7107   ins_pipe( long_memory_op );
7108 %}
7109 
7110 // Conditional-store of a long value.
7111 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7112   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7113   effect( KILL newval );
7114   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7115             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7116   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7117   ins_pipe( long_memory_op );
7118 %}
7119 
7120 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7121 
7122 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7123   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7124   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7125   format %{
7126             "MOV    $newval,O7\n\t"
7127             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7128             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7129             "MOV    1,$res\n\t"
7130             "MOVne  xcc,R_G0,$res"
7131   %}
7132   ins_encode( enc_casx(mem_ptr, oldval, newval),
7133               enc_lflags_ne_to_boolean(res) );
7134   ins_pipe( long_memory_op );
7135 %}
7136 
7137 
7138 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7139   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7140   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7141   format %{
7142             "MOV    $newval,O7\n\t"
7143             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7144             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7145             "MOV    1,$res\n\t"
7146             "MOVne  icc,R_G0,$res"
7147   %}
7148   ins_encode( enc_casi(mem_ptr, oldval, newval),
7149               enc_iflags_ne_to_boolean(res) );
7150   ins_pipe( long_memory_op );
7151 %}
7152 
7153 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7154   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7155   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7156   format %{
7157             "MOV    $newval,O7\n\t"
7158             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7159             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7160             "MOV    1,$res\n\t"
7161             "MOVne  xcc,R_G0,$res"
7162   %}
7163 #ifdef _LP64
7164   ins_encode( enc_casx(mem_ptr, oldval, newval),
7165               enc_lflags_ne_to_boolean(res) );
7166 #else
7167   ins_encode( enc_casi(mem_ptr, oldval, newval),
7168               enc_iflags_ne_to_boolean(res) );
7169 #endif
7170   ins_pipe( long_memory_op );
7171 %}
7172 
7173 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7174   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7175   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7176   format %{
7177             "MOV    $newval,O7\n\t"
7178             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7179             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7180             "MOV    1,$res\n\t"
7181             "MOVne  icc,R_G0,$res"
7182   %}
7183   ins_encode( enc_casi(mem_ptr, oldval, newval),
7184               enc_iflags_ne_to_boolean(res) );
7185   ins_pipe( long_memory_op );
7186 %}
7187 
7188 //---------------------
7189 // Subtraction Instructions
7190 // Register Subtraction
7191 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7192   match(Set dst (SubI src1 src2));
7193 
7194   size(4);
7195   format %{ "SUB    $src1,$src2,$dst" %}
7196   opcode(Assembler::sub_op3, Assembler::arith_op);
7197   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7198   ins_pipe(ialu_reg_reg);
7199 %}
7200 
7201 // Immediate Subtraction
7202 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7203   match(Set dst (SubI src1 src2));
7204 
7205   size(4);
7206   format %{ "SUB    $src1,$src2,$dst" %}
7207   opcode(Assembler::sub_op3, Assembler::arith_op);
7208   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7209   ins_pipe(ialu_reg_imm);
7210 %}
7211 
7212 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7213   match(Set dst (SubI zero src2));
7214 
7215   size(4);
7216   format %{ "NEG    $src2,$dst" %}
7217   opcode(Assembler::sub_op3, Assembler::arith_op);
7218   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7219   ins_pipe(ialu_zero_reg);
7220 %}
7221 
7222 // Long subtraction
7223 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7224   match(Set dst (SubL src1 src2));
7225 
7226   size(4);
7227   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7228   opcode(Assembler::sub_op3, Assembler::arith_op);
7229   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7230   ins_pipe(ialu_reg_reg);
7231 %}
7232 
7233 // Immediate Subtraction
7234 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7235   match(Set dst (SubL src1 con));
7236 
7237   size(4);
7238   format %{ "SUB    $src1,$con,$dst\t! long" %}
7239   opcode(Assembler::sub_op3, Assembler::arith_op);
7240   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7241   ins_pipe(ialu_reg_imm);
7242 %}
7243 
7244 // Long negation
7245 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7246   match(Set dst (SubL zero src2));
7247 
7248   size(4);
7249   format %{ "NEG    $src2,$dst\t! long" %}
7250   opcode(Assembler::sub_op3, Assembler::arith_op);
7251   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7252   ins_pipe(ialu_zero_reg);
7253 %}
7254 
7255 // Multiplication Instructions
7256 // Integer Multiplication
7257 // Register Multiplication
7258 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7259   match(Set dst (MulI src1 src2));
7260 
7261   size(4);
7262   format %{ "MULX   $src1,$src2,$dst" %}
7263   opcode(Assembler::mulx_op3, Assembler::arith_op);
7264   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7265   ins_pipe(imul_reg_reg);
7266 %}
7267 
7268 // Immediate Multiplication
7269 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7270   match(Set dst (MulI src1 src2));
7271 
7272   size(4);
7273   format %{ "MULX   $src1,$src2,$dst" %}
7274   opcode(Assembler::mulx_op3, Assembler::arith_op);
7275   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7276   ins_pipe(imul_reg_imm);
7277 %}
7278 
7279 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7280   match(Set dst (MulL src1 src2));
7281   ins_cost(DEFAULT_COST * 5);
7282   size(4);
7283   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7284   opcode(Assembler::mulx_op3, Assembler::arith_op);
7285   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7286   ins_pipe(mulL_reg_reg);
7287 %}
7288 
7289 // Immediate Multiplication
7290 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7291   match(Set dst (MulL src1 src2));
7292   ins_cost(DEFAULT_COST * 5);
7293   size(4);
7294   format %{ "MULX   $src1,$src2,$dst" %}
7295   opcode(Assembler::mulx_op3, Assembler::arith_op);
7296   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7297   ins_pipe(mulL_reg_imm);
7298 %}
7299 
7300 // Integer Division
7301 // Register Division
7302 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7303   match(Set dst (DivI src1 src2));
7304   ins_cost((2+71)*DEFAULT_COST);
7305 
7306   format %{ "SRA     $src2,0,$src2\n\t"
7307             "SRA     $src1,0,$src1\n\t"
7308             "SDIVX   $src1,$src2,$dst" %}
7309   ins_encode( idiv_reg( src1, src2, dst ) );
7310   ins_pipe(sdiv_reg_reg);
7311 %}
7312 
7313 // Immediate Division
7314 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7315   match(Set dst (DivI src1 src2));
7316   ins_cost((2+71)*DEFAULT_COST);
7317 
7318   format %{ "SRA     $src1,0,$src1\n\t"
7319             "SDIVX   $src1,$src2,$dst" %}
7320   ins_encode( idiv_imm( src1, src2, dst ) );
7321   ins_pipe(sdiv_reg_imm);
7322 %}
7323 
7324 //----------Div-By-10-Expansion------------------------------------------------
7325 // Extract hi bits of a 32x32->64 bit multiply.
7326 // Expand rule only, not matched
7327 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7328   effect( DEF dst, USE src1, USE src2 );
7329   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7330             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7331   ins_encode( enc_mul_hi(dst,src1,src2));
7332   ins_pipe(sdiv_reg_reg);
7333 %}
7334 
7335 // Magic constant, reciprocal of 10
7336 instruct loadConI_x66666667(iRegIsafe dst) %{
7337   effect( DEF dst );
7338 
7339   size(8);
7340   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7341   ins_encode( Set32(0x66666667, dst) );
7342   ins_pipe(ialu_hi_lo_reg);
7343 %}
7344 
7345 // Register Shift Right Arithmetic Long by 32-63
7346 instruct sra_31( iRegI dst, iRegI src ) %{
7347   effect( DEF dst, USE src );
7348   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7349   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7350   ins_pipe(ialu_reg_reg);
7351 %}
7352 
7353 // Arithmetic Shift Right by 8-bit immediate
7354 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7355   effect( DEF dst, USE src );
7356   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7357   opcode(Assembler::sra_op3, Assembler::arith_op);
7358   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7359   ins_pipe(ialu_reg_imm);
7360 %}
7361 
7362 // Integer DIV with 10
7363 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7364   match(Set dst (DivI src div));
7365   ins_cost((6+6)*DEFAULT_COST);
7366   expand %{
7367     iRegIsafe tmp1;               // Killed temps;
7368     iRegIsafe tmp2;               // Killed temps;
7369     iRegI tmp3;                   // Killed temps;
7370     iRegI tmp4;                   // Killed temps;
7371     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7372     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7373     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7374     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7375     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7376   %}
7377 %}
7378 
7379 // Register Long Division
7380 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7381   match(Set dst (DivL src1 src2));
7382   ins_cost(DEFAULT_COST*71);
7383   size(4);
7384   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7385   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7386   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7387   ins_pipe(divL_reg_reg);
7388 %}
7389 
7390 // Register Long Division
7391 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7392   match(Set dst (DivL src1 src2));
7393   ins_cost(DEFAULT_COST*71);
7394   size(4);
7395   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7396   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7397   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7398   ins_pipe(divL_reg_imm);
7399 %}
7400 
7401 // Integer Remainder
7402 // Register Remainder
7403 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7404   match(Set dst (ModI src1 src2));
7405   effect( KILL ccr, KILL temp);
7406 
7407   format %{ "SREM   $src1,$src2,$dst" %}
7408   ins_encode( irem_reg(src1, src2, dst, temp) );
7409   ins_pipe(sdiv_reg_reg);
7410 %}
7411 
7412 // Immediate Remainder
7413 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7414   match(Set dst (ModI src1 src2));
7415   effect( KILL ccr, KILL temp);
