1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "interpreter/interpreterRuntime.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/universe.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/forte.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "prims/jvmtiRedefineClassesTrace.hpp"
  42 #include "prims/methodHandles.hpp"
  43 #include "prims/nativeLookup.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/handles.inline.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/vframe.hpp"
  53 #include "runtime/vframeArray.hpp"
  54 #include "utilities/copy.hpp"
  55 #include "utilities/dtrace.hpp"
  56 #include "utilities/events.hpp"
  57 #include "utilities/hashtable.inline.hpp"
  58 #include "utilities/xmlstream.hpp"
  59 #ifdef TARGET_ARCH_x86
  60 # include "nativeInst_x86.hpp"
  61 # include "vmreg_x86.inline.hpp"
  62 #endif
  63 #ifdef TARGET_ARCH_sparc
  64 # include "nativeInst_sparc.hpp"
  65 # include "vmreg_sparc.inline.hpp"
  66 #endif
  67 #ifdef TARGET_ARCH_zero
  68 # include "nativeInst_zero.hpp"
  69 # include "vmreg_zero.inline.hpp"
  70 #endif
  71 #ifdef TARGET_ARCH_arm
  72 # include "nativeInst_arm.hpp"
  73 # include "vmreg_arm.inline.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_ppc
  76 # include "nativeInst_ppc.hpp"
  77 # include "vmreg_ppc.inline.hpp"
  78 #endif
  79 #ifdef COMPILER1
  80 #include "c1/c1_Runtime1.hpp"
  81 #endif
  82 
  83 #include <math.h>
  84 
  85 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
  86 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
  87                       char*, int, char*, int, char*, int);
  88 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
  89                       char*, int, char*, int, char*, int);
  90 
  91 // Implementation of SharedRuntime
  92 
  93 #ifndef PRODUCT
  94 // For statistics
  95 int SharedRuntime::_ic_miss_ctr = 0;
  96 int SharedRuntime::_wrong_method_ctr = 0;
  97 int SharedRuntime::_resolve_static_ctr = 0;
  98 int SharedRuntime::_resolve_virtual_ctr = 0;
  99 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 100 int SharedRuntime::_implicit_null_throws = 0;
 101 int SharedRuntime::_implicit_div0_throws = 0;
 102 int SharedRuntime::_throw_null_ctr = 0;
 103 
 104 int SharedRuntime::_nof_normal_calls = 0;
 105 int SharedRuntime::_nof_optimized_calls = 0;
 106 int SharedRuntime::_nof_inlined_calls = 0;
 107 int SharedRuntime::_nof_megamorphic_calls = 0;
 108 int SharedRuntime::_nof_static_calls = 0;
 109 int SharedRuntime::_nof_inlined_static_calls = 0;
 110 int SharedRuntime::_nof_interface_calls = 0;
 111 int SharedRuntime::_nof_optimized_interface_calls = 0;
 112 int SharedRuntime::_nof_inlined_interface_calls = 0;
 113 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 114 int SharedRuntime::_nof_removable_exceptions = 0;
 115 
 116 int SharedRuntime::_new_instance_ctr=0;
 117 int SharedRuntime::_new_array_ctr=0;
 118 int SharedRuntime::_multi1_ctr=0;
 119 int SharedRuntime::_multi2_ctr=0;
 120 int SharedRuntime::_multi3_ctr=0;
 121 int SharedRuntime::_multi4_ctr=0;
 122 int SharedRuntime::_multi5_ctr=0;
 123 int SharedRuntime::_mon_enter_stub_ctr=0;
 124 int SharedRuntime::_mon_exit_stub_ctr=0;
 125 int SharedRuntime::_mon_enter_ctr=0;
 126 int SharedRuntime::_mon_exit_ctr=0;
 127 int SharedRuntime::_partial_subtype_ctr=0;
 128 int SharedRuntime::_jbyte_array_copy_ctr=0;
 129 int SharedRuntime::_jshort_array_copy_ctr=0;
 130 int SharedRuntime::_jint_array_copy_ctr=0;
 131 int SharedRuntime::_jlong_array_copy_ctr=0;
 132 int SharedRuntime::_oop_array_copy_ctr=0;
 133 int SharedRuntime::_checkcast_array_copy_ctr=0;
 134 int SharedRuntime::_unsafe_array_copy_ctr=0;
 135 int SharedRuntime::_generic_array_copy_ctr=0;
 136 int SharedRuntime::_slow_array_copy_ctr=0;
 137 int SharedRuntime::_find_handler_ctr=0;
 138 int SharedRuntime::_rethrow_ctr=0;
 139 
 140 int     SharedRuntime::_ICmiss_index                    = 0;
 141 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 142 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 143 
 144 void SharedRuntime::trace_ic_miss(address at) {
 145   for (int i = 0; i < _ICmiss_index; i++) {
 146     if (_ICmiss_at[i] == at) {
 147       _ICmiss_count[i]++;
 148       return;
 149     }
 150   }
 151   int index = _ICmiss_index++;
 152   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 153   _ICmiss_at[index] = at;
 154   _ICmiss_count[index] = 1;
 155 }
 156 
 157 void SharedRuntime::print_ic_miss_histogram() {
 158   if (ICMissHistogram) {
 159     tty->print_cr ("IC Miss Histogram:");
 160     int tot_misses = 0;
 161     for (int i = 0; i < _ICmiss_index; i++) {
 162       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 163       tot_misses += _ICmiss_count[i];
 164     }
 165     tty->print_cr ("Total IC misses: %7d", tot_misses);
 166   }
 167 }
 168 #endif // PRODUCT
 169 
 170 #ifndef SERIALGC
 171 
 172 // G1 write-barrier pre: executed before a pointer store.
 173 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 174   if (orig == NULL) {
 175     assert(false, "should be optimized out");
 176     return;
 177   }
 178   assert(orig->is_oop(true /* ignore mark word */), "Error");
 179   // store the original value that was in the field reference
 180   thread->satb_mark_queue().enqueue(orig);
 181 JRT_END
 182 
 183 // G1 write-barrier post: executed after a pointer store.
 184 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 185   thread->dirty_card_queue().enqueue(card_addr);
 186 JRT_END
 187 
 188 #endif // !SERIALGC
 189 
 190 
 191 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 192   return x * y;
 193 JRT_END
 194 
 195 
 196 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 197   if (x == min_jlong && y == CONST64(-1)) {
 198     return x;
 199   } else {
 200     return x / y;
 201   }
 202 JRT_END
 203 
 204 
 205 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 206   if (x == min_jlong && y == CONST64(-1)) {
 207     return 0;
 208   } else {
 209     return x % y;
 210   }
 211 JRT_END
 212 
 213 
 214 const juint  float_sign_mask  = 0x7FFFFFFF;
 215 const juint  float_infinity   = 0x7F800000;
 216 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 217 const julong double_infinity  = CONST64(0x7FF0000000000000);
 218 
 219 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 220 #ifdef _WIN64
 221   // 64-bit Windows on amd64 returns the wrong values for
 222   // infinity operands.
 223   union { jfloat f; juint i; } xbits, ybits;
 224   xbits.f = x;
 225   ybits.f = y;
 226   // x Mod Infinity == x unless x is infinity
 227   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 228        ((ybits.i & float_sign_mask) == float_infinity) ) {
 229     return x;
 230   }
 231 #endif
 232   return ((jfloat)fmod((double)x,(double)y));
 233 JRT_END
 234 
 235 
 236 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 237 #ifdef _WIN64
 238   union { jdouble d; julong l; } xbits, ybits;
 239   xbits.d = x;
 240   ybits.d = y;
 241   // x Mod Infinity == x unless x is infinity
 242   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 243        ((ybits.l & double_sign_mask) == double_infinity) ) {
 244     return x;
 245   }
 246 #endif
 247   return ((jdouble)fmod((double)x,(double)y));
 248 JRT_END
 249 
 250 #ifdef __SOFTFP__
 251 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 252   return x + y;
 253 JRT_END
 254 
 255 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 256   return x - y;
 257 JRT_END
 258 
 259 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 260   return x * y;
 261 JRT_END
 262 
 263 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 264   return x / y;
 265 JRT_END
 266 
 267 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 268   return x + y;
 269 JRT_END
 270 
 271 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 272   return x - y;
 273 JRT_END
 274 
 275 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 276   return x * y;
 277 JRT_END
 278 
 279 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 280   return x / y;
 281 JRT_END
 282 
 283 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 284   return (jfloat)x;
 285 JRT_END
 286 
 287 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 288   return (jdouble)x;
 289 JRT_END
 290 
 291 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 292   return (jdouble)x;
 293 JRT_END
 294 
 295 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 296   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 297 JRT_END
 298 
 299 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 300   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 301 JRT_END
 302 
 303 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 304   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 305 JRT_END
 306 
 307 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 308   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 309 JRT_END
 310 
 311 // Functions to return the opposite of the aeabi functions for nan.
 312 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 313   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 314 JRT_END
 315 
 316 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 317   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 318 JRT_END
 319 
 320 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 321   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 322 JRT_END
 323 
 324 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 325   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 326 JRT_END
 327 
 328 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 329   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 330 JRT_END
 331 
 332 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 333   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 334 JRT_END
 335 
 336 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 337   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 338 JRT_END
 339 
 340 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 341   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 342 JRT_END
 343 
 344 // Intrinsics make gcc generate code for these.
 345 float  SharedRuntime::fneg(float f)   {
 346   return -f;
 347 }
 348 
 349 double SharedRuntime::dneg(double f)  {
 350   return -f;
 351 }
 352 
 353 #endif // __SOFTFP__
 354 
 355 #if defined(__SOFTFP__) || defined(E500V2)
 356 // Intrinsics make gcc generate code for these.
 357 double SharedRuntime::dabs(double f)  {
 358   return (f <= (double)0.0) ? (double)0.0 - f : f;
 359 }
 360 
 361 #endif
 362 
 363 #if defined(__SOFTFP__) || defined(PPC)
 364 double SharedRuntime::dsqrt(double f) {
 365   return sqrt(f);
 366 }
 367 #endif
 368 
 369 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 370   if (g_isnan(x))
 371     return 0;
 372   if (x >= (jfloat) max_jint)
 373     return max_jint;
 374   if (x <= (jfloat) min_jint)
 375     return min_jint;
 376   return (jint) x;
 377 JRT_END
 378 
 379 
 380 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 381   if (g_isnan(x))
 382     return 0;
 383   if (x >= (jfloat) max_jlong)
 384     return max_jlong;
 385   if (x <= (jfloat) min_jlong)
 386     return min_jlong;
 387   return (jlong) x;
 388 JRT_END
 389 
 390 
 391 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 392   if (g_isnan(x))
 393     return 0;
 394   if (x >= (jdouble) max_jint)
 395     return max_jint;
 396   if (x <= (jdouble) min_jint)
 397     return min_jint;
 398   return (jint) x;
 399 JRT_END
 400 
 401 
 402 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 403   if (g_isnan(x))
 404     return 0;
 405   if (x >= (jdouble) max_jlong)
 406     return max_jlong;
 407   if (x <= (jdouble) min_jlong)
 408     return min_jlong;
 409   return (jlong) x;
 410 JRT_END
 411 
 412 
 413 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 414   return (jfloat)x;
 415 JRT_END
 416 
 417 
 418 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 419   return (jfloat)x;
 420 JRT_END
 421 
 422 
 423 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 424   return (jdouble)x;
 425 JRT_END
 426 
 427 // Exception handling accross interpreter/compiler boundaries
 428 //
 429 // exception_handler_for_return_address(...) returns the continuation address.
