1 /*
   2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_LIRAssembler.hpp"
  28 #include "c1/c1_MacroAssembler.hpp"
  29 #include "c1/c1_Runtime1.hpp"
  30 #include "c1/c1_ValueStack.hpp"
  31 #include "ci/ciArrayKlass.hpp"
  32 #include "ci/ciInstance.hpp"
  33 #include "gc_interface/collectedHeap.hpp"
  34 #include "memory/barrierSet.hpp"
  35 #include "memory/cardTableModRefBS.hpp"
  36 #include "nativeInst_x86.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 
  40 
  41 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  42 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  43 // fast versions of NegF/NegD and AbsF/AbsD.
  44 
  45 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  46 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  47   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  48   // of 128-bits operands for SSE instructions.
  49   jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
  50   // Store the value to a 128-bits operand.
  51   operand[0] = lo;
  52   operand[1] = hi;
  53   return operand;
  54 }
  55 
  56 // Buffer for 128-bits masks used by SSE instructions.
  57 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  58 
  59 // Static initialization during VM startup.
  60 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
  61 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
  62 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
  63 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
  64 
  65 
  66 
  67 NEEDS_CLEANUP // remove this definitions ?
  68 const Register IC_Klass    = rax;   // where the IC klass is cached
  69 const Register SYNC_header = rax;   // synchronization header
  70 const Register SHIFT_count = rcx;   // where count for shift operations must be
  71 
  72 #define __ _masm->
  73 
  74 
  75 static void select_different_registers(Register preserve,
  76                                        Register extra,
  77                                        Register &tmp1,
  78                                        Register &tmp2) {
  79   if (tmp1 == preserve) {
  80     assert_different_registers(tmp1, tmp2, extra);
  81     tmp1 = extra;
  82   } else if (tmp2 == preserve) {
  83     assert_different_registers(tmp1, tmp2, extra);
  84     tmp2 = extra;
  85   }
  86   assert_different_registers(preserve, tmp1, tmp2);
  87 }
  88 
  89 
  90 
  91 static void select_different_registers(Register preserve,
  92                                        Register extra,
  93                                        Register &tmp1,
  94                                        Register &tmp2,
  95                                        Register &tmp3) {
  96   if (tmp1 == preserve) {
  97     assert_different_registers(tmp1, tmp2, tmp3, extra);
  98     tmp1 = extra;
  99   } else if (tmp2 == preserve) {
 100     assert_different_registers(tmp1, tmp2, tmp3, extra);
 101     tmp2 = extra;
 102   } else if (tmp3 == preserve) {
 103     assert_different_registers(tmp1, tmp2, tmp3, extra);
 104     tmp3 = extra;
 105   }
 106   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 107 }
 108 
 109 
 110 
 111 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 112   if (opr->is_constant()) {
 113     LIR_Const* constant = opr->as_constant_ptr();
 114     switch (constant->type()) {
 115       case T_INT: {
 116         return true;
 117       }
 118 
 119       default:
 120         return false;
 121     }
 122   }
 123   return false;
 124 }
 125 
 126 
 127 LIR_Opr LIR_Assembler::receiverOpr() {
 128   return FrameMap::receiver_opr;
 129 }
 130 
 131 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
 132   return receiverOpr();
 133 }
 134 
 135 LIR_Opr LIR_Assembler::osrBufferPointer() {
 136   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 137 }
 138 
 139 //--------------fpu register translations-----------------------
 140 
 141 
 142 address LIR_Assembler::float_constant(float f) {
 143   address const_addr = __ float_constant(f);
 144   if (const_addr == NULL) {
 145     bailout("const section overflow");
 146     return __ code()->consts()->start();
 147   } else {
 148     return const_addr;
 149   }
 150 }
 151 
 152 
 153 address LIR_Assembler::double_constant(double d) {
 154   address const_addr = __ double_constant(d);
 155   if (const_addr == NULL) {
 156     bailout("const section overflow");
 157     return __ code()->consts()->start();
 158   } else {
 159     return const_addr;
 160   }
 161 }
 162 
 163 
 164 void LIR_Assembler::set_24bit_FPU() {
 165   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 166 }
 167 
 168 void LIR_Assembler::reset_FPU() {
 169   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 170 }
 171 
 172 void LIR_Assembler::fpop() {
 173   __ fpop();
 174 }
 175 
 176 void LIR_Assembler::fxch(int i) {
 177   __ fxch(i);
 178 }
 179 
 180 void LIR_Assembler::fld(int i) {
 181   __ fld_s(i);
 182 }
 183 
 184 void LIR_Assembler::ffree(int i) {
 185   __ ffree(i);
 186 }
 187 
 188 void LIR_Assembler::breakpoint() {
 189   __ int3();
 190 }
 191 
 192 void LIR_Assembler::push(LIR_Opr opr) {
 193   if (opr->is_single_cpu()) {
 194     __ push_reg(opr->as_register());
 195   } else if (opr->is_double_cpu()) {
 196     NOT_LP64(__ push_reg(opr->as_register_hi()));
 197     __ push_reg(opr->as_register_lo());
 198   } else if (opr->is_stack()) {
 199     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 200   } else if (opr->is_constant()) {
 201     LIR_Const* const_opr = opr->as_constant_ptr();
 202     if (const_opr->type() == T_OBJECT) {
 203       __ push_oop(const_opr->as_jobject());
 204     } else if (const_opr->type() == T_INT) {
 205       __ push_jint(const_opr->as_jint());
 206     } else {
 207       ShouldNotReachHere();
 208     }
 209 
 210   } else {
 211     ShouldNotReachHere();
 212   }
 213 }
 214 
 215 void LIR_Assembler::pop(LIR_Opr opr) {
 216   if (opr->is_single_cpu()) {
 217     __ pop_reg(opr->as_register());
 218   } else {
 219     ShouldNotReachHere();
 220   }
 221 }
 222 
 223 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 224   return addr->base()->is_illegal() && addr->index()->is_illegal();
 225 }
 226 
 227 //-------------------------------------------
 228 
 229 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 230   return as_Address(addr, rscratch1);
 231 }
 232 
 233 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 234   if (addr->base()->is_illegal()) {
 235     assert(addr->index()->is_illegal(), "must be illegal too");
 236     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 237     if (! __ reachable(laddr)) {
 238       __ movptr(tmp, laddr.addr());
 239       Address res(tmp, 0);
 240       return res;
 241     } else {
 242       return __ as_Address(laddr);
 243     }
 244   }
 245 
 246   Register base = addr->base()->as_pointer_register();
 247 
 248   if (addr->index()->is_illegal()) {
 249     return Address( base, addr->disp());
 250   } else if (addr->index()->is_cpu_register()) {
 251     Register index = addr->index()->as_pointer_register();
 252     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 253   } else if (addr->index()->is_constant()) {
 254     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 255     assert(Assembler::is_simm32(addr_offset), "must be");
 256 
 257     return Address(base, addr_offset);
 258   } else {
 259     Unimplemented();
 260     return Address();
 261   }
 262 }
 263 
 264 
 265 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 266   Address base = as_Address(addr);
 267   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 268 }
 269 
 270 
 271 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 272   return as_Address(addr);
 273 }
 274 
 275 
 276 void LIR_Assembler::osr_entry() {
 277   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 278   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 279   ValueStack* entry_state = osr_entry->state();
 280   int number_of_locks = entry_state->locks_size();
 281 
 282   // we jump here if osr happens with the interpreter
 283   // state set up to continue at the beginning of the
 284   // loop that triggered osr - in particular, we have
 285   // the following registers setup:
 286   //
 287   // rcx: osr buffer
 288   //
 289 
 290   // build frame
 291   ciMethod* m = compilation()->method();
 292   __ build_frame(initial_frame_size_in_bytes());
 293 
 294   // OSR buffer is
 295   //
 296   // locals[nlocals-1..0]
 297   // monitors[0..number_of_locks]
 298   //
 299   // locals is a direct copy of the interpreter frame so in the osr buffer
 300   // so first slot in the local array is the last local from the interpreter
 301   // and last slot is local[0] (receiver) from the interpreter
 302   //
 303   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 304   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 305   // in the interpreter frame (the method lock if a sync method)
 306 
 307   // Initialize monitors in the compiled activation.
 308   //   rcx: pointer to osr buffer
 309   //
 310   // All other registers are dead at this point and the locals will be
 311   // copied into place by code emitted in the IR.
 312 
 313   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 314   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 315     int monitor_offset = BytesPerWord * method()->max_locals() +
 316       (2 * BytesPerWord) * (number_of_locks - 1);
 317     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 318     // the OSR buffer using 2 word entries: first the lock and then
 319     // the oop.
 320     for (int i = 0; i < number_of_locks; i++) {
 321       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 322 #ifdef ASSERT
 323       // verify the interpreter's monitor has a non-null object
 324       {
 325         Label L;
 326         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 327         __ jcc(Assembler::notZero, L);
 328         __ stop("locked object is NULL");
 329         __ bind(L);
 330       }
 331 #endif
 332       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 333       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 334       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 335       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 336     }
 337   }
 338 }
 339 
 340 
 341 // inline cache check; done before the frame is built.
 342 int LIR_Assembler::check_icache() {
 343   Register receiver = FrameMap::receiver_opr->as_register();
 344   Register ic_klass = IC_Klass;
 345   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 346   const bool do_post_padding = VerifyOops || UseCompressedOops;
 347   if (!do_post_padding) {
 348     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 349     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
 350       __ nop();
 351     }
 352   }
 353   int offset = __ offset();
 354   __ inline_cache_check(receiver, IC_Klass);
 355   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 356   if (do_post_padding) {
 357     // force alignment after the cache check.
 358     // It's been verified to be aligned if !VerifyOops
 359     __ align(CodeEntryAlignment);
 360   }
 361   return offset;
 362 }
 363 
 364 
 365 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 366   jobject o = NULL;
 367   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 368   __ movoop(reg, o);
 369   patching_epilog(patch, lir_patch_normal, reg, info);
 370 }
 371 
 372 
 373 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
 374   if (exception->is_valid()) {
 375     // preserve exception
 376     // note: the monitor_exit runtime call is a leaf routine
 377     //       and cannot block => no GC can happen
 378     // The slow case (MonitorAccessStub) uses the first two stack slots
 379     // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
 380     __ movptr (Address(rsp, 2*wordSize), exception);
 381   }
 382 
 383   Register obj_reg  = obj_opr->as_register();
 384   Register lock_reg = lock_opr->as_register();
 385 
 386   // setup registers (lock_reg must be rax, for lock_object)
 387   assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
 388   Register hdr = lock_reg;
 389   assert(new_hdr == SYNC_header, "wrong register");
 390   lock_reg = new_hdr;
 391   // compute pointer to BasicLock
 392   Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
 393   __ lea(lock_reg, lock_addr);
 394   // unlock object
 395   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
 396   // _slow_case_stubs->append(slow_case);
 397   // temporary fix: must be created after exceptionhandler, therefore as call stub
 398   _slow_case_stubs->append(slow_case);
 399   if (UseFastLocking) {
 400     // try inlined fast unlocking first, revert to slow locking if it fails
 401     // note: lock_reg points to the displaced header since the displaced header offset is 0!
 402     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
 403     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
 404   } else {
 405     // always do slow unlocking
 406     // note: the slow unlocking code could be inlined here, however if we use
 407     //       slow unlocking, speed doesn't matter anyway and this solution is
 408     //       simpler and requires less duplicated code - additionally, the
 409     //       slow unlocking code is the same in either case which simplifies
 410     //       debugging
 411     __ jmp(*slow_case->entry());
 412   }
 413   // done
 414   __ bind(*slow_case->continuation());
 415 
 416   if (exception->is_valid()) {
 417     // restore exception
 418     __ movptr (exception, Address(rsp, 2 * wordSize));
 419   }
 420 }
 421 
 422 // This specifies the rsp decrement needed to build the frame
 423 int LIR_Assembler::initial_frame_size_in_bytes() {
 424   // if rounding, must let FrameMap know!
 425 
 426   // The frame_map records size in slots (32bit word)
 427 
 428   // subtract two words to account for return address and link
 429   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 430 }
 431 
 432 
 433 int LIR_Assembler::emit_exception_handler() {
 434   // if the last instruction is a call (typically to do a throw which
 435   // is coming at the end after block reordering) the return address
 436   // must still point into the code area in order to avoid assertion
 437   // failures when searching for the corresponding bci => add a nop
 438   // (was bug 5/14/1999 - gri)
 439   __ nop();
 440 
 441   // generate code for exception handler
 442   address handler_base = __ start_a_stub(exception_handler_size);
 443   if (handler_base == NULL) {
 444     // not enough space left for the handler
 445     bailout("exception handler overflow");
 446     return -1;
 447   }
 448 
 449   int offset = code_offset();
 450 
 451   // the exception oop and pc are in rax, and rdx
 452   // no other registers need to be preserved, so invalidate them
 453   __ invalidate_registers(false, true, true, false, true, true);
 454 
 455   // check that there is really an exception
 456   __ verify_not_null_oop(rax);
 457 
 458   // search an exception handler (rax: exception oop, rdx: throwing pc)
 459   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 460   __ should_not_reach_here();
 461   assert(code_offset() - offset <= exception_handler_size, "overflow");
 462   __ end_a_stub();
 463 
 464   return offset;
 465 }
 466 
 467 
 468 // Emit the code to remove the frame from the stack in the exception
 469 // unwind path.
