1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "prims/methodHandles.hpp"
  29 
  30 #define __ _masm->
  31 
  32 #ifdef PRODUCT
  33 #define BLOCK_COMMENT(str) /* nothing */
  34 #else
  35 #define BLOCK_COMMENT(str) __ block_comment(str)
  36 #endif
  37 
  38 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  39 
  40 address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
  41                                                 address interpreted_entry) {
  42   // Just before the actual machine code entry point, allocate space
  43   // for a MethodHandleEntry::Data record, so that we can manage everything
  44   // from one base pointer.
  45   __ align(wordSize);
  46   address target = __ pc() + sizeof(Data);
  47   while (__ pc() < target) {
  48     __ nop();
  49     __ align(wordSize);
  50   }
  51 
  52   MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
  53   me->set_end_address(__ pc());         // set a temporary end_address
  54   me->set_from_interpreted_entry(interpreted_entry);
  55   me->set_type_checking_entry(NULL);
  56 
  57   return (address) me;
  58 }
  59 
  60 MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
  61                                                 address start_addr) {
  62   MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
  63   assert(me->end_address() == start_addr, "valid ME");
  64 
  65   // Fill in the real end_address:
  66   __ align(wordSize);
  67   me->set_end_address(__ pc());
  68 
  69   return me;
  70 }
  71 
  72 #ifdef ASSERT
  73 static void verify_argslot(MacroAssembler* _masm, Register argslot_reg,
  74                            const char* error_message) {
  75   // Verify that argslot lies within (rsp, rbp].
  76   Label L_ok, L_bad;
  77   BLOCK_COMMENT("{ verify_argslot");
  78   __ cmpptr(argslot_reg, rbp);
  79   __ jccb(Assembler::above, L_bad);
  80   __ cmpptr(rsp, argslot_reg);
  81   __ jccb(Assembler::below, L_ok);
  82   __ bind(L_bad);
  83   __ stop(error_message);
  84   __ bind(L_ok);
  85   BLOCK_COMMENT("} verify_argslot");
  86 }
  87 #endif
  88 
  89 
  90 // Code generation
  91 address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
  92   // rbx: methodOop
  93   // rcx: receiver method handle (must load from sp[MethodTypeForm.vmslots])
  94   // rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
  95   // rdx, rdi: garbage temp, blown away
  96 
  97   Register rbx_method = rbx;
  98   Register rcx_recv   = rcx;
  99   Register rax_mtype  = rax;
 100   Register rdx_temp   = rdx;
 101   Register rdi_temp   = rdi;
 102 
 103   // emit WrongMethodType path first, to enable jccb back-branch from main path
 104   Label wrong_method_type;
 105   __ bind(wrong_method_type);
 106   Label invoke_generic_slow_path;
 107   assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");;
 108   __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeExact);
 109   __ jcc(Assembler::notEqual, invoke_generic_slow_path);
 110   __ push(rax_mtype);       // required mtype
 111   __ push(rcx_recv);        // bad mh (1st stacked argument)
 112   __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
 113 
 114   // here's where control starts out:
 115   __ align(CodeEntryAlignment);
 116   address entry_point = __ pc();
 117 
 118   // fetch the MethodType from the method handle into rax (the 'check' register)
 119   {
 120     Register tem = rbx_method;
 121     for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
 122       __ movptr(rax_mtype, Address(tem, *pchase));
 123       tem = rax_mtype;          // in case there is another indirection
 124     }
 125   }
 126 
 127   // given the MethodType, find out where the MH argument is buried
 128   __ load_heap_oop(rdx_temp, Address(rax_mtype, __ delayed_value(java_dyn_MethodType::form_offset_in_bytes, rdi_temp)));
 129   Register rdx_vmslots = rdx_temp;
 130   __ movl(rdx_vmslots, Address(rdx_temp, __ delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, rdi_temp)));
 131   __ movptr(rcx_recv, __ argument_address(rdx_vmslots));
 132 
 133   trace_method_handle(_masm, "invokeExact");
 134 
 135   __ check_method_handle_type(rax_mtype, rcx_recv, rdi_temp, wrong_method_type);
 136   __ jump_to_method_handle_entry(rcx_recv, rdi_temp);
 137 
 138   // for invokeGeneric (only), apply argument and result conversions on the fly
 139   __ bind(invoke_generic_slow_path);
 140 #ifdef ASSERT
 141   { Label L;
 142     __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeGeneric);
 143     __ jcc(Assembler::equal, L);
 144     __ stop("bad methodOop::intrinsic_id");
 145     __ bind(L);
 146   }
 147 #endif //ASSERT
 148   Register rbx_temp = rbx_method;  // don't need it now
 149 
 150   // make room on the stack for another pointer:
 151   Register rcx_argslot = rcx_recv;
 152   __ lea(rcx_argslot, __ argument_address(rdx_vmslots, 1));
 153   insert_arg_slots(_masm, 2 * stack_move_unit(), _INSERT_REF_MASK,
 154                    rcx_argslot, rbx_temp, rdx_temp);
 155 
 156   // load up an adapter from the calling type (Java weaves this)
 157   __ load_heap_oop(rdx_temp, Address(rax_mtype, __ delayed_value(java_dyn_MethodType::form_offset_in_bytes, rdi_temp)));
 158   Register rdx_adapter = rdx_temp;
 159   // __ load_heap_oop(rdx_adapter, Address(rdx_temp, java_dyn_MethodTypeForm::genericInvoker_offset_in_bytes()));
 160   // deal with old JDK versions:
 161   __ lea(rdi_temp, Address(rdx_temp, __ delayed_value(java_dyn_MethodTypeForm::genericInvoker_offset_in_bytes, rdi_temp)));
 162   __ cmpptr(rdi_temp, rdx_temp);
 163   Label sorry_no_invoke_generic;
 164   __ jcc(Assembler::below, sorry_no_invoke_generic);
 165 
 166   __ load_heap_oop(rdx_adapter, Address(rdi_temp, 0));
 167   __ testptr(rdx_adapter, rdx_adapter);
 168   __ jcc(Assembler::zero, sorry_no_invoke_generic);
 169   __ movptr(Address(rcx_argslot, 1 * Interpreter::stackElementSize), rdx_adapter);
 170   // As a trusted first argument, pass the type being called, so the adapter knows
 171   // the actual types of the arguments and return values.
 172   // (Generic invokers are shared among form-families of method-type.)
 173   __ movptr(Address(rcx_argslot, 0 * Interpreter::stackElementSize), rax_mtype);
 174   // FIXME: assert that rdx_adapter is of the right method-type.