 430 // The continuation address is the entry point of the exception handler of the
 431 // previous frame depending on the return address.
 432 
 433 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 434   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 435 
 436   // Reset method handle flag.
 437   thread->set_is_method_handle_return(false);
 438 
 439   // the fastest case first
 440   CodeBlob* blob = CodeCache::find_blob(return_address);
 441   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 442   if (nm != NULL) {
 443     // Set flag if return address is a method handle call site.
 444     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 445     // native nmethods don't have exception handlers
 446     assert(!nm->is_native_method(), "no exception handler");
 447     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 448     if (nm->is_deopt_pc(return_address)) {
 449       return SharedRuntime::deopt_blob()->unpack_with_exception();
 450     } else {
 451       return nm->exception_begin();
 452     }
 453   }
 454 
 455   // Entry code
 456   if (StubRoutines::returns_to_call_stub(return_address)) {
 457     return StubRoutines::catch_exception_entry();
 458   }
 459   // Interpreted code
 460   if (Interpreter::contains(return_address)) {
 461     return Interpreter::rethrow_exception_entry();
 462   }
 463 
 464   // Compiled code
 465   if (CodeCache::contains(return_address)) {
 466     if (nm != NULL) {
 467       // Set flag if return address is a method handle call site.
 468       thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 469       assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 470       return nm->exception_begin();
 471     }
 472     if (blob->is_runtime_stub()) {
 473       ShouldNotReachHere();   // callers are responsible for skipping runtime stub frames
 474     }
 475   }
 476   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 477 #ifndef PRODUCT
 478   { ResourceMark rm;
 479     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 480     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 481     tty->print_cr("b) other problem");
 482   }
 483 #endif // PRODUCT
 484   ShouldNotReachHere();
 485   return NULL;
 486 }
 487 
 488 
 489 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 490   return raw_exception_handler_for_return_address(thread, return_address);
 491 JRT_END
 492 
 493 
 494 address SharedRuntime::get_poll_stub(address pc) {
 495   address stub;
 496   // Look up the code blob
 497   CodeBlob *cb = CodeCache::find_blob(pc);
 498 
 499   // Should be an nmethod
 500   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 501 
 502   // Look up the relocation information
 503   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 504     "safepoint polling: type must be poll" );
 505 
 506   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 507     "Only polling locations are used for safepoint");
 508 
 509   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 510   if (at_poll_return) {
 511     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 512            "polling page return stub not created yet");
 513     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 514   } else {
 515     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 516            "polling page safepoint stub not created yet");
 517     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 518   }
 519 #ifndef PRODUCT
 520   if( TraceSafepoint ) {
 521     char buf[256];
 522     jio_snprintf(buf, sizeof(buf),
 523                  "... found polling page %s exception at pc = "
 524                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 525                  at_poll_return ? "return" : "loop",
 526                  (intptr_t)pc, (intptr_t)stub);
 527     tty->print_raw_cr(buf);
 528   }
 529 #endif // PRODUCT
 530   return stub;
 531 }
 532 
 533 
 534 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 535   assert(caller.is_interpreted_frame(), "");
 536   int args_size = ArgumentSizeComputer(sig).size() + 1;
 537   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 538   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
 539   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 540   return result;
 541 }
 542 
 543 
 544 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 545   if (JvmtiExport::can_post_on_exceptions()) {
 546     vframeStream vfst(thread, true);
 547     methodHandle method = methodHandle(thread, vfst.method());
 548     address bcp = method()->bcp_from(vfst.bci());
 549     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 550   }
 551   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 552 }
 553 
 554 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 555   Handle h_exception = Exceptions::new_exception(thread, name, message);
 556   throw_and_post_jvmti_exception(thread, h_exception);
 557 }
 558 
 559 // The interpreter code to call this tracing function is only
 560 // called/generated when TraceRedefineClasses has the right bits
 561 // set. Since obsolete methods are never compiled, we don't have
 562 // to modify the compilers to generate calls to this function.
 563 //
 564 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 565     JavaThread* thread, methodOopDesc* method))
 566   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 567 
 568   if (method->is_obsolete()) {
 569     // We are calling an obsolete method, but this is not necessarily
 570     // an error. Our method could have been redefined just after we
 571     // fetched the methodOop from the constant pool.
 572 
 573     // RC_TRACE macro has an embedded ResourceMark
 574     RC_TRACE_WITH_THREAD(0x00001000, thread,
 575                          ("calling obsolete method '%s'",
 576                           method->name_and_sig_as_C_string()));
 577     if (RC_TRACE_ENABLED(0x00002000)) {
 578       // this option is provided to debug calls to obsolete methods
 579       guarantee(false, "faulting at call to an obsolete method.");
 580     }
 581   }
 582   return 0;
 583 JRT_END
 584 
 585 // ret_pc points into caller; we are returning caller's exception handler
 586 // for given exception
 587 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 588                                                     bool force_unwind, bool top_frame_only) {
 589   assert(nm != NULL, "must exist");
 590   ResourceMark rm;
 591 
 592   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 593   // determine handler bci, if any
 594   EXCEPTION_MARK;
 595 
 596   int handler_bci = -1;
 597   int scope_depth = 0;
 598   if (!force_unwind) {
 599     int bci = sd->bci();
 600     do {
 601       bool skip_scope_increment = false;
 602       // exception handler lookup
 603       KlassHandle ek (THREAD, exception->klass());
 604       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
 605       if (HAS_PENDING_EXCEPTION) {
 606         // We threw an exception while trying to find the exception handler.
 607         // Transfer the new exception to the exception handle which will
 608         // be set into thread local storage, and do another lookup for an
 609         // exception handler for this exception, this time starting at the
 610         // BCI of the exception handler which caused the exception to be
 611         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 612         // argument to ensure that the correct exception is thrown (4870175).
 613         exception = Handle(THREAD, PENDING_EXCEPTION);
 614         CLEAR_PENDING_EXCEPTION;
 615         if (handler_bci >= 0) {
 616           bci = handler_bci;
 617           handler_bci = -1;
 618           skip_scope_increment = true;
 619         }
 620       }
 621       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 622         sd = sd->sender();
 623         if (sd != NULL) {
 624           bci = sd->bci();
 625         }
 626         ++scope_depth;
 627       }
 628     } while (!top_frame_only && handler_bci < 0 && sd != NULL);
 629   }
 630 
 631   // found handling method => lookup exception handler
 632   int catch_pco = ret_pc - nm->code_begin();
 633 
 634   ExceptionHandlerTable table(nm);
 635   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 636   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 637     // Allow abbreviated catch tables.  The idea is to allow a method
 638     // to materialize its exceptions without committing to the exact
 639     // routing of exceptions.  In particular this is needed for adding
 640     // a synthethic handler to unlock monitors when inlining
 641     // synchonized methods since the unlock path isn't represented in
 642     // the bytecodes.
 643     t = table.entry_for(catch_pco, -1, 0);
 644   }
 645 
 646 #ifdef COMPILER1
 647   if (t == NULL && nm->is_compiled_by_c1()) {
 648     assert(nm->unwind_handler_begin() != NULL, "");
 649     return nm->unwind_handler_begin();
 650   }
 651 #endif
 652 
 653   if (t == NULL) {
 654     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 655     tty->print_cr("   Exception:");
 656     exception->print();
 657     tty->cr();
 658     tty->print_cr(" Compiled exception table :");
 659     table.print();
 660     nm->print_code();
 661     guarantee(false, "missing exception handler");
 662     return NULL;
 663   }
 664 
 665   return nm->code_begin() + t->pco();
 666 }
 667 
 668 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 669   // These errors occur only at call sites
 670   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 671 JRT_END
 672 
 673 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 674   // These errors occur only at call sites
 675   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 676 JRT_END
 677 
 678 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 679   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 680 JRT_END
 681 
 682 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 683   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 684 JRT_END
 685 
 686 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 687   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 688   // cache sites (when the callee activation is not yet set up) so we are at a call site
 689   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 690 JRT_END
 691 
 692 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 693   // We avoid using the normal exception construction in this case because
 694   // it performs an upcall to Java, and we're already out of stack space.
 695   klassOop k = SystemDictionary::StackOverflowError_klass();
 696   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
 697   Handle exception (thread, exception_oop);
 698   if (StackTraceInThrowable) {
 699     java_lang_Throwable::fill_in_stack_trace(exception);
 700   }
 701   throw_and_post_jvmti_exception(thread, exception);
 702 JRT_END
 703 
 704 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 705                                                            address pc,
 706                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 707 {
 708   address target_pc = NULL;
 709 
 710   if (Interpreter::contains(pc)) {
 711 #ifdef CC_INTERP
 712     // C++ interpreter doesn't throw implicit exceptions
 713     ShouldNotReachHere();
 714 #else
 715     switch (exception_kind) {
 716       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 717       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 718       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 719       default:                      ShouldNotReachHere();
 720     }
 721 #endif // !CC_INTERP
 722   } else {
 723     switch (exception_kind) {
 724       case STACK_OVERFLOW: {
 725         // Stack overflow only occurs upon frame setup; the callee is
 726         // going to be unwound. Dispatch to a shared runtime stub
 727         // which will cause the StackOverflowError to be fabricated
 728         // and processed.
 729         // For stack overflow in deoptimization blob, cleanup thread.
 730         if (thread->deopt_mark() != NULL) {
 731           Deoptimization::cleanup_deopt_info(thread, NULL);
 732         }
 733         return StubRoutines::throw_StackOverflowError_entry();
 734       }
 735 
 736       case IMPLICIT_NULL: {
 737         if (VtableStubs::contains(pc)) {
 738           // We haven't yet entered the callee frame. Fabricate an
 739           // exception and begin dispatching it in the caller. Since
 740           // the caller was at a call site, it's safe to destroy all
 741           // caller-saved registers, as these entry points do.
