1 /*
   2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "assembler_x86.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "oops/compiledICHolderOop.hpp"
  33 #include "prims/jvmtiRedefineClassesTrace.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/vframeArray.hpp"
  36 #include "vmreg_x86.inline.hpp"
  37 #ifdef COMPILER1
  38 #include "c1/c1_Runtime1.hpp"
  39 #endif
  40 #ifdef COMPILER2
  41 #include "opto/runtime.hpp"
  42 #endif
  43 
  44 DeoptimizationBlob *SharedRuntime::_deopt_blob;
  45 #ifdef COMPILER2
  46 UncommonTrapBlob   *SharedRuntime::_uncommon_trap_blob;
  47 ExceptionBlob      *OptoRuntime::_exception_blob;
  48 #endif // COMPILER2
  49 
  50 SafepointBlob      *SharedRuntime::_polling_page_safepoint_handler_blob;
  51 SafepointBlob      *SharedRuntime::_polling_page_return_handler_blob;
  52 RuntimeStub*       SharedRuntime::_wrong_method_blob;
  53 RuntimeStub*       SharedRuntime::_ic_miss_blob;
  54 RuntimeStub*       SharedRuntime::_resolve_opt_virtual_call_blob;
  55 RuntimeStub*       SharedRuntime::_resolve_virtual_call_blob;
  56 RuntimeStub*       SharedRuntime::_resolve_static_call_blob;
  57 
  58 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  59 
  60 #define __ masm->
  61 
  62 class SimpleRuntimeFrame {
  63 
  64   public:
  65 
  66   // Most of the runtime stubs have this simple frame layout.
  67   // This class exists to make the layout shared in one place.
  68   // Offsets are for compiler stack slots, which are jints.
  69   enum layout {
  70     // The frame sender code expects that rbp will be in the "natural" place and
  71     // will override any oopMap setting for it. We must therefore force the layout
  72     // so that it agrees with the frame sender code.
  73     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  74     rbp_off2,
  75     return_off, return_off2,
  76     framesize
  77   };
  78 };
  79 
  80 class RegisterSaver {
  81   // Capture info about frame layout.  Layout offsets are in jint
  82   // units because compiler frame slots are jints.
  83 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  84   enum layout {
  85     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
  86     xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
  87     DEF_XMM_OFFS(0),
  88     DEF_XMM_OFFS(1),
  89     DEF_XMM_OFFS(2),
  90     DEF_XMM_OFFS(3),
  91     DEF_XMM_OFFS(4),
  92     DEF_XMM_OFFS(5),
  93     DEF_XMM_OFFS(6),
  94     DEF_XMM_OFFS(7),
  95     DEF_XMM_OFFS(8),
  96     DEF_XMM_OFFS(9),
  97     DEF_XMM_OFFS(10),
  98     DEF_XMM_OFFS(11),
  99     DEF_XMM_OFFS(12),
 100     DEF_XMM_OFFS(13),
 101     DEF_XMM_OFFS(14),
 102     DEF_XMM_OFFS(15),
 103     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
 104     fpu_stateH_end,
 105     r15_off, r15H_off,
 106     r14_off, r14H_off,
 107     r13_off, r13H_off,
 108     r12_off, r12H_off,
 109     r11_off, r11H_off,
 110     r10_off, r10H_off,
 111     r9_off,  r9H_off,
 112     r8_off,  r8H_off,
 113     rdi_off, rdiH_off,
 114     rsi_off, rsiH_off,
 115     ignore_off, ignoreH_off,  // extra copy of rbp
 116     rsp_off, rspH_off,
 117     rbx_off, rbxH_off,
 118     rdx_off, rdxH_off,
 119     rcx_off, rcxH_off,
 120     rax_off, raxH_off,
 121     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
 122     align_off, alignH_off,
 123     flags_off, flagsH_off,
 124     // The frame sender code expects that rbp will be in the "natural" place and
 125     // will override any oopMap setting for it. We must therefore force the layout
 126     // so that it agrees with the frame sender code.
 127     rbp_off, rbpH_off,        // copy of rbp we will restore
 128     return_off, returnH_off,  // slot for return address
 129     reg_save_size             // size in compiler stack slots
 130   };
 131 
 132  public:
 133   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
 134   static void restore_live_registers(MacroAssembler* masm);
 135 
 136   // Offsets into the register save area
 137   // Used by deoptimization when it is managing result register
 138   // values on its own
 139 
 140   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
 141   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
 142   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
 143   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
 144   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
 145 
 146   // During deoptimization only the result registers need to be restored,
 147   // all the other values have already been extracted.
 148   static void restore_result_registers(MacroAssembler* masm);
 149 };
 150 
 151 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
 152 
 153   // Always make the frame size 16-byte aligned
 154   int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
 155                                      reg_save_size*BytesPerInt, 16);
 156   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 157   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 158   // The caller will allocate additional_frame_words
 159   int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
 160   // CodeBlob frame size is in words.
 161   int frame_size_in_words = frame_size_in_bytes / wordSize;
 162   *total_frame_words = frame_size_in_words;
 163 
 164   // Save registers, fpu state, and flags.
 165   // We assume caller has already pushed the return address onto the
 166   // stack, so rsp is 8-byte aligned here.
 167   // We push rpb twice in this sequence because we want the real rbp
 168   // to be under the return like a normal enter.
 169 
 170   __ enter();          // rsp becomes 16-byte aligned here
 171   __ push_CPU_state(); // Push a multiple of 16 bytes
 172   if (frame::arg_reg_save_area_bytes != 0) {
 173     // Allocate argument register save area
 174     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 175   }
 176 
 177   // Set an oopmap for the call site.  This oopmap will map all
 178   // oop-registers and debug-info registers as callee-saved.  This
 179   // will allow deoptimization at this safepoint to find all possible
 180   // debug-info recordings, as well as let GC find all oops.
 181 
 182   OopMapSet *oop_maps = new OopMapSet();
 183   OopMap* map = new OopMap(frame_size_in_slots, 0);
 184   map->set_callee_saved(VMRegImpl::stack2reg( rax_off  + additional_frame_slots), rax->as_VMReg());
 185   map->set_callee_saved(VMRegImpl::stack2reg( rcx_off  + additional_frame_slots), rcx->as_VMReg());
 186   map->set_callee_saved(VMRegImpl::stack2reg( rdx_off  + additional_frame_slots), rdx->as_VMReg());
 187   map->set_callee_saved(VMRegImpl::stack2reg( rbx_off  + additional_frame_slots), rbx->as_VMReg());
 188   // rbp location is known implicitly by the frame sender code, needs no oopmap
 189   // and the location where rbp was saved by is ignored
 190   map->set_callee_saved(VMRegImpl::stack2reg( rsi_off  + additional_frame_slots), rsi->as_VMReg());
 191   map->set_callee_saved(VMRegImpl::stack2reg( rdi_off  + additional_frame_slots), rdi->as_VMReg());
 192   map->set_callee_saved(VMRegImpl::stack2reg( r8_off   + additional_frame_slots), r8->as_VMReg());
 193   map->set_callee_saved(VMRegImpl::stack2reg( r9_off   + additional_frame_slots), r9->as_VMReg());
 194   map->set_callee_saved(VMRegImpl::stack2reg( r10_off  + additional_frame_slots), r10->as_VMReg());
 195   map->set_callee_saved(VMRegImpl::stack2reg( r11_off  + additional_frame_slots), r11->as_VMReg());
 196   map->set_callee_saved(VMRegImpl::stack2reg( r12_off  + additional_frame_slots), r12->as_VMReg());
 197   map->set_callee_saved(VMRegImpl::stack2reg( r13_off  + additional_frame_slots), r13->as_VMReg());
 198   map->set_callee_saved(VMRegImpl::stack2reg( r14_off  + additional_frame_slots), r14->as_VMReg());
 199   map->set_callee_saved(VMRegImpl::stack2reg( r15_off  + additional_frame_slots), r15->as_VMReg());
 200   map->set_callee_saved(VMRegImpl::stack2reg(xmm0_off  + additional_frame_slots), xmm0->as_VMReg());
 201   map->set_callee_saved(VMRegImpl::stack2reg(xmm1_off  + additional_frame_slots), xmm1->as_VMReg());
 202   map->set_callee_saved(VMRegImpl::stack2reg(xmm2_off  + additional_frame_slots), xmm2->as_VMReg());
 203   map->set_callee_saved(VMRegImpl::stack2reg(xmm3_off  + additional_frame_slots), xmm3->as_VMReg());
 204   map->set_callee_saved(VMRegImpl::stack2reg(xmm4_off  + additional_frame_slots), xmm4->as_VMReg());
 205   map->set_callee_saved(VMRegImpl::stack2reg(xmm5_off  + additional_frame_slots), xmm5->as_VMReg());
 206   map->set_callee_saved(VMRegImpl::stack2reg(xmm6_off  + additional_frame_slots), xmm6->as_VMReg());
 207   map->set_callee_saved(VMRegImpl::stack2reg(xmm7_off  + additional_frame_slots), xmm7->as_VMReg());
 208   map->set_callee_saved(VMRegImpl::stack2reg(xmm8_off  + additional_frame_slots), xmm8->as_VMReg());
 209   map->set_callee_saved(VMRegImpl::stack2reg(xmm9_off  + additional_frame_slots), xmm9->as_VMReg());
 210   map->set_callee_saved(VMRegImpl::stack2reg(xmm10_off + additional_frame_slots), xmm10->as_VMReg());
 211   map->set_callee_saved(VMRegImpl::stack2reg(xmm11_off + additional_frame_slots), xmm11->as_VMReg());
 212   map->set_callee_saved(VMRegImpl::stack2reg(xmm12_off + additional_frame_slots), xmm12->as_VMReg());
 213   map->set_callee_saved(VMRegImpl::stack2reg(xmm13_off + additional_frame_slots), xmm13->as_VMReg());
 214   map->set_callee_saved(VMRegImpl::stack2reg(xmm14_off + additional_frame_slots), xmm14->as_VMReg());
 215   map->set_callee_saved(VMRegImpl::stack2reg(xmm15_off + additional_frame_slots), xmm15->as_VMReg());
 216 
 217   // %%% These should all be a waste but we'll keep things as they were for now
 218   if (true) {
 219     map->set_callee_saved(VMRegImpl::stack2reg( raxH_off  + additional_frame_slots),
 220                           rax->as_VMReg()->next());
 221     map->set_callee_saved(VMRegImpl::stack2reg( rcxH_off  + additional_frame_slots),
 222                           rcx->as_VMReg()->next());
 223     map->set_callee_saved(VMRegImpl::stack2reg( rdxH_off  + additional_frame_slots),
 224                           rdx->as_VMReg()->next());
 225     map->set_callee_saved(VMRegImpl::stack2reg( rbxH_off  + additional_frame_slots),
 226                           rbx->as_VMReg()->next());
 227     // rbp location is known implicitly by the frame sender code, needs no oopmap
 228     map->set_callee_saved(VMRegImpl::stack2reg( rsiH_off  + additional_frame_slots),
 229                           rsi->as_VMReg()->next());
 230     map->set_callee_saved(VMRegImpl::stack2reg( rdiH_off  + additional_frame_slots),
 231                           rdi->as_VMReg()->next());
 232     map->set_callee_saved(VMRegImpl::stack2reg( r8H_off   + additional_frame_slots),
 233                           r8->as_VMReg()->next());
 234     map->set_callee_saved(VMRegImpl::stack2reg( r9H_off   + additional_frame_slots),
 235                           r9->as_VMReg()->next());
 236     map->set_callee_saved(VMRegImpl::stack2reg( r10H_off  + additional_frame_slots),
 237                           r10->as_VMReg()->next());
 238     map->set_callee_saved(VMRegImpl::stack2reg( r11H_off  + additional_frame_slots),
 239                           r11->as_VMReg()->next());
 240     map->set_callee_saved(VMRegImpl::stack2reg( r12H_off  + additional_frame_slots),
 241                           r12->as_VMReg()->next());
 242     map->set_callee_saved(VMRegImpl::stack2reg( r13H_off  + additional_frame_slots),
 243                           r13->as_VMReg()->next());
 244     map->set_callee_saved(VMRegImpl::stack2reg( r14H_off  + additional_frame_slots),
 245                           r14->as_VMReg()->next());
 246     map->set_callee_saved(VMRegImpl::stack2reg( r15H_off  + additional_frame_slots),
 247                           r15->as_VMReg()->next());
 248     map->set_callee_saved(VMRegImpl::stack2reg(xmm0H_off  + additional_frame_slots),
 249                           xmm0->as_VMReg()->next());
 250     map->set_callee_saved(VMRegImpl::stack2reg(xmm1H_off  + additional_frame_slots),
 251                           xmm1->as_VMReg()->next());
 252     map->set_callee_saved(VMRegImpl::stack2reg(xmm2H_off  + additional_frame_slots),
 253                           xmm2->as_VMReg()->next());
 254     map->set_callee_saved(VMRegImpl::stack2reg(xmm3H_off  + additional_frame_slots),
 255                           xmm3->as_VMReg()->next());
 256     map->set_callee_saved(VMRegImpl::stack2reg(xmm4H_off  + additional_frame_slots),
 257                           xmm4->as_VMReg()->next());
 258     map->set_callee_saved(VMRegImpl::stack2reg(xmm5H_off  + additional_frame_slots),
 259                           xmm5->as_VMReg()->next());
 260     map->set_callee_saved(VMRegImpl::stack2reg(xmm6H_off  + additional_frame_slots),
 261                           xmm6->as_VMReg()->next());
 262     map->set_callee_saved(VMRegImpl::stack2reg(xmm7H_off  + additional_frame_slots),
 263                           xmm7->as_VMReg()->next());
 264     map->set_callee_saved(VMRegImpl::stack2reg(xmm8H_off  + additional_frame_slots),
 265                           xmm8->as_VMReg()->next());
 266     map->set_callee_saved(VMRegImpl::stack2reg(xmm9H_off  + additional_frame_slots),
 267                           xmm9->as_VMReg()->next());
 268     map->set_callee_saved(VMRegImpl::stack2reg(xmm10H_off + additional_frame_slots),
 269                           xmm10->as_VMReg()->next());
 270     map->set_callee_saved(VMRegImpl::stack2reg(xmm11H_off + additional_frame_slots),
 271                           xmm11->as_VMReg()->next());
 272     map->set_callee_saved(VMRegImpl::stack2reg(xmm12H_off + additional_frame_slots),
 273                           xmm12->as_VMReg()->next());
 274     map->set_callee_saved(VMRegImpl::stack2reg(xmm13H_off + additional_frame_slots),
 275                           xmm13->as_VMReg()->next());
 276     map->set_callee_saved(VMRegImpl::stack2reg(xmm14H_off + additional_frame_slots),
 277                           xmm14->as_VMReg()->next());
 278     map->set_callee_saved(VMRegImpl::stack2reg(xmm15H_off + additional_frame_slots),
 279                           xmm15->as_VMReg()->next());
 280   }
 281 
 282   return map;
 283 }
 284 
 285 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 286   if (frame::arg_reg_save_area_bytes != 0) {
 287     // Pop arg register save area
 288     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 289   }
 290   // Recover CPU state
 291   __ pop_CPU_state();
 292   // Get the rbp described implicitly by the calling convention (no oopMap)
 293   __ pop(rbp);
 294 }
 295 
 296 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 297 
 298   // Just restore result register. Only used by deoptimization. By
 299   // now any callee save register that needs to be restored to a c2
 300   // caller of the deoptee has been extracted into the vframeArray
 301   // and will be stuffed into the c2i adapter we create for later
 302   // restoration so only result registers need to be restored here.