 175   __ mov(rcx, rdx_adapter);
 176   trace_method_handle(_masm, "invokeGeneric");
 177   __ jump_to_method_handle_entry(rcx, rdi_temp);
 178 
 179   __ bind(sorry_no_invoke_generic); // no invokeGeneric implementation available!
 180   __ movptr(rcx_recv, Address(rcx_argslot, -1 * Interpreter::stackElementSize));  // recover original MH
 181   __ push(rax_mtype);       // required mtype
 182   __ push(rcx_recv);        // bad mh (1st stacked argument)
 183   __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
 184 
 185   return entry_point;
 186 }
 187 
 188 // Helper to insert argument slots into the stack.
 189 // arg_slots must be a multiple of stack_move_unit() and <= 0
 190 void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
 191                                      RegisterOrConstant arg_slots,
 192                                      int arg_mask,
 193                                      Register rax_argslot,
 194                                      Register rbx_temp, Register rdx_temp, Register temp3_reg) {
 195   assert(temp3_reg == noreg, "temp3 not required");
 196   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
 197                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
 198 
 199 #ifdef ASSERT
 200   verify_argslot(_masm, rax_argslot, "insertion point must fall within current frame");
 201   if (arg_slots.is_register()) {
 202     Label L_ok, L_bad;
 203     __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
 204     __ jccb(Assembler::greater, L_bad);
 205     __ testl(arg_slots.as_register(), -stack_move_unit() - 1);
 206     __ jccb(Assembler::zero, L_ok);
 207     __ bind(L_bad);
 208     __ stop("assert arg_slots <= 0 and clear low bits");
 209     __ bind(L_ok);
 210   } else {
 211     assert(arg_slots.as_constant() <= 0, "");
 212     assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
 213   }
 214 #endif //ASSERT
 215 
 216 #ifdef _LP64
 217   if (arg_slots.is_register()) {
 218     // clean high bits of stack motion register (was loaded as an int)
 219     __ movslq(arg_slots.as_register(), arg_slots.as_register());
 220   }
 221 #endif
 222 
 223   // Make space on the stack for the inserted argument(s).
 224   // Then pull down everything shallower than rax_argslot.
 225   // The stacked return address gets pulled down with everything else.
 226   // That is, copy [rsp, argslot) downward by -size words.  In pseudo-code:
 227   //   rsp -= size;
 228   //   for (rdx = rsp + size; rdx < argslot; rdx++)
 229   //     rdx[-size] = rdx[0]
 230   //   argslot -= size;
 231   BLOCK_COMMENT("insert_arg_slots {");
 232   __ mov(rdx_temp, rsp);                        // source pointer for copy
 233   __ lea(rsp, Address(rsp, arg_slots, Address::times_ptr));
 234   {
 235     Label loop;
 236     __ BIND(loop);
 237     // pull one word down each time through the loop
 238     __ movptr(rbx_temp, Address(rdx_temp, 0));
 239     __ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp);
 240     __ addptr(rdx_temp, wordSize);
 241     __ cmpptr(rdx_temp, rax_argslot);
 242     __ jccb(Assembler::less, loop);
 243   }
 244 
 245   // Now move the argslot down, to point to the opened-up space.
 246   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr));
 247   BLOCK_COMMENT("} insert_arg_slots");
 248 }
 249 
 250 // Helper to remove argument slots from the stack.
 251 // arg_slots must be a multiple of stack_move_unit() and >= 0
 252 void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
 253                                     RegisterOrConstant arg_slots,
 254                                     Register rax_argslot,
 255                                      Register rbx_temp, Register rdx_temp, Register temp3_reg) {
 256   assert(temp3_reg == noreg, "temp3 not required");
 257   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
 258                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
 259 
 260 #ifdef ASSERT
 261   // Verify that [argslot..argslot+size) lies within (rsp, rbp).
 262   __ lea(rbx_temp, Address(rax_argslot, arg_slots, Address::times_ptr));
 263   verify_argslot(_masm, rbx_temp, "deleted argument(s) must fall within current frame");
 264   if (arg_slots.is_register()) {
 265     Label L_ok, L_bad;
 266     __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
 267     __ jccb(Assembler::less, L_bad);
 268     __ testl(arg_slots.as_register(), -stack_move_unit() - 1);
 269     __ jccb(Assembler::zero, L_ok);
 270     __ bind(L_bad);
 271     __ stop("assert arg_slots >= 0 and clear low bits");
 272     __ bind(L_ok);
 273   } else {
 274     assert(arg_slots.as_constant() >= 0, "");
 275     assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
 276   }
 277 #endif //ASSERT
 278 
 279 #ifdef _LP64
 280   if (false) {                  // not needed, since register is positive
 281     // clean high bits of stack motion register (was loaded as an int)
 282     if (arg_slots.is_register())
 283       __ movslq(arg_slots.as_register(), arg_slots.as_register());
 284   }
 285 #endif
 286 
 287   BLOCK_COMMENT("remove_arg_slots {");
 288   // Pull up everything shallower than rax_argslot.
 289   // Then remove the excess space on the stack.
 290   // The stacked return address gets pulled up with everything else.
 291   // That is, copy [rsp, argslot) upward by size words.  In pseudo-code:
 292   //   for (rdx = argslot-1; rdx >= rsp; --rdx)
 293   //     rdx[size] = rdx[0]
 294   //   argslot += size;
 295   //   rsp += size;
 296   __ lea(rdx_temp, Address(rax_argslot, -wordSize)); // source pointer for copy
 297   {
 298     Label loop;
 299     __ BIND(loop);
 300     // pull one word up each time through the loop
 301     __ movptr(rbx_temp, Address(rdx_temp, 0));
 302     __ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp);
 303     __ addptr(rdx_temp, -wordSize);
 304     __ cmpptr(rdx_temp, rsp);
 305     __ jccb(Assembler::greaterEqual, loop);
 306   }
 307 
 308   // Now move the argslot up, to point to the just-copied block.
 309   __ lea(rsp, Address(rsp, arg_slots, Address::times_ptr));
 310   // And adjust the argslot address to point at the deletion point.
 311   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr));
 312   BLOCK_COMMENT("} remove_arg_slots");
 313 }
 314 
 315 #ifndef PRODUCT
 316 extern "C" void print_method_handle(oop mh);
 317 void trace_method_handle_stub(const char* adaptername,
 318                               oop mh,
 319                               intptr_t* saved_regs,
 320                               intptr_t* entry_sp,
 321                               intptr_t* saved_sp,
 322                               intptr_t* saved_bp) {
 323   // called as a leaf from native code: do not block the JVM!
