1 /*
   2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "assembler_x86.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "oops/compiledICHolderOop.hpp"
  33 #include "prims/jvmtiRedefineClassesTrace.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/vframeArray.hpp"
  36 #include "vmreg_x86.inline.hpp"
  37 #ifdef COMPILER1
  38 #include "c1/c1_Runtime1.hpp"
  39 #endif
  40 #ifdef COMPILER2
  41 #include "opto/runtime.hpp"
  42 #endif
  43 
  44 DeoptimizationBlob *SharedRuntime::_deopt_blob;
  45 #ifdef COMPILER2
  46 UncommonTrapBlob   *SharedRuntime::_uncommon_trap_blob;
  47 ExceptionBlob      *OptoRuntime::_exception_blob;
  48 #endif // COMPILER2
  49 
  50 SafepointBlob      *SharedRuntime::_polling_page_safepoint_handler_blob;
  51 SafepointBlob      *SharedRuntime::_polling_page_return_handler_blob;
  52 RuntimeStub*       SharedRuntime::_wrong_method_blob;
  53 RuntimeStub*       SharedRuntime::_ic_miss_blob;
  54 RuntimeStub*       SharedRuntime::_resolve_opt_virtual_call_blob;
  55 RuntimeStub*       SharedRuntime::_resolve_virtual_call_blob;
  56 RuntimeStub*       SharedRuntime::_resolve_static_call_blob;
  57 
  58 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  59 
  60 #define __ masm->
  61 
  62 class SimpleRuntimeFrame {
  63 
  64   public:
  65 
  66   // Most of the runtime stubs have this simple frame layout.
  67   // This class exists to make the layout shared in one place.
  68   // Offsets are for compiler stack slots, which are jints.
  69   enum layout {
  70     // The frame sender code expects that rbp will be in the "natural" place and
  71     // will override any oopMap setting for it. We must therefore force the layout
  72     // so that it agrees with the frame sender code.
  73     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  74     rbp_off2,
  75     return_off, return_off2,
  76     framesize
  77   };
  78 };
  79 
  80 class RegisterSaver {
  81   // Capture info about frame layout.  Layout offsets are in jint
  82   // units because compiler frame slots are jints.
  83 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  84   enum layout {
  85     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
  86     xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
  87     DEF_XMM_OFFS(0),
  88     DEF_XMM_OFFS(1),
  89     DEF_XMM_OFFS(2),
  90     DEF_XMM_OFFS(3),
  91     DEF_XMM_OFFS(4),
  92     DEF_XMM_OFFS(5),
  93     DEF_XMM_OFFS(6),
  94     DEF_XMM_OFFS(7),
  95     DEF_XMM_OFFS(8),
  96     DEF_XMM_OFFS(9),
  97     DEF_XMM_OFFS(10),
  98     DEF_XMM_OFFS(11),
  99     DEF_XMM_OFFS(12),
 100     DEF_XMM_OFFS(13),
 101     DEF_XMM_OFFS(14),
 102     DEF_XMM_OFFS(15),
 103     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
 104     fpu_stateH_end,
 105     r15_off, r15H_off,
 106     r14_off, r14H_off,
 107     r13_off, r13H_off,
 108     r12_off, r12H_off,
 109     r11_off, r11H_off,
 110     r10_off, r10H_off,
 111     r9_off,  r9H_off,
 112     r8_off,  r8H_off,
 113     rdi_off, rdiH_off,
 114     rsi_off, rsiH_off,
 115     ignore_off, ignoreH_off,  // extra copy of rbp
 116     rsp_off, rspH_off,
 117     rbx_off, rbxH_off,
 118     rdx_off, rdxH_off,
 119     rcx_off, rcxH_off,
 120     rax_off, raxH_off,
 121     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
 122     align_off, alignH_off,
 123     flags_off, flagsH_off,
 124     // The frame sender code expects that rbp will be in the "natural" place and
 125     // will override any oopMap setting for it. We must therefore force the layout
 126     // so that it agrees with the frame sender code.
 127     rbp_off, rbpH_off,        // copy of rbp we will restore
 128     return_off, returnH_off,  // slot for return address
 129     reg_save_size             // size in compiler stack slots
 130   };
 131 
 132  public:
 133   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
 134   static void restore_live_registers(MacroAssembler* masm);
 135 
 136   // Offsets into the register save area
 137   // Used by deoptimization when it is managing result register
 138   // values on its own
 139 
 140   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
 141   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
 142   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
 143   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
 144   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
 145 
 146   // During deoptimization only the result registers need to be restored,
 147   // all the other values have already been extracted.
 148   static void restore_result_registers(MacroAssembler* masm);
 149 };
 150 
 151 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
 152 
 153   // Always make the frame size 16-byte aligned
 154   int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
 155                                      reg_save_size*BytesPerInt, 16);
 156   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 157   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 158   // The caller will allocate additional_frame_words
 159   int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
 160   // CodeBlob frame size is in words.
 161   int frame_size_in_words = frame_size_in_bytes / wordSize;
 162   *total_frame_words = frame_size_in_words;
 163 
 164   // Save registers, fpu state, and flags.
 165   // We assume caller has already pushed the return address onto the
 166   // stack, so rsp is 8-byte aligned here.
 167   // We push rpb twice in this sequence because we want the real rbp
 168   // to be under the return like a normal enter.
 169 
 170   __ enter();          // rsp becomes 16-byte aligned here
 171   __ push_CPU_state(); // Push a multiple of 16 bytes
 172   if (frame::arg_reg_save_area_bytes != 0) {
 173     // Allocate argument register save area
 174     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 175   }
 176 
 177   // Set an oopmap for the call site.  This oopmap will map all
 178   // oop-registers and debug-info registers as callee-saved.  This
 179   // will allow deoptimization at this safepoint to find all possible
 180   // debug-info recordings, as well as let GC find all oops.