7416 
7417   format %{ "SREM   $src1,$src2,$dst" %}
7418   ins_encode( irem_imm(src1, src2, dst, temp) );
7419   ins_pipe(sdiv_reg_imm);
7420 %}
7421 
7422 // Register Long Remainder
7423 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7424   effect(DEF dst, USE src1, USE src2);
7425   size(4);
7426   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7427   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7428   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7429   ins_pipe(divL_reg_reg);
7430 %}
7431 
7432 // Register Long Division
7433 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7434   effect(DEF dst, USE src1, USE src2);
7435   size(4);
7436   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7437   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7438   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7439   ins_pipe(divL_reg_imm);
7440 %}
7441 
7442 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7443   effect(DEF dst, USE src1, USE src2);
7444   size(4);
7445   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7446   opcode(Assembler::mulx_op3, Assembler::arith_op);
7447   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7448   ins_pipe(mulL_reg_reg);
7449 %}
7450 
7451 // Immediate Multiplication
7452 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7453   effect(DEF dst, USE src1, USE src2);
7454   size(4);
7455   format %{ "MULX   $src1,$src2,$dst" %}
7456   opcode(Assembler::mulx_op3, Assembler::arith_op);
7457   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7458   ins_pipe(mulL_reg_imm);
7459 %}
7460 
7461 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7462   effect(DEF dst, USE src1, USE src2);
7463   size(4);
7464   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7465   opcode(Assembler::sub_op3, Assembler::arith_op);
7466   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7467   ins_pipe(ialu_reg_reg);
7468 %}
7469 
7470 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7471   effect(DEF dst, USE src1, USE src2);
7472   size(4);
7473   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7474   opcode(Assembler::sub_op3, Assembler::arith_op);
7475   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7476   ins_pipe(ialu_reg_reg);
7477 %}
7478 
7479 // Register Long Remainder
7480 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7481   match(Set dst (ModL src1 src2));
7482   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7483   expand %{
7484     iRegL tmp1;
7485     iRegL tmp2;
7486     divL_reg_reg_1(tmp1, src1, src2);
7487     mulL_reg_reg_1(tmp2, tmp1, src2);
7488     subL_reg_reg_1(dst,  src1, tmp2);
7489   %}
7490 %}
7491 
7492 // Register Long Remainder
7493 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7494   match(Set dst (ModL src1 src2));
7495   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7496   expand %{
7497     iRegL tmp1;
7498     iRegL tmp2;
7499     divL_reg_imm13_1(tmp1, src1, src2);
7500     mulL_reg_imm13_1(tmp2, tmp1, src2);
7501     subL_reg_reg_2  (dst,  src1, tmp2);
7502   %}
7503 %}
7504 
7505 // Integer Shift Instructions
7506 // Register Shift Left
7507 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7508   match(Set dst (LShiftI src1 src2));
7509 
7510   size(4);
7511   format %{ "SLL    $src1,$src2,$dst" %}
7512   opcode(Assembler::sll_op3, Assembler::arith_op);
7513   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7514   ins_pipe(ialu_reg_reg);
7515 %}
7516 
7517 // Register Shift Left Immediate
7518 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7519   match(Set dst (LShiftI src1 src2));
7520 
7521   size(4);
7522   format %{ "SLL    $src1,$src2,$dst" %}
7523   opcode(Assembler::sll_op3, Assembler::arith_op);
7524   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7525   ins_pipe(ialu_reg_imm);
7526 %}
7527 
7528 // Register Shift Left
7529 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7530   match(Set dst (LShiftL src1 src2));
7531 
7532   size(4);
7533   format %{ "SLLX   $src1,$src2,$dst" %}
7534   opcode(Assembler::sllx_op3, Assembler::arith_op);
7535   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7536   ins_pipe(ialu_reg_reg);
7537 %}
7538 
7539 // Register Shift Left Immediate
7540 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7541   match(Set dst (LShiftL src1 src2));
7542 
7543   size(4);
7544   format %{ "SLLX   $src1,$src2,$dst" %}
7545   opcode(Assembler::sllx_op3, Assembler::arith_op);
7546   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7547   ins_pipe(ialu_reg_imm);
7548 %}
7549 
7550 // Register Arithmetic Shift Right
7551 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7552   match(Set dst (RShiftI src1 src2));
7553   size(4);
7554   format %{ "SRA    $src1,$src2,$dst" %}
7555   opcode(Assembler::sra_op3, Assembler::arith_op);
7556   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7557   ins_pipe(ialu_reg_reg);
7558 %}
7559 
7560 // Register Arithmetic Shift Right Immediate
7561 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7562   match(Set dst (RShiftI src1 src2));
7563 
7564   size(4);
7565   format %{ "SRA    $src1,$src2,$dst" %}
7566   opcode(Assembler::sra_op3, Assembler::arith_op);
7567   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7568   ins_pipe(ialu_reg_imm);
7569 %}
7570 
7571 // Register Shift Right Arithmatic Long
7572 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7573   match(Set dst (RShiftL src1 src2));
7574 
7575   size(4);
7576   format %{ "SRAX   $src1,$src2,$dst" %}
7577   opcode(Assembler::srax_op3, Assembler::arith_op);
7578   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7579   ins_pipe(ialu_reg_reg);
7580 %}
7581 
7582 // Register Shift Left Immediate
7583 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7584   match(Set dst (RShiftL src1 src2));
7585 
7586   size(4);
7587   format %{ "SRAX   $src1,$src2,$dst" %}
7588   opcode(Assembler::srax_op3, Assembler::arith_op);
7589   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7590   ins_pipe(ialu_reg_imm);
7591 %}
7592 
7593 // Register Shift Right
7594 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7595   match(Set dst (URShiftI src1 src2));
7596 
7597   size(4);
7598   format %{ "SRL    $src1,$src2,$dst" %}
7599   opcode(Assembler::srl_op3, Assembler::arith_op);
7600   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7601   ins_pipe(ialu_reg_reg);
7602 %}
7603 
7604 // Register Shift Right Immediate
7605 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7606   match(Set dst (URShiftI src1 src2));
7607 
7608   size(4);
7609   format %{ "SRL    $src1,$src2,$dst" %}
7610   opcode(Assembler::srl_op3, Assembler::arith_op);
7611   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7612   ins_pipe(ialu_reg_imm);
7613 %}
7614 
7615 // Register Shift Right
7616 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7617   match(Set dst (URShiftL src1 src2));
7618 
7619   size(4);
7620   format %{ "SRLX   $src1,$src2,$dst" %}
7621   opcode(Assembler::srlx_op3, Assembler::arith_op);
7622   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7623   ins_pipe(ialu_reg_reg);
7624 %}
7625 
7626 // Register Shift Right Immediate
7627 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7628   match(Set dst (URShiftL src1 src2));
7629 
7630   size(4);
7631   format %{ "SRLX   $src1,$src2,$dst" %}
7632   opcode(Assembler::srlx_op3, Assembler::arith_op);
7633   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7634   ins_pipe(ialu_reg_imm);
7635 %}
7636 
7637 // Register Shift Right Immediate with a CastP2X
7638 #ifdef _LP64
7639 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7640   match(Set dst (URShiftL (CastP2X src1) src2));
7641   size(4);
7642   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7643   opcode(Assembler::srlx_op3, Assembler::arith_op);
7644   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7645   ins_pipe(ialu_reg_imm);
7646 %}
7647 #else
7648 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7649   match(Set dst (URShiftI (CastP2X src1) src2));
7650   size(4);
7651   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7652   opcode(Assembler::srl_op3, Assembler::arith_op);
7653   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7654   ins_pipe(ialu_reg_imm);
7655 %}
7656 #endif
7657 
7658 
7659 //----------Floating Point Arithmetic Instructions-----------------------------
7660 
7661 //  Add float single precision
7662 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7663   match(Set dst (AddF src1 src2));
7664 
7665   size(4);
7666   format %{ "FADDS  $src1,$src2,$dst" %}
7667   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7668   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7669   ins_pipe(faddF_reg_reg);
7670 %}
7671 
7672 //  Add float double precision
7673 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7674   match(Set dst (AddD src1 src2));
7675 
7676   size(4);
7677   format %{ "FADDD  $src1,$src2,$dst" %}
7678   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7679   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7680   ins_pipe(faddD_reg_reg);
7681 %}
7682 
7683 //  Sub float single precision
7684 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7685   match(Set dst (SubF src1 src2));
7686 
7687   size(4);
7688   format %{ "FSUBS  $src1,$src2,$dst" %}
7689   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7690   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7691   ins_pipe(faddF_reg_reg);
7692 %}
7693 
7694 //  Sub float double precision
7695 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7696   match(Set dst (SubD src1 src2));
7697 
7698   size(4);
7699   format %{ "FSUBD  $src1,$src2,$dst" %}
7700   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7701   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7702   ins_pipe(faddD_reg_reg);
7703 %}
7704 
7705 //  Mul float single precision
7706 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7707   match(Set dst (MulF src1 src2));
7708 
7709   size(4);
7710   format %{ "FMULS  $src1,$src2,$dst" %}
7711   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7712   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7713   ins_pipe(fmulF_reg_reg);
7714 %}
7715 
7716 //  Mul float double precision
7717 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7718   match(Set dst (MulD src1 src2));
7719 
7720   size(4);
7721   format %{ "FMULD  $src1,$src2,$dst" %}
7722   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7723   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7724   ins_pipe(fmulD_reg_reg);
7725 %}
7726 
7727 //  Div float single precision
7728 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7729   match(Set dst (DivF src1 src2));
7730 
7731   size(4);
7732   format %{ "FDIVS  $src1,$src2,$dst" %}
7733   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7734   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7735   ins_pipe(fdivF_reg_reg);
7736 %}
7737 
7738 //  Div float double precision
7739 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7740   match(Set dst (DivD src1 src2));
7741 
7742   size(4);
7743   format %{ "FDIVD  $src1,$src2,$dst" %}