 303 
 304   // Restore fp result register
 305   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
 306   // Restore integer result register
 307   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
 308   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
 309 
 310   // Pop all of the register save are off the stack except the return address
 311   __ addptr(rsp, return_offset_in_bytes());
 312 }
 313 
 314 // The java_calling_convention describes stack locations as ideal slots on
 315 // a frame with no abi restrictions. Since we must observe abi restrictions
 316 // (like the placement of the register window) the slots must be biased by
 317 // the following value.
 318 static int reg2offset_in(VMReg r) {
 319   // Account for saved rbp and return address
 320   // This should really be in_preserve_stack_slots
 321   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
 322 }
 323 
 324 static int reg2offset_out(VMReg r) {
 325   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 326 }
 327 
 328 // ---------------------------------------------------------------------------
 329 // Read the array of BasicTypes from a signature, and compute where the
 330 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 331 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 332 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 333 // as framesizes are fixed.
 334 // VMRegImpl::stack0 refers to the first slot 0(sp).
 335 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 336 // up to RegisterImpl::number_of_registers) are the 64-bit
 337 // integer registers.
 338 
 339 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 340 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 341 // units regardless of build. Of course for i486 there is no 64 bit build
 342 
 343 // The Java calling convention is a "shifted" version of the C ABI.
 344 // By skipping the first C ABI register we can call non-static jni methods
 345 // with small numbers of arguments without having to shuffle the arguments
 346 // at all. Since we control the java ABI we ought to at least get some
 347 // advantage out of it.
 348 
 349 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 350                                            VMRegPair *regs,
 351                                            int total_args_passed,
 352                                            int is_outgoing) {
 353 
 354   // Create the mapping between argument positions and
 355   // registers.
 356   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 357     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
 358   };
 359   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 360     j_farg0, j_farg1, j_farg2, j_farg3,
 361     j_farg4, j_farg5, j_farg6, j_farg7
 362   };
 363 
 364 
 365   uint int_args = 0;
 366   uint fp_args = 0;
 367   uint stk_args = 0; // inc by 2 each time
 368 
 369   for (int i = 0; i < total_args_passed; i++) {
 370     switch (sig_bt[i]) {
 371     case T_BOOLEAN:
 372     case T_CHAR:
 373     case T_BYTE:
 374     case T_SHORT:
 375     case T_INT:
 376       if (int_args < Argument::n_int_register_parameters_j) {
 377         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 378       } else {
 379         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 380         stk_args += 2;
 381       }
 382       break;
 383     case T_VOID:
 384       // halves of T_LONG or T_DOUBLE
 385       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 386       regs[i].set_bad();
 387       break;
 388     case T_LONG:
 389       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 390       // fall through
 391     case T_OBJECT:
 392     case T_ARRAY:
 393     case T_ADDRESS:
 394       if (int_args < Argument::n_int_register_parameters_j) {
 395         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 396       } else {
 397         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 398         stk_args += 2;
 399       }
 400       break;
 401     case T_FLOAT:
 402       if (fp_args < Argument::n_float_register_parameters_j) {
 403         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 404       } else {
 405         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 406         stk_args += 2;
 407       }
 408       break;
 409     case T_DOUBLE:
 410       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 411       if (fp_args < Argument::n_float_register_parameters_j) {
 412         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 413       } else {
 414         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 415         stk_args += 2;
 416       }
 417       break;
 418     default:
 419       ShouldNotReachHere();
 420       break;
 421     }
 422   }
 423 
 424   return round_to(stk_args, 2);
 425 }
 426 
 427 // Patch the callers callsite with entry to compiled code if it exists.
 428 static void patch_callers_callsite(MacroAssembler *masm) {
 429   Label L;
 430   __ verify_oop(rbx);
 431   __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
 432   __ jcc(Assembler::equal, L);
 433 
 434   // Save the current stack pointer
 435   __ mov(r13, rsp);
 436   // Schedule the branch target address early.
 437   // Call into the VM to patch the caller, then jump to compiled callee
 438   // rax isn't live so capture return address while we easily can
 439   __ movptr(rax, Address(rsp, 0));
 440 
 441   // align stack so push_CPU_state doesn't fault
 442   __ andptr(rsp, -(StackAlignmentInBytes));
 443   __ push_CPU_state();
 444 
 445 
 446   __ verify_oop(rbx);
 447   // VM needs caller's callsite
 448   // VM needs target method
 449   // This needs to be a long call since we will relocate this adapter to
 450   // the codeBuffer and it may not reach
 451 
 452   // Allocate argument register save area
 453   if (frame::arg_reg_save_area_bytes != 0) {
 454     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 455   }
 456   __ mov(c_rarg0, rbx);
 457   __ mov(c_rarg1, rax);
 458   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 459 
 460   // De-allocate argument register save area
 461   if (frame::arg_reg_save_area_bytes != 0) {
 462     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 463   }
 464 
 465   __ pop_CPU_state();
 466   // restore sp
 467   __ mov(rsp, r13);
 468   __ bind(L);
 469 }
 470 
 471 
 472 static void gen_c2i_adapter(MacroAssembler *masm,
 473                             int total_args_passed,
 474                             int comp_args_on_stack,
 475                             const BasicType *sig_bt,
 476                             const VMRegPair *regs,
 477                             Label& skip_fixup) {
 478   // Before we get into the guts of the C2I adapter, see if we should be here
 479   // at all.  We've come from compiled code and are attempting to jump to the
 480   // interpreter, which means the caller made a static call to get here
 481   // (vcalls always get a compiled target if there is one).  Check for a
 482   // compiled target.  If there is one, we need to patch the caller's call.
 483   patch_callers_callsite(masm);
 484 
 485   __ bind(skip_fixup);
 486 
 487   // Since all args are passed on the stack, total_args_passed *
 488   // Interpreter::stackElementSize is the space we need. Plus 1 because
 489   // we also account for the return address location since
 490   // we store it first rather than hold it in rax across all the shuffling
 491 
 492   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
 493 
 494   // stack is aligned, keep it that way
 495   extraspace = round_to(extraspace, 2*wordSize);
 496 
 497   // Get return address
 498   __ pop(rax);
 499 
 500   // set senderSP value
 501   __ mov(r13, rsp);
 502 
 503   __ subptr(rsp, extraspace);
 504 
 505   // Store the return address in the expected location
 506   __ movptr(Address(rsp, 0), rax);
 507 
 508   // Now write the args into the outgoing interpreter space
 509   for (int i = 0; i < total_args_passed; i++) {
 510     if (sig_bt[i] == T_VOID) {
 511       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 512       continue;
 513     }
 514 
 515     // offset to start parameters
 516     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
 517     int next_off = st_off - Interpreter::stackElementSize;
 518 
 519     // Say 4 args:
 520     // i   st_off
 521     // 0   32 T_LONG
 522     // 1   24 T_VOID
 523     // 2   16 T_OBJECT
 524     // 3    8 T_BOOL
 525     // -    0 return address
 526     //
 527     // However to make thing extra confusing. Because we can fit a long/double in
 528     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 529     // leaves one slot empty and only stores to a single slot. In this case the
 530     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 531 
 532     VMReg r_1 = regs[i].first();
 533     VMReg r_2 = regs[i].second();
 534     if (!r_1->is_valid()) {
 535       assert(!r_2->is_valid(), "");
 536       continue;
 537     }
 538     if (r_1->is_stack()) {
 539       // memory to memory use rax
 540       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 541       if (!r_2->is_valid()) {
 542         // sign extend??
 543         __ movl(rax, Address(rsp, ld_off));
 544         __ movptr(Address(rsp, st_off), rax);
 545 
 546       } else {
 547 
 548         __ movq(rax, Address(rsp, ld_off));
 549 
 550         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 551         // T_DOUBLE and T_LONG use two slots in the interpreter
 552         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 553           // ld_off == LSW, ld_off+wordSize == MSW
 554           // st_off == MSW, next_off == LSW
 555           __ movq(Address(rsp, next_off), rax);
 556 #ifdef ASSERT
 557           // Overwrite the unused slot with known junk
 558           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 559           __ movptr(Address(rsp, st_off), rax);
 560 #endif /* ASSERT */
 561         } else {
 562           __ movq(Address(rsp, st_off), rax);
 563         }
 564       }
 565     } else if (r_1->is_Register()) {
 566       Register r = r_1->as_Register();
 567       if (!r_2->is_valid()) {
 568         // must be only an int (or less ) so move only 32bits to slot
 569         // why not sign extend??
 570         __ movl(Address(rsp, st_off), r);
 571       } else {
 572         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 573         // T_DOUBLE and T_LONG use two slots in the interpreter
 574         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 575           // long/double in gpr
 576 #ifdef ASSERT
 577           // Overwrite the unused slot with known junk
 578           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
 579           __ movptr(Address(rsp, st_off), rax);
 580 #endif /* ASSERT */
 581           __ movq(Address(rsp, next_off), r);
 582         } else {
 583           __ movptr(Address(rsp, st_off), r);
 584         }
 585       }
 586     } else {
 587       assert(r_1->is_XMMRegister(), "");
 588       if (!r_2->is_valid()) {
 589         // only a float use just part of the slot
 590         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 591       } else {
 592 #ifdef ASSERT
 593         // Overwrite the unused slot with known junk
 594         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
 595         __ movptr(Address(rsp, st_off), rax);
 596 #endif /* ASSERT */
 597         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
 598       }
 599     }
 600   }
 601 
 602   // Schedule the branch target address early.
 603   __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
 604   __ jmp(rcx);
 605 }
 606 
 607 static void gen_i2c_adapter(MacroAssembler *masm,
 608                             int total_args_passed,
 609                             int comp_args_on_stack,
 610                             const BasicType *sig_bt,
 611                             const VMRegPair *regs) {
 612 
 613   // Note: r13 contains the senderSP on entry. We must preserve it since
 614   // we may do a i2c -> c2i transition if we lose a race where compiled
 615   // code goes non-entrant while we get args ready.
 616   // In addition we use r13 to locate all the interpreter args as
 617   // we must align the stack to 16 bytes on an i2c entry else we
 618   // lose alignment we expect in all compiled code and register
 619   // save code can segv when fxsave instructions find improperly
 620   // aligned stack pointer.
 621 
 622   // Pick up the return address
 623   __ movptr(rax, Address(rsp, 0));
 624 
 625   // Must preserve original SP for loading incoming arguments because
 626   // we need to align the outgoing SP for compiled code.
 627   __ movptr(r11, rsp);
 628 
 629   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 630   // in registers, we will occasionally have no stack args.
 631   int comp_words_on_stack = 0;
 632   if (comp_args_on_stack) {
 633     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 634     // registers are below.  By subtracting stack0, we either get a negative
 635     // number (all values in registers) or the maximum stack slot accessed.
 636 
 637     // Convert 4-byte c2 stack slots to words.
 638     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 639     // Round up to miminum stack alignment, in wordSize
 640     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 641     __ subptr(rsp, comp_words_on_stack * wordSize);
 642   }
 643 
 644 
 645   // Ensure compiled code always sees stack at proper alignment
 646   __ andptr(rsp, -16);
 647 
 648   // push the return address and misalign the stack that youngest frame always sees
 649   // as far as the placement of the call instruction
 650   __ push(rax);
 651 
 652   // Put saved SP in another register
 653   const Register saved_sp = rax;
 654   __ movptr(saved_sp, r11);
 655 
 656   // Will jump to the compiled code just as if compiled code was doing it.
 657   // Pre-load the register-jump target early, to schedule it better.
 658   __ movptr(r11, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
 659 
 660   // Now generate the shuffle code.  Pick up all register args and move the
 661   // rest through the floating point stack top.
 662   for (int i = 0; i < total_args_passed; i++) {
 663     if (sig_bt[i] == T_VOID) {
 664       // Longs and doubles are passed in native word order, but misaligned
 665       // in the 32-bit build.
 666       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 667       continue;
 668     }
 669 
 670     // Pick up 0, 1 or 2 words from SP+offset.
 671 
 672     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 673             "scrambled load targets?");
 674     // Load in argument order going down.
 675     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
 676     // Point to interpreter value (vs. tag)
 677     int next_off = ld_off - Interpreter::stackElementSize;
 678     //
 679     //
 680     //
 681     VMReg r_1 = regs[i].first();
 682     VMReg r_2 = regs[i].second();
 683     if (!r_1->is_valid()) {
 684       assert(!r_2->is_valid(), "");
 685       continue;
 686     }
 687     if (r_1->is_stack()) {
 688       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 689       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 690 
 691       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
 692       // and if we end up going thru a c2i because of a miss a reasonable value of r13
 693       // will be generated.
