1 /*
   2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "assembler_x86.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "oops/compiledICHolderOop.hpp"
  33 #include "prims/jvmtiRedefineClassesTrace.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/vframeArray.hpp"
  36 #include "vmreg_x86.inline.hpp"
  37 #ifdef COMPILER1
  38 #include "c1/c1_Runtime1.hpp"
  39 #endif
  40 #ifdef COMPILER2
  41 #include "opto/runtime.hpp"
  42 #endif
  43 
  44 #define __ masm->
  45 #ifdef COMPILER2
  46 UncommonTrapBlob   *SharedRuntime::_uncommon_trap_blob;
  47 #endif // COMPILER2
  48 
  49 DeoptimizationBlob *SharedRuntime::_deopt_blob;
  50 SafepointBlob      *SharedRuntime::_polling_page_safepoint_handler_blob;
  51 SafepointBlob      *SharedRuntime::_polling_page_return_handler_blob;
  52 RuntimeStub*       SharedRuntime::_wrong_method_blob;
  53 RuntimeStub*       SharedRuntime::_ic_miss_blob;
  54 RuntimeStub*       SharedRuntime::_resolve_opt_virtual_call_blob;
  55 RuntimeStub*       SharedRuntime::_resolve_virtual_call_blob;
  56 RuntimeStub*       SharedRuntime::_resolve_static_call_blob;
  57 
  58 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  59 
  60 class RegisterSaver {
  61   enum { FPU_regs_live = 8 /*for the FPU stack*/+8/*eight more for XMM registers*/ };
  62   // Capture info about frame layout
  63   enum layout {
  64                 fpu_state_off = 0,
  65                 fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
  66                 st0_off, st0H_off,
  67                 st1_off, st1H_off,
  68                 st2_off, st2H_off,
  69                 st3_off, st3H_off,
  70                 st4_off, st4H_off,
  71                 st5_off, st5H_off,
  72                 st6_off, st6H_off,
  73                 st7_off, st7H_off,
  74 
  75                 xmm0_off, xmm0H_off,
  76                 xmm1_off, xmm1H_off,
  77                 xmm2_off, xmm2H_off,
  78                 xmm3_off, xmm3H_off,
  79                 xmm4_off, xmm4H_off,
  80                 xmm5_off, xmm5H_off,
  81                 xmm6_off, xmm6H_off,
  82                 xmm7_off, xmm7H_off,
  83                 flags_off,
  84                 rdi_off,
  85                 rsi_off,
  86                 ignore_off,  // extra copy of rbp,
  87                 rsp_off,
  88                 rbx_off,
  89                 rdx_off,
  90                 rcx_off,
  91                 rax_off,
  92                 // The frame sender code expects that rbp will be in the "natural" place and
  93                 // will override any oopMap setting for it. We must therefore force the layout
  94                 // so that it agrees with the frame sender code.
  95                 rbp_off,
  96                 return_off,      // slot for return address
  97                 reg_save_size };
  98 
  99 
 100   public:
 101 
 102   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
 103                                      int* total_frame_words, bool verify_fpu = true);
 104   static void restore_live_registers(MacroAssembler* masm);
 105 
 106   static int rax_offset() { return rax_off; }
 107   static int rbx_offset() { return rbx_off; }
 108 
 109   // Offsets into the register save area
 110   // Used by deoptimization when it is managing result register
 111   // values on its own
 112 
 113   static int raxOffset(void) { return rax_off; }
 114   static int rdxOffset(void) { return rdx_off; }
 115   static int rbxOffset(void) { return rbx_off; }
 116   static int xmm0Offset(void) { return xmm0_off; }
 117   // This really returns a slot in the fp save area, which one is not important
 118   static int fpResultOffset(void) { return st0_off; }
 119 
 120   // During deoptimization only the result register need to be restored
 121   // all the other values have already been extracted.
 122 
 123   static void restore_result_registers(MacroAssembler* masm);
 124 
 125 };
 126 
 127 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
 128                                            int* total_frame_words, bool verify_fpu) {
 129 
 130   int frame_size_in_bytes =  (reg_save_size + additional_frame_words) * wordSize;
 131   int frame_words = frame_size_in_bytes / wordSize;
 132   *total_frame_words = frame_words;
 133 
 134   assert(FPUStateSizeInWords == 27, "update stack layout");
 135 
 136   // save registers, fpu state, and flags
 137   // We assume caller has already has return address slot on the stack
 138   // We push epb twice in this sequence because we want the real rbp,
 139   // to be under the return like a normal enter and we want to use pusha
 140   // We push by hand instead of pusing push
 141   __ enter();
 142   __ pusha();
 143   __ pushf();
 144   __ subptr(rsp,FPU_regs_live*sizeof(jdouble)); // Push FPU registers space
 145   __ push_FPU_state();          // Save FPU state & init
 146 
 147   if (verify_fpu) {
 148     // Some stubs may have non standard FPU control word settings so
 149     // only check and reset the value when it required to be the
 150     // standard value.  The safepoint blob in particular can be used
 151     // in methods which are using the 24 bit control word for
 152     // optimized float math.
 153 
 154 #ifdef ASSERT
 155     // Make sure the control word has the expected value
 156     Label ok;
 157     __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
 158     __ jccb(Assembler::equal, ok);
 159     __ stop("corrupted control word detected");
 160     __ bind(ok);
 161 #endif
 162 
 163     // Reset the control word to guard against exceptions being unmasked
 164     // since fstp_d can cause FPU stack underflow exceptions.  Write it
 165     // into the on stack copy and then reload that to make sure that the
 166     // current and future values are correct.
 167     __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
 168   }
 169 
 170   __ frstor(Address(rsp, 0));
 171   if (!verify_fpu) {
 172     // Set the control word so that exceptions are masked for the
 173     // following code.
 174     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 175   }
 176 
 177   // Save the FPU registers in de-opt-able form
 178 
 179   __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
 180   __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
 181   __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
 182   __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
 183   __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
 184   __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
 185   __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
 186   __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
 187 
 188   if( UseSSE == 1 ) {           // Save the XMM state
 189     __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
 190     __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
 191     __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
 192     __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
 193     __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
 194     __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
 195     __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
 196     __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
 197   } else if( UseSSE >= 2 ) {
 198     __ movdbl(Address(rsp,xmm0_off*wordSize),xmm0);
 199     __ movdbl(Address(rsp,xmm1_off*wordSize),xmm1);
 200     __ movdbl(Address(rsp,xmm2_off*wordSize),xmm2);
 201     __ movdbl(Address(rsp,xmm3_off*wordSize),xmm3);
 202     __ movdbl(Address(rsp,xmm4_off*wordSize),xmm4);
 203     __ movdbl(Address(rsp,xmm5_off*wordSize),xmm5);
 204     __ movdbl(Address(rsp,xmm6_off*wordSize),xmm6);
 205     __ movdbl(Address(rsp,xmm7_off*wordSize),xmm7);
 206   }
 207 
 208   // Set an oopmap for the call site.  This oopmap will map all
 209   // oop-registers and debug-info registers as callee-saved.  This
 210   // will allow deoptimization at this safepoint to find all possible
 211   // debug-info recordings, as well as let GC find all oops.
 212 
 213   OopMapSet *oop_maps = new OopMapSet();
 214   OopMap* map =  new OopMap( frame_words, 0 );
 215 
 216 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
 217 
 218   map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
 219   map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
 220   map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
 221   map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
 222   // rbp, location is known implicitly, no oopMap
 223   map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
 224   map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
 225   map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
 226   map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
 227   map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
 228   map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
 229   map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
 230   map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
 231   map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
 232   map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
 233   map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
 234   map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
 235   map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
 236   map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
 237   map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
 238   map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
 239   map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
 240   map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
 241   // %%% This is really a waste but we'll keep things as they were for now
 242   if (true) {
 243 #define NEXTREG(x) (x)->as_VMReg()->next()
 244     map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
 245     map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
 246     map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
 247     map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
 248     map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
 249     map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
 250     map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
 251     map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
 252     map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
 253     map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
 254     map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
 255     map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
 256     map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
 257     map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
 258     map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
 259     map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
 260 #undef NEXTREG
 261 #undef STACK_OFFSET
 262   }
 263 
 264   return map;
 265 
 266 }
 267 
 268 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 269 
 270   // Recover XMM & FPU state
 271   if( UseSSE == 1 ) {
 272     __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
 273     __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
 274     __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
 275     __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
 276     __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
 277     __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
 278     __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
 279     __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
 280   } else if( UseSSE >= 2 ) {
 281     __ movdbl(xmm0,Address(rsp,xmm0_off*wordSize));
 282     __ movdbl(xmm1,Address(rsp,xmm1_off*wordSize));
 283     __ movdbl(xmm2,Address(rsp,xmm2_off*wordSize));
 284     __ movdbl(xmm3,Address(rsp,xmm3_off*wordSize));
 285     __ movdbl(xmm4,Address(rsp,xmm4_off*wordSize));
 286     __ movdbl(xmm5,Address(rsp,xmm5_off*wordSize));
 287     __ movdbl(xmm6,Address(rsp,xmm6_off*wordSize));
 288     __ movdbl(xmm7,Address(rsp,xmm7_off*wordSize));
 289   }
 290   __ pop_FPU_state();
 291   __ addptr(rsp, FPU_regs_live*sizeof(jdouble)); // Pop FPU registers
 292 
 293   __ popf();
 294   __ popa();
 295   // Get the rbp, described implicitly by the frame sender code (no oopMap)
 296   __ pop(rbp);
 297 
 298 }
 299 
 300 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 301 
 302   // Just restore result register. Only used by deoptimization. By
 303   // now any callee save register that needs to be restore to a c2
 304   // caller of the deoptee has been extracted into the vframeArray
 305   // and will be stuffed into the c2i adapter we create for later
 306   // restoration so only result registers need to be restored here.
 307   //
 308 
 309   __ frstor(Address(rsp, 0));      // Restore fpu state
 310 
 311   // Recover XMM & FPU state
 312   if( UseSSE == 1 ) {
 313     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
 314   } else if( UseSSE >= 2 ) {
 315     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
 316   }
 317   __ movptr(rax, Address(rsp, rax_off*wordSize));
 318   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
 319   // Pop all of the register save are off the stack except the return address
 320   __ addptr(rsp, return_off * wordSize);
 321 }
 322 
 323 // The java_calling_convention describes stack locations as ideal slots on
 324 // a frame with no abi restrictions. Since we must observe abi restrictions
 325 // (like the placement of the register window) the slots must be biased by
 326 // the following value.
 327 static int reg2offset_in(VMReg r) {
 328   // Account for saved rbp, and return address
 329   // This should really be in_preserve_stack_slots
 330   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
 331 }
 332 
 333 static int reg2offset_out(VMReg r) {
 334   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 335 }
 336 
 337 // ---------------------------------------------------------------------------
 338 // Read the array of BasicTypes from a signature, and compute where the
 339 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 340 // quantities.  Values less than SharedInfo::stack0 are registers, those above
 341 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 342 // as framesizes are fixed.
 343 // VMRegImpl::stack0 refers to the first slot 0(sp).
 344 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 345 // up to RegisterImpl::number_of_registers) are the 32-bit
 346 // integer registers.
 347 
 348 // Pass first two oop/int args in registers ECX and EDX.
 349 // Pass first two float/double args in registers XMM0 and XMM1.
 350 // Doubles have precedence, so if you pass a mix of floats and doubles
 351 // the doubles will grab the registers before the floats will.
 352 
 353 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 354 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 355 // units regardless of build. Of course for i486 there is no 64 bit build
 356 
 357 
 358 // ---------------------------------------------------------------------------
 359 // The compiled Java calling convention.
 360 // Pass first two oop/int args in registers ECX and EDX.
 361 // Pass first two float/double args in registers XMM0 and XMM1.
 362 // Doubles have precedence, so if you pass a mix of floats and doubles
 363 // the doubles will grab the registers before the floats will.
 364 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 365                                            VMRegPair *regs,
 366                                            int total_args_passed,
 367                                            int is_outgoing) {
 368   uint    stack = 0;          // Starting stack position for args on stack
 369 
 370 
 371   // Pass first two oop/int args in registers ECX and EDX.
