1 /*
   2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "assembler_sparc.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "oops/compiledICHolderOop.hpp"
  33 #include "prims/jvmtiRedefineClassesTrace.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/vframeArray.hpp"
  36 #include "vmreg_sparc.inline.hpp"
  37 #ifdef COMPILER1
  38 #include "c1/c1_Runtime1.hpp"
  39 #endif
  40 #ifdef COMPILER2
  41 #include "opto/runtime.hpp"
  42 #endif
  43 #ifdef SHARK
  44 #include "compiler/compileBroker.hpp"
  45 #include "shark/sharkCompiler.hpp"
  46 #endif
  47 
  48 #define __ masm->
  49 
  50 #ifdef COMPILER2
  51 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  52 #endif // COMPILER2
  53 
  54 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  55 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  56 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  57 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  58 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  59 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  60 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  61 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  62 
  63 class RegisterSaver {
  64 
  65   // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
  66   // The Oregs are problematic. In the 32bit build the compiler can
  67   // have O registers live with 64 bit quantities. A window save will
  68   // cut the heads off of the registers. We have to do a very extensive
  69   // stack dance to save and restore these properly.
  70 
  71   // Note that the Oregs problem only exists if we block at either a polling
  72   // page exception a compiled code safepoint that was not originally a call
  73   // or deoptimize following one of these kinds of safepoints.
  74 
  75   // Lots of registers to save.  For all builds, a window save will preserve
  76   // the %i and %l registers.  For the 32-bit longs-in-two entries and 64-bit
  77   // builds a window-save will preserve the %o registers.  In the LION build
  78   // we need to save the 64-bit %o registers which requires we save them
  79   // before the window-save (as then they become %i registers and get their
  80   // heads chopped off on interrupt).  We have to save some %g registers here
  81   // as well.
  82   enum {
  83     // This frame's save area.  Includes extra space for the native call:
  84     // vararg's layout space and the like.  Briefly holds the caller's
  85     // register save area.
  86     call_args_area = frame::register_save_words_sp_offset +
  87                      frame::memory_parameter_word_sp_offset*wordSize,
  88     // Make sure save locations are always 8 byte aligned.
  89     // can't use round_to because it doesn't produce compile time constant
  90     start_of_extra_save_area = ((call_args_area + 7) & ~7),
  91     g1_offset = start_of_extra_save_area, // g-regs needing saving
  92     g3_offset = g1_offset+8,
  93     g4_offset = g3_offset+8,
  94     g5_offset = g4_offset+8,
  95     o0_offset = g5_offset+8,
  96     o1_offset = o0_offset+8,
  97     o2_offset = o1_offset+8,
  98     o3_offset = o2_offset+8,
  99     o4_offset = o3_offset+8,
 100     o5_offset = o4_offset+8,
 101     start_of_flags_save_area = o5_offset+8,
 102     ccr_offset = start_of_flags_save_area,
 103     fsr_offset = ccr_offset + 8,
 104     d00_offset = fsr_offset+8,  // Start of float save area
 105     register_save_size = d00_offset+8*32
 106   };
 107 
 108 
 109   public:
 110 
 111   static int Oexception_offset() { return o0_offset; };
 112   static int G3_offset() { return g3_offset; };
 113   static int G5_offset() { return g5_offset; };
 114   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
 115   static void restore_live_registers(MacroAssembler* masm);
 116 
 117   // During deoptimization only the result register need to be restored
 118   // all the other values have already been extracted.
 119 
 120   static void restore_result_registers(MacroAssembler* masm);
 121 };
 122 
 123 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
 124   // Record volatile registers as callee-save values in an OopMap so their save locations will be
 125   // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
 126   // deoptimization; see compiledVFrame::create_stack_value).  The caller's I, L and O registers
 127   // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
 128   // (as the stub's I's) when the runtime routine called by the stub creates its frame.
 129   int i;
 130   // Always make the frame size 16 byte aligned.
 131   int frame_size = round_to(additional_frame_words + register_save_size, 16);
 132   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
 133   int frame_size_in_slots = frame_size / sizeof(jint);
 134   // CodeBlob frame size is in words.
 135   *total_frame_words = frame_size / wordSize;
 136   // OopMap* map = new OopMap(*total_frame_words, 0);
 137   OopMap* map = new OopMap(frame_size_in_slots, 0);
 138 
 139 #if !defined(_LP64)
 140 
 141   // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
 142   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
 143   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
 144   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
 145   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
 146   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
 147   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
 148 #endif /* _LP64 */
 149 
 150   __ save(SP, -frame_size, SP);
 151 
 152 #ifndef _LP64
 153   // Reload the 64 bit Oregs. Although they are now Iregs we load them
 154   // to Oregs here to avoid interrupts cutting off their heads
 155 
 156   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
 157   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
 158   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
 159   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
 160   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
 161   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
 162 
 163   __ stx(O0, SP, o0_offset+STACK_BIAS);
 164   map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
 165 
 166   __ stx(O1, SP, o1_offset+STACK_BIAS);
 167 
 168   map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
 169 
 170   __ stx(O2, SP, o2_offset+STACK_BIAS);
 171   map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
 172 
 173   __ stx(O3, SP, o3_offset+STACK_BIAS);
 174   map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
 175 
 176   __ stx(O4, SP, o4_offset+STACK_BIAS);
 177   map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
 178 
 179   __ stx(O5, SP, o5_offset+STACK_BIAS);
 180   map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
 181 #endif /* _LP64 */
 182 
 183 
 184 #ifdef _LP64
 185   int debug_offset = 0;
 186 #else
 187   int debug_offset = 4;
 188 #endif
 189   // Save the G's
 190   __ stx(G1, SP, g1_offset+STACK_BIAS);
 191   map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
 192 
 193   __ stx(G3, SP, g3_offset+STACK_BIAS);
 194   map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
 195 
 196   __ stx(G4, SP, g4_offset+STACK_BIAS);
 197   map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
 198 
 199   __ stx(G5, SP, g5_offset+STACK_BIAS);
 200   map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
 201 
 202   // This is really a waste but we'll keep things as they were for now
 203   if (true) {
 204 #ifndef _LP64
 205     map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
 206     map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
 207     map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
 208     map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
 209     map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
 210     map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
 211     map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
 212     map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
 213     map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
 214     map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
 215 #endif /* _LP64 */
 216   }
 217 
 218 
 219   // Save the flags
 220   __ rdccr( G5 );
 221   __ stx(G5, SP, ccr_offset+STACK_BIAS);
 222   __ stxfsr(SP, fsr_offset+STACK_BIAS);
 223 
 224   // Save all the FP registers: 32 doubles (32 floats correspond to the 2 halves of the first 16 doubles)
 225   int offset = d00_offset;
 226   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
 227     FloatRegister f = as_FloatRegister(i);
 228     __ stf(FloatRegisterImpl::D,  f, SP, offset+STACK_BIAS);
 229     // Record as callee saved both halves of double registers (2 float registers).
 230     map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
 231     map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
 232     offset += sizeof(double);
 233   }
 234 
 235   // And we're done.
 236 
 237   return map;
 238 }
 239 
 240 
 241 // Pop the current frame and restore all the registers that we
 242 // saved.
 243 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 244 
 245   // Restore all the FP registers
 246   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
 247     __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
 248   }
 249 
 250   __ ldx(SP, ccr_offset+STACK_BIAS, G1);
 251   __ wrccr (G1) ;
 252 
 253   // Restore the G's
 254   // Note that G2 (AKA GThread) must be saved and restored separately.
 255   // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
 256 
 257   __ ldx(SP, g1_offset+STACK_BIAS, G1);
 258   __ ldx(SP, g3_offset+STACK_BIAS, G3);
 259   __ ldx(SP, g4_offset+STACK_BIAS, G4);
 260   __ ldx(SP, g5_offset+STACK_BIAS, G5);
 261 
 262 
 263 #if !defined(_LP64)
 264   // Restore the 64-bit O's.
 265   __ ldx(SP, o0_offset+STACK_BIAS, O0);
 266   __ ldx(SP, o1_offset+STACK_BIAS, O1);
 267   __ ldx(SP, o2_offset+STACK_BIAS, O2);
 268   __ ldx(SP, o3_offset+STACK_BIAS, O3);
 269   __ ldx(SP, o4_offset+STACK_BIAS, O4);
 270   __ ldx(SP, o5_offset+STACK_BIAS, O5);
 271 
 272   // And temporarily place them in TLS
 273 
 274   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
 275   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
 276   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
 277   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
 278   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
 279   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
 280 #endif /* _LP64 */
 281 
 282   // Restore flags
 283 
 284   __ ldxfsr(SP, fsr_offset+STACK_BIAS);
 285 
 286   __ restore();
 287 
 288 #if !defined(_LP64)
 289   // Now reload the 64bit Oregs after we've restore the window.
 290   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
 291   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
 292   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
 293   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
 294   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
 295   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
 296 #endif /* _LP64 */
 297 
 298 }
 299 
 300 // Pop the current frame and restore the registers that might be holding
 301 // a result.
 302 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 303 
 304 #if !defined(_LP64)
 305   // 32bit build returns longs in G1
 306   __ ldx(SP, g1_offset+STACK_BIAS, G1);
 307 
 308   // Retrieve the 64-bit O's.
 309   __ ldx(SP, o0_offset+STACK_BIAS, O0);
 310   __ ldx(SP, o1_offset+STACK_BIAS, O1);
 311   // and save to TLS
 312   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
 313   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
 314 #endif /* _LP64 */
 315 
 316   __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
 317 
 318   __ restore();
 319 
 320 #if !defined(_LP64)
 321   // Now reload the 64bit Oregs after we've restore the window.
 322   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
 323   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
 324 #endif /* _LP64 */
 325 
 326 }
 327 
 328 // The java_calling_convention describes stack locations as ideal slots on
 329 // a frame with no abi restrictions. Since we must observe abi restrictions
 330 // (like the placement of the register window) the slots must be biased by
 331 // the following value.
 332 static int reg2offset(VMReg r) {
 333   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 334 }
 335 
 336 // ---------------------------------------------------------------------------
 337 // Read the array of BasicTypes from a signature, and compute where the
 338 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
 339 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 340 // refer to 4-byte stack slots.  All stack slots are based off of the window
 341 // top.  VMRegImpl::stack0 refers to the first slot past the 16-word window,
 342 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 343 // values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
 344 // integer registers.  Values 64-95 are the (32-bit only) float registers.
 345 // Each 32-bit quantity is given its own number, so the integer registers
 346 // (in either 32- or 64-bit builds) use 2 numbers.  For example, there is
 347 // an O0-low and an O0-high.  Essentially, all int register numbers are doubled.
 348 
 349 // Register results are passed in O0-O5, for outgoing call arguments.  To
 350 // convert to incoming arguments, convert all O's to I's.  The regs array
 351 // refer to the low and hi 32-bit words of 64-bit registers or stack slots.
 352 // If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
 353 // 32-bit value was passed).  If both are VMRegImpl::Bad(), it means no value was
 354 // passed (used as a placeholder for the other half of longs and doubles in
 355 // the 64-bit build).  regs[].second() is either VMRegImpl::Bad() or regs[].second() is
 356 // regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
 357 // Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
 358 // == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
 359 // same VMRegPair.
 360 
 361 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 362 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 363 // units regardless of build.
 364 
 365 
 366 // ---------------------------------------------------------------------------
 367 // The compiled Java calling convention.  The Java convention always passes
 368 // 64-bit values in adjacent aligned locations (either registers or stack),
 369 // floats in float registers and doubles in aligned float pairs.  Values are
 370 // packed in the registers.  There is no backing varargs store for values in
 371 // registers.  In the 32-bit build, longs are passed in G1 and G4 (cannot be
 372 // passed in I's, because longs in I's get their heads chopped off at
 373 // interrupt).
 374 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 375                                            VMRegPair *regs,
 376                                            int total_args_passed,
 377                                            int is_outgoing) {
 378   assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
 379 
 380   // Convention is to pack the first 6 int/oop args into the first 6 registers
 381   // (I0-I5), extras spill to the stack.  Then pack the first 8 float args
 382   // into F0-F7, extras spill to the stack.  Then pad all register sets to
 383   // align.  Then put longs and doubles into the same registers as they fit,
 384   // else spill to the stack.
 385   const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
 386   const int flt_reg_max = 8;
 387   //
 388   // Where 32-bit 1-reg longs start being passed
 389   // In tiered we must pass on stack because c1 can't use a "pair" in a single reg.
 390   // So make it look like we've filled all the G regs that c2 wants to use.
 391   Register g_reg = TieredCompilation ? noreg : G1;
 392 
 393   // Count int/oop and float args.  See how many stack slots we'll need and
 394   // where the longs & doubles will go.
 395   int int_reg_cnt   = 0;
 396   int flt_reg_cnt   = 0;
 397   // int stk_reg_pairs = frame::register_save_words*(wordSize>>2);
 398   // int stk_reg_pairs = SharedRuntime::out_preserve_stack_slots();
 399   int stk_reg_pairs = 0;
 400   for (int i = 0; i < total_args_passed; i++) {
 401     switch (sig_bt[i]) {
 402     case T_LONG:                // LP64, longs compete with int args
 403       assert(sig_bt[i+1] == T_VOID, "");
 404 #ifdef _LP64
 405       if (int_reg_cnt < int_reg_max) int_reg_cnt++;
 406 #endif
 407       break;
 408     case T_OBJECT:
 409     case T_ARRAY:
 410     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
 411       if (int_reg_cnt < int_reg_max) int_reg_cnt++;
 412 #ifndef _LP64
 413       else                            stk_reg_pairs++;
 414 #endif
 415       break;
 416     case T_INT:
 417     case T_SHORT:
 418     case T_CHAR:
 419     case T_BYTE:
 420     case T_BOOLEAN:
 421       if (int_reg_cnt < int_reg_max) int_reg_cnt++;
 422       else                            stk_reg_pairs++;
 423       break;
 424     case T_FLOAT:
 425       if (flt_reg_cnt < flt_reg_max) flt_reg_cnt++;
 426       else                            stk_reg_pairs++;
 427       break;
 428     case T_DOUBLE:
 429       assert(sig_bt[i+1] == T_VOID, "");
 430       break;
 431     case T_VOID:
 432       break;
 433     default:
 434       ShouldNotReachHere();
 435     }
 436   }
 437 
 438   // This is where the longs/doubles start on the stack.