7744   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7745   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7746   ins_pipe(fdivD_reg_reg);
7747 %}
7748 
7749 //  Absolute float double precision
7750 instruct absD_reg(regD dst, regD src) %{
7751   match(Set dst (AbsD src));
7752 
7753   format %{ "FABSd  $src,$dst" %}
7754   ins_encode(fabsd(dst, src));
7755   ins_pipe(faddD_reg);
7756 %}
7757 
7758 //  Absolute float single precision
7759 instruct absF_reg(regF dst, regF src) %{
7760   match(Set dst (AbsF src));
7761 
7762   format %{ "FABSs  $src,$dst" %}
7763   ins_encode(fabss(dst, src));
7764   ins_pipe(faddF_reg);
7765 %}
7766 
7767 instruct negF_reg(regF dst, regF src) %{
7768   match(Set dst (NegF src));
7769 
7770   size(4);
7771   format %{ "FNEGs  $src,$dst" %}
7772   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7773   ins_encode(form3_opf_rs2F_rdF(src, dst));
7774   ins_pipe(faddF_reg);
7775 %}
7776 
7777 instruct negD_reg(regD dst, regD src) %{
7778   match(Set dst (NegD src));
7779 
7780   format %{ "FNEGd  $src,$dst" %}
7781   ins_encode(fnegd(dst, src));
7782   ins_pipe(faddD_reg);
7783 %}
7784 
7785 //  Sqrt float double precision
7786 instruct sqrtF_reg_reg(regF dst, regF src) %{
7787   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7788 
7789   size(4);
7790   format %{ "FSQRTS $src,$dst" %}
7791   ins_encode(fsqrts(dst, src));
7792   ins_pipe(fdivF_reg_reg);
7793 %}
7794 
7795 //  Sqrt float double precision
7796 instruct sqrtD_reg_reg(regD dst, regD src) %{
7797   match(Set dst (SqrtD src));
7798 
7799   size(4);
7800   format %{ "FSQRTD $src,$dst" %}
7801   ins_encode(fsqrtd(dst, src));
7802   ins_pipe(fdivD_reg_reg);
7803 %}
7804 
7805 //----------Logical Instructions-----------------------------------------------
7806 // And Instructions
7807 // Register And
7808 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7809   match(Set dst (AndI src1 src2));
7810 
7811   size(4);
7812   format %{ "AND    $src1,$src2,$dst" %}
7813   opcode(Assembler::and_op3, Assembler::arith_op);
7814   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7815   ins_pipe(ialu_reg_reg);
7816 %}
7817 
7818 // Immediate And
7819 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7820   match(Set dst (AndI src1 src2));
7821 
7822   size(4);
7823   format %{ "AND    $src1,$src2,$dst" %}
7824   opcode(Assembler::and_op3, Assembler::arith_op);
7825   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7826   ins_pipe(ialu_reg_imm);
7827 %}
7828 
7829 // Register And Long
7830 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7831   match(Set dst (AndL src1 src2));
7832 
7833   ins_cost(DEFAULT_COST);
7834   size(4);
7835   format %{ "AND    $src1,$src2,$dst\t! long" %}
7836   opcode(Assembler::and_op3, Assembler::arith_op);
7837   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7838   ins_pipe(ialu_reg_reg);
7839 %}
7840 
7841 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7842   match(Set dst (AndL src1 con));
7843 
7844   ins_cost(DEFAULT_COST);
7845   size(4);
7846   format %{ "AND    $src1,$con,$dst\t! long" %}
7847   opcode(Assembler::and_op3, Assembler::arith_op);
7848   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7849   ins_pipe(ialu_reg_imm);
7850 %}
7851 
7852 // Or Instructions
7853 // Register Or
7854 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7855   match(Set dst (OrI src1 src2));
7856 
7857   size(4);
7858   format %{ "OR     $src1,$src2,$dst" %}
7859   opcode(Assembler::or_op3, Assembler::arith_op);
7860   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7861   ins_pipe(ialu_reg_reg);
7862 %}
7863 
7864 // Immediate Or
7865 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7866   match(Set dst (OrI src1 src2));
7867 
7868   size(4);
7869   format %{ "OR     $src1,$src2,$dst" %}
7870   opcode(Assembler::or_op3, Assembler::arith_op);
7871   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7872   ins_pipe(ialu_reg_imm);
7873 %}
7874 
7875 // Register Or Long
7876 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7877   match(Set dst (OrL src1 src2));
7878 
7879   ins_cost(DEFAULT_COST);
7880   size(4);
7881   format %{ "OR     $src1,$src2,$dst\t! long" %}
7882   opcode(Assembler::or_op3, Assembler::arith_op);
7883   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7884   ins_pipe(ialu_reg_reg);
7885 %}
7886 
7887 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7888   match(Set dst (OrL src1 con));
7889   ins_cost(DEFAULT_COST*2);
7890 
7891   ins_cost(DEFAULT_COST);
7892   size(4);
7893   format %{ "OR     $src1,$con,$dst\t! long" %}
7894   opcode(Assembler::or_op3, Assembler::arith_op);
7895   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7896   ins_pipe(ialu_reg_imm);
7897 %}
7898 
7899 #ifndef _LP64
7900 
7901 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
7902 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
7903   match(Set dst (OrI src1 (CastP2X src2)));
7904 
7905   size(4);
7906   format %{ "OR     $src1,$src2,$dst" %}
7907   opcode(Assembler::or_op3, Assembler::arith_op);
7908   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7909   ins_pipe(ialu_reg_reg);
7910 %}
7911 
7912 #else
7913 
7914 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
7915   match(Set dst (OrL src1 (CastP2X src2)));
7916 
7917   ins_cost(DEFAULT_COST);
7918   size(4);
7919   format %{ "OR     $src1,$src2,$dst\t! long" %}
7920   opcode(Assembler::or_op3, Assembler::arith_op);
7921   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7922   ins_pipe(ialu_reg_reg);
7923 %}
7924 
7925 #endif
7926 
7927 // Xor Instructions
7928 // Register Xor
7929 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7930   match(Set dst (XorI src1 src2));
7931 
7932   size(4);
7933   format %{ "XOR    $src1,$src2,$dst" %}
7934   opcode(Assembler::xor_op3, Assembler::arith_op);
7935   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7936   ins_pipe(ialu_reg_reg);
7937 %}
7938 
7939 // Immediate Xor
7940 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7941   match(Set dst (XorI src1 src2));
7942 
7943   size(4);
7944   format %{ "XOR    $src1,$src2,$dst" %}
7945   opcode(Assembler::xor_op3, Assembler::arith_op);
7946   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7947   ins_pipe(ialu_reg_imm);
7948 %}
7949 
7950 // Register Xor Long
7951 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7952   match(Set dst (XorL src1 src2));
7953 
7954   ins_cost(DEFAULT_COST);
7955   size(4);
7956   format %{ "XOR    $src1,$src2,$dst\t! long" %}
7957   opcode(Assembler::xor_op3, Assembler::arith_op);
7958   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7959   ins_pipe(ialu_reg_reg);
7960 %}
7961 
7962 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7963   match(Set dst (XorL src1 con));
7964 
7965   ins_cost(DEFAULT_COST);
7966   size(4);
7967   format %{ "XOR    $src1,$con,$dst\t! long" %}
7968   opcode(Assembler::xor_op3, Assembler::arith_op);
7969   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7970   ins_pipe(ialu_reg_imm);
7971 %}
7972 
7973 //----------Convert to Boolean-------------------------------------------------
7974 // Nice hack for 32-bit tests but doesn't work for
7975 // 64-bit pointers.
7976 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
7977   match(Set dst (Conv2B src));
7978   effect( KILL ccr );
7979   ins_cost(DEFAULT_COST*2);
7980   format %{ "CMP    R_G0,$src\n\t"
7981             "ADDX   R_G0,0,$dst" %}
7982   ins_encode( enc_to_bool( src, dst ) );
7983   ins_pipe(ialu_reg_ialu);
7984 %}
7985 
7986 #ifndef _LP64
7987 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
7988   match(Set dst (Conv2B src));
7989   effect( KILL ccr );
7990   ins_cost(DEFAULT_COST*2);
7991   format %{ "CMP    R_G0,$src\n\t"
7992             "ADDX   R_G0,0,$dst" %}
7993   ins_encode( enc_to_bool( src, dst ) );
7994   ins_pipe(ialu_reg_ialu);
7995 %}
7996 #else
7997 instruct convP2B( iRegI dst, iRegP src ) %{
7998   match(Set dst (Conv2B src));
7999   ins_cost(DEFAULT_COST*2);
8000   format %{ "MOV    $src,$dst\n\t"
8001             "MOVRNZ $src,1,$dst" %}
8002   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8003   ins_pipe(ialu_clr_and_mover);
8004 %}
8005 #endif
8006 
8007 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8008   match(Set dst (CmpLTMask p q));
8009   effect( KILL ccr );
8010   ins_cost(DEFAULT_COST*4);
8011   format %{ "CMP    $p,$q\n\t"
8012             "MOV    #0,$dst\n\t"
8013             "BLT,a  .+8\n\t"
8014             "MOV    #-1,$dst" %}
8015   ins_encode( enc_ltmask(p,q,dst) );
8016   ins_pipe(ialu_reg_reg_ialu);
8017 %}
8018 
8019 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8020   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8021   effect(KILL ccr, TEMP tmp);
8022   ins_cost(DEFAULT_COST*3);
8023 
8024   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8025             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8026             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8027   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
8028   ins_pipe( cadd_cmpltmask );
8029 %}
8030 
8031 instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8032   match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
8033   effect( KILL ccr, TEMP tmp);
8034   ins_cost(DEFAULT_COST*3);
8035 
8036   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8037             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8038             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8039   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
8040   ins_pipe( cadd_cmpltmask );
8041 %}
8042 
8043 //----------Arithmetic Conversion Instructions---------------------------------
8044 // The conversions operations are all Alpha sorted.  Please keep it that way!
8045 
8046 instruct convD2F_reg(regF dst, regD src) %{
8047   match(Set dst (ConvD2F src));
8048   size(4);
8049   format %{ "FDTOS  $src,$dst" %}
8050   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8051   ins_encode(form3_opf_rs2D_rdF(src, dst));
8052   ins_pipe(fcvtD2F);
8053 %}
8054 
8055 
8056 // Convert a double to an int in a float register.
8057 // If the double is a NAN, stuff a zero in instead.
8058 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8059   effect(DEF dst, USE src, KILL fcc0);
8060   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8061             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8062             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8063             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8064             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8065       "skip:" %}
8066   ins_encode(form_d2i_helper(src,dst));
8067   ins_pipe(fcvtD2I);
8068 %}
8069 
8070 instruct convD2I_reg(stackSlotI dst, regD src) %{
8071   match(Set dst (ConvD2I src));
8072   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8073   expand %{
8074     regF tmp;
8075     convD2I_helper(tmp, src);
8076     regF_to_stkI(dst, tmp);
8077   %}
8078 %}
8079 
8080 // Convert a double to a long in a double register.
8081 // If the double is a NAN, stuff a zero in instead.