 324   intptr_t* last_sp = (intptr_t*) saved_bp[frame::interpreter_frame_last_sp_offset];
 325   intptr_t* base_sp = (intptr_t*) saved_bp[frame::interpreter_frame_monitor_block_top_offset];
 326   printf("MH %s mh="INTPTR_FORMAT" sp=("INTPTR_FORMAT"+"INTX_FORMAT") stack_size="INTX_FORMAT" bp="INTPTR_FORMAT"\n",
 327          adaptername, (intptr_t)mh, (intptr_t)entry_sp, (intptr_t)(saved_sp - entry_sp), (intptr_t)(base_sp - last_sp), (intptr_t)saved_bp);
 328   if (last_sp != saved_sp && last_sp != NULL)
 329     printf("*** last_sp="INTPTR_FORMAT"\n", (intptr_t)last_sp);
 330   if (Verbose) {
 331     printf(" reg dump: ");
 332     int saved_regs_count = (entry_sp-1) - saved_regs;
 333     // 32 bit: rdi rsi rbp rsp; rbx rdx rcx (*) rax
 334     int i;
 335     for (i = 0; i <= saved_regs_count; i++) {
 336       if (i > 0 && i % 4 == 0 && i != saved_regs_count)
 337         printf("\n   + dump: ");
 338       printf(" %d: "INTPTR_FORMAT, i, saved_regs[i]);
 339     }
 340     printf("\n");
 341     int stack_dump_count = 16;
 342     if (stack_dump_count < (int)(saved_bp + 2 - saved_sp))
 343       stack_dump_count = (int)(saved_bp + 2 - saved_sp);
 344     if (stack_dump_count > 64)  stack_dump_count = 48;
 345     for (i = 0; i < stack_dump_count; i += 4) {
 346       printf(" dump at SP[%d] "INTPTR_FORMAT": "INTPTR_FORMAT" "INTPTR_FORMAT" "INTPTR_FORMAT" "INTPTR_FORMAT"\n",
 347              i, (intptr_t) &entry_sp[i+0], entry_sp[i+0], entry_sp[i+1], entry_sp[i+2], entry_sp[i+3]);
 348     }
 349     print_method_handle(mh);
 350   }
 351 }
 352 void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) {
 353   if (!TraceMethodHandles)  return;
 354   BLOCK_COMMENT("trace_method_handle {");
 355   __ push(rax);
 356   __ lea(rax, Address(rsp, wordSize*6)); // entry_sp
 357   __ pusha();
 358   // arguments:
 359   __ push(rbp);               // interpreter frame pointer
 360   __ push(rsi);               // saved_sp
 361   __ push(rax);               // entry_sp
 362   __ push(rcx);               // mh
 363   __ push(rcx);
 364   __ movptr(Address(rsp, 0), (intptr_t) adaptername);
 365   __ call_VM_leaf(CAST_FROM_FN_PTR(address, trace_method_handle_stub), 5);
 366   __ popa();
 367   __ pop(rax);
 368   BLOCK_COMMENT("} trace_method_handle");
 369 }
 370 #endif //PRODUCT
 371 
 372 // which conversion op types are implemented here?
 373 int MethodHandles::adapter_conversion_ops_supported_mask() {
 374   return ((1<<sun_dyn_AdapterMethodHandle::OP_RETYPE_ONLY)
 375          |(1<<sun_dyn_AdapterMethodHandle::OP_RETYPE_RAW)
 376          |(1<<sun_dyn_AdapterMethodHandle::OP_CHECK_CAST)
 377          |(1<<sun_dyn_AdapterMethodHandle::OP_PRIM_TO_PRIM)
 378          |(1<<sun_dyn_AdapterMethodHandle::OP_REF_TO_PRIM)
 379          |(1<<sun_dyn_AdapterMethodHandle::OP_SWAP_ARGS)
 380          |(1<<sun_dyn_AdapterMethodHandle::OP_ROT_ARGS)
 381          |(1<<sun_dyn_AdapterMethodHandle::OP_DUP_ARGS)
 382          |(1<<sun_dyn_AdapterMethodHandle::OP_DROP_ARGS)
 383          //|(1<<sun_dyn_AdapterMethodHandle::OP_SPREAD_ARGS) //BUG!
 384          );
 385   // FIXME: MethodHandlesTest gets a crash if we enable OP_SPREAD_ARGS.
 386 }
 387 
 388 //------------------------------------------------------------------------------
 389 // MethodHandles::generate_method_handle_stub
 390 //
 391 // Generate an "entry" field for a method handle.
 392 // This determines how the method handle will respond to calls.
 393 void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
 394   // Here is the register state during an interpreted call,
 395   // as set up by generate_method_handle_interpreter_entry():
 396   // - rbx: garbage temp (was MethodHandle.invoke methodOop, unused)
 397   // - rcx: receiver method handle
 398   // - rax: method handle type (only used by the check_mtype entry point)
 399   // - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
 400   // - rdx: garbage temp, can blow away
 401 
 402   const Register rcx_recv    = rcx;
 403   const Register rax_argslot = rax;
 404   const Register rbx_temp    = rbx;
 405   const Register rdx_temp    = rdx;
 406 
 407   // This guy is set up by prepare_to_jump_from_interpreted (from interpreted calls)
 408   // and gen_c2i_adapter (from compiled calls):
 409   const Register saved_last_sp = LP64_ONLY(r13) NOT_LP64(rsi);
 410 
 411   // Argument registers for _raise_exception.
 412   // 32-bit: Pass first two oop/int args in registers ECX and EDX.