 439   stk_reg_pairs = (stk_reg_pairs+1) & ~1; // Round
 440 
 441   int int_reg_pairs = (int_reg_cnt+1) & ~1; // 32-bit 2-reg longs only
 442   int flt_reg_pairs = (flt_reg_cnt+1) & ~1;
 443 
 444   // int stk_reg = frame::register_save_words*(wordSize>>2);
 445   // int stk_reg = SharedRuntime::out_preserve_stack_slots();
 446   int stk_reg = 0;
 447   int int_reg = 0;
 448   int flt_reg = 0;
 449 
 450   // Now do the signature layout
 451   for (int i = 0; i < total_args_passed; i++) {
 452     switch (sig_bt[i]) {
 453     case T_INT:
 454     case T_SHORT:
 455     case T_CHAR:
 456     case T_BYTE:
 457     case T_BOOLEAN:
 458 #ifndef _LP64
 459     case T_OBJECT:
 460     case T_ARRAY:
 461     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
 462 #endif // _LP64
 463       if (int_reg < int_reg_max) {
 464         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
 465         regs[i].set1(r->as_VMReg());
 466       } else {
 467         regs[i].set1(VMRegImpl::stack2reg(stk_reg++));
 468       }
 469       break;
 470 
 471 #ifdef _LP64
 472     case T_OBJECT:
 473     case T_ARRAY:
 474     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
 475       if (int_reg < int_reg_max) {
 476         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
 477         regs[i].set2(r->as_VMReg());
 478       } else {
 479         regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
 480         stk_reg_pairs += 2;
 481       }
 482       break;
 483 #endif // _LP64
 484 
 485     case T_LONG:
 486       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
 487 #ifdef _LP64
 488         if (int_reg < int_reg_max) {
 489           Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
 490           regs[i].set2(r->as_VMReg());
 491         } else {
 492           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
 493           stk_reg_pairs += 2;
 494         }
 495 #else
 496 #ifdef COMPILER2
 497         // For 32-bit build, can't pass longs in O-regs because they become
 498         // I-regs and get trashed.  Use G-regs instead.  G1 and G4 are almost
 499         // spare and available.  This convention isn't used by the Sparc ABI or
 500         // anywhere else. If we're tiered then we don't use G-regs because c1
 501         // can't deal with them as a "pair". (Tiered makes this code think g's are filled)
 502         // G0: zero
 503         // G1: 1st Long arg
 504         // G2: global allocated to TLS
 505         // G3: used in inline cache check
 506         // G4: 2nd Long arg
 507         // G5: used in inline cache check
 508         // G6: used by OS
 509         // G7: used by OS
 510 
 511         if (g_reg == G1) {
 512           regs[i].set2(G1->as_VMReg()); // This long arg in G1
 513           g_reg = G4;                  // Where the next arg goes
 514         } else if (g_reg == G4) {
 515           regs[i].set2(G4->as_VMReg()); // The 2nd long arg in G4
 516           g_reg = noreg;               // No more longs in registers
 517         } else {
 518           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
 519           stk_reg_pairs += 2;
 520         }
 521 #else // COMPILER2
 522         if (int_reg_pairs + 1 < int_reg_max) {
 523           if (is_outgoing) {
 524             regs[i].set_pair(as_oRegister(int_reg_pairs + 1)->as_VMReg(), as_oRegister(int_reg_pairs)->as_VMReg());
 525           } else {
 526             regs[i].set_pair(as_iRegister(int_reg_pairs + 1)->as_VMReg(), as_iRegister(int_reg_pairs)->as_VMReg());
 527           }
 528           int_reg_pairs += 2;
 529         } else {
 530           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
 531           stk_reg_pairs += 2;
 532         }
 533 #endif // COMPILER2
 534 #endif // _LP64
 535       break;
 536 
 537     case T_FLOAT:
 538       if (flt_reg < flt_reg_max) regs[i].set1(as_FloatRegister(flt_reg++)->as_VMReg());
 539       else                       regs[i].set1(    VMRegImpl::stack2reg(stk_reg++));
 540       break;
 541     case T_DOUBLE:
 542       assert(sig_bt[i+1] == T_VOID, "expecting half");
 543       if (flt_reg_pairs + 1 < flt_reg_max) {
 544         regs[i].set2(as_FloatRegister(flt_reg_pairs)->as_VMReg());
 545         flt_reg_pairs += 2;
 546       } else {
 547         regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
 548         stk_reg_pairs += 2;
 549       }
 550       break;
 551     case T_VOID: regs[i].set_bad();  break; // Halves of longs & doubles
 552     default:
 553       ShouldNotReachHere();
 554     }
 555   }
 556 
 557   // retun the amount of stack space these arguments will need.
 558   return stk_reg_pairs;
 559 
 560 }
 561 
 562 // Helper class mostly to avoid passing masm everywhere, and handle
 563 // store displacement overflow logic.
 564 class AdapterGenerator {
 565   MacroAssembler *masm;
 566   Register Rdisp;
 567   void set_Rdisp(Register r)  { Rdisp = r; }
 568 
 569   void patch_callers_callsite();
 570 
 571   // base+st_off points to top of argument
 572   int arg_offset(const int st_off) { return st_off; }
 573   int next_arg_offset(const int st_off) {
 574     return st_off - Interpreter::stackElementSize;
 575   }
 576 
 577   // Argument slot values may be loaded first into a register because
 578   // they might not fit into displacement.
 579   RegisterOrConstant arg_slot(const int st_off);
 580   RegisterOrConstant next_arg_slot(const int st_off);
 581 
 582   // Stores long into offset pointed to by base
 583   void store_c2i_long(Register r, Register base,
 584                       const int st_off, bool is_stack);
 585   void store_c2i_object(Register r, Register base,
 586                         const int st_off);
 587   void store_c2i_int(Register r, Register base,
 588                      const int st_off);
 589   void store_c2i_double(VMReg r_2,
 590                         VMReg r_1, Register base, const int st_off);
 591   void store_c2i_float(FloatRegister f, Register base,
 592                        const int st_off);
 593 
 594  public:
 595   void gen_c2i_adapter(int total_args_passed,
 596                               // VMReg max_arg,
 597                               int comp_args_on_stack, // VMRegStackSlots
 598                               const BasicType *sig_bt,
 599                               const VMRegPair *regs,
 600                               Label& skip_fixup);
 601   void gen_i2c_adapter(int total_args_passed,
 602                               // VMReg max_arg,
 603                               int comp_args_on_stack, // VMRegStackSlots
 604                               const BasicType *sig_bt,
 605                               const VMRegPair *regs);
 606 
 607   AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
 608 };
 609 
 610 
 611 // Patch the callers callsite with entry to compiled code if it exists.
 612 void AdapterGenerator::patch_callers_callsite() {
 613   Label L;
 614   __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
 615   __ br_null(G3_scratch, false, __ pt, L);
 616   // Schedule the branch target address early.
 617   __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
 618   // Call into the VM to patch the caller, then jump to compiled callee
 619   __ save_frame(4);     // Args in compiled layout; do not blow them
 620 
 621   // Must save all the live Gregs the list is:
 622   // G1: 1st Long arg (32bit build)
 623   // G2: global allocated to TLS
 624   // G3: used in inline cache check (scratch)
 625   // G4: 2nd Long arg (32bit build);
 626   // G5: used in inline cache check (methodOop)
 627 
 628   // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
 629 
 630 #ifdef _LP64
 631   // mov(s,d)
 632   __ mov(G1, L1);
 633   __ mov(G4, L4);
 634   __ mov(G5_method, L5);
 635   __ mov(G5_method, O0);         // VM needs target method
 636   __ mov(I7, O1);                // VM needs caller's callsite
 637   // Must be a leaf call...
 638   // can be very far once the blob has been relocated
 639   AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
 640   __ relocate(relocInfo::runtime_call_type);
 641   __ jumpl_to(dest, O7, O7);
 642   __ delayed()->mov(G2_thread, L7_thread_cache);
 643   __ mov(L7_thread_cache, G2_thread);
 644   __ mov(L1, G1);
 645   __ mov(L4, G4);
 646   __ mov(L5, G5_method);
 647 #else
 648   __ stx(G1, FP, -8 + STACK_BIAS);
 649   __ stx(G4, FP, -16 + STACK_BIAS);
 650   __ mov(G5_method, L5);
 651   __ mov(G5_method, O0);         // VM needs target method
 652   __ mov(I7, O1);                // VM needs caller's callsite
 653   // Must be a leaf call...
 654   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
 655   __ delayed()->mov(G2_thread, L7_thread_cache);
 656   __ mov(L7_thread_cache, G2_thread);
 657   __ ldx(FP, -8 + STACK_BIAS, G1);
 658   __ ldx(FP, -16 + STACK_BIAS, G4);
 659   __ mov(L5, G5_method);
 660   __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
 661 #endif /* _LP64 */
 662 
 663   __ restore();      // Restore args
 664   __ bind(L);
 665 }
 666 
 667 
 668 RegisterOrConstant AdapterGenerator::arg_slot(const int st_off) {
 669   RegisterOrConstant roc(arg_offset(st_off));
 670   return __ ensure_simm13_or_reg(roc, Rdisp);
 671 }
 672 
 673 RegisterOrConstant AdapterGenerator::next_arg_slot(const int st_off) {
 674   RegisterOrConstant roc(next_arg_offset(st_off));
 675   return __ ensure_simm13_or_reg(roc, Rdisp);
 676 }
 677 
 678 
 679 // Stores long into offset pointed to by base
 680 void AdapterGenerator::store_c2i_long(Register r, Register base,
 681                                       const int st_off, bool is_stack) {
 682 #ifdef _LP64
 683   // In V9, longs are given 2 64-bit slots in the interpreter, but the
 684   // data is passed in only 1 slot.
 685   __ stx(r, base, next_arg_slot(st_off));
 686 #else
 687 #ifdef COMPILER2
 688   // Misaligned store of 64-bit data
 689   __ stw(r, base, arg_slot(st_off));    // lo bits
 690   __ srlx(r, 32, r);
 691   __ stw(r, base, next_arg_slot(st_off));  // hi bits
 692 #else
 693   if (is_stack) {
 694     // Misaligned store of 64-bit data
 695     __ stw(r, base, arg_slot(st_off));    // lo bits
 696     __ srlx(r, 32, r);
 697     __ stw(r, base, next_arg_slot(st_off));  // hi bits
 698   } else {
 699     __ stw(r->successor(), base, arg_slot(st_off)     ); // lo bits
 700     __ stw(r             , base, next_arg_slot(st_off)); // hi bits
 701   }
 702 #endif // COMPILER2
 703 #endif // _LP64
 704 }
 705 
 706 void AdapterGenerator::store_c2i_object(Register r, Register base,
 707                       const int st_off) {
 708   __ st_ptr (r, base, arg_slot(st_off));
 709 }
 710 
 711 void AdapterGenerator::store_c2i_int(Register r, Register base,
 712                    const int st_off) {
 713   __ st (r, base, arg_slot(st_off));
 714 }
 715 
 716 // Stores into offset pointed to by base
 717 void AdapterGenerator::store_c2i_double(VMReg r_2,
 718                       VMReg r_1, Register base, const int st_off) {
 719 #ifdef _LP64
 720   // In V9, doubles are given 2 64-bit slots in the interpreter, but the
 721   // data is passed in only 1 slot.
 722   __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
 723 #else
 724   // Need to marshal 64-bit value from misaligned Lesp loads
 725   __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
 726   __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
 727 #endif
 728 }
 729 
 730 void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
 731                                        const int st_off) {
 732   __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
 733 }
 734 
 735 void AdapterGenerator::gen_c2i_adapter(
 736                             int total_args_passed,
 737                             // VMReg max_arg,
 738                             int comp_args_on_stack, // VMRegStackSlots
 739                             const BasicType *sig_bt,
 740                             const VMRegPair *regs,
 741                             Label& skip_fixup) {
 742 
 743   // Before we get into the guts of the C2I adapter, see if we should be here
 744   // at all.  We've come from compiled code and are attempting to jump to the
 745   // interpreter, which means the caller made a static call to get here
 746   // (vcalls always get a compiled target if there is one).  Check for a
 747   // compiled target.  If there is one, we need to patch the caller's call.
 748   // However we will run interpreted if we come thru here. The next pass
 749   // thru the call site will run compiled. If we ran compiled here then
 750   // we can (theorectically) do endless i2c->c2i->i2c transitions during
 751   // deopt/uncommon trap cycles. If we always go interpreted here then
 752   // we can have at most one and don't need to play any tricks to keep
 753   // from endlessly growing the stack.
 754   //
 755   // Actually if we detected that we had an i2c->c2i transition here we
 756   // ought to be able to reset the world back to the state of the interpreted
 757   // call and not bother building another interpreter arg area. We don't
 758   // do that at this point.
 759 
 760   patch_callers_callsite();
 761 
 762   __ bind(skip_fixup);
 763 
 764   // Since all args are passed on the stack, total_args_passed*wordSize is the
 765   // space we need.  Add in varargs area needed by the interpreter. Round up
 766   // to stack alignment.
 767   const int arg_size = total_args_passed * Interpreter::stackElementSize;
 768   const int varargs_area =
 769                  (frame::varargs_offset - frame::register_save_words)*wordSize;
 770   const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
 771 
 772   int bias = STACK_BIAS;
 773   const int interp_arg_offset = frame::varargs_offset*wordSize +
 774                         (total_args_passed-1)*Interpreter::stackElementSize;
 775 
 776   Register base = SP;
 777 
 778 #ifdef _LP64
 779   // In the 64bit build because of wider slots and STACKBIAS we can run
 780   // out of bits in the displacement to do loads and stores.  Use g3 as
 781   // temporary displacement.
 782   if (! __ is_simm13(extraspace)) {
 783     __ set(extraspace, G3_scratch);
 784     __ sub(SP, G3_scratch, SP);
 785   } else {
 786     __ sub(SP, extraspace, SP);
 787   }
 788   set_Rdisp(G3_scratch);
 789 #else
 790   __ sub(SP, extraspace, SP);
 791 #endif // _LP64
 792 
 793   // First write G1 (if used) to where ever it must go
 794   for (int i=0; i<total_args_passed; i++) {
 795     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
 796     VMReg r_1 = regs[i].first();
 797     VMReg r_2 = regs[i].second();
 798     if (r_1 == G1_scratch->as_VMReg()) {
 799       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
 800         store_c2i_object(G1_scratch, base, st_off);
 801       } else if (sig_bt[i] == T_LONG) {
 802         assert(!TieredCompilation, "should not use register args for longs");
 803         store_c2i_long(G1_scratch, base, st_off, false);
 804       } else {
 805         store_c2i_int(G1_scratch, base, st_off);
 806       }
 807     }
 808   }
 809 
 810   // Now write the args into the outgoing interpreter space
 811   for (int i=0; i<total_args_passed; i++) {
 812     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
 813     VMReg r_1 = regs[i].first();
 814     VMReg r_2 = regs[i].second();
 815     if (!r_1->is_valid()) {
 816       assert(!r_2->is_valid(), "");
 817       continue;
 818     }
 819     // Skip G1 if found as we did it first in order to free it up
 820     if (r_1 == G1_scratch->as_VMReg()) {
 821       continue;
 822     }
 823 #ifdef ASSERT
 824     bool G1_forced = false;
 825 #endif // ASSERT
 826     if (r_1->is_stack()) {        // Pretend stack targets are loaded into G1
 827 #ifdef _LP64
 828       Register ld_off = Rdisp;
 829       __ set(reg2offset(r_1) + extraspace + bias, ld_off);
 830 #else
 831       int ld_off = reg2offset(r_1) + extraspace + bias;
 832 #endif // _LP64
 833 #ifdef ASSERT
 834       G1_forced = true;
 835 #endif // ASSERT
 836       r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
 837       if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
 838       else                  __ ldx(base, ld_off, G1_scratch);
 839     }
 840 
 841     if (r_1->is_Register()) {
 842       Register r = r_1->as_Register()->after_restore();
 843       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
 844         store_c2i_object(r, base, st_off);
 845       } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 846 #ifndef _LP64
 847         if (TieredCompilation) {
 848           assert(G1_forced || sig_bt[i] != T_LONG, "should not use register args for longs");
 849         }
 850 #endif // _LP64
 851         store_c2i_long(r, base, st_off, r_2->is_stack());
 852       } else {
 853         store_c2i_int(r, base, st_off);
 854       }
 855     } else {
 856       assert(r_1->is_FloatRegister(), "");
 857       if (sig_bt[i] == T_FLOAT) {
 858         store_c2i_float(r_1->as_FloatRegister(), base, st_off);
 859       } else {
 860         assert(sig_bt[i] == T_DOUBLE, "wrong type");
 861         store_c2i_double(r_2, r_1, base, st_off);
 862       }
 863     }
 864   }
 865 
 866 #ifdef _LP64
 867   // Need to reload G3_scratch, used for temporary displacements.
 868   __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
 869 
 870   // Pass O5_savedSP as an argument to the interpreter.
 871   // The interpreter will restore SP to this value before returning.
 872   __ set(extraspace, G1);
 873   __ add(SP, G1, O5_savedSP);
 874 #else
 875   // Pass O5_savedSP as an argument to the interpreter.
 876   // The interpreter will restore SP to this value before returning.
 877   __ add(SP, extraspace, O5_savedSP);
 878 #endif // _LP64
 879 
 880   __ mov((frame::varargs_offset)*wordSize -
 881          1*Interpreter::stackElementSize+bias+BytesPerWord, G1);
 882   // Jump to the interpreter just as if interpreter was doing it.
 883   __ jmpl(G3_scratch, 0, G0);
 884   // Setup Lesp for the call.  Cannot actually set Lesp as the current Lesp
 885   // (really L0) is in use by the compiled frame as a generic temp.  However,
 886   // the interpreter does not know where its args are without some kind of
 887   // arg pointer being passed in.  Pass it in Gargs.