 372   uint reg_arg0 = 9999;
 373   uint reg_arg1 = 9999;
 374 
 375   // Pass first two float/double args in registers XMM0 and XMM1.
 376   // Doubles have precedence, so if you pass a mix of floats and doubles
 377   // the doubles will grab the registers before the floats will.
 378   // CNC - TURNED OFF FOR non-SSE.
 379   //       On Intel we have to round all doubles (and most floats) at
 380   //       call sites by storing to the stack in any case.
 381   // UseSSE=0 ==> Don't Use ==> 9999+0
 382   // UseSSE=1 ==> Floats only ==> 9999+1
 383   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
 384   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
 385   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
 386   uint freg_arg0 = 9999+fargs;
 387   uint freg_arg1 = 9999+fargs;
 388 
 389   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
 390   int i;
 391   for( i = 0; i < total_args_passed; i++) {
 392     if( sig_bt[i] == T_DOUBLE ) {
 393       // first 2 doubles go in registers
 394       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
 395       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
 396       else // Else double is passed low on the stack to be aligned.
 397         stack += 2;
 398     } else if( sig_bt[i] == T_LONG ) {
 399       stack += 2;
 400     }
 401   }
 402   int dstack = 0;             // Separate counter for placing doubles
 403 
 404   // Now pick where all else goes.
 405   for( i = 0; i < total_args_passed; i++) {
 406     // From the type and the argument number (count) compute the location
 407     switch( sig_bt[i] ) {
 408     case T_SHORT:
 409     case T_CHAR:
 410     case T_BYTE:
 411     case T_BOOLEAN:
 412     case T_INT:
 413     case T_ARRAY:
 414     case T_OBJECT:
 415     case T_ADDRESS:
 416       if( reg_arg0 == 9999 )  {
 417         reg_arg0 = i;
 418         regs[i].set1(rcx->as_VMReg());
 419       } else if( reg_arg1 == 9999 )  {
 420         reg_arg1 = i;
 421         regs[i].set1(rdx->as_VMReg());
 422       } else {
 423         regs[i].set1(VMRegImpl::stack2reg(stack++));
 424       }
 425       break;
 426     case T_FLOAT:
 427       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
 428         freg_arg0 = i;
 429         regs[i].set1(xmm0->as_VMReg());
 430       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
 431         freg_arg1 = i;
 432         regs[i].set1(xmm1->as_VMReg());
 433       } else {
 434         regs[i].set1(VMRegImpl::stack2reg(stack++));
 435       }
 436       break;
 437     case T_LONG:
 438       assert(sig_bt[i+1] == T_VOID, "missing Half" );
 439       regs[i].set2(VMRegImpl::stack2reg(dstack));
 440       dstack += 2;
 441       break;
 442     case T_DOUBLE:
 443       assert(sig_bt[i+1] == T_VOID, "missing Half" );
 444       if( freg_arg0 == (uint)i ) {
 445         regs[i].set2(xmm0->as_VMReg());
 446       } else if( freg_arg1 == (uint)i ) {
 447         regs[i].set2(xmm1->as_VMReg());
 448       } else {
 449         regs[i].set2(VMRegImpl::stack2reg(dstack));
 450         dstack += 2;
 451       }
 452       break;
 453     case T_VOID: regs[i].set_bad(); break;
 454       break;
 455     default:
 456       ShouldNotReachHere();
 457       break;
 458     }
 459   }
 460 
 461   // return value can be odd number of VMRegImpl stack slots make multiple of 2
 462   return round_to(stack, 2);
 463 }
 464 
 465 // Patch the callers callsite with entry to compiled code if it exists.
 466 static void patch_callers_callsite(MacroAssembler *masm) {
 467   Label L;
 468   __ verify_oop(rbx);
 469   __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
 470   __ jcc(Assembler::equal, L);
 471   // Schedule the branch target address early.
 472   // Call into the VM to patch the caller, then jump to compiled callee
 473   // rax, isn't live so capture return address while we easily can
 474   __ movptr(rax, Address(rsp, 0));
 475   __ pusha();
 476   __ pushf();
 477 
 478   if (UseSSE == 1) {
 479     __ subptr(rsp, 2*wordSize);
 480     __ movflt(Address(rsp, 0), xmm0);
 481     __ movflt(Address(rsp, wordSize), xmm1);
 482   }
 483   if (UseSSE >= 2) {
 484     __ subptr(rsp, 4*wordSize);
 485     __ movdbl(Address(rsp, 0), xmm0);
 486     __ movdbl(Address(rsp, 2*wordSize), xmm1);
 487   }
 488 #ifdef COMPILER2
 489   // C2 may leave the stack dirty if not in SSE2+ mode
 490   if (UseSSE >= 2) {
 491     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 492   } else {
 493     __ empty_FPU_stack();
 494   }
 495 #endif /* COMPILER2 */
 496 
 497   // VM needs caller's callsite
 498   __ push(rax);
 499   // VM needs target method
 500   __ push(rbx);
 501   __ verify_oop(rbx);
 502   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 503   __ addptr(rsp, 2*wordSize);
 504 
 505   if (UseSSE == 1) {
 506     __ movflt(xmm0, Address(rsp, 0));
 507     __ movflt(xmm1, Address(rsp, wordSize));
 508     __ addptr(rsp, 2*wordSize);
 509   }
 510   if (UseSSE >= 2) {
 511     __ movdbl(xmm0, Address(rsp, 0));
 512     __ movdbl(xmm1, Address(rsp, 2*wordSize));
 513     __ addptr(rsp, 4*wordSize);
 514   }
 515 
 516   __ popf();
 517   __ popa();
 518   __ bind(L);
 519 }
 520 
 521 
 522 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
 523   int next_off = st_off - Interpreter::stackElementSize;
 524   __ movdbl(Address(rsp, next_off), r);
 525 }
 526 
 527 static void gen_c2i_adapter(MacroAssembler *masm,
 528                             int total_args_passed,
 529                             int comp_args_on_stack,
 530                             const BasicType *sig_bt,
 531                             const VMRegPair *regs,
 532                             Label& skip_fixup) {
 533   // Before we get into the guts of the C2I adapter, see if we should be here
 534   // at all.  We've come from compiled code and are attempting to jump to the
 535   // interpreter, which means the caller made a static call to get here
 536   // (vcalls always get a compiled target if there is one).  Check for a
 537   // compiled target.  If there is one, we need to patch the caller's call.
 538   patch_callers_callsite(masm);
 539 
 540   __ bind(skip_fixup);
 541 
 542 #ifdef COMPILER2
 543   // C2 may leave the stack dirty if not in SSE2+ mode
 544   if (UseSSE >= 2) {
 545     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 546   } else {
 547     __ empty_FPU_stack();
 548   }
 549 #endif /* COMPILER2 */
 550 
 551   // Since all args are passed on the stack, total_args_passed * interpreter_
 552   // stack_element_size  is the
 553   // space we need.
 554   int extraspace = total_args_passed * Interpreter::stackElementSize;
 555 
 556   // Get return address
 557   __ pop(rax);
 558 
 559   // set senderSP value
 560   __ movptr(rsi, rsp);
 561 
 562   __ subptr(rsp, extraspace);
 563 
 564   // Now write the args into the outgoing interpreter space
 565   for (int i = 0; i < total_args_passed; i++) {
 566     if (sig_bt[i] == T_VOID) {
 567       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 568       continue;
 569     }
 570 
 571     // st_off points to lowest address on stack.
 572     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
 573     int next_off = st_off - Interpreter::stackElementSize;
 574 
 575     // Say 4 args:
 576     // i   st_off
 577     // 0   12 T_LONG
 578     // 1    8 T_VOID
 579     // 2    4 T_OBJECT
 580     // 3    0 T_BOOL
 581     VMReg r_1 = regs[i].first();
 582     VMReg r_2 = regs[i].second();
 583     if (!r_1->is_valid()) {
 584       assert(!r_2->is_valid(), "");
 585       continue;
 586     }
 587 
 588     if (r_1->is_stack()) {
 589       // memory to memory use fpu stack top
 590       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 591 
 592       if (!r_2->is_valid()) {
 593         __ movl(rdi, Address(rsp, ld_off));
 594         __ movptr(Address(rsp, st_off), rdi);
 595       } else {
 596 
 597         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
 598         // st_off == MSW, st_off-wordSize == LSW
 599 
 600         __ movptr(rdi, Address(rsp, ld_off));
 601         __ movptr(Address(rsp, next_off), rdi);
 602 #ifndef _LP64
 603         __ movptr(rdi, Address(rsp, ld_off + wordSize));
 604         __ movptr(Address(rsp, st_off), rdi);
 605 #else
 606 #ifdef ASSERT
 607         // Overwrite the unused slot with known junk
 608         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 609         __ movptr(Address(rsp, st_off), rax);
 610 #endif /* ASSERT */
 611 #endif // _LP64
 612       }
 613     } else if (r_1->is_Register()) {
 614       Register r = r_1->as_Register();
 615       if (!r_2->is_valid()) {
 616         __ movl(Address(rsp, st_off), r);
 617       } else {
 618         // long/double in gpr
 619         NOT_LP64(ShouldNotReachHere());
 620         // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 621         // T_DOUBLE and T_LONG use two slots in the interpreter
 622         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 623           // long/double in gpr
 624 #ifdef ASSERT
 625           // Overwrite the unused slot with known junk
 626           LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
 627           __ movptr(Address(rsp, st_off), rax);
 628 #endif /* ASSERT */
 629           __ movptr(Address(rsp, next_off), r);
 630         } else {
 631           __ movptr(Address(rsp, st_off), r);
 632         }
 633       }
 634     } else {
 635       assert(r_1->is_XMMRegister(), "");
 636       if (!r_2->is_valid()) {
 637         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 638       } else {
 639         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
 640         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
 641       }
 642     }
 643   }
 644 
 645   // Schedule the branch target address early.
 646   __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
 647   // And repush original return address
 648   __ push(rax);
 649   __ jmp(rcx);
 650 }
 651 
 652 
 653 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
 654   int next_val_off = ld_off - Interpreter::stackElementSize;
 655   __ movdbl(r, Address(saved_sp, next_val_off));
 656 }
 657 
 658 static void gen_i2c_adapter(MacroAssembler *masm,
 659                             int total_args_passed,
 660                             int comp_args_on_stack,
 661                             const BasicType *sig_bt,
 662                             const VMRegPair *regs) {
 663 
 664   // Note: rsi contains the senderSP on entry. We must preserve it since
 665   // we may do a i2c -> c2i transition if we lose a race where compiled
 666   // code goes non-entrant while we get args ready.
 667 
 668   // Pick up the return address
 669   __ movptr(rax, Address(rsp, 0));
 670 
 671   // Must preserve original SP for loading incoming arguments because
 672   // we need to align the outgoing SP for compiled code.
 673   __ movptr(rdi, rsp);
 674 
 675   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 676   // in registers, we will occasionally have no stack args.
 677   int comp_words_on_stack = 0;
 678   if (comp_args_on_stack) {
 679     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 680     // registers are below.  By subtracting stack0, we either get a negative
 681     // number (all values in registers) or the maximum stack slot accessed.
 682     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
 683     // Convert 4-byte stack slots to words.
 684     comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
 685     // Round up to miminum stack alignment, in wordSize
 686     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 687     __ subptr(rsp, comp_words_on_stack * wordSize);
 688   }
 689 
 690   // Align the outgoing SP
 691   __ andptr(rsp, -(StackAlignmentInBytes));
 692 
 693   // push the return address on the stack (note that pushing, rather
 694   // than storing it, yields the correct frame alignment for the callee)
 695   __ push(rax);
 696 
 697   // Put saved SP in another register
 698   const Register saved_sp = rax;
 699   __ movptr(saved_sp, rdi);
 700 
 701 
 702   // Will jump to the compiled code just as if compiled code was doing it.
 703   // Pre-load the register-jump target early, to schedule it better.
 704   __ movptr(rdi, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
 705 
 706   // Now generate the shuffle code.  Pick up all register args and move the
 707   // rest through the floating point stack top.
 708   for (int i = 0; i < total_args_passed; i++) {
 709     if (sig_bt[i] == T_VOID) {
 710       // Longs and doubles are passed in native word order, but misaligned
 711       // in the 32-bit build.