 694       if (!r_2->is_valid()) {
 695         // sign extend???
 696         __ movl(r13, Address(saved_sp, ld_off));
 697         __ movptr(Address(rsp, st_off), r13);
 698       } else {
 699         //
 700         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 701         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 702         // So we must adjust where to pick up the data to match the interpreter.
 703         //
 704         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 705         // are accessed as negative so LSW is at LOW address
 706 
 707         // ld_off is MSW so get LSW
 708         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 709                            next_off : ld_off;
 710         __ movq(r13, Address(saved_sp, offset));
 711         // st_off is LSW (i.e. reg.first())
 712         __ movq(Address(rsp, st_off), r13);
 713       }
 714     } else if (r_1->is_Register()) {  // Register argument
 715       Register r = r_1->as_Register();
 716       assert(r != rax, "must be different");
 717       if (r_2->is_valid()) {
 718         //
 719         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 720         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 721         // So we must adjust where to pick up the data to match the interpreter.
 722 
 723         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 724                            next_off : ld_off;
 725 
 726         // this can be a misaligned move
 727         __ movq(r, Address(saved_sp, offset));
 728       } else {
 729         // sign extend and use a full word?
 730         __ movl(r, Address(saved_sp, ld_off));
 731       }
 732     } else {
 733       if (!r_2->is_valid()) {
 734         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 735       } else {
 736         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
 737       }
 738     }
 739   }
 740 
 741   // 6243940 We might end up in handle_wrong_method if
 742   // the callee is deoptimized as we race thru here. If that
 743   // happens we don't want to take a safepoint because the
 744   // caller frame will look interpreted and arguments are now
 745   // "compiled" so it is much better to make this transition
 746   // invisible to the stack walking code. Unfortunately if
 747   // we try and find the callee by normal means a safepoint
 748   // is possible. So we stash the desired callee in the thread
 749   // and the vm will find there should this case occur.
 750 
 751   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
 752 
 753   // put methodOop where a c2i would expect should we end up there
 754   // only needed becaus eof c2 resolve stubs return methodOop as a result in
 755   // rax
 756   __ mov(rax, rbx);
 757   __ jmp(r11);
 758 }
 759 
 760 // ---------------------------------------------------------------
 761 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 762                                                             int total_args_passed,
 763                                                             int comp_args_on_stack,
 764                                                             const BasicType *sig_bt,
 765                                                             const VMRegPair *regs,
 766                                                             AdapterFingerPrint* fingerprint) {
 767   address i2c_entry = __ pc();
 768 
 769   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 770 
 771   // -------------------------------------------------------------------------
 772   // Generate a C2I adapter.  On entry we know rbx holds the methodOop during calls
 773   // to the interpreter.  The args start out packed in the compiled layout.  They
 774   // need to be unpacked into the interpreter layout.  This will almost always
 775   // require some stack space.  We grow the current (compiled) stack, then repack
 776   // the args.  We  finally end in a jump to the generic interpreter entry point.
 777   // On exit from the interpreter, the interpreter will restore our SP (lest the
 778   // compiled code, which relys solely on SP and not RBP, get sick).
 779 
 780   address c2i_unverified_entry = __ pc();
 781   Label skip_fixup;
 782   Label ok;
 783 
 784   Register holder = rax;
 785   Register receiver = j_rarg0;
 786   Register temp = rbx;
 787 
 788   {
 789     __ verify_oop(holder);
 790     __ load_klass(temp, receiver);
 791     __ verify_oop(temp);
 792 
 793     __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
 794     __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
 795     __ jcc(Assembler::equal, ok);
 796     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 797 
 798     __ bind(ok);
 799     // Method might have been compiled since the call site was patched to
 800     // interpreted if that is the case treat it as a miss so we can get
 801     // the call site corrected.
 802     __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
 803     __ jcc(Assembler::equal, skip_fixup);
 804     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 805   }
 806 
 807   address c2i_entry = __ pc();
 808 
 809   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 810 
 811   __ flush();
 812   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 813 }
 814 
 815 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 816                                          VMRegPair *regs,
 817                                          int total_args_passed) {
 818 // We return the amount of VMRegImpl stack slots we need to reserve for all
 819 // the arguments NOT counting out_preserve_stack_slots.
 820 
 821 // NOTE: These arrays will have to change when c1 is ported
 822 #ifdef _WIN64
 823     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 824       c_rarg0, c_rarg1, c_rarg2, c_rarg3
 825     };
 826     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 827       c_farg0, c_farg1, c_farg2, c_farg3
 828     };
 829 #else
 830     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 831       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
 832     };
 833     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 834       c_farg0, c_farg1, c_farg2, c_farg3,
 835       c_farg4, c_farg5, c_farg6, c_farg7
 836     };
 837 #endif // _WIN64
 838 
 839 
 840     uint int_args = 0;
 841     uint fp_args = 0;
 842     uint stk_args = 0; // inc by 2 each time
 843 
 844     for (int i = 0; i < total_args_passed; i++) {
 845       switch (sig_bt[i]) {
 846       case T_BOOLEAN:
 847       case T_CHAR:
 848       case T_BYTE:
 849       case T_SHORT:
 850       case T_INT:
 851         if (int_args < Argument::n_int_register_parameters_c) {
 852           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 853 #ifdef _WIN64
 854           fp_args++;
 855           // Allocate slots for callee to stuff register args the stack.
 856           stk_args += 2;
 857 #endif
 858         } else {
 859           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 860           stk_args += 2;
 861         }
 862         break;
 863       case T_LONG:
 864         assert(sig_bt[i + 1] == T_VOID, "expecting half");
 865         // fall through
 866       case T_OBJECT:
 867       case T_ARRAY:
 868       case T_ADDRESS:
 869         if (int_args < Argument::n_int_register_parameters_c) {
 870           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 871 #ifdef _WIN64
 872           fp_args++;
 873           stk_args += 2;
 874 #endif
 875         } else {
 876           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 877           stk_args += 2;
 878         }
 879         break;
 880       case T_FLOAT:
 881         if (fp_args < Argument::n_float_register_parameters_c) {
 882           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 883 #ifdef _WIN64
 884           int_args++;
 885           // Allocate slots for callee to stuff register args the stack.
 886           stk_args += 2;
 887 #endif
 888         } else {
 889           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 890           stk_args += 2;
 891         }
 892         break;
 893       case T_DOUBLE:
 894         assert(sig_bt[i + 1] == T_VOID, "expecting half");
 895         if (fp_args < Argument::n_float_register_parameters_c) {
 896           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 897 #ifdef _WIN64
 898           int_args++;
 899           // Allocate slots for callee to stuff register args the stack.
 900           stk_args += 2;
 901 #endif
 902         } else {
 903           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 904           stk_args += 2;
 905         }
 906         break;
 907       case T_VOID: // Halves of longs and doubles
 908         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 909         regs[i].set_bad();
 910         break;
 911       default:
 912         ShouldNotReachHere();
 913         break;
 914       }
 915     }
 916 #ifdef _WIN64
 917   // windows abi requires that we always allocate enough stack space
 918   // for 4 64bit registers to be stored down.
 919   if (stk_args < 8) {
 920     stk_args = 8;
 921   }
 922 #endif // _WIN64
 923 
 924   return stk_args;
 925 }
 926 
 927 // On 64 bit we will store integer like items to the stack as
 928 // 64 bits items (sparc abi) even though java would only store
 929 // 32bits for a parameter. On 32bit it will simply be 32 bits
 930 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
 931 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
 932   if (src.first()->is_stack()) {
 933     if (dst.first()->is_stack()) {
 934       // stack to stack
 935       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
 936       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
 937     } else {
 938       // stack to reg
 939       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
 940     }
 941   } else if (dst.first()->is_stack()) {
 942     // reg to stack
 943     // Do we really have to sign extend???
 944     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
 945     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
 946   } else {
 947     // Do we really have to sign extend???
 948     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
 949     if (dst.first() != src.first()) {
 950       __ movq(dst.first()->as_Register(), src.first()->as_Register());
 951     }
 952   }
 953 }
 954 
 955 
 956 // An oop arg. Must pass a handle not the oop itself
 957 static void object_move(MacroAssembler* masm,
 958                         OopMap* map,
 959                         int oop_handle_offset,
 960                         int framesize_in_slots,
 961                         VMRegPair src,
 962                         VMRegPair dst,
 963                         bool is_receiver,
 964                         int* receiver_offset) {
 965 
 966   // must pass a handle. First figure out the location we use as a handle
 967 
 968   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
 969 
 970   // See if oop is NULL if it is we need no handle
 971 
 972   if (src.first()->is_stack()) {
 973 
 974     // Oop is already on the stack as an argument
 975     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
 976     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
 977     if (is_receiver) {
 978       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
 979     }
 980 
 981     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
 982     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
 983     // conditionally move a NULL
 984     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
 985   } else {
 986 
 987     // Oop is in an a register we must store it to the space we reserve
 988     // on the stack for oop_handles and pass a handle if oop is non-NULL
 989 
 990     const Register rOop = src.first()->as_Register();
 991     int oop_slot;
 992     if (rOop == j_rarg0)
 993       oop_slot = 0;
 994     else if (rOop == j_rarg1)
 995       oop_slot = 1;
 996     else if (rOop == j_rarg2)
 997       oop_slot = 2;
 998     else if (rOop == j_rarg3)
 999       oop_slot = 3;
1000     else if (rOop == j_rarg4)
1001       oop_slot = 4;
1002     else {
1003       assert(rOop == j_rarg5, "wrong register");
1004       oop_slot = 5;
1005     }
1006 
1007     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
1008     int offset = oop_slot*VMRegImpl::stack_slot_size;
1009 
1010     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1011     // Store oop in handle area, may be NULL
1012     __ movptr(Address(rsp, offset), rOop);
1013     if (is_receiver) {
1014       *receiver_offset = offset;
1015     }
1016 
1017     __ cmpptr(rOop, (int32_t)NULL_WORD);
1018     __ lea(rHandle, Address(rsp, offset));
1019     // conditionally move a NULL from the handle area where it was just stored
1020     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
1021   }
1022 
1023   // If arg is on the stack then place it otherwise it is already in correct reg.
1024   if (dst.first()->is_stack()) {
1025     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1026   }
1027 }
1028 
1029 // A float arg may have to do float reg int reg conversion
1030 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1031   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1032 
1033   // The calling conventions assures us that each VMregpair is either
1034   // all really one physical register or adjacent stack slots.
1035   // This greatly simplifies the cases here compared to sparc.
1036 
1037   if (src.first()->is_stack()) {
1038     if (dst.first()->is_stack()) {
1039       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1040       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1041     } else {
1042       // stack to reg
1043       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1044       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
1045     }
1046   } else if (dst.first()->is_stack()) {
1047     // reg to stack
1048     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1049     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1050   } else {
1051     // reg to reg
1052     // In theory these overlap but the ordering is such that this is likely a nop
1053     if ( src.first() != dst.first()) {
1054       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
1055     }
1056   }
1057 }
1058 
1059 // A long move
1060 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1061 
1062   // The calling conventions assures us that each VMregpair is either
1063   // all really one physical register or adjacent stack slots.
1064   // This greatly simplifies the cases here compared to sparc.
1065 
1066   if (src.is_single_phys_reg() ) {
1067     if (dst.is_single_phys_reg()) {
1068       if (dst.first() != src.first()) {
1069         __ mov(dst.first()->as_Register(), src.first()->as_Register());
1070       }
1071     } else {
1072       assert(dst.is_single_reg(), "not a stack pair");
1073       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1074     }
1075   } else if (dst.is_single_phys_reg()) {
1076     assert(src.is_single_reg(),  "not a stack pair");
1077     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
1078   } else {
1079     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1080     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1081     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1082   }
1083 }
1084 
1085 // A double move
1086 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1087 
1088   // The calling conventions assures us that each VMregpair is either
1089   // all really one physical register or adjacent stack slots.
1090   // This greatly simplifies the cases here compared to sparc.
1091 
1092   if (src.is_single_phys_reg() ) {
1093     if (dst.is_single_phys_reg()) {
1094       // In theory these overlap but the ordering is such that this is likely a nop
1095       if ( src.first() != dst.first()) {
1096         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
1097       }
1098     } else {
1099       assert(dst.is_single_reg(), "not a stack pair");
1100       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1101     }
1102   } else if (dst.is_single_phys_reg()) {
1103     assert(src.is_single_reg(),  "not a stack pair");
1104     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
1105   } else {
1106     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1107     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1108     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1109   }
1110 }
1111 
1112 
1113 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1114   // We always ignore the frame_slots arg and just use the space just below frame pointer
1115   // which by this time is free to use
1116   switch (ret_type) {
1117   case T_FLOAT:
1118     __ movflt(Address(rbp, -wordSize), xmm0);
1119     break;
1120   case T_DOUBLE:
1121     __ movdbl(Address(rbp, -wordSize), xmm0);
1122     break;
1123   case T_VOID:  break;
1124   default: {
1125     __ movptr(Address(rbp, -wordSize), rax);
1126     }
1127   }
1128 }
1129 
1130 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1131   // We always ignore the frame_slots arg and just use the space just below frame pointer
1132   // which by this time is free to use
1133   switch (ret_type) {
1134   case T_FLOAT:
1135     __ movflt(xmm0, Address(rbp, -wordSize));
1136     break;
1137   case T_DOUBLE:
1138     __ movdbl(xmm0, Address(rbp, -wordSize));
1139     break;
1140   case T_VOID:  break;
1141   default: {
1142     __ movptr(rax, Address(rbp, -wordSize));
1143     }
1144   }
1145 }
1146 
1147 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1148     for ( int i = first_arg ; i < arg_count ; i++ ) {
1149       if (args[i].first()->is_Register()) {
1150         __ push(args[i].first()->as_Register());
1151       } else if (args[i].first()->is_XMMRegister()) {
1152         __ subptr(rsp, 2*wordSize);
1153         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1154       }
1155     }
1156 }
1157 
1158 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1159     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1160       if (args[i].first()->is_Register()) {
1161         __ pop(args[i].first()->as_Register());
1162       } else if (args[i].first()->is_XMMRegister()) {
1163         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1164         __ addptr(rsp, 2*wordSize);
1165       }
1166     }
1167 }
1168 
1169 // ---------------------------------------------------------------------------
1170 // Generate a native wrapper for a given method.  The method takes arguments
1171 // in the Java compiled code convention, marshals them to the native
1172 // convention (handlizes oops, etc), transitions to native, makes the call,
1173 // returns to java state (possibly blocking), unhandlizes any result and
1174 // returns.