 413   const Register rarg0_code     = LP64_ONLY(j_rarg0) NOT_LP64(rcx);
 414   const Register rarg1_actual   = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
 415   const Register rarg2_required = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
 416   assert_different_registers(rarg0_code, rarg1_actual, rarg2_required, saved_last_sp);
 417 
 418   guarantee(java_dyn_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
 419 
 420   // some handy addresses
 421   Address rbx_method_fie(     rbx,      methodOopDesc::from_interpreted_offset() );
 422 
 423   Address rcx_mh_vmtarget(    rcx_recv, java_dyn_MethodHandle::vmtarget_offset_in_bytes() );
 424   Address rcx_dmh_vmindex(    rcx_recv, sun_dyn_DirectMethodHandle::vmindex_offset_in_bytes() );
 425 
 426   Address rcx_bmh_vmargslot(  rcx_recv, sun_dyn_BoundMethodHandle::vmargslot_offset_in_bytes() );
 427   Address rcx_bmh_argument(   rcx_recv, sun_dyn_BoundMethodHandle::argument_offset_in_bytes() );
 428 
 429   Address rcx_amh_vmargslot(  rcx_recv, sun_dyn_AdapterMethodHandle::vmargslot_offset_in_bytes() );
 430   Address rcx_amh_argument(   rcx_recv, sun_dyn_AdapterMethodHandle::argument_offset_in_bytes() );
 431   Address rcx_amh_conversion( rcx_recv, sun_dyn_AdapterMethodHandle::conversion_offset_in_bytes() );
 432   Address vmarg;                // __ argument_address(vmargslot)
 433 
 434   const int java_mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
 435 
 436   if (have_entry(ek)) {
 437     __ nop();                   // empty stubs make SG sick
 438     return;
 439   }
 440 
 441   address interp_entry = __ pc();
 442 
 443   trace_method_handle(_masm, entry_name(ek));
 444 
 445   BLOCK_COMMENT(entry_name(ek));
 446 
 447   switch ((int) ek) {
 448   case _raise_exception:
 449     {
 450       // Not a real MH entry, but rather shared code for raising an
 451       // exception.  Since we use a C2I adapter to set up the
 452       // interpreter state, arguments are expected in compiler
 453       // argument registers.
 454       assert(raise_exception_method(), "must be set");
 455       address c2i_entry = raise_exception_method()->get_c2i_entry();
 456       assert(c2i_entry, "method must be linked");
 457 
 458       const Register rdi_pc = rax;
 459       __ pop(rdi_pc);  // caller PC
 460       __ mov(rsp, saved_last_sp);  // cut the stack back to where the caller started
 461 
 462       Register rbx_method = rbx_temp;
 463       Label L_no_method;
 464       // FIXME: fill in _raise_exception_method with a suitable sun.dyn method
 465       __ movptr(rbx_method, ExternalAddress((address) &_raise_exception_method));
 466       __ testptr(rbx_method, rbx_method);
 467       __ jccb(Assembler::zero, L_no_method);
 468 
 469       const int jobject_oop_offset = 0;
 470       __ movptr(rbx_method, Address(rbx_method, jobject_oop_offset));  // dereference the jobject
 471       __ testptr(rbx_method, rbx_method);
 472       __ jccb(Assembler::zero, L_no_method);
 473       __ verify_oop(rbx_method);
 474 
 475       // 32-bit: push remaining arguments as if coming from the compiler.
 476       NOT_LP64(__ push(rarg2_required));
 477 
 478       __ push(rdi_pc);  // restore caller PC
 479       __ jump(ExternalAddress(c2i_entry));  // do C2I transition
 480 
 481       // If we get here, the Java runtime did not do its job of creating the exception.
 482       // Do something that is at least causes a valid throw from the interpreter.
 483       __ bind(L_no_method);
 484       __ push(rarg2_required);
 485       __ push(rarg1_actual);
 486       __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
 487     }
 488     break;
 489 
 490   case _invokestatic_mh:
 491   case _invokespecial_mh:
 492     {
 493       Register rbx_method = rbx_temp;
 494       __ load_heap_oop(rbx_method, rcx_mh_vmtarget); // target is a methodOop
 495       __ verify_oop(rbx_method);
 496       // same as TemplateTable::invokestatic or invokespecial,
 497       // minus the CP setup and profiling:
 498       if (ek == _invokespecial_mh) {
 499         // Must load & check the first argument before entering the target method.
 500         __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
 501         __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
 502         __ null_check(rcx_recv);
 503         __ verify_oop(rcx_recv);
 504       }
 505       __ jmp(rbx_method_fie);
 506     }
 507     break;
 508 
 509   case _invokevirtual_mh:
 510     {
 511       // same as TemplateTable::invokevirtual,
 512       // minus the CP setup and profiling:
 513 
 514       // pick out the vtable index and receiver offset from the MH,
 515       // and then we can discard it:
 516       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
 517       Register rbx_index = rbx_temp;
 518       __ movl(rbx_index, rcx_dmh_vmindex);
 519       // Note:  The verifier allows us to ignore rcx_mh_vmtarget.
 520       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
 521       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
 522 
 523       // get receiver klass
 524       Register rax_klass = rax_argslot;
 525       __ load_klass(rax_klass, rcx_recv);
 526       __ verify_oop(rax_klass);
 527 
 528       // get target methodOop & entry point
 529       const int base = instanceKlass::vtable_start_offset() * wordSize;
 530       assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
 531       Address vtable_entry_addr(rax_klass,
 532                                 rbx_index, Address::times_ptr,
 533                                 base + vtableEntry::method_offset_in_bytes());
 534       Register rbx_method = rbx_temp;
 535       __ movptr(rbx_method, vtable_entry_addr);
 536 
 537       __ verify_oop(rbx_method);
 538       __ jmp(rbx_method_fie);
 539     }
 540     break;
 541 
 542   case _invokeinterface_mh:
 543     {
 544       // same as TemplateTable::invokeinterface,
 545       // minus the CP setup and profiling:
 546 
 547       // pick out the interface and itable index from the MH.
 548       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
 549       Register rdx_intf  = rdx_temp;
 550       Register rbx_index = rbx_temp;
 551       __ load_heap_oop(rdx_intf, rcx_mh_vmtarget);
 552       __ movl(rbx_index, rcx_dmh_vmindex);
 553       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
 554       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
 555 
 556       // get receiver klass
 557       Register rax_klass = rax_argslot;
 558       __ load_klass(rax_klass, rcx_recv);
 559       __ verify_oop(rax_klass);
 560 
 561       Register rdi_temp   = rdi;
 562       Register rbx_method = rbx_index;
 563 
 564       // get interface klass
 565       Label no_such_interface;
 566       __ verify_oop(rdx_intf);
 567       __ lookup_interface_method(rax_klass, rdx_intf,
 568                                  // note: next two args must be the same:
 569                                  rbx_index, rbx_method,
 570                                  rdi_temp,
 571                                  no_such_interface);
 572 
 573       __ verify_oop(rbx_method);
 574       __ jmp(rbx_method_fie);
 575       __ hlt();
 576 
 577       __ bind(no_such_interface);
 578       // Throw an exception.
 579       // For historical reasons, it will be IncompatibleClassChangeError.
 580       __ mov(rbx_temp, rcx_recv);  // rarg2_required might be RCX
 581       assert_different_registers(rarg2_required, rbx_temp);
 582       __ movptr(rarg2_required, Address(rdx_intf, java_mirror_offset));  // required interface
 583       __ mov(   rarg1_actual,   rbx_temp);                               // bad receiver
 584       __ movl(  rarg0_code,     (int) Bytecodes::_invokeinterface);      // who is complaining?