 712       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 713       continue;
 714     }
 715 
 716     // Pick up 0, 1 or 2 words from SP+offset.
 717 
 718     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 719             "scrambled load targets?");
 720     // Load in argument order going down.
 721     int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
 722     // Point to interpreter value (vs. tag)
 723     int next_off = ld_off - Interpreter::stackElementSize;
 724     //
 725     //
 726     //
 727     VMReg r_1 = regs[i].first();
 728     VMReg r_2 = regs[i].second();
 729     if (!r_1->is_valid()) {
 730       assert(!r_2->is_valid(), "");
 731       continue;
 732     }
 733     if (r_1->is_stack()) {
 734       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 735       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 736 
 737       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
 738       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
 739       // we be generated.
 740       if (!r_2->is_valid()) {
 741         // __ fld_s(Address(saved_sp, ld_off));
 742         // __ fstp_s(Address(rsp, st_off));
 743         __ movl(rsi, Address(saved_sp, ld_off));
 744         __ movptr(Address(rsp, st_off), rsi);
 745       } else {
 746         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 747         // are accessed as negative so LSW is at LOW address
 748 
 749         // ld_off is MSW so get LSW
 750         // st_off is LSW (i.e. reg.first())
 751         // __ fld_d(Address(saved_sp, next_off));
 752         // __ fstp_d(Address(rsp, st_off));
 753         //
 754         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 755         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 756         // So we must adjust where to pick up the data to match the interpreter.
 757         //
 758         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 759         // are accessed as negative so LSW is at LOW address
 760 
 761         // ld_off is MSW so get LSW
 762         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 763                            next_off : ld_off;
 764         __ movptr(rsi, Address(saved_sp, offset));
 765         __ movptr(Address(rsp, st_off), rsi);
 766 #ifndef _LP64
 767         __ movptr(rsi, Address(saved_sp, ld_off));
 768         __ movptr(Address(rsp, st_off + wordSize), rsi);
 769 #endif // _LP64
 770       }
 771     } else if (r_1->is_Register()) {  // Register argument
 772       Register r = r_1->as_Register();
 773       assert(r != rax, "must be different");
 774       if (r_2->is_valid()) {
 775         //
 776         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 777         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 778         // So we must adjust where to pick up the data to match the interpreter.
 779 
 780         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 781                            next_off : ld_off;
 782 
 783         // this can be a misaligned move
 784         __ movptr(r, Address(saved_sp, offset));
 785 #ifndef _LP64
 786         assert(r_2->as_Register() != rax, "need another temporary register");
 787         // Remember r_1 is low address (and LSB on x86)
 788         // So r_2 gets loaded from high address regardless of the platform
 789         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
 790 #endif // _LP64
 791       } else {
 792         __ movl(r, Address(saved_sp, ld_off));
 793       }
 794     } else {
 795       assert(r_1->is_XMMRegister(), "");
 796       if (!r_2->is_valid()) {
 797         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 798       } else {
 799         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
 800       }
 801     }
 802   }
 803 
 804   // 6243940 We might end up in handle_wrong_method if
 805   // the callee is deoptimized as we race thru here. If that
 806   // happens we don't want to take a safepoint because the
 807   // caller frame will look interpreted and arguments are now
 808   // "compiled" so it is much better to make this transition
 809   // invisible to the stack walking code. Unfortunately if
 810   // we try and find the callee by normal means a safepoint
 811   // is possible. So we stash the desired callee in the thread
 812   // and the vm will find there should this case occur.
 813 
 814   __ get_thread(rax);
 815   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
 816 
 817   // move methodOop to rax, in case we end up in an c2i adapter.
 818   // the c2i adapters expect methodOop in rax, (c2) because c2's
 819   // resolve stubs return the result (the method) in rax,.
 820   // I'd love to fix this.
 821   __ mov(rax, rbx);
 822 
 823   __ jmp(rdi);
 824 }
 825 
 826 // ---------------------------------------------------------------
 827 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 828                                                             int total_args_passed,
 829                                                             int comp_args_on_stack,
 830                                                             const BasicType *sig_bt,
 831                                                             const VMRegPair *regs,
 832                                                             AdapterFingerPrint* fingerprint) {
 833   address i2c_entry = __ pc();
 834 
 835   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 836 
 837   // -------------------------------------------------------------------------
 838   // Generate a C2I adapter.  On entry we know rbx, holds the methodOop during calls
 839   // to the interpreter.  The args start out packed in the compiled layout.  They
 840   // need to be unpacked into the interpreter layout.  This will almost always
 841   // require some stack space.  We grow the current (compiled) stack, then repack
 842   // the args.  We  finally end in a jump to the generic interpreter entry point.
 843   // On exit from the interpreter, the interpreter will restore our SP (lest the
 844   // compiled code, which relys solely on SP and not EBP, get sick).
 845 
 846   address c2i_unverified_entry = __ pc();
 847   Label skip_fixup;
 848 
 849   Register holder = rax;
 850   Register receiver = rcx;
 851   Register temp = rbx;
 852 
 853   {
 854 
 855     Label missed;
 856 
 857     __ verify_oop(holder);
 858     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 859     __ verify_oop(temp);
 860 
 861     __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
 862     __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
 863     __ jcc(Assembler::notEqual, missed);
 864     // Method might have been compiled since the call site was patched to
 865     // interpreted if that is the case treat it as a miss so we can get
 866     // the call site corrected.
 867     __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
 868     __ jcc(Assembler::equal, skip_fixup);
 869 
 870     __ bind(missed);
 871     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 872   }
 873 
 874   address c2i_entry = __ pc();
 875 
 876   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 877 
 878   __ flush();
 879   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 880 }
 881 
 882 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 883                                          VMRegPair *regs,
 884                                          int total_args_passed) {
 885 // We return the amount of VMRegImpl stack slots we need to reserve for all
 886 // the arguments NOT counting out_preserve_stack_slots.
 887 
 888   uint    stack = 0;        // All arguments on stack
 889 
 890   for( int i = 0; i < total_args_passed; i++) {
 891     // From the type and the argument number (count) compute the location
 892     switch( sig_bt[i] ) {
 893     case T_BOOLEAN:
 894     case T_CHAR:
 895     case T_FLOAT:
 896     case T_BYTE:
 897     case T_SHORT:
 898     case T_INT:
 899     case T_OBJECT:
 900     case T_ARRAY:
 901     case T_ADDRESS:
 902       regs[i].set1(VMRegImpl::stack2reg(stack++));
 903       break;
 904     case T_LONG:
 905     case T_DOUBLE: // The stack numbering is reversed from Java
 906       // Since C arguments do not get reversed, the ordering for
 907       // doubles on the stack must be opposite the Java convention
 908       assert(sig_bt[i+1] == T_VOID, "missing Half" );
 909       regs[i].set2(VMRegImpl::stack2reg(stack));
 910       stack += 2;
 911       break;
 912     case T_VOID: regs[i].set_bad(); break;
 913     default:
 914       ShouldNotReachHere();
 915       break;
 916     }
 917   }
 918   return stack;
 919 }
 920 
 921 // A simple move of integer like type
 922 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
 923   if (src.first()->is_stack()) {
 924     if (dst.first()->is_stack()) {
 925       // stack to stack
 926       // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
 927       // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
 928       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
 929       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
 930     } else {
 931       // stack to reg
 932       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
 933     }
 934   } else if (dst.first()->is_stack()) {
 935     // reg to stack
 936     // no need to sign extend on 64bit
 937     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
 938   } else {
 939     if (dst.first() != src.first()) {
 940       __ mov(dst.first()->as_Register(), src.first()->as_Register());
 941     }
 942   }
 943 }
 944 
 945 // An oop arg. Must pass a handle not the oop itself
 946 static void object_move(MacroAssembler* masm,
 947                         OopMap* map,
 948                         int oop_handle_offset,
 949                         int framesize_in_slots,
 950                         VMRegPair src,
 951                         VMRegPair dst,
 952                         bool is_receiver,
 953                         int* receiver_offset) {
 954 
 955   // Because of the calling conventions we know that src can be a
 956   // register or a stack location. dst can only be a stack location.
 957 
 958   assert(dst.first()->is_stack(), "must be stack");
 959   // must pass a handle. First figure out the location we use as a handle
 960 
 961   if (src.first()->is_stack()) {
 962     // Oop is already on the stack as an argument
 963     Register rHandle = rax;
 964     Label nil;
 965     __ xorptr(rHandle, rHandle);
 966     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
 967     __ jcc(Assembler::equal, nil);
 968     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
 969     __ bind(nil);
 970     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
 971 
 972     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
 973     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
 974     if (is_receiver) {
 975       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
 976     }
 977   } else {
 978     // Oop is in an a register we must store it to the space we reserve
 979     // on the stack for oop_handles
 980     const Register rOop = src.first()->as_Register();
 981     const Register rHandle = rax;
 982     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
 983     int offset = oop_slot*VMRegImpl::stack_slot_size;
 984     Label skip;
 985     __ movptr(Address(rsp, offset), rOop);
 986     map->set_oop(VMRegImpl::stack2reg(oop_slot));
 987     __ xorptr(rHandle, rHandle);
 988     __ cmpptr(rOop, (int32_t)NULL_WORD);
 989     __ jcc(Assembler::equal, skip);
 990     __ lea(rHandle, Address(rsp, offset));
 991     __ bind(skip);
 992     // Store the handle parameter
 993     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
 994     if (is_receiver) {
 995       *receiver_offset = offset;
 996     }
 997   }
 998 }
 999 
1000 // A float arg may have to do float reg int reg conversion
1001 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1002   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1003 
1004   // Because of the calling convention we know that src is either a stack location
1005   // or an xmm register. dst can only be a stack location.
1006 
1007   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
1008 
1009   if (src.first()->is_stack()) {
1010     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1011     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1012   } else {
1013     // reg to stack
1014     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1015   }
1016 }
1017 
1018 // A long move
1019 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1020 
1021   // The only legal possibility for a long_move VMRegPair is:
1022   // 1: two stack slots (possibly unaligned)
1023   // as neither the java  or C calling convention will use registers
1024   // for longs.
1025 
1026   if (src.first()->is_stack() && dst.first()->is_stack()) {
1027     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
1028     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1029     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1030     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1031     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1032   } else {
1033     ShouldNotReachHere();
1034   }
1035 }
1036 
1037 // A double move
1038 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1039 
1040   // The only legal possibilities for a double_move VMRegPair are:
1041   // The painful thing here is that like long_move a VMRegPair might be
1042 
1043   // Because of the calling convention we know that src is either
1044   //   1: a single physical register (xmm registers only)
1045   //   2: two stack slots (possibly unaligned)
1046   // dst can only be a pair of stack slots.
1047 
1048   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
1049 
1050   if (src.first()->is_stack()) {
1051     // source is all stack
1052     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1053     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1054     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1055     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1056   } else {
1057     // reg to stack
1058     // No worries about stack alignment
1059     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1060   }
1061 }
1062 
1063 
1064 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1065   // We always ignore the frame_slots arg and just use the space just below frame pointer
1066   // which by this time is free to use
1067   switch (ret_type) {
1068   case T_FLOAT:
1069     __ fstp_s(Address(rbp, -wordSize));
1070     break;
1071   case T_DOUBLE:
1072     __ fstp_d(Address(rbp, -2*wordSize));
1073     break;
1074   case T_VOID:  break;
1075   case T_LONG:
1076     __ movptr(Address(rbp, -wordSize), rax);
1077     NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
1078     break;
1079   default: {
1080     __ movptr(Address(rbp, -wordSize), rax);
1081     }
1082   }
1083 }
1084 
1085 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1086   // We always ignore the frame_slots arg and just use the space just below frame pointer
1087   // which by this time is free to use
1088   switch (ret_type) {
1089   case T_FLOAT:
1090     __ fld_s(Address(rbp, -wordSize));
1091     break;
1092   case T_DOUBLE:
1093     __ fld_d(Address(rbp, -2*wordSize));
1094     break;
1095   case T_LONG:
1096     __ movptr(rax, Address(rbp, -wordSize));
1097     NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
1098     break;
1099   case T_VOID:  break;
1100   default: {
1101     __ movptr(rax, Address(rbp, -wordSize));
1102     }
1103   }
1104 }
1105 
1106 // ---------------------------------------------------------------------------
1107 // Generate a native wrapper for a given method.  The method takes arguments
1108 // in the Java compiled code convention, marshals them to the native
1109 // convention (handlizes oops, etc), transitions to native, makes the call,
1110 // returns to java state (possibly blocking), unhandlizes any result and
1111 // returns.