1175 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
1176                                                 methodHandle method,
1177                                                 int total_in_args,
1178                                                 int comp_args_on_stack,
1179                                                 BasicType *in_sig_bt,
1180                                                 VMRegPair *in_regs,
1181                                                 BasicType ret_type) {
1182   // Native nmethod wrappers never take possesion of the oop arguments.
1183   // So the caller will gc the arguments. The only thing we need an
1184   // oopMap for is if the call is static
1185   //
1186   // An OopMap for lock (and class if static)
1187   OopMapSet *oop_maps = new OopMapSet();
1188   intptr_t start = (intptr_t)__ pc();
1189 
1190   // We have received a description of where all the java arg are located
1191   // on entry to the wrapper. We need to convert these args to where
1192   // the jni function will expect them. To figure out where they go
1193   // we convert the java signature to a C signature by inserting
1194   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1195 
1196   int total_c_args = total_in_args + 1;
1197   if (method->is_static()) {
1198     total_c_args++;
1199   }
1200 
1201   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1202   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
1203 
1204   int argc = 0;
1205   out_sig_bt[argc++] = T_ADDRESS;
1206   if (method->is_static()) {
1207     out_sig_bt[argc++] = T_OBJECT;
1208   }
1209 
1210   for (int i = 0; i < total_in_args ; i++ ) {
1211     out_sig_bt[argc++] = in_sig_bt[i];
1212   }
1213 
1214   // Now figure out where the args must be stored and how much stack space
1215   // they require.
1216   //
1217   int out_arg_slots;
1218   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1219 
1220   // Compute framesize for the wrapper.  We need to handlize all oops in
1221   // incoming registers
1222 
1223   // Calculate the total number of stack slots we will need.
1224 
1225   // First count the abi requirement plus all of the outgoing args
1226   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1227 
1228   // Now the space for the inbound oop handle area
1229 
1230   int oop_handle_offset = stack_slots;
1231   stack_slots += 6*VMRegImpl::slots_per_word;
1232 
1233   // Now any space we need for handlizing a klass if static method
1234 
1235   int oop_temp_slot_offset = 0;
1236   int klass_slot_offset = 0;
1237   int klass_offset = -1;
1238   int lock_slot_offset = 0;
1239   bool is_static = false;
1240 
1241   if (method->is_static()) {
1242     klass_slot_offset = stack_slots;
1243     stack_slots += VMRegImpl::slots_per_word;
1244     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1245     is_static = true;
1246   }
1247 
1248   // Plus a lock if needed
1249 
1250   if (method->is_synchronized()) {
1251     lock_slot_offset = stack_slots;
1252     stack_slots += VMRegImpl::slots_per_word;
1253   }
1254 
1255   // Now a place (+2) to save return values or temp during shuffling
1256   // + 4 for return address (which we own) and saved rbp
1257   stack_slots += 6;
1258 
1259   // Ok The space we have allocated will look like:
1260   //
1261   //
1262   // FP-> |                     |
1263   //      |---------------------|
1264   //      | 2 slots for moves   |
1265   //      |---------------------|
1266   //      | lock box (if sync)  |
1267   //      |---------------------| <- lock_slot_offset
1268   //      | klass (if static)   |
1269   //      |---------------------| <- klass_slot_offset
1270   //      | oopHandle area      |
1271   //      |---------------------| <- oop_handle_offset (6 java arg registers)
1272   //      | outbound memory     |
1273   //      | based arguments     |
1274   //      |                     |
1275   //      |---------------------|
1276   //      |                     |
1277   // SP-> | out_preserved_slots |
1278   //
1279   //
1280 
1281 
1282   // Now compute actual number of stack words we need rounding to make
1283   // stack properly aligned.
1284   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1285 
1286   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1287 
1288 
1289   // First thing make an ic check to see if we should even be here
1290 
1291   // We are free to use all registers as temps without saving them and
1292   // restoring them except rbp. rbp is the only callee save register
1293   // as far as the interpreter and the compiler(s) are concerned.
1294 
1295 
1296   const Register ic_reg = rax;
1297   const Register receiver = j_rarg0;
1298 
1299   Label ok;
1300   Label exception_pending;
1301 
1302   assert_different_registers(ic_reg, receiver, rscratch1);
1303   __ verify_oop(receiver);
1304   __ load_klass(rscratch1, receiver);
1305   __ cmpq(ic_reg, rscratch1);
1306   __ jcc(Assembler::equal, ok);
1307 
1308   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1309 
1310   __ bind(ok);
1311 
1312   // Verified entry point must be aligned
1313   __ align(8);
1314 
1315   int vep_offset = ((intptr_t)__ pc()) - start;
1316 
1317   // The instruction at the verified entry point must be 5 bytes or longer
1318   // because it can be patched on the fly by make_non_entrant. The stack bang
1319   // instruction fits that requirement.
1320 
1321   // Generate stack overflow check
1322 
1323   if (UseStackBanging) {
1324     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
1325   } else {
1326     // need a 5 byte instruction to allow MT safe patching to non-entrant
1327     __ fat_nop();
1328   }
1329 
1330   // Generate a new frame for the wrapper.
1331   __ enter();
1332   // -2 because return address is already present and so is saved rbp
1333   __ subptr(rsp, stack_size - 2*wordSize);
1334 
1335     // Frame is now completed as far as size and linkage.
1336 
1337     int frame_complete = ((intptr_t)__ pc()) - start;
1338 
1339 #ifdef ASSERT
1340     {
1341       Label L;
1342       __ mov(rax, rsp);
1343       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
1344       __ cmpptr(rax, rsp);
1345       __ jcc(Assembler::equal, L);
1346       __ stop("improperly aligned stack");
1347       __ bind(L);
1348     }
1349 #endif /* ASSERT */
1350 
1351 
1352   // We use r14 as the oop handle for the receiver/klass
1353   // It is callee save so it survives the call to native
1354 
1355   const Register oop_handle_reg = r14;
1356 
1357 
1358 
1359   //
1360   // We immediately shuffle the arguments so that any vm call we have to
1361   // make from here on out (sync slow path, jvmti, etc.) we will have
1362   // captured the oops from our caller and have a valid oopMap for
1363   // them.
1364 
1365   // -----------------
1366   // The Grand Shuffle
1367 
1368   // The Java calling convention is either equal (linux) or denser (win64) than the
1369   // c calling convention. However the because of the jni_env argument the c calling
1370   // convention always has at least one more (and two for static) arguments than Java.
1371   // Therefore if we move the args from java -> c backwards then we will never have
1372   // a register->register conflict and we don't have to build a dependency graph
1373   // and figure out how to break any cycles.
1374   //
1375 
1376   // Record esp-based slot for receiver on stack for non-static methods
1377   int receiver_offset = -1;
1378 
1379   // This is a trick. We double the stack slots so we can claim
1380   // the oops in the caller's frame. Since we are sure to have
1381   // more args than the caller doubling is enough to make
1382   // sure we can capture all the incoming oop args from the
1383   // caller.
1384   //
1385   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1386 
1387   // Mark location of rbp (someday)
1388   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
1389 
1390   // Use eax, ebx as temporaries during any memory-memory moves we have to do
1391   // All inbound args are referenced based on rbp and all outbound args via rsp.
1392 
1393 
1394 #ifdef ASSERT
1395   bool reg_destroyed[RegisterImpl::number_of_registers];
1396   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
1397   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
1398     reg_destroyed[r] = false;
1399   }
1400   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
1401     freg_destroyed[f] = false;
1402   }
1403 
1404 #endif /* ASSERT */
1405 
1406 
1407   int c_arg = total_c_args - 1;
1408   for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
1409 #ifdef ASSERT
1410     if (in_regs[i].first()->is_Register()) {
1411       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
1412     } else if (in_regs[i].first()->is_XMMRegister()) {
1413       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
1414     }
1415     if (out_regs[c_arg].first()->is_Register()) {
1416       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
1417     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
1418       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
1419     }
1420 #endif /* ASSERT */
1421     switch (in_sig_bt[i]) {
1422       case T_ARRAY:
1423       case T_OBJECT:
1424         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1425                     ((i == 0) && (!is_static)),
1426                     &receiver_offset);
1427         break;
1428       case T_VOID:
1429         break;
1430 
1431       case T_FLOAT:
1432         float_move(masm, in_regs[i], out_regs[c_arg]);
1433           break;
1434 
1435       case T_DOUBLE:
1436         assert( i + 1 < total_in_args &&
1437                 in_sig_bt[i + 1] == T_VOID &&
1438                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1439         double_move(masm, in_regs[i], out_regs[c_arg]);
1440         break;
1441 
1442       case T_LONG :
1443         long_move(masm, in_regs[i], out_regs[c_arg]);
1444         break;
1445 
1446       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1447 
1448       default:
1449         move32_64(masm, in_regs[i], out_regs[c_arg]);
1450     }
1451   }
1452 
1453   // point c_arg at the first arg that is already loaded in case we
1454   // need to spill before we call out
1455   c_arg++;
1456 
1457   // Pre-load a static method's oop into r14.  Used both by locking code and
1458   // the normal JNI call code.
1459   if (method->is_static()) {
1460 
1461     //  load oop into a register
1462     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
1463 
1464     // Now handlize the static class mirror it's known not-null.
1465     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1466     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1467 
1468     // Now get the handle
1469     __ lea(oop_handle_reg, Address(rsp, klass_offset));
1470     // store the klass handle as second argument
1471     __ movptr(c_rarg1, oop_handle_reg);
1472     // and protect the arg if we must spill
1473     c_arg--;
1474   }
1475 
1476   // Change state to native (we save the return address in the thread, since it might not
1477   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1478   // points into the right code segment. It does not have to be the correct return pc.
1479   // We use the same pc/oopMap repeatedly when we call out
1480 
1481   intptr_t the_pc = (intptr_t) __ pc();
1482   oop_maps->add_gc_map(the_pc - start, map);
1483 
1484   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
1485 
1486 
1487   // We have all of the arguments setup at this point. We must not touch any register
1488   // argument registers at this point (what if we save/restore them there are no oop?
1489 
1490   {
1491     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
1492     // protect the args we've loaded
1493     save_args(masm, total_c_args, c_arg, out_regs);
1494     __ movoop(c_rarg1, JNIHandles::make_local(method()));
1495     __ call_VM_leaf(
1496       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1497       r15_thread, c_rarg1);
1498     restore_args(masm, total_c_args, c_arg, out_regs);
1499   }
1500 
1501   // RedefineClasses() tracing support for obsolete method entry
1502   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1503     // protect the args we've loaded
1504     save_args(masm, total_c_args, c_arg, out_regs);
1505     __ movoop(c_rarg1, JNIHandles::make_local(method()));
1506     __ call_VM_leaf(
1507       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1508       r15_thread, c_rarg1);
1509     restore_args(masm, total_c_args, c_arg, out_regs);
1510   }
1511 
1512   // Lock a synchronized method
1513 
1514   // Register definitions used by locking and unlocking
1515 
1516   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
1517   const Register obj_reg  = rbx;  // Will contain the oop
1518   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
1519   const Register old_hdr  = r13;  // value of old header at unlock time
1520 
1521   Label slow_path_lock;
1522   Label lock_done;
1523 
1524   if (method->is_synchronized()) {
1525 
1526 
1527     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1528 
1529     // Get the handle (the 2nd argument)
1530     __ mov(oop_handle_reg, c_rarg1);
1531 
1532     // Get address of the box
1533 
1534     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
1535 
1536     // Load the oop from the handle
1537     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1538 
1539     if (UseBiasedLocking) {
1540       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
1541     }
1542 
1543     // Load immediate 1 into swap_reg %rax
1544     __ movl(swap_reg, 1);
1545 
1546     // Load (object->mark() | 1) into swap_reg %rax
1547     __ orptr(swap_reg, Address(obj_reg, 0));
1548 
1549     // Save (object->mark() | 1) into BasicLock's displaced header
1550     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1551 
1552     if (os::is_MP()) {
1553       __ lock();
1554     }
1555 
1556     // src -> dest iff dest == rax else rax <- dest
1557     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
1558     __ jcc(Assembler::equal, lock_done);
1559 
1560     // Hmm should this move to the slow path code area???
1561 
1562     // Test if the oopMark is an obvious stack pointer, i.e.,
1563     //  1) (mark & 3) == 0, and
1564     //  2) rsp <= mark < mark + os::pagesize()
1565     // These 3 tests can be done by evaluating the following
1566     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
1567     // assuming both stack pointer and pagesize have their
1568     // least significant 2 bits clear.
1569     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
1570 
1571     __ subptr(swap_reg, rsp);
1572     __ andptr(swap_reg, 3 - os::vm_page_size());
1573 
1574     // Save the test result, for recursive case, the result is zero
1575     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1576     __ jcc(Assembler::notEqual, slow_path_lock);
1577 
1578     // Slow path will re-enter here
1579 
1580     __ bind(lock_done);
1581   }
1582 
1583 
1584   // Finally just about ready to make the JNI call
1585 
1586 
1587   // get JNIEnv* which is first argument to native
1588 
1589   __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
1590 
1591   // Now set thread in native
1592   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
1593 
1594   __ call(RuntimeAddress(method->native_function()));
1595 
1596     // Either restore the MXCSR register after returning from the JNI Call
1597     // or verify that it wasn't changed.
1598     if (RestoreMXCSROnJNICalls) {
1599       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
1600 
1601     }
1602     else if (CheckJNICalls ) {
1603       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::verify_mxcsr_entry())));
1604     }
1605 
1606 
1607   // Unpack native results.