 585       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
 586     }
 587     break;
 588 
 589   case _bound_ref_mh:
 590   case _bound_int_mh:
 591   case _bound_long_mh:
 592   case _bound_ref_direct_mh:
 593   case _bound_int_direct_mh:
 594   case _bound_long_direct_mh:
 595     {
 596       bool direct_to_method = (ek >= _bound_ref_direct_mh);
 597       BasicType arg_type  = T_ILLEGAL;
 598       int       arg_mask  = _INSERT_NO_MASK;
 599       int       arg_slots = -1;
 600       get_ek_bound_mh_info(ek, arg_type, arg_mask, arg_slots);
 601 
 602       // make room for the new argument:
 603       __ movl(rax_argslot, rcx_bmh_vmargslot);
 604       __ lea(rax_argslot, __ argument_address(rax_argslot));
 605       insert_arg_slots(_masm, arg_slots * stack_move_unit(), arg_mask,
 606                        rax_argslot, rbx_temp, rdx_temp);
 607 
 608       // store bound argument into the new stack slot:
 609       __ load_heap_oop(rbx_temp, rcx_bmh_argument);
 610       Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type));
 611       if (arg_type == T_OBJECT) {
 612         __ movptr(Address(rax_argslot, 0), rbx_temp);
 613       } else {
 614         __ load_sized_value(rdx_temp, prim_value_addr,
 615                             type2aelembytes(arg_type), is_signed_subword_type(arg_type));
 616         __ movptr(Address(rax_argslot, 0), rdx_temp);
 617 #ifndef _LP64
 618         if (arg_slots == 2) {
 619           __ movl(rdx_temp, prim_value_addr.plus_disp(wordSize));
 620           __ movl(Address(rax_argslot, Interpreter::stackElementSize), rdx_temp);
 621         }
 622 #endif //_LP64
 623       }
 624 
 625       if (direct_to_method) {
 626         Register rbx_method = rbx_temp;
 627         __ load_heap_oop(rbx_method, rcx_mh_vmtarget);
 628         __ verify_oop(rbx_method);
 629         __ jmp(rbx_method_fie);
 630       } else {
 631         __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
 632         __ verify_oop(rcx_recv);
 633         __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
 634       }
 635     }
 636     break;
 637 
 638   case _adapter_retype_only:
 639   case _adapter_retype_raw:
 640     // immediately jump to the next MH layer:
 641     __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
 642     __ verify_oop(rcx_recv);
 643     __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
 644     // This is OK when all parameter types widen.
 645     // It is also OK when a return type narrows.
 646     break;
 647 
 648   case _adapter_check_cast:
 649     {
 650       // temps:
 651       Register rbx_klass = rbx_temp; // interesting AMH data
 652 
 653       // check a reference argument before jumping to the next layer of MH:
 654       __ movl(rax_argslot, rcx_amh_vmargslot);
 655       vmarg = __ argument_address(rax_argslot);
 656 
 657       // What class are we casting to?
 658       __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
 659       __ load_heap_oop(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));
 660 
 661       Label done;
 662       __ movptr(rdx_temp, vmarg);
 663       __ testptr(rdx_temp, rdx_temp);
 664       __ jcc(Assembler::zero, done);         // no cast if null
 665       __ load_klass(rdx_temp, rdx_temp);
 666 
 667       // live at this point:
 668       // - rbx_klass:  klass required by the target method
 669       // - rdx_temp:   argument klass to test
 670       // - rcx_recv:   adapter method handle
 671       __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done);
 672 
 673       // If we get here, the type check failed!
 674       // Call the wrong_method_type stub, passing the failing argument type in rax.
 675       Register rax_mtype = rax_argslot;
 676       __ movl(rax_argslot, rcx_amh_vmargslot);  // reload argslot field
 677       __ movptr(rdx_temp, vmarg);
 678 
 679       assert_different_registers(rarg2_required, rdx_temp);
 680       __ load_heap_oop(rarg2_required, rcx_amh_argument);             // required class
 681       __ mov(          rarg1_actual,   rdx_temp);                     // bad object
 682       __ movl(         rarg0_code,     (int) Bytecodes::_checkcast);  // who is complaining?
 683       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
 684 
 685       __ bind(done);
 686       // get the new MH:
 687       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
 688       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
 689     }
 690     break;
 691 
 692   case _adapter_prim_to_prim:
 693   case _adapter_ref_to_prim:
 694     // handled completely by optimized cases
 695     __ stop("init_AdapterMethodHandle should not issue this");
 696     break;
 697 
 698   case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
 699 //case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
 700   case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
 701   case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
 702     {
 703       // perform an in-place conversion to int or an int subword
 704       __ movl(rax_argslot, rcx_amh_vmargslot);
 705       vmarg = __ argument_address(rax_argslot);
 706 
 707       switch (ek) {
 708       case _adapter_opt_i2i:
 709         __ movl(rdx_temp, vmarg);
 710         break;
 711       case _adapter_opt_l2i:
 712         {
 713           // just delete the extra slot; on a little-endian machine we keep the first
 714           __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
 715           remove_arg_slots(_masm, -stack_move_unit(),
 716                            rax_argslot, rbx_temp, rdx_temp);
 717           vmarg = Address(rax_argslot, -Interpreter::stackElementSize);
 718           __ movl(rdx_temp, vmarg);
 719         }
 720         break;
 721       case _adapter_opt_unboxi:
 722         {
 723           // Load the value up from the heap.
 724           __ movptr(rdx_temp, vmarg);
 725           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
 726 #ifdef ASSERT
 727           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
 728             if (is_subword_type(BasicType(bt)))
 729               assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
 730           }
 731 #endif
 732           __ null_check(rdx_temp, value_offset);
 733           __ movl(rdx_temp, Address(rdx_temp, value_offset));
 734           // We load this as a word.  Because we are little-endian,
 735           // the low bits will be correct, but the high bits may need cleaning.
 736           // The vminfo will guide us to clean those bits.
 737         }
 738         break;
 739       default:
 740         ShouldNotReachHere();
 741       }
 742 
 743       // Do the requested conversion and store the value.