 888   __ delayed()->add(SP, G1, Gargs);
 889 }
 890 
 891 void AdapterGenerator::gen_i2c_adapter(
 892                             int total_args_passed,
 893                             // VMReg max_arg,
 894                             int comp_args_on_stack, // VMRegStackSlots
 895                             const BasicType *sig_bt,
 896                             const VMRegPair *regs) {
 897 
 898   // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
 899   // layout.  Lesp was saved by the calling I-frame and will be restored on
 900   // return.  Meanwhile, outgoing arg space is all owned by the callee
 901   // C-frame, so we can mangle it at will.  After adjusting the frame size,
 902   // hoist register arguments and repack other args according to the compiled
 903   // code convention.  Finally, end in a jump to the compiled code.  The entry
 904   // point address is the start of the buffer.
 905 
 906   // We will only enter here from an interpreted frame and never from after
 907   // passing thru a c2i. Azul allowed this but we do not. If we lose the
 908   // race and use a c2i we will remain interpreted for the race loser(s).
 909   // This removes all sorts of headaches on the x86 side and also eliminates
 910   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
 911 
 912   // As you can see from the list of inputs & outputs there are not a lot
 913   // of temp registers to work with: mostly G1, G3 & G4.
 914 
 915   // Inputs:
 916   // G2_thread      - TLS
 917   // G5_method      - Method oop
 918   // G4 (Gargs)     - Pointer to interpreter's args
 919   // O0..O4         - free for scratch
 920   // O5_savedSP     - Caller's saved SP, to be restored if needed
 921   // O6             - Current SP!
 922   // O7             - Valid return address
 923   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
 924 
 925   // Outputs:
 926   // G2_thread      - TLS
 927   // G1, G4         - Outgoing long args in 32-bit build
 928   // O0-O5          - Outgoing args in compiled layout
 929   // O6             - Adjusted or restored SP
 930   // O7             - Valid return address
 931   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
 932   // F0-F7          - more outgoing args
 933 
 934 
 935   // Gargs is the incoming argument base, and also an outgoing argument.
 936   __ sub(Gargs, BytesPerWord, Gargs);
 937 
 938   // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
 939   // WITH O7 HOLDING A VALID RETURN PC
 940   //
 941   // |              |
 942   // :  java stack  :
 943   // |              |
 944   // +--------------+ <--- start of outgoing args
 945   // |   receiver   |   |
 946   // : rest of args :   |---size is java-arg-words
 947   // |              |   |
 948   // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
 949   // |              |   |
 950   // :    unused    :   |---Space for max Java stack, plus stack alignment
 951   // |              |   |
 952   // +--------------+ <--- SP + 16*wordsize
 953   // |              |
 954   // :    window    :
 955   // |              |
 956   // +--------------+ <--- SP
 957 
 958   // WE REPACK THE STACK.  We use the common calling convention layout as
 959   // discovered by calling SharedRuntime::calling_convention.  We assume it
 960   // causes an arbitrary shuffle of memory, which may require some register
 961   // temps to do the shuffle.  We hope for (and optimize for) the case where
 962   // temps are not needed.  We may have to resize the stack slightly, in case
 963   // we need alignment padding (32-bit interpreter can pass longs & doubles
 964   // misaligned, but the compilers expect them aligned).
 965   //
 966   // |              |
 967   // :  java stack  :
 968   // |              |
 969   // +--------------+ <--- start of outgoing args
 970   // |  pad, align  |   |
 971   // +--------------+   |
 972   // | ints, floats |   |---Outgoing stack args, packed low.
 973   // +--------------+   |   First few args in registers.
 974   // :   doubles    :   |
 975   // |   longs      |   |
 976   // +--------------+ <--- SP' + 16*wordsize
 977   // |              |
 978   // :    window    :
 979   // |              |
 980   // +--------------+ <--- SP'
 981 
 982   // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
 983   // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
 984   // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
 985 
 986   // Cut-out for having no stack args.  Since up to 6 args are passed
 987   // in registers, we will commonly have no stack args.
 988   if (comp_args_on_stack > 0) {
 989 
 990     // Convert VMReg stack slots to words.
 991     int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 992     // Round up to miminum stack alignment, in wordSize
 993     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 994     // Now compute the distance from Lesp to SP.  This calculation does not
 995     // include the space for total_args_passed because Lesp has not yet popped
 996     // the arguments.
 997     __ sub(SP, (comp_words_on_stack)*wordSize, SP);
 998   }
 999 
1000   // Will jump to the compiled code just as if compiled code was doing it.
1001   // Pre-load the register-jump target early, to schedule it better.
1002   __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3);
1003 
1004   // Now generate the shuffle code.  Pick up all register args and move the
1005   // rest through G1_scratch.
1006   for (int i=0; i<total_args_passed; i++) {
1007     if (sig_bt[i] == T_VOID) {
1008       // Longs and doubles are passed in native word order, but misaligned
1009       // in the 32-bit build.
1010       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
1011       continue;
1012     }
1013 
1014     // Pick up 0, 1 or 2 words from Lesp+offset.  Assume mis-aligned in the
1015     // 32-bit build and aligned in the 64-bit build.  Look for the obvious
1016     // ldx/lddf optimizations.
1017 
1018     // Load in argument order going down.
1019     const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
1020     set_Rdisp(G1_scratch);
1021 
1022     VMReg r_1 = regs[i].first();
1023     VMReg r_2 = regs[i].second();
1024     if (!r_1->is_valid()) {
1025       assert(!r_2->is_valid(), "");
1026       continue;
1027     }
1028     if (r_1->is_stack()) {        // Pretend stack targets are loaded into F8/F9
1029       r_1 = F8->as_VMReg();        // as part of the load/store shuffle
1030       if (r_2->is_valid()) r_2 = r_1->next();
1031     }
1032     if (r_1->is_Register()) {  // Register argument
1033       Register r = r_1->as_Register()->after_restore();
1034       if (!r_2->is_valid()) {
1035         __ ld(Gargs, arg_slot(ld_off), r);
1036       } else {
1037 #ifdef _LP64
1038         // In V9, longs are given 2 64-bit slots in the interpreter, but the
1039         // data is passed in only 1 slot.
1040         RegisterOrConstant slot = (sig_bt[i] == T_LONG) ?
1041               next_arg_slot(ld_off) : arg_slot(ld_off);
1042         __ ldx(Gargs, slot, r);
1043 #else
1044         // Need to load a 64-bit value into G1/G4, but G1/G4 is being used in the
1045         // stack shuffle.  Load the first 2 longs into G1/G4 later.
1046 #endif
1047       }
1048     } else {
1049       assert(r_1->is_FloatRegister(), "");
1050       if (!r_2->is_valid()) {
1051         __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_1->as_FloatRegister());
1052       } else {
1053 #ifdef _LP64
1054         // In V9, doubles are given 2 64-bit slots in the interpreter, but the
1055         // data is passed in only 1 slot.  This code also handles longs that
1056         // are passed on the stack, but need a stack-to-stack move through a
1057         // spare float register.
1058         RegisterOrConstant slot = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
1059               next_arg_slot(ld_off) : arg_slot(ld_off);
1060         __ ldf(FloatRegisterImpl::D, Gargs, slot, r_1->as_FloatRegister());
1061 #else
1062         // Need to marshal 64-bit value from misaligned Lesp loads
1063         __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
1064         __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_2->as_FloatRegister());
1065 #endif
1066       }
1067     }
1068     // Was the argument really intended to be on the stack, but was loaded
1069     // into F8/F9?
1070     if (regs[i].first()->is_stack()) {
1071       assert(r_1->as_FloatRegister() == F8, "fix this code");
1072       // Convert stack slot to an SP offset
1073       int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
1074       // Store down the shuffled stack word.  Target address _is_ aligned.
1075       RegisterOrConstant slot = __ ensure_simm13_or_reg(st_off, Rdisp);
1076       if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, slot);
1077       else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, slot);
1078     }
1079   }
1080   bool made_space = false;
1081 #ifndef _LP64
1082   // May need to pick up a few long args in G1/G4
1083   bool g4_crushed = false;
1084   bool g3_crushed = false;
1085   for (int i=0; i<total_args_passed; i++) {
1086     if (regs[i].first()->is_Register() && regs[i].second()->is_valid()) {
1087       // Load in argument order going down
1088       int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
1089       // Need to marshal 64-bit value from misaligned Lesp loads
1090       Register r = regs[i].first()->as_Register()->after_restore();
1091       if (r == G1 || r == G4) {
1092         assert(!g4_crushed, "ordering problem");
1093         if (r == G4){
1094           g4_crushed = true;
1095           __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
1096           __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
1097         } else {
1098           // better schedule this way
1099           __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
1100           __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
1101         }
1102         g3_crushed = true;
1103         __ sllx(r, 32, r);
1104         __ or3(G3_scratch, r, r);
1105       } else {
1106         assert(r->is_out(), "longs passed in two O registers");
1107         __ ld  (Gargs, arg_slot(ld_off)     , r->successor()); // Load lo bits
1108         __ ld  (Gargs, next_arg_slot(ld_off), r);              // Load hi bits
1109       }
1110     }
1111   }
1112 #endif
1113 
1114   // Jump to the compiled code just as if compiled code was doing it.
1115   //
1116 #ifndef _LP64
1117     if (g3_crushed) {
1118       // Rats load was wasted, at least it is in cache...
1119       __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3);
1120     }
1121 #endif /* _LP64 */
1122 
1123     // 6243940 We might end up in handle_wrong_method if
1124     // the callee is deoptimized as we race thru here. If that
1125     // happens we don't want to take a safepoint because the
1126     // caller frame will look interpreted and arguments are now
1127     // "compiled" so it is much better to make this transition
1128     // invisible to the stack walking code. Unfortunately if
1129     // we try and find the callee by normal means a safepoint
1130     // is possible. So we stash the desired callee in the thread
1131     // and the vm will find there should this case occur.
1132     Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
1133     __ st_ptr(G5_method, callee_target_addr);
1134 
1135     if (StressNonEntrant) {
1136       // Open a big window for deopt failure
1137       __ save_frame(0);
1138       __ mov(G0, L0);
1139       Label loop;
1140       __ bind(loop);
1141       __ sub(L0, 1, L0);
1142       __ br_null(L0, false, Assembler::pt, loop);
1143       __ delayed()->nop();
1144 
1145       __ restore();
1146     }
1147 
1148 
1149     __ jmpl(G3, 0, G0);
1150     __ delayed()->nop();
1151 }
1152 
1153 // ---------------------------------------------------------------
1154 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
1155                                                             int total_args_passed,
1156                                                             // VMReg max_arg,
1157                                                             int comp_args_on_stack, // VMRegStackSlots
1158                                                             const BasicType *sig_bt,
1159                                                             const VMRegPair *regs,
1160                                                             AdapterFingerPrint* fingerprint) {
1161   address i2c_entry = __ pc();
1162 
1163   AdapterGenerator agen(masm);
1164 
1165   agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
1166 
1167 
1168   // -------------------------------------------------------------------------
1169   // Generate a C2I adapter.  On entry we know G5 holds the methodOop.  The
1170   // args start out packed in the compiled layout.  They need to be unpacked
1171   // into the interpreter layout.  This will almost always require some stack
1172   // space.  We grow the current (compiled) stack, then repack the args.  We
1173   // finally end in a jump to the generic interpreter entry point.  On exit
1174   // from the interpreter, the interpreter will restore our SP (lest the
1175   // compiled code, which relys solely on SP and not FP, get sick).
1176 
1177   address c2i_unverified_entry = __ pc();
1178   Label skip_fixup;
1179   {
1180 #if !defined(_LP64) && defined(COMPILER2)
1181     Register R_temp   = L0;   // another scratch register
1182 #else
1183     Register R_temp   = G1;   // another scratch register
1184 #endif
1185 
1186     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
1187 
1188     __ verify_oop(O0);
1189     __ verify_oop(G5_method);
1190     __ load_klass(O0, G3_scratch);
1191     __ verify_oop(G3_scratch);
1192 
1193 #if !defined(_LP64) && defined(COMPILER2)
1194     __ save(SP, -frame::register_save_words*wordSize, SP);
1195     __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
1196     __ verify_oop(R_temp);
1197     __ cmp(G3_scratch, R_temp);
1198     __ restore();
1199 #else
1200     __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
1201     __ verify_oop(R_temp);
1202     __ cmp(G3_scratch, R_temp);
1203 #endif
1204 
1205     Label ok, ok2;
1206     __ brx(Assembler::equal, false, Assembler::pt, ok);
1207     __ delayed()->ld_ptr(G5_method, compiledICHolderOopDesc::holder_method_offset(), G5_method);
1208     __ jump_to(ic_miss, G3_scratch);
1209     __ delayed()->nop();
1210 
1211     __ bind(ok);
1212     // Method might have been compiled since the call site was patched to
1213     // interpreted if that is the case treat it as a miss so we can get
1214     // the call site corrected.
1215     __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
1216     __ bind(ok2);
1217     __ br_null(G3_scratch, false, __ pt, skip_fixup);
1218     __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
1219     __ jump_to(ic_miss, G3_scratch);
1220     __ delayed()->nop();
1221 
1222   }
1223 
1224   address c2i_entry = __ pc();
1225 
1226   agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
1227 
1228   __ flush();
1229   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
1230 
1231 }
1232 
1233 // Helper function for native calling conventions
1234 static VMReg int_stk_helper( int i ) {
1235   // Bias any stack based VMReg we get by ignoring the window area
1236   // but not the register parameter save area.
1237   //
1238   // This is strange for the following reasons. We'd normally expect
1239   // the calling convention to return an VMReg for a stack slot
1240   // completely ignoring any abi reserved area. C2 thinks of that
1241   // abi area as only out_preserve_stack_slots. This does not include
1242   // the area allocated by the C abi to store down integer arguments
1243   // because the java calling convention does not use it. So
1244   // since c2 assumes that there are only out_preserve_stack_slots
1245   // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
1246   // location the c calling convention must add in this bias amount
1247   // to make up for the fact that the out_preserve_stack_slots is
1248   // insufficient for C calls. What a mess. I sure hope those 6
1249   // stack words were worth it on every java call!
1250 
1251   // Another way of cleaning this up would be for out_preserve_stack_slots
1252   // to take a parameter to say whether it was C or java calling conventions.
1253   // Then things might look a little better (but not much).
1254 
1255   int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
1256   if( mem_parm_offset < 0 ) {
1257     return as_oRegister(i)->as_VMReg();
1258   } else {
1259     int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
1260     // Now return a biased offset that will be correct when out_preserve_slots is added back in
1261     return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
1262   }
1263 }
1264 
1265 
1266 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1267                                          VMRegPair *regs,
1268                                          int total_args_passed) {
1269 
1270     // Return the number of VMReg stack_slots needed for the args.
1271     // This value does not include an abi space (like register window
1272     // save area).
1273 
1274     // The native convention is V8 if !LP64
1275     // The LP64 convention is the V9 convention which is slightly more sane.
1276 
1277     // We return the amount of VMReg stack slots we need to reserve for all
1278     // the arguments NOT counting out_preserve_stack_slots. Since we always
1279     // have space for storing at least 6 registers to memory we start with that.
1280     // See int_stk_helper for a further discussion.
1281     int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
1282 
1283 #ifdef _LP64
1284     // V9 convention: All things "as-if" on double-wide stack slots.
1285     // Hoist any int/ptr/long's in the first 6 to int regs.
1286     // Hoist any flt/dbl's in the first 16 dbl regs.
1287     int j = 0;                  // Count of actual args, not HALVES
1288     for( int i=0; i<total_args_passed; i++, j++ ) {
1289       switch( sig_bt[i] ) {
1290       case T_BOOLEAN:
1291       case T_BYTE:
1292       case T_CHAR:
1293       case T_INT:
1294       case T_SHORT:
1295         regs[i].set1( int_stk_helper( j ) ); break;
1296       case T_LONG:
1297         assert( sig_bt[i+1] == T_VOID, "expecting half" );
1298       case T_ADDRESS: // raw pointers, like current thread, for VM calls
1299       case T_ARRAY:
1300       case T_OBJECT:
1301         regs[i].set2( int_stk_helper( j ) );
1302         break;
1303       case T_FLOAT:
1304         if ( j < 16 ) {
1305           // V9ism: floats go in ODD registers
1306           regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
1307         } else {
1308           // V9ism: floats go in ODD stack slot
1309           regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
1310         }
1311         break;
1312       case T_DOUBLE:
1313         assert( sig_bt[i+1] == T_VOID, "expecting half" );
1314         if ( j < 16 ) {
1315           // V9ism: doubles go in EVEN/ODD regs
1316           regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
1317         } else {
1318           // V9ism: doubles go in EVEN/ODD stack slots
1319           regs[i].set2(VMRegImpl::stack2reg(j<<1));
1320         }
1321         break;
1322       case T_VOID:  regs[i].set_bad(); j--; break; // Do not count HALVES
1323       default:
1324         ShouldNotReachHere();
1325       }
1326       if (regs[i].first()->is_stack()) {
1327         int off =  regs[i].first()->reg2stack();
1328         if (off > max_stack_slots) max_stack_slots = off;
1329       }
1330       if (regs[i].second()->is_stack()) {
1331         int off =  regs[i].second()->reg2stack();
1332         if (off > max_stack_slots) max_stack_slots = off;
1333       }
1334     }
1335 
1336 #else // _LP64
1337     // V8 convention: first 6 things in O-regs, rest on stack.