1112 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
1113                                                 methodHandle method,
1114                                                 int compile_id,
1115                                                 int total_in_args,
1116                                                 int comp_args_on_stack,
1117                                                 BasicType *in_sig_bt,
1118                                                 VMRegPair *in_regs,
1119                                                 BasicType ret_type) {
1120 
1121   // An OopMap for lock (and class if static)
1122   OopMapSet *oop_maps = new OopMapSet();
1123 
1124   // We have received a description of where all the java arg are located
1125   // on entry to the wrapper. We need to convert these args to where
1126   // the jni function will expect them. To figure out where they go
1127   // we convert the java signature to a C signature by inserting
1128   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1129 
1130   int total_c_args = total_in_args + 1;
1131   if (method->is_static()) {
1132     total_c_args++;
1133   }
1134 
1135   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1136   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
1137 
1138   int argc = 0;
1139   out_sig_bt[argc++] = T_ADDRESS;
1140   if (method->is_static()) {
1141     out_sig_bt[argc++] = T_OBJECT;
1142   }
1143 
1144   int i;
1145   for (i = 0; i < total_in_args ; i++ ) {
1146     out_sig_bt[argc++] = in_sig_bt[i];
1147   }
1148 
1149 
1150   // Now figure out where the args must be stored and how much stack space
1151   // they require (neglecting out_preserve_stack_slots but space for storing
1152   // the 1st six register arguments). It's weird see int_stk_helper.
1153   //
1154   int out_arg_slots;
1155   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1156 
1157   // Compute framesize for the wrapper.  We need to handlize all oops in
1158   // registers a max of 2 on x86.
1159 
1160   // Calculate the total number of stack slots we will need.
1161 
1162   // First count the abi requirement plus all of the outgoing args
1163   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1164 
1165   // Now the space for the inbound oop handle area
1166 
1167   int oop_handle_offset = stack_slots;
1168   stack_slots += 2*VMRegImpl::slots_per_word;
1169 
1170   // Now any space we need for handlizing a klass if static method
1171 
1172   int klass_slot_offset = 0;
1173   int klass_offset = -1;
1174   int lock_slot_offset = 0;
1175   bool is_static = false;
1176   int oop_temp_slot_offset = 0;
1177 
1178   if (method->is_static()) {
1179     klass_slot_offset = stack_slots;
1180     stack_slots += VMRegImpl::slots_per_word;
1181     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1182     is_static = true;
1183   }
1184 
1185   // Plus a lock if needed
1186 
1187   if (method->is_synchronized()) {
1188     lock_slot_offset = stack_slots;
1189     stack_slots += VMRegImpl::slots_per_word;
1190   }
1191 
1192   // Now a place (+2) to save return values or temp during shuffling
1193   // + 2 for return address (which we own) and saved rbp,
1194   stack_slots += 4;
1195 
1196   // Ok The space we have allocated will look like:
1197   //
1198   //
1199   // FP-> |                     |
1200   //      |---------------------|
1201   //      | 2 slots for moves   |
1202   //      |---------------------|
1203   //      | lock box (if sync)  |
1204   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
1205   //      | klass (if static)   |
1206   //      |---------------------| <- klass_slot_offset
1207   //      | oopHandle area      |
1208   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
1209   //      | outbound memory     |
1210   //      | based arguments     |
1211   //      |                     |
1212   //      |---------------------|
1213   //      |                     |
1214   // SP-> | out_preserved_slots |
1215   //
1216   //
1217   // ****************************************************************************
1218   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1219   // arguments off of the stack after the jni call. Before the call we can use
1220   // instructions that are SP relative. After the jni call we switch to FP
1221   // relative instructions instead of re-adjusting the stack on windows.
1222   // ****************************************************************************
1223 
1224 
1225   // Now compute actual number of stack words we need rounding to make
1226   // stack properly aligned.
1227   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1228 
1229   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1230 
1231   intptr_t start = (intptr_t)__ pc();
1232 
1233   // First thing make an ic check to see if we should even be here
1234 
1235   // We are free to use all registers as temps without saving them and
1236   // restoring them except rbp,. rbp, is the only callee save register
1237   // as far as the interpreter and the compiler(s) are concerned.
1238 
1239 
1240   const Register ic_reg = rax;
1241   const Register receiver = rcx;
1242   Label hit;
1243   Label exception_pending;
1244 
1245 
1246   __ verify_oop(receiver);
1247   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
1248   __ jcc(Assembler::equal, hit);
1249 
1250   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1251 
1252   // verified entry must be aligned for code patching.
1253   // and the first 5 bytes must be in the same cache line
1254   // if we align at 8 then we will be sure 5 bytes are in the same line
1255   __ align(8);
1256 
1257   __ bind(hit);
1258 
1259   int vep_offset = ((intptr_t)__ pc()) - start;
1260 
1261 #ifdef COMPILER1
1262   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
1263     // Object.hashCode can pull the hashCode from the header word
1264     // instead of doing a full VM transition once it's been computed.
1265     // Since hashCode is usually polymorphic at call sites we can't do
1266     // this optimization at the call site without a lot of work.
1267     Label slowCase;
1268     Register receiver = rcx;
1269     Register result = rax;
1270     __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
1271 
1272     // check if locked
1273     __ testptr(result, markOopDesc::unlocked_value);
1274     __ jcc (Assembler::zero, slowCase);
1275 
1276     if (UseBiasedLocking) {
1277       // Check if biased and fall through to runtime if so
1278       __ testptr(result, markOopDesc::biased_lock_bit_in_place);
1279       __ jcc (Assembler::notZero, slowCase);
1280     }
1281 
1282     // get hash
1283     __ andptr(result, markOopDesc::hash_mask_in_place);
1284     // test if hashCode exists
1285     __ jcc  (Assembler::zero, slowCase);
1286     __ shrptr(result, markOopDesc::hash_shift);
1287     __ ret(0);
1288     __ bind (slowCase);
1289   }
1290 #endif // COMPILER1
1291 
1292   // The instruction at the verified entry point must be 5 bytes or longer
1293   // because it can be patched on the fly by make_non_entrant. The stack bang
1294   // instruction fits that requirement.
1295 
1296   // Generate stack overflow check
1297 
1298   if (UseStackBanging) {
1299     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
1300   } else {
1301     // need a 5 byte instruction to allow MT safe patching to non-entrant
1302     __ fat_nop();
1303   }
1304 
1305   // Generate a new frame for the wrapper.
1306   __ enter();
1307   // -2 because return address is already present and so is saved rbp,
1308   __ subptr(rsp, stack_size - 2*wordSize);
1309 
1310   // Frame is now completed as far a size and linkage.
1311 
1312   int frame_complete = ((intptr_t)__ pc()) - start;
1313 
1314   // Calculate the difference between rsp and rbp,. We need to know it
1315   // after the native call because on windows Java Natives will pop
1316   // the arguments and it is painful to do rsp relative addressing
1317   // in a platform independent way. So after the call we switch to
1318   // rbp, relative addressing.
1319 
1320   int fp_adjustment = stack_size - 2*wordSize;
1321 
1322 #ifdef COMPILER2
1323   // C2 may leave the stack dirty if not in SSE2+ mode
1324   if (UseSSE >= 2) {
1325     __ verify_FPU(0, "c2i transition should have clean FPU stack");
1326   } else {
1327     __ empty_FPU_stack();
1328   }
1329 #endif /* COMPILER2 */
1330 
1331   // Compute the rbp, offset for any slots used after the jni call
1332 
1333   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1334   int oop_temp_slot_rbp_offset = (oop_temp_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1335 
1336   // We use rdi as a thread pointer because it is callee save and
1337   // if we load it once it is usable thru the entire wrapper
1338   const Register thread = rdi;
1339 
1340   // We use rsi as the oop handle for the receiver/klass
1341   // It is callee save so it survives the call to native
1342 
1343   const Register oop_handle_reg = rsi;
1344 
1345   __ get_thread(thread);
1346 
1347 
1348   //
1349   // We immediately shuffle the arguments so that any vm call we have to
1350   // make from here on out (sync slow path, jvmti, etc.) we will have
1351   // captured the oops from our caller and have a valid oopMap for
1352   // them.
1353 
1354   // -----------------
1355   // The Grand Shuffle
1356   //
1357   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1358   // and, if static, the class mirror instead of a receiver.  This pretty much
1359   // guarantees that register layout will not match (and x86 doesn't use reg
1360   // parms though amd does).  Since the native abi doesn't use register args
1361   // and the java conventions does we don't have to worry about collisions.
1362   // All of our moved are reg->stack or stack->stack.
1363   // We ignore the extra arguments during the shuffle and handle them at the
1364   // last moment. The shuffle is described by the two calling convention
1365   // vectors we have in our possession. We simply walk the java vector to
1366   // get the source locations and the c vector to get the destinations.
1367 
1368   int c_arg = method->is_static() ? 2 : 1 ;
1369 
1370   // Record rsp-based slot for receiver on stack for non-static methods
1371   int receiver_offset = -1;
1372 
1373   // This is a trick. We double the stack slots so we can claim
1374   // the oops in the caller's frame. Since we are sure to have
1375   // more args than the caller doubling is enough to make
1376   // sure we can capture all the incoming oop args from the
1377   // caller.
1378   //
1379   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1380 
1381   // Mark location of rbp,
1382   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
1383 
1384   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
1385   // Are free to temporaries if we have to do  stack to steck moves.
1386   // All inbound args are referenced based on rbp, and all outbound args via rsp.
1387 
1388   for (i = 0; i < total_in_args ; i++, c_arg++ ) {
1389     switch (in_sig_bt[i]) {
1390       case T_ARRAY:
1391       case T_OBJECT:
1392         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1393                     ((i == 0) && (!is_static)),
1394                     &receiver_offset);
1395         break;
1396       case T_VOID:
1397         break;
1398 
1399       case T_FLOAT:
1400         float_move(masm, in_regs[i], out_regs[c_arg]);
1401           break;
1402 
1403       case T_DOUBLE:
1404         assert( i + 1 < total_in_args &&
1405                 in_sig_bt[i + 1] == T_VOID &&
1406                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1407         double_move(masm, in_regs[i], out_regs[c_arg]);
1408         break;
1409 
1410       case T_LONG :
1411         long_move(masm, in_regs[i], out_regs[c_arg]);
1412         break;
1413 
1414       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1415 
1416       default:
1417         simple_move32(masm, in_regs[i], out_regs[c_arg]);
1418     }
1419   }
1420 
1421   // Pre-load a static method's oop into rsi.  Used both by locking code and
1422   // the normal JNI call code.
1423   if (method->is_static()) {
1424 
1425     //  load opp into a register
1426     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
1427 
1428     // Now handlize the static class mirror it's known not-null.
1429     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1430     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1431 
1432     // Now get the handle
1433     __ lea(oop_handle_reg, Address(rsp, klass_offset));
1434     // store the klass handle as second argument
1435     __ movptr(Address(rsp, wordSize), oop_handle_reg);
1436   }
1437 
1438   // Change state to native (we save the return address in the thread, since it might not
1439   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1440   // points into the right code segment. It does not have to be the correct return pc.
1441   // We use the same pc/oopMap repeatedly when we call out
1442 
1443   intptr_t the_pc = (intptr_t) __ pc();
1444   oop_maps->add_gc_map(the_pc - start, map);
1445 
1446   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
1447 
1448 
1449   // We have all of the arguments setup at this point. We must not touch any register
1450   // argument registers at this point (what if we save/restore them there are no oop?