 181 
 182   OopMapSet *oop_maps = new OopMapSet();
 183   OopMap* map = new OopMap(frame_size_in_slots, 0);
 184   map->set_callee_saved(VMRegImpl::stack2reg( rax_off  + additional_frame_slots), rax->as_VMReg());
 185   map->set_callee_saved(VMRegImpl::stack2reg( rcx_off  + additional_frame_slots), rcx->as_VMReg());
 186   map->set_callee_saved(VMRegImpl::stack2reg( rdx_off  + additional_frame_slots), rdx->as_VMReg());
 187   map->set_callee_saved(VMRegImpl::stack2reg( rbx_off  + additional_frame_slots), rbx->as_VMReg());
 188   // rbp location is known implicitly by the frame sender code, needs no oopmap
 189   // and the location where rbp was saved by is ignored
 190   map->set_callee_saved(VMRegImpl::stack2reg( rsi_off  + additional_frame_slots), rsi->as_VMReg());
 191   map->set_callee_saved(VMRegImpl::stack2reg( rdi_off  + additional_frame_slots), rdi->as_VMReg());
 192   map->set_callee_saved(VMRegImpl::stack2reg( r8_off   + additional_frame_slots), r8->as_VMReg());
 193   map->set_callee_saved(VMRegImpl::stack2reg( r9_off   + additional_frame_slots), r9->as_VMReg());
 194   map->set_callee_saved(VMRegImpl::stack2reg( r10_off  + additional_frame_slots), r10->as_VMReg());
 195   map->set_callee_saved(VMRegImpl::stack2reg( r11_off  + additional_frame_slots), r11->as_VMReg());
 196   map->set_callee_saved(VMRegImpl::stack2reg( r12_off  + additional_frame_slots), r12->as_VMReg());
 197   map->set_callee_saved(VMRegImpl::stack2reg( r13_off  + additional_frame_slots), r13->as_VMReg());
 198   map->set_callee_saved(VMRegImpl::stack2reg( r14_off  + additional_frame_slots), r14->as_VMReg());
 199   map->set_callee_saved(VMRegImpl::stack2reg( r15_off  + additional_frame_slots), r15->as_VMReg());
 200   map->set_callee_saved(VMRegImpl::stack2reg(xmm0_off  + additional_frame_slots), xmm0->as_VMReg());
 201   map->set_callee_saved(VMRegImpl::stack2reg(xmm1_off  + additional_frame_slots), xmm1->as_VMReg());
 202   map->set_callee_saved(VMRegImpl::stack2reg(xmm2_off  + additional_frame_slots), xmm2->as_VMReg());
 203   map->set_callee_saved(VMRegImpl::stack2reg(xmm3_off  + additional_frame_slots), xmm3->as_VMReg());
 204   map->set_callee_saved(VMRegImpl::stack2reg(xmm4_off  + additional_frame_slots), xmm4->as_VMReg());
 205   map->set_callee_saved(VMRegImpl::stack2reg(xmm5_off  + additional_frame_slots), xmm5->as_VMReg());
 206   map->set_callee_saved(VMRegImpl::stack2reg(xmm6_off  + additional_frame_slots), xmm6->as_VMReg());
 207   map->set_callee_saved(VMRegImpl::stack2reg(xmm7_off  + additional_frame_slots), xmm7->as_VMReg());
 208   map->set_callee_saved(VMRegImpl::stack2reg(xmm8_off  + additional_frame_slots), xmm8->as_VMReg());
 209   map->set_callee_saved(VMRegImpl::stack2reg(xmm9_off  + additional_frame_slots), xmm9->as_VMReg());
 210   map->set_callee_saved(VMRegImpl::stack2reg(xmm10_off + additional_frame_slots), xmm10->as_VMReg());
 211   map->set_callee_saved(VMRegImpl::stack2reg(xmm11_off + additional_frame_slots), xmm11->as_VMReg());
 212   map->set_callee_saved(VMRegImpl::stack2reg(xmm12_off + additional_frame_slots), xmm12->as_VMReg());
 213   map->set_callee_saved(VMRegImpl::stack2reg(xmm13_off + additional_frame_slots), xmm13->as_VMReg());
 214   map->set_callee_saved(VMRegImpl::stack2reg(xmm14_off + additional_frame_slots), xmm14->as_VMReg());
 215   map->set_callee_saved(VMRegImpl::stack2reg(xmm15_off + additional_frame_slots), xmm15->as_VMReg());
 216 
 217   // %%% These should all be a waste but we'll keep things as they were for now
 218   if (true) {
 219     map->set_callee_saved(VMRegImpl::stack2reg( raxH_off  + additional_frame_slots),
 220                           rax->as_VMReg()->next());
 221     map->set_callee_saved(VMRegImpl::stack2reg( rcxH_off  + additional_frame_slots),
 222                           rcx->as_VMReg()->next());
 223     map->set_callee_saved(VMRegImpl::stack2reg( rdxH_off  + additional_frame_slots),
 224                           rdx->as_VMReg()->next());
 225     map->set_callee_saved(VMRegImpl::stack2reg( rbxH_off  + additional_frame_slots),
 226                           rbx->as_VMReg()->next());
 227     // rbp location is known implicitly by the frame sender code, needs no oopmap
 228     map->set_callee_saved(VMRegImpl::stack2reg( rsiH_off  + additional_frame_slots),
 229                           rsi->as_VMReg()->next());
 230     map->set_callee_saved(VMRegImpl::stack2reg( rdiH_off  + additional_frame_slots),
 231                           rdi->as_VMReg()->next());
 232     map->set_callee_saved(VMRegImpl::stack2reg( r8H_off   + additional_frame_slots),
 233                           r8->as_VMReg()->next());
 234     map->set_callee_saved(VMRegImpl::stack2reg( r9H_off   + additional_frame_slots),
 235                           r9->as_VMReg()->next());
 236     map->set_callee_saved(VMRegImpl::stack2reg( r10H_off  + additional_frame_slots),
 237                           r10->as_VMReg()->next());
 238     map->set_callee_saved(VMRegImpl::stack2reg( r11H_off  + additional_frame_slots),
 239                           r11->as_VMReg()->next());
 240     map->set_callee_saved(VMRegImpl::stack2reg( r12H_off  + additional_frame_slots),
 241                           r12->as_VMReg()->next());
 242     map->set_callee_saved(VMRegImpl::stack2reg( r13H_off  + additional_frame_slots),
 243                           r13->as_VMReg()->next());
 244     map->set_callee_saved(VMRegImpl::stack2reg( r14H_off  + additional_frame_slots),
 245                           r14->as_VMReg()->next());
 246     map->set_callee_saved(VMRegImpl::stack2reg( r15H_off  + additional_frame_slots),
 247                           r15->as_VMReg()->next());