1338     // Alignment is willy-nilly.
1339     for( int i=0; i<total_args_passed; i++ ) {
1340       switch( sig_bt[i] ) {
1341       case T_ADDRESS: // raw pointers, like current thread, for VM calls
1342       case T_ARRAY:
1343       case T_BOOLEAN:
1344       case T_BYTE:
1345       case T_CHAR:
1346       case T_FLOAT:
1347       case T_INT:
1348       case T_OBJECT:
1349       case T_SHORT:
1350         regs[i].set1( int_stk_helper( i ) );
1351         break;
1352       case T_DOUBLE:
1353       case T_LONG:
1354         assert( sig_bt[i+1] == T_VOID, "expecting half" );
1355         regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
1356         break;
1357       case T_VOID: regs[i].set_bad(); break;
1358       default:
1359         ShouldNotReachHere();
1360       }
1361       if (regs[i].first()->is_stack()) {
1362         int off =  regs[i].first()->reg2stack();
1363         if (off > max_stack_slots) max_stack_slots = off;
1364       }
1365       if (regs[i].second()->is_stack()) {
1366         int off =  regs[i].second()->reg2stack();
1367         if (off > max_stack_slots) max_stack_slots = off;
1368       }
1369     }
1370 #endif // _LP64
1371 
1372   return round_to(max_stack_slots + 1, 2);
1373 
1374 }
1375 
1376 
1377 // ---------------------------------------------------------------------------
1378 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1379   switch (ret_type) {
1380   case T_FLOAT:
1381     __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
1382     break;
1383   case T_DOUBLE:
1384     __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
1385     break;
1386   }
1387 }
1388 
1389 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1390   switch (ret_type) {
1391   case T_FLOAT:
1392     __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
1393     break;
1394   case T_DOUBLE:
1395     __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
1396     break;
1397   }
1398 }
1399 
1400 // Check and forward and pending exception.  Thread is stored in
1401 // L7_thread_cache and possibly NOT in G2_thread.  Since this is a native call, there
1402 // is no exception handler.  We merely pop this frame off and throw the
1403 // exception in the caller's frame.
1404 static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
1405   Label L;
1406   __ br_null(Rex_oop, false, Assembler::pt, L);
1407   __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
1408   // Since this is a native call, we *know* the proper exception handler
1409   // without calling into the VM: it's the empty function.  Just pop this
1410   // frame and then jump to forward_exception_entry; O7 will contain the
1411   // native caller's return PC.
1412  AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
1413   __ jump_to(exception_entry, G3_scratch);
1414   __ delayed()->restore();      // Pop this frame off.
1415   __ bind(L);
1416 }
1417 
1418 // A simple move of integer like type
1419 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1420   if (src.first()->is_stack()) {
1421     if (dst.first()->is_stack()) {
1422       // stack to stack
1423       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1424       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1425     } else {
1426       // stack to reg
1427       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1428     }
1429   } else if (dst.first()->is_stack()) {
1430     // reg to stack
1431     __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1432   } else {
1433     __ mov(src.first()->as_Register(), dst.first()->as_Register());
1434   }
1435 }
1436 
1437 // On 64 bit we will store integer like items to the stack as
1438 // 64 bits items (sparc abi) even though java would only store
1439 // 32bits for a parameter. On 32bit it will simply be 32 bits
1440 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
1441 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1442   if (src.first()->is_stack()) {
1443     if (dst.first()->is_stack()) {
1444       // stack to stack
1445       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1446       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1447     } else {
1448       // stack to reg
1449       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1450     }
1451   } else if (dst.first()->is_stack()) {
1452     // reg to stack
1453     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1454   } else {
1455     __ mov(src.first()->as_Register(), dst.first()->as_Register());
1456   }
1457 }
1458 
1459 
1460 // An oop arg. Must pass a handle not the oop itself
1461 static void object_move(MacroAssembler* masm,
1462                         OopMap* map,
1463                         int oop_handle_offset,
1464                         int framesize_in_slots,
1465                         VMRegPair src,
1466                         VMRegPair dst,
1467                         bool is_receiver,
1468                         int* receiver_offset) {
1469 
1470   // must pass a handle. First figure out the location we use as a handle
1471 
1472   if (src.first()->is_stack()) {
1473     // Oop is already on the stack
1474     Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
1475     __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
1476     __ ld_ptr(rHandle, 0, L4);
1477 #ifdef _LP64
1478     __ movr( Assembler::rc_z, L4, G0, rHandle );
1479 #else
1480     __ tst( L4 );
1481     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1482 #endif
1483     if (dst.first()->is_stack()) {
1484       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1485     }
1486     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1487     if (is_receiver) {
1488       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1489     }
1490     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1491   } else {
1492     // Oop is in an input register pass we must flush it to the stack
1493     const Register rOop = src.first()->as_Register();
1494     const Register rHandle = L5;
1495     int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
1496     int offset = oop_slot*VMRegImpl::stack_slot_size;
1497     Label skip;
1498     __ st_ptr(rOop, SP, offset + STACK_BIAS);
1499     if (is_receiver) {
1500       *receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
1501     }
1502     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1503     __ add(SP, offset + STACK_BIAS, rHandle);
1504 #ifdef _LP64
1505     __ movr( Assembler::rc_z, rOop, G0, rHandle );
1506 #else
1507     __ tst( rOop );
1508     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1509 #endif
1510 
1511     if (dst.first()->is_stack()) {
1512       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1513     } else {
1514       __ mov(rHandle, dst.first()->as_Register());
1515     }
1516   }
1517 }
1518 
1519 // A float arg may have to do float reg int reg conversion
1520 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1521   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1522 
1523   if (src.first()->is_stack()) {
1524     if (dst.first()->is_stack()) {
1525       // stack to stack the easiest of the bunch
1526       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1527       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1528     } else {
1529       // stack to reg
1530       if (dst.first()->is_Register()) {
1531         __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1532       } else {
1533         __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1534       }
1535     }
1536   } else if (dst.first()->is_stack()) {
1537     // reg to stack
1538     if (src.first()->is_Register()) {
1539       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1540     } else {
1541       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1542     }
1543   } else {
1544     // reg to reg
1545     if (src.first()->is_Register()) {
1546       if (dst.first()->is_Register()) {
1547         // gpr -> gpr
1548         __ mov(src.first()->as_Register(), dst.first()->as_Register());
1549       } else {
1550         // gpr -> fpr
1551         __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
1552         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
1553       }
1554     } else if (dst.first()->is_Register()) {
1555       // fpr -> gpr
1556       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
1557       __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
1558     } else {
1559       // fpr -> fpr
1560       // In theory these overlap but the ordering is such that this is likely a nop
1561       if ( src.first() != dst.first()) {
1562         __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1563       }
1564     }
1565   }
1566 }
1567 
1568 static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1569   VMRegPair src_lo(src.first());
1570   VMRegPair src_hi(src.second());
1571   VMRegPair dst_lo(dst.first());
1572   VMRegPair dst_hi(dst.second());
1573   simple_move32(masm, src_lo, dst_lo);
1574   simple_move32(masm, src_hi, dst_hi);
1575 }
1576 
1577 // A long move
1578 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1579 
1580   // Do the simple ones here else do two int moves
1581   if (src.is_single_phys_reg() ) {
1582     if (dst.is_single_phys_reg()) {
1583       __ mov(src.first()->as_Register(), dst.first()->as_Register());
1584     } else {
1585       // split src into two separate registers
1586       // Remember hi means hi address or lsw on sparc
1587       // Move msw to lsw
1588       if (dst.second()->is_reg()) {
1589         // MSW -> MSW
1590         __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
1591         // Now LSW -> LSW
1592         // this will only move lo -> lo and ignore hi
1593         VMRegPair split(dst.second());
1594         simple_move32(masm, src, split);
1595       } else {
1596         VMRegPair split(src.first(), L4->as_VMReg());
1597         // MSW -> MSW (lo ie. first word)
1598         __ srax(src.first()->as_Register(), 32, L4);
1599         split_long_move(masm, split, dst);
1600       }
1601     }
1602   } else if (dst.is_single_phys_reg()) {
1603     if (src.is_adjacent_aligned_on_stack(2)) {
1604       __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1605     } else {
1606       // dst is a single reg.
1607       // Remember lo is low address not msb for stack slots
1608       // and lo is the "real" register for registers
1609       // src is
1610 
1611       VMRegPair split;
1612 
1613       if (src.first()->is_reg()) {
1614         // src.lo (msw) is a reg, src.hi is stk/reg
1615         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
1616         split.set_pair(dst.first(), src.first());
1617       } else {
1618         // msw is stack move to L5
1619         // lsw is stack move to dst.lo (real reg)
1620         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
1621         split.set_pair(dst.first(), L5->as_VMReg());
1622       }
1623 
1624       // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
1625       // msw   -> src.lo/L5,  lsw -> dst.lo
1626       split_long_move(masm, src, split);
1627 
1628       // So dst now has the low order correct position the
1629       // msw half
1630       __ sllx(split.first()->as_Register(), 32, L5);
1631 
1632       const Register d = dst.first()->as_Register();
1633       __ or3(L5, d, d);
1634     }
1635   } else {
1636     // For LP64 we can probably do better.
1637     split_long_move(masm, src, dst);
1638   }
1639 }
1640 
1641 // A double move
1642 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1643 
1644   // The painful thing here is that like long_move a VMRegPair might be
1645   // 1: a single physical register
1646   // 2: two physical registers (v8)
1647   // 3: a physical reg [lo] and a stack slot [hi] (v8)
1648   // 4: two stack slots
1649 
1650   // Since src is always a java calling convention we know that the src pair
1651   // is always either all registers or all stack (and aligned?)
1652 
1653   // in a register [lo] and a stack slot [hi]
1654   if (src.first()->is_stack()) {
1655     if (dst.first()->is_stack()) {
1656       // stack to stack the easiest of the bunch
1657       // ought to be a way to do this where if alignment is ok we use ldd/std when possible
1658       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1659       __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1660       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1661       __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1662     } else {
1663       // stack to reg
1664       if (dst.second()->is_stack()) {
1665         // stack -> reg, stack -> stack
1666         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1667         if (dst.first()->is_Register()) {
1668           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1669         } else {
1670           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1671         }
1672         // This was missing. (very rare case)
1673         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1674       } else {
1675         // stack -> reg
1676         // Eventually optimize for alignment QQQ
1677         if (dst.first()->is_Register()) {
1678           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1679           __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
1680         } else {
1681           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1682           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
1683         }
1684       }
1685     }
1686   } else if (dst.first()->is_stack()) {
1687     // reg to stack
1688     if (src.first()->is_Register()) {
1689       // Eventually optimize for alignment QQQ
1690       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1691       if (src.second()->is_stack()) {
1692         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1693         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1694       } else {
1695         __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
1696       }
1697     } else {
1698       // fpr to stack
1699       if (src.second()->is_stack()) {
1700         ShouldNotReachHere();
1701       } else {
1702         // Is the stack aligned?
1703         if (reg2offset(dst.first()) & 0x7) {
1704           // No do as pairs
1705           __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1706           __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
1707         } else {
1708           __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1709         }
1710       }
1711     }
1712   } else {
1713     // reg to reg
1714     if (src.first()->is_Register()) {
1715       if (dst.first()->is_Register()) {
1716         // gpr -> gpr
1717         __ mov(src.first()->as_Register(), dst.first()->as_Register());
1718         __ mov(src.second()->as_Register(), dst.second()->as_Register());
1719       } else {
1720         // gpr -> fpr
1721         // ought to be able to do a single store
1722         __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
1723         __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
1724         // ought to be able to do a single load
1725         __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
1726         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
1727       }
1728     } else if (dst.first()->is_Register()) {
1729       // fpr -> gpr
1730       // ought to be able to do a single store
1731       __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
1732       // ought to be able to do a single load
1733       // REMEMBER first() is low address not LSB
1734       __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
1735       if (dst.second()->is_Register()) {
1736         __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
1737       } else {
1738         __ ld(FP, -4 + STACK_BIAS, L4);
1739         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1740       }
1741     } else {
1742       // fpr -> fpr
1743       // In theory these overlap but the ordering is such that this is likely a nop
1744       if ( src.first() != dst.first()) {
1745         __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1746       }
1747     }
1748   }
1749 }
1750 
1751 // Creates an inner frame if one hasn't already been created, and
1752 // saves a copy of the thread in L7_thread_cache
1753 static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
1754   if (!*already_created) {
1755     __ save_frame(0);
1756     // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
1757     // Don't use save_thread because it smashes G2 and we merely want to save a
1758     // copy
1759     __ mov(G2_thread, L7_thread_cache);
1760     *already_created = true;
1761   }
1762 }
1763 
1764 // ---------------------------------------------------------------------------
1765 // Generate a native wrapper for a given method.  The method takes arguments
1766 // in the Java compiled code convention, marshals them to the native
1767 // convention (handlizes oops, etc), transitions to native, makes the call,
1768 // returns to java state (possibly blocking), unhandlizes any result and
1769 // returns.
1770 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1771                                                 methodHandle method,
1772                                                 int compile_id,
1773                                                 int total_in_args,
1774                                                 int comp_args_on_stack, // in VMRegStackSlots
1775                                                 BasicType *in_sig_bt,
1776                                                 VMRegPair *in_regs,
1777                                                 BasicType ret_type) {
1778 
1779   // Native nmethod wrappers never take possesion of the oop arguments.
1780   // So the caller will gc the arguments. The only thing we need an
1781   // oopMap for is if the call is static
1782   //
1783   // An OopMap for lock (and class if static), and one for the VM call itself
1784   OopMapSet *oop_maps = new OopMapSet();
1785   intptr_t start = (intptr_t)__ pc();
1786 
1787   // First thing make an ic check to see if we should even be here
1788   {
1789     Label L;
1790     const Register temp_reg = G3_scratch;
1791     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
1792     __ verify_oop(O0);
1793     __ load_klass(O0, temp_reg);
1794     __ cmp(temp_reg, G5_inline_cache_reg);
1795     __ brx(Assembler::equal, true, Assembler::pt, L);
1796     __ delayed()->nop();
1797 
1798     __ jump_to(ic_miss, temp_reg);
1799     __ delayed()->nop();
1800     __ align(CodeEntryAlignment);
1801     __ bind(L);
1802   }
1803 
1804   int vep_offset = ((intptr_t)__ pc()) - start;
1805 
1806 #ifdef COMPILER1
1807   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
1808     // Object.hashCode can pull the hashCode from the header word
1809     // instead of doing a full VM transition once it's been computed.
1810     // Since hashCode is usually polymorphic at call sites we can't do
1811     // this optimization at the call site without a lot of work.
1812     Label slowCase;
1813     Register receiver             = O0;
1814     Register result               = O0;
1815     Register header               = G3_scratch;
1816     Register hash                 = G3_scratch; // overwrite header value with hash value
1817     Register mask                 = G1;         // to get hash field from header
1818 
1819     // Read the header and build a mask to get its hash field.  Give up if the object is not unlocked.
1820     // We depend on hash_mask being at most 32 bits and avoid the use of
1821     // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
1822     // vm: see markOop.hpp.