1608   switch (ret_type) {
1609   case T_BOOLEAN: __ c2bool(rax);            break;
1610   case T_CHAR   : __ movzwl(rax, rax);      break;
1611   case T_BYTE   : __ sign_extend_byte (rax); break;
1612   case T_SHORT  : __ sign_extend_short(rax); break;
1613   case T_INT    : /* nothing to do */        break;
1614   case T_DOUBLE :
1615   case T_FLOAT  :
1616     // Result is in xmm0 we'll save as needed
1617     break;
1618   case T_ARRAY:                 // Really a handle
1619   case T_OBJECT:                // Really a handle
1620       break; // can't de-handlize until after safepoint check
1621   case T_VOID: break;
1622   case T_LONG: break;
1623   default       : ShouldNotReachHere();
1624   }
1625 
1626   // Switch thread to "native transition" state before reading the synchronization state.
1627   // This additional state is necessary because reading and testing the synchronization
1628   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1629   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1630   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1631   //     Thread A is resumed to finish this native method, but doesn't block here since it
1632   //     didn't see any synchronization is progress, and escapes.
1633   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1634 
1635   if(os::is_MP()) {
1636     if (UseMembar) {
1637       // Force this write out before the read below
1638       __ membar(Assembler::Membar_mask_bits(
1639            Assembler::LoadLoad | Assembler::LoadStore |
1640            Assembler::StoreLoad | Assembler::StoreStore));
1641     } else {
1642       // Write serialization page so VM thread can do a pseudo remote membar.
1643       // We use the current thread pointer to calculate a thread specific
1644       // offset to write to within the page. This minimizes bus traffic
1645       // due to cache line collision.
1646       __ serialize_memory(r15_thread, rcx);
1647     }
1648   }
1649 
1650 
1651   // check for safepoint operation in progress and/or pending suspend requests
1652   {
1653     Label Continue;
1654 
1655     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
1656              SafepointSynchronize::_not_synchronized);
1657 
1658     Label L;
1659     __ jcc(Assembler::notEqual, L);
1660     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
1661     __ jcc(Assembler::equal, Continue);
1662     __ bind(L);
1663 
1664     // Don't use call_VM as it will see a possible pending exception and forward it
1665     // and never return here preventing us from clearing _last_native_pc down below.
1666     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1667     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
1668     // by hand.
1669     //
1670     save_native_result(masm, ret_type, stack_slots);
1671     __ mov(c_rarg0, r15_thread);
1672     __ mov(r12, rsp); // remember sp
1673     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1674     __ andptr(rsp, -16); // align stack as required by ABI
1675     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
1676     __ mov(rsp, r12); // restore sp
1677     __ reinit_heapbase();
1678     // Restore any method result value
1679     restore_native_result(masm, ret_type, stack_slots);
1680     __ bind(Continue);
1681   }
1682 
1683   // change thread state
1684   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
1685 
1686   Label reguard;
1687   Label reguard_done;
1688   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
1689   __ jcc(Assembler::equal, reguard);
1690   __ bind(reguard_done);
1691 
1692   // native result if any is live
1693 
1694   // Unlock
1695   Label unlock_done;
1696   Label slow_path_unlock;
1697   if (method->is_synchronized()) {
1698 
1699     // Get locked oop from the handle we passed to jni
1700     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1701 
1702     Label done;
1703 
1704     if (UseBiasedLocking) {
1705       __ biased_locking_exit(obj_reg, old_hdr, done);
1706     }
1707 
1708     // Simple recursive lock?
1709 
1710     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
1711     __ jcc(Assembler::equal, done);
1712 
1713     // Must save rax if if it is live now because cmpxchg must use it
1714     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1715       save_native_result(masm, ret_type, stack_slots);
1716     }
1717 
1718 
1719     // get address of the stack lock
1720     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
1721     //  get old displaced header
1722     __ movptr(old_hdr, Address(rax, 0));
1723 
1724     // Atomic swap old header if oop still contains the stack lock
1725     if (os::is_MP()) {
1726       __ lock();
1727     }
1728     __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
1729     __ jcc(Assembler::notEqual, slow_path_unlock);
1730 
1731     // slow path re-enters here
1732     __ bind(unlock_done);
1733     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1734       restore_native_result(masm, ret_type, stack_slots);
1735     }
1736 
1737     __ bind(done);
1738 
1739   }
1740   {
1741     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
1742     save_native_result(masm, ret_type, stack_slots);
1743     __ movoop(c_rarg1, JNIHandles::make_local(method()));
1744     __ call_VM_leaf(
1745          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1746          r15_thread, c_rarg1);
1747     restore_native_result(masm, ret_type, stack_slots);
1748   }
1749 
1750   __ reset_last_Java_frame(false, true);
1751 
1752   // Unpack oop result
1753   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
1754       Label L;
1755       __ testptr(rax, rax);
1756       __ jcc(Assembler::zero, L);
1757       __ movptr(rax, Address(rax, 0));
1758       __ bind(L);
1759       __ verify_oop(rax);
1760   }
1761 
1762   // reset handle block
1763   __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
1764   __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
1765 
1766   // pop our frame
1767 
1768   __ leave();
1769 
1770   // Any exception pending?
1771   __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
1772   __ jcc(Assembler::notEqual, exception_pending);
1773 
1774   // Return
1775 
1776   __ ret(0);
1777 
1778   // Unexpected paths are out of line and go here
1779 
1780   // forward the exception
1781   __ bind(exception_pending);
1782 
1783   // and forward the exception
1784   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1785 
1786 
1787   // Slow path locking & unlocking
1788   if (method->is_synchronized()) {
1789 
1790     // BEGIN Slow path lock
1791     __ bind(slow_path_lock);
1792 
1793     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
1794     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1795 
1796     // protect the args we've loaded
1797     save_args(masm, total_c_args, c_arg, out_regs);
1798 
1799     __ mov(c_rarg0, obj_reg);
1800     __ mov(c_rarg1, lock_reg);
1801     __ mov(c_rarg2, r15_thread);
1802 
1803     // Not a leaf but we have last_Java_frame setup as we want
1804     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
1805     restore_args(masm, total_c_args, c_arg, out_regs);
1806 
1807 #ifdef ASSERT
1808     { Label L;
1809     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
1810     __ jcc(Assembler::equal, L);
1811     __ stop("no pending exception allowed on exit from monitorenter");
1812     __ bind(L);
1813     }
1814 #endif
1815     __ jmp(lock_done);
1816 
1817     // END Slow path lock
1818 
1819     // BEGIN Slow path unlock
1820     __ bind(slow_path_unlock);
1821 
1822     // If we haven't already saved the native result we must save it now as xmm registers
1823     // are still exposed.
1824 
1825     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1826       save_native_result(masm, ret_type, stack_slots);
1827     }
1828 
1829     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
1830 
1831     __ mov(c_rarg0, obj_reg);
1832     __ mov(r12, rsp); // remember sp
1833     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1834     __ andptr(rsp, -16); // align stack as required by ABI
1835 
1836     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
1837     // NOTE that obj_reg == rbx currently
1838     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
1839     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
1840 
1841     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
1842     __ mov(rsp, r12); // restore sp
1843     __ reinit_heapbase();
1844 #ifdef ASSERT
1845     {
1846       Label L;
1847       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
1848       __ jcc(Assembler::equal, L);
1849       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
1850       __ bind(L);
1851     }
1852 #endif /* ASSERT */
1853 
1854     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
1855 
1856     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1857       restore_native_result(masm, ret_type, stack_slots);
1858     }
1859     __ jmp(unlock_done);
1860 
1861     // END Slow path unlock
1862 
1863   } // synchronized
1864 
1865   // SLOW PATH Reguard the stack if needed
1866 
1867   __ bind(reguard);
1868   save_native_result(masm, ret_type, stack_slots);
1869   __ mov(r12, rsp); // remember sp
1870   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1871   __ andptr(rsp, -16); // align stack as required by ABI
1872   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1873   __ mov(rsp, r12); // restore sp
1874   __ reinit_heapbase();
1875   restore_native_result(masm, ret_type, stack_slots);
1876   // and continue
1877   __ jmp(reguard_done);
1878 
1879 
1880 
1881   __ flush();
1882 
1883   nmethod *nm = nmethod::new_native_nmethod(method,
1884                                             masm->code(),
1885                                             vep_offset,
1886                                             frame_complete,
1887                                             stack_slots / VMRegImpl::slots_per_word,
1888                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
1889                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
1890                                             oop_maps);
1891   return nm;
1892 
1893 }
1894 
1895 #ifdef HAVE_DTRACE_H
1896 // ---------------------------------------------------------------------------
1897 // Generate a dtrace nmethod for a given signature.  The method takes arguments
1898 // in the Java compiled code convention, marshals them to the native
1899 // abi and then leaves nops at the position you would expect to call a native
1900 // function. When the probe is enabled the nops are replaced with a trap
1901 // instruction that dtrace inserts and the trace will cause a notification
1902 // to dtrace.
1903 //
1904 // The probes are only able to take primitive types and java/lang/String as
1905 // arguments.  No other java types are allowed. Strings are converted to utf8
1906 // strings so that from dtrace point of view java strings are converted to C
1907 // strings. There is an arbitrary fixed limit on the total space that a method
1908 // can use for converting the strings. (256 chars per string in the signature).
1909 // So any java string larger then this is truncated.
1910 
1911 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
1912 static bool offsets_initialized = false;
1913 
1914 
1915 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
1916                                                 methodHandle method) {
1917 
1918 
1919   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
1920   // be single threaded in this method.
1921   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
1922 
1923   if (!offsets_initialized) {
1924     fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
1925     fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
1926     fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
1927     fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
1928     fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
1929     fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
1930 
1931     fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
1932     fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
1933     fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
1934     fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
1935     fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
1936     fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
1937     fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
1938     fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
1939 
1940     offsets_initialized = true;
1941   }
1942   // Fill in the signature array, for the calling-convention call.
1943   int total_args_passed = method->size_of_parameters();
1944 
1945   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
1946   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
1947 
1948   // The signature we are going to use for the trap that dtrace will see
1949   // java/lang/String is converted. We drop "this" and any other object
1950   // is converted to NULL.  (A one-slot java/lang/Long object reference
1951   // is converted to a two-slot long, which is why we double the allocation).
1952   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
1953   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
1954 
1955   int i=0;
1956   int total_strings = 0;
1957   int first_arg_to_pass = 0;
1958   int total_c_args = 0;
1959 
1960   // Skip the receiver as dtrace doesn't want to see it
1961   if( !method->is_static() ) {
1962     in_sig_bt[i++] = T_OBJECT;
1963     first_arg_to_pass = 1;
1964   }
1965 
1966   // We need to convert the java args to where a native (non-jni) function
1967   // would expect them. To figure out where they go we convert the java
1968   // signature to a C signature.
1969 
1970   SignatureStream ss(method->signature());
1971   for ( ; !ss.at_return_type(); ss.next()) {
1972     BasicType bt = ss.type();
1973     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
1974     out_sig_bt[total_c_args++] = bt;
1975     if( bt == T_OBJECT) {
1976       Symbol* s = ss.as_symbol_or_null();   // symbol is created
1977       if (s == vmSymbols::java_lang_String()) {
1978         total_strings++;
1979         out_sig_bt[total_c_args-1] = T_ADDRESS;
1980       } else if (s == vmSymbols::java_lang_Boolean() ||
1981                  s == vmSymbols::java_lang_Character() ||
1982                  s == vmSymbols::java_lang_Byte() ||
1983                  s == vmSymbols::java_lang_Short() ||
1984                  s == vmSymbols::java_lang_Integer() ||
1985                  s == vmSymbols::java_lang_Float()) {
1986         out_sig_bt[total_c_args-1] = T_INT;
1987       } else if (s == vmSymbols::java_lang_Long() ||
1988                  s == vmSymbols::java_lang_Double()) {
1989         out_sig_bt[total_c_args-1] = T_LONG;
1990         out_sig_bt[total_c_args++] = T_VOID;
1991       }
1992     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
1993       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
1994       // We convert double to long
1995       out_sig_bt[total_c_args-1] = T_LONG;
1996       out_sig_bt[total_c_args++] = T_VOID;
1997     } else if ( bt == T_FLOAT) {
1998       // We convert float to int
1999       out_sig_bt[total_c_args-1] = T_INT;
2000     }
2001   }
2002 
2003   assert(i==total_args_passed, "validly parsed signature");
2004 
2005   // Now get the compiled-Java layout as input arguments
2006   int comp_args_on_stack;
2007   comp_args_on_stack = SharedRuntime::java_calling_convention(
2008       in_sig_bt, in_regs, total_args_passed, false);
2009 
2010   // Now figure out where the args must be stored and how much stack space
2011   // they require (neglecting out_preserve_stack_slots but space for storing
2012   // the 1st six register arguments). It's weird see int_stk_helper.
2013 
2014   int out_arg_slots;
2015   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
2016 
2017   // Calculate the total number of stack slots we will need.
2018 
2019   // First count the abi requirement plus all of the outgoing args
2020   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2021 
2022   // Now space for the string(s) we must convert
2023   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
2024   for (i = 0; i < total_strings ; i++) {
2025     string_locs[i] = stack_slots;
2026     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
2027   }
2028 
2029   // Plus the temps we might need to juggle register args
2030   // regs take two slots each
2031   stack_slots += (Argument::n_int_register_parameters_c +
2032                   Argument::n_float_register_parameters_c) * 2;
2033 
2034 
2035   // + 4 for return address (which we own) and saved rbp,
2036 
2037   stack_slots += 4;
2038 
2039   // Ok The space we have allocated will look like:
2040   //
2041   //
2042   // FP-> |                     |
2043   //      |---------------------|
2044   //      | string[n]           |
2045   //      |---------------------| <- string_locs[n]
2046   //      | string[n-1]         |
2047   //      |---------------------| <- string_locs[n-1]
2048   //      | ...                 |
2049   //      | ...                 |
2050   //      |---------------------| <- string_locs[1]
2051   //      | string[0]           |
2052   //      |---------------------| <- string_locs[0]
2053   //      | outbound memory     |
2054   //      | based arguments     |
2055   //      |                     |
2056   //      |---------------------|
2057   //      |                     |
2058   // SP-> | out_preserved_slots |
2059   //
2060   //
2061 
2062   // Now compute actual number of stack words we need rounding to make
2063   // stack properly aligned.