 744       Register rbx_vminfo = rbx_temp;
 745       __ movl(rbx_vminfo, rcx_amh_conversion);
 746       assert(CONV_VMINFO_SHIFT == 0, "preshifted");
 747 
 748       // get the new MH:
 749       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
 750       // (now we are done with the old MH)
 751 
 752       // original 32-bit vmdata word must be of this form:
 753       //    | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
 754       __ xchgptr(rcx, rbx_vminfo);                // free rcx for shifts
 755       __ shll(rdx_temp /*, rcx*/);
 756       Label zero_extend, done;
 757       __ testl(rcx, CONV_VMINFO_SIGN_FLAG);
 758       __ jccb(Assembler::zero, zero_extend);
 759 
 760       // this path is taken for int->byte, int->short
 761       __ sarl(rdx_temp /*, rcx*/);
 762       __ jmpb(done);
 763 
 764       __ bind(zero_extend);
 765       // this is taken for int->char
 766       __ shrl(rdx_temp /*, rcx*/);
 767 
 768       __ bind(done);
 769       __ movl(vmarg, rdx_temp);  // Store the value.
 770       __ xchgptr(rcx, rbx_vminfo);                // restore rcx_recv
 771 
 772       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
 773     }
 774     break;
 775 
 776   case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
 777   case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
 778     {
 779       // perform an in-place int-to-long or ref-to-long conversion
 780       __ movl(rax_argslot, rcx_amh_vmargslot);
 781 
 782       // on a little-endian machine we keep the first slot and add another after
 783       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
 784       insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
 785                        rax_argslot, rbx_temp, rdx_temp);
 786       Address vmarg1(rax_argslot, -Interpreter::stackElementSize);
 787       Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize);
 788 
 789       switch (ek) {
 790       case _adapter_opt_i2l:
 791         {
 792 #ifdef _LP64
 793           __ movslq(rdx_temp, vmarg1);  // Load sign-extended
 794           __ movq(vmarg1, rdx_temp);    // Store into first slot
 795 #else
 796           __ movl(rdx_temp, vmarg1);
 797           __ sarl(rdx_temp, BitsPerInt - 1);  // __ extend_sign()
 798           __ movl(vmarg2, rdx_temp); // store second word
 799 #endif
 800         }
 801         break;
 802       case _adapter_opt_unboxl:
 803         {
 804           // Load the value up from the heap.
 805           __ movptr(rdx_temp, vmarg1);
 806           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
 807           assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
 808           __ null_check(rdx_temp, value_offset);
 809 #ifdef _LP64
 810           __ movq(rbx_temp, Address(rdx_temp, value_offset));
 811           __ movq(vmarg1, rbx_temp);
 812 #else
 813           __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt));
 814           __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt));
 815           __ movl(vmarg1, rbx_temp);
 816           __ movl(vmarg2, rdx_temp);
 817 #endif
 818         }
 819         break;
 820       default:
 821         ShouldNotReachHere();
 822       }
 823 
 824       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
 825       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
 826     }
 827     break;
 828 
 829   case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
 830   case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
 831     {
 832       // perform an in-place floating primitive conversion
 833       __ movl(rax_argslot, rcx_amh_vmargslot);
 834       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
 835       if (ek == _adapter_opt_f2d) {
 836         insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
 837                          rax_argslot, rbx_temp, rdx_temp);
 838       }
 839       Address vmarg(rax_argslot, -Interpreter::stackElementSize);
 840 
 841 #ifdef _LP64
 842       if (ek == _adapter_opt_f2d) {
 843         __ movflt(xmm0, vmarg);
 844         __ cvtss2sd(xmm0, xmm0);
 845         __ movdbl(vmarg, xmm0);
 846       } else {
 847         __ movdbl(xmm0, vmarg);
 848         __ cvtsd2ss(xmm0, xmm0);
 849         __ movflt(vmarg, xmm0);
 850       }
 851 #else //_LP64
 852       if (ek == _adapter_opt_f2d) {
 853         __ fld_s(vmarg);        // load float to ST0
 854         __ fstp_s(vmarg);       // store single
 855       } else {
 856         __ fld_d(vmarg);        // load double to ST0
 857         __ fstp_s(vmarg);       // store single
 858       }
 859 #endif //_LP64
 860 
 861       if (ek == _adapter_opt_d2f) {
 862         remove_arg_slots(_masm, -stack_move_unit(),
 863                          rax_argslot, rbx_temp, rdx_temp);
 864       }
 865 
 866       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
 867       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
 868     }
 869     break;
 870 
 871   case _adapter_prim_to_ref:
 872     __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
 873     break;
 874 
 875   case _adapter_swap_args:
 876   case _adapter_rot_args:
 877     // handled completely by optimized cases
 878     __ stop("init_AdapterMethodHandle should not issue this");
 879     break;
 880 
 881   case _adapter_opt_swap_1:
 882   case _adapter_opt_swap_2:
 883   case _adapter_opt_rot_1_up:
 884   case _adapter_opt_rot_1_down:
 885   case _adapter_opt_rot_2_up:
 886   case _adapter_opt_rot_2_down:
 887     {
 888       int swap_bytes = 0, rotate = 0;
 889       get_ek_adapter_opt_swap_rot_info(ek, swap_bytes, rotate);
 890 
 891       // 'argslot' is the position of the first argument to swap
 892       __ movl(rax_argslot, rcx_amh_vmargslot);
 893       __ lea(rax_argslot, __ argument_address(rax_argslot));
 894 
 895       // 'vminfo' is the second
 896       Register rbx_destslot = rbx_temp;
 897       __ movl(rbx_destslot, rcx_amh_conversion);
 898       assert(CONV_VMINFO_SHIFT == 0, "preshifted");
 899       __ andl(rbx_destslot, CONV_VMINFO_MASK);
 900       __ lea(rbx_destslot, __ argument_address(rbx_destslot));
 901       DEBUG_ONLY(verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame"));
 902 
 903       if (!rotate) {
 904         for (int i = 0; i < swap_bytes; i += wordSize) {
 905           __ movptr(rdx_temp, Address(rax_argslot , i));
 906           __ push(rdx_temp);
 907           __ movptr(rdx_temp, Address(rbx_destslot, i));
 908           __ movptr(Address(rax_argslot, i), rdx_temp);
 909           __ pop(rdx_temp);
 910           __ movptr(Address(rbx_destslot, i), rdx_temp);
 911         }
 912       } else {
 913         // push the first chunk, which is going to get overwritten
 914         for (int i = swap_bytes; (i -= wordSize) >= 0; ) {
 915           __ movptr(rdx_temp, Address(rax_argslot, i));
 916           __ push(rdx_temp);
 917         }
 918 
 919         if (rotate > 0) {
 920           // rotate upward
 921           __ subptr(rax_argslot, swap_bytes);
 922 #ifdef ASSERT
 923           {
 924             // Verify that argslot > destslot, by at least swap_bytes.