1823     __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
1824     __ sethi(markOopDesc::hash_mask, mask);
1825     __ btst(markOopDesc::unlocked_value, header);
1826     __ br(Assembler::zero, false, Assembler::pn, slowCase);
1827     if (UseBiasedLocking) {
1828       // Check if biased and fall through to runtime if so
1829       __ delayed()->nop();
1830       __ btst(markOopDesc::biased_lock_bit_in_place, header);
1831       __ br(Assembler::notZero, false, Assembler::pn, slowCase);
1832     }
1833     __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
1834 
1835     // Check for a valid (non-zero) hash code and get its value.
1836 #ifdef _LP64
1837     __ srlx(header, markOopDesc::hash_shift, hash);
1838 #else
1839     __ srl(header, markOopDesc::hash_shift, hash);
1840 #endif
1841     __ andcc(hash, mask, hash);
1842     __ br(Assembler::equal, false, Assembler::pn, slowCase);
1843     __ delayed()->nop();
1844 
1845     // leaf return.
1846     __ retl();
1847     __ delayed()->mov(hash, result);
1848     __ bind(slowCase);
1849   }
1850 #endif // COMPILER1
1851 
1852 
1853   // We have received a description of where all the java arg are located
1854   // on entry to the wrapper. We need to convert these args to where
1855   // the jni function will expect them. To figure out where they go
1856   // we convert the java signature to a C signature by inserting
1857   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1858 
1859   int total_c_args = total_in_args + 1;
1860   if (method->is_static()) {
1861     total_c_args++;
1862   }
1863 
1864   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1865   VMRegPair  * out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
1866 
1867   int argc = 0;
1868   out_sig_bt[argc++] = T_ADDRESS;
1869   if (method->is_static()) {
1870     out_sig_bt[argc++] = T_OBJECT;
1871   }
1872 
1873   for (int i = 0; i < total_in_args ; i++ ) {
1874     out_sig_bt[argc++] = in_sig_bt[i];
1875   }
1876 
1877   // Now figure out where the args must be stored and how much stack space
1878   // they require (neglecting out_preserve_stack_slots but space for storing
1879   // the 1st six register arguments). It's weird see int_stk_helper.
1880   //
1881   int out_arg_slots;
1882   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1883 
1884   // Compute framesize for the wrapper.  We need to handlize all oops in
1885   // registers. We must create space for them here that is disjoint from
1886   // the windowed save area because we have no control over when we might
1887   // flush the window again and overwrite values that gc has since modified.
1888   // (The live window race)
1889   //
1890   // We always just allocate 6 word for storing down these object. This allow
1891   // us to simply record the base and use the Ireg number to decide which
1892   // slot to use. (Note that the reg number is the inbound number not the
1893   // outbound number).
1894   // We must shuffle args to match the native convention, and include var-args space.
1895 
1896   // Calculate the total number of stack slots we will need.
1897 
1898   // First count the abi requirement plus all of the outgoing args
1899   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1900 
1901   // Now the space for the inbound oop handle area
1902 
1903   int oop_handle_offset = stack_slots;
1904   stack_slots += 6*VMRegImpl::slots_per_word;
1905 
1906   // Now any space we need for handlizing a klass if static method
1907 
1908   int oop_temp_slot_offset = 0;
1909   int klass_slot_offset = 0;
1910   int klass_offset = -1;
1911   int lock_slot_offset = 0;
1912   bool is_static = false;
1913 
1914   if (method->is_static()) {
1915     klass_slot_offset = stack_slots;
1916     stack_slots += VMRegImpl::slots_per_word;
1917     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1918     is_static = true;
1919   }
1920 
1921   // Plus a lock if needed
1922 
1923   if (method->is_synchronized()) {
1924     lock_slot_offset = stack_slots;
1925     stack_slots += VMRegImpl::slots_per_word;
1926   }
1927 
1928   // Now a place to save return value or as a temporary for any gpr -> fpr moves
1929   stack_slots += 2;
1930 
1931   // Ok The space we have allocated will look like:
1932   //
1933   //
1934   // FP-> |                     |
1935   //      |---------------------|
1936   //      | 2 slots for moves   |
1937   //      |---------------------|
1938   //      | lock box (if sync)  |
1939   //      |---------------------| <- lock_slot_offset
1940   //      | klass (if static)   |
1941   //      |---------------------| <- klass_slot_offset
1942   //      | oopHandle area      |
1943   //      |---------------------| <- oop_handle_offset
1944   //      | outbound memory     |
1945   //      | based arguments     |
1946   //      |                     |
1947   //      |---------------------|
1948   //      | vararg area         |
1949   //      |---------------------|
1950   //      |                     |
1951   // SP-> | out_preserved_slots |
1952   //
1953   //
1954 
1955 
1956   // Now compute actual number of stack words we need rounding to make
1957   // stack properly aligned.
1958   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
1959 
1960   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1961 
1962   // Generate stack overflow check before creating frame
1963   __ generate_stack_overflow_check(stack_size);
1964 
1965   // Generate a new frame for the wrapper.
1966   __ save(SP, -stack_size, SP);
1967 
1968   int frame_complete = ((intptr_t)__ pc()) - start;
1969 
1970   __ verify_thread();
1971 
1972 
1973   //
1974   // We immediately shuffle the arguments so that any vm call we have to
1975   // make from here on out (sync slow path, jvmti, etc.) we will have
1976   // captured the oops from our caller and have a valid oopMap for
1977   // them.
1978 
1979   // -----------------
1980   // The Grand Shuffle
1981   //
1982   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1983   // (derived from JavaThread* which is in L7_thread_cache) and, if static,
1984   // the class mirror instead of a receiver.  This pretty much guarantees that
1985   // register layout will not match.  We ignore these extra arguments during
1986   // the shuffle. The shuffle is described by the two calling convention
1987   // vectors we have in our possession. We simply walk the java vector to
1988   // get the source locations and the c vector to get the destinations.
1989   // Because we have a new window and the argument registers are completely
1990   // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
1991   // here.
1992 
1993   // This is a trick. We double the stack slots so we can claim
1994   // the oops in the caller's frame. Since we are sure to have
1995   // more args than the caller doubling is enough to make
1996   // sure we can capture all the incoming oop args from the
1997   // caller.
1998   //
1999   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2000   int c_arg = total_c_args - 1;
2001   // Record sp-based slot for receiver on stack for non-static methods
2002   int receiver_offset = -1;
2003 
2004   // We move the arguments backward because the floating point registers
2005   // destination will always be to a register with a greater or equal register
2006   // number or the stack.
2007 
2008 #ifdef ASSERT
2009   bool reg_destroyed[RegisterImpl::number_of_registers];
2010   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2011   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2012     reg_destroyed[r] = false;
2013   }
2014   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
2015     freg_destroyed[f] = false;
2016   }
2017 
2018 #endif /* ASSERT */
2019 
2020   for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
2021 
2022 #ifdef ASSERT
2023     if (in_regs[i].first()->is_Register()) {
2024       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
2025     } else if (in_regs[i].first()->is_FloatRegister()) {
2026       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
2027     }
2028     if (out_regs[c_arg].first()->is_Register()) {
2029       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2030     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
2031       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
2032     }
2033 #endif /* ASSERT */
2034 
2035     switch (in_sig_bt[i]) {
2036       case T_ARRAY:
2037       case T_OBJECT:
2038         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2039                     ((i == 0) && (!is_static)),
2040                     &receiver_offset);
2041         break;
2042       case T_VOID:
2043         break;
2044 
2045       case T_FLOAT:
2046         float_move(masm, in_regs[i], out_regs[c_arg]);
2047           break;
2048 
2049       case T_DOUBLE:
2050         assert( i + 1 < total_in_args &&
2051                 in_sig_bt[i + 1] == T_VOID &&
2052                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2053         double_move(masm, in_regs[i], out_regs[c_arg]);
2054         break;
2055 
2056       case T_LONG :
2057         long_move(masm, in_regs[i], out_regs[c_arg]);
2058         break;
2059 
2060       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2061 
2062       default:
2063         move32_64(masm, in_regs[i], out_regs[c_arg]);
2064     }
2065   }
2066 
2067   // Pre-load a static method's oop into O1.  Used both by locking code and
2068   // the normal JNI call code.
2069   if (method->is_static()) {
2070     __ set_oop_constant(JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()), O1);
2071 
2072     // Now handlize the static class mirror in O1.  It's known not-null.
2073     __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
2074     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2075     __ add(SP, klass_offset + STACK_BIAS, O1);
2076   }
2077 
2078 
2079   const Register L6_handle = L6;
2080 
2081   if (method->is_synchronized()) {
2082     __ mov(O1, L6_handle);
2083   }
2084 
2085   // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
2086   // except O6/O7. So if we must call out we must push a new frame. We immediately
2087   // push a new frame and flush the windows.
2088 
2089 #ifdef _LP64
2090   intptr_t thepc = (intptr_t) __ pc();
2091   {
2092     address here = __ pc();
2093     // Call the next instruction
2094     __ call(here + 8, relocInfo::none);
2095     __ delayed()->nop();
2096   }
2097 #else
2098   intptr_t thepc = __ load_pc_address(O7, 0);
2099 #endif /* _LP64 */
2100 
2101   // We use the same pc/oopMap repeatedly when we call out
2102   oop_maps->add_gc_map(thepc - start, map);
2103 
2104   // O7 now has the pc loaded that we will use when we finally call to native.
2105 
2106   // Save thread in L7; it crosses a bunch of VM calls below
2107   // Don't use save_thread because it smashes G2 and we merely
2108   // want to save a copy
2109   __ mov(G2_thread, L7_thread_cache);
2110 
2111 
2112   // If we create an inner frame once is plenty
2113   // when we create it we must also save G2_thread
2114   bool inner_frame_created = false;
2115 
2116   // dtrace method entry support
2117   {
2118     SkipIfEqual skip_if(
2119       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2120     // create inner frame
2121     __ save_frame(0);
2122     __ mov(G2_thread, L7_thread_cache);
2123     __ set_oop_constant(JNIHandles::make_local(method()), O1);
2124     __ call_VM_leaf(L7_thread_cache,
2125          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2126          G2_thread, O1);
2127     __ restore();
2128   }
2129 
2130   // RedefineClasses() tracing support for obsolete method entry
2131   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2132     // create inner frame
2133     __ save_frame(0);
2134     __ mov(G2_thread, L7_thread_cache);
2135     __ set_oop_constant(JNIHandles::make_local(method()), O1);
2136     __ call_VM_leaf(L7_thread_cache,
2137          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2138          G2_thread, O1);
2139     __ restore();
2140   }
2141 
2142   // We are in the jni frame unless saved_frame is true in which case
2143   // we are in one frame deeper (the "inner" frame). If we are in the
2144   // "inner" frames the args are in the Iregs and if the jni frame then
2145   // they are in the Oregs.
2146   // If we ever need to go to the VM (for locking, jvmti) then
2147   // we will always be in the "inner" frame.
2148 
2149   // Lock a synchronized method
2150   int lock_offset = -1;         // Set if locked
2151   if (method->is_synchronized()) {
2152     Register Roop = O1;
2153     const Register L3_box = L3;
2154 
2155     create_inner_frame(masm, &inner_frame_created);
2156 
2157     __ ld_ptr(I1, 0, O1);
2158     Label done;
2159 
2160     lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
2161     __ add(FP, lock_offset+STACK_BIAS, L3_box);
2162 #ifdef ASSERT
2163     if (UseBiasedLocking) {
2164       // making the box point to itself will make it clear it went unused
2165       // but also be obviously invalid
2166       __ st_ptr(L3_box, L3_box, 0);
2167     }
2168 #endif // ASSERT
2169     //
2170     // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
2171     //
2172     __ compiler_lock_object(Roop, L1,    L3_box, L2);
2173     __ br(Assembler::equal, false, Assembler::pt, done);
2174     __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
2175 
2176 
2177     // None of the above fast optimizations worked so we have to get into the
2178     // slow case of monitor enter.  Inline a special case of call_VM that
2179     // disallows any pending_exception.
2180     __ mov(Roop, O0);            // Need oop in O0
2181     __ mov(L3_box, O1);
2182 
2183     // Record last_Java_sp, in case the VM code releases the JVM lock.
2184 
2185     __ set_last_Java_frame(FP, I7);
2186 
2187     // do the call
2188     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
2189     __ delayed()->mov(L7_thread_cache, O2);
2190 
2191     __ restore_thread(L7_thread_cache); // restore G2_thread
2192     __ reset_last_Java_frame();
2193 
2194 #ifdef ASSERT
2195     { Label L;
2196     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2197     __ br_null(O0, false, Assembler::pt, L);
2198     __ delayed()->nop();
2199     __ stop("no pending exception allowed on exit from IR::monitorenter");
2200     __ bind(L);
2201     }
2202 #endif
2203     __ bind(done);
2204   }
2205 
2206 
2207   // Finally just about ready to make the JNI call
2208 
2209   __ flush_windows();
2210   if (inner_frame_created) {
2211     __ restore();
2212   } else {
2213     // Store only what we need from this frame
2214     // QQQ I think that non-v9 (like we care) we don't need these saves
2215     // either as the flush traps and the current window goes too.
2216     __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2217     __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2218   }
2219 
2220   // get JNIEnv* which is first argument to native
2221 
2222   __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
2223 
2224   // Use that pc we placed in O7 a while back as the current frame anchor
2225 
2226   __ set_last_Java_frame(SP, O7);
2227 
2228   // Transition from _thread_in_Java to _thread_in_native.
2229   __ set(_thread_in_native, G3_scratch);
2230   __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2231 
2232   // We flushed the windows ages ago now mark them as flushed
2233 
2234   // mark windows as flushed
2235   __ set(JavaFrameAnchor::flushed, G3_scratch);
2236 
2237   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
2238 
2239 #ifdef _LP64
2240   AddressLiteral dest(method->native_function());
2241   __ relocate(relocInfo::runtime_call_type);
2242   __ jumpl_to(dest, O7, O7);
2243 #else
2244   __ call(method->native_function(), relocInfo::runtime_call_type);
2245 #endif
2246   __ delayed()->st(G3_scratch, flags);
2247 
2248   __ restore_thread(L7_thread_cache); // restore G2_thread
2249 
2250   // Unpack native results.  For int-types, we do any needed sign-extension
2251   // and move things into I0.  The return value there will survive any VM
2252   // calls for blocking or unlocking.  An FP or OOP result (handle) is done
2253   // specially in the slow-path code.
2254   switch (ret_type) {
2255   case T_VOID:    break;        // Nothing to do!
2256   case T_FLOAT:   break;        // Got it where we want it (unless slow-path)
2257   case T_DOUBLE:  break;        // Got it where we want it (unless slow-path)
2258   // In 64 bits build result is in O0, in O0, O1 in 32bit build
2259   case T_LONG:
2260 #ifndef _LP64
2261                   __ mov(O1, I1);
2262 #endif
2263                   // Fall thru
2264   case T_OBJECT:                // Really a handle
2265   case T_ARRAY:
2266   case T_INT:
2267                   __ mov(O0, I0);
2268                   break;
2269   case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
2270   case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, I0);   break;
2271   case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, I0);   break; // cannot use and3, 0xFFFF too big as immediate value!
2272   case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, I0);   break;
2273     break;                      // Cannot de-handlize until after reclaiming jvm_lock
2274   default:
2275     ShouldNotReachHere();
2276   }
2277 
2278   // must we block?
2279 
2280   // Block, if necessary, before resuming in _thread_in_Java state.
2281   // In order for GC to work, don't clear the last_Java_sp until after blocking.
2282   { Label no_block;
2283     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
2284 
2285     // Switch thread to "native transition" state before reading the synchronization state.
2286     // This additional state is necessary because reading and testing the synchronization
2287     // state is not atomic w.r.t. GC, as this scenario demonstrates:
2288     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2289     //     VM thread changes sync state to synchronizing and suspends threads for GC.
2290     //     Thread A is resumed to finish this native method, but doesn't block here since it
2291     //     didn't see any synchronization is progress, and escapes.
2292     __ set(_thread_in_native_trans, G3_scratch);
2293     __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2294     if(os::is_MP()) {
2295       if (UseMembar) {
2296         // Force this write out before the read below
2297         __ membar(Assembler::StoreLoad);
2298       } else {
2299         // Write serialization page so VM thread can do a pseudo remote membar.
2300         // We use the current thread pointer to calculate a thread specific
2301         // offset to write to within the page. This minimizes bus traffic
2302         // due to cache line collision.