2064   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
2065 
2066   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2067 
2068   intptr_t start = (intptr_t)__ pc();
2069 
2070   // First thing make an ic check to see if we should even be here
2071 
2072   // We are free to use all registers as temps without saving them and
2073   // restoring them except rbp. rbp, is the only callee save register
2074   // as far as the interpreter and the compiler(s) are concerned.
2075 
2076   const Register ic_reg = rax;
2077   const Register receiver = rcx;
2078   Label hit;
2079   Label exception_pending;
2080 
2081 
2082   __ verify_oop(receiver);
2083   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
2084   __ jcc(Assembler::equal, hit);
2085 
2086   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2087 
2088   // verified entry must be aligned for code patching.
2089   // and the first 5 bytes must be in the same cache line
2090   // if we align at 8 then we will be sure 5 bytes are in the same line
2091   __ align(8);
2092 
2093   __ bind(hit);
2094 
2095   int vep_offset = ((intptr_t)__ pc()) - start;
2096 
2097 
2098   // The instruction at the verified entry point must be 5 bytes or longer
2099   // because it can be patched on the fly by make_non_entrant. The stack bang
2100   // instruction fits that requirement.
2101 
2102   // Generate stack overflow check
2103 
2104   if (UseStackBanging) {
2105     if (stack_size <= StackShadowPages*os::vm_page_size()) {
2106       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2107     } else {
2108       __ movl(rax, stack_size);
2109       __ bang_stack_size(rax, rbx);
2110     }
2111   } else {
2112     // need a 5 byte instruction to allow MT safe patching to non-entrant
2113     __ fat_nop();
2114   }
2115 
2116   assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
2117          "valid size for make_non_entrant");
2118 
2119   // Generate a new frame for the wrapper.
2120   __ enter();
2121 
2122   // -4 because return address is already present and so is saved rbp,
2123   if (stack_size - 2*wordSize != 0) {
2124     __ subq(rsp, stack_size - 2*wordSize);
2125   }
2126 
2127   // Frame is now completed as far a size and linkage.
2128 
2129   int frame_complete = ((intptr_t)__ pc()) - start;
2130 
2131   int c_arg, j_arg;
2132 
2133   // State of input register args
2134 
2135   bool  live[ConcreteRegisterImpl::number_of_registers];
2136 
2137   live[j_rarg0->as_VMReg()->value()] = false;
2138   live[j_rarg1->as_VMReg()->value()] = false;
2139   live[j_rarg2->as_VMReg()->value()] = false;
2140   live[j_rarg3->as_VMReg()->value()] = false;
2141   live[j_rarg4->as_VMReg()->value()] = false;
2142   live[j_rarg5->as_VMReg()->value()] = false;
2143 
2144   live[j_farg0->as_VMReg()->value()] = false;
2145   live[j_farg1->as_VMReg()->value()] = false;
2146   live[j_farg2->as_VMReg()->value()] = false;
2147   live[j_farg3->as_VMReg()->value()] = false;
2148   live[j_farg4->as_VMReg()->value()] = false;
2149   live[j_farg5->as_VMReg()->value()] = false;
2150   live[j_farg6->as_VMReg()->value()] = false;
2151   live[j_farg7->as_VMReg()->value()] = false;
2152 
2153 
2154   bool rax_is_zero = false;
2155 
2156   // All args (except strings) destined for the stack are moved first
2157   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2158        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2159     VMRegPair src = in_regs[j_arg];
2160     VMRegPair dst = out_regs[c_arg];
2161 
2162     // Get the real reg value or a dummy (rsp)
2163 
2164     int src_reg = src.first()->is_reg() ?
2165                   src.first()->value() :
2166                   rsp->as_VMReg()->value();
2167 
2168     bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2169                     (in_sig_bt[j_arg] == T_OBJECT &&
2170                      out_sig_bt[c_arg] != T_INT &&
2171                      out_sig_bt[c_arg] != T_ADDRESS &&
2172                      out_sig_bt[c_arg] != T_LONG);
2173 
2174     live[src_reg] = !useless;
2175 
2176     if (dst.first()->is_stack()) {
2177 
2178       // Even though a string arg in a register is still live after this loop
2179       // after the string conversion loop (next) it will be dead so we take
2180       // advantage of that now for simpler code to manage live.
2181 
2182       live[src_reg] = false;
2183       switch (in_sig_bt[j_arg]) {
2184 
2185         case T_ARRAY:
2186         case T_OBJECT:
2187           {
2188             Address stack_dst(rsp, reg2offset_out(dst.first()));
2189 
2190             if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2191               // need to unbox a one-word value
2192               Register in_reg = rax;
2193               if ( src.first()->is_reg() ) {
2194                 in_reg = src.first()->as_Register();
2195               } else {
2196                 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
2197                 rax_is_zero = false;
2198               }
2199               Label skipUnbox;
2200               __ movptr(Address(rsp, reg2offset_out(dst.first())),
2201                         (int32_t)NULL_WORD);
2202               __ testq(in_reg, in_reg);
2203               __ jcc(Assembler::zero, skipUnbox);
2204 
2205               BasicType bt = out_sig_bt[c_arg];
2206               int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2207               Address src1(in_reg, box_offset);
2208               if ( bt == T_LONG ) {
2209                 __ movq(in_reg,  src1);
2210                 __ movq(stack_dst, in_reg);
2211                 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2212                 ++c_arg; // skip over T_VOID to keep the loop indices in sync
2213               } else {
2214                 __ movl(in_reg,  src1);
2215                 __ movl(stack_dst, in_reg);
2216               }
2217 
2218               __ bind(skipUnbox);
2219             } else if (out_sig_bt[c_arg] != T_ADDRESS) {
2220               // Convert the arg to NULL
2221               if (!rax_is_zero) {
2222                 __ xorq(rax, rax);
2223                 rax_is_zero = true;
2224               }
2225               __ movq(stack_dst, rax);
2226             }
2227           }
2228           break;
2229 
2230         case T_VOID:
2231           break;
2232 
2233         case T_FLOAT:
2234           // This does the right thing since we know it is destined for the
2235           // stack
2236           float_move(masm, src, dst);
2237           break;
2238 
2239         case T_DOUBLE:
2240           // This does the right thing since we know it is destined for the
2241           // stack
2242           double_move(masm, src, dst);
2243           break;
2244 
2245         case T_LONG :
2246           long_move(masm, src, dst);
2247           break;
2248 
2249         case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2250 
2251         default:
2252           move32_64(masm, src, dst);
2253       }
2254     }
2255 
2256   }
2257 
2258   // If we have any strings we must store any register based arg to the stack
2259   // This includes any still live xmm registers too.
2260 
2261   int sid = 0;
2262 
2263   if (total_strings > 0 ) {
2264     for (j_arg = first_arg_to_pass, c_arg = 0 ;
2265          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2266       VMRegPair src = in_regs[j_arg];
2267       VMRegPair dst = out_regs[c_arg];
2268 
2269       if (src.first()->is_reg()) {
2270         Address src_tmp(rbp, fp_offset[src.first()->value()]);
2271 
2272         // string oops were left untouched by the previous loop even if the
2273         // eventual (converted) arg is destined for the stack so park them
2274         // away now (except for first)
2275 
2276         if (out_sig_bt[c_arg] == T_ADDRESS) {
2277           Address utf8_addr = Address(
2278               rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
2279           if (sid != 1) {
2280             // The first string arg won't be killed until after the utf8
2281             // conversion
2282             __ movq(utf8_addr, src.first()->as_Register());
2283           }
2284         } else if (dst.first()->is_reg()) {
2285           if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
2286 
2287             // Convert the xmm register to an int and store it in the reserved
2288             // location for the eventual c register arg
2289             XMMRegister f = src.first()->as_XMMRegister();
2290             if (in_sig_bt[j_arg] == T_FLOAT) {
2291               __ movflt(src_tmp, f);
2292             } else {
2293               __ movdbl(src_tmp, f);
2294             }
2295           } else {
2296             // If the arg is an oop type we don't support don't bother to store
2297             // it remember string was handled above.
2298             bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2299                             (in_sig_bt[j_arg] == T_OBJECT &&
2300                              out_sig_bt[c_arg] != T_INT &&
2301                              out_sig_bt[c_arg] != T_LONG);
2302 
2303             if (!useless) {
2304               __ movq(src_tmp, src.first()->as_Register());
2305             }
2306           }
2307         }
2308       }
2309       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2310         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2311         ++c_arg; // skip over T_VOID to keep the loop indices in sync
2312       }
2313     }
2314 
2315     // Now that the volatile registers are safe, convert all the strings
2316     sid = 0;
2317 
2318     for (j_arg = first_arg_to_pass, c_arg = 0 ;
2319          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2320       if (out_sig_bt[c_arg] == T_ADDRESS) {
2321         // It's a string
2322         Address utf8_addr = Address(
2323             rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
2324         // The first string we find might still be in the original java arg
2325         // register
2326 
2327         VMReg src = in_regs[j_arg].first();
2328 
2329         // We will need to eventually save the final argument to the trap
2330         // in the von-volatile location dedicated to src. This is the offset
2331         // from fp we will use.
2332         int src_off = src->is_reg() ?
2333             fp_offset[src->value()] : reg2offset_in(src);
2334 
2335         // This is where the argument will eventually reside
2336         VMRegPair dst = out_regs[c_arg];
2337 
2338         if (src->is_reg()) {
2339           if (sid == 1) {
2340             __ movq(c_rarg0, src->as_Register());
2341           } else {
2342             __ movq(c_rarg0, utf8_addr);
2343           }
2344         } else {
2345           // arg is still in the original location
2346           __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
2347         }
2348         Label done, convert;
2349 
2350         // see if the oop is NULL
2351         __ testq(c_rarg0, c_rarg0);
2352         __ jcc(Assembler::notEqual, convert);
2353 
2354         if (dst.first()->is_reg()) {
2355           // Save the ptr to utf string in the origina src loc or the tmp
2356           // dedicated to it
2357           __ movq(Address(rbp, src_off), c_rarg0);
2358         } else {
2359           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
2360         }
2361         __ jmp(done);
2362 
2363         __ bind(convert);
2364 
2365         __ lea(c_rarg1, utf8_addr);
2366         if (dst.first()->is_reg()) {
2367           __ movq(Address(rbp, src_off), c_rarg1);
2368         } else {
2369           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
2370         }
2371         // And do the conversion
2372         __ call(RuntimeAddress(
2373                 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
2374 
2375         __ bind(done);
2376       }
2377       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2378         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2379         ++c_arg; // skip over T_VOID to keep the loop indices in sync
2380       }
2381     }
2382     // The get_utf call killed all the c_arg registers
2383     live[c_rarg0->as_VMReg()->value()] = false;
2384     live[c_rarg1->as_VMReg()->value()] = false;
2385     live[c_rarg2->as_VMReg()->value()] = false;
2386     live[c_rarg3->as_VMReg()->value()] = false;
2387     live[c_rarg4->as_VMReg()->value()] = false;
2388     live[c_rarg5->as_VMReg()->value()] = false;
2389 
2390     live[c_farg0->as_VMReg()->value()] = false;
2391     live[c_farg1->as_VMReg()->value()] = false;
2392     live[c_farg2->as_VMReg()->value()] = false;
2393     live[c_farg3->as_VMReg()->value()] = false;
2394     live[c_farg4->as_VMReg()->value()] = false;
2395     live[c_farg5->as_VMReg()->value()] = false;
2396     live[c_farg6->as_VMReg()->value()] = false;
2397     live[c_farg7->as_VMReg()->value()] = false;
2398   }
2399 
2400   // Now we can finally move the register args to their desired locations
2401 
2402   rax_is_zero = false;
2403 
2404   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2405        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2406 
2407     VMRegPair src = in_regs[j_arg];
2408     VMRegPair dst = out_regs[c_arg];
2409 
2410     // Only need to look for args destined for the interger registers (since we
2411     // convert float/double args to look like int/long outbound)
2412     if (dst.first()->is_reg()) {
2413       Register r =  dst.first()->as_Register();
2414 
2415       // Check if the java arg is unsupported and thereofre useless
2416       bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2417                       (in_sig_bt[j_arg] == T_OBJECT &&
2418                        out_sig_bt[c_arg] != T_INT &&
2419                        out_sig_bt[c_arg] != T_ADDRESS &&
2420                        out_sig_bt[c_arg] != T_LONG);
2421 
2422 
2423       // If we're going to kill an existing arg save it first
2424       if (live[dst.first()->value()]) {
2425         // you can't kill yourself
2426         if (src.first() != dst.first()) {
2427           __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
2428         }
2429       }
2430       if (src.first()->is_reg()) {
2431         if (live[src.first()->value()] ) {
2432           if (in_sig_bt[j_arg] == T_FLOAT) {
2433             __ movdl(r, src.first()->as_XMMRegister());
2434           } else if (in_sig_bt[j_arg] == T_DOUBLE) {
2435             __ movdq(r, src.first()->as_XMMRegister());
2436           } else if (r != src.first()->as_Register()) {
2437             if (!useless) {
2438               __ movq(r, src.first()->as_Register());
2439             }
2440           }
2441         } else {
2442           // If the arg is an oop type we don't support don't bother to store
2443           // it
2444           if (!useless) {
2445             if (in_sig_bt[j_arg] == T_DOUBLE ||
2446                 in_sig_bt[j_arg] == T_LONG  ||
2447                 in_sig_bt[j_arg] == T_OBJECT ) {
2448               __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
2449             } else {
2450               __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
2451             }
2452           }
2453         }
2454         live[src.first()->value()] = false;
2455       } else if (!useless) {
2456         // full sized move even for int should be ok
2457         __ movq(r, Address(rbp, reg2offset_in(src.first())));
2458       }
2459 
2460       // At this point r has the original java arg in the final location
2461       // (assuming it wasn't useless). If the java arg was an oop
2462       // we have a bit more to do
2463 
2464       if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
2465         if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2466           // need to unbox a one-word value
2467           Label skip;
2468           __ testq(r, r);
2469           __ jcc(Assembler::equal, skip);
2470           BasicType bt = out_sig_bt[c_arg];
2471           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2472           Address src1(r, box_offset);
2473           if ( bt == T_LONG ) {
2474             __ movq(r, src1);
2475           } else {
2476             __ movl(r, src1);
2477           }
2478           __ bind(skip);
2479 
2480         } else if (out_sig_bt[c_arg] != T_ADDRESS) {
2481           // Convert the arg to NULL
2482           __ xorq(r, r);
2483         }
2484       }
2485 
2486       // dst can longer be holding an input value
2487       live[dst.first()->value()] = false;
2488     }
2489     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2490       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2491       ++c_arg; // skip over T_VOID to keep the loop indices in sync
2492     }
2493   }
2494 
2495 
2496   // Ok now we are done. Need to place the nop that dtrace wants in order to
2497   // patch in the trap
2498   int patch_offset = ((intptr_t)__ pc()) - start;
2499 
2500   __ nop();
2501 
2502 
2503   // Return
2504 
2505   __ leave();
2506   __ ret(0);
2507 
2508   __ flush();
2509 
2510   nmethod *nm = nmethod::new_dtrace_nmethod(
2511       method, masm->code(), vep_offset, patch_offset, frame_complete,
2512       stack_slots / VMRegImpl::slots_per_word);
2513   return nm;
2514 
2515 }
2516 
2517 #endif // HAVE_DTRACE_H
2518 
2519 // this function returns the adjust size (in number of words) to a c2i adapter
2520 // activation for use during deoptimization
2521 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2522   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2523 }
2524 
2525 
2526 uint SharedRuntime::out_preserve_stack_slots() {
2527   return 0;
2528 }
2529 
2530 
2531 //------------------------------generate_deopt_blob----------------------------
2532 void SharedRuntime::generate_deopt_blob() {
2533   // Allocate space for the code
2534   ResourceMark rm;
2535   // Setup code generation tools
2536   CodeBuffer buffer("deopt_blob", 2048, 1024);
2537   MacroAssembler* masm = new MacroAssembler(&buffer);
2538   int frame_size_in_words;
2539   OopMap* map = NULL;
2540   OopMapSet *oop_maps = new OopMapSet();
2541 
2542   // -------------
2543   // This code enters when returning to a de-optimized nmethod.  A return
2544   // address has been pushed on the the stack, and return values are in
2545   // registers.