8082 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8083   effect(DEF dst, USE src, KILL fcc0);
8084   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8085             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8086             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8087             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8088             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8089       "skip:" %}
8090   ins_encode(form_d2l_helper(src,dst));
8091   ins_pipe(fcvtD2L);
8092 %}
8093 
8094 
8095 // Double to Long conversion
8096 instruct convD2L_reg(stackSlotL dst, regD src) %{
8097   match(Set dst (ConvD2L src));
8098   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8099   expand %{
8100     regD tmp;
8101     convD2L_helper(tmp, src);
8102     regD_to_stkL(dst, tmp);
8103   %}
8104 %}
8105 
8106 
8107 instruct convF2D_reg(regD dst, regF src) %{
8108   match(Set dst (ConvF2D src));
8109   format %{ "FSTOD  $src,$dst" %}
8110   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8111   ins_encode(form3_opf_rs2F_rdD(src, dst));
8112   ins_pipe(fcvtF2D);
8113 %}
8114 
8115 
8116 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8117   effect(DEF dst, USE src, KILL fcc0);
8118   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8119             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8120             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8121             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8122             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8123       "skip:" %}
8124   ins_encode(form_f2i_helper(src,dst));
8125   ins_pipe(fcvtF2I);
8126 %}
8127 
8128 instruct convF2I_reg(stackSlotI dst, regF src) %{
8129   match(Set dst (ConvF2I src));
8130   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8131   expand %{
8132     regF tmp;
8133     convF2I_helper(tmp, src);
8134     regF_to_stkI(dst, tmp);
8135   %}
8136 %}
8137 
8138 
8139 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8140   effect(DEF dst, USE src, KILL fcc0);
8141   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8142             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8143             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8144             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8145             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8146       "skip:" %}
8147   ins_encode(form_f2l_helper(src,dst));
8148   ins_pipe(fcvtF2L);
8149 %}
8150 
8151 // Float to Long conversion
8152 instruct convF2L_reg(stackSlotL dst, regF src) %{
8153   match(Set dst (ConvF2L src));
8154   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8155   expand %{
8156     regD tmp;
8157     convF2L_helper(tmp, src);
8158     regD_to_stkL(dst, tmp);
8159   %}
8160 %}
8161 
8162 
8163 instruct convI2D_helper(regD dst, regF tmp) %{
8164   effect(USE tmp, DEF dst);
8165   format %{ "FITOD  $tmp,$dst" %}
8166   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8167   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8168   ins_pipe(fcvtI2D);
8169 %}
8170 
8171 instruct convI2D_reg(stackSlotI src, regD dst) %{
8172   match(Set dst (ConvI2D src));
8173   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8174   expand %{
8175     regF tmp;
8176     stkI_to_regF( tmp, src);
8177     convI2D_helper( dst, tmp);
8178   %}
8179 %}
8180 
8181 instruct convI2D_mem( regD_low dst, memory mem ) %{
8182   match(Set dst (ConvI2D (LoadI mem)));
8183   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8184   size(8);
8185   format %{ "LDF    $mem,$dst\n\t"
8186             "FITOD  $dst,$dst" %}
8187   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8188   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8189   ins_pipe(floadF_mem);
8190 %}
8191 
8192 
8193 instruct convI2F_helper(regF dst, regF tmp) %{
8194   effect(DEF dst, USE tmp);
8195   format %{ "FITOS  $tmp,$dst" %}
8196   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8197   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8198   ins_pipe(fcvtI2F);
8199 %}
8200 
8201 instruct convI2F_reg( regF dst, stackSlotI src ) %{
8202   match(Set dst (ConvI2F src));
8203   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8204   expand %{
8205     regF tmp;
8206     stkI_to_regF(tmp,src);
8207     convI2F_helper(dst, tmp);
8208   %}
8209 %}
8210 
8211 instruct convI2F_mem( regF dst, memory mem ) %{
8212   match(Set dst (ConvI2F (LoadI mem)));
8213   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8214   size(8);
8215   format %{ "LDF    $mem,$dst\n\t"
8216             "FITOS  $dst,$dst" %}
8217   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8218   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8219   ins_pipe(floadF_mem);
8220 %}
8221 
8222 
8223 instruct convI2L_reg(iRegL dst, iRegI src) %{
8224   match(Set dst (ConvI2L src));
8225   size(4);
8226   format %{ "SRA    $src,0,$dst\t! int->long" %}
8227   opcode(Assembler::sra_op3, Assembler::arith_op);
8228   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8229   ins_pipe(ialu_reg_reg);
8230 %}
8231 
8232 // Zero-extend convert int to long
8233 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8234   match(Set dst (AndL (ConvI2L src) mask) );
8235   size(4);
8236   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8237   opcode(Assembler::srl_op3, Assembler::arith_op);
8238   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8239   ins_pipe(ialu_reg_reg);
8240 %}
8241 
8242 // Zero-extend long
8243 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8244   match(Set dst (AndL src mask) );
8245   size(4);
8246   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8247   opcode(Assembler::srl_op3, Assembler::arith_op);
8248   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8249   ins_pipe(ialu_reg_reg);
8250 %}
8251 
8252 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8253   match(Set dst (MoveF2I src));
8254   effect(DEF dst, USE src);
8255   ins_cost(MEMORY_REF_COST);
8256 
8257   size(4);
8258   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8259   opcode(Assembler::lduw_op3);
8260   ins_encode(simple_form3_mem_reg( src, dst ) );
8261   ins_pipe(iload_mem);
8262 %}
8263 
8264 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8265   match(Set dst (MoveI2F src));
8266   effect(DEF dst, USE src);
8267   ins_cost(MEMORY_REF_COST);
8268 
8269   size(4);
8270   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8271   opcode(Assembler::ldf_op3);
8272   ins_encode(simple_form3_mem_reg(src, dst));
8273   ins_pipe(floadF_stk);
8274 %}
8275 
8276 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8277   match(Set dst (MoveD2L src));
8278   effect(DEF dst, USE src);
8279   ins_cost(MEMORY_REF_COST);
8280 
8281   size(4);
8282   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8283   opcode(Assembler::ldx_op3);
8284   ins_encode(simple_form3_mem_reg( src, dst ) );
8285   ins_pipe(iload_mem);
8286 %}
8287 
8288 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8289   match(Set dst (MoveL2D src));
8290   effect(DEF dst, USE src);
8291   ins_cost(MEMORY_REF_COST);
8292 
8293   size(4);
8294   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8295   opcode(Assembler::lddf_op3);
8296   ins_encode(simple_form3_mem_reg(src, dst));
8297   ins_pipe(floadD_stk);
8298 %}
8299 
8300 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8301   match(Set dst (MoveF2I src));
8302   effect(DEF dst, USE src);
8303   ins_cost(MEMORY_REF_COST);
8304 
8305   size(4);
8306   format %{ "STF   $src,$dst\t!MoveF2I" %}
8307   opcode(Assembler::stf_op3);
8308   ins_encode(simple_form3_mem_reg(dst, src));
8309   ins_pipe(fstoreF_stk_reg);
8310 %}
8311 
8312 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8313   match(Set dst (MoveI2F src));
8314   effect(DEF dst, USE src);
8315   ins_cost(MEMORY_REF_COST);
8316 
8317   size(4);
8318   format %{ "STW    $src,$dst\t!MoveI2F" %}
8319   opcode(Assembler::stw_op3);
8320   ins_encode(simple_form3_mem_reg( dst, src ) );
8321   ins_pipe(istore_mem_reg);
8322 %}
8323 
8324 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8325   match(Set dst (MoveD2L src));
8326   effect(DEF dst, USE src);
8327   ins_cost(MEMORY_REF_COST);
8328 
8329   size(4);
8330   format %{ "STDF   $src,$dst\t!MoveD2L" %}
8331   opcode(Assembler::stdf_op3);
8332   ins_encode(simple_form3_mem_reg(dst, src));
8333   ins_pipe(fstoreD_stk_reg);
8334 %}
8335 
8336 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8337   match(Set dst (MoveL2D src));
8338   effect(DEF dst, USE src);
8339   ins_cost(MEMORY_REF_COST);
8340 
8341   size(4);
8342   format %{ "STX    $src,$dst\t!MoveL2D" %}
8343   opcode(Assembler::stx_op3);
8344   ins_encode(simple_form3_mem_reg( dst, src ) );
8345   ins_pipe(istore_mem_reg);
8346 %}
8347 
8348 
8349 //-----------
8350 // Long to Double conversion using V8 opcodes.
8351 // Still useful because cheetah traps and becomes
8352 // amazingly slow for some common numbers.
8353 
8354 // Magic constant, 0x43300000
8355 instruct loadConI_x43300000(iRegI dst) %{
8356   effect(DEF dst);
8357   size(4);
8358   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8359   ins_encode(SetHi22(0x43300000, dst));
8360   ins_pipe(ialu_none);
8361 %}
8362 
8363 // Magic constant, 0x41f00000
8364 instruct loadConI_x41f00000(iRegI dst) %{
8365   effect(DEF dst);
8366   size(4);
8367   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8368   ins_encode(SetHi22(0x41f00000, dst));
8369   ins_pipe(ialu_none);
8370 %}
8371 
8372 // Construct a double from two float halves
8373 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8374   effect(DEF dst, USE src1, USE src2);
8375   size(8);
8376   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8377             "FMOVS  $src2.lo,$dst.lo" %}
8378   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8379   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8380   ins_pipe(faddD_reg_reg);
8381 %}
8382 
8383 // Convert integer in high half of a double register (in the lower half of
8384 // the double register file) to double
8385 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8386   effect(DEF dst, USE src);
8387   size(4);
8388   format %{ "FITOD  $src,$dst" %}
8389   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8390   ins_encode(form3_opf_rs2D_rdD(src, dst));
8391   ins_pipe(fcvtLHi2D);
8392 %}
8393 
8394 // Add float double precision
8395 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8396   effect(DEF dst, USE src1, USE src2);
8397   size(4);
8398   format %{ "FADDD  $src1,$src2,$dst" %}
8399   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8400   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8401   ins_pipe(faddD_reg_reg);
8402 %}
8403 
8404 // Sub float double precision
8405 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8406   effect(DEF dst, USE src1, USE src2);
8407   size(4);
8408   format %{ "FSUBD  $src1,$src2,$dst" %}
8409   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8410   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8411   ins_pipe(faddD_reg_reg);
8412 %}
8413 
8414 // Mul float double precision
8415 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8416   effect(DEF dst, USE src1, USE src2);
8417   size(4);
8418   format %{ "FMULD  $src1,$src2,$dst" %}
8419   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8420   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8421   ins_pipe(fmulD_reg_reg);
8422 %}
8423 
8424 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8425   match(Set dst (ConvL2D src));
8426   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8427 
8428   expand %{
8429     regD_low   tmpsrc;
8430     iRegI      ix43300000;
8431     iRegI      ix41f00000;
8432     stackSlotL lx43300000;
8433     stackSlotL lx41f00000;
8434     regD_low   dx43300000;
8435     regD       dx41f00000;
8436     regD       tmp1;
8437     regD_low   tmp2;
8438     regD       tmp3;
8439     regD       tmp4;
8440 
8441     stkL_to_regD(tmpsrc, src);
8442 
8443     loadConI_x43300000(ix43300000);
8444     loadConI_x41f00000(ix41f00000);
8445     regI_to_stkLHi(lx43300000, ix43300000);
8446     regI_to_stkLHi(lx41f00000, ix41f00000);
8447     stkL_to_regD(dx43300000, lx43300000);
8448     stkL_to_regD(dx41f00000, lx41f00000);
8449 
8450     convI2D_regDHi_regD(tmp1, tmpsrc);
8451     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8452     subD_regD_regD(tmp3, tmp2, dx43300000);
8453     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8454     addD_regD_regD(dst, tmp3, tmp4);
8455   %}
8456 %}
8457 
8458 // Long to Double conversion using fast fxtof
8459 instruct convL2D_helper(regD dst, regD tmp) %{
8460   effect(DEF dst, USE tmp);
8461   size(4);
8462   format %{ "FXTOD  $tmp,$dst" %}
8463   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8464   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8465   ins_pipe(fcvtL2D);
8466 %}
8467 
8468 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
8469   predicate(VM_Version::has_fast_fxtof());
8470   match(Set dst (ConvL2D src));
8471   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8472   expand %{
8473     regD tmp;
8474     stkL_to_regD(tmp, src);
8475     convL2D_helper(dst, tmp);
8476   %}
8477 %}
8478 
8479 //-----------
8480 // Long to Float conversion using V8 opcodes.
8481 // Still useful because cheetah traps and becomes
8482 // amazingly slow for some common numbers.