 742           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 743 
 744           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 745           if (vt_stub == NULL) return NULL;
 746 
 747           if (vt_stub->is_abstract_method_error(pc)) {
 748             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 749             return StubRoutines::throw_AbstractMethodError_entry();
 750           } else {
 751             return StubRoutines::throw_NullPointerException_at_call_entry();
 752           }
 753         } else {
 754           CodeBlob* cb = CodeCache::find_blob(pc);
 755 
 756           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 757           if (cb == NULL) return NULL;
 758 
 759           // Exception happened in CodeCache. Must be either:
 760           // 1. Inline-cache check in C2I handler blob,
 761           // 2. Inline-cache check in nmethod, or
 762           // 3. Implict null exception in nmethod
 763 
 764           if (!cb->is_nmethod()) {
 765             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
 766                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
 767             // There is no handler here, so we will simply unwind.
 768             return StubRoutines::throw_NullPointerException_at_call_entry();
 769           }
 770 
 771           // Otherwise, it's an nmethod.  Consult its exception handlers.
 772           nmethod* nm = (nmethod*)cb;
 773           if (nm->inlinecache_check_contains(pc)) {
 774             // exception happened inside inline-cache check code
 775             // => the nmethod is not yet active (i.e., the frame
 776             // is not set up yet) => use return address pushed by
 777             // caller => don't push another return address
 778             return StubRoutines::throw_NullPointerException_at_call_entry();
 779           }
 780 
 781 #ifndef PRODUCT
 782           _implicit_null_throws++;
 783 #endif
 784           target_pc = nm->continuation_for_implicit_exception(pc);
 785           // If there's an unexpected fault, target_pc might be NULL,
 786           // in which case we want to fall through into the normal
 787           // error handling code.
 788         }
 789 
 790         break; // fall through
 791       }
 792 
 793 
 794       case IMPLICIT_DIVIDE_BY_ZERO: {
 795         nmethod* nm = CodeCache::find_nmethod(pc);
 796         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 797 #ifndef PRODUCT
 798         _implicit_div0_throws++;
 799 #endif
 800         target_pc = nm->continuation_for_implicit_exception(pc);
 801         // If there's an unexpected fault, target_pc might be NULL,
 802         // in which case we want to fall through into the normal
 803         // error handling code.
 804         break; // fall through
 805       }
 806 
 807       default: ShouldNotReachHere();
 808     }
 809 
 810     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 811 
 812     // for AbortVMOnException flag
 813     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 814     if (exception_kind == IMPLICIT_NULL) {
 815       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 816     } else {
 817       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 818     }
 819     return target_pc;
 820   }
 821 
 822   ShouldNotReachHere();
 823   return NULL;
 824 }
 825 
 826 
 827 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
 828 {
 829   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
 830 }
 831 JNI_END
 832 
 833 
 834 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 835   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 836 }
 837 
 838 
 839 #ifndef PRODUCT
 840 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 841   const frame f = thread->last_frame();
 842   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 843 #ifndef PRODUCT
 844   methodHandle mh(THREAD, f.interpreter_frame_method());
 845   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 846 #endif // !PRODUCT
 847   return preserve_this_value;
 848 JRT_END
 849 #endif // !PRODUCT
 850 
 851 
 852 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 853   os::yield_all(attempts);
 854 JRT_END
 855 
 856 
 857 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 858   assert(obj->is_oop(), "must be a valid oop");
 859   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
 860   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
 861 JRT_END
 862 
 863 
 864 jlong SharedRuntime::get_java_tid(Thread* thread) {
 865   if (thread != NULL) {
 866     if (thread->is_Java_thread()) {
 867       oop obj = ((JavaThread*)thread)->threadObj();
 868       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 869     }
 870   }
 871   return 0;
 872 }
 873 
 874 /**
 875  * This function ought to be a void function, but cannot be because
 876  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 877  * 6254741.  Once that is fixed we can remove the dummy return value.
 878  */
 879 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 880   return dtrace_object_alloc_base(Thread::current(), o);
 881 }
 882 
 883 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 884   assert(DTraceAllocProbes, "wrong call");
 885   Klass* klass = o->blueprint();
 886   int size = o->size();
 887   Symbol* name = klass->name();
 888   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 889                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 890   return 0;
 891 }
 892 
 893 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 894     JavaThread* thread, methodOopDesc* method))
 895   assert(DTraceMethodProbes, "wrong call");
 896   Symbol* kname = method->klass_name();
 897   Symbol* name = method->name();
 898   Symbol* sig = method->signature();
 899   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 900       kname->bytes(), kname->utf8_length(),
 901       name->bytes(), name->utf8_length(),
 902       sig->bytes(), sig->utf8_length());
 903   return 0;
 904 JRT_END
 905 
 906 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 907     JavaThread* thread, methodOopDesc* method))
 908   assert(DTraceMethodProbes, "wrong call");
 909   Symbol* kname = method->klass_name();
 910   Symbol* name = method->name();
 911   Symbol* sig = method->signature();
 912   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
 913       kname->bytes(), kname->utf8_length(),
 914       name->bytes(), name->utf8_length(),
 915       sig->bytes(), sig->utf8_length());
 916   return 0;
 917 JRT_END
 918 
 919 
 920 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
 921 // for a call current in progress, i.e., arguments has been pushed on stack
 922 // put callee has not been invoked yet.  Used by: resolve virtual/static,
 923 // vtable updates, etc.  Caller frame must be compiled.
 924 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
 925   ResourceMark rm(THREAD);
 926 
 927   // last java frame on stack (which includes native call frames)
 928   vframeStream vfst(thread, true);  // Do not skip and javaCalls
 929 
 930   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
 931 }
 932 
 933 
 934 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
 935 // for a call current in progress, i.e., arguments has been pushed on stack
 936 // but callee has not been invoked yet.  Caller frame must be compiled.
 937 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
 938                                               vframeStream& vfst,
 939                                               Bytecodes::Code& bc,
 940                                               CallInfo& callinfo, TRAPS) {
 941   Handle receiver;
 942   Handle nullHandle;  //create a handy null handle for exception returns
 943 
 944   assert(!vfst.at_end(), "Java frame must exist");
 945 
 946   // Find caller and bci from vframe
 947   methodHandle caller (THREAD, vfst.method());
 948   int          bci    = vfst.bci();
 949 
 950   // Find bytecode
 951   Bytecode_invoke bytecode(caller, bci);
 952   bc = bytecode.java_code();
 953   int bytecode_index = bytecode.index();
 954 
 955   // Find receiver for non-static call
 956   if (bc != Bytecodes::_invokestatic) {
 957     // This register map must be update since we need to find the receiver for
 958     // compiled frames. The receiver might be in a register.
 959     RegisterMap reg_map2(thread);
 960     frame stubFrame   = thread->last_frame();
 961     // Caller-frame is a compiled frame
 962     frame callerFrame = stubFrame.sender(&reg_map2);
 963 
 964     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
 965     if (callee.is_null()) {
 966       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
 967     }
 968     // Retrieve from a compiled argument list
 969     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
 970 
 971     if (receiver.is_null()) {
 972       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
 973     }
 974   }
 975 
 976   // Resolve method. This is parameterized by bytecode.
 977   constantPoolHandle constants (THREAD, caller->constants());
 978   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
 979   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
 980 
 981 #ifdef ASSERT
 982   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
 983   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
 984     assert(receiver.not_null(), "should have thrown exception");
 985     KlassHandle receiver_klass (THREAD, receiver->klass());
 986     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
 987                             // klass is already loaded
 988     KlassHandle static_receiver_klass (THREAD, rk);
 989     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
 990     if (receiver_klass->oop_is_instance()) {
 991       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
 992         tty->print_cr("ERROR: Klass not yet initialized!!");
 993         receiver_klass.print();
 994       }
 995       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
 996     }
 997   }
 998 #endif
 999 
1000   return receiver;
1001 }
1002 
1003 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1004   ResourceMark rm(THREAD);
1005   // We need first to check if any Java activations (compiled, interpreted)
1006   // exist on the stack since last JavaCall.  If not, we need
1007   // to get the target method from the JavaCall wrapper.
1008   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1009   methodHandle callee_method;
1010   if (vfst.at_end()) {
1011     // No Java frames were found on stack since we did the JavaCall.
1012     // Hence the stack can only contain an entry_frame.  We need to
1013     // find the target method from the stub frame.
1014     RegisterMap reg_map(thread, false);
1015     frame fr = thread->last_frame();
1016     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1017     fr = fr.sender(&reg_map);
1018     assert(fr.is_entry_frame(), "must be");
1019     // fr is now pointing to the entry frame.
1020     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1021     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1022   } else {
1023     Bytecodes::Code bc;
1024     CallInfo callinfo;
1025     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1026     callee_method = callinfo.selected_method();
1027   }
1028   assert(callee_method()->is_method(), "must be");
1029   return callee_method;
1030 }
1031 
1032 // Resolves a call.
1033 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1034                                            bool is_virtual,
1035                                            bool is_optimized, TRAPS) {
1036   methodHandle callee_method;
1037   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1038   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1039     int retry_count = 0;
1040     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1041            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1042       // If has a pending exception then there is no need to re-try to
1043       // resolve this method.
1044       // If the method has been redefined, we need to try again.
1045       // Hack: we have no way to update the vtables of arrays, so don't
1046       // require that java.lang.Object has been updated.
1047 
1048       // It is very unlikely that method is redefined more than 100 times
1049       // in the middle of resolve. If it is looping here more than 100 times
1050       // means then there could be a bug here.
1051       guarantee((retry_count++ < 100),
1052                 "Could not resolve to latest version of redefined method");
1053       // method is redefined in the middle of resolve so re-try.
1054       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1055     }
1056   }
1057   return callee_method;
1058 }
1059 
1060 // Resolves a call.  The compilers generate code for calls that go here
1061 // and are patched with the real destination of the call.
1062 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1063                                            bool is_virtual,
1064                                            bool is_optimized, TRAPS) {
1065 
1066   ResourceMark rm(thread);
1067   RegisterMap cbl_map(thread, false);
1068   frame caller_frame = thread->last_frame().sender(&cbl_map);
1069 
1070   CodeBlob* caller_cb = caller_frame.cb();
1071   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1072   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1073   // make sure caller is not getting deoptimized
1074   // and removed before we are done with it.
1075   // CLEANUP - with lazy deopt shouldn't need this lock
1076   nmethodLocker caller_lock(caller_nm);
1077 
1078 
1079   // determine call info & receiver
1080   // note: a) receiver is NULL for static calls
1081   //       b) an exception is thrown if receiver is NULL for non-static calls
1082   CallInfo call_info;
1083   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1084   Handle receiver = find_callee_info(thread, invoke_code,
1085                                      call_info, CHECK_(methodHandle()));
1086   methodHandle callee_method = call_info.selected_method();
1087 
1088   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
1089          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
1090 
1091 #ifndef PRODUCT
1092   // tracing/debugging/statistics
1093   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1094                 (is_virtual) ? (&_resolve_virtual_ctr) :
1095                                (&_resolve_static_ctr);
1096   Atomic::inc(addr);
1097 
1098   if (TraceCallFixup) {
1099     ResourceMark rm(thread);
1100     tty->print("resolving %s%s (%s) call to",
1101       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1102       Bytecodes::name(invoke_code));
1103     callee_method->print_short_name(tty);
1104     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1105   }
1106 #endif
1107 
1108   // JSR 292
1109   // If the resolved method is a MethodHandle invoke target the call
1110   // site must be a MethodHandle call site.