 248     map->set_callee_saved(VMRegImpl::stack2reg(xmm0H_off  + additional_frame_slots),
 249                           xmm0->as_VMReg()->next());
 250     map->set_callee_saved(VMRegImpl::stack2reg(xmm1H_off  + additional_frame_slots),
 251                           xmm1->as_VMReg()->next());
 252     map->set_callee_saved(VMRegImpl::stack2reg(xmm2H_off  + additional_frame_slots),
 253                           xmm2->as_VMReg()->next());
 254     map->set_callee_saved(VMRegImpl::stack2reg(xmm3H_off  + additional_frame_slots),
 255                           xmm3->as_VMReg()->next());
 256     map->set_callee_saved(VMRegImpl::stack2reg(xmm4H_off  + additional_frame_slots),
 257                           xmm4->as_VMReg()->next());
 258     map->set_callee_saved(VMRegImpl::stack2reg(xmm5H_off  + additional_frame_slots),
 259                           xmm5->as_VMReg()->next());
 260     map->set_callee_saved(VMRegImpl::stack2reg(xmm6H_off  + additional_frame_slots),
 261                           xmm6->as_VMReg()->next());
 262     map->set_callee_saved(VMRegImpl::stack2reg(xmm7H_off  + additional_frame_slots),
 263                           xmm7->as_VMReg()->next());
 264     map->set_callee_saved(VMRegImpl::stack2reg(xmm8H_off  + additional_frame_slots),
 265                           xmm8->as_VMReg()->next());
 266     map->set_callee_saved(VMRegImpl::stack2reg(xmm9H_off  + additional_frame_slots),
 267                           xmm9->as_VMReg()->next());
 268     map->set_callee_saved(VMRegImpl::stack2reg(xmm10H_off + additional_frame_slots),
 269                           xmm10->as_VMReg()->next());
 270     map->set_callee_saved(VMRegImpl::stack2reg(xmm11H_off + additional_frame_slots),
 271                           xmm11->as_VMReg()->next());
 272     map->set_callee_saved(VMRegImpl::stack2reg(xmm12H_off + additional_frame_slots),
 273                           xmm12->as_VMReg()->next());
 274     map->set_callee_saved(VMRegImpl::stack2reg(xmm13H_off + additional_frame_slots),
 275                           xmm13->as_VMReg()->next());
 276     map->set_callee_saved(VMRegImpl::stack2reg(xmm14H_off + additional_frame_slots),
 277                           xmm14->as_VMReg()->next());
 278     map->set_callee_saved(VMRegImpl::stack2reg(xmm15H_off + additional_frame_slots),
 279                           xmm15->as_VMReg()->next());
 280   }
 281 
 282   return map;
 283 }
 284 
 285 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 286   if (frame::arg_reg_save_area_bytes != 0) {
 287     // Pop arg register save area
 288     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 289   }
 290   // Recover CPU state
 291   __ pop_CPU_state();
 292   // Get the rbp described implicitly by the calling convention (no oopMap)
 293   __ pop(rbp);
 294 }
 295 
 296 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 297 
 298   // Just restore result register. Only used by deoptimization. By
 299   // now any callee save register that needs to be restored to a c2
 300   // caller of the deoptee has been extracted into the vframeArray
 301   // and will be stuffed into the c2i adapter we create for later
 302   // restoration so only result registers need to be restored here.
 303 
 304   // Restore fp result register
 305   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
 306   // Restore integer result register
 307   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
 308   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
 309 
 310   // Pop all of the register save are off the stack except the return address
 311   __ addptr(rsp, return_offset_in_bytes());
 312 }
 313 
 314 // The java_calling_convention describes stack locations as ideal slots on
 315 // a frame with no abi restrictions. Since we must observe abi restrictions
 316 // (like the placement of the register window) the slots must be biased by
 317 // the following value.
 318 static int reg2offset_in(VMReg r) {
 319   // Account for saved rbp and return address
 320   // This should really be in_preserve_stack_slots
 321   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
 322 }
 323 
 324 static int reg2offset_out(VMReg r) {
 325   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 326 }
 327 
 328 // ---------------------------------------------------------------------------
 329 // Read the array of BasicTypes from a signature, and compute where the
 330 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 331 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 332 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 333 // as framesizes are fixed.
 334 // VMRegImpl::stack0 refers to the first slot 0(sp).
 335 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 336 // up to RegisterImpl::number_of_registers) are the 64-bit
 337 // integer registers.
 338 
 339 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 340 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 341 // units regardless of build. Of course for i486 there is no 64 bit build
 342 
 343 // The Java calling convention is a "shifted" version of the C ABI.
 344 // By skipping the first C ABI register we can call non-static jni methods
 345 // with small numbers of arguments without having to shuffle the arguments
 346 // at all. Since we control the java ABI we ought to at least get some
 347 // advantage out of it.
 348 
 349 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 350                                            VMRegPair *regs,
 351                                            int total_args_passed,
 352                                            int is_outgoing) {
 353 
 354   // Create the mapping between argument positions and
 355   // registers.