8483 
8484 // Long to Float conversion using fast fxtof
8485 instruct convL2F_helper(regF dst, regD tmp) %{
8486   effect(DEF dst, USE tmp);
8487   size(4);
8488   format %{ "FXTOS  $tmp,$dst" %}
8489   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8490   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8491   ins_pipe(fcvtL2F);
8492 %}
8493 
8494 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
8495   match(Set dst (ConvL2F src));
8496   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8497   expand %{
8498     regD tmp;
8499     stkL_to_regD(tmp, src);
8500     convL2F_helper(dst, tmp);
8501   %}
8502 %}
8503 //-----------
8504 
8505 instruct convL2I_reg(iRegI dst, iRegL src) %{
8506   match(Set dst (ConvL2I src));
8507 #ifndef _LP64
8508   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8509   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8510   ins_pipe(ialu_move_reg_I_to_L);
8511 #else
8512   size(4);
8513   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8514   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8515   ins_pipe(ialu_reg);
8516 #endif
8517 %}
8518 
8519 // Register Shift Right Immediate
8520 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8521   match(Set dst (ConvL2I (RShiftL src cnt)));
8522 
8523   size(4);
8524   format %{ "SRAX   $src,$cnt,$dst" %}
8525   opcode(Assembler::srax_op3, Assembler::arith_op);
8526   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8527   ins_pipe(ialu_reg_imm);
8528 %}
8529 
8530 // Replicate scalar to packed byte values in Double register
8531 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
8532   effect(DEF dst, USE src);
8533   format %{ "SLLX  $src,56,$dst\n\t"
8534             "SRLX  $dst, 8,O7\n\t"
8535             "OR    $dst,O7,$dst\n\t"
8536             "SRLX  $dst,16,O7\n\t"
8537             "OR    $dst,O7,$dst\n\t"
8538             "SRLX  $dst,32,O7\n\t"
8539             "OR    $dst,O7,$dst\t! replicate8B" %}
8540   ins_encode( enc_repl8b(src, dst));
8541   ins_pipe(ialu_reg);
8542 %}
8543 
8544 // Replicate scalar to packed byte values in Double register
8545 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
8546   match(Set dst (Replicate8B src));
8547   expand %{
8548     iRegL tmp;
8549     Repl8B_reg_helper(tmp, src);
8550     regL_to_stkD(dst, tmp);
8551   %}
8552 %}
8553 
8554 // Replicate scalar constant to packed byte values in Double register
8555 instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{
8556   match(Set dst (Replicate8B src));
8557 #ifdef _LP64
8558   size(36);
8559 #else
8560   size(8);
8561 #endif
8562   format %{ "SETHI  hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t"
8563             "LDDF   [$tmp+lo(&Repl8($src))],$dst" %}
8564   ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) );
8565   ins_pipe(loadConFD);
8566 %}
8567 
8568 // Replicate scalar to packed char values into stack slot
8569 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
8570   effect(DEF dst, USE src);
8571   format %{ "SLLX  $src,48,$dst\n\t"
8572             "SRLX  $dst,16,O7\n\t"
8573             "OR    $dst,O7,$dst\n\t"
8574             "SRLX  $dst,32,O7\n\t"
8575             "OR    $dst,O7,$dst\t! replicate4C" %}
8576   ins_encode( enc_repl4s(src, dst) );
8577   ins_pipe(ialu_reg);
8578 %}
8579 
8580 // Replicate scalar to packed char values into stack slot
8581 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
8582   match(Set dst (Replicate4C src));
8583   expand %{
8584     iRegL tmp;
8585     Repl4C_reg_helper(tmp, src);
8586     regL_to_stkD(dst, tmp);
8587   %}
8588 %}
8589 
8590 // Replicate scalar constant to packed char values in Double register
8591 instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{
8592   match(Set dst (Replicate4C src));
8593 #ifdef _LP64
8594   size(36);
8595 #else
8596   size(8);
8597 #endif
8598   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t"
8599             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
8600   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
8601   ins_pipe(loadConFD);
8602 %}
8603 
8604 // Replicate scalar to packed short values into stack slot
8605 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
8606   effect(DEF dst, USE src);
8607   format %{ "SLLX  $src,48,$dst\n\t"
8608             "SRLX  $dst,16,O7\n\t"
8609             "OR    $dst,O7,$dst\n\t"
8610             "SRLX  $dst,32,O7\n\t"
8611             "OR    $dst,O7,$dst\t! replicate4S" %}
8612   ins_encode( enc_repl4s(src, dst) );
8613   ins_pipe(ialu_reg);
8614 %}
8615 
8616 // Replicate scalar to packed short values into stack slot
8617 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
8618   match(Set dst (Replicate4S src));
8619   expand %{
8620     iRegL tmp;
8621     Repl4S_reg_helper(tmp, src);
8622     regL_to_stkD(dst, tmp);
8623   %}
8624 %}
8625 
8626 // Replicate scalar constant to packed short values in Double register
8627 instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{
8628   match(Set dst (Replicate4S src));
8629 #ifdef _LP64
8630   size(36);
8631 #else
8632   size(8);
8633 #endif
8634   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t"
8635             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
8636   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
8637   ins_pipe(loadConFD);
8638 %}
8639 
8640 // Replicate scalar to packed int values in Double register
8641 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
8642   effect(DEF dst, USE src);
8643   format %{ "SLLX  $src,32,$dst\n\t"
8644             "SRLX  $dst,32,O7\n\t"
8645             "OR    $dst,O7,$dst\t! replicate2I" %}
8646   ins_encode( enc_repl2i(src, dst));
8647   ins_pipe(ialu_reg);
8648 %}
8649 
8650 // Replicate scalar to packed int values in Double register
8651 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
8652   match(Set dst (Replicate2I src));
8653   expand %{
8654     iRegL tmp;
8655     Repl2I_reg_helper(tmp, src);
8656     regL_to_stkD(dst, tmp);
8657   %}
8658 %}
8659 
8660 // Replicate scalar zero constant to packed int values in Double register
8661 instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{
8662   match(Set dst (Replicate2I src));
8663 #ifdef _LP64
8664   size(36);
8665 #else
8666   size(8);
8667 #endif
8668   format %{ "SETHI  hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t"
8669             "LDDF   [$tmp+lo(&Repl2($src))],$dst" %}
8670   ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) );
8671   ins_pipe(loadConFD);
8672 %}
8673 
8674 //----------Control Flow Instructions------------------------------------------
8675 // Compare Instructions
8676 // Compare Integers
8677 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8678   match(Set icc (CmpI op1 op2));
8679   effect( DEF icc, USE op1, USE op2 );
8680 
8681   size(4);
8682   format %{ "CMP    $op1,$op2" %}
8683   opcode(Assembler::subcc_op3, Assembler::arith_op);
8684   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8685   ins_pipe(ialu_cconly_reg_reg);
8686 %}
8687 
8688 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8689   match(Set icc (CmpU op1 op2));
8690 
8691   size(4);
8692   format %{ "CMP    $op1,$op2\t! unsigned" %}
8693   opcode(Assembler::subcc_op3, Assembler::arith_op);
8694   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8695   ins_pipe(ialu_cconly_reg_reg);
8696 %}
8697 
8698 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8699   match(Set icc (CmpI op1 op2));
8700   effect( DEF icc, USE op1 );
8701 
8702   size(4);
8703   format %{ "CMP    $op1,$op2" %}
8704   opcode(Assembler::subcc_op3, Assembler::arith_op);
8705   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8706   ins_pipe(ialu_cconly_reg_imm);
8707 %}
8708 
8709 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8710   match(Set icc (CmpI (AndI op1 op2) zero));
8711 
8712   size(4);
8713   format %{ "BTST   $op2,$op1" %}
8714   opcode(Assembler::andcc_op3, Assembler::arith_op);
8715   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8716   ins_pipe(ialu_cconly_reg_reg_zero);
8717 %}
8718 
8719 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8720   match(Set icc (CmpI (AndI op1 op2) zero));
8721 
8722   size(4);
8723   format %{ "BTST   $op2,$op1" %}
8724   opcode(Assembler::andcc_op3, Assembler::arith_op);
8725   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8726   ins_pipe(ialu_cconly_reg_imm_zero);
8727 %}
8728 
8729 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8730   match(Set xcc (CmpL op1 op2));
8731   effect( DEF xcc, USE op1, USE op2 );
8732 
8733   size(4);
8734   format %{ "CMP    $op1,$op2\t\t! long" %}
8735   opcode(Assembler::subcc_op3, Assembler::arith_op);
8736   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8737   ins_pipe(ialu_cconly_reg_reg);
8738 %}
8739 
8740 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8741   match(Set xcc (CmpL op1 con));
8742   effect( DEF xcc, USE op1, USE con );
8743 
8744   size(4);
8745   format %{ "CMP    $op1,$con\t\t! long" %}
8746   opcode(Assembler::subcc_op3, Assembler::arith_op);
8747   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8748   ins_pipe(ialu_cconly_reg_reg);
8749 %}
8750 
8751 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8752   match(Set xcc (CmpL (AndL op1 op2) zero));
8753   effect( DEF xcc, USE op1, USE op2 );
8754 
8755   size(4);
8756   format %{ "BTST   $op1,$op2\t\t! long" %}
8757   opcode(Assembler::andcc_op3, Assembler::arith_op);
8758   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8759   ins_pipe(ialu_cconly_reg_reg);
8760 %}
8761 
8762 // useful for checking the alignment of a pointer:
8763 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8764   match(Set xcc (CmpL (AndL op1 con) zero));
8765   effect( DEF xcc, USE op1, USE con );
8766 
8767   size(4);
8768   format %{ "BTST   $op1,$con\t\t! long" %}
8769   opcode(Assembler::andcc_op3, Assembler::arith_op);
8770   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8771   ins_pipe(ialu_cconly_reg_reg);
8772 %}
8773 
8774 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
8775   match(Set icc (CmpU op1 op2));
8776 
8777   size(4);
8778   format %{ "CMP    $op1,$op2\t! unsigned" %}
8779   opcode(Assembler::subcc_op3, Assembler::arith_op);
8780   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8781   ins_pipe(ialu_cconly_reg_imm);
8782 %}
8783 
8784 // Compare Pointers
8785 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8786   match(Set pcc (CmpP op1 op2));
8787 
8788   size(4);
8789   format %{ "CMP    $op1,$op2\t! ptr" %}
8790   opcode(Assembler::subcc_op3, Assembler::arith_op);
8791   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8792   ins_pipe(ialu_cconly_reg_reg);
8793 %}
8794 
8795 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8796   match(Set pcc (CmpP op1 op2));
8797 
8798   size(4);
8799   format %{ "CMP    $op1,$op2\t! ptr" %}
8800   opcode(Assembler::subcc_op3, Assembler::arith_op);
8801   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8802   ins_pipe(ialu_cconly_reg_imm);
8803 %}
8804 
8805 // Compare Narrow oops
8806 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
8807   match(Set icc (CmpN op1 op2));
8808 
8809   size(4);
8810   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8811   opcode(Assembler::subcc_op3, Assembler::arith_op);
8812   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8813   ins_pipe(ialu_cconly_reg_reg);
8814 %}
8815 
8816 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
8817   match(Set icc (CmpN op1 op2));
8818 
8819   size(4);
8820   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8821   opcode(Assembler::subcc_op3, Assembler::arith_op);
8822   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8823   ins_pipe(ialu_cconly_reg_imm);
8824 %}
8825 
8826 //----------Max and Min--------------------------------------------------------
8827 // Min Instructions
8828 // Conditional move for min
8829 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
8830   effect( USE_DEF op2, USE op1, USE icc );
8831 
8832   size(4);
8833   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
8834   opcode(Assembler::less);
8835   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8836   ins_pipe(ialu_reg_flags);
8837 %}
8838 
8839 // Min Register with Register.