 470 int LIR_Assembler::emit_unwind_handler() {
 471 #ifndef PRODUCT
 472   if (CommentedAssembly) {
 473     _masm->block_comment("Unwind handler");
 474   }
 475 #endif
 476 
 477   int offset = code_offset();
 478 
 479   // Fetch the exception from TLS and clear out exception related thread state
 480   __ get_thread(rsi);
 481   __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
 482   __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
 483   __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
 484 
 485   __ bind(_unwind_handler_entry);
 486   __ verify_not_null_oop(rax);
 487   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 488     __ mov(rsi, rax);  // Preserve the exception
 489   }
 490 
 491   // Preform needed unlocking
 492   MonitorExitStub* stub = NULL;
 493   if (method()->is_synchronized()) {
 494     monitor_address(0, FrameMap::rax_opr);
 495     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 496     __ unlock_object(rdi, rbx, rax, *stub->entry());
 497     __ bind(*stub->continuation());
 498   }
 499 
 500   if (compilation()->env()->dtrace_method_probes()) {
 501     __ get_thread(rax);
 502     __ movptr(Address(rsp, 0), rax);
 503     __ movoop(Address(rsp, sizeof(void*)), method()->constant_encoding());
 504     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 505   }
 506 
 507   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 508     __ mov(rax, rsi);  // Restore the exception
 509   }
 510 
 511   // remove the activation and dispatch to the unwind handler
 512   __ remove_frame(initial_frame_size_in_bytes());
 513   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 514 
 515   // Emit the slow path assembly
 516   if (stub != NULL) {
 517     stub->emit_code(this);
 518   }
 519 
 520   return offset;
 521 }
 522 
 523 
 524 int LIR_Assembler::emit_deopt_handler() {
 525   // if the last instruction is a call (typically to do a throw which
 526   // is coming at the end after block reordering) the return address
 527   // must still point into the code area in order to avoid assertion
 528   // failures when searching for the corresponding bci => add a nop
 529   // (was bug 5/14/1999 - gri)
 530   __ nop();
 531 
 532   // generate code for exception handler
 533   address handler_base = __ start_a_stub(deopt_handler_size);
 534   if (handler_base == NULL) {
 535     // not enough space left for the handler
 536     bailout("deopt handler overflow");
 537     return -1;
 538   }
 539 
 540   int offset = code_offset();
 541   InternalAddress here(__ pc());
 542 
 543   __ pushptr(here.addr());
 544   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 545 
 546   assert(code_offset() - offset <= deopt_handler_size, "overflow");
 547   __ end_a_stub();
 548 
 549   return offset;
 550 }
 551 
 552 
 553 // This is the fast version of java.lang.String.compare; it has not
 554 // OSR-entry and therefore, we generate a slow version for OSR's
 555 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
 556   __ movptr (rbx, rcx); // receiver is in rcx
 557   __ movptr (rax, arg1->as_register());
 558 
 559   // Get addresses of first characters from both Strings
 560   __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
 561   __ movptr       (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
 562   __ lea          (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 563 
 564 
 565   // rbx, may be NULL
 566   add_debug_info_for_null_check_here(info);
 567   __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
 568   __ movptr       (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
 569   __ lea          (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 570 
 571   // compute minimum length (in rax) and difference of lengths (on top of stack)
 572   if (VM_Version::supports_cmov()) {
 573     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
 574     __ movl     (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
 575     __ mov      (rcx, rbx);
 576     __ subptr   (rbx, rax); // subtract lengths
 577     __ push     (rbx);      // result
 578     __ cmov     (Assembler::lessEqual, rax, rcx);
 579   } else {
 580     Label L;
 581     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
 582     __ movl     (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
 583     __ mov      (rax, rbx);
 584     __ subptr   (rbx, rcx);
 585     __ push     (rbx);
 586     __ jcc      (Assembler::lessEqual, L);
 587     __ mov      (rax, rcx);
 588     __ bind (L);
 589   }
 590   // is minimum length 0?
 591   Label noLoop, haveResult;
 592   __ testptr (rax, rax);
 593   __ jcc (Assembler::zero, noLoop);
 594 
 595   // compare first characters
 596   __ load_unsigned_short(rcx, Address(rdi, 0));
 597   __ load_unsigned_short(rbx, Address(rsi, 0));
 598   __ subl(rcx, rbx);
 599   __ jcc(Assembler::notZero, haveResult);
 600   // starting loop
 601   __ decrement(rax); // we already tested index: skip one
 602   __ jcc(Assembler::zero, noLoop);
 603 
 604   // set rsi.edi to the end of the arrays (arrays have same length)
 605   // negate the index
 606 
 607   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 608   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 609   __ negptr(rax);
 610 
 611   // compare the strings in a loop
 612 
 613   Label loop;
 614   __ align(wordSize);
 615   __ bind(loop);
 616   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
 617   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
 618   __ subl(rcx, rbx);
 619   __ jcc(Assembler::notZero, haveResult);
 620   __ increment(rax);
 621   __ jcc(Assembler::notZero, loop);
 622 
 623   // strings are equal up to min length
 624 
 625   __ bind(noLoop);
 626   __ pop(rax);
 627   return_op(LIR_OprFact::illegalOpr);
 628 
 629   __ bind(haveResult);
 630   // leave instruction is going to discard the TOS value
 631   __ mov (rax, rcx); // result of call is in rax,
 632 }
 633 
 634 
 635 void LIR_Assembler::return_op(LIR_Opr result) {
 636   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 637   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 638     assert(result->fpu() == 0, "result must already be on TOS");
 639   }
 640 
 641   // Pop the stack before the safepoint code
 642   __ remove_frame(initial_frame_size_in_bytes());
 643 
 644   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 645 
 646   // Note: we do not need to round double result; float result has the right precision
 647   // the poll sets the condition code, but no data registers
 648   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
 649                               relocInfo::poll_return_type);
 650 
 651   // NOTE: the requires that the polling page be reachable else the reloc
 652   // goes to the movq that loads the address and not the faulting instruction
 653   // which breaks the signal handler code
 654 
 655   __ test32(rax, polling_page);
 656 
 657   __ ret(0);
 658 }
 659 
 660 
 661 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 662   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
 663                               relocInfo::poll_type);
 664 
 665   if (info != NULL) {
 666     add_debug_info_for_branch(info);
 667   } else {
 668     ShouldNotReachHere();
 669   }
 670 
 671   int offset = __ offset();
 672 
 673   // NOTE: the requires that the polling page be reachable else the reloc
 674   // goes to the movq that loads the address and not the faulting instruction
 675   // which breaks the signal handler code
 676 
 677   __ test32(rax, polling_page);
 678   return offset;
 679 }
 680 
 681 
 682 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 683   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 684 }
 685 
 686 void LIR_Assembler::swap_reg(Register a, Register b) {
 687   __ xchgptr(a, b);
 688 }
 689 
 690 
 691 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 692   assert(src->is_constant(), "should not call otherwise");
 693   assert(dest->is_register(), "should not call otherwise");
 694   LIR_Const* c = src->as_constant_ptr();
 695 
 696   switch (c->type()) {
 697     case T_INT: {
 698       assert(patch_code == lir_patch_none, "no patching handled here");
 699       __ movl(dest->as_register(), c->as_jint());
 700       break;
 701     }
 702 
 703     case T_ADDRESS: {
 704       assert(patch_code == lir_patch_none, "no patching handled here");
 705       __ movptr(dest->as_register(), c->as_jint());
 706       break;
 707     }
 708 
 709     case T_LONG: {
 710       assert(patch_code == lir_patch_none, "no patching handled here");
 711 #ifdef _LP64
 712       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 713 #else
 714       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 715       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 716 #endif // _LP64
 717       break;
 718     }
 719 
 720     case T_OBJECT: {
 721       if (patch_code != lir_patch_none) {
 722         jobject2reg_with_patching(dest->as_register(), info);
 723       } else {
 724         __ movoop(dest->as_register(), c->as_jobject());
 725       }
 726       break;
 727     }
 728 
 729     case T_FLOAT: {
 730       if (dest->is_single_xmm()) {
 731         if (c->is_zero_float()) {
 732           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 733         } else {
 734           __ movflt(dest->as_xmm_float_reg(),
 735                    InternalAddress(float_constant(c->as_jfloat())));
 736         }
 737       } else {
 738         assert(dest->is_single_fpu(), "must be");
 739         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 740         if (c->is_zero_float()) {
 741           __ fldz();
 742         } else if (c->is_one_float()) {
 743           __ fld1();
 744         } else {
 745           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 746         }
 747       }
 748       break;
 749     }
 750 
 751     case T_DOUBLE: {
 752       if (dest->is_double_xmm()) {
 753         if (c->is_zero_double()) {
 754           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 755         } else {
 756           __ movdbl(dest->as_xmm_double_reg(),
 757                     InternalAddress(double_constant(c->as_jdouble())));
 758         }
 759       } else {
 760         assert(dest->is_double_fpu(), "must be");
 761         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 762         if (c->is_zero_double()) {
 763           __ fldz();
 764         } else if (c->is_one_double()) {
 765           __ fld1();
 766         } else {
 767           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 768         }
 769       }
 770       break;
 771     }
 772 
 773     default:
 774       ShouldNotReachHere();
 775   }
 776 }
 777 
 778 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 779   assert(src->is_constant(), "should not call otherwise");
 780   assert(dest->is_stack(), "should not call otherwise");
 781   LIR_Const* c = src->as_constant_ptr();
 782 
 783   switch (c->type()) {
 784     case T_INT:  // fall through
 785     case T_FLOAT:
 786       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 787       break;
 788 
 789     case T_ADDRESS:
 790       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 791       break;
 792 
 793     case T_OBJECT:
 794       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 795       break;
 796 
 797     case T_LONG:  // fall through
 798     case T_DOUBLE:
 799 #ifdef _LP64
 800       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 801                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 802 #else
 803       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 804                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 805       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 806                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 807 #endif // _LP64
 808       break;
 809 
 810     default:
 811       ShouldNotReachHere();
 812   }
 813 }
 814 
 815 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 816   assert(src->is_constant(), "should not call otherwise");
 817   assert(dest->is_address(), "should not call otherwise");
 818   LIR_Const* c = src->as_constant_ptr();
 819   LIR_Address* addr = dest->as_address_ptr();
 820 
 821   int null_check_here = code_offset();
 822   switch (type) {
 823     case T_INT:    // fall through
 824     case T_FLOAT:
 825       __ movl(as_Address(addr), c->as_jint_bits());
 826       break;
 827 
 828     case T_ADDRESS:
 829       __ movptr(as_Address(addr), c->as_jint_bits());
 830       break;
 831 
 832     case T_OBJECT:  // fall through
 833     case T_ARRAY:
 834       if (c->as_jobject() == NULL) {
 835         if (UseCompressedOops && !wide) {
 836           __ movl(as_Address(addr), (int32_t)NULL_WORD);
 837         } else {
 838           __ movptr(as_Address(addr), NULL_WORD);
 839         }
 840       } else {
 841         if (is_literal_address(addr)) {
 842           ShouldNotReachHere();
 843           __ movoop(as_Address(addr, noreg), c->as_jobject());
 844         } else {
 845 #ifdef _LP64
 846           __ movoop(rscratch1, c->as_jobject());
 847           if (UseCompressedOops && !wide) {
 848             __ encode_heap_oop(rscratch1);
 849             null_check_here = code_offset();
 850             __ movl(as_Address_lo(addr), rscratch1);
 851           } else {
 852             null_check_here = code_offset();
 853             __ movptr(as_Address_lo(addr), rscratch1);
 854           }
 855 #else
 856           __ movoop(as_Address(addr), c->as_jobject());
 857 #endif
 858         }
 859       }
 860       break;
 861 
 862     case T_LONG:    // fall through
 863     case T_DOUBLE:
 864 #ifdef _LP64
 865       if (is_literal_address(addr)) {
 866         ShouldNotReachHere();
 867         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 868       } else {
 869         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 870         null_check_here = code_offset();
 871         __ movptr(as_Address_lo(addr), r10);
 872       }
 873 #else
 874       // Always reachable in 32bit so this doesn't produce useless move literal
 875       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 876       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 877 #endif // _LP64
 878       break;
 879 
 880     case T_BOOLEAN: // fall through
 881     case T_BYTE:
 882       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 883       break;
 884 
 885     case T_CHAR:    // fall through
 886     case T_SHORT:
 887       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 888       break;
 889 
 890     default:
 891       ShouldNotReachHere();
 892   };
 893 
 894   if (info != NULL) {
 895     add_debug_info_for_null_check(null_check_here, info);
 896   }
 897 }
 898 
 899 
 900 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 901   assert(src->is_register(), "should not call otherwise");
 902   assert(dest->is_register(), "should not call otherwise");
 903 
 904   // move between cpu-registers
 905   if (dest->is_single_cpu()) {
 906 #ifdef _LP64
 907     if (src->type() == T_LONG) {
 908       // Can do LONG -> OBJECT
 909       move_regs(src->as_register_lo(), dest->as_register());
 910       return;
 911     }
 912 #endif
 913     assert(src->is_single_cpu(), "must match");
 914     if (src->type() == T_OBJECT) {
 915       __ verify_oop(src->as_register());
 916     }
 917     move_regs(src->as_register(), dest->as_register());
 918 
 919   } else if (dest->is_double_cpu()) {
 920 #ifdef _LP64
 921     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
 922       // Surprising to me but we can see move of a long to t_object
 923       __ verify_oop(src->as_register());
 924       move_regs(src->as_register(), dest->as_register_lo());
 925       return;
 926     }
 927 #endif
 928     assert(src->is_double_cpu(), "must match");
 929     Register f_lo = src->as_register_lo();
 930     Register f_hi = src->as_register_hi();
 931     Register t_lo = dest->as_register_lo();
 932     Register t_hi = dest->as_register_hi();
 933 #ifdef _LP64
 934     assert(f_hi == f_lo, "must be same");
 935     assert(t_hi == t_lo, "must be same");
 936     move_regs(f_lo, t_lo);
 937 #else
 938     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 939 
 940 
 941     if (f_lo == t_hi && f_hi == t_lo) {
 942       swap_reg(f_lo, f_hi);
 943     } else if (f_hi == t_lo) {
 944       assert(f_lo != t_hi, "overwriting register");
 945       move_regs(f_hi, t_hi);
 946       move_regs(f_lo, t_lo);
 947     } else {
 948       assert(f_hi != t_lo, "overwriting register");
 949       move_regs(f_lo, t_lo);
 950       move_regs(f_hi, t_hi);
 951     }
 952 #endif // LP64
 953 
 954     // special moves from fpu-register to xmm-register
 955     // necessary for method results
 956   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 957     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 958     __ fld_s(Address(rsp, 0));
 959   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 960     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 961     __ fld_d(Address(rsp, 0));