 356   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 357     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
 358   };
 359   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 360     j_farg0, j_farg1, j_farg2, j_farg3,
 361     j_farg4, j_farg5, j_farg6, j_farg7
 362   };
 363 
 364 
 365   uint int_args = 0;
 366   uint fp_args = 0;
 367   uint stk_args = 0; // inc by 2 each time
 368 
 369   for (int i = 0; i < total_args_passed; i++) {
 370     switch (sig_bt[i]) {
 371     case T_BOOLEAN:
 372     case T_CHAR:
 373     case T_BYTE:
 374     case T_SHORT:
 375     case T_INT:
 376       if (int_args < Argument::n_int_register_parameters_j) {
 377         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 378       } else {
 379         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 380         stk_args += 2;
 381       }
 382       break;
 383     case T_VOID:
 384       // halves of T_LONG or T_DOUBLE
 385       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 386       regs[i].set_bad();
 387       break;
 388     case T_LONG:
 389       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 390       // fall through
 391     case T_OBJECT:
 392     case T_ARRAY:
 393     case T_ADDRESS:
 394       if (int_args < Argument::n_int_register_parameters_j) {
 395         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 396       } else {
 397         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 398         stk_args += 2;
 399       }
 400       break;
 401     case T_FLOAT:
 402       if (fp_args < Argument::n_float_register_parameters_j) {
 403         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 404       } else {
 405         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 406         stk_args += 2;
 407       }
 408       break;
 409     case T_DOUBLE:
 410       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 411       if (fp_args < Argument::n_float_register_parameters_j) {
 412         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 413       } else {
 414         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 415         stk_args += 2;
 416       }
 417       break;
 418     default:
 419       ShouldNotReachHere();
 420       break;
 421     }
 422   }
 423 
 424   return round_to(stk_args, 2);
 425 }
 426 
 427 // Patch the callers callsite with entry to compiled code if it exists.
 428 static void patch_callers_callsite(MacroAssembler *masm) {
 429   Label L;
 430   __ verify_oop(rbx);
 431   __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
 432   __ jcc(Assembler::equal, L);
 433 
 434   // Save the current stack pointer
 435   __ mov(r13, rsp);
 436   // Schedule the branch target address early.
 437   // Call into the VM to patch the caller, then jump to compiled callee
 438   // rax isn't live so capture return address while we easily can
 439   __ movptr(rax, Address(rsp, 0));
 440 
 441   // align stack so push_CPU_state doesn't fault
 442   __ andptr(rsp, -(StackAlignmentInBytes));
 443   __ push_CPU_state();
 444 
 445 
 446   __ verify_oop(rbx);
 447   // VM needs caller's callsite
 448   // VM needs target method
 449   // This needs to be a long call since we will relocate this adapter to
 450   // the codeBuffer and it may not reach
 451 
 452   // Allocate argument register save area
 453   if (frame::arg_reg_save_area_bytes != 0) {
 454     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 455   }
 456   __ mov(c_rarg0, rbx);
 457   __ mov(c_rarg1, rax);
 458   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 459 
 460   // De-allocate argument register save area
 461   if (frame::arg_reg_save_area_bytes != 0) {
 462     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 463   }
 464 
 465   __ pop_CPU_state();
 466   // restore sp
 467   __ mov(rsp, r13);
 468   __ bind(L);
 469 }
 470 
 471 
 472 static void gen_c2i_adapter(MacroAssembler *masm,
 473                             int total_args_passed,
 474                             int comp_args_on_stack,
 475                             const BasicType *sig_bt,
 476                             const VMRegPair *regs,
 477                             Label& skip_fixup) {
 478   // Before we get into the guts of the C2I adapter, see if we should be here
 479   // at all.  We've come from compiled code and are attempting to jump to the
 480   // interpreter, which means the caller made a static call to get here
 481   // (vcalls always get a compiled target if there is one).  Check for a
 482   // compiled target.  If there is one, we need to patch the caller's call.
 483   patch_callers_callsite(masm);
 484 
 485   __ bind(skip_fixup);
 486 
 487   // Since all args are passed on the stack, total_args_passed *
 488   // Interpreter::stackElementSize is the space we need. Plus 1 because
 489   // we also account for the return address location since
 490   // we store it first rather than hold it in rax across all the shuffling
 491 
 492   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
 493 
 494   // stack is aligned, keep it that way
 495   extraspace = round_to(extraspace, 2*wordSize);
 496 
 497   // Get return address
 498   __ pop(rax);
 499 
 500   // set senderSP value
 501   __ mov(r13, rsp);
 502 
 503   __ subptr(rsp, extraspace);
 504 
 505   // Store the return address in the expected location
 506   __ movptr(Address(rsp, 0), rax);
 507 
 508   // Now write the args into the outgoing interpreter space
 509   for (int i = 0; i < total_args_passed; i++) {
 510     if (sig_bt[i] == T_VOID) {
 511       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 512       continue;
 513     }
 514 
 515     // offset to start parameters
 516     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
 517     int next_off = st_off - Interpreter::stackElementSize;
 518 
 519     // Say 4 args:
 520     // i   st_off
 521     // 0   32 T_LONG
 522     // 1   24 T_VOID
 523     // 2   16 T_OBJECT
 524     // 3    8 T_BOOL
 525     // -    0 return address
 526     //
 527     // However to make thing extra confusing. Because we can fit a long/double in
 528     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 529     // leaves one slot empty and only stores to a single slot. In this case the
 530     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 531 
 532     VMReg r_1 = regs[i].first();
 533     VMReg r_2 = regs[i].second();
 534     if (!r_1->is_valid()) {
 535       assert(!r_2->is_valid(), "");
 536       continue;
 537     }
 538     if (r_1->is_stack()) {
 539       // memory to memory use rax
 540       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 541       if (!r_2->is_valid()) {
 542         // sign extend??
 543         __ movl(rax, Address(rsp, ld_off));
 544         __ movptr(Address(rsp, st_off), rax);
 545 
 546       } else {
 547 
 548         __ movq(rax, Address(rsp, ld_off));
 549 
 550         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 551         // T_DOUBLE and T_LONG use two slots in the interpreter
 552         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 553           // ld_off == LSW, ld_off+wordSize == MSW
 554           // st_off == MSW, next_off == LSW
 555           __ movq(Address(rsp, next_off), rax);
 556 #ifdef ASSERT
 557           // Overwrite the unused slot with known junk
 558           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 559           __ movptr(Address(rsp, st_off), rax);
 560 #endif /* ASSERT */
 561         } else {
 562           __ movq(Address(rsp, st_off), rax);
 563         }
 564       }
 565     } else if (r_1->is_Register()) {
 566       Register r = r_1->as_Register();
 567       if (!r_2->is_valid()) {
 568         // must be only an int (or less ) so move only 32bits to slot
 569         // why not sign extend??