1111   if (callee_method->is_method_handle_invoke()) {
1112     assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1113   }
1114 
1115   // Compute entry points. This might require generation of C2I converter
1116   // frames, so we cannot be holding any locks here. Furthermore, the
1117   // computation of the entry points is independent of patching the call.  We
1118   // always return the entry-point, but we only patch the stub if the call has
1119   // not been deoptimized.  Return values: For a virtual call this is an
1120   // (cached_oop, destination address) pair. For a static call/optimized
1121   // virtual this is just a destination address.
1122 
1123   StaticCallInfo static_call_info;
1124   CompiledICInfo virtual_call_info;
1125 
1126   // Make sure the callee nmethod does not get deoptimized and removed before
1127   // we are done patching the code.
1128   nmethod* callee_nm = callee_method->code();
1129   nmethodLocker nl_callee(callee_nm);
1130 #ifdef ASSERT
1131   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1132 #endif
1133 
1134   if (is_virtual) {
1135     assert(receiver.not_null(), "sanity check");
1136     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1137     KlassHandle h_klass(THREAD, receiver->klass());
1138     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1139                      is_optimized, static_bound, virtual_call_info,
1140                      CHECK_(methodHandle()));
1141   } else {
1142     // static call
1143     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1144   }
1145 
1146   // grab lock, check for deoptimization and potentially patch caller
1147   {
1148     MutexLocker ml_patch(CompiledIC_lock);
1149 
1150     // Now that we are ready to patch if the methodOop was redefined then
1151     // don't update call site and let the caller retry.
1152 
1153     if (!callee_method->is_old()) {
1154 #ifdef ASSERT
1155       // We must not try to patch to jump to an already unloaded method.
1156       if (dest_entry_point != 0) {
1157         assert(CodeCache::find_blob(dest_entry_point) != NULL,
1158                "should not unload nmethod while locked");
1159       }
1160 #endif
1161       if (is_virtual) {
1162         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1163         if (inline_cache->is_clean()) {
1164           inline_cache->set_to_monomorphic(virtual_call_info);
1165         }
1166       } else {
1167         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1168         if (ssc->is_clean()) ssc->set(static_call_info);
1169       }
1170     }
1171 
1172   } // unlock CompiledIC_lock
1173 
1174   return callee_method;
1175 }
1176 
1177 
1178 // Inline caches exist only in compiled code
1179 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1180 #ifdef ASSERT
1181   RegisterMap reg_map(thread, false);
1182   frame stub_frame = thread->last_frame();
1183   assert(stub_frame.is_runtime_frame(), "sanity check");
1184   frame caller_frame = stub_frame.sender(&reg_map);
1185   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1186 #endif /* ASSERT */
1187 
1188   methodHandle callee_method;
1189   JRT_BLOCK
1190     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1191     // Return methodOop through TLS
1192     thread->set_vm_result(callee_method());
1193   JRT_BLOCK_END
1194   // return compiled code entry point after potential safepoints
1195   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1196   return callee_method->verified_code_entry();
1197 JRT_END
1198 
1199 
1200 // Handle call site that has been made non-entrant
1201 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1202   // 6243940 We might end up in here if the callee is deoptimized
1203   // as we race to call it.  We don't want to take a safepoint if
1204   // the caller was interpreted because the caller frame will look
1205   // interpreted to the stack walkers and arguments are now
1206   // "compiled" so it is much better to make this transition
1207   // invisible to the stack walking code. The i2c path will
1208   // place the callee method in the callee_target. It is stashed
1209   // there because if we try and find the callee by normal means a
1210   // safepoint is possible and have trouble gc'ing the compiled args.
1211   RegisterMap reg_map(thread, false);
1212   frame stub_frame = thread->last_frame();
1213   assert(stub_frame.is_runtime_frame(), "sanity check");
1214   frame caller_frame = stub_frame.sender(&reg_map);
1215 
1216   // MethodHandle invokes don't have a CompiledIC and should always
1217   // simply redispatch to the callee_target.
1218   address   sender_pc = caller_frame.pc();
1219   CodeBlob* sender_cb = caller_frame.cb();
1220   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
1221   bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
1222   if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
1223     // If the callee_target is set, then we have come here via an i2c
1224     // adapter.
1225     methodOop callee = thread->callee_target();
1226     if (callee != NULL) {
1227       assert(callee->is_method(), "sanity");
1228       is_mh_invoke_via_adapter = true;
1229     }
1230   }
1231 
1232   if (caller_frame.is_interpreted_frame() ||
1233       caller_frame.is_entry_frame()       ||
1234       is_mh_invoke_via_adapter) {
1235     methodOop callee = thread->callee_target();
1236     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1237     thread->set_vm_result(callee);
1238     thread->set_callee_target(NULL);
1239     return callee->get_c2i_entry();
1240   }
1241 
1242   // Must be compiled to compiled path which is safe to stackwalk
1243   methodHandle callee_method;
1244   JRT_BLOCK
1245     // Force resolving of caller (if we called from compiled frame)
1246     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1247     thread->set_vm_result(callee_method());
1248   JRT_BLOCK_END
1249   // return compiled code entry point after potential safepoints
1250   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1251   return callee_method->verified_code_entry();
1252 JRT_END
1253 
1254 
1255 // resolve a static call and patch code
1256 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1257   methodHandle callee_method;
1258   JRT_BLOCK
1259     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1260     thread->set_vm_result(callee_method());
1261   JRT_BLOCK_END
1262   // return compiled code entry point after potential safepoints
1263   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1264   return callee_method->verified_code_entry();
1265 JRT_END
1266 
1267 
1268 // resolve virtual call and update inline cache to monomorphic
1269 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1270   methodHandle callee_method;
1271   JRT_BLOCK
1272     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1273     thread->set_vm_result(callee_method());
1274   JRT_BLOCK_END
1275   // return compiled code entry point after potential safepoints
1276   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1277   return callee_method->verified_code_entry();
1278 JRT_END
1279 
1280 
1281 // Resolve a virtual call that can be statically bound (e.g., always
1282 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1283 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1284   methodHandle callee_method;
1285   JRT_BLOCK
1286     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1287     thread->set_vm_result(callee_method());
1288   JRT_BLOCK_END
1289   // return compiled code entry point after potential safepoints
1290   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1291   return callee_method->verified_code_entry();
1292 JRT_END
1293 
1294 
1295 
1296 
1297 
1298 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1299   ResourceMark rm(thread);
1300   CallInfo call_info;
1301   Bytecodes::Code bc;
1302 
1303   // receiver is NULL for static calls. An exception is thrown for NULL
1304   // receivers for non-static calls
1305   Handle receiver = find_callee_info(thread, bc, call_info,
1306                                      CHECK_(methodHandle()));
1307   // Compiler1 can produce virtual call sites that can actually be statically bound
1308   // If we fell thru to below we would think that the site was going megamorphic
1309   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1310   // we'd try and do a vtable dispatch however methods that can be statically bound
1311   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1312   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1313   // plain ic_miss) and the site will be converted to an optimized virtual call site
1314   // never to miss again. I don't believe C2 will produce code like this but if it
1315   // did this would still be the correct thing to do for it too, hence no ifdef.
1316   //
1317   if (call_info.resolved_method()->can_be_statically_bound()) {
1318     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1319     if (TraceCallFixup) {
1320       RegisterMap reg_map(thread, false);
1321       frame caller_frame = thread->last_frame().sender(&reg_map);
1322       ResourceMark rm(thread);
1323       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1324       callee_method->print_short_name(tty);
1325       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1326       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1327     }
1328     return callee_method;
1329   }
1330 
1331   methodHandle callee_method = call_info.selected_method();
1332 
1333   bool should_be_mono = false;
1334 
1335 #ifndef PRODUCT
1336   Atomic::inc(&_ic_miss_ctr);
1337 
1338   // Statistics & Tracing
1339   if (TraceCallFixup) {
1340     ResourceMark rm(thread);
1341     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1342     callee_method->print_short_name(tty);
1343     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1344   }
1345 
1346   if (ICMissHistogram) {
1347     MutexLocker m(VMStatistic_lock);
1348     RegisterMap reg_map(thread, false);
1349     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1350     // produce statistics under the lock
1351     trace_ic_miss(f.pc());
1352   }
1353 #endif
1354 
1355   // install an event collector so that when a vtable stub is created the
1356   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1357   // event can't be posted when the stub is created as locks are held
1358   // - instead the event will be deferred until the event collector goes
1359   // out of scope.
1360   JvmtiDynamicCodeEventCollector event_collector;
1361 
1362   // Update inline cache to megamorphic. Skip update if caller has been
1363   // made non-entrant or we are called from interpreted.
1364   { MutexLocker ml_patch (CompiledIC_lock);
1365     RegisterMap reg_map(thread, false);
1366     frame caller_frame = thread->last_frame().sender(&reg_map);
1367     CodeBlob* cb = caller_frame.cb();
1368     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1369       // Not a non-entrant nmethod, so find inline_cache
1370       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1371       bool should_be_mono = false;
1372       if (inline_cache->is_optimized()) {
1373         if (TraceCallFixup) {
1374           ResourceMark rm(thread);
1375           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1376           callee_method->print_short_name(tty);
1377           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1378         }
1379         should_be_mono = true;
1380       } else {
1381         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
1382         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
1383 
1384           if (receiver()->klass() == ic_oop->holder_klass()) {
1385             // This isn't a real miss. We must have seen that compiled code
1386             // is now available and we want the call site converted to a
1387             // monomorphic compiled call site.
1388             // We can't assert for callee_method->code() != NULL because it
1389             // could have been deoptimized in the meantime
1390             if (TraceCallFixup) {
1391               ResourceMark rm(thread);
1392               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1393               callee_method->print_short_name(tty);
1394               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1395             }
1396             should_be_mono = true;
1397           }
1398         }
1399       }
1400 
1401       if (should_be_mono) {
1402 
1403         // We have a path that was monomorphic but was going interpreted
1404         // and now we have (or had) a compiled entry. We correct the IC
1405         // by using a new icBuffer.
1406         CompiledICInfo info;
1407         KlassHandle receiver_klass(THREAD, receiver()->klass());
1408         inline_cache->compute_monomorphic_entry(callee_method,
1409                                                 receiver_klass,
1410                                                 inline_cache->is_optimized(),
1411                                                 false,
1412                                                 info, CHECK_(methodHandle()));
1413         inline_cache->set_to_monomorphic(info);
1414       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1415         // Change to megamorphic
1416         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1417       } else {
1418         // Either clean or megamorphic
1419       }
1420     }
1421   } // Release CompiledIC_lock
1422 
1423   return callee_method;
1424 }
1425 
1426 //
1427 // Resets a call-site in compiled code so it will get resolved again.