 962   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 963     __ fstp_s(Address(rsp, 0));
 964     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 965   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 966     __ fstp_d(Address(rsp, 0));
 967     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 968 
 969     // move between xmm-registers
 970   } else if (dest->is_single_xmm()) {
 971     assert(src->is_single_xmm(), "must match");
 972     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 973   } else if (dest->is_double_xmm()) {
 974     assert(src->is_double_xmm(), "must match");
 975     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 976 
 977     // move between fpu-registers (no instruction necessary because of fpu-stack)
 978   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 979     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 980     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 981   } else {
 982     ShouldNotReachHere();
 983   }
 984 }
 985 
 986 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 987   assert(src->is_register(), "should not call otherwise");
 988   assert(dest->is_stack(), "should not call otherwise");
 989 
 990   if (src->is_single_cpu()) {
 991     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 992     if (type == T_OBJECT || type == T_ARRAY) {
 993       __ verify_oop(src->as_register());
 994       __ movptr (dst, src->as_register());
 995     } else {
 996       __ movl (dst, src->as_register());
 997     }
 998 
 999   } else if (src->is_double_cpu()) {
1000     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
1001     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
1002     __ movptr (dstLO, src->as_register_lo());
1003     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
1004 
1005   } else if (src->is_single_xmm()) {
1006     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
1007     __ movflt(dst_addr, src->as_xmm_float_reg());
1008 
1009   } else if (src->is_double_xmm()) {
1010     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
1011     __ movdbl(dst_addr, src->as_xmm_double_reg());
1012 
1013   } else if (src->is_single_fpu()) {
1014     assert(src->fpu_regnr() == 0, "argument must be on TOS");
1015     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
1016     if (pop_fpu_stack)     __ fstp_s (dst_addr);
1017     else                   __ fst_s  (dst_addr);
1018 
1019   } else if (src->is_double_fpu()) {
1020     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1021     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
1022     if (pop_fpu_stack)     __ fstp_d (dst_addr);
1023     else                   __ fst_d  (dst_addr);
1024 
1025   } else {
1026     ShouldNotReachHere();
1027   }
1028 }
1029 
1030 
1031 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
1032   LIR_Address* to_addr = dest->as_address_ptr();
1033   PatchingStub* patch = NULL;
1034   Register compressed_src = rscratch1;
1035 
1036   if (type == T_ARRAY || type == T_OBJECT) {
1037     __ verify_oop(src->as_register());
1038 #ifdef _LP64
1039     if (UseCompressedOops && !wide) {
1040       __ movptr(compressed_src, src->as_register());
1041       __ encode_heap_oop(compressed_src);
1042     }
1043 #endif
1044   }
1045 
1046   if (patch_code != lir_patch_none) {
1047     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1048     Address toa = as_Address(to_addr);
1049     assert(toa.disp() != 0, "must have");
1050   }
1051 
1052   int null_check_here = code_offset();
1053   switch (type) {
1054     case T_FLOAT: {
1055       if (src->is_single_xmm()) {
1056         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1057       } else {
1058         assert(src->is_single_fpu(), "must be");
1059         assert(src->fpu_regnr() == 0, "argument must be on TOS");
1060         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
1061         else                    __ fst_s (as_Address(to_addr));
1062       }
1063       break;
1064     }
1065 
1066     case T_DOUBLE: {
1067       if (src->is_double_xmm()) {
1068         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1069       } else {
1070         assert(src->is_double_fpu(), "must be");
1071         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1072         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1073         else                    __ fst_d (as_Address(to_addr));
1074       }
1075       break;
1076     }
1077 
1078     case T_ARRAY:   // fall through
1079     case T_OBJECT:  // fall through
1080       if (UseCompressedOops && !wide) {
1081         __ movl(as_Address(to_addr), compressed_src);
1082       } else {
1083         __ movptr(as_Address(to_addr), src->as_register());
1084       }
1085       break;
1086     case T_ADDRESS:
1087       __ movptr(as_Address(to_addr), src->as_register());
1088       break;
1089     case T_INT:
1090       __ movl(as_Address(to_addr), src->as_register());
1091       break;
1092 
1093     case T_LONG: {
1094       Register from_lo = src->as_register_lo();
1095       Register from_hi = src->as_register_hi();
1096 #ifdef _LP64
1097       __ movptr(as_Address_lo(to_addr), from_lo);
1098 #else
1099       Register base = to_addr->base()->as_register();
1100       Register index = noreg;
1101       if (to_addr->index()->is_register()) {
1102         index = to_addr->index()->as_register();
1103       }
1104       if (base == from_lo || index == from_lo) {
1105         assert(base != from_hi, "can't be");
1106         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1107         __ movl(as_Address_hi(to_addr), from_hi);
1108         if (patch != NULL) {
1109           patching_epilog(patch, lir_patch_high, base, info);
1110           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1111           patch_code = lir_patch_low;
1112         }
1113         __ movl(as_Address_lo(to_addr), from_lo);
1114       } else {
1115         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1116         __ movl(as_Address_lo(to_addr), from_lo);
1117         if (patch != NULL) {
1118           patching_epilog(patch, lir_patch_low, base, info);
1119           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1120           patch_code = lir_patch_high;
1121         }
1122         __ movl(as_Address_hi(to_addr), from_hi);
1123       }
1124 #endif // _LP64
1125       break;
1126     }
1127 
1128     case T_BYTE:    // fall through
1129     case T_BOOLEAN: {
1130       Register src_reg = src->as_register();
1131       Address dst_addr = as_Address(to_addr);
1132       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1133       __ movb(dst_addr, src_reg);
1134       break;
1135     }
1136 
1137     case T_CHAR:    // fall through
1138     case T_SHORT:
1139       __ movw(as_Address(to_addr), src->as_register());
1140       break;
1141 
1142     default:
1143       ShouldNotReachHere();
1144   }
1145   if (info != NULL) {
1146     add_debug_info_for_null_check(null_check_here, info);
1147   }
1148 
1149   if (patch_code != lir_patch_none) {
1150     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1151   }
1152 }
1153 
1154 
1155 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1156   assert(src->is_stack(), "should not call otherwise");
1157   assert(dest->is_register(), "should not call otherwise");
1158 
1159   if (dest->is_single_cpu()) {
1160     if (type == T_ARRAY || type == T_OBJECT) {
1161       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1162       __ verify_oop(dest->as_register());
1163     } else {
1164       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1165     }
1166 
1167   } else if (dest->is_double_cpu()) {
1168     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1169     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1170     __ movptr(dest->as_register_lo(), src_addr_LO);
1171     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1172 
1173   } else if (dest->is_single_xmm()) {
1174     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1175     __ movflt(dest->as_xmm_float_reg(), src_addr);
1176 
1177   } else if (dest->is_double_xmm()) {
1178     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1179     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1180 
1181   } else if (dest->is_single_fpu()) {
1182     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1183     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1184     __ fld_s(src_addr);
1185 
1186   } else if (dest->is_double_fpu()) {
1187     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1188     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1189     __ fld_d(src_addr);
1190 
1191   } else {
1192     ShouldNotReachHere();
1193   }
1194 }
1195 
1196 
1197 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1198   if (src->is_single_stack()) {
1199     if (type == T_OBJECT || type == T_ARRAY) {
1200       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1201       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1202     } else {
1203 #ifndef _LP64
1204       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1205       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1206 #else
1207       //no pushl on 64bits
1208       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1209       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1210 #endif
1211     }
1212 
1213   } else if (src->is_double_stack()) {
1214 #ifdef _LP64
1215     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1216     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1217 #else
1218     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1219     // push and pop the part at src + wordSize, adding wordSize for the previous push
1220     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1221     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1222     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1223 #endif // _LP64
1224 
1225   } else {
1226     ShouldNotReachHere();
1227   }
1228 }
1229 
1230 
1231 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1232   assert(src->is_address(), "should not call otherwise");
1233   assert(dest->is_register(), "should not call otherwise");
1234 
1235   LIR_Address* addr = src->as_address_ptr();
1236   Address from_addr = as_Address(addr);
1237 
1238   switch (type) {
1239     case T_BOOLEAN: // fall through
1240     case T_BYTE:    // fall through
1241     case T_CHAR:    // fall through
1242     case T_SHORT:
1243       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1244         // on pre P6 processors we may get partial register stalls
1245         // so blow away the value of to_rinfo before loading a
1246         // partial word into it.  Do it here so that it precedes
1247         // the potential patch point below.
1248         __ xorptr(dest->as_register(), dest->as_register());
1249       }
1250       break;
1251   }
1252 
1253   PatchingStub* patch = NULL;
1254   if (patch_code != lir_patch_none) {
1255     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1256     assert(from_addr.disp() != 0, "must have");
1257   }
1258   if (info != NULL) {
1259     add_debug_info_for_null_check_here(info);
1260   }
1261 
1262   switch (type) {
1263     case T_FLOAT: {
1264       if (dest->is_single_xmm()) {
1265         __ movflt(dest->as_xmm_float_reg(), from_addr);
1266       } else {
1267         assert(dest->is_single_fpu(), "must be");
1268         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1269         __ fld_s(from_addr);
1270       }
1271       break;
1272     }
1273 
1274     case T_DOUBLE: {
1275       if (dest->is_double_xmm()) {
1276         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1277       } else {
1278         assert(dest->is_double_fpu(), "must be");
1279         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1280         __ fld_d(from_addr);
1281       }
1282       break;
1283     }
1284 
1285     case T_OBJECT:  // fall through
1286     case T_ARRAY:   // fall through
1287       if (UseCompressedOops && !wide) {
1288         __ movl(dest->as_register(), from_addr);
1289       } else {
1290         __ movptr(dest->as_register(), from_addr);
1291       }
1292       break;
1293 
1294     case T_ADDRESS:
1295       __ movptr(dest->as_register(), from_addr);
1296       break;
1297     case T_INT:
1298       __ movl(dest->as_register(), from_addr);
1299       break;
1300 
1301     case T_LONG: {
1302       Register to_lo = dest->as_register_lo();
1303       Register to_hi = dest->as_register_hi();
1304 #ifdef _LP64
1305       __ movptr(to_lo, as_Address_lo(addr));
1306 #else
1307       Register base = addr->base()->as_register();
1308       Register index = noreg;
1309       if (addr->index()->is_register()) {
1310         index = addr->index()->as_register();
1311       }
1312       if ((base == to_lo && index == to_hi) ||
1313           (base == to_hi && index == to_lo)) {
1314         // addresses with 2 registers are only formed as a result of
1315         // array access so this code will never have to deal with
1316         // patches or null checks.
1317         assert(info == NULL && patch == NULL, "must be");
1318         __ lea(to_hi, as_Address(addr));
1319         __ movl(to_lo, Address(to_hi, 0));
1320         __ movl(to_hi, Address(to_hi, BytesPerWord));
1321       } else if (base == to_lo || index == to_lo) {
1322         assert(base != to_hi, "can't be");
1323         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1324         __ movl(to_hi, as_Address_hi(addr));
1325         if (patch != NULL) {
1326           patching_epilog(patch, lir_patch_high, base, info);
1327           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1328           patch_code = lir_patch_low;
1329         }
1330         __ movl(to_lo, as_Address_lo(addr));
1331       } else {
1332         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1333         __ movl(to_lo, as_Address_lo(addr));
1334         if (patch != NULL) {
1335           patching_epilog(patch, lir_patch_low, base, info);
1336           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1337           patch_code = lir_patch_high;
1338         }
1339         __ movl(to_hi, as_Address_hi(addr));
1340       }
1341 #endif // _LP64
1342       break;
1343     }
1344 
1345     case T_BOOLEAN: // fall through
1346     case T_BYTE: {
1347       Register dest_reg = dest->as_register();
1348       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1349       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1350         __ movsbl(dest_reg, from_addr);
1351       } else {
1352         __ movb(dest_reg, from_addr);
1353         __ shll(dest_reg, 24);
1354         __ sarl(dest_reg, 24);
1355       }
1356       break;
1357     }
1358 
1359     case T_CHAR: {
1360       Register dest_reg = dest->as_register();
1361       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1362       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1363         __ movzwl(dest_reg, from_addr);
1364       } else {
1365         __ movw(dest_reg, from_addr);
1366       }
1367       break;
1368     }
1369 
1370     case T_SHORT: {
1371       Register dest_reg = dest->as_register();
1372       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1373         __ movswl(dest_reg, from_addr);
1374       } else {
1375         __ movw(dest_reg, from_addr);
1376         __ shll(dest_reg, 16);
1377         __ sarl(dest_reg, 16);
1378       }
1379       break;
1380     }
1381 
1382     default:
1383       ShouldNotReachHere();
1384   }
1385 
1386   if (patch != NULL) {
1387     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1388   }
1389 
1390   if (type == T_ARRAY || type == T_OBJECT) {
1391 #ifdef _LP64
1392     if (UseCompressedOops && !wide) {
1393       __ decode_heap_oop(dest->as_register());
1394     }
1395 #endif
1396     __ verify_oop(dest->as_register());
1397   }
1398 }
1399 
1400 
1401 void LIR_Assembler::prefetchr(LIR_Opr src) {
1402   LIR_Address* addr = src->as_address_ptr();
1403   Address from_addr = as_Address(addr);
1404 
1405   if (VM_Version::supports_sse()) {
1406     switch (ReadPrefetchInstr) {
1407       case 0:
1408         __ prefetchnta(from_addr); break;
1409       case 1:
1410         __ prefetcht0(from_addr); break;
1411       case 2:
1412         __ prefetcht2(from_addr); break;
1413       default:
1414         ShouldNotReachHere(); break;
1415     }
1416   } else if (VM_Version::supports_3dnow()) {
1417     __ prefetchr(from_addr);
1418   }
1419 }
1420 
1421 
1422 void LIR_Assembler::prefetchw(LIR_Opr src) {
1423   LIR_Address* addr = src->as_address_ptr();
1424   Address from_addr = as_Address(addr);
1425 
1426   if (VM_Version::supports_sse()) {
1427     switch (AllocatePrefetchInstr) {
1428       case 0:
1429         __ prefetchnta(from_addr); break;
1430       case 1:
1431         __ prefetcht0(from_addr); break;
1432       case 2:
1433         __ prefetcht2(from_addr); break;
1434       case 3:
1435         __ prefetchw(from_addr); break;
1436       default:
1437         ShouldNotReachHere(); break;
1438     }
1439   } else if (VM_Version::supports_3dnow()) {
1440     __ prefetchw(from_addr);