2303         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
2304       }
2305     }
2306     __ load_contents(sync_state, G3_scratch);
2307     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
2308 
2309     Label L;
2310     Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
2311     __ br(Assembler::notEqual, false, Assembler::pn, L);
2312     __ delayed()->ld(suspend_state, G3_scratch);
2313     __ cmp(G3_scratch, 0);
2314     __ br(Assembler::equal, false, Assembler::pt, no_block);
2315     __ delayed()->nop();
2316     __ bind(L);
2317 
2318     // Block.  Save any potential method result value before the operation and
2319     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
2320     // lets us share the oopMap we used when we went native rather the create
2321     // a distinct one for this pc
2322     //
2323     save_native_result(masm, ret_type, stack_slots);
2324     __ call_VM_leaf(L7_thread_cache,
2325                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
2326                     G2_thread);
2327 
2328     // Restore any method result value
2329     restore_native_result(masm, ret_type, stack_slots);
2330     __ bind(no_block);
2331   }
2332 
2333   // thread state is thread_in_native_trans. Any safepoint blocking has already
2334   // happened so we can now change state to _thread_in_Java.
2335 
2336 
2337   __ set(_thread_in_Java, G3_scratch);
2338   __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2339 
2340 
2341   Label no_reguard;
2342   __ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
2343   __ cmp(G3_scratch, JavaThread::stack_guard_yellow_disabled);
2344   __ br(Assembler::notEqual, false, Assembler::pt, no_reguard);
2345   __ delayed()->nop();
2346 
2347     save_native_result(masm, ret_type, stack_slots);
2348   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
2349   __ delayed()->nop();
2350 
2351   __ restore_thread(L7_thread_cache); // restore G2_thread
2352     restore_native_result(masm, ret_type, stack_slots);
2353 
2354   __ bind(no_reguard);
2355 
2356   // Handle possible exception (will unlock if necessary)
2357 
2358   // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
2359 
2360   // Unlock
2361   if (method->is_synchronized()) {
2362     Label done;
2363     Register I2_ex_oop = I2;
2364     const Register L3_box = L3;
2365     // Get locked oop from the handle we passed to jni
2366     __ ld_ptr(L6_handle, 0, L4);
2367     __ add(SP, lock_offset+STACK_BIAS, L3_box);
2368     // Must save pending exception around the slow-path VM call.  Since it's a
2369     // leaf call, the pending exception (if any) can be kept in a register.
2370     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
2371     // Now unlock
2372     //                       (Roop, Rmark, Rbox,   Rscratch)
2373     __ compiler_unlock_object(L4,   L1,    L3_box, L2);
2374     __ br(Assembler::equal, false, Assembler::pt, done);
2375     __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
2376 
2377     // save and restore any potential method result value around the unlocking
2378     // operation.  Will save in I0 (or stack for FP returns).
2379     save_native_result(masm, ret_type, stack_slots);
2380 
2381     // Must clear pending-exception before re-entering the VM.  Since this is
2382     // a leaf call, pending-exception-oop can be safely kept in a register.
2383     __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
2384 
2385     // slow case of monitor enter.  Inline a special case of call_VM that
2386     // disallows any pending_exception.
2387     __ mov(L3_box, O1);
2388 
2389     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
2390     __ delayed()->mov(L4, O0);              // Need oop in O0
2391 
2392     __ restore_thread(L7_thread_cache); // restore G2_thread
2393 
2394 #ifdef ASSERT
2395     { Label L;
2396     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2397     __ br_null(O0, false, Assembler::pt, L);
2398     __ delayed()->nop();
2399     __ stop("no pending exception allowed on exit from IR::monitorexit");
2400     __ bind(L);
2401     }
2402 #endif
2403     restore_native_result(masm, ret_type, stack_slots);
2404     // check_forward_pending_exception jump to forward_exception if any pending
2405     // exception is set.  The forward_exception routine expects to see the
2406     // exception in pending_exception and not in a register.  Kind of clumsy,
2407     // since all folks who branch to forward_exception must have tested
2408     // pending_exception first and hence have it in a register already.
2409     __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
2410     __ bind(done);
2411   }
2412 
2413   // Tell dtrace about this method exit
2414   {
2415     SkipIfEqual skip_if(
2416       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2417     save_native_result(masm, ret_type, stack_slots);
2418     __ set_oop_constant(JNIHandles::make_local(method()), O1);
2419     __ call_VM_leaf(L7_thread_cache,
2420        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2421        G2_thread, O1);
2422     restore_native_result(masm, ret_type, stack_slots);
2423   }
2424 
2425   // Clear "last Java frame" SP and PC.
2426   __ verify_thread(); // G2_thread must be correct
2427   __ reset_last_Java_frame();
2428 
2429   // Unpack oop result
2430   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2431       Label L;
2432       __ addcc(G0, I0, G0);
2433       __ brx(Assembler::notZero, true, Assembler::pt, L);
2434       __ delayed()->ld_ptr(I0, 0, I0);
2435       __ mov(G0, I0);
2436       __ bind(L);
2437       __ verify_oop(I0);
2438   }
2439 
2440   // reset handle block
2441   __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
2442   __ st_ptr(G0, L5, JNIHandleBlock::top_offset_in_bytes());
2443 
2444   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
2445   check_forward_pending_exception(masm, G3_scratch);
2446 
2447 
2448   // Return
2449 
2450 #ifndef _LP64
2451   if (ret_type == T_LONG) {
2452 
2453     // Must leave proper result in O0,O1 and G1 (c2/tiered only)
2454     __ sllx(I0, 32, G1);          // Shift bits into high G1
2455     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
2456     __ or3 (I1, G1, G1);          // OR 64 bits into G1
2457   }
2458 #endif
2459 
2460   __ ret();
2461   __ delayed()->restore();
2462 
2463   __ flush();
2464 
2465   nmethod *nm = nmethod::new_native_nmethod(method,
2466                                             compile_id,
2467                                             masm->code(),
2468                                             vep_offset,
2469                                             frame_complete,
2470                                             stack_slots / VMRegImpl::slots_per_word,
2471                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2472                                             in_ByteSize(lock_offset),
2473                                             oop_maps);
2474   return nm;
2475 
2476 }
2477 
2478 #ifdef HAVE_DTRACE_H
2479 // ---------------------------------------------------------------------------
2480 // Generate a dtrace nmethod for a given signature.  The method takes arguments
2481 // in the Java compiled code convention, marshals them to the native
2482 // abi and then leaves nops at the position you would expect to call a native
2483 // function. When the probe is enabled the nops are replaced with a trap
2484 // instruction that dtrace inserts and the trace will cause a notification
2485 // to dtrace.
2486 //
2487 // The probes are only able to take primitive types and java/lang/String as
2488 // arguments.  No other java types are allowed. Strings are converted to utf8
2489 // strings so that from dtrace point of view java strings are converted to C
2490 // strings. There is an arbitrary fixed limit on the total space that a method
2491 // can use for converting the strings. (256 chars per string in the signature).
2492 // So any java string larger then this is truncated.
2493 
2494 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
2495 static bool offsets_initialized = false;
2496 
2497 static VMRegPair reg64_to_VMRegPair(Register r) {
2498   VMRegPair ret;
2499   if (wordSize == 8) {
2500     ret.set2(r->as_VMReg());
2501   } else {
2502     ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
2503   }
2504   return ret;
2505 }
2506 
2507 
2508 nmethod *SharedRuntime::generate_dtrace_nmethod(
2509     MacroAssembler *masm, methodHandle method) {
2510 
2511 
2512   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
2513   // be single threaded in this method.
2514   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
2515 
2516   // Fill in the signature array, for the calling-convention call.
2517   int total_args_passed = method->size_of_parameters();
2518 
2519   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2520   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2521 
2522   // The signature we are going to use for the trap that dtrace will see
2523   // java/lang/String is converted. We drop "this" and any other object
2524   // is converted to NULL.  (A one-slot java/lang/Long object reference
2525   // is converted to a two-slot long, which is why we double the allocation).
2526   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
2527   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
2528 
2529   int i=0;
2530   int total_strings = 0;
2531   int first_arg_to_pass = 0;
2532   int total_c_args = 0;
2533 
2534   // Skip the receiver as dtrace doesn't want to see it
2535   if( !method->is_static() ) {
2536     in_sig_bt[i++] = T_OBJECT;
2537     first_arg_to_pass = 1;
2538   }
2539 
2540   SignatureStream ss(method->signature());
2541   for ( ; !ss.at_return_type(); ss.next()) {
2542     BasicType bt = ss.type();
2543     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
2544     out_sig_bt[total_c_args++] = bt;
2545     if( bt == T_OBJECT) {
2546       Symbol* s = ss.as_symbol_or_null();
2547       if (s == vmSymbols::java_lang_String()) {
2548         total_strings++;
2549         out_sig_bt[total_c_args-1] = T_ADDRESS;
2550       } else if (s == vmSymbols::java_lang_Boolean() ||
2551                  s == vmSymbols::java_lang_Byte()) {
2552         out_sig_bt[total_c_args-1] = T_BYTE;
2553       } else if (s == vmSymbols::java_lang_Character() ||
2554                  s == vmSymbols::java_lang_Short()) {
2555         out_sig_bt[total_c_args-1] = T_SHORT;
2556       } else if (s == vmSymbols::java_lang_Integer() ||
2557                  s == vmSymbols::java_lang_Float()) {
2558         out_sig_bt[total_c_args-1] = T_INT;
2559       } else if (s == vmSymbols::java_lang_Long() ||
2560                  s == vmSymbols::java_lang_Double()) {
2561         out_sig_bt[total_c_args-1] = T_LONG;
2562         out_sig_bt[total_c_args++] = T_VOID;
2563       }
2564     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
2565       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2566       // We convert double to long
2567       out_sig_bt[total_c_args-1] = T_LONG;
2568       out_sig_bt[total_c_args++] = T_VOID;
2569     } else if ( bt == T_FLOAT) {
2570       // We convert float to int
2571       out_sig_bt[total_c_args-1] = T_INT;
2572     }
2573   }
2574 
2575   assert(i==total_args_passed, "validly parsed signature");
2576 
2577   // Now get the compiled-Java layout as input arguments
2578   int comp_args_on_stack;
2579   comp_args_on_stack = SharedRuntime::java_calling_convention(
2580       in_sig_bt, in_regs, total_args_passed, false);
2581 
2582   // We have received a description of where all the java arg are located
2583   // on entry to the wrapper. We need to convert these args to where
2584   // the a  native (non-jni) function would expect them. To figure out
2585   // where they go we convert the java signature to a C signature and remove
2586   // T_VOID for any long/double we might have received.
2587 
2588 
2589   // Now figure out where the args must be stored and how much stack space
2590   // they require (neglecting out_preserve_stack_slots but space for storing
2591   // the 1st six register arguments). It's weird see int_stk_helper.
2592   //
2593   int out_arg_slots;
2594   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
2595 
2596   // Calculate the total number of stack slots we will need.
2597 
2598   // First count the abi requirement plus all of the outgoing args
2599   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2600 
2601   // Plus a temp for possible converion of float/double/long register args
2602 
2603   int conversion_temp = stack_slots;
2604   stack_slots += 2;
2605 
2606 
2607   // Now space for the string(s) we must convert
2608 
2609   int string_locs = stack_slots;
2610   stack_slots += total_strings *
2611                    (max_dtrace_string_size / VMRegImpl::stack_slot_size);
2612 
2613   // Ok The space we have allocated will look like:
2614   //
2615   //
2616   // FP-> |                     |
2617   //      |---------------------|
2618   //      | string[n]           |
2619   //      |---------------------| <- string_locs[n]
2620   //      | string[n-1]         |
2621   //      |---------------------| <- string_locs[n-1]
2622   //      | ...                 |
2623   //      | ...                 |
2624   //      |---------------------| <- string_locs[1]
2625   //      | string[0]           |
2626   //      |---------------------| <- string_locs[0]
2627   //      | temp                |
2628   //      |---------------------| <- conversion_temp
2629   //      | outbound memory     |
2630   //      | based arguments     |
2631   //      |                     |
2632   //      |---------------------|
2633   //      |                     |
2634   // SP-> | out_preserved_slots |
2635   //
2636   //
2637 
2638   // Now compute actual number of stack words we need rounding to make
2639   // stack properly aligned.
2640   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
2641 
2642   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2643 
2644   intptr_t start = (intptr_t)__ pc();
2645 
2646   // First thing make an ic check to see if we should even be here
2647 
2648   {
2649     Label L;
2650     const Register temp_reg = G3_scratch;
2651     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
2652     __ verify_oop(O0);
2653     __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
2654     __ cmp(temp_reg, G5_inline_cache_reg);
2655     __ brx(Assembler::equal, true, Assembler::pt, L);
2656     __ delayed()->nop();
2657 
2658     __ jump_to(ic_miss, temp_reg);
2659     __ delayed()->nop();
2660     __ align(CodeEntryAlignment);
2661     __ bind(L);
2662   }
2663 
2664   int vep_offset = ((intptr_t)__ pc()) - start;
2665 
2666 
2667   // The instruction at the verified entry point must be 5 bytes or longer
2668   // because it can be patched on the fly by make_non_entrant. The stack bang
2669   // instruction fits that requirement.
2670 
2671   // Generate stack overflow check before creating frame
2672   __ generate_stack_overflow_check(stack_size);
2673 
2674   assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
2675          "valid size for make_non_entrant");
2676 
2677   // Generate a new frame for the wrapper.
2678   __ save(SP, -stack_size, SP);
2679 
2680   // Frame is now completed as far a size and linkage.
2681 
2682   int frame_complete = ((intptr_t)__ pc()) - start;
2683 
2684 #ifdef ASSERT
2685   bool reg_destroyed[RegisterImpl::number_of_registers];
2686   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2687   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2688     reg_destroyed[r] = false;
2689   }
2690   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
2691     freg_destroyed[f] = false;
2692   }
2693 
2694 #endif /* ASSERT */
2695 
2696   VMRegPair zero;
2697   const Register g0 = G0; // without this we get a compiler warning (why??)
2698   zero.set2(g0->as_VMReg());
2699 
2700   int c_arg, j_arg;
2701 
2702   Register conversion_off = noreg;
2703 
2704   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2705        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2706 
2707     VMRegPair src = in_regs[j_arg];
2708     VMRegPair dst = out_regs[c_arg];
2709 
2710 #ifdef ASSERT
2711     if (src.first()->is_Register()) {
2712       assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
2713     } else if (src.first()->is_FloatRegister()) {
2714       assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
2715                                                FloatRegisterImpl::S)], "ack!");
2716     }
2717     if (dst.first()->is_Register()) {
2718       reg_destroyed[dst.first()->as_Register()->encoding()] = true;
2719     } else if (dst.first()->is_FloatRegister()) {
2720       freg_destroyed[dst.first()->as_FloatRegister()->encoding(
2721                                                  FloatRegisterImpl::S)] = true;
2722     }
2723 #endif /* ASSERT */
2724 
2725     switch (in_sig_bt[j_arg]) {
2726       case T_ARRAY:
2727       case T_OBJECT:
2728         {
2729           if (out_sig_bt[c_arg] == T_BYTE  || out_sig_bt[c_arg] == T_SHORT ||
2730               out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2731             // need to unbox a one-slot value
2732             Register in_reg = L0;
2733             Register tmp = L2;
2734             if ( src.first()->is_reg() ) {
2735               in_reg = src.first()->as_Register();
2736             } else {
2737               assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
2738                      "must be");
2739               __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
2740             }
2741             // If the final destination is an acceptable register
2742             if ( dst.first()->is_reg() ) {
2743               if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
2744                 tmp = dst.first()->as_Register();
2745               }
2746             }
2747 
2748             Label skipUnbox;
2749             if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
2750               __ mov(G0, tmp->successor());
2751             }
2752             __ br_null(in_reg, true, Assembler::pn, skipUnbox);
2753             __ delayed()->mov(G0, tmp);
2754 
2755             BasicType bt = out_sig_bt[c_arg];
2756             int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2757             switch (bt) {
2758                 case T_BYTE:
2759                   __ ldub(in_reg, box_offset, tmp); break;
2760                 case T_SHORT:
2761                   __ lduh(in_reg, box_offset, tmp); break;
2762                 case T_INT:
2763                   __ ld(in_reg, box_offset, tmp); break;
2764                 case T_LONG:
2765                   __ ld_long(in_reg, box_offset, tmp); break;
2766                 default: ShouldNotReachHere();
2767             }
2768 
2769             __ bind(skipUnbox);
2770             // If tmp wasn't final destination copy to final destination
2771             if (tmp == L2) {
2772               VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
2773               if (out_sig_bt[c_arg] == T_LONG) {
2774                 long_move(masm, tmp_as_VM, dst);
2775               } else {
2776                 move32_64(masm, tmp_as_VM, out_regs[c_arg]);
2777               }
2778             }
2779             if (out_sig_bt[c_arg] == T_LONG) {
2780               assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2781               ++c_arg; // move over the T_VOID to keep the loop indices in sync
2782             }
2783           } else if (out_sig_bt[c_arg] == T_ADDRESS) {
2784             Register s =
2785                 src.first()->is_reg() ? src.first()->as_Register() : L2;
2786             Register d =
2787                 dst.first()->is_reg() ? dst.first()->as_Register() : L2;
2788 
2789             // We store the oop now so that the conversion pass can reach
2790             // while in the inner frame. This will be the only store if
2791             // the oop is NULL.