1428 // This routines handles both virtual call sites, optimized virtual call
1429 // sites, and static call sites. Typically used to change a call sites
1430 // destination from compiled to interpreted.
1431 //
1432 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1433   ResourceMark rm(thread);
1434   RegisterMap reg_map(thread, false);
1435   frame stub_frame = thread->last_frame();
1436   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1437   frame caller = stub_frame.sender(&reg_map);
1438 
1439   // Do nothing if the frame isn't a live compiled frame.
1440   // nmethod could be deoptimized by the time we get here
1441   // so no update to the caller is needed.
1442 
1443   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1444 
1445     address pc = caller.pc();
1446     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
1447 
1448     // Default call_addr is the location of the "basic" call.
1449     // Determine the address of the call we a reresolving. With
1450     // Inline Caches we will always find a recognizable call.
1451     // With Inline Caches disabled we may or may not find a
1452     // recognizable call. We will always find a call for static
1453     // calls and for optimized virtual calls. For vanilla virtual
1454     // calls it depends on the state of the UseInlineCaches switch.
1455     //
1456     // With Inline Caches disabled we can get here for a virtual call
1457     // for two reasons:
1458     //   1 - calling an abstract method. The vtable for abstract methods
1459     //       will run us thru handle_wrong_method and we will eventually
1460     //       end up in the interpreter to throw the ame.
1461     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1462     //       call and between the time we fetch the entry address and
1463     //       we jump to it the target gets deoptimized. Similar to 1
1464     //       we will wind up in the interprter (thru a c2i with c2).
1465     //
1466     address call_addr = NULL;
1467     {
1468       // Get call instruction under lock because another thread may be
1469       // busy patching it.
1470       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1471       // Location of call instruction
1472       if (NativeCall::is_call_before(pc)) {
1473         NativeCall *ncall = nativeCall_before(pc);
1474         call_addr = ncall->instruction_address();
1475       }
1476     }
1477 
1478     // Check for static or virtual call
1479     bool is_static_call = false;
1480     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1481     // Make sure nmethod doesn't get deoptimized and removed until
1482     // this is done with it.
1483     // CLEANUP - with lazy deopt shouldn't need this lock
1484     nmethodLocker nmlock(caller_nm);
1485 
1486     if (call_addr != NULL) {
1487       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1488       int ret = iter.next(); // Get item
1489       if (ret) {
1490         assert(iter.addr() == call_addr, "must find call");
1491         if (iter.type() == relocInfo::static_call_type) {
1492           is_static_call = true;
1493         } else {
1494           assert(iter.type() == relocInfo::virtual_call_type ||
1495                  iter.type() == relocInfo::opt_virtual_call_type
1496                 , "unexpected relocInfo. type");
1497         }
1498       } else {
1499         assert(!UseInlineCaches, "relocation info. must exist for this address");
1500       }
1501 
1502       // Cleaning the inline cache will force a new resolve. This is more robust
1503       // than directly setting it to the new destination, since resolving of calls
1504       // is always done through the same code path. (experience shows that it
1505       // leads to very hard to track down bugs, if an inline cache gets updated
1506       // to a wrong method). It should not be performance critical, since the
1507       // resolve is only done once.
1508 
1509       MutexLocker ml(CompiledIC_lock);
1510       //
1511       // We do not patch the call site if the nmethod has been made non-entrant
1512       // as it is a waste of time
1513       //
1514       if (caller_nm->is_in_use()) {
1515         if (is_static_call) {
1516           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1517           ssc->set_to_clean();
1518         } else {
1519           // compiled, dispatched call (which used to call an interpreted method)
1520           CompiledIC* inline_cache = CompiledIC_at(call_addr);
1521           inline_cache->set_to_clean();
1522         }
1523       }
1524     }
1525 
1526   }
1527 
1528   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1529 
1530 
1531 #ifndef PRODUCT
1532   Atomic::inc(&_wrong_method_ctr);
1533 
1534   if (TraceCallFixup) {
1535     ResourceMark rm(thread);
1536     tty->print("handle_wrong_method reresolving call to");
1537     callee_method->print_short_name(tty);
1538     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1539   }
1540 #endif
1541 
1542   return callee_method;
1543 }
1544 
1545 // ---------------------------------------------------------------------------
1546 // We are calling the interpreter via a c2i. Normally this would mean that
1547 // we were called by a compiled method. However we could have lost a race
1548 // where we went int -> i2c -> c2i and so the caller could in fact be
1549 // interpreted. If the caller is compiled we attempt to patch the caller
1550 // so he no longer calls into the interpreter.
1551 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
1552   methodOop moop(method);
1553 
1554   address entry_point = moop->from_compiled_entry();
1555 
1556   // It's possible that deoptimization can occur at a call site which hasn't
1557   // been resolved yet, in which case this function will be called from
1558   // an nmethod that has been patched for deopt and we can ignore the
1559   // request for a fixup.
1560   // Also it is possible that we lost a race in that from_compiled_entry
1561   // is now back to the i2c in that case we don't need to patch and if
1562   // we did we'd leap into space because the callsite needs to use
1563   // "to interpreter" stub in order to load up the methodOop. Don't
1564   // ask me how I know this...
1565 
1566   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1567   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1568     return;
1569   }
1570 
1571   // The check above makes sure this is a nmethod.
1572   nmethod* nm = cb->as_nmethod_or_null();
1573   assert(nm, "must be");
1574 
1575   // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
1576   // to implement MethodHandle actions.
1577   if (nm->is_method_handle_return(caller_pc)) {
1578     return;
1579   }
1580 
1581   // There is a benign race here. We could be attempting to patch to a compiled
1582   // entry point at the same time the callee is being deoptimized. If that is
1583   // the case then entry_point may in fact point to a c2i and we'd patch the
1584   // call site with the same old data. clear_code will set code() to NULL
1585   // at the end of it. If we happen to see that NULL then we can skip trying
1586   // to patch. If we hit the window where the callee has a c2i in the
1587   // from_compiled_entry and the NULL isn't present yet then we lose the race
1588   // and patch the code with the same old data. Asi es la vida.
1589 
1590   if (moop->code() == NULL) return;
1591 
1592   if (nm->is_in_use()) {
1593 
1594     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1595     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1596     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
1597       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
1598       //
1599       // bug 6281185. We might get here after resolving a call site to a vanilla
1600       // virtual call. Because the resolvee uses the verified entry it may then
1601       // see compiled code and attempt to patch the site by calling us. This would
1602       // then incorrectly convert the call site to optimized and its downhill from
1603       // there. If you're lucky you'll get the assert in the bugid, if not you've
1604       // just made a call site that could be megamorphic into a monomorphic site
1605       // for the rest of its life! Just another racing bug in the life of
1606       // fixup_callers_callsite ...
1607       //
1608       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1609       iter.next();
1610       assert(iter.has_current(), "must have a reloc at java call site");
1611       relocInfo::relocType typ = iter.reloc()->type();
1612       if ( typ != relocInfo::static_call_type &&
1613            typ != relocInfo::opt_virtual_call_type &&
1614            typ != relocInfo::static_stub_type) {
1615         return;
1616       }
1617       address destination = call->destination();
1618       if (destination != entry_point) {
1619         CodeBlob* callee = CodeCache::find_blob(destination);
1620         // callee == cb seems weird. It means calling interpreter thru stub.
1621         if (callee == cb || callee->is_adapter_blob()) {
1622           // static call or optimized virtual
1623           if (TraceCallFixup) {
1624             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1625             moop->print_short_name(tty);
1626             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1627           }
1628           call->set_destination_mt_safe(entry_point);
1629         } else {
1630           if (TraceCallFixup) {
1631             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1632             moop->print_short_name(tty);
1633             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1634           }
1635           // assert is too strong could also be resolve destinations.
1636           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1637         }
1638       } else {
1639           if (TraceCallFixup) {
1640             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1641             moop->print_short_name(tty);
1642             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1643           }
1644       }
1645     }
1646   }
1647 
1648 IRT_END
1649 
1650 
1651 // same as JVM_Arraycopy, but called directly from compiled code
1652 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1653                                                 oopDesc* dest, jint dest_pos,
1654                                                 jint length,
1655                                                 JavaThread* thread)) {
1656 #ifndef PRODUCT
1657   _slow_array_copy_ctr++;
1658 #endif
1659   // Check if we have null pointers
1660   if (src == NULL || dest == NULL) {
1661     THROW(vmSymbols::java_lang_NullPointerException());
1662   }
1663   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1664   // even though the copy_array API also performs dynamic checks to ensure
1665   // that src and dest are truly arrays (and are conformable).
1666   // The copy_array mechanism is awkward and could be removed, but
1667   // the compilers don't call this function except as a last resort,
1668   // so it probably doesn't matter.