1451 
1452   {
1453     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
1454     __ movoop(rax, JNIHandles::make_local(method()));
1455     __ call_VM_leaf(
1456          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1457          thread, rax);
1458   }
1459 
1460   // RedefineClasses() tracing support for obsolete method entry
1461   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1462     __ movoop(rax, JNIHandles::make_local(method()));
1463     __ call_VM_leaf(
1464          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1465          thread, rax);
1466   }
1467 
1468   // These are register definitions we need for locking/unlocking
1469   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
1470   const Register obj_reg  = rcx;  // Will contain the oop
1471   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
1472 
1473   Label slow_path_lock;
1474   Label lock_done;
1475 
1476   // Lock a synchronized method
1477   if (method->is_synchronized()) {
1478 
1479 
1480     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1481 
1482     // Get the handle (the 2nd argument)
1483     __ movptr(oop_handle_reg, Address(rsp, wordSize));
1484 
1485     // Get address of the box
1486 
1487     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
1488 
1489     // Load the oop from the handle
1490     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1491 
1492     if (UseBiasedLocking) {
1493       // Note that oop_handle_reg is trashed during this call
1494       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
1495     }
1496 
1497     // Load immediate 1 into swap_reg %rax,
1498     __ movptr(swap_reg, 1);
1499 
1500     // Load (object->mark() | 1) into swap_reg %rax,
1501     __ orptr(swap_reg, Address(obj_reg, 0));
1502 
1503     // Save (object->mark() | 1) into BasicLock's displaced header
1504     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1505 
1506     if (os::is_MP()) {
1507       __ lock();
1508     }
1509 
1510     // src -> dest iff dest == rax, else rax, <- dest
1511     // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
1512     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
1513     __ jcc(Assembler::equal, lock_done);
1514 
1515     // Test if the oopMark is an obvious stack pointer, i.e.,
1516     //  1) (mark & 3) == 0, and
1517     //  2) rsp <= mark < mark + os::pagesize()
1518     // These 3 tests can be done by evaluating the following
1519     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
1520     // assuming both stack pointer and pagesize have their
1521     // least significant 2 bits clear.
1522     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
1523 
1524     __ subptr(swap_reg, rsp);
1525     __ andptr(swap_reg, 3 - os::vm_page_size());
1526 
1527     // Save the test result, for recursive case, the result is zero
1528     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1529     __ jcc(Assembler::notEqual, slow_path_lock);
1530     // Slow path will re-enter here
1531     __ bind(lock_done);
1532 
1533     if (UseBiasedLocking) {
1534       // Re-fetch oop_handle_reg as we trashed it above
1535       __ movptr(oop_handle_reg, Address(rsp, wordSize));
1536     }
1537   }
1538 
1539 
1540   // Finally just about ready to make the JNI call
1541 
1542 
1543   // get JNIEnv* which is first argument to native
1544 
1545   __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
1546   __ movptr(Address(rsp, 0), rdx);
1547 
1548   // Now set thread in native
1549   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1550 
1551   __ call(RuntimeAddress(method->native_function()));
1552 
1553   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1554   // arguments off of the stack. We could just re-adjust the stack pointer here
1555   // and continue to do SP relative addressing but we instead switch to FP
1556   // relative addressing.
1557 
1558   // Unpack native results.
1559   switch (ret_type) {
1560   case T_BOOLEAN: __ c2bool(rax);            break;
1561   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
1562   case T_BYTE   : __ sign_extend_byte (rax); break;
1563   case T_SHORT  : __ sign_extend_short(rax); break;
1564   case T_INT    : /* nothing to do */        break;
1565   case T_DOUBLE :
1566   case T_FLOAT  :
1567     // Result is in st0 we'll save as needed
1568     break;
1569   case T_ARRAY:                 // Really a handle
1570   case T_OBJECT:                // Really a handle
1571       break; // can't de-handlize until after safepoint check
1572   case T_VOID: break;
1573   case T_LONG: break;
1574   default       : ShouldNotReachHere();
1575   }
1576 
1577   // Switch thread to "native transition" state before reading the synchronization state.
1578   // This additional state is necessary because reading and testing the synchronization
1579   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1580   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1581   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1582   //     Thread A is resumed to finish this native method, but doesn't block here since it
1583   //     didn't see any synchronization is progress, and escapes.
1584   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1585 
1586   if(os::is_MP()) {
1587     if (UseMembar) {
1588       // Force this write out before the read below
1589       __ membar(Assembler::Membar_mask_bits(
1590            Assembler::LoadLoad | Assembler::LoadStore |
1591            Assembler::StoreLoad | Assembler::StoreStore));
1592     } else {
1593       // Write serialization page so VM thread can do a pseudo remote membar.
1594       // We use the current thread pointer to calculate a thread specific
1595       // offset to write to within the page. This minimizes bus traffic
1596       // due to cache line collision.
1597       __ serialize_memory(thread, rcx);
1598     }
1599   }
1600 
1601   if (AlwaysRestoreFPU) {
1602     // Make sure the control word is correct.
1603     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1604   }
1605 
1606   // check for safepoint operation in progress and/or pending suspend requests
1607   { Label Continue;
1608 
1609     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
1610              SafepointSynchronize::_not_synchronized);
1611 
1612     Label L;
1613     __ jcc(Assembler::notEqual, L);
1614     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1615     __ jcc(Assembler::equal, Continue);
1616     __ bind(L);
1617 
1618     // Don't use call_VM as it will see a possible pending exception and forward it
1619     // and never return here preventing us from clearing _last_native_pc down below.
1620     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1621     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
1622     // by hand.
1623     //
1624     save_native_result(masm, ret_type, stack_slots);
1625     __ push(thread);
1626     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
1627                                             JavaThread::check_special_condition_for_native_trans)));
1628     __ increment(rsp, wordSize);
1629     // Restore any method result value
1630     restore_native_result(masm, ret_type, stack_slots);
1631 
1632     __ bind(Continue);
1633   }
1634 
1635   // change thread state
1636   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1637 
1638   Label reguard;
1639   Label reguard_done;
1640   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
1641   __ jcc(Assembler::equal, reguard);
1642 
1643   // slow path reguard  re-enters here
1644   __ bind(reguard_done);
1645 
1646   // Handle possible exception (will unlock if necessary)
1647 
1648   // native result if any is live
1649 
1650   // Unlock
1651   Label slow_path_unlock;
1652   Label unlock_done;
1653   if (method->is_synchronized()) {
1654 
1655     Label done;
1656 
1657     // Get locked oop from the handle we passed to jni
1658     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1659 
1660     if (UseBiasedLocking) {
1661       __ biased_locking_exit(obj_reg, rbx, done);
1662     }
1663 
1664     // Simple recursive lock?
1665 
1666     __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
1667     __ jcc(Assembler::equal, done);
1668 
1669     // Must save rax, if if it is live now because cmpxchg must use it
1670     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1671       save_native_result(masm, ret_type, stack_slots);
1672     }
1673 
1674     //  get old displaced header
1675     __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
1676 
1677     // get address of the stack lock
1678     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
1679 
1680     // Atomic swap old header if oop still contains the stack lock
1681     if (os::is_MP()) {
1682     __ lock();
1683     }
1684 
1685     // src -> dest iff dest == rax, else rax, <- dest
1686     // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
1687     __ cmpxchgptr(rbx, Address(obj_reg, 0));
1688     __ jcc(Assembler::notEqual, slow_path_unlock);
1689 
1690     // slow path re-enters here
1691     __ bind(unlock_done);
1692     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1693       restore_native_result(masm, ret_type, stack_slots);
1694     }
1695 
1696     __ bind(done);
1697 
1698   }
1699 
1700   {
1701     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
1702     // Tell dtrace about this method exit
1703     save_native_result(masm, ret_type, stack_slots);
1704     __ movoop(rax, JNIHandles::make_local(method()));
1705     __ call_VM_leaf(
1706          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1707          thread, rax);
1708     restore_native_result(masm, ret_type, stack_slots);
1709   }
1710 
1711   // We can finally stop using that last_Java_frame we setup ages ago
1712 
1713   __ reset_last_Java_frame(thread, false, true);
1714 
1715   // Unpack oop result
1716   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
1717       Label L;
1718       __ cmpptr(rax, (int32_t)NULL_WORD);
1719       __ jcc(Assembler::equal, L);
1720       __ movptr(rax, Address(rax, 0));
1721       __ bind(L);
1722       __ verify_oop(rax);
1723   }
1724 
1725   // reset handle block
1726   __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
1727 
1728   __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
1729 
1730   // Any exception pending?
1731   __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
1732   __ jcc(Assembler::notEqual, exception_pending);
1733 
1734 
1735   // no exception, we're almost done
1736 
1737   // check that only result value is on FPU stack
1738   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
1739 
1740   // Fixup floating pointer results so that result looks like a return from a compiled method
1741   if (ret_type == T_FLOAT) {
1742     if (UseSSE >= 1) {
1743       // Pop st0 and store as float and reload into xmm register
1744       __ fstp_s(Address(rbp, -4));
1745       __ movflt(xmm0, Address(rbp, -4));
1746     }
1747   } else if (ret_type == T_DOUBLE) {
1748     if (UseSSE >= 2) {
1749       // Pop st0 and store as double and reload into xmm register
1750       __ fstp_d(Address(rbp, -8));
1751       __ movdbl(xmm0, Address(rbp, -8));
1752     }
1753   }
1754 
1755   // Return
1756 
1757   __ leave();
1758   __ ret(0);
1759 
1760   // Unexpected paths are out of line and go here
1761 
1762   // Slow path locking & unlocking
1763   if (method->is_synchronized()) {
1764 
1765     // BEGIN Slow path lock
1766 
1767     __ bind(slow_path_lock);
1768 
1769     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
1770     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1771     __ push(thread);
1772     __ push(lock_reg);
1773     __ push(obj_reg);
1774     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
1775     __ addptr(rsp, 3*wordSize);
1776 
1777 #ifdef ASSERT
1778     { Label L;
1779     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
1780     __ jcc(Assembler::equal, L);
1781     __ stop("no pending exception allowed on exit from monitorenter");
1782     __ bind(L);
1783     }
1784 #endif
1785     __ jmp(lock_done);
1786 
1787     // END Slow path lock
1788 
1789     // BEGIN Slow path unlock
1790     __ bind(slow_path_unlock);
1791 
1792     // Slow path unlock
1793 
1794     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1795       save_native_result(masm, ret_type, stack_slots);
1796     }
1797     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
1798 
1799     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
1800     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1801 
1802 
1803     // should be a peal
1804     // +wordSize because of the push above
1805     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
1806     __ push(rax);
1807 
1808     __ push(obj_reg);
1809     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
1810     __ addptr(rsp, 2*wordSize);
1811 #ifdef ASSERT
1812     {
1813       Label L;
1814       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
1815       __ jcc(Assembler::equal, L);
1816       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
1817       __ bind(L);
1818     }
1819 #endif /* ASSERT */
1820 
1821     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
1822 
1823     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1824       restore_native_result(masm, ret_type, stack_slots);
1825     }
1826     __ jmp(unlock_done);
1827     // END Slow path unlock
1828 
1829   }
1830 
1831   // SLOW PATH Reguard the stack if needed
1832 
1833   __ bind(reguard);
1834   save_native_result(masm, ret_type, stack_slots);
1835   {
1836     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1837   }
1838   restore_native_result(masm, ret_type, stack_slots);
1839   __ jmp(reguard_done);
1840 
1841 
1842   // BEGIN EXCEPTION PROCESSING
1843 
1844   // Forward  the exception
1845   __ bind(exception_pending);
1846 
1847   // remove possible return value from FPU register stack
1848   __ empty_FPU_stack();
1849 
1850   // pop our frame
1851   __ leave();
1852   // and forward the exception
1853   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1854 
1855   __ flush();
1856 
1857   nmethod *nm = nmethod::new_native_nmethod(method,
1858                                             compile_id,
1859                                             masm->code(),
1860                                             vep_offset,
1861                                             frame_complete,
1862                                             stack_slots / VMRegImpl::slots_per_word,
1863                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
1864                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
1865                                             oop_maps);
1866   return nm;
1867 
1868 }
1869 
1870 #ifdef HAVE_DTRACE_H
1871 // ---------------------------------------------------------------------------
1872 // Generate a dtrace nmethod for a given signature.  The method takes arguments
1873 // in the Java compiled code convention, marshals them to the native
1874 // abi and then leaves nops at the position you would expect to call a native
1875 // function. When the probe is enabled the nops are replaced with a trap
1876 // instruction that dtrace inserts and the trace will cause a notification
1877 // to dtrace.