 570         __ movl(Address(rsp, st_off), r);
 571       } else {
 572         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 573         // T_DOUBLE and T_LONG use two slots in the interpreter
 574         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 575           // long/double in gpr
 576 #ifdef ASSERT
 577           // Overwrite the unused slot with known junk
 578           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
 579           __ movptr(Address(rsp, st_off), rax);
 580 #endif /* ASSERT */
 581           __ movq(Address(rsp, next_off), r);
 582         } else {
 583           __ movptr(Address(rsp, st_off), r);
 584         }
 585       }
 586     } else {
 587       assert(r_1->is_XMMRegister(), "");
 588       if (!r_2->is_valid()) {
 589         // only a float use just part of the slot
 590         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 591       } else {
 592 #ifdef ASSERT
 593         // Overwrite the unused slot with known junk
 594         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
 595         __ movptr(Address(rsp, st_off), rax);
 596 #endif /* ASSERT */
 597         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
 598       }
 599     }
 600   }
 601 
 602   // Schedule the branch target address early.
 603   __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
 604   __ jmp(rcx);
 605 }
 606 
 607 static void gen_i2c_adapter(MacroAssembler *masm,
 608                             int total_args_passed,
 609                             int comp_args_on_stack,
 610                             const BasicType *sig_bt,
 611                             const VMRegPair *regs) {
 612 
 613   // Note: r13 contains the senderSP on entry. We must preserve it since
 614   // we may do a i2c -> c2i transition if we lose a race where compiled
 615   // code goes non-entrant while we get args ready.
 616   // In addition we use r13 to locate all the interpreter args as
 617   // we must align the stack to 16 bytes on an i2c entry else we
 618   // lose alignment we expect in all compiled code and register
 619   // save code can segv when fxsave instructions find improperly
 620   // aligned stack pointer.
 621 
 622   // Pick up the return address
 623   __ movptr(rax, Address(rsp, 0));
 624 
 625   // Must preserve original SP for loading incoming arguments because
 626   // we need to align the outgoing SP for compiled code.
 627   __ movptr(r11, rsp);
 628 
 629   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 630   // in registers, we will occasionally have no stack args.
 631   int comp_words_on_stack = 0;
 632   if (comp_args_on_stack) {
 633     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 634     // registers are below.  By subtracting stack0, we either get a negative
 635     // number (all values in registers) or the maximum stack slot accessed.
 636 
 637     // Convert 4-byte c2 stack slots to words.
 638     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 639     // Round up to miminum stack alignment, in wordSize
 640     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 641     __ subptr(rsp, comp_words_on_stack * wordSize);
 642   }
 643 
 644 
 645   // Ensure compiled code always sees stack at proper alignment
 646   __ andptr(rsp, -16);
 647 
 648   // push the return address and misalign the stack that youngest frame always sees
 649   // as far as the placement of the call instruction
 650   __ push(rax);
 651 
 652   // Put saved SP in another register
 653   const Register saved_sp = rax;
 654   __ movptr(saved_sp, r11);
 655 
 656   // Will jump to the compiled code just as if compiled code was doing it.
 657   // Pre-load the register-jump target early, to schedule it better.
 658   __ movptr(r11, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
 659 
 660   // Now generate the shuffle code.  Pick up all register args and move the
 661   // rest through the floating point stack top.
 662   for (int i = 0; i < total_args_passed; i++) {
 663     if (sig_bt[i] == T_VOID) {
 664       // Longs and doubles are passed in native word order, but misaligned
 665       // in the 32-bit build.
 666       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 667       continue;
 668     }
 669 
 670     // Pick up 0, 1 or 2 words from SP+offset.
 671 
 672     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 673             "scrambled load targets?");
 674     // Load in argument order going down.
 675     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
 676     // Point to interpreter value (vs. tag)
 677     int next_off = ld_off - Interpreter::stackElementSize;
 678     //
 679     //
 680     //
 681     VMReg r_1 = regs[i].first();
 682     VMReg r_2 = regs[i].second();
 683     if (!r_1->is_valid()) {
 684       assert(!r_2->is_valid(), "");
 685       continue;
 686     }
 687     if (r_1->is_stack()) {
 688       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 689       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 690 
 691       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
 692       // and if we end up going thru a c2i because of a miss a reasonable value of r13
 693       // will be generated.
 694       if (!r_2->is_valid()) {
 695         // sign extend???
 696         __ movl(r13, Address(saved_sp, ld_off));
 697         __ movptr(Address(rsp, st_off), r13);
 698       } else {
 699         //
 700         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 701         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 702         // So we must adjust where to pick up the data to match the interpreter.
 703         //
 704         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 705         // are accessed as negative so LSW is at LOW address
 706 
 707         // ld_off is MSW so get LSW
 708         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 709                            next_off : ld_off;
 710         __ movq(r13, Address(saved_sp, offset));
 711         // st_off is LSW (i.e. reg.first())
 712         __ movq(Address(rsp, st_off), r13);
 713       }
 714     } else if (r_1->is_Register()) {  // Register argument
 715       Register r = r_1->as_Register();
 716       assert(r != rax, "must be different");
 717       if (r_2->is_valid()) {
 718         //
 719         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 720         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 721         // So we must adjust where to pick up the data to match the interpreter.
 722 
 723         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 724                            next_off : ld_off;
 725 
 726         // this can be a misaligned move
 727         __ movq(r, Address(saved_sp, offset));
 728       } else {
 729         // sign extend and use a full word?