1441   }
1442 }
1443 
1444 
1445 NEEDS_CLEANUP; // This could be static?
1446 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1447   int elem_size = type2aelembytes(type);
1448   switch (elem_size) {
1449     case 1: return Address::times_1;
1450     case 2: return Address::times_2;
1451     case 4: return Address::times_4;
1452     case 8: return Address::times_8;
1453   }
1454   ShouldNotReachHere();
1455   return Address::no_scale;
1456 }
1457 
1458 
1459 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1460   switch (op->code()) {
1461     case lir_idiv:
1462     case lir_irem:
1463       arithmetic_idiv(op->code(),
1464                       op->in_opr1(),
1465                       op->in_opr2(),
1466                       op->in_opr3(),
1467                       op->result_opr(),
1468                       op->info());
1469       break;
1470     default:      ShouldNotReachHere(); break;
1471   }
1472 }
1473 
1474 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1475 #ifdef ASSERT
1476   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1477   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1478   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1479 #endif
1480 
1481   if (op->cond() == lir_cond_always) {
1482     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1483     __ jmp (*(op->label()));
1484   } else {
1485     Assembler::Condition acond = Assembler::zero;
1486     if (op->code() == lir_cond_float_branch) {
1487       assert(op->ublock() != NULL, "must have unordered successor");
1488       __ jcc(Assembler::parity, *(op->ublock()->label()));
1489       switch(op->cond()) {
1490         case lir_cond_equal:        acond = Assembler::equal;      break;
1491         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1492         case lir_cond_less:         acond = Assembler::below;      break;
1493         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1494         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1495         case lir_cond_greater:      acond = Assembler::above;      break;
1496         default:                         ShouldNotReachHere();
1497       }
1498     } else {
1499       switch (op->cond()) {
1500         case lir_cond_equal:        acond = Assembler::equal;       break;
1501         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1502         case lir_cond_less:         acond = Assembler::less;        break;
1503         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1504         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1505         case lir_cond_greater:      acond = Assembler::greater;     break;
1506         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1507         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1508         default:                         ShouldNotReachHere();
1509       }
1510     }
1511     __ jcc(acond,*(op->label()));
1512   }
1513 }
1514 
1515 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1516   LIR_Opr src  = op->in_opr();
1517   LIR_Opr dest = op->result_opr();
1518 
1519   switch (op->bytecode()) {
1520     case Bytecodes::_i2l:
1521 #ifdef _LP64
1522       __ movl2ptr(dest->as_register_lo(), src->as_register());
1523 #else
1524       move_regs(src->as_register(), dest->as_register_lo());
1525       move_regs(src->as_register(), dest->as_register_hi());
1526       __ sarl(dest->as_register_hi(), 31);
1527 #endif // LP64
1528       break;
1529 
1530     case Bytecodes::_l2i:
1531       move_regs(src->as_register_lo(), dest->as_register());
1532       break;
1533 
1534     case Bytecodes::_i2b:
1535       move_regs(src->as_register(), dest->as_register());
1536       __ sign_extend_byte(dest->as_register());
1537       break;
1538 
1539     case Bytecodes::_i2c:
1540       move_regs(src->as_register(), dest->as_register());
1541       __ andl(dest->as_register(), 0xFFFF);
1542       break;
1543 
1544     case Bytecodes::_i2s:
1545       move_regs(src->as_register(), dest->as_register());
1546       __ sign_extend_short(dest->as_register());
1547       break;
1548 
1549 
1550     case Bytecodes::_f2d:
1551     case Bytecodes::_d2f:
1552       if (dest->is_single_xmm()) {
1553         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1554       } else if (dest->is_double_xmm()) {
1555         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1556       } else {
1557         assert(src->fpu() == dest->fpu(), "register must be equal");
1558         // do nothing (float result is rounded later through spilling)
1559       }
1560       break;
1561 
1562     case Bytecodes::_i2f:
1563     case Bytecodes::_i2d:
1564       if (dest->is_single_xmm()) {
1565         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1566       } else if (dest->is_double_xmm()) {
1567         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1568       } else {
1569         assert(dest->fpu() == 0, "result must be on TOS");
1570         __ movl(Address(rsp, 0), src->as_register());
1571         __ fild_s(Address(rsp, 0));
1572       }
1573       break;
1574 
1575     case Bytecodes::_f2i:
1576     case Bytecodes::_d2i:
1577       if (src->is_single_xmm()) {
1578         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1579       } else if (src->is_double_xmm()) {
1580         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1581       } else {
1582         assert(src->fpu() == 0, "input must be on TOS");
1583         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1584         __ fist_s(Address(rsp, 0));
1585         __ movl(dest->as_register(), Address(rsp, 0));
1586         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1587       }
1588 
1589       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1590       assert(op->stub() != NULL, "stub required");
1591       __ cmpl(dest->as_register(), 0x80000000);
1592       __ jcc(Assembler::equal, *op->stub()->entry());
1593       __ bind(*op->stub()->continuation());
1594       break;
1595 
1596     case Bytecodes::_l2f:
1597     case Bytecodes::_l2d:
1598       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1599       assert(dest->fpu() == 0, "result must be on TOS");
1600 
1601       __ movptr(Address(rsp, 0),            src->as_register_lo());
1602       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1603       __ fild_d(Address(rsp, 0));
1604       // float result is rounded later through spilling
1605       break;
1606 
1607     case Bytecodes::_f2l:
1608     case Bytecodes::_d2l:
1609       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1610       assert(src->fpu() == 0, "input must be on TOS");
1611       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1612 
1613       // instruction sequence too long to inline it here
1614       {
1615         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1616       }
1617       break;
1618 
1619     default: ShouldNotReachHere();
1620   }
1621 }
1622 
1623 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1624   if (op->init_check()) {
1625     __ cmpl(Address(op->klass()->as_register(),
1626                     instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
1627             instanceKlass::fully_initialized);
1628     add_debug_info_for_null_check_here(op->stub()->info());
1629     __ jcc(Assembler::notEqual, *op->stub()->entry());
1630   }
1631   __ allocate_object(op->obj()->as_register(),
1632                      op->tmp1()->as_register(),
1633                      op->tmp2()->as_register(),
1634                      op->header_size(),
1635                      op->object_size(),
1636                      op->klass()->as_register(),
1637                      *op->stub()->entry());
1638   __ bind(*op->stub()->continuation());
1639 }
1640 
1641 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1642   Register len =  op->len()->as_register();
1643   LP64_ONLY( __ movslq(len, len); )
1644 
1645   if (UseSlowPath ||
1646       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1647       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1648     __ jmp(*op->stub()->entry());
1649   } else {
1650     Register tmp1 = op->tmp1()->as_register();
1651     Register tmp2 = op->tmp2()->as_register();
1652     Register tmp3 = op->tmp3()->as_register();
1653     if (len == tmp1) {
1654       tmp1 = tmp3;
1655     } else if (len == tmp2) {
1656       tmp2 = tmp3;
1657     } else if (len == tmp3) {
1658       // everything is ok
1659     } else {
1660       __ mov(tmp3, len);
1661     }
1662     __ allocate_array(op->obj()->as_register(),
1663                       len,
1664                       tmp1,
1665                       tmp2,
1666                       arrayOopDesc::header_size(op->type()),
1667                       array_element_size(op->type()),
1668                       op->klass()->as_register(),
1669                       *op->stub()->entry());
1670   }
1671   __ bind(*op->stub()->continuation());
1672 }
1673 
1674 void LIR_Assembler::type_profile_helper(Register mdo,
1675                                         ciMethodData *md, ciProfileData *data,
1676                                         Register recv, Label* update_done) {
1677   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1678     Label next_test;
1679     // See if the receiver is receiver[n].
1680     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1681     __ jccb(Assembler::notEqual, next_test);
1682     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1683     __ addptr(data_addr, DataLayout::counter_increment);
1684     __ jmp(*update_done);
1685     __ bind(next_test);
1686   }
1687 
1688   // Didn't find receiver; find next empty slot and fill it in
1689   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1690     Label next_test;
1691     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1692     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1693     __ jccb(Assembler::notEqual, next_test);
1694     __ movptr(recv_addr, recv);
1695     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1696     __ jmp(*update_done);
1697     __ bind(next_test);
1698   }
1699 }
1700 
1701 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1702   // we always need a stub for the failure case.
1703   CodeStub* stub = op->stub();
1704   Register obj = op->object()->as_register();
1705   Register k_RInfo = op->tmp1()->as_register();
1706   Register klass_RInfo = op->tmp2()->as_register();
1707   Register dst = op->result_opr()->as_register();
1708   ciKlass* k = op->klass();
1709   Register Rtmp1 = noreg;
1710 
1711   // check if it needs to be profiled
1712   ciMethodData* md;
1713   ciProfileData* data;
1714 
1715   if (op->should_profile()) {
1716     ciMethod* method = op->profiled_method();
1717     assert(method != NULL, "Should have method");
1718     int bci = op->profiled_bci();
1719     md = method->method_data_or_null();
1720     assert(md != NULL, "Sanity");
1721     data = md->bci_to_data(bci);
1722     assert(data != NULL,                "need data for type check");
1723     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1724   }
1725   Label profile_cast_success, profile_cast_failure;
1726   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1727   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1728 
1729   if (obj == k_RInfo) {
1730     k_RInfo = dst;
1731   } else if (obj == klass_RInfo) {
1732     klass_RInfo = dst;
1733   }
1734   if (k->is_loaded() && !UseCompressedOops) {
1735     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1736   } else {
1737     Rtmp1 = op->tmp3()->as_register();
1738     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1739   }
1740 
1741   assert_different_registers(obj, k_RInfo, klass_RInfo);
1742   if (!k->is_loaded()) {
1743     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
1744   } else {
1745 #ifdef _LP64
1746     __ movoop(k_RInfo, k->constant_encoding());
1747 #endif // _LP64
1748   }
1749   assert(obj != k_RInfo, "must be different");
1750 
1751   __ cmpptr(obj, (int32_t)NULL_WORD);
1752   if (op->should_profile()) {
1753     Label not_null;
1754     __ jccb(Assembler::notEqual, not_null);
1755     // Object is null; update MDO and exit
1756     Register mdo  = klass_RInfo;
1757     __ movoop(mdo, md->constant_encoding());
1758     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1759     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1760     __ orl(data_addr, header_bits);
1761     __ jmp(*obj_is_null);
1762     __ bind(not_null);
1763   } else {
1764     __ jcc(Assembler::equal, *obj_is_null);
1765   }
1766   __ verify_oop(obj);
1767 
1768   if (op->fast_check()) {
1769     // get object class
1770     // not a safepoint as obj null check happens earlier
1771 #ifdef _LP64
1772     if (UseCompressedOops) {
1773       __ load_klass(Rtmp1, obj);
1774       __ cmpptr(k_RInfo, Rtmp1);
1775     } else {
1776       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1777     }
1778 #else
1779     if (k->is_loaded()) {
1780       __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1781     } else {
1782       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1783     }
1784 #endif
1785     __ jcc(Assembler::notEqual, *failure_target);
1786     // successful cast, fall through to profile or jump
1787   } else {
1788     // get object class
1789     // not a safepoint as obj null check happens earlier
1790     __ load_klass(klass_RInfo, obj);
1791     if (k->is_loaded()) {
1792       // See if we get an immediate positive hit
1793 #ifdef _LP64
1794       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1795 #else
1796       __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1797 #endif // _LP64
1798       if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
1799         __ jcc(Assembler::notEqual, *failure_target);
1800         // successful cast, fall through to profile or jump
1801       } else {
1802         // See if we get an immediate positive hit
1803         __ jcc(Assembler::equal, *success_target);
1804         // check for self
1805 #ifdef _LP64
1806         __ cmpptr(klass_RInfo, k_RInfo);
1807 #else
1808         __ cmpoop(klass_RInfo, k->constant_encoding());
1809 #endif // _LP64
1810         __ jcc(Assembler::equal, *success_target);
1811 
1812         __ push(klass_RInfo);
1813 #ifdef _LP64
1814         __ push(k_RInfo);
1815 #else
1816         __ pushoop(k->constant_encoding());
1817 #endif // _LP64
1818         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1819         __ pop(klass_RInfo);
1820         __ pop(klass_RInfo);
1821         // result is a boolean
1822         __ cmpl(klass_RInfo, 0);
1823         __ jcc(Assembler::equal, *failure_target);
1824         // successful cast, fall through to profile or jump
1825       }
1826     } else {
1827       // perform the fast part of the checking logic
1828       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1829       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1830       __ push(klass_RInfo);
1831       __ push(k_RInfo);
1832       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1833       __ pop(klass_RInfo);
1834       __ pop(k_RInfo);
1835       // result is a boolean
1836       __ cmpl(k_RInfo, 0);
1837       __ jcc(Assembler::equal, *failure_target);
1838       // successful cast, fall through to profile or jump
1839     }
1840   }
1841   if (op->should_profile()) {
1842     Register mdo  = klass_RInfo, recv = k_RInfo;
1843     __ bind(profile_cast_success);
1844     __ movoop(mdo, md->constant_encoding());
1845     __ load_klass(recv, obj);
1846     Label update_done;
1847     type_profile_helper(mdo, md, data, recv, success);
1848     __ jmp(*success);
1849 
1850     __ bind(profile_cast_failure);
1851     __ movoop(mdo, md->constant_encoding());
1852     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1853     __ subptr(counter_addr, DataLayout::counter_increment);
1854     __ jmp(*failure);
1855   }
1856   __ jmp(*success);
1857 }
1858 
1859 
1860 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1861   LIR_Code code = op->code();
1862   if (code == lir_store_check) {
1863     Register value = op->object()->as_register();
1864     Register array = op->array()->as_register();
1865     Register k_RInfo = op->tmp1()->as_register();