1878 //
1879 // The probes are only able to take primitive types and java/lang/String as
1880 // arguments.  No other java types are allowed. Strings are converted to utf8
1881 // strings so that from dtrace point of view java strings are converted to C
1882 // strings. There is an arbitrary fixed limit on the total space that a method
1883 // can use for converting the strings. (256 chars per string in the signature).
1884 // So any java string larger then this is truncated.
1885 
1886 nmethod *SharedRuntime::generate_dtrace_nmethod(
1887     MacroAssembler *masm, methodHandle method) {
1888 
1889   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
1890   // be single threaded in this method.
1891   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
1892 
1893   // Fill in the signature array, for the calling-convention call.
1894   int total_args_passed = method->size_of_parameters();
1895 
1896   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
1897   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
1898 
1899   // The signature we are going to use for the trap that dtrace will see
1900   // java/lang/String is converted. We drop "this" and any other object
1901   // is converted to NULL.  (A one-slot java/lang/Long object reference
1902   // is converted to a two-slot long, which is why we double the allocation).
1903   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
1904   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
1905 
1906   int i=0;
1907   int total_strings = 0;
1908   int first_arg_to_pass = 0;
1909   int total_c_args = 0;
1910 
1911   if( !method->is_static() ) {  // Pass in receiver first
1912     in_sig_bt[i++] = T_OBJECT;
1913     first_arg_to_pass = 1;
1914   }
1915 
1916   // We need to convert the java args to where a native (non-jni) function
1917   // would expect them. To figure out where they go we convert the java
1918   // signature to a C signature.
1919 
1920   SignatureStream ss(method->signature());
1921   for ( ; !ss.at_return_type(); ss.next()) {
1922     BasicType bt = ss.type();
1923     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
1924     out_sig_bt[total_c_args++] = bt;
1925     if( bt == T_OBJECT) {
1926       Symbol* s = ss.as_symbol_or_null();   // symbol is created
1927       if (s == vmSymbols::java_lang_String()) {
1928         total_strings++;
1929         out_sig_bt[total_c_args-1] = T_ADDRESS;
1930       } else if (s == vmSymbols::java_lang_Boolean() ||
1931                  s == vmSymbols::java_lang_Character() ||
1932                  s == vmSymbols::java_lang_Byte() ||
1933                  s == vmSymbols::java_lang_Short() ||
1934                  s == vmSymbols::java_lang_Integer() ||
1935                  s == vmSymbols::java_lang_Float()) {
1936         out_sig_bt[total_c_args-1] = T_INT;
1937       } else if (s == vmSymbols::java_lang_Long() ||
1938                  s == vmSymbols::java_lang_Double()) {
1939         out_sig_bt[total_c_args-1] = T_LONG;
1940         out_sig_bt[total_c_args++] = T_VOID;
1941       }
1942     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
1943       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
1944       out_sig_bt[total_c_args++] = T_VOID;
1945     }
1946   }
1947 
1948   assert(i==total_args_passed, "validly parsed signature");
1949 
1950   // Now get the compiled-Java layout as input arguments
1951   int comp_args_on_stack;
1952   comp_args_on_stack = SharedRuntime::java_calling_convention(
1953       in_sig_bt, in_regs, total_args_passed, false);
1954 
1955   // Now figure out where the args must be stored and how much stack space
1956   // they require (neglecting out_preserve_stack_slots).
1957 
1958   int out_arg_slots;
1959   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1960 
1961   // Calculate the total number of stack slots we will need.
1962 
1963   // First count the abi requirement plus all of the outgoing args
1964   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1965 
1966   // Now space for the string(s) we must convert
1967 
1968   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
1969   for (i = 0; i < total_strings ; i++) {
1970     string_locs[i] = stack_slots;
1971     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
1972   }
1973 
1974   // + 2 for return address (which we own) and saved rbp,
1975 
1976   stack_slots += 2;
1977 
1978   // Ok The space we have allocated will look like:
1979   //
1980   //
1981   // FP-> |                     |
1982   //      |---------------------|
1983   //      | string[n]           |
1984   //      |---------------------| <- string_locs[n]
1985   //      | string[n-1]         |
1986   //      |---------------------| <- string_locs[n-1]
1987   //      | ...                 |
1988   //      | ...                 |
1989   //      |---------------------| <- string_locs[1]
1990   //      | string[0]           |
1991   //      |---------------------| <- string_locs[0]
1992   //      | outbound memory     |
1993   //      | based arguments     |
1994   //      |                     |
1995   //      |---------------------|
1996   //      |                     |
1997   // SP-> | out_preserved_slots |
1998   //
1999   //
2000 
2001   // Now compute actual number of stack words we need rounding to make
2002   // stack properly aligned.
2003   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
2004 
2005   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2006 
2007   intptr_t start = (intptr_t)__ pc();
2008 
2009   // First thing make an ic check to see if we should even be here
2010 
2011   // We are free to use all registers as temps without saving them and
2012   // restoring them except rbp. rbp, is the only callee save register
2013   // as far as the interpreter and the compiler(s) are concerned.
2014 
2015   const Register ic_reg = rax;
2016   const Register receiver = rcx;
2017   Label hit;
2018   Label exception_pending;
2019 
2020 
2021   __ verify_oop(receiver);
2022   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
2023   __ jcc(Assembler::equal, hit);
2024 
2025   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2026 
2027   // verified entry must be aligned for code patching.
2028   // and the first 5 bytes must be in the same cache line
2029   // if we align at 8 then we will be sure 5 bytes are in the same line
2030   __ align(8);
2031 
2032   __ bind(hit);
2033 
2034   int vep_offset = ((intptr_t)__ pc()) - start;
2035 
2036 
2037   // The instruction at the verified entry point must be 5 bytes or longer
2038   // because it can be patched on the fly by make_non_entrant. The stack bang
2039   // instruction fits that requirement.
2040 
2041   // Generate stack overflow check
2042 
2043 
2044   if (UseStackBanging) {
2045     if (stack_size <= StackShadowPages*os::vm_page_size()) {
2046       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2047     } else {
2048       __ movl(rax, stack_size);
2049       __ bang_stack_size(rax, rbx);
2050     }
2051   } else {
2052     // need a 5 byte instruction to allow MT safe patching to non-entrant
2053     __ fat_nop();
2054   }
2055 
2056   assert(((int)__ pc() - start - vep_offset) >= 5,
2057          "valid size for make_non_entrant");
2058 
2059   // Generate a new frame for the wrapper.
2060   __ enter();
2061 
2062   // -2 because return address is already present and so is saved rbp,
2063   if (stack_size - 2*wordSize != 0) {
2064     __ subl(rsp, stack_size - 2*wordSize);
2065   }
2066 
2067   // Frame is now completed as far a size and linkage.
2068 
2069   int frame_complete = ((intptr_t)__ pc()) - start;
2070 
2071   // First thing we do store all the args as if we are doing the call.
2072   // Since the C calling convention is stack based that ensures that
2073   // all the Java register args are stored before we need to convert any
2074   // string we might have.
2075 
2076   int sid = 0;
2077   int c_arg, j_arg;
2078   int string_reg = 0;
2079 
2080   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2081        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2082 
2083     VMRegPair src = in_regs[j_arg];
2084     VMRegPair dst = out_regs[c_arg];
2085     assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
2086            "stack based abi assumed");
2087 
2088     switch (in_sig_bt[j_arg]) {
2089 
2090       case T_ARRAY:
2091       case T_OBJECT:
2092         if (out_sig_bt[c_arg] == T_ADDRESS) {
2093           // Any register based arg for a java string after the first
2094           // will be destroyed by the call to get_utf so we store
2095           // the original value in the location the utf string address
2096           // will eventually be stored.
2097           if (src.first()->is_reg()) {
2098             if (string_reg++ != 0) {
2099               simple_move32(masm, src, dst);
2100             }
2101           }
2102         } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2103           // need to unbox a one-word value
2104           Register in_reg = rax;
2105           if ( src.first()->is_reg() ) {
2106             in_reg = src.first()->as_Register();
2107           } else {
2108             simple_move32(masm, src, in_reg->as_VMReg());
2109           }
2110           Label skipUnbox;
2111           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
2112           if ( out_sig_bt[c_arg] == T_LONG ) {
2113             __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
2114           }
2115           __ testl(in_reg, in_reg);
2116           __ jcc(Assembler::zero, skipUnbox);
2117           assert(dst.first()->is_stack() &&
2118                  (!dst.second()->is_valid() || dst.second()->is_stack()),
2119                  "value(s) must go into stack slots");
2120 
2121           BasicType bt = out_sig_bt[c_arg];
2122           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2123           if ( bt == T_LONG ) {
2124             __ movl(rbx, Address(in_reg,
2125                                  box_offset + VMRegImpl::stack_slot_size));
2126             __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
2127           }
2128           __ movl(in_reg,  Address(in_reg, box_offset));
2129           __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
2130           __ bind(skipUnbox);
2131         } else {
2132           // Convert the arg to NULL
2133           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
2134         }
2135         if (out_sig_bt[c_arg] == T_LONG) {
2136           assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2137           ++c_arg; // Move over the T_VOID To keep the loop indices in sync
2138         }
2139         break;
2140 
2141       case T_VOID:
2142         break;
2143 
2144       case T_FLOAT:
2145         float_move(masm, src, dst);
2146         break;
2147 
2148       case T_DOUBLE:
2149         assert( j_arg + 1 < total_args_passed &&
2150                 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
2151         double_move(masm, src, dst);
2152         break;
2153 
2154       case T_LONG :
2155         long_move(masm, src, dst);
2156         break;
2157 
2158       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2159 
2160       default:
2161         simple_move32(masm, src, dst);
2162     }
2163   }
2164 
2165   // Now we must convert any string we have to utf8
2166   //
2167 
2168   for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
2169        sid < total_strings ; j_arg++, c_arg++ ) {
2170 
2171     if (out_sig_bt[c_arg] == T_ADDRESS) {
2172 
2173       Address utf8_addr = Address(
2174           rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
2175       __ leal(rax, utf8_addr);
2176 
2177       // The first string we find might still be in the original java arg
2178       // register
2179       VMReg orig_loc = in_regs[j_arg].first();
2180       Register string_oop;
2181 
2182       // This is where the argument will eventually reside
2183       Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
2184 
2185       if (sid == 1 && orig_loc->is_reg()) {
2186         string_oop = orig_loc->as_Register();
2187         assert(string_oop != rax, "smashed arg");
2188       } else {
2189 
2190         if (orig_loc->is_reg()) {
2191           // Get the copy of the jls object
2192           __ movl(rcx, dest);
2193         } else {
2194           // arg is still in the original location
2195           __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
2196         }
2197         string_oop = rcx;
2198 
2199       }
2200       Label nullString;
2201       __ movl(dest, NULL_WORD);
2202       __ testl(string_oop, string_oop);
2203       __ jcc(Assembler::zero, nullString);
2204 
2205       // Now we can store the address of the utf string as the argument
2206       __ movl(dest, rax);
2207 
2208       // And do the conversion
2209       __ call_VM_leaf(CAST_FROM_FN_PTR(
2210              address, SharedRuntime::get_utf), string_oop, rax);
2211       __ bind(nullString);
2212     }
2213 
2214     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2215       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2216       ++c_arg; // Move over the T_VOID To keep the loop indices in sync
2217     }
2218   }
2219 
2220 
2221   // Ok now we are done. Need to place the nop that dtrace wants in order to
2222   // patch in the trap
2223 
2224   int patch_offset = ((intptr_t)__ pc()) - start;
2225 
2226   __ nop();
2227 
2228 
2229   // Return
2230 
2231   __ leave();
2232   __ ret(0);
2233 
2234   __ flush();
2235 
2236   nmethod *nm = nmethod::new_dtrace_nmethod(
2237       method, masm->code(), vep_offset, patch_offset, frame_complete,
2238       stack_slots / VMRegImpl::slots_per_word);
2239   return nm;
2240 
2241 }
2242 
2243 #endif // HAVE_DTRACE_H
2244 
2245 // this function returns the adjust size (in number of words) to a c2i adapter
2246 // activation for use during deoptimization
2247 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2248   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2249 }
2250 
2251 
2252 uint SharedRuntime::out_preserve_stack_slots() {
2253   return 0;
2254 }
2255 
2256 
2257 //------------------------------generate_deopt_blob----------------------------
2258 void SharedRuntime::generate_deopt_blob() {
2259   // allocate space for the code
2260   ResourceMark rm;
2261   // setup code generation tools
2262   CodeBuffer   buffer("deopt_blob", 1024, 1024);
2263   MacroAssembler* masm = new MacroAssembler(&buffer);
2264   int frame_size_in_words;
2265   OopMap* map = NULL;
2266   // Account for the extra args we place on the stack
2267   // by the time we call fetch_unroll_info
2268   const int additional_words = 2; // deopt kind, thread
2269 
2270   OopMapSet *oop_maps = new OopMapSet();
2271 
2272   // -------------
2273   // This code enters when returning to a de-optimized nmethod.  A return
2274   // address has been pushed on the the stack, and return values are in
2275   // registers.