1669   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
1670                                         (arrayOopDesc*)dest, dest_pos,
1671                                         length, thread);
1672 }
1673 JRT_END
1674 
1675 char* SharedRuntime::generate_class_cast_message(
1676     JavaThread* thread, const char* objName) {
1677 
1678   // Get target class name from the checkcast instruction
1679   vframeStream vfst(thread, true);
1680   assert(!vfst.at_end(), "Java frame must exist");
1681   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1682   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
1683     cc.index(), thread));
1684   return generate_class_cast_message(objName, targetKlass->external_name());
1685 }
1686 
1687 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
1688                                                         oopDesc* required,
1689                                                         oopDesc* actual) {
1690   if (TraceMethodHandles) {
1691     tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
1692                   thread, required, actual);
1693   }
1694   assert(EnableMethodHandles, "");
1695   oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
1696   char* message = NULL;
1697   if (singleKlass != NULL) {
1698     const char* objName = "argument or return value";
1699     if (actual != NULL) {
1700       // be flexible about the junk passed in:
1701       klassOop ak = (actual->is_klass()
1702                      ? (klassOop)actual
1703                      : actual->klass());
1704       objName = Klass::cast(ak)->external_name();
1705     }
1706     Klass* targetKlass = Klass::cast(required->is_klass()
1707                                      ? (klassOop)required
1708                                      : java_lang_Class::as_klassOop(required));
1709     message = generate_class_cast_message(objName, targetKlass->external_name());
1710   } else {
1711     // %%% need to get the MethodType string, without messing around too much
1712     // Get a signature from the invoke instruction
1713     const char* mhName = "method handle";
1714     const char* targetType = "the required signature";
1715     vframeStream vfst(thread, true);
1716     if (!vfst.at_end()) {
1717       Bytecode_invoke call(vfst.method(), vfst.bci());
1718       methodHandle target;
1719       {
1720         EXCEPTION_MARK;
1721         target = call.static_target(THREAD);
1722         if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
1723       }
1724       if (target.not_null()
1725           && target->is_method_handle_invoke()
1726           && required == target->method_handle_type()) {
1727         targetType = target->signature()->as_C_string();
1728       }
1729     }
1730     klassOop kignore; int fignore;
1731     methodOop actual_method = MethodHandles::decode_method(actual,
1732                                                           kignore, fignore);
1733     if (actual_method != NULL) {
1734       if (methodOopDesc::is_method_handle_invoke_name(actual_method->name()))
1735         mhName = "$";
1736       else
1737         mhName = actual_method->signature()->as_C_string();
1738       if (mhName[0] == '$')
1739         mhName = actual_method->signature()->as_C_string();
1740     }
1741     message = generate_class_cast_message(mhName, targetType,
1742                                           " cannot be called as ");
1743   }
1744   if (TraceMethodHandles) {
1745     tty->print_cr("WrongMethodType => message=%s", message);
1746   }
1747   return message;
1748 }
1749 
1750 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
1751                                                             oopDesc* required) {
1752   if (required == NULL)  return NULL;
1753   if (required->klass() == SystemDictionary::Class_klass())
1754     return required;
1755   if (required->is_klass())
1756     return Klass::cast(klassOop(required))->java_mirror();
1757   return NULL;
1758 }
1759 
1760 
1761 char* SharedRuntime::generate_class_cast_message(
1762     const char* objName, const char* targetKlassName, const char* desc) {
1763   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1764 
1765   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1766   if (NULL == message) {
1767     // Shouldn't happen, but don't cause even more problems if it does
1768     message = const_cast<char*>(objName);
1769   } else {
1770     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1771   }
1772   return message;
1773 }
1774 
1775 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1776   (void) JavaThread::current()->reguard_stack();
1777 JRT_END
1778 
1779 
1780 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1781 #ifndef PRODUCT
1782 int SharedRuntime::_monitor_enter_ctr=0;
1783 #endif
1784 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1785   oop obj(_obj);
1786 #ifndef PRODUCT
1787   _monitor_enter_ctr++;             // monitor enter slow
1788 #endif
1789   if (PrintBiasedLockingStatistics) {
1790     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1791   }
1792   Handle h_obj(THREAD, obj);
1793   if (UseBiasedLocking) {
1794     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1795     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1796   } else {
1797     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1798   }
1799   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1800 JRT_END
1801 
1802 #ifndef PRODUCT
1803 int SharedRuntime::_monitor_exit_ctr=0;
1804 #endif
1805 // Handles the uncommon cases of monitor unlocking in compiled code
1806 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1807    oop obj(_obj);
1808 #ifndef PRODUCT
1809   _monitor_exit_ctr++;              // monitor exit slow
1810 #endif
1811   Thread* THREAD = JavaThread::current();
1812   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1813   // testing was unable to ever fire the assert that guarded it so I have removed it.
1814   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1815 #undef MIGHT_HAVE_PENDING
1816 #ifdef MIGHT_HAVE_PENDING
1817   // Save and restore any pending_exception around the exception mark.
1818   // While the slow_exit must not throw an exception, we could come into
1819   // this routine with one set.
1820   oop pending_excep = NULL;
1821   const char* pending_file;
1822   int pending_line;
1823   if (HAS_PENDING_EXCEPTION) {
1824     pending_excep = PENDING_EXCEPTION;
1825     pending_file  = THREAD->exception_file();
1826     pending_line  = THREAD->exception_line();
1827     CLEAR_PENDING_EXCEPTION;
1828   }
1829 #endif /* MIGHT_HAVE_PENDING */
1830 
1831   {
1832     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1833     EXCEPTION_MARK;
1834     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1835   }
1836 
1837 #ifdef MIGHT_HAVE_PENDING
1838   if (pending_excep != NULL) {
1839     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1840   }
1841 #endif /* MIGHT_HAVE_PENDING */
1842 JRT_END
1843 
1844 #ifndef PRODUCT
1845 
1846 void SharedRuntime::print_statistics() {
1847   ttyLocker ttyl;
1848   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1849 
1850   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1851   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1852   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1853 
1854   SharedRuntime::print_ic_miss_histogram();
1855 
1856   if (CountRemovableExceptions) {
1857     if (_nof_removable_exceptions > 0) {
1858       Unimplemented(); // this counter is not yet incremented
1859       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1860     }
1861   }
1862 
1863   // Dump the JRT_ENTRY counters
1864   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1865   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1866   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1867   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1868   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1869   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1870   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1871 
1872   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1873   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1874   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1875   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1876   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1877 
1878   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1879   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1880   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1881   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1882   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1883   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1884   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1885   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1886   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1887   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1888   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1889   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1890   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1891   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1892   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1893   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1894 
1895   AdapterHandlerLibrary::print_statistics();
1896 
1897   if (xtty != NULL)  xtty->tail("statistics");
1898 }
1899 
1900 inline double percent(int x, int y) {
1901   return 100.0 * x / MAX2(y, 1);
1902 }
1903 
1904 class MethodArityHistogram {
1905  public:
1906   enum { MAX_ARITY = 256 };
1907  private:
1908   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1909   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1910   static int _max_arity;                      // max. arity seen
1911   static int _max_size;                       // max. arg size seen
1912 
1913   static void add_method_to_histogram(nmethod* nm) {
1914     methodOop m = nm->method();
1915     ArgumentCount args(m->signature());
1916     int arity   = args.size() + (m->is_static() ? 0 : 1);
1917     int argsize = m->size_of_parameters();
1918     arity   = MIN2(arity, MAX_ARITY-1);
1919     argsize = MIN2(argsize, MAX_ARITY-1);
1920     int count = nm->method()->compiled_invocation_count();
1921     _arity_histogram[arity]  += count;
1922     _size_histogram[argsize] += count;
1923     _max_arity = MAX2(_max_arity, arity);
1924     _max_size  = MAX2(_max_size, argsize);
1925   }
1926 
1927   void print_histogram_helper(int n, int* histo, const char* name) {
1928     const int N = MIN2(5, n);
1929     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1930     double sum = 0;
1931     double weighted_sum = 0;
1932     int i;
1933     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1934     double rest = sum;
1935     double percent = sum / 100;
1936     for (i = 0; i <= N; i++) {
1937       rest -= histo[i];
1938       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1939     }
1940     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1941     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1942   }
1943 
1944   void print_histogram() {
1945     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1946     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1947     tty->print_cr("\nSame for parameter size (in words):");
1948     print_histogram_helper(_max_size, _size_histogram, "size");
1949     tty->cr();
1950   }
1951 
1952  public:
1953   MethodArityHistogram() {
1954     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1955     _max_arity = _max_size = 0;
1956     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
1957     CodeCache::nmethods_do(add_method_to_histogram);
1958     print_histogram();
1959   }
1960 };
1961 
1962 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
1963 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
1964 int MethodArityHistogram::_max_arity;
1965 int MethodArityHistogram::_max_size;
1966 
1967 void SharedRuntime::print_call_statistics(int comp_total) {
1968   tty->print_cr("Calls from compiled code:");
1969   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
1970   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
1971   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
1972   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
1973   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
1974   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
1975   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
1976   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
1977   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
1978   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
1979   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
1980   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
1981   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
1982   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
1983   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
1984   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
1985   tty->cr();
1986   tty->print_cr("Note 1: counter updates are not MT-safe.");
1987   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
1988   tty->print_cr("        %% in nested categories are relative to their category");
1989   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
1990   tty->cr();
1991 
1992   MethodArityHistogram h;
1993 }
1994 #endif
1995 
1996 
1997 // A simple wrapper class around the calling convention information
1998 // that allows sharing of adapters for the same calling convention.
1999 class AdapterFingerPrint : public CHeapObj {
2000  private:
2001   union {
2002     int  _compact[3];
2003     int* _fingerprint;
2004   } _value;
2005   int _length; // A negative length indicates the fingerprint is in the compact form,
2006                // Otherwise _value._fingerprint is the array.
2007 
2008   // Remap BasicTypes that are handled equivalently by the adapters.
2009   // These are correct for the current system but someday it might be
2010   // necessary to make this mapping platform dependent.
2011   static BasicType adapter_encoding(BasicType in) {
2012     assert((~0xf & in) == 0, "must fit in 4 bits");
2013     switch(in) {
2014       case T_BOOLEAN:
2015       case T_BYTE:
2016       case T_SHORT:
2017       case T_CHAR:
2018         // There are all promoted to T_INT in the calling convention
2019         return T_INT;
2020 
2021       case T_OBJECT:
2022       case T_ARRAY:
2023 #ifdef _LP64
2024         return T_LONG;
2025 #else
2026         return T_INT;
2027 #endif
2028 
2029       case T_INT:
2030       case T_LONG:
2031       case T_FLOAT:
2032       case T_DOUBLE:
2033       case T_VOID:
2034         return in;
2035 
2036       default:
2037         ShouldNotReachHere();
2038         return T_CONFLICT;
2039     }
2040   }
2041 
2042  public:
2043   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2044     // The fingerprint is based on the BasicType signature encoded
2045     // into an array of ints with four entries per int.
2046     int* ptr;
2047     int len = (total_args_passed + 3) >> 2;
2048     if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
2049       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2050       // Storing the signature encoded as signed chars hits about 98%
2051       // of the time.