1866     Register klass_RInfo = op->tmp2()->as_register();
1867     Register Rtmp1 = op->tmp3()->as_register();
1868 
1869     CodeStub* stub = op->stub();
1870 
1871     // check if it needs to be profiled
1872     ciMethodData* md;
1873     ciProfileData* data;
1874 
1875     if (op->should_profile()) {
1876       ciMethod* method = op->profiled_method();
1877       assert(method != NULL, "Should have method");
1878       int bci = op->profiled_bci();
1879       md = method->method_data_or_null();
1880       assert(md != NULL, "Sanity");
1881       data = md->bci_to_data(bci);
1882       assert(data != NULL,                "need data for type check");
1883       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1884     }
1885     Label profile_cast_success, profile_cast_failure, done;
1886     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1887     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1888 
1889     __ cmpptr(value, (int32_t)NULL_WORD);
1890     if (op->should_profile()) {
1891       Label not_null;
1892       __ jccb(Assembler::notEqual, not_null);
1893       // Object is null; update MDO and exit
1894       Register mdo  = klass_RInfo;
1895       __ movoop(mdo, md->constant_encoding());
1896       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1897       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1898       __ orl(data_addr, header_bits);
1899       __ jmp(done);
1900       __ bind(not_null);
1901     } else {
1902       __ jcc(Assembler::equal, done);
1903     }
1904 
1905     add_debug_info_for_null_check_here(op->info_for_exception());
1906     __ load_klass(k_RInfo, array);
1907     __ load_klass(klass_RInfo, value);
1908 
1909     // get instance klass (it's already uncompressed)
1910     __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
1911     // perform the fast part of the checking logic
1912     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1913     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1914     __ push(klass_RInfo);
1915     __ push(k_RInfo);
1916     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1917     __ pop(klass_RInfo);
1918     __ pop(k_RInfo);
1919     // result is a boolean
1920     __ cmpl(k_RInfo, 0);
1921     __ jcc(Assembler::equal, *failure_target);
1922     // fall through to the success case
1923 
1924     if (op->should_profile()) {
1925       Register mdo  = klass_RInfo, recv = k_RInfo;
1926       __ bind(profile_cast_success);
1927       __ movoop(mdo, md->constant_encoding());
1928       __ load_klass(recv, value);
1929       Label update_done;
1930       type_profile_helper(mdo, md, data, recv, &done);
1931       __ jmpb(done);
1932 
1933       __ bind(profile_cast_failure);
1934       __ movoop(mdo, md->constant_encoding());
1935       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1936       __ subptr(counter_addr, DataLayout::counter_increment);
1937       __ jmp(*stub->entry());
1938     }
1939 
1940     __ bind(done);
1941   } else
1942     if (code == lir_checkcast) {
1943       Register obj = op->object()->as_register();
1944       Register dst = op->result_opr()->as_register();
1945       Label success;
1946       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1947       __ bind(success);
1948       if (dst != obj) {
1949         __ mov(dst, obj);
1950       }
1951     } else
1952       if (code == lir_instanceof) {
1953         Register obj = op->object()->as_register();
1954         Register dst = op->result_opr()->as_register();
1955         Label success, failure, done;
1956         emit_typecheck_helper(op, &success, &failure, &failure);
1957         __ bind(failure);
1958         __ xorptr(dst, dst);
1959         __ jmpb(done);
1960         __ bind(success);
1961         __ movptr(dst, 1);
1962         __ bind(done);
1963       } else {
1964         ShouldNotReachHere();
1965       }
1966 
1967 }
1968 
1969 
1970 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1971   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1972     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1973     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1974     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1975     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1976     Register addr = op->addr()->as_register();
1977     if (os::is_MP()) {
1978       __ lock();
1979     }
1980     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1981 
1982   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1983     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1984     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1985     Register newval = op->new_value()->as_register();
1986     Register cmpval = op->cmp_value()->as_register();
1987     assert(cmpval == rax, "wrong register");
1988     assert(newval != NULL, "new val must be register");
1989     assert(cmpval != newval, "cmp and new values must be in different registers");
1990     assert(cmpval != addr, "cmp and addr must be in different registers");
1991     assert(newval != addr, "new value and addr must be in different registers");
1992 
1993     if ( op->code() == lir_cas_obj) {
1994 #ifdef _LP64
1995       if (UseCompressedOops) {
1996         __ encode_heap_oop(cmpval);
1997         __ mov(rscratch1, newval);
1998         __ encode_heap_oop(rscratch1);
1999         if (os::is_MP()) {
2000           __ lock();
2001         }
2002         // cmpval (rax) is implicitly used by this instruction
2003         __ cmpxchgl(rscratch1, Address(addr, 0));
2004       } else
2005 #endif
2006       {
2007         if (os::is_MP()) {
2008           __ lock();
2009         }
2010         __ cmpxchgptr(newval, Address(addr, 0));
2011       }
2012     } else {
2013       assert(op->code() == lir_cas_int, "lir_cas_int expected");
2014       if (os::is_MP()) {
2015         __ lock();
2016       }
2017       __ cmpxchgl(newval, Address(addr, 0));
2018     }
2019 #ifdef _LP64
2020   } else if (op->code() == lir_cas_long) {
2021     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
2022     Register newval = op->new_value()->as_register_lo();
2023     Register cmpval = op->cmp_value()->as_register_lo();
2024     assert(cmpval == rax, "wrong register");
2025     assert(newval != NULL, "new val must be register");
2026     assert(cmpval != newval, "cmp and new values must be in different registers");
2027     assert(cmpval != addr, "cmp and addr must be in different registers");
2028     assert(newval != addr, "new value and addr must be in different registers");
2029     if (os::is_MP()) {
2030       __ lock();
2031     }
2032     __ cmpxchgq(newval, Address(addr, 0));
2033 #endif // _LP64
2034   } else {
2035     Unimplemented();
2036   }
2037 }
2038 
2039 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
2040   Assembler::Condition acond, ncond;
2041   switch (condition) {
2042     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
2043     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
2044     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
2045     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
2046     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
2047     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
2048     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
2049     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
2050     default:                    ShouldNotReachHere();
2051   }
2052 
2053   if (opr1->is_cpu_register()) {
2054     reg2reg(opr1, result);
2055   } else if (opr1->is_stack()) {
2056     stack2reg(opr1, result, result->type());
2057   } else if (opr1->is_constant()) {
2058     const2reg(opr1, result, lir_patch_none, NULL);
2059   } else {
2060     ShouldNotReachHere();
2061   }
2062 
2063   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2064     // optimized version that does not require a branch
2065     if (opr2->is_single_cpu()) {
2066       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2067       __ cmov(ncond, result->as_register(), opr2->as_register());
2068     } else if (opr2->is_double_cpu()) {
2069       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2070       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2071       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2072       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2073     } else if (opr2->is_single_stack()) {
2074       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2075     } else if (opr2->is_double_stack()) {
2076       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2077       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2078     } else {
2079       ShouldNotReachHere();
2080     }
2081 
2082   } else {
2083     Label skip;
2084     __ jcc (acond, skip);
2085     if (opr2->is_cpu_register()) {
2086       reg2reg(opr2, result);
2087     } else if (opr2->is_stack()) {
2088       stack2reg(opr2, result, result->type());
2089     } else if (opr2->is_constant()) {
2090       const2reg(opr2, result, lir_patch_none, NULL);
2091     } else {
2092       ShouldNotReachHere();
2093     }
2094     __ bind(skip);
2095   }
2096 }
2097 
2098 
2099 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2100   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2101 
2102   if (left->is_single_cpu()) {
2103     assert(left == dest, "left and dest must be equal");
2104     Register lreg = left->as_register();
2105 
2106     if (right->is_single_cpu()) {
2107       // cpu register - cpu register
2108       Register rreg = right->as_register();
2109       switch (code) {
2110         case lir_add: __ addl (lreg, rreg); break;
2111         case lir_sub: __ subl (lreg, rreg); break;
2112         case lir_mul: __ imull(lreg, rreg); break;
2113         default:      ShouldNotReachHere();
2114       }
2115 
2116     } else if (right->is_stack()) {
2117       // cpu register - stack
2118       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2119       switch (code) {
2120         case lir_add: __ addl(lreg, raddr); break;
2121         case lir_sub: __ subl(lreg, raddr); break;
2122         default:      ShouldNotReachHere();
2123       }
2124 
2125     } else if (right->is_constant()) {
2126       // cpu register - constant
2127       jint c = right->as_constant_ptr()->as_jint();
2128       switch (code) {
2129         case lir_add: {
2130           __ incrementl(lreg, c);
2131           break;
2132         }
2133         case lir_sub: {
2134           __ decrementl(lreg, c);
2135           break;
2136         }
2137         default: ShouldNotReachHere();
2138       }
2139 
2140     } else {
2141       ShouldNotReachHere();
2142     }
2143 
2144   } else if (left->is_double_cpu()) {
2145     assert(left == dest, "left and dest must be equal");
2146     Register lreg_lo = left->as_register_lo();
2147     Register lreg_hi = left->as_register_hi();
2148 
2149     if (right->is_double_cpu()) {
2150       // cpu register - cpu register
2151       Register rreg_lo = right->as_register_lo();
2152       Register rreg_hi = right->as_register_hi();
2153       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2154       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2155       switch (code) {
2156         case lir_add:
2157           __ addptr(lreg_lo, rreg_lo);
2158           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2159           break;
2160         case lir_sub:
2161           __ subptr(lreg_lo, rreg_lo);
2162           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2163           break;
2164         case lir_mul:
2165 #ifdef _LP64
2166           __ imulq(lreg_lo, rreg_lo);
2167 #else
2168           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2169           __ imull(lreg_hi, rreg_lo);
2170           __ imull(rreg_hi, lreg_lo);
2171           __ addl (rreg_hi, lreg_hi);
2172           __ mull (rreg_lo);
2173           __ addl (lreg_hi, rreg_hi);
2174 #endif // _LP64
2175           break;
2176         default:
2177           ShouldNotReachHere();
2178       }
2179 
2180     } else if (right->is_constant()) {
2181       // cpu register - constant
2182 #ifdef _LP64
2183       jlong c = right->as_constant_ptr()->as_jlong_bits();
2184       __ movptr(r10, (intptr_t) c);
2185       switch (code) {
2186         case lir_add:
2187           __ addptr(lreg_lo, r10);
2188           break;
2189         case lir_sub:
2190           __ subptr(lreg_lo, r10);
2191           break;
2192         default:
2193           ShouldNotReachHere();
2194       }
2195 #else
2196       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2197       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2198       switch (code) {
2199         case lir_add:
2200           __ addptr(lreg_lo, c_lo);
2201           __ adcl(lreg_hi, c_hi);
2202           break;
2203         case lir_sub:
2204           __ subptr(lreg_lo, c_lo);
2205           __ sbbl(lreg_hi, c_hi);
2206           break;
2207         default:
2208           ShouldNotReachHere();
2209       }
2210 #endif // _LP64
2211 
2212     } else {
2213       ShouldNotReachHere();
2214     }
2215 
2216   } else if (left->is_single_xmm()) {
2217     assert(left == dest, "left and dest must be equal");
2218     XMMRegister lreg = left->as_xmm_float_reg();
2219 
2220     if (right->is_single_xmm()) {
2221       XMMRegister rreg = right->as_xmm_float_reg();
2222       switch (code) {
2223         case lir_add: __ addss(lreg, rreg);  break;
2224         case lir_sub: __ subss(lreg, rreg);  break;
2225         case lir_mul_strictfp: // fall through
2226         case lir_mul: __ mulss(lreg, rreg);  break;
2227         case lir_div_strictfp: // fall through
2228         case lir_div: __ divss(lreg, rreg);  break;
2229         default: ShouldNotReachHere();
2230       }
2231     } else {
2232       Address raddr;
2233       if (right->is_single_stack()) {
2234         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2235       } else if (right->is_constant()) {
2236         // hack for now
2237         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2238       } else {
2239         ShouldNotReachHere();
2240       }
2241       switch (code) {
2242         case lir_add: __ addss(lreg, raddr);  break;
2243         case lir_sub: __ subss(lreg, raddr);  break;
2244         case lir_mul_strictfp: // fall through
2245         case lir_mul: __ mulss(lreg, raddr);  break;
2246         case lir_div_strictfp: // fall through
2247         case lir_div: __ divss(lreg, raddr);  break;
2248         default: ShouldNotReachHere();
2249       }
2250     }
2251 
2252   } else if (left->is_double_xmm()) {
2253     assert(left == dest, "left and dest must be equal");
2254 
2255     XMMRegister lreg = left->as_xmm_double_reg();
2256     if (right->is_double_xmm()) {
2257       XMMRegister rreg = right->as_xmm_double_reg();
2258       switch (code) {
2259         case lir_add: __ addsd(lreg, rreg);  break;
2260         case lir_sub: __ subsd(lreg, rreg);  break;
2261         case lir_mul_strictfp: // fall through
2262         case lir_mul: __ mulsd(lreg, rreg);  break;
2263         case lir_div_strictfp: // fall through
2264         case lir_div: __ divsd(lreg, rreg);  break;
2265         default: ShouldNotReachHere();
2266       }
2267     } else {
2268       Address raddr;
2269       if (right->is_double_stack()) {
2270         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2271       } else if (right->is_constant()) {
2272         // hack for now
2273         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2274       } else {
2275         ShouldNotReachHere();
2276       }
2277       switch (code) {
2278         case lir_add: __ addsd(lreg, raddr);  break;
2279         case lir_sub: __ subsd(lreg, raddr);  break;
2280         case lir_mul_strictfp: // fall through
2281         case lir_mul: __ mulsd(lreg, raddr);  break;
2282         case lir_div_strictfp: // fall through
2283         case lir_div: __ divsd(lreg, raddr);  break;
2284         default: ShouldNotReachHere();
2285       }
2286     }
2287 
2288   } else if (left->is_single_fpu()) {
2289     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2290 
2291     if (right->is_single_fpu()) {
2292       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2293 