 925             Label L_ok;
 926             __ cmpptr(rax_argslot, rbx_destslot);
 927             __ jccb(Assembler::aboveEqual, L_ok);
 928             __ stop("source must be above destination (upward rotation)");
 929             __ bind(L_ok);
 930           }
 931 #endif
 932           // work argslot down to destslot, copying contiguous data upwards
 933           // pseudo-code:
 934           //   rax = src_addr - swap_bytes
 935           //   rbx = dest_addr
 936           //   while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--;
 937           Label loop;
 938           __ bind(loop);
 939           __ movptr(rdx_temp, Address(rax_argslot, 0));
 940           __ movptr(Address(rax_argslot, swap_bytes), rdx_temp);
 941           __ addptr(rax_argslot, -wordSize);
 942           __ cmpptr(rax_argslot, rbx_destslot);
 943           __ jccb(Assembler::aboveEqual, loop);
 944         } else {
 945           __ addptr(rax_argslot, swap_bytes);
 946 #ifdef ASSERT
 947           {
 948             // Verify that argslot < destslot, by at least swap_bytes.
 949             Label L_ok;
 950             __ cmpptr(rax_argslot, rbx_destslot);
 951             __ jccb(Assembler::belowEqual, L_ok);
 952             __ stop("source must be below destination (downward rotation)");
 953             __ bind(L_ok);
 954           }
 955 #endif
 956           // work argslot up to destslot, copying contiguous data downwards
 957           // pseudo-code:
 958           //   rax = src_addr + swap_bytes
 959           //   rbx = dest_addr
 960           //   while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++;
 961           Label loop;
 962           __ bind(loop);
 963           __ movptr(rdx_temp, Address(rax_argslot, 0));
 964           __ movptr(Address(rax_argslot, -swap_bytes), rdx_temp);
 965           __ addptr(rax_argslot, wordSize);
 966           __ cmpptr(rax_argslot, rbx_destslot);
 967           __ jccb(Assembler::belowEqual, loop);
 968         }
 969 
 970         // pop the original first chunk into the destination slot, now free
 971         for (int i = 0; i < swap_bytes; i += wordSize) {
 972           __ pop(rdx_temp);
 973           __ movptr(Address(rbx_destslot, i), rdx_temp);
 974         }
 975       }
 976 
 977       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
 978       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
 979     }
 980     break;
 981 
 982   case _adapter_dup_args:
 983     {
 984       // 'argslot' is the position of the first argument to duplicate
 985       __ movl(rax_argslot, rcx_amh_vmargslot);
 986       __ lea(rax_argslot, __ argument_address(rax_argslot));
 987 
 988       // 'stack_move' is negative number of words to duplicate
 989       Register rdx_stack_move = rdx_temp;
 990       __ movl2ptr(rdx_stack_move, rcx_amh_conversion);
 991       __ sarptr(rdx_stack_move, CONV_STACK_MOVE_SHIFT);
 992 
 993       int argslot0_num = 0;
 994       Address argslot0 = __ argument_address(RegisterOrConstant(argslot0_num));
 995       assert(argslot0.base() == rsp, "");
 996       int pre_arg_size = argslot0.disp();
 997       assert(pre_arg_size % wordSize == 0, "");
 998       assert(pre_arg_size > 0, "must include PC");
 999 
1000       // remember the old rsp+1 (argslot[0])
1001       Register rbx_oldarg = rbx_temp;
1002       __ lea(rbx_oldarg, argslot0);
1003 
1004       // move rsp down to make room for dups
1005       __ lea(rsp, Address(rsp, rdx_stack_move, Address::times_ptr));
1006 
1007       // compute the new rsp+1 (argslot[0])
1008       Register rdx_newarg = rdx_temp;
1009       __ lea(rdx_newarg, argslot0);
1010 
1011       __ push(rdi);             // need a temp
1012       // (preceding push must be done after arg addresses are taken!)
1013 
1014       // pull down the pre_arg_size data (PC)
1015       for (int i = -pre_arg_size; i < 0; i += wordSize) {
1016         __ movptr(rdi, Address(rbx_oldarg, i));
1017         __ movptr(Address(rdx_newarg, i), rdi);
1018       }
1019 
1020       // copy from rax_argslot[0...] down to new_rsp[1...]
1021       // pseudo-code:
1022       //   rbx = old_rsp+1
1023       //   rdx = new_rsp+1
1024       //   rax = argslot
1025       //   while (rdx < rbx) *rdx++ = *rax++
1026       Label loop;
1027       __ bind(loop);
1028       __ movptr(rdi, Address(rax_argslot, 0));
1029       __ movptr(Address(rdx_newarg, 0), rdi);
1030       __ addptr(rax_argslot, wordSize);
1031       __ addptr(rdx_newarg, wordSize);
1032       __ cmpptr(rdx_newarg, rbx_oldarg);
1033       __ jccb(Assembler::less, loop);
1034 
1035       __ pop(rdi);              // restore temp
1036 
1037       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1038       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
1039     }
1040     break;
1041 
1042   case _adapter_drop_args:
1043     {
1044       // 'argslot' is the position of the first argument to nuke
1045       __ movl(rax_argslot, rcx_amh_vmargslot);
1046       __ lea(rax_argslot, __ argument_address(rax_argslot));
1047 
1048       __ push(rdi);             // need a temp
1049       // (must do previous push after argslot address is taken)
1050 
1051       // 'stack_move' is number of words to drop
1052       Register rdi_stack_move = rdi;
1053       __ movl2ptr(rdi_stack_move, rcx_amh_conversion);
1054       __ sarptr(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
1055       remove_arg_slots(_masm, rdi_stack_move,
1056                        rax_argslot, rbx_temp, rdx_temp);
1057 
1058       __ pop(rdi);              // restore temp
1059 
1060       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1061       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
1062     }
1063     break;
1064 
1065   case _adapter_collect_args:
1066     __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
1067     break;
1068 
1069   case _adapter_spread_args:
1070     // handled completely by optimized cases
1071     __ stop("init_AdapterMethodHandle should not issue this");
1072     break;
1073 
1074   case _adapter_opt_spread_0:
1075   case _adapter_opt_spread_1:
1076   case _adapter_opt_spread_more:
1077     {
1078       // spread an array out into a group of arguments
1079       int length_constant = get_ek_adapter_opt_spread_info(ek);
1080 
1081       // find the address of the array argument
1082       __ movl(rax_argslot, rcx_amh_vmargslot);
1083       __ lea(rax_argslot, __ argument_address(rax_argslot));
1084 
1085       // grab some temps
1086       { __ push(rsi); __ push(rdi); }
1087       // (preceding pushes must be done after argslot address is taken!)