2052       _length = -len;
2053       ptr = _value._compact;
2054     } else {
2055       _length = len;
2056       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
2057       ptr = _value._fingerprint;
2058     }
2059 
2060     // Now pack the BasicTypes with 4 per int
2061     int sig_index = 0;
2062     for (int index = 0; index < len; index++) {
2063       int value = 0;
2064       for (int byte = 0; byte < 4; byte++) {
2065         if (sig_index < total_args_passed) {
2066           value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
2067         }
2068       }
2069       ptr[index] = value;
2070     }
2071   }
2072 
2073   ~AdapterFingerPrint() {
2074     if (_length > 0) {
2075       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2076     }
2077   }
2078 
2079   int value(int index) {
2080     if (_length < 0) {
2081       return _value._compact[index];
2082     }
2083     return _value._fingerprint[index];
2084   }
2085   int length() {
2086     if (_length < 0) return -_length;
2087     return _length;
2088   }
2089 
2090   bool is_compact() {
2091     return _length <= 0;
2092   }
2093 
2094   unsigned int compute_hash() {
2095     int hash = 0;
2096     for (int i = 0; i < length(); i++) {
2097       int v = value(i);
2098       hash = (hash << 8) ^ v ^ (hash >> 5);
2099     }
2100     return (unsigned int)hash;
2101   }
2102 
2103   const char* as_string() {
2104     stringStream st;
2105     for (int i = 0; i < length(); i++) {
2106       st.print(PTR_FORMAT, value(i));
2107     }
2108     return st.as_string();
2109   }
2110 
2111   bool equals(AdapterFingerPrint* other) {
2112     if (other->_length != _length) {
2113       return false;
2114     }
2115     if (_length < 0) {
2116       return _value._compact[0] == other->_value._compact[0] &&
2117              _value._compact[1] == other->_value._compact[1] &&
2118              _value._compact[2] == other->_value._compact[2];
2119     } else {
2120       for (int i = 0; i < _length; i++) {
2121         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2122           return false;
2123         }
2124       }
2125     }
2126     return true;
2127   }
2128 };
2129 
2130 
2131 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2132 class AdapterHandlerTable : public BasicHashtable {
2133   friend class AdapterHandlerTableIterator;
2134 
2135  private:
2136 
2137 #ifndef PRODUCT
2138   static int _lookups; // number of calls to lookup
2139   static int _buckets; // number of buckets checked
2140   static int _equals;  // number of buckets checked with matching hash
2141   static int _hits;    // number of successful lookups
2142   static int _compact; // number of equals calls with compact signature
2143 #endif
2144 
2145   AdapterHandlerEntry* bucket(int i) {
2146     return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
2147   }
2148 
2149  public:
2150   AdapterHandlerTable()
2151     : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
2152 
2153   // Create a new entry suitable for insertion in the table
2154   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2155     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
2156     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2157     return entry;
2158   }
2159 
2160   // Insert an entry into the table
2161   void add(AdapterHandlerEntry* entry) {
2162     int index = hash_to_index(entry->hash());
2163     add_entry(index, entry);
2164   }
2165 
2166   void free_entry(AdapterHandlerEntry* entry) {
2167     entry->deallocate();
2168     BasicHashtable::free_entry(entry);
2169   }
2170 
2171   // Find a entry with the same fingerprint if it exists
2172   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2173     NOT_PRODUCT(_lookups++);
2174     AdapterFingerPrint fp(total_args_passed, sig_bt);
2175     unsigned int hash = fp.compute_hash();
2176     int index = hash_to_index(hash);
2177     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2178       NOT_PRODUCT(_buckets++);
2179       if (e->hash() == hash) {
2180         NOT_PRODUCT(_equals++);
2181         if (fp.equals(e->fingerprint())) {
2182 #ifndef PRODUCT
2183           if (fp.is_compact()) _compact++;
2184           _hits++;
2185 #endif
2186           return e;
2187         }
2188       }
2189     }
2190     return NULL;
2191   }
2192 
2193 #ifndef PRODUCT
2194   void print_statistics() {
2195     ResourceMark rm;
2196     int longest = 0;
2197     int empty = 0;
2198     int total = 0;
2199     int nonempty = 0;
2200     for (int index = 0; index < table_size(); index++) {
2201       int count = 0;
2202       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2203         count++;
2204       }
2205       if (count != 0) nonempty++;
2206       if (count == 0) empty++;
2207       if (count > longest) longest = count;
2208       total += count;
2209     }
2210     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2211                   empty, longest, total, total / (double)nonempty);
2212     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2213                   _lookups, _buckets, _equals, _hits, _compact);
2214   }
2215 #endif
2216 };
2217 
2218 
2219 #ifndef PRODUCT
2220 
2221 int AdapterHandlerTable::_lookups;
2222 int AdapterHandlerTable::_buckets;
2223 int AdapterHandlerTable::_equals;
2224 int AdapterHandlerTable::_hits;
2225 int AdapterHandlerTable::_compact;
2226 
2227 #endif
2228 
2229 class AdapterHandlerTableIterator : public StackObj {
2230  private:
2231   AdapterHandlerTable* _table;
2232   int _index;
2233   AdapterHandlerEntry* _current;
2234 
2235   void scan() {
2236     while (_index < _table->table_size()) {
2237       AdapterHandlerEntry* a = _table->bucket(_index);
2238       _index++;
2239       if (a != NULL) {
2240         _current = a;
2241         return;
2242       }
2243     }
2244   }
2245 
2246  public:
2247   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2248     scan();
2249   }
2250   bool has_next() {
2251     return _current != NULL;
2252   }
2253   AdapterHandlerEntry* next() {
2254     if (_current != NULL) {
2255       AdapterHandlerEntry* result = _current;
2256       _current = _current->next();
2257       if (_current == NULL) scan();
2258       return result;
2259     } else {
2260       return NULL;
2261     }
2262   }
2263 };
2264 
2265 
2266 // ---------------------------------------------------------------------------
2267 // Implementation of AdapterHandlerLibrary
2268 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2269 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2270 const int AdapterHandlerLibrary_size = 16*K;
2271 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2272 
2273 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2274   // Should be called only when AdapterHandlerLibrary_lock is active.
2275   if (_buffer == NULL) // Initialize lazily
2276       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2277   return _buffer;
2278 }
2279 
2280 void AdapterHandlerLibrary::initialize() {
2281   if (_adapters != NULL) return;
2282   _adapters = new AdapterHandlerTable();
2283 
2284   // Create a special handler for abstract methods.  Abstract methods
2285   // are never compiled so an i2c entry is somewhat meaningless, but
2286   // fill it in with something appropriate just in case.  Pass handle
2287   // wrong method for the c2i transitions.
2288   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2289   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2290                                                               StubRoutines::throw_AbstractMethodError_entry(),
2291                                                               wrong_method, wrong_method);
2292 }
2293 
2294 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2295                                                       address i2c_entry,
2296                                                       address c2i_entry,
2297                                                       address c2i_unverified_entry) {
2298   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2299 }
2300 
2301 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2302   // Use customized signature handler.  Need to lock around updates to
2303   // the AdapterHandlerTable (it is not safe for concurrent readers
2304   // and a single writer: this could be fixed if it becomes a
2305   // problem).
2306 
2307   // Get the address of the ic_miss handlers before we grab the
2308   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2309   // was caused by the initialization of the stubs happening
2310   // while we held the lock and then notifying jvmti while
2311   // holding it. This just forces the initialization to be a little
2312   // earlier.
2313   address ic_miss = SharedRuntime::get_ic_miss_stub();
2314   assert(ic_miss != NULL, "must have handler");
2315 
2316   ResourceMark rm;
2317 
2318   NOT_PRODUCT(int insts_size);
2319   AdapterBlob* B = NULL;
2320   AdapterHandlerEntry* entry = NULL;
2321   AdapterFingerPrint* fingerprint = NULL;
2322   {
2323     MutexLocker mu(AdapterHandlerLibrary_lock);
2324     // make sure data structure is initialized
2325     initialize();
2326 
2327     if (method->is_abstract()) {
2328       return _abstract_method_handler;
2329     }
2330 
2331     // Fill in the signature array, for the calling-convention call.
2332     int total_args_passed = method->size_of_parameters(); // All args on stack
2333 
2334     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2335     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2336     int i = 0;
2337     if (!method->is_static())  // Pass in receiver first
2338       sig_bt[i++] = T_OBJECT;
2339     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2340       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2341       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2342         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2343     }
2344     assert(i == total_args_passed, "");
2345 
2346     // Lookup method signature's fingerprint
2347     entry = _adapters->lookup(total_args_passed, sig_bt);
2348 
2349 #ifdef ASSERT
2350     AdapterHandlerEntry* shared_entry = NULL;
2351     if (VerifyAdapterSharing && entry != NULL) {
2352       shared_entry = entry;
2353       entry = NULL;
2354     }
2355 #endif
2356 
2357     if (entry != NULL) {
2358       return entry;
2359     }
2360 
2361     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2362     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2363 
2364     // Make a C heap allocated version of the fingerprint to store in the adapter
2365     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2366 
2367     // Create I2C & C2I handlers
2368 
2369     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2370     if (buf != NULL) {
2371       CodeBuffer buffer(buf);
2372       short buffer_locs[20];
2373       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2374                                              sizeof(buffer_locs)/sizeof(relocInfo));
2375       MacroAssembler _masm(&buffer);
2376 
2377       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2378                                                      total_args_passed,
2379                                                      comp_args_on_stack,
2380                                                      sig_bt,
2381                                                      regs,
2382                                                      fingerprint);
2383 
2384 #ifdef ASSERT
2385       if (VerifyAdapterSharing) {
2386         if (shared_entry != NULL) {
2387           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
2388                  "code must match");
2389           // Release the one just created and return the original
2390           _adapters->free_entry(entry);
2391           return shared_entry;
2392         } else  {
2393           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
2394         }
2395       }
2396 #endif
2397 
2398       B = AdapterBlob::create(&buffer);
2399       NOT_PRODUCT(insts_size = buffer.insts_size());
2400     }
2401     if (B == NULL) {
2402       // CodeCache is full, disable compilation
2403       // Ought to log this but compile log is only per compile thread
2404       // and we're some non descript Java thread.
2405       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2406       CompileBroker::handle_full_code_cache();
2407       return NULL; // Out of CodeCache space
2408     }
2409     entry->relocate(B->content_begin());
2410 #ifndef PRODUCT
2411     // debugging suppport
2412     if (PrintAdapterHandlers) {
2413       tty->cr();
2414       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
2415                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2416                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
2417       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2418       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
2419     }
2420 #endif
2421 
2422     _adapters->add(entry);
2423   }
2424   // Outside of the lock
2425   if (B != NULL) {
2426     char blob_id[256];
2427     jio_snprintf(blob_id,
2428                  sizeof(blob_id),
2429                  "%s(%s)@" PTR_FORMAT,
2430                  B->name(),
2431                  fingerprint->as_string(),
2432                  B->content_begin());
2433     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
2434 
2435     if (JvmtiExport::should_post_dynamic_code_generated()) {
2436       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
2437     }
2438   }
2439   return entry;
2440 }
2441 
2442 void AdapterHandlerEntry::relocate(address new_base) {
2443     ptrdiff_t delta = new_base - _i2c_entry;
2444     _i2c_entry += delta;
2445     _c2i_entry += delta;
2446     _c2i_unverified_entry += delta;
2447 }
2448 
2449 
2450 void AdapterHandlerEntry::deallocate() {
2451   delete _fingerprint;
2452 #ifdef ASSERT
2453   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2454   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
2455 #endif
2456 }
2457 
2458 
2459 #ifdef ASSERT
2460 // Capture the code before relocation so that it can be compared
2461 // against other versions.  If the code is captured after relocation
2462 // then relative instructions won't be equivalent.
2463 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2464   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
2465   _code_length = length;
2466   memcpy(_saved_code, buffer, length);
2467   _total_args_passed = total_args_passed;
2468   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
2469   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2470 }
2471 
2472 
2473 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2474   if (length != _code_length) {
2475     return false;
2476   }
2477   for (int i = 0; i < length; i++) {
2478     if (buffer[i] != _saved_code[i]) {
2479       return false;
2480     }
2481   }
2482   return true;
2483 }
2484 #endif
2485 
2486 
2487 // Create a native wrapper for this native method.  The wrapper converts the
2488 // java compiled calling convention to the native convention, handlizes
2489 // arguments, and transitions to native.  On return from the native we transition
2490 // back to java blocking if a safepoint is in progress.