2792             if (s != L2) {
2793               // src is register
2794               if (d != L2) {
2795                 // dst is register
2796                 __ mov(s, d);
2797               } else {
2798                 assert(Assembler::is_simm13(reg2offset(dst.first()) +
2799                           STACK_BIAS), "must be");
2800                 __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
2801               }
2802             } else {
2803                 // src not a register
2804                 assert(Assembler::is_simm13(reg2offset(src.first()) +
2805                            STACK_BIAS), "must be");
2806                 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
2807                 if (d == L2) {
2808                   assert(Assembler::is_simm13(reg2offset(dst.first()) +
2809                              STACK_BIAS), "must be");
2810                   __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
2811                 }
2812             }
2813           } else if (out_sig_bt[c_arg] != T_VOID) {
2814             // Convert the arg to NULL
2815             if (dst.first()->is_reg()) {
2816               __ mov(G0, dst.first()->as_Register());
2817             } else {
2818               assert(Assembler::is_simm13(reg2offset(dst.first()) +
2819                          STACK_BIAS), "must be");
2820               __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
2821             }
2822           }
2823         }
2824         break;
2825       case T_VOID:
2826         break;
2827 
2828       case T_FLOAT:
2829         if (src.first()->is_stack()) {
2830           // Stack to stack/reg is simple
2831           move32_64(masm, src, dst);
2832         } else {
2833           if (dst.first()->is_reg()) {
2834             // freg -> reg
2835             int off =
2836               STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
2837             Register d = dst.first()->as_Register();
2838             if (Assembler::is_simm13(off)) {
2839               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2840                      SP, off);
2841               __ ld(SP, off, d);
2842             } else {
2843               if (conversion_off == noreg) {
2844                 __ set(off, L6);
2845                 conversion_off = L6;
2846               }
2847               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2848                      SP, conversion_off);
2849               __ ld(SP, conversion_off , d);
2850             }
2851           } else {
2852             // freg -> mem
2853             int off = STACK_BIAS + reg2offset(dst.first());
2854             if (Assembler::is_simm13(off)) {
2855               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2856                      SP, off);
2857             } else {
2858               if (conversion_off == noreg) {
2859                 __ set(off, L6);
2860                 conversion_off = L6;
2861               }
2862               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2863                      SP, conversion_off);
2864             }
2865           }
2866         }
2867         break;
2868 
2869       case T_DOUBLE:
2870         assert( j_arg + 1 < total_args_passed &&
2871                 in_sig_bt[j_arg + 1] == T_VOID &&
2872                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2873         if (src.first()->is_stack()) {
2874           // Stack to stack/reg is simple
2875           long_move(masm, src, dst);
2876         } else {
2877           Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
2878 
2879           // Destination could be an odd reg on 32bit in which case
2880           // we can't load direct to the destination.
2881 
2882           if (!d->is_even() && wordSize == 4) {
2883             d = L2;
2884           }
2885           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
2886           if (Assembler::is_simm13(off)) {
2887             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
2888                    SP, off);
2889             __ ld_long(SP, off, d);
2890           } else {
2891             if (conversion_off == noreg) {
2892               __ set(off, L6);
2893               conversion_off = L6;
2894             }
2895             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
2896                    SP, conversion_off);
2897             __ ld_long(SP, conversion_off, d);
2898           }
2899           if (d == L2) {
2900             long_move(masm, reg64_to_VMRegPair(L2), dst);
2901           }
2902         }
2903         break;
2904 
2905       case T_LONG :
2906         // 32bit can't do a split move of something like g1 -> O0, O1
2907         // so use a memory temp
2908         if (src.is_single_phys_reg() && wordSize == 4) {
2909           Register tmp = L2;
2910           if (dst.first()->is_reg() &&
2911               (wordSize == 8 || dst.first()->as_Register()->is_even())) {
2912             tmp = dst.first()->as_Register();
2913           }
2914 
2915           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
2916           if (Assembler::is_simm13(off)) {
2917             __ stx(src.first()->as_Register(), SP, off);
2918             __ ld_long(SP, off, tmp);
2919           } else {
2920             if (conversion_off == noreg) {
2921               __ set(off, L6);
2922               conversion_off = L6;
2923             }
2924             __ stx(src.first()->as_Register(), SP, conversion_off);
2925             __ ld_long(SP, conversion_off, tmp);
2926           }
2927 
2928           if (tmp == L2) {
2929             long_move(masm, reg64_to_VMRegPair(L2), dst);
2930           }
2931         } else {
2932           long_move(masm, src, dst);
2933         }
2934         break;
2935 
2936       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2937 
2938       default:
2939         move32_64(masm, src, dst);
2940     }
2941   }
2942 
2943 
2944   // If we have any strings we must store any register based arg to the stack
2945   // This includes any still live xmm registers too.
2946 
2947   if (total_strings > 0 ) {
2948 
2949     // protect all the arg registers
2950     __ save_frame(0);
2951     __ mov(G2_thread, L7_thread_cache);
2952     const Register L2_string_off = L2;
2953 
2954     // Get first string offset
2955     __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
2956 
2957     for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
2958       if (out_sig_bt[c_arg] == T_ADDRESS) {
2959 
2960         VMRegPair dst = out_regs[c_arg];
2961         const Register d = dst.first()->is_reg() ?
2962             dst.first()->as_Register()->after_save() : noreg;
2963 
2964         // It's a string the oop and it was already copied to the out arg
2965         // position
2966         if (d != noreg) {
2967           __ mov(d, O0);
2968         } else {
2969           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
2970                  "must be");
2971           __ ld_ptr(FP,  reg2offset(dst.first()) + STACK_BIAS, O0);
2972         }
2973         Label skip;
2974 
2975         __ br_null(O0, false, Assembler::pn, skip);
2976         __ delayed()->add(FP, L2_string_off, O1);
2977 
2978         if (d != noreg) {
2979           __ mov(O1, d);
2980         } else {
2981           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
2982                  "must be");
2983           __ st_ptr(O1, FP,  reg2offset(dst.first()) + STACK_BIAS);
2984         }
2985 
2986         __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
2987                 relocInfo::runtime_call_type);
2988         __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
2989 
2990         __ bind(skip);
2991 
2992       }
2993 
2994     }
2995     __ mov(L7_thread_cache, G2_thread);
2996     __ restore();
2997 
2998   }
2999 
3000 
3001   // Ok now we are done. Need to place the nop that dtrace wants in order to
3002   // patch in the trap
3003 
3004   int patch_offset = ((intptr_t)__ pc()) - start;
3005 
3006   __ nop();
3007 
3008 
3009   // Return
3010 
3011   __ ret();
3012   __ delayed()->restore();
3013 
3014   __ flush();
3015 
3016   nmethod *nm = nmethod::new_dtrace_nmethod(
3017       method, masm->code(), vep_offset, patch_offset, frame_complete,
3018       stack_slots / VMRegImpl::slots_per_word);
3019   return nm;
3020 
3021 }
3022 
3023 #endif // HAVE_DTRACE_H
3024 
3025 // this function returns the adjust size (in number of words) to a c2i adapter
3026 // activation for use during deoptimization
3027 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
3028   assert(callee_locals >= callee_parameters,
3029           "test and remove; got more parms than locals");
3030   if (callee_locals < callee_parameters)
3031     return 0;                   // No adjustment for negative locals
3032   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
3033   return round_to(diff, WordsPerLong);
3034 }
3035 
3036 // "Top of Stack" slots that may be unused by the calling convention but must
3037 // otherwise be preserved.
3038 // On Intel these are not necessary and the value can be zero.
3039 // On Sparc this describes the words reserved for storing a register window
3040 // when an interrupt occurs.
3041 uint SharedRuntime::out_preserve_stack_slots() {
3042   return frame::register_save_words * VMRegImpl::slots_per_word;
3043 }
3044 
3045 static void gen_new_frame(MacroAssembler* masm, bool deopt) {
3046 //
3047 // Common out the new frame generation for deopt and uncommon trap
3048 //
3049   Register        G3pcs              = G3_scratch; // Array of new pcs (input)
3050   Register        Oreturn0           = O0;
3051   Register        Oreturn1           = O1;
3052   Register        O2UnrollBlock      = O2;
3053   Register        O3array            = O3;         // Array of frame sizes (input)
3054   Register        O4array_size       = O4;         // number of frames (input)
3055   Register        O7frame_size       = O7;         // number of frames (input)
3056 
3057   __ ld_ptr(O3array, 0, O7frame_size);
3058   __ sub(G0, O7frame_size, O7frame_size);
3059   __ save(SP, O7frame_size, SP);
3060   __ ld_ptr(G3pcs, 0, I7);                      // load frame's new pc
3061 
3062   #ifdef ASSERT
3063   // make sure that the frames are aligned properly
3064 #ifndef _LP64
3065   __ btst(wordSize*2-1, SP);
3066   __ breakpoint_trap(Assembler::notZero);
3067 #endif
3068   #endif
3069 
3070   // Deopt needs to pass some extra live values from frame to frame
3071 
3072   if (deopt) {
3073     __ mov(Oreturn0->after_save(), Oreturn0);
3074     __ mov(Oreturn1->after_save(), Oreturn1);
3075   }
3076 
3077   __ mov(O4array_size->after_save(), O4array_size);
3078   __ sub(O4array_size, 1, O4array_size);
3079   __ mov(O3array->after_save(), O3array);
3080   __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
3081   __ add(G3pcs, wordSize, G3pcs);               // point to next pc value
3082 
3083   #ifdef ASSERT
3084   // trash registers to show a clear pattern in backtraces
3085   __ set(0xDEAD0000, I0);
3086   __ add(I0,  2, I1);
3087   __ add(I0,  4, I2);
3088   __ add(I0,  6, I3);
3089   __ add(I0,  8, I4);
3090   // Don't touch I5 could have valuable savedSP
3091   __ set(0xDEADBEEF, L0);
3092   __ mov(L0, L1);
3093   __ mov(L0, L2);
3094   __ mov(L0, L3);
3095   __ mov(L0, L4);
3096   __ mov(L0, L5);
3097 
3098   // trash the return value as there is nothing to return yet
3099   __ set(0xDEAD0001, O7);
3100   #endif
3101 
3102   __ mov(SP, O5_savedSP);
3103 }
3104 
3105 
3106 static void make_new_frames(MacroAssembler* masm, bool deopt) {
3107   //
3108   // loop through the UnrollBlock info and create new frames
3109   //
3110   Register        G3pcs              = G3_scratch;
3111   Register        Oreturn0           = O0;
3112   Register        Oreturn1           = O1;
3113   Register        O2UnrollBlock      = O2;
3114   Register        O3array            = O3;
3115   Register        O4array_size       = O4;
3116   Label           loop;
3117 
3118   // Before we make new frames, check to see if stack is available.
3119   // Do this after the caller's return address is on top of stack
3120   if (UseStackBanging) {
3121     // Get total frame size for interpreted frames
3122     __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
3123     __ bang_stack_size(O4, O3, G3_scratch);
3124   }
3125 
3126   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
3127   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
3128   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
3129 
3130   // Adjust old interpreter frame to make space for new frame's extra java locals
3131   //
3132   // We capture the original sp for the transition frame only because it is needed in
3133   // order to properly calculate interpreter_sp_adjustment. Even though in real life
3134   // every interpreter frame captures a savedSP it is only needed at the transition
3135   // (fortunately). If we had to have it correct everywhere then we would need to
3136   // be told the sp_adjustment for each frame we create. If the frame size array
3137   // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
3138   // for each frame we create and keep up the illusion every where.
3139   //
3140 
3141   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
3142   __ mov(SP, O5_savedSP);       // remember initial sender's original sp before adjustment
3143   __ sub(SP, O7, SP);
3144 
3145 #ifdef ASSERT
3146   // make sure that there is at least one entry in the array
3147   __ tst(O4array_size);
3148   __ breakpoint_trap(Assembler::zero);
3149 #endif
3150 
3151   // Now push the new interpreter frames
3152   __ bind(loop);
3153 
3154   // allocate a new frame, filling the registers
3155 
3156   gen_new_frame(masm, deopt);        // allocate an interpreter frame
3157 
3158   __ tst(O4array_size);
3159   __ br(Assembler::notZero, false, Assembler::pn, loop);
3160   __ delayed()->add(O3array, wordSize, O3array);
3161   __ ld_ptr(G3pcs, 0, O7);                      // load final frame new pc
3162 
3163 }
3164 
3165 //------------------------------generate_deopt_blob----------------------------
3166 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
3167 // instead.
3168 void SharedRuntime::generate_deopt_blob() {
3169   // allocate space for the code
3170   ResourceMark rm;
3171   // setup code generation tools
3172   int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
3173 #ifdef _LP64
3174   CodeBuffer buffer("deopt_blob", 2100+pad, 512);
3175 #else
3176   // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
3177   // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
3178   CodeBuffer buffer("deopt_blob", 1600+pad, 512);
3179 #endif /* _LP64 */
3180   MacroAssembler* masm               = new MacroAssembler(&buffer);
3181   FloatRegister   Freturn0           = F0;
3182   Register        Greturn1           = G1;
3183   Register        Oreturn0           = O0;
3184   Register        Oreturn1           = O1;
3185   Register        O2UnrollBlock      = O2;
3186   Register        L0deopt_mode       = L0;
3187   Register        G4deopt_mode       = G4_scratch;
3188   int             frame_size_words;
3189   Address         saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
3190 #if !defined(_LP64) && defined(COMPILER2)
3191   Address         saved_Greturn1_addr(FP, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
3192 #endif
3193   Label           cont;
3194 
3195   OopMapSet *oop_maps = new OopMapSet();
3196 
3197   //
3198   // This is the entry point for code which is returning to a de-optimized
3199   // frame.
3200   // The steps taken by this frame are as follows:
3201   //   - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
3202   //     and all potentially live registers (at a pollpoint many registers can be live).
3203   //
3204   //   - call the C routine: Deoptimization::fetch_unroll_info (this function
3205   //     returns information about the number and size of interpreter frames
3206   //     which are equivalent to the frame which is being deoptimized)
3207   //   - deallocate the unpack frame, restoring only results values. Other
3208   //     volatile registers will now be captured in the vframeArray as needed.
3209   //   - deallocate the deoptimization frame
3210   //   - in a loop using the information returned in the previous step
3211   //     push new interpreter frames (take care to propagate the return
3212   //     values through each new frame pushed)
3213   //   - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
3214   //   - call the C routine: Deoptimization::unpack_frames (this function
3215   //     lays out values on the interpreter frame which was just created)
3216   //   - deallocate the dummy unpack_frame
3217   //   - ensure that all the return values are correctly set and then do
3218   //     a return to the interpreter entry point
3219   //
3220   // Refer to the following methods for more information:
3221   //   - Deoptimization::fetch_unroll_info
3222   //   - Deoptimization::unpack_frames
3223 
3224   OopMap* map = NULL;
3225 
3226   int start = __ offset();
3227 
3228   // restore G2, the trampoline destroyed it
3229   __ get_thread();
3230 
3231   // On entry we have been called by the deoptimized nmethod with a call that
3232   // replaced the original call (or safepoint polling location) so the deoptimizing
3233   // pc is now in O7. Return values are still in the expected places
3234 
3235   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3236   __ ba(false, cont);
3237   __ delayed()->mov(Deoptimization::Unpack_deopt, L0deopt_mode);
3238 
3239   int exception_offset = __ offset() - start;
3240 
3241   // restore G2, the trampoline destroyed it
3242   __ get_thread();
3243 
3244   // On entry we have been jumped to by the exception handler (or exception_blob
3245   // for server).  O0 contains the exception oop and O7 contains the original
3246   // exception pc.  So if we push a frame here it will look to the
3247   // stack walking code (fetch_unroll_info) just like a normal call so
3248   // state will be extracted normally.