2276   // If we are doing a normal deopt then we were called from the patched
2277   // nmethod from the point we returned to the nmethod. So the return
2278   // address on the stack is wrong by NativeCall::instruction_size
2279   // We will adjust the value to it looks like we have the original return
2280   // address on the stack (like when we eagerly deoptimized).
2281   // In the case of an exception pending with deoptimized then we enter
2282   // with a return address on the stack that points after the call we patched
2283   // into the exception handler. We have the following register state:
2284   //    rax,: exception
2285   //    rbx,: exception handler
2286   //    rdx: throwing pc
2287   // So in this case we simply jam rdx into the useless return address and
2288   // the stack looks just like we want.
2289   //
2290   // At this point we need to de-opt.  We save the argument return
2291   // registers.  We call the first C routine, fetch_unroll_info().  This
2292   // routine captures the return values and returns a structure which
2293   // describes the current frame size and the sizes of all replacement frames.
2294   // The current frame is compiled code and may contain many inlined
2295   // functions, each with their own JVM state.  We pop the current frame, then
2296   // push all the new frames.  Then we call the C routine unpack_frames() to
2297   // populate these frames.  Finally unpack_frames() returns us the new target
2298   // address.  Notice that callee-save registers are BLOWN here; they have
2299   // already been captured in the vframeArray at the time the return PC was
2300   // patched.
2301   address start = __ pc();
2302   Label cont;
2303 
2304   // Prolog for non exception case!
2305 
2306   // Save everything in sight.
2307 
2308   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2309   // Normal deoptimization
2310   __ push(Deoptimization::Unpack_deopt);
2311   __ jmp(cont);
2312 
2313   int reexecute_offset = __ pc() - start;
2314 
2315   // Reexecute case
2316   // return address is the pc describes what bci to do re-execute at
2317 
2318   // No need to update map as each call to save_live_registers will produce identical oopmap
2319   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2320 
2321   __ push(Deoptimization::Unpack_reexecute);
2322   __ jmp(cont);
2323 
2324   int exception_offset = __ pc() - start;
2325 
2326   // Prolog for exception case
2327 
2328   // all registers are dead at this entry point, except for rax, and
2329   // rdx which contain the exception oop and exception pc
2330   // respectively.  Set them in TLS and fall thru to the
2331   // unpack_with_exception_in_tls entry point.
2332 
2333   __ get_thread(rdi);
2334   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
2335   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
2336 
2337   int exception_in_tls_offset = __ pc() - start;
2338 
2339   // new implementation because exception oop is now passed in JavaThread
2340 
2341   // Prolog for exception case
2342   // All registers must be preserved because they might be used by LinearScan
2343   // Exceptiop oop and throwing PC are passed in JavaThread
2344   // tos: stack at point of call to method that threw the exception (i.e. only
2345   // args are on the stack, no return address)
2346 
2347   // make room on stack for the return address
2348   // It will be patched later with the throwing pc. The correct value is not
2349   // available now because loading it from memory would destroy registers.
2350   __ push(0);
2351 
2352   // Save everything in sight.
2353 
2354   // No need to update map as each call to save_live_registers will produce identical oopmap
2355   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2356 
2357   // Now it is safe to overwrite any register
2358 
2359   // store the correct deoptimization type
2360   __ push(Deoptimization::Unpack_exception);
2361 
2362   // load throwing pc from JavaThread and patch it as the return address
2363   // of the current frame. Then clear the field in JavaThread
2364   __ get_thread(rdi);
2365   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
2366   __ movptr(Address(rbp, wordSize), rdx);
2367   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
2368 
2369 #ifdef ASSERT
2370   // verify that there is really an exception oop in JavaThread
2371   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
2372   __ verify_oop(rax);
2373 
2374   // verify that there is no pending exception
2375   Label no_pending_exception;
2376   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
2377   __ testptr(rax, rax);
2378   __ jcc(Assembler::zero, no_pending_exception);
2379   __ stop("must not have pending exception here");
2380   __ bind(no_pending_exception);
2381 #endif
2382 
2383   __ bind(cont);
2384 
2385   // Compiled code leaves the floating point stack dirty, empty it.
2386   __ empty_FPU_stack();
2387 
2388 
2389   // Call C code.  Need thread and this frame, but NOT official VM entry
2390   // crud.  We cannot block on this call, no GC can happen.
2391   __ get_thread(rcx);
2392   __ push(rcx);
2393   // fetch_unroll_info needs to call last_java_frame()
2394   __ set_last_Java_frame(rcx, noreg, noreg, NULL);
2395 
2396   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2397 
2398   // Need to have an oopmap that tells fetch_unroll_info where to
2399   // find any register it might need.
2400 
2401   oop_maps->add_gc_map( __ pc()-start, map);
2402 
2403   // Discard arg to fetch_unroll_info
2404   __ pop(rcx);
2405 
2406   __ get_thread(rcx);
2407   __ reset_last_Java_frame(rcx, false, false);
2408 
2409   // Load UnrollBlock into EDI
2410   __ mov(rdi, rax);
2411 
2412   // Move the unpack kind to a safe place in the UnrollBlock because
2413   // we are very short of registers
2414 
2415   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
2416   // retrieve the deopt kind from where we left it.
2417   __ pop(rax);
2418   __ movl(unpack_kind, rax);                      // save the unpack_kind value
2419 
2420    Label noException;
2421   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
2422   __ jcc(Assembler::notEqual, noException);
2423   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
2424   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
2425   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
2426   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
2427 
2428   __ verify_oop(rax);
2429 
2430   // Overwrite the result registers with the exception results.
2431   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2432   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2433 
2434   __ bind(noException);
2435 
2436   // Stack is back to only having register save data on the stack.
2437   // Now restore the result registers. Everything else is either dead or captured
2438   // in the vframeArray.
2439 
2440   RegisterSaver::restore_result_registers(masm);
2441 
2442   // Non standard control word may be leaked out through a safepoint blob, and we can
2443   // deopt at a poll point with the non standard control word. However, we should make
2444   // sure the control word is correct after restore_result_registers.
2445   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
2446 
2447   // All of the register save area has been popped of the stack. Only the
2448   // return address remains.
2449 
2450   // Pop all the frames we must move/replace.
2451   //
2452   // Frame picture (youngest to oldest)
2453   // 1: self-frame (no frame link)
2454   // 2: deopting frame  (no frame link)
2455   // 3: caller of deopting frame (could be compiled/interpreted).
2456   //
2457   // Note: by leaving the return address of self-frame on the stack
2458   // and using the size of frame 2 to adjust the stack
2459   // when we are done the return to frame 3 will still be on the stack.
2460 
2461   // Pop deoptimized frame
2462   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2463 
2464   // sp should be pointing at the return address to the caller (3)
2465 
2466   // Stack bang to make sure there's enough room for these interpreter frames.
2467   if (UseStackBanging) {
2468     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2469     __ bang_stack_size(rbx, rcx);
2470   }
2471 
2472   // Load array of frame pcs into ECX
2473   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2474 
2475   __ pop(rsi); // trash the old pc
2476 
2477   // Load array of frame sizes into ESI
2478   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2479 
2480   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2481 
2482   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2483   __ movl(counter, rbx);
2484 
2485   // Pick up the initial fp we should save
2486   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
2487 
2488   // Now adjust the caller's stack to make up for the extra locals
2489   // but record the original sp so that we can save it in the skeletal interpreter
2490   // frame and the stack walking of interpreter_sender will get the unextended sp
2491   // value and not the "real" sp value.
2492 
2493   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2494   __ movptr(sp_temp, rsp);
2495   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2496   __ subptr(rsp, rbx);
2497 
2498   // Push interpreter frames in a loop
2499   Label loop;
2500   __ bind(loop);
2501   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2502 #ifdef CC_INTERP
2503   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
2504 #ifdef ASSERT
2505   __ push(0xDEADDEAD);                  // Make a recognizable pattern
2506   __ push(0xDEADDEAD);
2507 #else /* ASSERT */
2508   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
2509 #endif /* ASSERT */
2510 #else /* CC_INTERP */
2511   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2512 #endif /* CC_INTERP */
2513   __ pushptr(Address(rcx, 0));          // save return address
2514   __ enter();                           // save old & set new rbp,
2515   __ subptr(rsp, rbx);                  // Prolog!
2516   __ movptr(rbx, sp_temp);              // sender's sp
2517 #ifdef CC_INTERP
2518   __ movptr(Address(rbp,
2519                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
2520           rbx); // Make it walkable
2521 #else /* CC_INTERP */
2522   // This value is corrected by layout_activation_impl
2523   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
2524   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2525 #endif /* CC_INTERP */
2526   __ movptr(sp_temp, rsp);              // pass to next frame
2527   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2528   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2529   __ decrementl(counter);             // decrement counter
2530   __ jcc(Assembler::notZero, loop);
2531   __ pushptr(Address(rcx, 0));          // save final return address
2532 
2533   // Re-push self-frame
2534   __ enter();                           // save old & set new rbp,
2535 
2536   //  Return address and rbp, are in place
2537   // We'll push additional args later. Just allocate a full sized
2538   // register save area
2539   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
2540 
2541   // Restore frame locals after moving the frame
2542   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2543   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2544   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
2545   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2546   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2547 
2548   // Set up the args to unpack_frame
2549 
2550   __ pushl(unpack_kind);                     // get the unpack_kind value
2551   __ get_thread(rcx);
2552   __ push(rcx);
2553 
2554   // set last_Java_sp, last_Java_fp
2555   __ set_last_Java_frame(rcx, noreg, rbp, NULL);
2556 
2557   // Call C code.  Need thread but NOT official VM entry
2558   // crud.  We cannot block on this call, no GC can happen.  Call should
2559   // restore return values to their stack-slots with the new SP.
2560   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2561   // Set an oopmap for the call site
2562   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
2563 
2564   // rax, contains the return result type
2565   __ push(rax);
2566 
2567   __ get_thread(rcx);
2568   __ reset_last_Java_frame(rcx, false, false);
2569 
2570   // Collect return values
2571   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
2572   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
2573 
2574   // Clear floating point stack before returning to interpreter
2575   __ empty_FPU_stack();
2576 
2577   // Check if we should push the float or double return value.
2578   Label results_done, yes_double_value;
2579   __ cmpl(Address(rsp, 0), T_DOUBLE);
2580   __ jcc (Assembler::zero, yes_double_value);
2581   __ cmpl(Address(rsp, 0), T_FLOAT);
2582   __ jcc (Assembler::notZero, results_done);
2583 
2584   // return float value as expected by interpreter
2585   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2586   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2587   __ jmp(results_done);
2588 
2589   // return double value as expected by interpreter
2590   __ bind(yes_double_value);
2591   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2592   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2593 
2594   __ bind(results_done);
2595 
2596   // Pop self-frame.
2597   __ leave();                              // Epilog!
2598 
2599   // Jump to interpreter
2600   __ ret(0);
2601 
2602   // -------------
2603   // make sure all code is generated
2604   masm->flush();
2605 
2606   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2607   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2608 }
2609 
2610 
2611 #ifdef COMPILER2
2612 //------------------------------generate_uncommon_trap_blob--------------------
2613 void SharedRuntime::generate_uncommon_trap_blob() {
2614   // allocate space for the code
2615   ResourceMark rm;
2616   // setup code generation tools
2617   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
2618   MacroAssembler* masm = new MacroAssembler(&buffer);
2619 
2620   enum frame_layout {
2621     arg0_off,      // thread                     sp + 0 // Arg location for
2622     arg1_off,      // unloaded_class_index       sp + 1 // calling C
2623     // The frame sender code expects that rbp will be in the "natural" place and
2624     // will override any oopMap setting for it. We must therefore force the layout
2625     // so that it agrees with the frame sender code.