2294     } else {
2295       assert(left->fpu_regnr() == 0, "left must be on TOS");
2296       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2297 
2298       Address raddr;
2299       if (right->is_single_stack()) {
2300         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2301       } else if (right->is_constant()) {
2302         address const_addr = float_constant(right->as_jfloat());
2303         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2304         // hack for now
2305         raddr = __ as_Address(InternalAddress(const_addr));
2306       } else {
2307         ShouldNotReachHere();
2308       }
2309 
2310       switch (code) {
2311         case lir_add: __ fadd_s(raddr); break;
2312         case lir_sub: __ fsub_s(raddr); break;
2313         case lir_mul_strictfp: // fall through
2314         case lir_mul: __ fmul_s(raddr); break;
2315         case lir_div_strictfp: // fall through
2316         case lir_div: __ fdiv_s(raddr); break;
2317         default:      ShouldNotReachHere();
2318       }
2319     }
2320 
2321   } else if (left->is_double_fpu()) {
2322     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2323 
2324     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2325       // Double values require special handling for strictfp mul/div on x86
2326       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2327       __ fmulp(left->fpu_regnrLo() + 1);
2328     }
2329 
2330     if (right->is_double_fpu()) {
2331       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2332 
2333     } else {
2334       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2335       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2336 
2337       Address raddr;
2338       if (right->is_double_stack()) {
2339         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2340       } else if (right->is_constant()) {
2341         // hack for now
2342         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2343       } else {
2344         ShouldNotReachHere();
2345       }
2346 
2347       switch (code) {
2348         case lir_add: __ fadd_d(raddr); break;
2349         case lir_sub: __ fsub_d(raddr); break;
2350         case lir_mul_strictfp: // fall through
2351         case lir_mul: __ fmul_d(raddr); break;
2352         case lir_div_strictfp: // fall through
2353         case lir_div: __ fdiv_d(raddr); break;
2354         default: ShouldNotReachHere();
2355       }
2356     }
2357 
2358     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2359       // Double values require special handling for strictfp mul/div on x86
2360       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2361       __ fmulp(dest->fpu_regnrLo() + 1);
2362     }
2363 
2364   } else if (left->is_single_stack() || left->is_address()) {
2365     assert(left == dest, "left and dest must be equal");
2366 
2367     Address laddr;
2368     if (left->is_single_stack()) {
2369       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2370     } else if (left->is_address()) {
2371       laddr = as_Address(left->as_address_ptr());
2372     } else {
2373       ShouldNotReachHere();
2374     }
2375 
2376     if (right->is_single_cpu()) {
2377       Register rreg = right->as_register();
2378       switch (code) {
2379         case lir_add: __ addl(laddr, rreg); break;
2380         case lir_sub: __ subl(laddr, rreg); break;
2381         default:      ShouldNotReachHere();
2382       }
2383     } else if (right->is_constant()) {
2384       jint c = right->as_constant_ptr()->as_jint();
2385       switch (code) {
2386         case lir_add: {
2387           __ incrementl(laddr, c);
2388           break;
2389         }
2390         case lir_sub: {
2391           __ decrementl(laddr, c);
2392           break;
2393         }
2394         default: ShouldNotReachHere();
2395       }
2396     } else {
2397       ShouldNotReachHere();
2398     }
2399 
2400   } else {
2401     ShouldNotReachHere();
2402   }
2403 }
2404 
2405 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2406   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2407   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2408   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2409 
2410   bool left_is_tos = (left_index == 0);
2411   bool dest_is_tos = (dest_index == 0);
2412   int non_tos_index = (left_is_tos ? right_index : left_index);
2413 
2414   switch (code) {
2415     case lir_add:
2416       if (pop_fpu_stack)       __ faddp(non_tos_index);
2417       else if (dest_is_tos)    __ fadd (non_tos_index);
2418       else                     __ fadda(non_tos_index);
2419       break;
2420 
2421     case lir_sub:
2422       if (left_is_tos) {
2423         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2424         else if (dest_is_tos)  __ fsub  (non_tos_index);
2425         else                   __ fsubra(non_tos_index);
2426       } else {
2427         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2428         else if (dest_is_tos)  __ fsubr (non_tos_index);
2429         else                   __ fsuba (non_tos_index);
2430       }
2431       break;
2432 
2433     case lir_mul_strictfp: // fall through
2434     case lir_mul:
2435       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2436       else if (dest_is_tos)    __ fmul (non_tos_index);
2437       else                     __ fmula(non_tos_index);
2438       break;
2439 
2440     case lir_div_strictfp: // fall through
2441     case lir_div:
2442       if (left_is_tos) {
2443         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2444         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2445         else                   __ fdivra(non_tos_index);
2446       } else {
2447         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2448         else if (dest_is_tos)  __ fdivr (non_tos_index);
2449         else                   __ fdiva (non_tos_index);
2450       }
2451       break;
2452 
2453     case lir_rem:
2454       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2455       __ fremr(noreg);
2456       break;
2457 
2458     default:
2459       ShouldNotReachHere();
2460   }
2461 }
2462 
2463 
2464 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2465   if (value->is_double_xmm()) {
2466     switch(code) {
2467       case lir_abs :
2468         {
2469           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2470             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2471           }
2472           __ andpd(dest->as_xmm_double_reg(),
2473                     ExternalAddress((address)double_signmask_pool));
2474         }
2475         break;
2476 
2477       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2478       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2479       default      : ShouldNotReachHere();
2480     }
2481 
2482   } else if (value->is_double_fpu()) {
2483     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2484     switch(code) {
2485       case lir_log   : __ flog() ; break;
2486       case lir_log10 : __ flog10() ; break;
2487       case lir_abs   : __ fabs() ; break;
2488       case lir_sqrt  : __ fsqrt(); break;
2489       case lir_sin   :
2490         // Should consider not saving rbx, if not necessary
2491         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
2492         break;
2493       case lir_cos :
2494         // Should consider not saving rbx, if not necessary
2495         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
2496         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
2497         break;
2498       case lir_tan :
2499         // Should consider not saving rbx, if not necessary
2500         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
2501         break;
2502       default      : ShouldNotReachHere();
2503     }
2504   } else {
2505     Unimplemented();
2506   }
2507 }
2508 
2509 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2510   // assert(left->destroys_register(), "check");
2511   if (left->is_single_cpu()) {
2512     Register reg = left->as_register();
2513     if (right->is_constant()) {
2514       int val = right->as_constant_ptr()->as_jint();
2515       switch (code) {
2516         case lir_logic_and: __ andl (reg, val); break;
2517         case lir_logic_or:  __ orl  (reg, val); break;
2518         case lir_logic_xor: __ xorl (reg, val); break;
2519         default: ShouldNotReachHere();
2520       }
2521     } else if (right->is_stack()) {
2522       // added support for stack operands
2523       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2524       switch (code) {
2525         case lir_logic_and: __ andl (reg, raddr); break;
2526         case lir_logic_or:  __ orl  (reg, raddr); break;
2527         case lir_logic_xor: __ xorl (reg, raddr); break;
2528         default: ShouldNotReachHere();
2529       }
2530     } else {
2531       Register rright = right->as_register();
2532       switch (code) {
2533         case lir_logic_and: __ andptr (reg, rright); break;
2534         case lir_logic_or : __ orptr  (reg, rright); break;
2535         case lir_logic_xor: __ xorptr (reg, rright); break;
2536         default: ShouldNotReachHere();
2537       }
2538     }
2539     move_regs(reg, dst->as_register());
2540   } else {
2541     Register l_lo = left->as_register_lo();
2542     Register l_hi = left->as_register_hi();
2543     if (right->is_constant()) {
2544 #ifdef _LP64
2545       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2546       switch (code) {
2547         case lir_logic_and:
2548           __ andq(l_lo, rscratch1);
2549           break;
2550         case lir_logic_or:
2551           __ orq(l_lo, rscratch1);
2552           break;
2553         case lir_logic_xor:
2554           __ xorq(l_lo, rscratch1);
2555           break;
2556         default: ShouldNotReachHere();
2557       }
2558 #else
2559       int r_lo = right->as_constant_ptr()->as_jint_lo();
2560       int r_hi = right->as_constant_ptr()->as_jint_hi();
2561       switch (code) {
2562         case lir_logic_and:
2563           __ andl(l_lo, r_lo);
2564           __ andl(l_hi, r_hi);
2565           break;
2566         case lir_logic_or:
2567           __ orl(l_lo, r_lo);
2568           __ orl(l_hi, r_hi);
2569           break;
2570         case lir_logic_xor:
2571           __ xorl(l_lo, r_lo);
2572           __ xorl(l_hi, r_hi);
2573           break;
2574         default: ShouldNotReachHere();
2575       }
2576 #endif // _LP64
2577     } else {
2578 #ifdef _LP64
2579       Register r_lo;
2580       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2581         r_lo = right->as_register();
2582       } else {
2583         r_lo = right->as_register_lo();
2584       }
2585 #else
2586       Register r_lo = right->as_register_lo();
2587       Register r_hi = right->as_register_hi();
2588       assert(l_lo != r_hi, "overwriting registers");
2589 #endif
2590       switch (code) {
2591         case lir_logic_and:
2592           __ andptr(l_lo, r_lo);
2593           NOT_LP64(__ andptr(l_hi, r_hi);)
2594           break;
2595         case lir_logic_or:
2596           __ orptr(l_lo, r_lo);
2597           NOT_LP64(__ orptr(l_hi, r_hi);)
2598           break;
2599         case lir_logic_xor:
2600           __ xorptr(l_lo, r_lo);
2601           NOT_LP64(__ xorptr(l_hi, r_hi);)
2602           break;
2603         default: ShouldNotReachHere();
2604       }
2605     }
2606 
2607     Register dst_lo = dst->as_register_lo();
2608     Register dst_hi = dst->as_register_hi();
2609 
2610 #ifdef _LP64
2611     move_regs(l_lo, dst_lo);
2612 #else
2613     if (dst_lo == l_hi) {
2614       assert(dst_hi != l_lo, "overwriting registers");
2615       move_regs(l_hi, dst_hi);
2616       move_regs(l_lo, dst_lo);
2617     } else {
2618       assert(dst_lo != l_hi, "overwriting registers");
2619       move_regs(l_lo, dst_lo);
2620       move_regs(l_hi, dst_hi);
2621     }
2622 #endif // _LP64
2623   }
2624 }
2625 
2626 
2627 // we assume that rax, and rdx can be overwritten
2628 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2629 
2630   assert(left->is_single_cpu(),   "left must be register");
2631   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2632   assert(result->is_single_cpu(), "result must be register");
2633 
2634   //  assert(left->destroys_register(), "check");
2635   //  assert(right->destroys_register(), "check");
2636 
2637   Register lreg = left->as_register();
2638   Register dreg = result->as_register();
2639 
2640   if (right->is_constant()) {
2641     int divisor = right->as_constant_ptr()->as_jint();
2642     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2643     if (code == lir_idiv) {
2644       assert(lreg == rax, "must be rax,");
2645       assert(temp->as_register() == rdx, "tmp register must be rdx");
2646       __ cdql(); // sign extend into rdx:rax
2647       if (divisor == 2) {
2648         __ subl(lreg, rdx);
2649       } else {
2650         __ andl(rdx, divisor - 1);
2651         __ addl(lreg, rdx);
2652       }
2653       __ sarl(lreg, log2_intptr(divisor));
2654       move_regs(lreg, dreg);
2655     } else if (code == lir_irem) {
2656       Label done;
2657       __ mov(dreg, lreg);
2658       __ andl(dreg, 0x80000000 | (divisor - 1));
2659       __ jcc(Assembler::positive, done);
2660       __ decrement(dreg);
2661       __ orl(dreg, ~(divisor - 1));
2662       __ increment(dreg);
2663       __ bind(done);
2664     } else {
2665       ShouldNotReachHere();
2666     }
2667   } else {
2668     Register rreg = right->as_register();
2669     assert(lreg == rax, "left register must be rax,");
2670     assert(rreg != rdx, "right register must not be rdx");
2671     assert(temp->as_register() == rdx, "tmp register must be rdx");
2672 
2673     move_regs(lreg, rax);
2674 
2675     int idivl_offset = __ corrected_idivl(rreg);
2676     add_debug_info_for_div0(idivl_offset, info);
2677     if (code == lir_irem) {
2678       move_regs(rdx, dreg); // result is in rdx
2679     } else {
2680       move_regs(rax, dreg);
2681     }
2682   }
2683 }
2684 
2685 
2686 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2687   if (opr1->is_single_cpu()) {
2688     Register reg1 = opr1->as_register();
2689     if (opr2->is_single_cpu()) {
2690       // cpu register - cpu register
2691       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2692         __ cmpptr(reg1, opr2->as_register());
2693       } else {
2694         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2695         __ cmpl(reg1, opr2->as_register());
2696       }
2697     } else if (opr2->is_stack()) {
2698       // cpu register - stack
2699       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2700         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2701       } else {
2702         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2703       }
2704     } else if (opr2->is_constant()) {
2705       // cpu register - constant
2706       LIR_Const* c = opr2->as_constant_ptr();
2707       if (c->type() == T_INT) {
2708         __ cmpl(reg1, c->as_jint());
2709       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2710         // In 64bit oops are single register
2711         jobject o = c->as_jobject();
2712         if (o == NULL) {
2713           __ cmpptr(reg1, (int32_t)NULL_WORD);
2714         } else {
2715 #ifdef _LP64
2716           __ movoop(rscratch1, o);
2717           __ cmpptr(reg1, rscratch1);
2718 #else
2719           __ cmpoop(reg1, c->as_jobject());
2720 #endif // _LP64
2721         }
2722       } else {
2723         ShouldNotReachHere();
2724       }
2725       // cpu register - address
2726     } else if (opr2->is_address()) {
2727       if (op->info() != NULL) {
2728         add_debug_info_for_null_check_here(op->info());
2729       }
2730       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2731     } else {
2732       ShouldNotReachHere();
2733     }
2734 
2735   } else if(opr1->is_double_cpu()) {
2736     Register xlo = opr1->as_register_lo();
2737     Register xhi = opr1->as_register_hi();
2738     if (opr2->is_double_cpu()) {
2739 #ifdef _LP64
2740       __ cmpptr(xlo, opr2->as_register_lo());
2741 #else
2742       // cpu register - cpu register
2743       Register ylo = opr2->as_register_lo();
2744       Register yhi = opr2->as_register_hi();