8840 instruct minI_eReg(iRegI op1, iRegI op2) %{
8841   match(Set op2 (MinI op1 op2));
8842   ins_cost(DEFAULT_COST*2);
8843   expand %{
8844     flagsReg icc;
8845     compI_iReg(icc,op1,op2);
8846     cmovI_reg_lt(op2,op1,icc);
8847   %}
8848 %}
8849 
8850 // Max Instructions
8851 // Conditional move for max
8852 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
8853   effect( USE_DEF op2, USE op1, USE icc );
8854   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
8855   opcode(Assembler::greater);
8856   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8857   ins_pipe(ialu_reg_flags);
8858 %}
8859 
8860 // Max Register with Register
8861 instruct maxI_eReg(iRegI op1, iRegI op2) %{
8862   match(Set op2 (MaxI op1 op2));
8863   ins_cost(DEFAULT_COST*2);
8864   expand %{
8865     flagsReg icc;
8866     compI_iReg(icc,op1,op2);
8867     cmovI_reg_gt(op2,op1,icc);
8868   %}
8869 %}
8870 
8871 
8872 //----------Float Compares----------------------------------------------------
8873 // Compare floating, generate condition code
8874 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
8875   match(Set fcc (CmpF src1 src2));
8876 
8877   size(4);
8878   format %{ "FCMPs  $fcc,$src1,$src2" %}
8879   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
8880   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
8881   ins_pipe(faddF_fcc_reg_reg_zero);
8882 %}
8883 
8884 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
8885   match(Set fcc (CmpD src1 src2));
8886 
8887   size(4);
8888   format %{ "FCMPd  $fcc,$src1,$src2" %}
8889   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
8890   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
8891   ins_pipe(faddD_fcc_reg_reg_zero);
8892 %}
8893 
8894 
8895 // Compare floating, generate -1,0,1
8896 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
8897   match(Set dst (CmpF3 src1 src2));
8898   effect(KILL fcc0);
8899   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8900   format %{ "fcmpl  $dst,$src1,$src2" %}
8901   // Primary = float
8902   opcode( true );
8903   ins_encode( floating_cmp( dst, src1, src2 ) );
8904   ins_pipe( floating_cmp );
8905 %}
8906 
8907 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
8908   match(Set dst (CmpD3 src1 src2));
8909   effect(KILL fcc0);
8910   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8911   format %{ "dcmpl  $dst,$src1,$src2" %}
8912   // Primary = double (not float)
8913   opcode( false );
8914   ins_encode( floating_cmp( dst, src1, src2 ) );
8915   ins_pipe( floating_cmp );
8916 %}
8917 
8918 //----------Branches---------------------------------------------------------
8919 // Jump
8920 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
8921 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
8922   match(Jump switch_val);
8923 
8924   ins_cost(350);
8925 
8926   format %{  "SETHI  [hi(table_base)],O7\n\t"
8927              "ADD    O7, lo(table_base), O7\n\t"
8928              "LD     [O7+$switch_val], O7\n\t"
8929              "JUMP   O7"
8930          %}
8931   ins_encode( jump_enc( switch_val, table) );
8932   ins_pc_relative(1);
8933   ins_pipe(ialu_reg_reg);
8934 %}
8935 
8936 // Direct Branch.  Use V8 version with longer range.
8937 instruct branch(label labl) %{
8938   match(Goto);
8939   effect(USE labl);
8940 
8941   size(8);
8942   ins_cost(BRANCH_COST);
8943   format %{ "BA     $labl" %}
8944   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
8945   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
8946   ins_encode( enc_ba( labl ) );
8947   ins_pc_relative(1);
8948   ins_pipe(br);
8949 %}
8950 
8951 // Conditional Direct Branch
8952 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
8953   match(If cmp icc);
8954   effect(USE labl);
8955 
8956   size(8);
8957   ins_cost(BRANCH_COST);
8958   format %{ "BP$cmp   $icc,$labl" %}
8959   // Prim = bits 24-22, Secnd = bits 31-30
8960   ins_encode( enc_bp( labl, cmp, icc ) );
8961   ins_pc_relative(1);
8962   ins_pipe(br_cc);
8963 %}
8964 
8965 // Branch-on-register tests all 64 bits.  We assume that values
8966 // in 64-bit registers always remains zero or sign extended
8967 // unless our code munges the high bits.  Interrupts can chop
8968 // the high order bits to zero or sign at any time.
8969 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
8970   match(If cmp (CmpI op1 zero));
8971   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8972   effect(USE labl);
8973 
8974   size(8);
8975   ins_cost(BRANCH_COST);
8976   format %{ "BR$cmp   $op1,$labl" %}
8977   ins_encode( enc_bpr( labl, cmp, op1 ) );
8978   ins_pc_relative(1);
8979   ins_pipe(br_reg);
8980 %}
8981 
8982 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
8983   match(If cmp (CmpP op1 null));
8984   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8985   effect(USE labl);
8986 
8987   size(8);
8988   ins_cost(BRANCH_COST);
8989   format %{ "BR$cmp   $op1,$labl" %}
8990   ins_encode( enc_bpr( labl, cmp, op1 ) );
8991   ins_pc_relative(1);
8992   ins_pipe(br_reg);
8993 %}
8994 
8995 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
8996   match(If cmp (CmpL op1 zero));
8997   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8998   effect(USE labl);
8999 
9000   size(8);
9001   ins_cost(BRANCH_COST);
9002   format %{ "BR$cmp   $op1,$labl" %}
9003   ins_encode( enc_bpr( labl, cmp, op1 ) );
9004   ins_pc_relative(1);
9005   ins_pipe(br_reg);
9006 %}
9007 
9008 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9009   match(If cmp icc);
9010   effect(USE labl);
9011 
9012   format %{ "BP$cmp  $icc,$labl" %}
9013   // Prim = bits 24-22, Secnd = bits 31-30
9014   ins_encode( enc_bp( labl, cmp, icc ) );
9015   ins_pc_relative(1);
9016   ins_pipe(br_cc);
9017 %}
9018 
9019 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9020   match(If cmp pcc);
9021   effect(USE labl);
9022 
9023   size(8);
9024   ins_cost(BRANCH_COST);
9025   format %{ "BP$cmp  $pcc,$labl" %}
9026   // Prim = bits 24-22, Secnd = bits 31-30
9027   ins_encode( enc_bpx( labl, cmp, pcc ) );
9028   ins_pc_relative(1);
9029   ins_pipe(br_cc);
9030 %}
9031 
9032 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9033   match(If cmp fcc);
9034   effect(USE labl);
9035 
9036   size(8);
9037   ins_cost(BRANCH_COST);
9038   format %{ "FBP$cmp $fcc,$labl" %}
9039   // Prim = bits 24-22, Secnd = bits 31-30
9040   ins_encode( enc_fbp( labl, cmp, fcc ) );
9041   ins_pc_relative(1);
9042   ins_pipe(br_fcc);
9043 %}
9044 
9045 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9046   match(CountedLoopEnd cmp icc);
9047   effect(USE labl);
9048 
9049   size(8);
9050   ins_cost(BRANCH_COST);
9051   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9052   // Prim = bits 24-22, Secnd = bits 31-30
9053   ins_encode( enc_bp( labl, cmp, icc ) );
9054   ins_pc_relative(1);
9055   ins_pipe(br_cc);
9056 %}
9057 
9058 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9059   match(CountedLoopEnd cmp icc);
9060   effect(USE labl);
9061 
9062   size(8);
9063   ins_cost(BRANCH_COST);
9064   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9065   // Prim = bits 24-22, Secnd = bits 31-30
9066   ins_encode( enc_bp( labl, cmp, icc ) );
9067   ins_pc_relative(1);
9068   ins_pipe(br_cc);
9069 %}
9070 
9071 // ============================================================================
9072 // Long Compare
9073 //
9074 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9075 // is tricky.  The flavor of compare used depends on whether we are testing
9076 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9077 // The GE test is the negated LT test.  The LE test can be had by commuting
9078 // the operands (yielding a GE test) and then negating; negate again for the
9079 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9080 // NE test is negated from that.
9081 
9082 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9083 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9084 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9085 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9086 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9087 // foo match ends up with the wrong leaf.  One fix is to not match both
9088 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9089 // both forms beat the trinary form of long-compare and both are very useful
9090 // on Intel which has so few registers.
9091 
9092 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9093   match(If cmp xcc);
9094   effect(USE labl);
9095 
9096   size(8);
9097   ins_cost(BRANCH_COST);
9098   format %{ "BP$cmp   $xcc,$labl" %}
9099   // Prim = bits 24-22, Secnd = bits 31-30
9100   ins_encode( enc_bpl( labl, cmp, xcc ) );
9101   ins_pc_relative(1);
9102   ins_pipe(br_cc);
9103 %}
9104 
9105 // Manifest a CmpL3 result in an integer register.  Very painful.
9106 // This is the test to avoid.
9107 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9108   match(Set dst (CmpL3 src1 src2) );
9109   effect( KILL ccr );
9110   ins_cost(6*DEFAULT_COST);
9111   size(24);
9112   format %{ "CMP    $src1,$src2\t\t! long\n"
9113           "\tBLT,a,pn done\n"
9114           "\tMOV    -1,$dst\t! delay slot\n"
9115           "\tBGT,a,pn done\n"
9116           "\tMOV    1,$dst\t! delay slot\n"
9117           "\tCLR    $dst\n"
9118     "done:"     %}
9119   ins_encode( cmpl_flag(src1,src2,dst) );
9120   ins_pipe(cmpL_reg);
9121 %}
9122 
9123 // Conditional move
9124 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9125   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9126   ins_cost(150);
9127   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9128   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9129   ins_pipe(ialu_reg);
9130 %}
9131 
9132 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9133   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9134   ins_cost(140);
9135   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9136   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9137   ins_pipe(ialu_imm);
9138 %}
9139 
9140 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9141   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9142   ins_cost(150);
9143   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9144   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9145   ins_pipe(ialu_reg);
9146 %}
9147 
9148 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9149   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9150   ins_cost(140);
9151   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9152   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9153   ins_pipe(ialu_imm);
9154 %}
9155 
9156 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9157   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9158   ins_cost(150);
9159   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9160   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9161   ins_pipe(ialu_reg);
9162 %}
9163 
9164 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9165   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9166   ins_cost(150);
9167   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9168   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9169   ins_pipe(ialu_reg);
9170 %}
9171 
9172 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9173   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9174   ins_cost(140);
9175   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9176   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9177   ins_pipe(ialu_imm);
9178 %}
9179 
9180 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9181   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9182   ins_cost(150);
9183   opcode(0x101);
9184   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9185   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9186   ins_pipe(int_conditional_float_move);
9187 %}
9188 
9189 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9190   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9191   ins_cost(150);
9192   opcode(0x102);
9193   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9194   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9195   ins_pipe(int_conditional_float_move);
9196 %}
9197 
9198 // ============================================================================
9199 // Safepoint Instruction
9200 instruct safePoint_poll(iRegP poll) %{
9201   match(SafePoint poll);
9202   effect(USE poll);
9203 
9204   size(4);
9205 #ifdef _LP64
9206   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9207 #else
9208   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9209 #endif
9210   ins_encode %{
9211     __ relocate(relocInfo::poll_type);
9212     __ ld_ptr($poll$$Register, 0, G0);
9213   %}
9214   ins_pipe(loadPollP);
9215 %}
9216 
9217 // ============================================================================
9218 // Call Instructions
9219 // Call Java Static Instruction
9220 instruct CallStaticJavaDirect( method meth ) %{
9221   match(CallStaticJava);
9222   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9223   effect(USE meth);
9224 
9225   size(8);
9226   ins_cost(CALL_COST);
9227   format %{ "CALL,static  ; NOP ==> " %}
9228   ins_encode( Java_Static_Call( meth ), call_epilog );
9229   ins_pc_relative(1);
9230   ins_pipe(simple_call);
9231 %}
9232 
9233 // Call Java Static Instruction (method handle version)
9234 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9235   match(CallStaticJava);
9236   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9237   effect(USE meth, KILL l7_mh_SP_save);
9238 
9239   size(8);
9240   ins_cost(CALL_COST);
9241   format %{ "CALL,static/MethodHandle" %}
9242   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
9243   ins_pc_relative(1);
9244   ins_pipe(simple_call);
9245 %}
9246 
9247 // Call Java Dynamic Instruction
9248 instruct CallDynamicJavaDirect( method meth ) %{
9249   match(CallDynamicJava);
9250   effect(USE meth);
9251 
9252   ins_cost(CALL_COST);
9253   format %{ "SET    (empty),R_G5\n\t"
9254             "CALL,dynamic  ; NOP ==> " %}
9255   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9256   ins_pc_relative(1);
9257   ins_pipe(call);
9258 %}
9259 
9260 // Call Runtime Instruction
9261 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9262   match(CallRuntime);
9263   effect(USE meth, KILL l7);
9264   ins_cost(CALL_COST);
9265   format %{ "CALL,runtime" %}
9266   ins_encode( Java_To_Runtime( meth ),
9267               call_epilog, adjust_long_from_native_call );
9268   ins_pc_relative(1);
9269   ins_pipe(simple_call);
9270 %}
9271 
9272 // Call runtime without safepoint - same as CallRuntime
9273 instruct CallLeafDirect(method meth, l7RegP l7) %{
9274   match(CallLeaf);
9275   effect(USE meth, KILL l7);
9276   ins_cost(CALL_COST);
9277   format %{ "CALL,runtime leaf" %}
9278   ins_encode( Java_To_Runtime( meth ),
9279               call_epilog,
9280               adjust_long_from_native_call );
9281   ins_pc_relative(1);
9282   ins_pipe(simple_call);
9283 %}
9284 
9285 // Call runtime without safepoint - same as CallLeaf
9286 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9287   match(CallLeafNoFP);
9288   effect(USE meth, KILL l7);
9289   ins_cost(CALL_COST);
9290   format %{ "CALL,runtime leaf nofp" %}
9291   ins_encode( Java_To_Runtime( meth ),
9292               call_epilog,
9293               adjust_long_from_native_call );
9294   ins_pc_relative(1);
9295   ins_pipe(simple_call);
9296 %}
9297 
9298 // Tail Call; Jump from runtime stub to Java code.