 730         __ movl(r, Address(saved_sp, ld_off));
 731       }
 732     } else {
 733       if (!r_2->is_valid()) {
 734         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 735       } else {
 736         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
 737       }
 738     }
 739   }
 740 
 741   // 6243940 We might end up in handle_wrong_method if
 742   // the callee is deoptimized as we race thru here. If that
 743   // happens we don't want to take a safepoint because the
 744   // caller frame will look interpreted and arguments are now
 745   // "compiled" so it is much better to make this transition
 746   // invisible to the stack walking code. Unfortunately if
 747   // we try and find the callee by normal means a safepoint
 748   // is possible. So we stash the desired callee in the thread
 749   // and the vm will find there should this case occur.
 750 
 751   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
 752 
 753   // put methodOop where a c2i would expect should we end up there
 754   // only needed becaus eof c2 resolve stubs return methodOop as a result in
 755   // rax
 756   __ mov(rax, rbx);
 757   __ jmp(r11);
 758 }
 759 
 760 // ---------------------------------------------------------------
 761 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 762                                                             int total_args_passed,
 763                                                             int comp_args_on_stack,
 764                                                             const BasicType *sig_bt,
 765                                                             const VMRegPair *regs,
 766                                                             AdapterFingerPrint* fingerprint) {
 767   address i2c_entry = __ pc();
 768 
 769   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 770 
 771   // -------------------------------------------------------------------------
 772   // Generate a C2I adapter.  On entry we know rbx holds the methodOop during calls
 773   // to the interpreter.  The args start out packed in the compiled layout.  They
 774   // need to be unpacked into the interpreter layout.  This will almost always
 775   // require some stack space.  We grow the current (compiled) stack, then repack
 776   // the args.  We  finally end in a jump to the generic interpreter entry point.
 777   // On exit from the interpreter, the interpreter will restore our SP (lest the
 778   // compiled code, which relys solely on SP and not RBP, get sick).
 779 
 780   address c2i_unverified_entry = __ pc();
 781   Label skip_fixup;
 782   Label ok;
 783 
 784   Register holder = rax;
 785   Register receiver = j_rarg0;
 786   Register temp = rbx;
 787 
 788   {
 789     __ verify_oop(holder);
 790     __ load_klass(temp, receiver);
 791     __ verify_oop(temp);
 792 
 793     __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
 794     __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
 795     __ jcc(Assembler::equal, ok);
 796     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 797 
 798     __ bind(ok);
 799     // Method might have been compiled since the call site was patched to
 800     // interpreted if that is the case treat it as a miss so we can get
 801     // the call site corrected.
 802     __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
 803     __ jcc(Assembler::equal, skip_fixup);
 804     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 805   }
 806 
 807   address c2i_entry = __ pc();
 808 
 809   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 810 
 811   __ flush();
 812   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 813 }
 814 
 815 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 816                                          VMRegPair *regs,
 817                                          int total_args_passed) {
 818 // We return the amount of VMRegImpl stack slots we need to reserve for all
 819 // the arguments NOT counting out_preserve_stack_slots.
 820 
 821 // NOTE: These arrays will have to change when c1 is ported
 822 #ifdef _WIN64
 823     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 824       c_rarg0, c_rarg1, c_rarg2, c_rarg3
 825     };
 826     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 827       c_farg0, c_farg1, c_farg2, c_farg3
 828     };
 829 #else
 830     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 831       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
 832     };
 833     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 834       c_farg0, c_farg1, c_farg2, c_farg3,
 835       c_farg4, c_farg5, c_farg6, c_farg7
 836     };
 837 #endif // _WIN64
 838 
 839 
 840     uint int_args = 0;
 841     uint fp_args = 0;
 842     uint stk_args = 0; // inc by 2 each time
 843 
 844     for (int i = 0; i < total_args_passed; i++) {
 845       switch (sig_bt[i]) {
 846       case T_BOOLEAN:
 847       case T_CHAR:
 848       case T_BYTE:
 849       case T_SHORT:
 850       case T_INT:
 851         if (int_args < Argument::n_int_register_parameters_c) {
 852           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 853 #ifdef _WIN64
 854           fp_args++;
 855           // Allocate slots for callee to stuff register args the stack.
 856           stk_args += 2;
 857 #endif
 858         } else {
 859           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 860           stk_args += 2;
 861         }
 862         break;
 863       case T_LONG:
 864         assert(sig_bt[i + 1] == T_VOID, "expecting half");
 865         // fall through
 866       case T_OBJECT:
 867       case T_ARRAY:
 868       case T_ADDRESS:
 869         if (int_args < Argument::n_int_register_parameters_c) {
 870           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 871 #ifdef _WIN64
 872           fp_args++;
 873           stk_args += 2;
 874 #endif
 875         } else {
 876           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 877           stk_args += 2;
 878         }
 879         break;
 880       case T_FLOAT:
 881         if (fp_args < Argument::n_float_register_parameters_c) {
 882           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 883 #ifdef _WIN64
 884           int_args++;
 885           // Allocate slots for callee to stuff register args the stack.
 886           stk_args += 2;
 887 #endif
 888         } else {
 889           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 890           stk_args += 2;
 891         }
 892         break;
 893       case T_DOUBLE:
 894         assert(sig_bt[i + 1] == T_VOID, "expecting half");
 895         if (fp_args < Argument::n_float_register_parameters_c) {
 896           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 897 #ifdef _WIN64
 898           int_args++;
 899           // Allocate slots for callee to stuff register args the stack.
 900           stk_args += 2;
 901 #endif
 902         } else {
 903           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 904           stk_args += 2;
 905         }
 906         break;
 907       case T_VOID: // Halves of longs and doubles
 908         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 909         regs[i].set_bad();
 910         break;
 911       default:
 912         ShouldNotReachHere();
 913         break;
 914       }
 915     }
 916 #ifdef _WIN64
 917   // windows abi requires that we always allocate enough stack space
 918   // for 4 64bit registers to be stored down.