2546   // If we are doing a normal deopt then we were called from the patched
2547   // nmethod from the point we returned to the nmethod. So the return
2548   // address on the stack is wrong by NativeCall::instruction_size
2549   // We will adjust the value so it looks like we have the original return
2550   // address on the stack (like when we eagerly deoptimized).
2551   // In the case of an exception pending when deoptimizing, we enter
2552   // with a return address on the stack that points after the call we patched
2553   // into the exception handler. We have the following register state from,
2554   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2555   //    rax: exception oop
2556   //    rbx: exception handler
2557   //    rdx: throwing pc
2558   // So in this case we simply jam rdx into the useless return address and
2559   // the stack looks just like we want.
2560   //
2561   // At this point we need to de-opt.  We save the argument return
2562   // registers.  We call the first C routine, fetch_unroll_info().  This
2563   // routine captures the return values and returns a structure which
2564   // describes the current frame size and the sizes of all replacement frames.
2565   // The current frame is compiled code and may contain many inlined
2566   // functions, each with their own JVM state.  We pop the current frame, then
2567   // push all the new frames.  Then we call the C routine unpack_frames() to
2568   // populate these frames.  Finally unpack_frames() returns us the new target
2569   // address.  Notice that callee-save registers are BLOWN here; they have
2570   // already been captured in the vframeArray at the time the return PC was
2571   // patched.
2572   address start = __ pc();
2573   Label cont;
2574 
2575   // Prolog for non exception case!
2576 
2577   // Save everything in sight.
2578   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2579 
2580   // Normal deoptimization.  Save exec mode for unpack_frames.
2581   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
2582   __ jmp(cont);
2583 
2584   int reexecute_offset = __ pc() - start;
2585 
2586   // Reexecute case
2587   // return address is the pc describes what bci to do re-execute at
2588 
2589   // No need to update map as each call to save_live_registers will produce identical oopmap
2590   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2591 
2592   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
2593   __ jmp(cont);
2594 
2595   int exception_offset = __ pc() - start;
2596 
2597   // Prolog for exception case
2598 
2599   // all registers are dead at this entry point, except for rax, and
2600   // rdx which contain the exception oop and exception pc
2601   // respectively.  Set them in TLS and fall thru to the
2602   // unpack_with_exception_in_tls entry point.
2603 
2604   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
2605   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
2606 
2607   int exception_in_tls_offset = __ pc() - start;
2608 
2609   // new implementation because exception oop is now passed in JavaThread
2610 
2611   // Prolog for exception case
2612   // All registers must be preserved because they might be used by LinearScan
2613   // Exceptiop oop and throwing PC are passed in JavaThread
2614   // tos: stack at point of call to method that threw the exception (i.e. only
2615   // args are on the stack, no return address)
2616 
2617   // make room on stack for the return address
2618   // It will be patched later with the throwing pc. The correct value is not
2619   // available now because loading it from memory would destroy registers.
2620   __ push(0);
2621 
2622   // Save everything in sight.
2623   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2624 
2625   // Now it is safe to overwrite any register
2626 
2627   // Deopt during an exception.  Save exec mode for unpack_frames.
2628   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
2629 
2630   // load throwing pc from JavaThread and patch it as the return address
2631   // of the current frame. Then clear the field in JavaThread
2632 
2633   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2634   __ movptr(Address(rbp, wordSize), rdx);
2635   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
2636 
2637 #ifdef ASSERT
2638   // verify that there is really an exception oop in JavaThread
2639   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2640   __ verify_oop(rax);
2641 
2642   // verify that there is no pending exception
2643   Label no_pending_exception;
2644   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
2645   __ testptr(rax, rax);
2646   __ jcc(Assembler::zero, no_pending_exception);
2647   __ stop("must not have pending exception here");
2648   __ bind(no_pending_exception);
2649 #endif
2650 
2651   __ bind(cont);
2652 
2653   // Call C code.  Need thread and this frame, but NOT official VM entry
2654   // crud.  We cannot block on this call, no GC can happen.
2655   //
2656   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
2657 
2658   // fetch_unroll_info needs to call last_java_frame().
2659 
2660   __ set_last_Java_frame(noreg, noreg, NULL);
2661 #ifdef ASSERT
2662   { Label L;
2663     __ cmpptr(Address(r15_thread,
2664                     JavaThread::last_Java_fp_offset()),
2665             (int32_t)0);
2666     __ jcc(Assembler::equal, L);
2667     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2668     __ bind(L);
2669   }
2670 #endif // ASSERT
2671   __ mov(c_rarg0, r15_thread);
2672   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2673 
2674   // Need to have an oopmap that tells fetch_unroll_info where to
2675   // find any register it might need.
2676   oop_maps->add_gc_map(__ pc() - start, map);
2677 
2678   __ reset_last_Java_frame(false, false);
2679 
2680   // Load UnrollBlock* into rdi
2681   __ mov(rdi, rax);
2682 
2683    Label noException;
2684   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
2685   __ jcc(Assembler::notEqual, noException);
2686   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2687   // QQQ this is useless it was NULL above
2688   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2689   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
2690   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
2691 
2692   __ verify_oop(rax);
2693 
2694   // Overwrite the result registers with the exception results.
2695   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
2696   // I think this is useless
2697   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
2698 
2699   __ bind(noException);
2700 
2701   // Only register save data is on the stack.
2702   // Now restore the result registers.  Everything else is either dead
2703   // or captured in the vframeArray.
2704   RegisterSaver::restore_result_registers(masm);
2705 
2706   // All of the register save area has been popped of the stack. Only the
2707   // return address remains.
2708 
2709   // Pop all the frames we must move/replace.
2710   //
2711   // Frame picture (youngest to oldest)
2712   // 1: self-frame (no frame link)
2713   // 2: deopting frame  (no frame link)
2714   // 3: caller of deopting frame (could be compiled/interpreted).
2715   //
2716   // Note: by leaving the return address of self-frame on the stack
2717   // and using the size of frame 2 to adjust the stack
2718   // when we are done the return to frame 3 will still be on the stack.
2719 
2720   // Pop deoptimized frame
2721   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2722   __ addptr(rsp, rcx);
2723 
2724   // rsp should be pointing at the return address to the caller (3)
2725 
2726   // Stack bang to make sure there's enough room for these interpreter frames.
2727   if (UseStackBanging) {
2728     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2729     __ bang_stack_size(rbx, rcx);
2730   }
2731 
2732   // Load address of array of frame pcs into rcx
2733   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2734 
2735   // Trash the old pc
2736   __ addptr(rsp, wordSize);
2737 
2738   // Load address of array of frame sizes into rsi
2739   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2740 
2741   // Load counter into rdx
2742   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2743 
2744   // Pick up the initial fp we should save
2745   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
2746 
2747   // Now adjust the caller's stack to make up for the extra locals
2748   // but record the original sp so that we can save it in the skeletal interpreter
2749   // frame and the stack walking of interpreter_sender will get the unextended sp
2750   // value and not the "real" sp value.
2751 
2752   const Register sender_sp = r8;
2753 
2754   __ mov(sender_sp, rsp);
2755   __ movl(rbx, Address(rdi,
2756                        Deoptimization::UnrollBlock::
2757                        caller_adjustment_offset_in_bytes()));
2758   __ subptr(rsp, rbx);
2759 
2760   // Push interpreter frames in a loop
2761   Label loop;
2762   __ bind(loop);
2763   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2764 #ifdef CC_INTERP
2765   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
2766 #ifdef ASSERT
2767   __ push(0xDEADDEAD);                  // Make a recognizable pattern
2768   __ push(0xDEADDEAD);
2769 #else /* ASSERT */
2770   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
2771 #endif /* ASSERT */
2772 #else
2773   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
2774 #endif // CC_INTERP
2775   __ pushptr(Address(rcx, 0));          // Save return address
2776   __ enter();                           // Save old & set new ebp
2777   __ subptr(rsp, rbx);                  // Prolog
2778 #ifdef CC_INTERP
2779   __ movptr(Address(rbp,
2780                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
2781             sender_sp); // Make it walkable
2782 #else /* CC_INTERP */
2783   // This value is corrected by layout_activation_impl
2784   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
2785   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
2786 #endif /* CC_INTERP */
2787   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
2788   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2789   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2790   __ decrementl(rdx);                   // Decrement counter
2791   __ jcc(Assembler::notZero, loop);
2792   __ pushptr(Address(rcx, 0));          // Save final return address
2793 
2794   // Re-push self-frame
2795   __ enter();                           // Save old & set new ebp
2796 
2797   // Allocate a full sized register save area.
2798   // Return address and rbp are in place, so we allocate two less words.
2799   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
2800 
2801   // Restore frame locals after moving the frame
2802   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
2803   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
2804 
2805   // Call C code.  Need thread but NOT official VM entry
2806   // crud.  We cannot block on this call, no GC can happen.  Call should
2807   // restore return values to their stack-slots with the new SP.
2808   //
2809   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
2810 
2811   // Use rbp because the frames look interpreted now
2812   __ set_last_Java_frame(noreg, rbp, NULL);
2813 
2814   __ mov(c_rarg0, r15_thread);
2815   __ movl(c_rarg1, r14); // second arg: exec_mode
2816   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2817 
2818   // Set an oopmap for the call site
2819   oop_maps->add_gc_map(__ pc() - start,
2820                        new OopMap( frame_size_in_words, 0 ));
2821 
2822   __ reset_last_Java_frame(true, false);
2823 
2824   // Collect return values
2825   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
2826   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
2827   // I think this is useless (throwing pc?)
2828   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
2829 
2830   // Pop self-frame.
2831   __ leave();                           // Epilog
2832 
2833   // Jump to interpreter
2834   __ ret(0);
2835 
2836   // Make sure all code is generated
2837   masm->flush();
2838 
2839   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2840   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2841 }
2842 
2843 #ifdef COMPILER2
2844 //------------------------------generate_uncommon_trap_blob--------------------
2845 void SharedRuntime::generate_uncommon_trap_blob() {
2846   // Allocate space for the code
2847   ResourceMark rm;
2848   // Setup code generation tools
2849   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
2850   MacroAssembler* masm = new MacroAssembler(&buffer);
2851 
2852   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
2853 
2854   address start = __ pc();
2855 
2856   // Push self-frame.  We get here with a return address on the
2857   // stack, so rsp is 8-byte aligned until we allocate our frame.
2858   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
2859 
2860   // No callee saved registers. rbp is assumed implicitly saved
2861   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
2862 
2863   // compiler left unloaded_class_index in j_rarg0 move to where the
2864   // runtime expects it.
2865   __ movl(c_rarg1, j_rarg0);
2866 
2867   __ set_last_Java_frame(noreg, noreg, NULL);
2868 
2869   // Call C code.  Need thread but NOT official VM entry
2870   // crud.  We cannot block on this call, no GC can happen.  Call should
2871   // capture callee-saved registers as well as return values.
2872   // Thread is in rdi already.
2873   //
2874   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
2875 
2876   __ mov(c_rarg0, r15_thread);
2877   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2878 
2879   // Set an oopmap for the call site
2880   OopMapSet* oop_maps = new OopMapSet();
2881   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
2882 
2883   // location of rbp is known implicitly by the frame sender code
2884 
2885   oop_maps->add_gc_map(__ pc() - start, map);
2886 
2887   __ reset_last_Java_frame(false, false);
2888 
2889   // Load UnrollBlock* into rdi
2890   __ mov(rdi, rax);
2891 
2892   // Pop all the frames we must move/replace.
2893   //
2894   // Frame picture (youngest to oldest)
2895   // 1: self-frame (no frame link)
2896   // 2: deopting frame  (no frame link)
2897   // 3: caller of deopting frame (could be compiled/interpreted).