1088 #define UNPUSH_RSI_RDI \
1089       { __ pop(rdi); __ pop(rsi); }
1090 
1091       // arx_argslot points both to the array and to the first output arg
1092       vmarg = Address(rax_argslot, 0);
1093 
1094       // Get the array value.
1095       Register  rsi_array       = rsi;
1096       Register  rdx_array_klass = rdx_temp;
1097       BasicType elem_type       = T_OBJECT;
1098       int       length_offset   = arrayOopDesc::length_offset_in_bytes();
1099       int       elem0_offset    = arrayOopDesc::base_offset_in_bytes(elem_type);
1100       __ movptr(rsi_array, vmarg);
1101       Label skip_array_check;
1102       if (length_constant == 0) {
1103         __ testptr(rsi_array, rsi_array);
1104         __ jcc(Assembler::zero, skip_array_check);
1105       }
1106       __ null_check(rsi_array, oopDesc::klass_offset_in_bytes());
1107       __ load_klass(rdx_array_klass, rsi_array);
1108 
1109       // Check the array type.
1110       Register rbx_klass = rbx_temp;
1111       __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
1112       __ load_heap_oop(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));
1113 
1114       Label ok_array_klass, bad_array_klass, bad_array_length;
1115       __ check_klass_subtype(rdx_array_klass, rbx_klass, rdi, ok_array_klass);
1116       // If we get here, the type check failed!
1117       __ jmp(bad_array_klass);
1118       __ bind(ok_array_klass);
1119 
1120       // Check length.
1121       if (length_constant >= 0) {
1122         __ cmpl(Address(rsi_array, length_offset), length_constant);
1123       } else {
1124         Register rbx_vminfo = rbx_temp;
1125         __ movl(rbx_vminfo, rcx_amh_conversion);
1126         assert(CONV_VMINFO_SHIFT == 0, "preshifted");
1127         __ andl(rbx_vminfo, CONV_VMINFO_MASK);
1128         __ cmpl(rbx_vminfo, Address(rsi_array, length_offset));
1129       }
1130       __ jcc(Assembler::notEqual, bad_array_length);
1131 
1132       Register rdx_argslot_limit = rdx_temp;
1133 
1134       // Array length checks out.  Now insert any required stack slots.
1135       if (length_constant == -1) {
1136         // Form a pointer to the end of the affected region.
1137         __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize));
1138         // 'stack_move' is negative number of words to insert
1139         Register rdi_stack_move = rdi;
1140         __ movl2ptr(rdi_stack_move, rcx_amh_conversion);
1141         __ sarptr(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
1142         Register rsi_temp = rsi_array;  // spill this
1143         insert_arg_slots(_masm, rdi_stack_move, -1,
1144                          rax_argslot, rbx_temp, rsi_temp);
1145         // reload the array (since rsi was killed)
1146         __ movptr(rsi_array, vmarg);
1147       } else if (length_constant > 1) {
1148         int arg_mask = 0;
1149         int new_slots = (length_constant - 1);
1150         for (int i = 0; i < new_slots; i++) {
1151           arg_mask <<= 1;
1152           arg_mask |= _INSERT_REF_MASK;
1153         }
1154         insert_arg_slots(_masm, new_slots * stack_move_unit(), arg_mask,
1155                          rax_argslot, rbx_temp, rdx_temp);
1156       } else if (length_constant == 1) {
1157         // no stack resizing required
1158       } else if (length_constant == 0) {
1159         remove_arg_slots(_masm, -stack_move_unit(),
1160                          rax_argslot, rbx_temp, rdx_temp);
1161       }
1162 
1163       // Copy from the array to the new slots.
1164       // Note: Stack change code preserves integrity of rax_argslot pointer.
1165       // So even after slot insertions, rax_argslot still points to first argument.
1166       if (length_constant == -1) {
1167         // [rax_argslot, rdx_argslot_limit) is the area we are inserting into.
1168         Register rsi_source = rsi_array;
1169         __ lea(rsi_source, Address(rsi_array, elem0_offset));
1170         Label loop;
1171         __ bind(loop);
1172         __ movptr(rbx_temp, Address(rsi_source, 0));
1173         __ movptr(Address(rax_argslot, 0), rbx_temp);
1174         __ addptr(rsi_source, type2aelembytes(elem_type));
1175         __ addptr(rax_argslot, Interpreter::stackElementSize);
1176         __ cmpptr(rax_argslot, rdx_argslot_limit);
1177         __ jccb(Assembler::less, loop);
1178       } else if (length_constant == 0) {
1179         __ bind(skip_array_check);
1180         // nothing to copy
1181       } else {
1182         int elem_offset = elem0_offset;
1183         int slot_offset = 0;
1184         for (int index = 0; index < length_constant; index++) {
1185           __ movptr(rbx_temp, Address(rsi_array, elem_offset));
1186           __ movptr(Address(rax_argslot, slot_offset), rbx_temp);
1187           elem_offset += type2aelembytes(elem_type);
1188            slot_offset += Interpreter::stackElementSize;
1189         }
1190       }
1191 
1192       // Arguments are spread.  Move to next method handle.
1193       UNPUSH_RSI_RDI;
1194       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1195       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
1196 
1197       __ bind(bad_array_klass);
1198       UNPUSH_RSI_RDI;
1199       assert(!vmarg.uses(rarg2_required), "must be different registers");
1200       __ movptr(rarg2_required, Address(rdx_array_klass, java_mirror_offset));  // required type
1201       __ movptr(rarg1_actual,   vmarg);                                         // bad array
1202       __ movl(  rarg0_code,     (int) Bytecodes::_aaload);                      // who is complaining?
1203       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
1204 
1205       __ bind(bad_array_length);
1206       UNPUSH_RSI_RDI;
1207       assert(!vmarg.uses(rarg2_required), "must be different registers");
1208       __ mov   (rarg2_required, rcx_recv);                       // AMH requiring a certain length
1209       __ movptr(rarg1_actual,   vmarg);                          // bad array
1210       __ movl(  rarg0_code,     (int) Bytecodes::_arraylength);  // who is complaining?
1211       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
1212 
1213 #undef UNPUSH_RSI_RDI
1214     }
1215     break;
1216 
1217   case _adapter_flyby:
1218   case _adapter_ricochet:
1219     __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
1220     break;
1221 
1222   default:  ShouldNotReachHere();
1223   }
1224   __ hlt();
1225 
1226   address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
1227   __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
1228 
1229   init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));
1230 }
--- EOF ---