 919   if (stk_args < 8) {
 920     stk_args = 8;
 921   }
 922 #endif // _WIN64
 923 
 924   return stk_args;
 925 }
 926 
 927 // On 64 bit we will store integer like items to the stack as
 928 // 64 bits items (sparc abi) even though java would only store
 929 // 32bits for a parameter. On 32bit it will simply be 32 bits
 930 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
 931 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
 932   if (src.first()->is_stack()) {
 933     if (dst.first()->is_stack()) {
 934       // stack to stack
 935       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
 936       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
 937     } else {
 938       // stack to reg
 939       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
 940     }
 941   } else if (dst.first()->is_stack()) {
 942     // reg to stack
 943     // Do we really have to sign extend???
 944     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
 945     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
 946   } else {
 947     // Do we really have to sign extend???
 948     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
 949     if (dst.first() != src.first()) {
 950       __ movq(dst.first()->as_Register(), src.first()->as_Register());
 951     }
 952   }
 953 }
 954 
 955 
 956 // An oop arg. Must pass a handle not the oop itself
 957 static void object_move(MacroAssembler* masm,
 958                         OopMap* map,
 959                         int oop_handle_offset,
 960                         int framesize_in_slots,
 961                         VMRegPair src,
 962                         VMRegPair dst,
 963                         bool is_receiver,
 964                         int* receiver_offset) {
 965 
 966   // must pass a handle. First figure out the location we use as a handle
 967 
 968   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
 969 
 970   // See if oop is NULL if it is we need no handle
 971 
 972   if (src.first()->is_stack()) {
 973 
 974     // Oop is already on the stack as an argument
 975     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
 976     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
 977     if (is_receiver) {
 978       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
 979     }
 980 
 981     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
 982     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
 983     // conditionally move a NULL
 984     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
 985   } else {
 986 
 987     // Oop is in an a register we must store it to the space we reserve
 988     // on the stack for oop_handles and pass a handle if oop is non-NULL
 989 
 990     const Register rOop = src.first()->as_Register();
 991     int oop_slot;
 992     if (rOop == j_rarg0)
 993       oop_slot = 0;
 994     else if (rOop == j_rarg1)
 995       oop_slot = 1;
 996     else if (rOop == j_rarg2)
 997       oop_slot = 2;
 998     else if (rOop == j_rarg3)
 999       oop_slot = 3;
1000     else if (rOop == j_rarg4)
1001       oop_slot = 4;
1002     else {
1003       assert(rOop == j_rarg5, "wrong register");
1004       oop_slot = 5;
1005     }
1006 
1007     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
1008     int offset = oop_slot*VMRegImpl::stack_slot_size;
1009 
1010     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1011     // Store oop in handle area, may be NULL
1012     __ movptr(Address(rsp, offset), rOop);
1013     if (is_receiver) {
1014       *receiver_offset = offset;
1015     }
1016 
1017     __ cmpptr(rOop, (int32_t)NULL_WORD);
1018     __ lea(rHandle, Address(rsp, offset));
1019     // conditionally move a NULL from the handle area where it was just stored
1020     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
1021   }
1022 
1023   // If arg is on the stack then place it otherwise it is already in correct reg.
1024   if (dst.first()->is_stack()) {
1025     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1026   }
1027 }
1028 
1029 // A float arg may have to do float reg int reg conversion
1030 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1031   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1032 
1033   // The calling conventions assures us that each VMregpair is either
1034   // all really one physical register or adjacent stack slots.
1035   // This greatly simplifies the cases here compared to sparc.
1036 
1037   if (src.first()->is_stack()) {
1038     if (dst.first()->is_stack()) {
1039       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1040       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1041     } else {
1042       // stack to reg
1043       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1044       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
1045     }
1046   } else if (dst.first()->is_stack()) {
1047     // reg to stack
1048     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1049     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1050   } else {
1051     // reg to reg
1052     // In theory these overlap but the ordering is such that this is likely a nop
1053     if ( src.first() != dst.first()) {
1054       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
1055     }
1056   }
1057 }
1058 
1059 // A long move
1060 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1061 
1062   // The calling conventions assures us that each VMregpair is either
1063   // all really one physical register or adjacent stack slots.
1064   // This greatly simplifies the cases here compared to sparc.
1065 
1066   if (src.is_single_phys_reg() ) {
1067     if (dst.is_single_phys_reg()) {
1068       if (dst.first() != src.first()) {
1069         __ mov(dst.first()->as_Register(), src.first()->as_Register());
1070       }
1071     } else {
1072       assert(dst.is_single_reg(), "not a stack pair");
1073       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1074     }
1075   } else if (dst.is_single_phys_reg()) {
1076     assert(src.is_single_reg(),  "not a stack pair");
1077     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
1078   } else {
1079     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1080     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1081     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1082   }
1083 }
1084 
1085 // A double move
1086 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1087 
1088   // The calling conventions assures us that each VMregpair is either
1089   // all really one physical register or adjacent stack slots.
1090   // This greatly simplifies the cases here compared to sparc.