2491 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2492   ResourceMark rm;
2493   nmethod* nm = NULL;
2494 
2495   if (PrintCompilation) {
2496     ttyLocker ttyl;
2497     tty->print("---   n%s ", (method->is_synchronized() ? "s" : " "));
2498     method->print_short_name(tty);
2499     if (method->is_static()) {
2500       tty->print(" (static)");
2501     }
2502     tty->cr();
2503   }
2504 
2505   assert(method->has_native_function(), "must have something valid to call!");
2506 
2507   {
2508     // perform the work while holding the lock, but perform any printing outside the lock
2509     MutexLocker mu(AdapterHandlerLibrary_lock);
2510     // See if somebody beat us to it
2511     nm = method->code();
2512     if (nm) {
2513       return nm;
2514     }
2515 
2516     ResourceMark rm;
2517 
2518     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2519     if (buf != NULL) {
2520       CodeBuffer buffer(buf);
2521       double locs_buf[20];
2522       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2523       MacroAssembler _masm(&buffer);
2524 
2525       // Fill in the signature array, for the calling-convention call.
2526       int total_args_passed = method->size_of_parameters();
2527 
2528       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
2529       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
2530       int i=0;
2531       if( !method->is_static() )  // Pass in receiver first
2532         sig_bt[i++] = T_OBJECT;
2533       SignatureStream ss(method->signature());
2534       for( ; !ss.at_return_type(); ss.next()) {
2535         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2536         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2537           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2538       }
2539       assert( i==total_args_passed, "" );
2540       BasicType ret_type = ss.type();
2541 
2542       // Now get the compiled-Java layout as input arguments
2543       int comp_args_on_stack;
2544       comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2545 
2546       // Generate the compiled-to-native wrapper code
2547       nm = SharedRuntime::generate_native_wrapper(&_masm,
2548                                                   method,
2549                                                   total_args_passed,
2550                                                   comp_args_on_stack,
2551                                                   sig_bt,regs,
2552                                                   ret_type);
2553     }
2554   }
2555 
2556   // Must unlock before calling set_code
2557 
2558   // Install the generated code.
2559   if (nm != NULL) {
2560     method->set_code(method, nm);
2561     nm->post_compiled_method_load_event();
2562   } else {
2563     // CodeCache is full, disable compilation
2564     CompileBroker::handle_full_code_cache();
2565   }
2566   return nm;
2567 }
2568 
2569 #ifdef HAVE_DTRACE_H
2570 // Create a dtrace nmethod for this method.  The wrapper converts the
2571 // java compiled calling convention to the native convention, makes a dummy call
2572 // (actually nops for the size of the call instruction, which become a trap if
2573 // probe is enabled). The returns to the caller. Since this all looks like a
2574 // leaf no thread transition is needed.
2575 
2576 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2577   ResourceMark rm;
2578   nmethod* nm = NULL;
2579 
2580   if (PrintCompilation) {
2581     ttyLocker ttyl;
2582     tty->print("---   n%s  ");
2583     method->print_short_name(tty);
2584     if (method->is_static()) {
2585       tty->print(" (static)");
2586     }
2587     tty->cr();
2588   }
2589 
2590   {
2591     // perform the work while holding the lock, but perform any printing
2592     // outside the lock
2593     MutexLocker mu(AdapterHandlerLibrary_lock);
2594     // See if somebody beat us to it
2595     nm = method->code();
2596     if (nm) {
2597       return nm;
2598     }
2599 
2600     ResourceMark rm;
2601 
2602     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2603     if (buf != NULL) {
2604       CodeBuffer buffer(buf);
2605       // Need a few relocation entries
2606       double locs_buf[20];
2607       buffer.insts()->initialize_shared_locs(
2608         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2609       MacroAssembler _masm(&buffer);
2610 
2611       // Generate the compiled-to-native wrapper code
2612       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2613     }
2614   }
2615   return nm;
2616 }
2617 
2618 // the dtrace method needs to convert java lang string to utf8 string.
2619 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2620   typeArrayOop jlsValue  = java_lang_String::value(src);
2621   int          jlsOffset = java_lang_String::offset(src);
2622   int          jlsLen    = java_lang_String::length(src);
2623   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2624                                            jlsValue->char_at_addr(jlsOffset);
2625   assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2626   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2627 }
2628 #endif // ndef HAVE_DTRACE_H
2629 
2630 // -------------------------------------------------------------------------
2631 // Java-Java calling convention
2632 // (what you use when Java calls Java)
2633 
2634 //------------------------------name_for_receiver----------------------------------
2635 // For a given signature, return the VMReg for parameter 0.
2636 VMReg SharedRuntime::name_for_receiver() {
2637   VMRegPair regs;
2638   BasicType sig_bt = T_OBJECT;
2639   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2640   // Return argument 0 register.  In the LP64 build pointers
2641   // take 2 registers, but the VM wants only the 'main' name.
2642   return regs.first();
2643 }
2644 
2645 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
2646   // This method is returning a data structure allocating as a
2647   // ResourceObject, so do not put any ResourceMarks in here.
2648   char *s = sig->as_C_string();
2649   int len = (int)strlen(s);
2650   *s++; len--;                  // Skip opening paren
2651   char *t = s+len;
2652   while( *(--t) != ')' ) ;      // Find close paren
2653 
2654   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2655   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2656   int cnt = 0;
2657   if (has_receiver) {
2658     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2659   }
2660 
2661   while( s < t ) {
2662     switch( *s++ ) {            // Switch on signature character
2663     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2664     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2665     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2666     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2667     case 'I': sig_bt[cnt++] = T_INT;     break;
2668     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2669     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2670     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2671     case 'V': sig_bt[cnt++] = T_VOID;    break;
2672     case 'L':                   // Oop
2673       while( *s++ != ';'  ) ;   // Skip signature
2674       sig_bt[cnt++] = T_OBJECT;
2675       break;
2676     case '[': {                 // Array
2677       do {                      // Skip optional size
2678         while( *s >= '0' && *s <= '9' ) s++;
2679       } while( *s++ == '[' );   // Nested arrays?
2680       // Skip element type
2681       if( s[-1] == 'L' )
2682         while( *s++ != ';'  ) ; // Skip signature
2683       sig_bt[cnt++] = T_ARRAY;
2684       break;
2685     }
2686     default : ShouldNotReachHere();
2687     }
2688   }
2689   assert( cnt < 256, "grow table size" );
2690 
2691   int comp_args_on_stack;
2692   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2693 
2694   // the calling convention doesn't count out_preserve_stack_slots so
2695   // we must add that in to get "true" stack offsets.
2696 
2697   if (comp_args_on_stack) {
2698     for (int i = 0; i < cnt; i++) {
2699       VMReg reg1 = regs[i].first();
2700       if( reg1->is_stack()) {
2701         // Yuck
2702         reg1 = reg1->bias(out_preserve_stack_slots());
2703       }
2704       VMReg reg2 = regs[i].second();
2705       if( reg2->is_stack()) {
2706         // Yuck
2707         reg2 = reg2->bias(out_preserve_stack_slots());
2708       }
2709       regs[i].set_pair(reg2, reg1);
2710     }
2711   }
2712 
2713   // results
2714   *arg_size = cnt;
2715   return regs;
2716 }
2717 
2718 // OSR Migration Code
2719 //
2720 // This code is used convert interpreter frames into compiled frames.  It is
2721 // called from very start of a compiled OSR nmethod.  A temp array is
2722 // allocated to hold the interesting bits of the interpreter frame.  All
2723 // active locks are inflated to allow them to move.  The displaced headers and
2724 // active interpeter locals are copied into the temp buffer.  Then we return
2725 // back to the compiled code.  The compiled code then pops the current
2726 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2727 // copies the interpreter locals and displaced headers where it wants.
2728 // Finally it calls back to free the temp buffer.
2729 //
2730 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2731 
2732 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2733 
2734 #ifdef IA64
2735   ShouldNotReachHere(); // NYI
2736 #endif /* IA64 */
2737 
2738   //
2739   // This code is dependent on the memory layout of the interpreter local
2740   // array and the monitors. On all of our platforms the layout is identical
2741   // so this code is shared. If some platform lays the their arrays out
2742   // differently then this code could move to platform specific code or
2743   // the code here could be modified to copy items one at a time using
2744   // frame accessor methods and be platform independent.
2745 
2746   frame fr = thread->last_frame();
2747   assert( fr.is_interpreted_frame(), "" );
2748   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2749 
2750   // Figure out how many monitors are active.
2751   int active_monitor_count = 0;
2752   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2753        kptr < fr.interpreter_frame_monitor_begin();
2754        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2755     if( kptr->obj() != NULL ) active_monitor_count++;
2756   }
2757 
2758   // QQQ we could place number of active monitors in the array so that compiled code
2759   // could double check it.
2760 
2761   methodOop moop = fr.interpreter_frame_method();
2762   int max_locals = moop->max_locals();
2763   // Allocate temp buffer, 1 word per local & 2 per active monitor
2764   int buf_size_words = max_locals + active_monitor_count*2;
2765   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
2766 
2767   // Copy the locals.  Order is preserved so that loading of longs works.
2768   // Since there's no GC I can copy the oops blindly.
2769   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2770   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2771                        (HeapWord*)&buf[0],
2772                        max_locals);
2773 
2774   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2775   int i = max_locals;
2776   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2777        kptr2 < fr.interpreter_frame_monitor_begin();
2778        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2779     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2780       BasicLock *lock = kptr2->lock();
2781       // Inflate so the displaced header becomes position-independent
2782       if (lock->displaced_header()->is_unlocked())
2783         ObjectSynchronizer::inflate_helper(kptr2->obj());
2784       // Now the displaced header is free to move
2785       buf[i++] = (intptr_t)lock->displaced_header();
2786       buf[i++] = (intptr_t)kptr2->obj();
2787     }
2788   }
2789   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2790 
2791   return buf;
2792 JRT_END
2793 
2794 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2795   FREE_C_HEAP_ARRAY(intptr_t,buf);
2796 JRT_END
2797 
2798 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2799   AdapterHandlerTableIterator iter(_adapters);
2800   while (iter.has_next()) {
2801     AdapterHandlerEntry* a = iter.next();
2802     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2803   }
2804   return false;
2805 }
2806 
2807 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2808   AdapterHandlerTableIterator iter(_adapters);
2809   while (iter.has_next()) {
2810     AdapterHandlerEntry* a = iter.next();
2811     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
2812       st->print("Adapter for signature: ");
2813       st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2814                    a->fingerprint()->as_string(),
2815                    a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
2816 
2817       return;
2818     }
2819   }
2820   assert(false, "Should have found handler");
2821 }
2822 
2823 #ifndef PRODUCT
2824 
2825 void AdapterHandlerLibrary::print_statistics() {
2826   _adapters->print_statistics();
2827 }
2828 
2829 #endif /* PRODUCT */