3249 
3250   // save exception oop in JavaThread and fall through into the
3251   // exception_in_tls case since they are handled in same way except
3252   // for where the pending exception is kept.
3253   __ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
3254 
3255   //
3256   // Vanilla deoptimization with an exception pending in exception_oop
3257   //
3258   int exception_in_tls_offset = __ offset() - start;
3259 
3260   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3261   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3262 
3263   // Restore G2_thread
3264   __ get_thread();
3265 
3266 #ifdef ASSERT
3267   {
3268     // verify that there is really an exception oop in exception_oop
3269     Label has_exception;
3270     __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
3271     __ br_notnull(Oexception, false, Assembler::pt, has_exception);
3272     __ delayed()-> nop();
3273     __ stop("no exception in thread");
3274     __ bind(has_exception);
3275 
3276     // verify that there is no pending exception
3277     Label no_pending_exception;
3278     Address exception_addr(G2_thread, Thread::pending_exception_offset());
3279     __ ld_ptr(exception_addr, Oexception);
3280     __ br_null(Oexception, false, Assembler::pt, no_pending_exception);
3281     __ delayed()->nop();
3282     __ stop("must not have pending exception here");
3283     __ bind(no_pending_exception);
3284   }
3285 #endif
3286 
3287   __ ba(false, cont);
3288   __ delayed()->mov(Deoptimization::Unpack_exception, L0deopt_mode);;
3289 
3290   //
3291   // Reexecute entry, similar to c2 uncommon trap
3292   //
3293   int reexecute_offset = __ offset() - start;
3294 
3295   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3296   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3297 
3298   __ mov(Deoptimization::Unpack_reexecute, L0deopt_mode);
3299 
3300   __ bind(cont);
3301 
3302   __ set_last_Java_frame(SP, noreg);
3303 
3304   // do the call by hand so we can get the oopmap
3305 
3306   __ mov(G2_thread, L7_thread_cache);
3307   __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
3308   __ delayed()->mov(G2_thread, O0);
3309 
3310   // Set an oopmap for the call site this describes all our saved volatile registers
3311 
3312   oop_maps->add_gc_map( __ offset()-start, map);
3313 
3314   __ mov(L7_thread_cache, G2_thread);
3315 
3316   __ reset_last_Java_frame();
3317 
3318   // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
3319   // so this move will survive
3320 
3321   __ mov(L0deopt_mode, G4deopt_mode);
3322 
3323   __ mov(O0, O2UnrollBlock->after_save());
3324 
3325   RegisterSaver::restore_result_registers(masm);
3326 
3327   Label noException;
3328   __ cmp(G4deopt_mode, Deoptimization::Unpack_exception);   // Was exception pending?
3329   __ br(Assembler::notEqual, false, Assembler::pt, noException);
3330   __ delayed()->nop();
3331 
3332   // Move the pending exception from exception_oop to Oexception so
3333   // the pending exception will be picked up the interpreter.
3334   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
3335   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
3336   __ bind(noException);
3337 
3338   // deallocate the deoptimization frame taking care to preserve the return values
3339   __ mov(Oreturn0,     Oreturn0->after_save());
3340   __ mov(Oreturn1,     Oreturn1->after_save());
3341   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3342   __ restore();
3343 
3344   // Allocate new interpreter frame(s) and possible c2i adapter frame
3345 
3346   make_new_frames(masm, true);
3347 
3348   // push a dummy "unpack_frame" taking care of float return values and
3349   // call Deoptimization::unpack_frames to have the unpacker layout
3350   // information in the interpreter frames just created and then return
3351   // to the interpreter entry point
3352   __ save(SP, -frame_size_words*wordSize, SP);
3353   __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
3354 #if !defined(_LP64)
3355 #if defined(COMPILER2)
3356   // 32-bit 1-register longs return longs in G1
3357   __ stx(Greturn1, saved_Greturn1_addr);
3358 #endif
3359   __ set_last_Java_frame(SP, noreg);
3360   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4deopt_mode);
3361 #else
3362   // LP64 uses g4 in set_last_Java_frame
3363   __ mov(G4deopt_mode, O1);
3364   __ set_last_Java_frame(SP, G0);
3365   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
3366 #endif
3367   __ reset_last_Java_frame();
3368   __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
3369 
3370 #if !defined(_LP64) && defined(COMPILER2)
3371   // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
3372   // I0/I1 if the return value is long.
3373   Label not_long;
3374   __ cmp(O0,T_LONG);
3375   __ br(Assembler::notEqual, false, Assembler::pt, not_long);
3376   __ delayed()->nop();
3377   __ ldd(saved_Greturn1_addr,I0);
3378   __ bind(not_long);
3379 #endif
3380   __ ret();
3381   __ delayed()->restore();
3382 
3383   masm->flush();
3384   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
3385   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3386 }
3387 
3388 #ifdef COMPILER2
3389 
3390 //------------------------------generate_uncommon_trap_blob--------------------
3391 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
3392 // instead.
3393 void SharedRuntime::generate_uncommon_trap_blob() {
3394   // allocate space for the code
3395   ResourceMark rm;
3396   // setup code generation tools
3397   int pad = VerifyThread ? 512 : 0;
3398 #ifdef _LP64
3399   CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
3400 #else
3401   // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
3402   // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
3403   CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
3404 #endif
3405   MacroAssembler* masm               = new MacroAssembler(&buffer);
3406   Register        O2UnrollBlock      = O2;
3407   Register        O2klass_index      = O2;
3408 
3409   //
3410   // This is the entry point for all traps the compiler takes when it thinks
3411   // it cannot handle further execution of compilation code. The frame is
3412   // deoptimized in these cases and converted into interpreter frames for
3413   // execution
3414   // The steps taken by this frame are as follows:
3415   //   - push a fake "unpack_frame"
3416   //   - call the C routine Deoptimization::uncommon_trap (this function
3417   //     packs the current compiled frame into vframe arrays and returns
3418   //     information about the number and size of interpreter frames which
3419   //     are equivalent to the frame which is being deoptimized)
3420   //   - deallocate the "unpack_frame"
3421   //   - deallocate the deoptimization frame
3422   //   - in a loop using the information returned in the previous step
3423   //     push interpreter frames;
3424   //   - create a dummy "unpack_frame"
3425   //   - call the C routine: Deoptimization::unpack_frames (this function
3426   //     lays out values on the interpreter frame which was just created)
3427   //   - deallocate the dummy unpack_frame
3428   //   - return to the interpreter entry point
3429   //
3430   //  Refer to the following methods for more information:
3431   //   - Deoptimization::uncommon_trap
3432   //   - Deoptimization::unpack_frame
3433 
3434   // the unloaded class index is in O0 (first parameter to this blob)
3435 
3436   // push a dummy "unpack_frame"
3437   // and call Deoptimization::uncommon_trap to pack the compiled frame into
3438   // vframe array and return the UnrollBlock information
3439   __ save_frame(0);
3440   __ set_last_Java_frame(SP, noreg);
3441   __ mov(I0, O2klass_index);
3442   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
3443   __ reset_last_Java_frame();
3444   __ mov(O0, O2UnrollBlock->after_save());
3445   __ restore();
3446 
3447   // deallocate the deoptimized frame taking care to preserve the return values
3448   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3449   __ restore();
3450 
3451   // Allocate new interpreter frame(s) and possible c2i adapter frame
3452 
3453   make_new_frames(masm, false);
3454 
3455   // push a dummy "unpack_frame" taking care of float return values and
3456   // call Deoptimization::unpack_frames to have the unpacker layout
3457   // information in the interpreter frames just created and then return
3458   // to the interpreter entry point
3459   __ save_frame(0);
3460   __ set_last_Java_frame(SP, noreg);
3461   __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
3462   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
3463   __ reset_last_Java_frame();
3464   __ ret();
3465   __ delayed()->restore();
3466 
3467   masm->flush();
3468   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
3469 }
3470 
3471 #endif // COMPILER2
3472 
3473 //------------------------------generate_handler_blob-------------------
3474 //
3475 // Generate a special Compile2Runtime blob that saves all registers, and sets
3476 // up an OopMap.
3477 //
3478 // This blob is jumped to (via a breakpoint and the signal handler) from a
3479 // safepoint in compiled code.  On entry to this blob, O7 contains the
3480 // address in the original nmethod at which we should resume normal execution.
3481 // Thus, this blob looks like a subroutine which must preserve lots of
3482 // registers and return normally.  Note that O7 is never register-allocated,
3483 // so it is guaranteed to be free here.
3484 //
3485 
3486 // The hardest part of what this blob must do is to save the 64-bit %o
3487 // registers in the 32-bit build.  A simple 'save' turn the %o's to %i's and
3488 // an interrupt will chop off their heads.  Making space in the caller's frame
3489 // first will let us save the 64-bit %o's before save'ing, but we cannot hand
3490 // the adjusted FP off to the GC stack-crawler: this will modify the caller's
3491 // SP and mess up HIS OopMaps.  So we first adjust the caller's SP, then save
3492 // the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
3493 // Tricky, tricky, tricky...
3494 
3495 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
3496   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3497 
3498   // allocate space for the code
3499   ResourceMark rm;
3500   // setup code generation tools
3501   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3502   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3503   // even larger with TraceJumps
3504   int pad = TraceJumps ? 512 : 0;
3505   CodeBuffer buffer("handler_blob", 1600 + pad, 512);
3506   MacroAssembler* masm                = new MacroAssembler(&buffer);
3507   int             frame_size_words;
3508   OopMapSet *oop_maps = new OopMapSet();
3509   OopMap* map = NULL;
3510 
3511   int start = __ offset();
3512 
3513   // If this causes a return before the processing, then do a "restore"
3514   if (cause_return) {
3515     __ restore();
3516   } else {
3517     // Make it look like we were called via the poll
3518     // so that frame constructor always sees a valid return address
3519     __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
3520     __ sub(O7, frame::pc_return_offset, O7);
3521   }
3522 
3523   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3524 
3525   // setup last_Java_sp (blows G4)
3526   __ set_last_Java_frame(SP, noreg);
3527 
3528   // call into the runtime to handle illegal instructions exception
3529   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3530   __ mov(G2_thread, O0);
3531   __ save_thread(L7_thread_cache);
3532   __ call(call_ptr);
3533   __ delayed()->nop();
3534 
3535   // Set an oopmap for the call site.
3536   // We need this not only for callee-saved registers, but also for volatile
3537   // registers that the compiler might be keeping live across a safepoint.
3538 
3539   oop_maps->add_gc_map( __ offset() - start, map);
3540 
3541   __ restore_thread(L7_thread_cache);
3542   // clear last_Java_sp
3543   __ reset_last_Java_frame();
3544 
3545   // Check for exceptions
3546   Label pending;
3547 
3548   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3549   __ tst(O1);
3550   __ brx(Assembler::notEqual, true, Assembler::pn, pending);
3551   __ delayed()->nop();
3552 
3553   RegisterSaver::restore_live_registers(masm);
3554 
3555   // We are back the the original state on entry and ready to go.
3556 
3557   __ retl();
3558   __ delayed()->nop();
3559 
3560   // Pending exception after the safepoint
3561 
3562   __ bind(pending);
3563 
3564   RegisterSaver::restore_live_registers(masm);
3565 
3566   // We are back the the original state on entry.
3567 
3568   // Tail-call forward_exception_entry, with the issuing PC in O7,
3569   // so it looks like the original nmethod called forward_exception_entry.
3570   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3571   __ JMP(O0, 0);
3572   __ delayed()->nop();
3573 
3574   // -------------
3575   // make sure all code is generated
3576   masm->flush();
3577 
3578   // return exception blob
3579   return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
3580 }
3581 
3582 //
3583 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3584 //
3585 // Generate a stub that calls into vm to find out the proper destination
3586 // of a java call. All the argument registers are live at this point
3587 // but since this is generic code we don't know what they are and the caller
3588 // must do any gc of the args.
3589 //
3590 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
3591   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3592 
3593   // allocate space for the code
3594   ResourceMark rm;
3595   // setup code generation tools
3596   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3597   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3598   // even larger with TraceJumps
3599   int pad = TraceJumps ? 512 : 0;
3600   CodeBuffer buffer(name, 1600 + pad, 512);
3601   MacroAssembler* masm                = new MacroAssembler(&buffer);
3602   int             frame_size_words;
3603   OopMapSet *oop_maps = new OopMapSet();
3604   OopMap* map = NULL;
3605 
3606   int start = __ offset();
3607 
3608   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3609 
3610   int frame_complete = __ offset();
3611 
3612   // setup last_Java_sp (blows G4)
3613   __ set_last_Java_frame(SP, noreg);
3614 
3615   // call into the runtime to handle illegal instructions exception
3616   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3617   __ mov(G2_thread, O0);
3618   __ save_thread(L7_thread_cache);
3619   __ call(destination, relocInfo::runtime_call_type);
3620   __ delayed()->nop();
3621 
3622   // O0 contains the address we are going to jump to assuming no exception got installed
3623 
3624   // Set an oopmap for the call site.
3625   // We need this not only for callee-saved registers, but also for volatile
3626   // registers that the compiler might be keeping live across a safepoint.
3627 
3628   oop_maps->add_gc_map( __ offset() - start, map);
3629 
3630   __ restore_thread(L7_thread_cache);
3631   // clear last_Java_sp
3632   __ reset_last_Java_frame();
3633 
3634   // Check for exceptions
3635   Label pending;
3636 
3637   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3638   __ tst(O1);
3639   __ brx(Assembler::notEqual, true, Assembler::pn, pending);
3640   __ delayed()->nop();
3641 
3642   // get the returned methodOop
3643 
3644   __ get_vm_result(G5_method);
3645   __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
3646 
3647   // O0 is where we want to jump, overwrite G3 which is saved and scratch
3648 
3649   __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
3650 
3651   RegisterSaver::restore_live_registers(masm);
3652 
3653   // We are back the the original state on entry and ready to go.
3654 
3655   __ JMP(G3, 0);
3656   __ delayed()->nop();
3657 
3658   // Pending exception after the safepoint
3659 
3660   __ bind(pending);
3661 
3662   RegisterSaver::restore_live_registers(masm);
3663 
3664   // We are back the the original state on entry.
3665 
3666   // Tail-call forward_exception_entry, with the issuing PC in O7,
3667   // so it looks like the original nmethod called forward_exception_entry.
3668   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3669   __ JMP(O0, 0);
3670   __ delayed()->nop();
3671 
3672   // -------------
3673   // make sure all code is generated
3674   masm->flush();
3675 
3676   // return the  blob
3677   // frame_size_words or bytes??
3678   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3679 }
3680 
3681 void SharedRuntime::generate_stubs() {
3682 
3683   _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
3684                                              "wrong_method_stub");
3685 
3686   _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
3687                                         "ic_miss_stub");
3688 
3689   _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
3690                                         "resolve_opt_virtual_call");
3691 
3692   _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
3693                                         "resolve_virtual_call");
3694 
3695   _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
3696                                         "resolve_static_call");
3697 
3698   _polling_page_safepoint_handler_blob =
3699     generate_handler_blob(CAST_FROM_FN_PTR(address,
3700                    SafepointSynchronize::handle_polling_page_exception), false);
3701 
3702   _polling_page_return_handler_blob =
3703     generate_handler_blob(CAST_FROM_FN_PTR(address,
3704                    SafepointSynchronize::handle_polling_page_exception), true);
3705 
3706   generate_deopt_blob();
3707 
3708 #ifdef COMPILER2
3709   generate_uncommon_trap_blob();
3710 #endif // COMPILER2
3711 }