9299 // Also known as an 'interprocedural jump'.
9300 // Target of jump will eventually return to caller.
9301 // TailJump below removes the return address.
9302 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9303   match(TailCall jump_target method_oop );
9304 
9305   ins_cost(CALL_COST);
9306   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9307   ins_encode(form_jmpl(jump_target));
9308   ins_pipe(tail_call);
9309 %}
9310 
9311 
9312 // Return Instruction
9313 instruct Ret() %{
9314   match(Return);
9315 
9316   // The epilogue node did the ret already.
9317   size(0);
9318   format %{ "! return" %}
9319   ins_encode();
9320   ins_pipe(empty);
9321 %}
9322 
9323 
9324 // Tail Jump; remove the return address; jump to target.
9325 // TailCall above leaves the return address around.
9326 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
9327 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
9328 // "restore" before this instruction (in Epilogue), we need to materialize it
9329 // in %i0.
9330 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
9331   match( TailJump jump_target ex_oop );
9332   ins_cost(CALL_COST);
9333   format %{ "! discard R_O7\n\t"
9334             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
9335   ins_encode(form_jmpl_set_exception_pc(jump_target));
9336   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
9337   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
9338   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
9339   ins_pipe(tail_call);
9340 %}
9341 
9342 // Create exception oop: created by stack-crawling runtime code.
9343 // Created exception is now available to this handler, and is setup
9344 // just prior to jumping to this handler.  No code emitted.
9345 instruct CreateException( o0RegP ex_oop )
9346 %{
9347   match(Set ex_oop (CreateEx));
9348   ins_cost(0);
9349 
9350   size(0);
9351   // use the following format syntax
9352   format %{ "! exception oop is in R_O0; no code emitted" %}
9353   ins_encode();
9354   ins_pipe(empty);
9355 %}
9356 
9357 
9358 // Rethrow exception:
9359 // The exception oop will come in the first argument position.
9360 // Then JUMP (not call) to the rethrow stub code.
9361 instruct RethrowException()
9362 %{
9363   match(Rethrow);
9364   ins_cost(CALL_COST);
9365 
9366   // use the following format syntax
9367   format %{ "Jmp    rethrow_stub" %}
9368   ins_encode(enc_rethrow);
9369   ins_pipe(tail_call);
9370 %}
9371 
9372 
9373 // Die now
9374 instruct ShouldNotReachHere( )
9375 %{
9376   match(Halt);
9377   ins_cost(CALL_COST);
9378 
9379   size(4);
9380   // Use the following format syntax
9381   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
9382   ins_encode( form2_illtrap() );
9383   ins_pipe(tail_call);
9384 %}
9385 
9386 // ============================================================================
9387 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
9388 // array for an instance of the superklass.  Set a hidden internal cache on a
9389 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
9390 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
9391 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
9392   match(Set index (PartialSubtypeCheck sub super));
9393   effect( KILL pcc, KILL o7 );
9394   ins_cost(DEFAULT_COST*10);
9395   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
9396   ins_encode( enc_PartialSubtypeCheck() );
9397   ins_pipe(partial_subtype_check_pipe);
9398 %}
9399 
9400 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
9401   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
9402   effect( KILL idx, KILL o7 );
9403   ins_cost(DEFAULT_COST*10);
9404   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
9405   ins_encode( enc_PartialSubtypeCheck() );
9406   ins_pipe(partial_subtype_check_pipe);
9407 %}
9408 
9409 
9410 // ============================================================================
9411 // inlined locking and unlocking
9412 
9413 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9414   match(Set pcc (FastLock object box));
9415 
9416   effect(KILL scratch, TEMP scratch2);
9417   ins_cost(100);
9418 
9419   size(4*112);       // conservative overestimation ...
9420   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9421   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
9422   ins_pipe(long_memory_op);
9423 %}
9424 
9425 
9426 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9427   match(Set pcc (FastUnlock object box));
9428   effect(KILL scratch, TEMP scratch2);
9429   ins_cost(100);
9430 
9431   size(4*120);       // conservative overestimation ...
9432   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9433   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
9434   ins_pipe(long_memory_op);
9435 %}
9436 
9437 // Count and Base registers are fixed because the allocator cannot
9438 // kill unknown registers.  The encodings are generic.
9439 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
9440   match(Set dummy (ClearArray cnt base));
9441   effect(TEMP temp, KILL ccr);
9442   ins_cost(300);
9443   format %{ "MOV    $cnt,$temp\n"
9444     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
9445     "        BRge   loop\t\t! Clearing loop\n"
9446     "        STX    G0,[$base+$temp]\t! delay slot" %}
9447   ins_encode( enc_Clear_Array(cnt, base, temp) );
9448   ins_pipe(long_memory_op);
9449 %}
9450 
9451 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
9452                         o7RegI tmp, flagsReg ccr) %{
9453   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
9454   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
9455   ins_cost(300);
9456   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
9457   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
9458   ins_pipe(long_memory_op);
9459 %}
9460 
9461 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
9462                        o7RegI tmp, flagsReg ccr) %{
9463   match(Set result (StrEquals (Binary str1 str2) cnt));
9464   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
9465   ins_cost(300);
9466   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
9467   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
9468   ins_pipe(long_memory_op);
9469 %}
9470 
9471 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
9472                       o7RegI tmp2, flagsReg ccr) %{
9473   match(Set result (AryEq ary1 ary2));
9474   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
9475   ins_cost(300);
9476   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
9477   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
9478   ins_pipe(long_memory_op);
9479 %}
9480 
9481 
9482 //---------- Zeros Count Instructions ------------------------------------------
9483 
9484 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
9485   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9486   match(Set dst (CountLeadingZerosI src));
9487   effect(TEMP dst, TEMP tmp, KILL cr);
9488 
9489   // x |= (x >> 1);
9490   // x |= (x >> 2);
9491   // x |= (x >> 4);
9492   // x |= (x >> 8);
9493   // x |= (x >> 16);
9494   // return (WORDBITS - popc(x));
9495   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
9496             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
9497             "OR      $dst,$tmp,$dst\n\t"
9498             "SRL     $dst,2,$tmp\n\t"
9499             "OR      $dst,$tmp,$dst\n\t"
9500             "SRL     $dst,4,$tmp\n\t"
9501             "OR      $dst,$tmp,$dst\n\t"
9502             "SRL     $dst,8,$tmp\n\t"
9503             "OR      $dst,$tmp,$dst\n\t"
9504             "SRL     $dst,16,$tmp\n\t"
9505             "OR      $dst,$tmp,$dst\n\t"
9506             "POPC    $dst,$dst\n\t"
9507             "MOV     32,$tmp\n\t"
9508             "SUB     $tmp,$dst,$dst" %}
9509   ins_encode %{
9510     Register Rdst = $dst$$Register;
9511     Register Rsrc = $src$$Register;
9512     Register Rtmp = $tmp$$Register;
9513     __ srl(Rsrc, 1, Rtmp);
9514     __ srl(Rsrc, 0, Rdst);
9515     __ or3(Rdst, Rtmp, Rdst);
9516     __ srl(Rdst, 2, Rtmp);
9517     __ or3(Rdst, Rtmp, Rdst);
9518     __ srl(Rdst, 4, Rtmp);
9519     __ or3(Rdst, Rtmp, Rdst);
9520     __ srl(Rdst, 8, Rtmp);
9521     __ or3(Rdst, Rtmp, Rdst);
9522     __ srl(Rdst, 16, Rtmp);
9523     __ or3(Rdst, Rtmp, Rdst);
9524     __ popc(Rdst, Rdst);
9525     __ mov(BitsPerInt, Rtmp);
9526     __ sub(Rtmp, Rdst, Rdst);
9527   %}
9528   ins_pipe(ialu_reg);
9529 %}
9530 
9531 instruct countLeadingZerosL(iRegI dst, iRegL src, iRegL tmp, flagsReg cr) %{
9532   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9533   match(Set dst (CountLeadingZerosL src));
9534   effect(TEMP dst, TEMP tmp, KILL cr);
9535 
9536   // x |= (x >> 1);
9537   // x |= (x >> 2);
9538   // x |= (x >> 4);
9539   // x |= (x >> 8);
9540   // x |= (x >> 16);
9541   // x |= (x >> 32);
9542   // return (WORDBITS - popc(x));
9543   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
9544             "OR      $src,$tmp,$dst\n\t"
9545             "SRLX    $dst,2,$tmp\n\t"
9546             "OR      $dst,$tmp,$dst\n\t"
9547             "SRLX    $dst,4,$tmp\n\t"
9548             "OR      $dst,$tmp,$dst\n\t"
9549             "SRLX    $dst,8,$tmp\n\t"
9550             "OR      $dst,$tmp,$dst\n\t"
9551             "SRLX    $dst,16,$tmp\n\t"
9552             "OR      $dst,$tmp,$dst\n\t"
9553             "SRLX    $dst,32,$tmp\n\t"
9554             "OR      $dst,$tmp,$dst\n\t"
9555             "POPC    $dst,$dst\n\t"
9556             "MOV     64,$tmp\n\t"
9557             "SUB     $tmp,$dst,$dst" %}
9558   ins_encode %{
9559     Register Rdst = $dst$$Register;
9560     Register Rsrc = $src$$Register;
9561     Register Rtmp = $tmp$$Register;
9562     __ srlx(Rsrc, 1, Rtmp);
9563     __ or3(Rsrc, Rtmp, Rdst);
9564     __ srlx(Rdst, 2, Rtmp);
9565     __ or3(Rdst, Rtmp, Rdst);
9566     __ srlx(Rdst, 4, Rtmp);
9567     __ or3(Rdst, Rtmp, Rdst);
9568     __ srlx(Rdst, 8, Rtmp);
9569     __ or3(Rdst, Rtmp, Rdst);
9570     __ srlx(Rdst, 16, Rtmp);
9571     __ or3(Rdst, Rtmp, Rdst);
9572     __ srlx(Rdst, 32, Rtmp);
9573     __ or3(Rdst, Rtmp, Rdst);
9574     __ popc(Rdst, Rdst);
9575     __ mov(BitsPerLong, Rtmp);
9576     __ sub(Rtmp, Rdst, Rdst);
9577   %}
9578   ins_pipe(ialu_reg);
9579 %}
9580 
9581 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
9582   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9583   match(Set dst (CountTrailingZerosI src));
9584   effect(TEMP dst, KILL cr);
9585 
9586   // return popc(~x & (x - 1));
9587   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
9588             "ANDN    $dst,$src,$dst\n\t"
9589             "SRL     $dst,R_G0,$dst\n\t"
9590             "POPC    $dst,$dst" %}
9591   ins_encode %{
9592     Register Rdst = $dst$$Register;
9593     Register Rsrc = $src$$Register;
9594     __ sub(Rsrc, 1, Rdst);
9595     __ andn(Rdst, Rsrc, Rdst);
9596     __ srl(Rdst, G0, Rdst);
9597     __ popc(Rdst, Rdst);
9598   %}
9599   ins_pipe(ialu_reg);
9600 %}
9601 
9602 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
9603   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9604   match(Set dst (CountTrailingZerosL src));
9605   effect(TEMP dst, KILL cr);
9606 
9607   // return popc(~x & (x - 1));
9608   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
9609             "ANDN    $dst,$src,$dst\n\t"
9610             "POPC    $dst,$dst" %}
9611   ins_encode %{
9612     Register Rdst = $dst$$Register;
9613     Register Rsrc = $src$$Register;
9614     __ sub(Rsrc, 1, Rdst);
9615     __ andn(Rdst, Rsrc, Rdst);
9616     __ popc(Rdst, Rdst);
9617   %}
9618   ins_pipe(ialu_reg);
9619 %}
9620 
9621 
9622 //---------- Population Count Instructions -------------------------------------
9623 
9624 instruct popCountI(iRegI dst, iRegI src) %{
9625   predicate(UsePopCountInstruction);
9626   match(Set dst (PopCountI src));
9627 
9628   format %{ "POPC   $src, $dst" %}
9629   ins_encode %{
9630     __ popc($src$$Register, $dst$$Register);
9631   %}
9632   ins_pipe(ialu_reg);
9633 %}
9634 
9635 // Note: Long.bitCount(long) returns an int.