2745       __ subl(xlo, ylo);
2746       __ sbbl(xhi, yhi);
2747       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2748         __ orl(xhi, xlo);
2749       }
2750 #endif // _LP64
2751     } else if (opr2->is_constant()) {
2752       // cpu register - constant 0
2753       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2754 #ifdef _LP64
2755       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2756 #else
2757       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2758       __ orl(xhi, xlo);
2759 #endif // _LP64
2760     } else {
2761       ShouldNotReachHere();
2762     }
2763 
2764   } else if (opr1->is_single_xmm()) {
2765     XMMRegister reg1 = opr1->as_xmm_float_reg();
2766     if (opr2->is_single_xmm()) {
2767       // xmm register - xmm register
2768       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2769     } else if (opr2->is_stack()) {
2770       // xmm register - stack
2771       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2772     } else if (opr2->is_constant()) {
2773       // xmm register - constant
2774       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2775     } else if (opr2->is_address()) {
2776       // xmm register - address
2777       if (op->info() != NULL) {
2778         add_debug_info_for_null_check_here(op->info());
2779       }
2780       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2781     } else {
2782       ShouldNotReachHere();
2783     }
2784 
2785   } else if (opr1->is_double_xmm()) {
2786     XMMRegister reg1 = opr1->as_xmm_double_reg();
2787     if (opr2->is_double_xmm()) {
2788       // xmm register - xmm register
2789       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2790     } else if (opr2->is_stack()) {
2791       // xmm register - stack
2792       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2793     } else if (opr2->is_constant()) {
2794       // xmm register - constant
2795       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2796     } else if (opr2->is_address()) {
2797       // xmm register - address
2798       if (op->info() != NULL) {
2799         add_debug_info_for_null_check_here(op->info());
2800       }
2801       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2802     } else {
2803       ShouldNotReachHere();
2804     }
2805 
2806   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2807     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2808     assert(opr2->is_fpu_register(), "both must be registers");
2809     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2810 
2811   } else if (opr1->is_address() && opr2->is_constant()) {
2812     LIR_Const* c = opr2->as_constant_ptr();
2813 #ifdef _LP64
2814     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2815       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2816       __ movoop(rscratch1, c->as_jobject());
2817     }
2818 #endif // LP64
2819     if (op->info() != NULL) {
2820       add_debug_info_for_null_check_here(op->info());
2821     }
2822     // special case: address - constant
2823     LIR_Address* addr = opr1->as_address_ptr();
2824     if (c->type() == T_INT) {
2825       __ cmpl(as_Address(addr), c->as_jint());
2826     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2827 #ifdef _LP64
2828       // %%% Make this explode if addr isn't reachable until we figure out a
2829       // better strategy by giving noreg as the temp for as_Address
2830       __ cmpptr(rscratch1, as_Address(addr, noreg));
2831 #else
2832       __ cmpoop(as_Address(addr), c->as_jobject());
2833 #endif // _LP64
2834     } else {
2835       ShouldNotReachHere();
2836     }
2837 
2838   } else {
2839     ShouldNotReachHere();
2840   }
2841 }
2842 
2843 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2844   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2845     if (left->is_single_xmm()) {
2846       assert(right->is_single_xmm(), "must match");
2847       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2848     } else if (left->is_double_xmm()) {
2849       assert(right->is_double_xmm(), "must match");
2850       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2851 
2852     } else {
2853       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2854       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2855 
2856       assert(left->fpu() == 0, "left must be on TOS");
2857       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2858                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2859     }
2860   } else {
2861     assert(code == lir_cmp_l2i, "check");
2862 #ifdef _LP64
2863     Label done;
2864     Register dest = dst->as_register();
2865     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2866     __ movl(dest, -1);
2867     __ jccb(Assembler::less, done);
2868     __ set_byte_if_not_zero(dest);
2869     __ movzbl(dest, dest);
2870     __ bind(done);
2871 #else
2872     __ lcmp2int(left->as_register_hi(),
2873                 left->as_register_lo(),
2874                 right->as_register_hi(),
2875                 right->as_register_lo());
2876     move_regs(left->as_register_hi(), dst->as_register());
2877 #endif // _LP64
2878   }
2879 }
2880 
2881 
2882 void LIR_Assembler::align_call(LIR_Code code) {
2883   if (os::is_MP()) {
2884     // make sure that the displacement word of the call ends up word aligned
2885     int offset = __ offset();
2886     switch (code) {
2887       case lir_static_call:
2888       case lir_optvirtual_call:
2889       case lir_dynamic_call:
2890         offset += NativeCall::displacement_offset;
2891         break;
2892       case lir_icvirtual_call:
2893         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2894       break;
2895       case lir_virtual_call:  // currently, sparc-specific for niagara
2896       default: ShouldNotReachHere();
2897     }
2898     while (offset++ % BytesPerWord != 0) {
2899       __ nop();
2900     }
2901   }
2902 }
2903 
2904 
2905 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2906   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2907          "must be aligned");
2908   __ call(AddressLiteral(op->addr(), rtype));
2909   add_call_info(code_offset(), op->info());
2910 }
2911 
2912 
2913 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2914   RelocationHolder rh = virtual_call_Relocation::spec(pc());
2915   __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
2916   assert(!os::is_MP() ||
2917          (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2918          "must be aligned");
2919   __ call(AddressLiteral(op->addr(), rh));
2920   add_call_info(code_offset(), op->info());
2921 }
2922 
2923 
2924 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2925 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2926   ShouldNotReachHere();
2927 }
2928 
2929 
2930 void LIR_Assembler::emit_static_call_stub() {
2931   address call_pc = __ pc();
2932   address stub = __ start_a_stub(call_stub_size);
2933   if (stub == NULL) {
2934     bailout("static call stub overflow");
2935     return;
2936   }
2937 
2938   int start = __ offset();
2939   if (os::is_MP()) {
2940     // make sure that the displacement word of the call ends up word aligned
2941     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
2942     while (offset++ % BytesPerWord != 0) {
2943       __ nop();
2944     }
2945   }
2946   __ relocate(static_stub_Relocation::spec(call_pc));
2947   __ movoop(rbx, (jobject)NULL);
2948   // must be set to -1 at code generation time
2949   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2950   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2951   __ jump(RuntimeAddress(__ pc()));
2952 
2953   assert(__ offset() - start <= call_stub_size, "stub too big");
2954   __ end_a_stub();
2955 }
2956 
2957 
2958 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2959   assert(exceptionOop->as_register() == rax, "must match");
2960   assert(exceptionPC->as_register() == rdx, "must match");
2961 
2962   // exception object is not added to oop map by LinearScan
2963   // (LinearScan assumes that no oops are in fixed registers)
2964   info->add_register_oop(exceptionOop);
2965   Runtime1::StubID unwind_id;
2966 
2967   // get current pc information
2968   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2969   int pc_for_athrow_offset = __ offset();
2970   InternalAddress pc_for_athrow(__ pc());
2971   __ lea(exceptionPC->as_register(), pc_for_athrow);
2972   add_call_info(pc_for_athrow_offset, info); // for exception handler
2973 
2974   __ verify_not_null_oop(rax);
2975   // search an exception handler (rax: exception oop, rdx: throwing pc)
2976   if (compilation()->has_fpu_code()) {
2977     unwind_id = Runtime1::handle_exception_id;
2978   } else {
2979     unwind_id = Runtime1::handle_exception_nofpu_id;
2980   }
2981   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2982 
2983   // enough room for two byte trap
2984   __ nop();
2985 }
2986 
2987 
2988 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2989   assert(exceptionOop->as_register() == rax, "must match");
2990 
2991   __ jmp(_unwind_handler_entry);
2992 }
2993 
2994 
2995 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2996 
2997   // optimized version for linear scan:
2998   // * count must be already in ECX (guaranteed by LinearScan)
2999   // * left and dest must be equal
3000   // * tmp must be unused
3001   assert(count->as_register() == SHIFT_count, "count must be in ECX");
3002   assert(left == dest, "left and dest must be equal");
3003   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
3004 
3005   if (left->is_single_cpu()) {
3006     Register value = left->as_register();
3007     assert(value != SHIFT_count, "left cannot be ECX");
3008 
3009     switch (code) {
3010       case lir_shl:  __ shll(value); break;
3011       case lir_shr:  __ sarl(value); break;
3012       case lir_ushr: __ shrl(value); break;
3013       default: ShouldNotReachHere();
3014     }
3015   } else if (left->is_double_cpu()) {
3016     Register lo = left->as_register_lo();
3017     Register hi = left->as_register_hi();
3018     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
3019 #ifdef _LP64
3020     switch (code) {
3021       case lir_shl:  __ shlptr(lo);        break;
3022       case lir_shr:  __ sarptr(lo);        break;
3023       case lir_ushr: __ shrptr(lo);        break;
3024       default: ShouldNotReachHere();
3025     }
3026 #else
3027 
3028     switch (code) {
3029       case lir_shl:  __ lshl(hi, lo);        break;
3030       case lir_shr:  __ lshr(hi, lo, true);  break;
3031       case lir_ushr: __ lshr(hi, lo, false); break;
3032       default: ShouldNotReachHere();
3033     }
3034 #endif // LP64
3035   } else {
3036     ShouldNotReachHere();
3037   }
3038 }
3039 
3040 
3041 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
3042   if (dest->is_single_cpu()) {
3043     // first move left into dest so that left is not destroyed by the shift
3044     Register value = dest->as_register();
3045     count = count & 0x1F; // Java spec
3046 
3047     move_regs(left->as_register(), value);
3048     switch (code) {
3049       case lir_shl:  __ shll(value, count); break;
3050       case lir_shr:  __ sarl(value, count); break;
3051       case lir_ushr: __ shrl(value, count); break;
3052       default: ShouldNotReachHere();
3053     }
3054   } else if (dest->is_double_cpu()) {
3055 #ifndef _LP64
3056     Unimplemented();
3057 #else
3058     // first move left into dest so that left is not destroyed by the shift
3059     Register value = dest->as_register_lo();
3060     count = count & 0x1F; // Java spec
3061 
3062     move_regs(left->as_register_lo(), value);
3063     switch (code) {
3064       case lir_shl:  __ shlptr(value, count); break;
3065       case lir_shr:  __ sarptr(value, count); break;
3066       case lir_ushr: __ shrptr(value, count); break;
3067       default: ShouldNotReachHere();
3068     }
3069 #endif // _LP64
3070   } else {
3071     ShouldNotReachHere();
3072   }
3073 }
3074 
3075 
3076 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3077   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3078   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3079   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3080   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3081 }
3082 
3083 
3084 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3085   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3086   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3087   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3088   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3089 }
3090 
3091 
3092 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3093   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3094   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3095   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3096   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3097 }
3098 
3099 
3100 // This code replaces a call to arraycopy; no exception may
3101 // be thrown in this code, they must be thrown in the System.arraycopy
3102 // activation frame; we could save some checks if this would not be the case
3103 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3104   ciArrayKlass* default_type = op->expected_type();
3105   Register src = op->src()->as_register();
3106   Register dst = op->dst()->as_register();
3107   Register src_pos = op->src_pos()->as_register();
3108   Register dst_pos = op->dst_pos()->as_register();
3109   Register length  = op->length()->as_register();
3110   Register tmp = op->tmp()->as_register();
3111 
3112   CodeStub* stub = op->stub();
3113   int flags = op->flags();
3114   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3115   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3116 
3117   // if we don't know anything or it's an object array, just go through the generic arraycopy
3118   if (default_type == NULL) {
3119     Label done;
3120     // save outgoing arguments on stack in case call to System.arraycopy is needed
3121     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3122     // for interpreter calling conventions. Now we have to do it in new style conventions.
3123     // For the moment until C1 gets the new register allocator I just force all the
3124     // args to the right place (except the register args) and then on the back side
3125     // reload the register args properly if we go slow path. Yuck
3126 
3127     // These are proper for the calling convention
3128 
3129     store_parameter(length, 2);
3130     store_parameter(dst_pos, 1);
3131     store_parameter(dst, 0);
3132 
3133     // these are just temporary placements until we need to reload
3134     store_parameter(src_pos, 3);
3135     store_parameter(src, 4);
3136     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3137 
3138     address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3139 
3140     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3141 #ifdef _LP64
3142     // The arguments are in java calling convention so we can trivially shift them to C
3143     // convention
3144     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3145     __ mov(c_rarg0, j_rarg0);
3146     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3147     __ mov(c_rarg1, j_rarg1);
3148     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3149     __ mov(c_rarg2, j_rarg2);
3150     assert_different_registers(c_rarg3, j_rarg4);
3151     __ mov(c_rarg3, j_rarg3);
3152 #ifdef _WIN64
3153     // Allocate abi space for args but be sure to keep stack aligned
3154     __ subptr(rsp, 6*wordSize);
3155     store_parameter(j_rarg4, 4);
3156     __ call(RuntimeAddress(entry));
3157     __ addptr(rsp, 6*wordSize);
3158 #else
3159     __ mov(c_rarg4, j_rarg4);
3160     __ call(RuntimeAddress(entry));
3161 #endif // _WIN64
3162 #else
3163     __ push(length);
3164     __ push(dst_pos);
3165     __ push(dst);
3166     __ push(src_pos);
3167     __ push(src);
3168     __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
3169 
3170 #endif // _LP64
3171 
3172     __ cmpl(rax, 0);
3173     __ jcc(Assembler::equal, *stub->continuation());
3174 
3175     // Reload values from the stack so they are where the stub
3176     // expects them.