2626     rbp_off,       // callee saved register      sp + 2
2627     return_off,    // slot for return address    sp + 3
2628     framesize
2629   };
2630 
2631   address start = __ pc();
2632   // Push self-frame.
2633   __ subptr(rsp, return_off*wordSize);     // Epilog!
2634 
2635   // rbp, is an implicitly saved callee saved register (i.e. the calling
2636   // convention will save restore it in prolog/epilog) Other than that
2637   // there are no callee save registers no that adapter frames are gone.
2638   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
2639 
2640   // Clear the floating point exception stack
2641   __ empty_FPU_stack();
2642 
2643   // set last_Java_sp
2644   __ get_thread(rdx);
2645   __ set_last_Java_frame(rdx, noreg, noreg, NULL);
2646 
2647   // Call C code.  Need thread but NOT official VM entry
2648   // crud.  We cannot block on this call, no GC can happen.  Call should
2649   // capture callee-saved registers as well as return values.
2650   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
2651   // argument already in ECX
2652   __ movl(Address(rsp, arg1_off*wordSize),rcx);
2653   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2654 
2655   // Set an oopmap for the call site
2656   OopMapSet *oop_maps = new OopMapSet();
2657   OopMap* map =  new OopMap( framesize, 0 );
2658   // No oopMap for rbp, it is known implicitly
2659 
2660   oop_maps->add_gc_map( __ pc()-start, map);
2661 
2662   __ get_thread(rcx);
2663 
2664   __ reset_last_Java_frame(rcx, false, false);
2665 
2666   // Load UnrollBlock into EDI
2667   __ movptr(rdi, rax);
2668 
2669   // Pop all the frames we must move/replace.
2670   //
2671   // Frame picture (youngest to oldest)
2672   // 1: self-frame (no frame link)
2673   // 2: deopting frame  (no frame link)
2674   // 3: caller of deopting frame (could be compiled/interpreted).
2675 
2676   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
2677   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
2678 
2679   // Pop deoptimized frame
2680   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2681   __ addptr(rsp, rcx);
2682 
2683   // sp should be pointing at the return address to the caller (3)
2684 
2685   // Stack bang to make sure there's enough room for these interpreter frames.
2686   if (UseStackBanging) {
2687     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2688     __ bang_stack_size(rbx, rcx);
2689   }
2690 
2691 
2692   // Load array of frame pcs into ECX
2693   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2694 
2695   __ pop(rsi); // trash the pc
2696 
2697   // Load array of frame sizes into ESI
2698   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2699 
2700   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2701 
2702   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2703   __ movl(counter, rbx);
2704 
2705   // Pick up the initial fp we should save
2706   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
2707 
2708   // Now adjust the caller's stack to make up for the extra locals
2709   // but record the original sp so that we can save it in the skeletal interpreter
2710   // frame and the stack walking of interpreter_sender will get the unextended sp
2711   // value and not the "real" sp value.
2712 
2713   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2714   __ movptr(sp_temp, rsp);
2715   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2716   __ subptr(rsp, rbx);
2717 
2718   // Push interpreter frames in a loop
2719   Label loop;
2720   __ bind(loop);
2721   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2722 #ifdef CC_INTERP
2723   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
2724 #ifdef ASSERT
2725   __ push(0xDEADDEAD);                  // Make a recognizable pattern
2726   __ push(0xDEADDEAD);                  // (parm to RecursiveInterpreter...)
2727 #else /* ASSERT */
2728   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
2729 #endif /* ASSERT */
2730 #else /* CC_INTERP */
2731   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2732 #endif /* CC_INTERP */
2733   __ pushptr(Address(rcx, 0));          // save return address
2734   __ enter();                           // save old & set new rbp,
2735   __ subptr(rsp, rbx);                  // Prolog!
2736   __ movptr(rbx, sp_temp);              // sender's sp
2737 #ifdef CC_INTERP
2738   __ movptr(Address(rbp,
2739                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
2740           rbx); // Make it walkable
2741 #else /* CC_INTERP */
2742   // This value is corrected by layout_activation_impl
2743   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
2744   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2745 #endif /* CC_INTERP */
2746   __ movptr(sp_temp, rsp);              // pass to next frame
2747   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2748   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2749   __ decrementl(counter);             // decrement counter
2750   __ jcc(Assembler::notZero, loop);
2751   __ pushptr(Address(rcx, 0));            // save final return address
2752 
2753   // Re-push self-frame
2754   __ enter();                           // save old & set new rbp,
2755   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
2756 
2757 
2758   // set last_Java_sp, last_Java_fp
2759   __ get_thread(rdi);
2760   __ set_last_Java_frame(rdi, noreg, rbp, NULL);
2761 
2762   // Call C code.  Need thread but NOT official VM entry
2763   // crud.  We cannot block on this call, no GC can happen.  Call should
2764   // restore return values to their stack-slots with the new SP.
2765   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
2766   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2767   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2768   // Set an oopmap for the call site
2769   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
2770 
2771   __ get_thread(rdi);
2772   __ reset_last_Java_frame(rdi, true, false);
2773 
2774   // Pop self-frame.
2775   __ leave();     // Epilog!
2776 
2777   // Jump to interpreter
2778   __ ret(0);
2779 
2780   // -------------
2781   // make sure all code is generated
2782   masm->flush();
2783 
2784    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
2785 }
2786 #endif // COMPILER2
2787 
2788 //------------------------------generate_handler_blob------
2789 //
2790 // Generate a special Compile2Runtime blob that saves all registers,
2791 // setup oopmap, and calls safepoint code to stop the compiled code for
2792 // a safepoint.
2793 //
2794 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
2795 
2796   // Account for thread arg in our frame
2797   const int additional_words = 1;
2798   int frame_size_in_words;
2799 
2800   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
2801 
2802   ResourceMark rm;
2803   OopMapSet *oop_maps = new OopMapSet();
2804   OopMap* map;
2805 
2806   // allocate space for the code
2807   // setup code generation tools
2808   CodeBuffer   buffer("handler_blob", 1024, 512);
2809   MacroAssembler* masm = new MacroAssembler(&buffer);
2810 
2811   const Register java_thread = rdi; // callee-saved for VC++
2812   address start   = __ pc();
2813   address call_pc = NULL;
2814 
2815   // If cause_return is true we are at a poll_return and there is
2816   // the return address on the stack to the caller on the nmethod
2817   // that is safepoint. We can leave this return on the stack and
2818   // effectively complete the return and safepoint in the caller.
2819   // Otherwise we push space for a return address that the safepoint
2820   // handler will install later to make the stack walking sensible.
2821   if( !cause_return )
2822     __ push(rbx);                // Make room for return address (or push it again)
2823 
2824   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2825 
2826   // The following is basically a call_VM. However, we need the precise
2827   // address of the call in order to generate an oopmap. Hence, we do all the
2828   // work ourselves.
2829 
2830   // Push thread argument and setup last_Java_sp
2831   __ get_thread(java_thread);
2832   __ push(java_thread);
2833   __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
2834 
2835   // if this was not a poll_return then we need to correct the return address now.
2836   if( !cause_return ) {
2837     __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
2838     __ movptr(Address(rbp, wordSize), rax);
2839   }
2840 
2841   // do the call
2842   __ call(RuntimeAddress(call_ptr));
2843 
2844   // Set an oopmap for the call site.  This oopmap will map all
2845   // oop-registers and debug-info registers as callee-saved.  This
2846   // will allow deoptimization at this safepoint to find all possible
2847   // debug-info recordings, as well as let GC find all oops.
2848 
2849   oop_maps->add_gc_map( __ pc() - start, map);
2850 
2851   // Discard arg
2852   __ pop(rcx);
2853 
2854   Label noException;
2855 
2856   // Clear last_Java_sp again
2857   __ get_thread(java_thread);
2858   __ reset_last_Java_frame(java_thread, false, false);
2859 
2860   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
2861   __ jcc(Assembler::equal, noException);
2862 
2863   // Exception pending
2864 
2865   RegisterSaver::restore_live_registers(masm);
2866 
2867   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2868 
2869   __ bind(noException);
2870 
2871   // Normal exit, register restoring and exit
2872   RegisterSaver::restore_live_registers(masm);
2873 
2874   __ ret(0);
2875 
2876   // make sure all code is generated
2877   masm->flush();
2878 
2879   // Fill-out other meta info
2880   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
2881 }
2882 
2883 //
2884 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
2885 //
2886 // Generate a stub that calls into vm to find out the proper destination
2887 // of a java call. All the argument registers are live at this point
2888 // but since this is generic code we don't know what they are and the caller
2889 // must do any gc of the args.
2890 //
2891 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
2892   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
2893 
2894   // allocate space for the code
2895   ResourceMark rm;
2896 
2897   CodeBuffer buffer(name, 1000, 512);
2898   MacroAssembler* masm                = new MacroAssembler(&buffer);
2899 
2900   int frame_size_words;
2901   enum frame_layout {
2902                 thread_off,
2903                 extra_words };
2904 
2905   OopMapSet *oop_maps = new OopMapSet();
2906   OopMap* map = NULL;
2907 
2908   int start = __ offset();
2909 
2910   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
2911 
2912   int frame_complete = __ offset();
2913 
2914   const Register thread = rdi;
2915   __ get_thread(rdi);
2916 
2917   __ push(thread);
2918   __ set_last_Java_frame(thread, noreg, rbp, NULL);
2919 
2920   __ call(RuntimeAddress(destination));
2921 
2922 
2923   // Set an oopmap for the call site.
2924   // We need this not only for callee-saved registers, but also for volatile
2925   // registers that the compiler might be keeping live across a safepoint.
2926 
2927   oop_maps->add_gc_map( __ offset() - start, map);
2928 
2929   // rax, contains the address we are going to jump to assuming no exception got installed
2930 
2931   __ addptr(rsp, wordSize);
2932 
2933   // clear last_Java_sp
2934   __ reset_last_Java_frame(thread, true, false);
2935   // check for pending exceptions
2936   Label pending;
2937   __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
2938   __ jcc(Assembler::notEqual, pending);
2939 
2940   // get the returned methodOop
2941   __ movptr(rbx, Address(thread, JavaThread::vm_result_offset()));
2942   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
2943 
2944   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
2945 
2946   RegisterSaver::restore_live_registers(masm);
2947 
2948   // We are back the the original state on entry and ready to go.
2949 
2950   __ jmp(rax);
2951 
2952   // Pending exception after the safepoint
2953 
2954   __ bind(pending);
2955 
2956   RegisterSaver::restore_live_registers(masm);
2957 
2958   // exception pending => remove activation and forward to exception handler
2959 
2960   __ get_thread(thread);
2961   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
2962   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
2963   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2964 
2965   // -------------
2966   // make sure all code is generated
2967   masm->flush();
2968 
2969   // return the  blob
2970   // frame_size_words or bytes??
2971   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
2972 }
2973 
2974 void SharedRuntime::generate_stubs() {
2975 
2976   _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
2977                                         "wrong_method_stub");
2978 
2979   _ic_miss_blob      = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
2980                                         "ic_miss_stub");
2981 
2982   _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
2983                                         "resolve_opt_virtual_call");
2984 
2985   _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
2986                                         "resolve_virtual_call");
2987 
2988   _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
2989                                         "resolve_static_call");
2990 
2991   _polling_page_safepoint_handler_blob =
2992     generate_handler_blob(CAST_FROM_FN_PTR(address,
2993                    SafepointSynchronize::handle_polling_page_exception), false);
2994 
2995   _polling_page_return_handler_blob =
2996     generate_handler_blob(CAST_FROM_FN_PTR(address,
2997                    SafepointSynchronize::handle_polling_page_exception), true);
2998 
2999   generate_deopt_blob();
3000 #ifdef COMPILER2
3001   generate_uncommon_trap_blob();
3002 #endif // COMPILER2
3003 }