2898 
2899   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
2900   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
2901 
2902   // Pop deoptimized frame (int)
2903   __ movl(rcx, Address(rdi,
2904                        Deoptimization::UnrollBlock::
2905                        size_of_deoptimized_frame_offset_in_bytes()));
2906   __ addptr(rsp, rcx);
2907 
2908   // rsp should be pointing at the return address to the caller (3)
2909 
2910   // Stack bang to make sure there's enough room for these interpreter frames.
2911   if (UseStackBanging) {
2912     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2913     __ bang_stack_size(rbx, rcx);
2914   }
2915 
2916   // Load address of array of frame pcs into rcx (address*)
2917   __ movptr(rcx,
2918             Address(rdi,
2919                     Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2920 
2921   // Trash the return pc
2922   __ addptr(rsp, wordSize);
2923 
2924   // Load address of array of frame sizes into rsi (intptr_t*)
2925   __ movptr(rsi, Address(rdi,
2926                          Deoptimization::UnrollBlock::
2927                          frame_sizes_offset_in_bytes()));
2928 
2929   // Counter
2930   __ movl(rdx, Address(rdi,
2931                        Deoptimization::UnrollBlock::
2932                        number_of_frames_offset_in_bytes())); // (int)
2933 
2934   // Pick up the initial fp we should save
2935   __ movptr(rbp,
2936             Address(rdi,
2937                     Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
2938 
2939   // Now adjust the caller's stack to make up for the extra locals but
2940   // record the original sp so that we can save it in the skeletal
2941   // interpreter frame and the stack walking of interpreter_sender
2942   // will get the unextended sp value and not the "real" sp value.
2943 
2944   const Register sender_sp = r8;
2945 
2946   __ mov(sender_sp, rsp);
2947   __ movl(rbx, Address(rdi,
2948                        Deoptimization::UnrollBlock::
2949                        caller_adjustment_offset_in_bytes())); // (int)
2950   __ subptr(rsp, rbx);
2951 
2952   // Push interpreter frames in a loop
2953   Label loop;
2954   __ bind(loop);
2955   __ movptr(rbx, Address(rsi, 0)); // Load frame size
2956   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
2957   __ pushptr(Address(rcx, 0));     // Save return address
2958   __ enter();                      // Save old & set new rbp
2959   __ subptr(rsp, rbx);             // Prolog
2960 #ifdef CC_INTERP
2961   __ movptr(Address(rbp,
2962                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
2963             sender_sp); // Make it walkable
2964 #else // CC_INTERP
2965   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
2966             sender_sp);            // Make it walkable
2967   // This value is corrected by layout_activation_impl
2968   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
2969 #endif // CC_INTERP
2970   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
2971   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
2972   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
2973   __ decrementl(rdx);              // Decrement counter
2974   __ jcc(Assembler::notZero, loop);
2975   __ pushptr(Address(rcx, 0));     // Save final return address
2976 
2977   // Re-push self-frame
2978   __ enter();                 // Save old & set new rbp
2979   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
2980                               // Prolog
2981 
2982   // Use rbp because the frames look interpreted now
2983   __ set_last_Java_frame(noreg, rbp, NULL);
2984 
2985   // Call C code.  Need thread but NOT official VM entry
2986   // crud.  We cannot block on this call, no GC can happen.  Call should
2987   // restore return values to their stack-slots with the new SP.
2988   // Thread is in rdi already.
2989   //
2990   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
2991 
2992   __ mov(c_rarg0, r15_thread);
2993   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
2994   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2995 
2996   // Set an oopmap for the call site
2997   oop_maps->add_gc_map(__ pc() - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
2998 
2999   __ reset_last_Java_frame(true, false);
3000 
3001   // Pop self-frame.
3002   __ leave();                 // Epilog
3003 
3004   // Jump to interpreter
3005   __ ret(0);
3006 
3007   // Make sure all code is generated
3008   masm->flush();
3009 
3010   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3011                                                  SimpleRuntimeFrame::framesize >> 1);
3012 }
3013 #endif // COMPILER2
3014 
3015 
3016 //------------------------------generate_handler_blob------
3017 //
3018 // Generate a special Compile2Runtime blob that saves all registers,
3019 // and setup oopmap.
3020 //
3021 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
3022   assert(StubRoutines::forward_exception_entry() != NULL,
3023          "must be generated before");
3024 
3025   ResourceMark rm;
3026   OopMapSet *oop_maps = new OopMapSet();
3027   OopMap* map;
3028 
3029   // Allocate space for the code.  Setup code generation tools.
3030   CodeBuffer buffer("handler_blob", 2048, 1024);
3031   MacroAssembler* masm = new MacroAssembler(&buffer);
3032 
3033   address start   = __ pc();
3034   address call_pc = NULL;
3035   int frame_size_in_words;
3036 
3037   // Make room for return address (or push it again)
3038   if (!cause_return) {
3039     __ push(rbx);
3040   }
3041 
3042   // Save registers, fpu state, and flags
3043   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3044 
3045   // The following is basically a call_VM.  However, we need the precise
3046   // address of the call in order to generate an oopmap. Hence, we do all the
3047   // work outselves.
3048 
3049   __ set_last_Java_frame(noreg, noreg, NULL);
3050 
3051   // The return address must always be correct so that frame constructor never
3052   // sees an invalid pc.
3053 
3054   if (!cause_return) {
3055     // overwrite the dummy value we pushed on entry
3056     __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3057     __ movptr(Address(rbp, wordSize), c_rarg0);
3058   }
3059 
3060   // Do the call
3061   __ mov(c_rarg0, r15_thread);
3062   __ call(RuntimeAddress(call_ptr));
3063 
3064   // Set an oopmap for the call site.  This oopmap will map all
3065   // oop-registers and debug-info registers as callee-saved.  This
3066   // will allow deoptimization at this safepoint to find all possible
3067   // debug-info recordings, as well as let GC find all oops.
3068 
3069   oop_maps->add_gc_map( __ pc() - start, map);
3070 
3071   Label noException;
3072 
3073   __ reset_last_Java_frame(false, false);
3074 
3075   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3076   __ jcc(Assembler::equal, noException);
3077 
3078   // Exception pending
3079 
3080   RegisterSaver::restore_live_registers(masm);
3081 
3082   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3083 
3084   // No exception case
3085   __ bind(noException);
3086 
3087   // Normal exit, restore registers and exit.
3088   RegisterSaver::restore_live_registers(masm);
3089 
3090   __ ret(0);
3091 
3092   // Make sure all code is generated
3093   masm->flush();
3094 
3095   // Fill-out other meta info
3096   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3097 }
3098 
3099 //
3100 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3101 //
3102 // Generate a stub that calls into vm to find out the proper destination
3103 // of a java call. All the argument registers are live at this point
3104 // but since this is generic code we don't know what they are and the caller
3105 // must do any gc of the args.
3106 //
3107 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
3108   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3109 
3110   // allocate space for the code
3111   ResourceMark rm;
3112 
3113   CodeBuffer buffer(name, 1000, 512);
3114   MacroAssembler* masm                = new MacroAssembler(&buffer);
3115 
3116   int frame_size_in_words;
3117 
3118   OopMapSet *oop_maps = new OopMapSet();
3119   OopMap* map = NULL;
3120 
3121   int start = __ offset();
3122 
3123   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3124 
3125   int frame_complete = __ offset();
3126 
3127   __ set_last_Java_frame(noreg, noreg, NULL);
3128 
3129   __ mov(c_rarg0, r15_thread);
3130 
3131   __ call(RuntimeAddress(destination));
3132 
3133 
3134   // Set an oopmap for the call site.
3135   // We need this not only for callee-saved registers, but also for volatile
3136   // registers that the compiler might be keeping live across a safepoint.
3137 
3138   oop_maps->add_gc_map( __ offset() - start, map);
3139 
3140   // rax contains the address we are going to jump to assuming no exception got installed
3141 
3142   // clear last_Java_sp
3143   __ reset_last_Java_frame(false, false);
3144   // check for pending exceptions
3145   Label pending;
3146   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3147   __ jcc(Assembler::notEqual, pending);
3148 
3149   // get the returned methodOop
3150   __ movptr(rbx, Address(r15_thread, JavaThread::vm_result_offset()));
3151   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3152 
3153   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3154 
3155   RegisterSaver::restore_live_registers(masm);
3156 
3157   // We are back the the original state on entry and ready to go.
3158 
3159   __ jmp(rax);
3160 
3161   // Pending exception after the safepoint
3162 
3163   __ bind(pending);
3164 
3165   RegisterSaver::restore_live_registers(masm);
3166 
3167   // exception pending => remove activation and forward to exception handler
3168 
3169   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
3170 
3171   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3172   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3173 
3174   // -------------
3175   // make sure all code is generated
3176   masm->flush();
3177 
3178   // return the  blob
3179   // frame_size_words or bytes??
3180   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3181 }
3182 
3183 
3184 void SharedRuntime::generate_stubs() {
3185 
3186   _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
3187                                         "wrong_method_stub");
3188   _ic_miss_blob =      generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
3189                                         "ic_miss_stub");
3190   _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
3191                                         "resolve_opt_virtual_call");
3192 
3193   _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
3194                                         "resolve_virtual_call");
3195 
3196   _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
3197                                         "resolve_static_call");
3198   _polling_page_safepoint_handler_blob =
3199     generate_handler_blob(CAST_FROM_FN_PTR(address,
3200                    SafepointSynchronize::handle_polling_page_exception), false);
3201 
3202   _polling_page_return_handler_blob =
3203     generate_handler_blob(CAST_FROM_FN_PTR(address,
3204                    SafepointSynchronize::handle_polling_page_exception), true);
3205 
3206   generate_deopt_blob();
3207 
3208 #ifdef COMPILER2
3209   generate_uncommon_trap_blob();
3210 #endif // COMPILER2
3211 }
3212 
3213 
3214 #ifdef COMPILER2
3215 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
3216 //
3217 //------------------------------generate_exception_blob---------------------------
3218 // creates exception blob at the end
3219 // Using exception blob, this code is jumped from a compiled method.
3220 // (see emit_exception_handler in x86_64.ad file)
3221 //
3222 // Given an exception pc at a call we call into the runtime for the
3223 // handler in this method. This handler might merely restore state
3224 // (i.e. callee save registers) unwind the frame and jump to the
3225 // exception handler for the nmethod if there is no Java level handler
3226 // for the nmethod.
3227 //
3228 // This code is entered with a jmp.
3229 //
3230 // Arguments:
3231 //   rax: exception oop
3232 //   rdx: exception pc
3233 //
3234 // Results:
3235 //   rax: exception oop
3236 //   rdx: exception pc in caller or ???
3237 //   destination: exception handler of caller
3238 //
3239 // Note: the exception pc MUST be at a call (precise debug information)
3240 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
3241 //
3242 
3243 void OptoRuntime::generate_exception_blob() {
3244   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
3245   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
3246   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
3247 
3248   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3249 
3250   // Allocate space for the code
3251   ResourceMark rm;
3252   // Setup code generation tools
3253   CodeBuffer buffer("exception_blob", 2048, 1024);
3254   MacroAssembler* masm = new MacroAssembler(&buffer);
3255 
3256 
3257   address start = __ pc();
3258 
3259   // Exception pc is 'return address' for stack walker
3260   __ push(rdx);
3261   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
3262 
3263   // Save callee-saved registers.  See x86_64.ad.
3264 
3265   // rbp is an implicitly saved callee saved register (i.e. the calling
3266   // convention will save restore it in prolog/epilog) Other than that
3267   // there are no callee save registers now that adapter frames are gone.
3268 
3269   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3270 
3271   // Store exception in Thread object. We cannot pass any arguments to the
3272   // handle_exception call, since we do not want to make any assumption
3273   // about the size of the frame where the exception happened in.
3274   // c_rarg0 is either rdi (Linux) or rcx (Windows).
3275   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
3276   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3277 
3278   // This call does all the hard work.  It checks if an exception handler
3279   // exists in the method.
3280   // If so, it returns the handler address.
3281   // If not, it prepares for stack-unwinding, restoring the callee-save
3282   // registers of the frame being removed.
3283   //
3284   // address OptoRuntime::handle_exception_C(JavaThread* thread)
3285 
3286   __ set_last_Java_frame(noreg, noreg, NULL);
3287   __ mov(c_rarg0, r15_thread);
3288   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
3289 
3290   // Set an oopmap for the call site.  This oopmap will only be used if we
3291   // are unwinding the stack.  Hence, all locations will be dead.
3292   // Callee-saved registers will be the same as the frame above (i.e.,
3293   // handle_exception_stub), since they were restored when we got the
3294   // exception.
3295 
3296   OopMapSet* oop_maps = new OopMapSet();
3297 
3298   oop_maps->add_gc_map( __ pc()-start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3299 
3300   __ reset_last_Java_frame(false, false);
3301 
3302   // Restore callee-saved registers
3303 
3304   // rbp is an implicitly saved callee saved register (i.e. the calling
3305   // convention will save restore it in prolog/epilog) Other than that
3306   // there are no callee save registers no that adapter frames are gone.
3307 
3308   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
3309 
3310   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
3311   __ pop(rdx);                  // No need for exception pc anymore
3312 
3313   // rax: exception handler
3314 
3315   // Restore SP from BP if the exception PC is a MethodHandle call site.
3316   __ cmpl(Address(r15_thread, JavaThread::is_method_handle_return_offset()), 0);
3317   __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
3318 
3319   // We have a handler in rax (could be deopt blob).
3320   __ mov(r8, rax);
3321 
3322   // Get the exception oop
3323   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3324   // Get the exception pc in case we are deoptimized
3325   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3326 #ifdef ASSERT
3327   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
3328   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
3329 #endif
3330   // Clear the exception oop so GC no longer processes it as a root.
3331   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
3332 
3333   // rax: exception oop
3334   // r8:  exception handler
3335   // rdx: exception pc
3336   // Jump to handler
3337 
3338   __ jmp(r8);
3339 
3340   // Make sure all code is generated
3341   masm->flush();
3342 
3343   // Set exception blob
3344   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
3345 }
3346 #endif // COMPILER2