3177     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3178     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3179     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3180     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3181     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3182     __ jmp(*stub->entry());
3183 
3184     __ bind(*stub->continuation());
3185     return;
3186   }
3187 
3188   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3189 
3190   int elem_size = type2aelembytes(basic_type);
3191   int shift_amount;
3192   Address::ScaleFactor scale;
3193 
3194   switch (elem_size) {
3195     case 1 :
3196       shift_amount = 0;
3197       scale = Address::times_1;
3198       break;
3199     case 2 :
3200       shift_amount = 1;
3201       scale = Address::times_2;
3202       break;
3203     case 4 :
3204       shift_amount = 2;
3205       scale = Address::times_4;
3206       break;
3207     case 8 :
3208       shift_amount = 3;
3209       scale = Address::times_8;
3210       break;
3211     default:
3212       ShouldNotReachHere();
3213   }
3214 
3215   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3216   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3217   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3218   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3219 
3220   // length and pos's are all sign extended at this point on 64bit
3221 
3222   // test for NULL
3223   if (flags & LIR_OpArrayCopy::src_null_check) {
3224     __ testptr(src, src);
3225     __ jcc(Assembler::zero, *stub->entry());
3226   }
3227   if (flags & LIR_OpArrayCopy::dst_null_check) {
3228     __ testptr(dst, dst);
3229     __ jcc(Assembler::zero, *stub->entry());
3230   }
3231 
3232   // check if negative
3233   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3234     __ testl(src_pos, src_pos);
3235     __ jcc(Assembler::less, *stub->entry());
3236   }
3237   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3238     __ testl(dst_pos, dst_pos);
3239     __ jcc(Assembler::less, *stub->entry());
3240   }
3241   if (flags & LIR_OpArrayCopy::length_positive_check) {
3242     __ testl(length, length);
3243     __ jcc(Assembler::less, *stub->entry());
3244   }
3245 
3246   if (flags & LIR_OpArrayCopy::src_range_check) {
3247     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3248     __ cmpl(tmp, src_length_addr);
3249     __ jcc(Assembler::above, *stub->entry());
3250   }
3251   if (flags & LIR_OpArrayCopy::dst_range_check) {
3252     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3253     __ cmpl(tmp, dst_length_addr);
3254     __ jcc(Assembler::above, *stub->entry());
3255   }
3256 
3257   if (flags & LIR_OpArrayCopy::type_check) {
3258     if (UseCompressedOops) {
3259       __ movl(tmp, src_klass_addr);
3260       __ cmpl(tmp, dst_klass_addr);
3261     } else {
3262       __ movptr(tmp, src_klass_addr);
3263       __ cmpptr(tmp, dst_klass_addr);
3264     }
3265     __ jcc(Assembler::notEqual, *stub->entry());
3266   }
3267 
3268 #ifdef ASSERT
3269   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3270     // Sanity check the known type with the incoming class.  For the
3271     // primitive case the types must match exactly with src.klass and
3272     // dst.klass each exactly matching the default type.  For the
3273     // object array case, if no type check is needed then either the
3274     // dst type is exactly the expected type and the src type is a
3275     // subtype which we can't check or src is the same array as dst
3276     // but not necessarily exactly of type default_type.
3277     Label known_ok, halt;
3278     __ movoop(tmp, default_type->constant_encoding());
3279 #ifdef _LP64
3280     if (UseCompressedOops) {
3281       __ encode_heap_oop(tmp);
3282     }
3283 #endif
3284 
3285     if (basic_type != T_OBJECT) {
3286 
3287       if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
3288       else                   __ cmpptr(tmp, dst_klass_addr);
3289       __ jcc(Assembler::notEqual, halt);
3290       if (UseCompressedOops) __ cmpl(tmp, src_klass_addr);
3291       else                   __ cmpptr(tmp, src_klass_addr);
3292       __ jcc(Assembler::equal, known_ok);
3293     } else {
3294       if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
3295       else                   __ cmpptr(tmp, dst_klass_addr);
3296       __ jcc(Assembler::equal, known_ok);
3297       __ cmpptr(src, dst);
3298       __ jcc(Assembler::equal, known_ok);
3299     }
3300     __ bind(halt);
3301     __ stop("incorrect type information in arraycopy");
3302     __ bind(known_ok);
3303   }
3304 #endif
3305 
3306   if (shift_amount > 0 && basic_type != T_OBJECT) {
3307     __ shlptr(length, shift_amount);
3308   }
3309 
3310 #ifdef _LP64
3311   assert_different_registers(c_rarg0, dst, dst_pos, length);
3312   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3313   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3314   assert_different_registers(c_rarg1, length);
3315   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3316   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3317   __ mov(c_rarg2, length);
3318 
3319 #else
3320   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3321   store_parameter(tmp, 0);
3322   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3323   store_parameter(tmp, 1);
3324   store_parameter(length, 2);
3325 #endif // _LP64
3326   if (basic_type == T_OBJECT) {
3327     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
3328   } else {
3329     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
3330   }
3331 
3332   __ bind(*stub->continuation());
3333 }
3334 
3335 
3336 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3337   Register obj = op->obj_opr()->as_register();  // may not be an oop
3338   Register hdr = op->hdr_opr()->as_register();
3339   Register lock = op->lock_opr()->as_register();
3340   if (!UseFastLocking) {
3341     __ jmp(*op->stub()->entry());
3342   } else if (op->code() == lir_lock) {
3343     Register scratch = noreg;
3344     if (UseBiasedLocking) {
3345       scratch = op->scratch_opr()->as_register();
3346     }
3347     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3348     // add debug info for NullPointerException only if one is possible
3349     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3350     if (op->info() != NULL) {
3351       add_debug_info_for_null_check(null_check_offset, op->info());
3352     }
3353     // done
3354   } else if (op->code() == lir_unlock) {
3355     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3356     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3357   } else {
3358     Unimplemented();
3359   }
3360   __ bind(*op->stub()->continuation());
3361 }
3362 
3363 
3364 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3365   ciMethod* method = op->profiled_method();
3366   int bci          = op->profiled_bci();
3367 
3368   // Update counter for all call types
3369   ciMethodData* md = method->method_data_or_null();
3370   assert(md != NULL, "Sanity");
3371   ciProfileData* data = md->bci_to_data(bci);
3372   assert(data->is_CounterData(), "need CounterData for calls");
3373   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3374   Register mdo  = op->mdo()->as_register();
3375   __ movoop(mdo, md->constant_encoding());
3376   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3377   Bytecodes::Code bc = method->java_code_at_bci(bci);
3378   // Perform additional virtual call profiling for invokevirtual and
3379   // invokeinterface bytecodes
3380   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3381       C1ProfileVirtualCalls) {
3382     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3383     Register recv = op->recv()->as_register();
3384     assert_different_registers(mdo, recv);
3385     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3386     ciKlass* known_klass = op->known_holder();
3387     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3388       // We know the type that will be seen at this call site; we can
3389       // statically update the methodDataOop rather than needing to do
3390       // dynamic tests on the receiver type
3391 
3392       // NOTE: we should probably put a lock around this search to
3393       // avoid collisions by concurrent compilations
3394       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3395       uint i;
3396       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3397         ciKlass* receiver = vc_data->receiver(i);
3398         if (known_klass->equals(receiver)) {
3399           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3400           __ addptr(data_addr, DataLayout::counter_increment);
3401           return;
3402         }
3403       }
3404 
3405       // Receiver type not found in profile data; select an empty slot
3406 
3407       // Note that this is less efficient than it should be because it
3408       // always does a write to the receiver part of the
3409       // VirtualCallData rather than just the first time
3410       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3411         ciKlass* receiver = vc_data->receiver(i);
3412         if (receiver == NULL) {
3413           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3414           __ movoop(recv_addr, known_klass->constant_encoding());
3415           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3416           __ addptr(data_addr, DataLayout::counter_increment);
3417           return;
3418         }
3419       }
3420     } else {
3421       __ load_klass(recv, recv);
3422       Label update_done;
3423       type_profile_helper(mdo, md, data, recv, &update_done);
3424       // Receiver did not match any saved receiver and there is no empty row for it.
3425       // Increment total counter to indicate polymorphic case.
3426       __ addptr(counter_addr, DataLayout::counter_increment);
3427 
3428       __ bind(update_done);
3429     }
3430   } else {
3431     // Static call
3432     __ addptr(counter_addr, DataLayout::counter_increment);
3433   }
3434 }
3435 
3436 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3437   Unimplemented();
3438 }
3439 
3440 
3441 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3442   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3443 }
3444 
3445 
3446 void LIR_Assembler::align_backward_branch_target() {
3447   __ align(BytesPerWord);
3448 }
3449 
3450 
3451 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3452   if (left->is_single_cpu()) {
3453     __ negl(left->as_register());
3454     move_regs(left->as_register(), dest->as_register());
3455 
3456   } else if (left->is_double_cpu()) {
3457     Register lo = left->as_register_lo();
3458 #ifdef _LP64
3459     Register dst = dest->as_register_lo();
3460     __ movptr(dst, lo);
3461     __ negptr(dst);
3462 #else
3463     Register hi = left->as_register_hi();
3464     __ lneg(hi, lo);
3465     if (dest->as_register_lo() == hi) {
3466       assert(dest->as_register_hi() != lo, "destroying register");
3467       move_regs(hi, dest->as_register_hi());
3468       move_regs(lo, dest->as_register_lo());
3469     } else {
3470       move_regs(lo, dest->as_register_lo());
3471       move_regs(hi, dest->as_register_hi());
3472     }
3473 #endif // _LP64
3474 
3475   } else if (dest->is_single_xmm()) {
3476     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3477       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3478     }
3479     __ xorps(dest->as_xmm_float_reg(),
3480              ExternalAddress((address)float_signflip_pool));
3481 
3482   } else if (dest->is_double_xmm()) {
3483     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3484       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3485     }
3486     __ xorpd(dest->as_xmm_double_reg(),
3487              ExternalAddress((address)double_signflip_pool));
3488 
3489   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3490     assert(left->fpu() == 0, "arg must be on TOS");
3491     assert(dest->fpu() == 0, "dest must be TOS");
3492     __ fchs();
3493 
3494   } else {
3495     ShouldNotReachHere();
3496   }
3497 }
3498 
3499 
3500 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3501   assert(addr->is_address() && dest->is_register(), "check");
3502   Register reg;
3503   reg = dest->as_pointer_register();
3504   __ lea(reg, as_Address(addr->as_address_ptr()));
3505 }
3506 
3507 
3508 
3509 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3510   assert(!tmp->is_valid(), "don't need temporary");
3511   __ call(RuntimeAddress(dest));
3512   if (info != NULL) {
3513     add_call_info_here(info);
3514   }
3515 }
3516 
3517 
3518 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3519   assert(type == T_LONG, "only for volatile long fields");
3520 
3521   if (info != NULL) {
3522     add_debug_info_for_null_check_here(info);
3523   }
3524 
3525   if (src->is_double_xmm()) {
3526     if (dest->is_double_cpu()) {
3527 #ifdef _LP64
3528       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3529 #else
3530       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3531       __ psrlq(src->as_xmm_double_reg(), 32);
3532       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3533 #endif // _LP64
3534     } else if (dest->is_double_stack()) {
3535       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3536     } else if (dest->is_address()) {
3537       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3538     } else {
3539       ShouldNotReachHere();
3540     }
3541 
3542   } else if (dest->is_double_xmm()) {
3543     if (src->is_double_stack()) {
3544       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3545     } else if (src->is_address()) {
3546       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3547     } else {
3548       ShouldNotReachHere();
3549     }
3550 
3551   } else if (src->is_double_fpu()) {
3552     assert(src->fpu_regnrLo() == 0, "must be TOS");
3553     if (dest->is_double_stack()) {
3554       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3555     } else if (dest->is_address()) {
3556       __ fistp_d(as_Address(dest->as_address_ptr()));
3557     } else {
3558       ShouldNotReachHere();
3559     }
3560 
3561   } else if (dest->is_double_fpu()) {
3562     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3563     if (src->is_double_stack()) {
3564       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3565     } else if (src->is_address()) {
3566       __ fild_d(as_Address(src->as_address_ptr()));
3567     } else {
3568       ShouldNotReachHere();
3569     }
3570   } else {
3571     ShouldNotReachHere();
3572   }
3573 }
3574 
3575 
3576 void LIR_Assembler::membar() {
3577   // QQQ sparc TSO uses this,
3578   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3579 }
3580 
3581 void LIR_Assembler::membar_acquire() {
3582   // No x86 machines currently require load fences
3583   // __ load_fence();
3584 }
3585 
3586 void LIR_Assembler::membar_release() {
3587   // No x86 machines currently require store fences
3588   // __ store_fence();
3589 }
3590 
3591 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3592   assert(result_reg->is_register(), "check");
3593 #ifdef _LP64
3594   // __ get_thread(result_reg->as_register_lo());
3595   __ mov(result_reg->as_register(), r15_thread);
3596 #else
3597   __ get_thread(result_reg->as_register());
3598 #endif // _LP64
3599 }
3600 
3601 
3602 void LIR_Assembler::peephole(LIR_List*) {
3603   // do nothing for now
3604 }
3605 
3606 
3607 #undef __