9636 instruct popCountL(iRegI dst, iRegL src) %{
9637   predicate(UsePopCountInstruction);
9638   match(Set dst (PopCountL src));
9639 
9640   format %{ "POPC   $src, $dst" %}
9641   ins_encode %{
9642     __ popc($src$$Register, $dst$$Register);
9643   %}
9644   ins_pipe(ialu_reg);
9645 %}
9646 
9647 
9648 // ============================================================================
9649 //------------Bytes reverse--------------------------------------------------
9650 
9651 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
9652   match(Set dst (ReverseBytesI src));
9653 
9654   // Op cost is artificially doubled to make sure that load or store
9655   // instructions are preferred over this one which requires a spill
9656   // onto a stack slot.
9657   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9658   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9659 
9660   ins_encode %{
9661     __ set($src$$disp + STACK_BIAS, O7);
9662     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9663   %}
9664   ins_pipe( iload_mem );
9665 %}
9666 
9667 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
9668   match(Set dst (ReverseBytesL src));
9669 
9670   // Op cost is artificially doubled to make sure that load or store
9671   // instructions are preferred over this one which requires a spill
9672   // onto a stack slot.
9673   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9674   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9675 
9676   ins_encode %{
9677     __ set($src$$disp + STACK_BIAS, O7);
9678     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9679   %}
9680   ins_pipe( iload_mem );
9681 %}
9682 
9683 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
9684   match(Set dst (ReverseBytesUS src));
9685 
9686   // Op cost is artificially doubled to make sure that load or store
9687   // instructions are preferred over this one which requires a spill
9688   // onto a stack slot.
9689   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9690   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
9691 
9692   ins_encode %{
9693     // the value was spilled as an int so bias the load
9694     __ set($src$$disp + STACK_BIAS + 2, O7);
9695     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9696   %}
9697   ins_pipe( iload_mem );
9698 %}
9699 
9700 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
9701   match(Set dst (ReverseBytesS src));
9702 
9703   // Op cost is artificially doubled to make sure that load or store
9704   // instructions are preferred over this one which requires a spill
9705   // onto a stack slot.
9706   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9707   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
9708 
9709   ins_encode %{
9710     // the value was spilled as an int so bias the load
9711     __ set($src$$disp + STACK_BIAS + 2, O7);
9712     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9713   %}
9714   ins_pipe( iload_mem );
9715 %}
9716 
9717 // Load Integer reversed byte order
9718 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
9719   match(Set dst (ReverseBytesI (LoadI src)));
9720 
9721   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
9722   size(4);
9723   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9724 
9725   ins_encode %{
9726     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9727   %}
9728   ins_pipe(iload_mem);
9729 %}
9730 
9731 // Load Long - aligned and reversed
9732 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
9733   match(Set dst (ReverseBytesL (LoadL src)));
9734 
9735   ins_cost(MEMORY_REF_COST);
9736   size(4);
9737   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9738 
9739   ins_encode %{
9740     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9741   %}
9742   ins_pipe(iload_mem);
9743 %}
9744 
9745 // Load unsigned short / char reversed byte order
9746 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
9747   match(Set dst (ReverseBytesUS (LoadUS src)));
9748 
9749   ins_cost(MEMORY_REF_COST);
9750   size(4);
9751   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
9752 
9753   ins_encode %{
9754     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9755   %}
9756   ins_pipe(iload_mem);
9757 %}
9758 
9759 // Load short reversed byte order
9760 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
9761   match(Set dst (ReverseBytesS (LoadS src)));
9762 
9763   ins_cost(MEMORY_REF_COST);
9764   size(4);
9765   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
9766 
9767   ins_encode %{
9768     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
9769   %}
9770   ins_pipe(iload_mem);
9771 %}
9772 
9773 // Store Integer reversed byte order
9774 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
9775   match(Set dst (StoreI dst (ReverseBytesI src)));
9776 
9777   ins_cost(MEMORY_REF_COST);
9778   size(4);
9779   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
9780 
9781   ins_encode %{
9782     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
9783   %}
9784   ins_pipe(istore_mem_reg);
9785 %}
9786 
9787 // Store Long reversed byte order
9788 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
9789   match(Set dst (StoreL dst (ReverseBytesL src)));
9790 
9791   ins_cost(MEMORY_REF_COST);
9792   size(4);
9793   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
9794 
9795   ins_encode %{
9796     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
9797   %}
9798   ins_pipe(istore_mem_reg);
9799 %}
9800 
9801 // Store unsighed short/char reversed byte order
9802 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
9803   match(Set dst (StoreC dst (ReverseBytesUS src)));
9804 
9805   ins_cost(MEMORY_REF_COST);
9806   size(4);
9807   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
9808 
9809   ins_encode %{
9810     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
9811   %}
9812   ins_pipe(istore_mem_reg);
9813 %}
9814 
9815 // Store short reversed byte order
9816 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
9817   match(Set dst (StoreC dst (ReverseBytesS src)));
9818 
9819   ins_cost(MEMORY_REF_COST);
9820   size(4);
9821   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
9822 
9823   ins_encode %{
9824     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
9825   %}
9826   ins_pipe(istore_mem_reg);
9827 %}
9828 
9829 //----------PEEPHOLE RULES-----------------------------------------------------
9830 // These must follow all instruction definitions as they use the names
9831 // defined in the instructions definitions.
9832 //
9833 // peepmatch ( root_instr_name [preceding_instruction]* );
9834 //
9835 // peepconstraint %{
9836 // (instruction_number.operand_name relational_op instruction_number.operand_name
9837 //  [, ...] );
9838 // // instruction numbers are zero-based using left to right order in peepmatch
9839 //
9840 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
9841 // // provide an instruction_number.operand_name for each operand that appears
9842 // // in the replacement instruction's match rule
9843 //
9844 // ---------VM FLAGS---------------------------------------------------------
9845 //
9846 // All peephole optimizations can be turned off using -XX:-OptoPeephole
9847 //
9848 // Each peephole rule is given an identifying number starting with zero and
9849 // increasing by one in the order seen by the parser.  An individual peephole
9850 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
9851 // on the command-line.
9852 //
9853 // ---------CURRENT LIMITATIONS----------------------------------------------
9854 //
9855 // Only match adjacent instructions in same basic block
9856 // Only equality constraints
9857 // Only constraints between operands, not (0.dest_reg == EAX_enc)
9858 // Only one replacement instruction
9859 //
9860 // ---------EXAMPLE----------------------------------------------------------
9861 //
9862 // // pertinent parts of existing instructions in architecture description
9863 // instruct movI(eRegI dst, eRegI src) %{
9864 //   match(Set dst (CopyI src));
9865 // %}
9866 //
9867 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
9868 //   match(Set dst (AddI dst src));
9869 //   effect(KILL cr);
9870 // %}
9871 //
9872 // // Change (inc mov) to lea
9873 // peephole %{
9874 //   // increment preceeded by register-register move
9875 //   peepmatch ( incI_eReg movI );
9876 //   // require that the destination register of the increment
9877 //   // match the destination register of the move
9878 //   peepconstraint ( 0.dst == 1.dst );
9879 //   // construct a replacement instruction that sets
9880 //   // the destination to ( move's source register + one )
9881 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
9882 // %}
9883 //
9884 
9885 // // Change load of spilled value to only a spill
9886 // instruct storeI(memory mem, eRegI src) %{
9887 //   match(Set mem (StoreI mem src));
9888 // %}
9889 //
9890 // instruct loadI(eRegI dst, memory mem) %{
9891 //   match(Set dst (LoadI mem));
9892 // %}
9893 //
9894 // peephole %{
9895 //   peepmatch ( loadI storeI );
9896 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
9897 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
9898 // %}
9899 
9900 //----------SMARTSPILL RULES---------------------------------------------------
9901 // These must follow all instruction definitions as they use the names
9902 // defined in the instructions definitions.
9903 //
9904 // SPARC will probably not have any of these rules due to RISC instruction set.
9905 
9906 //----------PIPELINE-----------------------------------------------------------
9907 // Rules which define the behavior of the target architectures pipeline.