1091 
1092   if (src.is_single_phys_reg() ) {
1093     if (dst.is_single_phys_reg()) {
1094       // In theory these overlap but the ordering is such that this is likely a nop
1095       if ( src.first() != dst.first()) {
1096         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
1097       }
1098     } else {
1099       assert(dst.is_single_reg(), "not a stack pair");
1100       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1101     }
1102   } else if (dst.is_single_phys_reg()) {
1103     assert(src.is_single_reg(),  "not a stack pair");
1104     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
1105   } else {
1106     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1107     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1108     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1109   }
1110 }
1111 
1112 
1113 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1114   // We always ignore the frame_slots arg and just use the space just below frame pointer
1115   // which by this time is free to use
1116   switch (ret_type) {
1117   case T_FLOAT:
1118     __ movflt(Address(rbp, -wordSize), xmm0);
1119     break;
1120   case T_DOUBLE:
1121     __ movdbl(Address(rbp, -wordSize), xmm0);
1122     break;
1123   case T_VOID:  break;
1124   default: {
1125     __ movptr(Address(rbp, -wordSize), rax);
1126     }
1127   }
1128 }
1129 
1130 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1131   // We always ignore the frame_slots arg and just use the space just below frame pointer
1132   // which by this time is free to use
1133   switch (ret_type) {
1134   case T_FLOAT:
1135     __ movflt(xmm0, Address(rbp, -wordSize));
1136     break;
1137   case T_DOUBLE:
1138     __ movdbl(xmm0, Address(rbp, -wordSize));
1139     break;
1140   case T_VOID:  break;
1141   default: {
1142     __ movptr(rax, Address(rbp, -wordSize));
1143     }
1144   }
1145 }
1146 
1147 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1148     for ( int i = first_arg ; i < arg_count ; i++ ) {
1149       if (args[i].first()->is_Register()) {
1150         __ push(args[i].first()->as_Register());
1151       } else if (args[i].first()->is_XMMRegister()) {
1152         __ subptr(rsp, 2*wordSize);
1153         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1154       }
1155     }
1156 }
1157 
1158 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1159     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1160       if (args[i].first()->is_Register()) {
1161         __ pop(args[i].first()->as_Register());
1162       } else if (args[i].first()->is_XMMRegister()) {
1163         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1164         __ addptr(rsp, 2*wordSize);
1165       }
1166     }
1167 }
1168 
1169 // ---------------------------------------------------------------------------
1170 // Generate a native wrapper for a given method.  The method takes arguments
1171 // in the Java compiled code convention, marshals them to the native
1172 // convention (handlizes oops, etc), transitions to native, makes the call,
1173 // returns to java state (possibly blocking), unhandlizes any result and
1174 // returns.
1175 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
1176                                                 methodHandle method,
1177                                                 int compile_id,
1178                                                 int total_in_args,
1179                                                 int comp_args_on_stack,
1180                                                 BasicType *in_sig_bt,
1181                                                 VMRegPair *in_regs,
1182                                                 BasicType ret_type) {
1183   // Native nmethod wrappers never take possesion of the oop arguments.
1184   // So the caller will gc the arguments. The only thing we need an
1185   // oopMap for is if the call is static
1186   //
1187   // An OopMap for lock (and class if static)
1188   OopMapSet *oop_maps = new OopMapSet();
1189   intptr_t start = (intptr_t)__ pc();
1190 
1191   // We have received a description of where all the java arg are located
1192   // on entry to the wrapper. We need to convert these args to where
1193   // the jni function will expect them. To figure out where they go
1194   // we convert the java signature to a C signature by inserting
1195   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1196 
1197   int total_c_args = total_in_args + 1;
1198   if (method->is_static()) {
1199     total_c_args++;
1200   }
1201 
1202   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1203   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
1204 
1205   int argc = 0;
1206   out_sig_bt[argc++] = T_ADDRESS;
1207   if (method->is_static()) {
1208     out_sig_bt[argc++] = T_OBJECT;
1209   }
1210 
1211   for (int i = 0; i < total_in_args ; i++ ) {
1212     out_sig_bt[argc++] = in_sig_bt[i];
1213   }
1214 
1215   // Now figure out where the args must be stored and how much stack space
1216   // they require.
1217   //
1218   int out_arg_slots;
1219   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1220 
1221   // Compute framesize for the wrapper.  We need to handlize all oops in
1222   // incoming registers
1223 
1224   // Calculate the total number of stack slots we will need.
1225 
1226   // First count the abi requirement plus all of the outgoing args
1227   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1228 
1229   // Now the space for the inbound oop handle area
1230 
1231   int oop_handle_offset = stack_slots;
1232   stack_slots += 6*VMRegImpl::slots_per_word;
1233 
1234   // Now any space we need for handlizing a klass if static method
1235 
1236   int oop_temp_slot_offset = 0;
1237   int klass_slot_offset = 0;
1238   int klass_offset = -1;
1239   int lock_slot_offset = 0;
1240   bool is_static = false;
1241 
1242   if (method->is_static()) {
1243     klass_slot_offset = stack_slots;
1244     stack_slots += VMRegImpl::slots_per_word;
1245     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1246     is_static = true;
1247   }
1248 
1249   // Plus a lock if needed
1250 
1251   if (method->is_synchronized()) {
1252     lock_slot_offset = stack_slots;
1253     stack_slots += VMRegImpl::slots_per_word;
1254   }
1255 
1256   // Now a place (+2) to save return values or temp during shuffling
1257   // + 4 for return address (which we own) and saved rbp
1258   stack_slots += 6;
1259 
1260   // Ok The space we have allocated will look like:
1261   //
1262   //
1263   // FP-> |                     |
1264   //      |---------------------|
1265   //      | 2 slots for moves   |
1266   //      |---------------------|
1267   //      | lock box (if sync)  |
1268   //      |---------------------| <- lock_slot_offset
1269   //      | klass (if static)   |
1270   //      |---------------------| <- klass_slot_offset
1271   //      | oopHandle area      |
1272   //      |---------------------| <- oop_handle_offset (6 java arg registers)
1273   //      | outbound memory     |
1274   //      | based arguments     |
1275   //      |                     |
1276   //      |---------------------|
1277   //      |                     |
1278   // SP-> | out_preserved_slots |
1279   //
1280   //
1281 
1282 
1283   // Now compute actual number of stack words we need rounding to make
1284   // stack properly aligned.
1285   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1286 
1287   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1288 
1289 
1290   // First thing make an ic check to see if we should even be here
1291 
1292   // We are free to use all registers as temps without saving them and
1293   // restoring them except rbp. rbp is the only callee save register
1294   // as far as the interpreter and the compiler(s) are concerned.
1295 
1296 
1297   const Register ic_reg = rax;
1298   const Register receiver = j_rarg0;
1299 
1300   Label ok;
1301   Label exception_pending;
1302 
1303   assert_different_registers(ic_reg, receiver, rscratch1);
1304   __ verify_oop(receiver);
1305   __ load_klass(rscratch1, receiver);
1306   __ cmpq(ic_reg, rscratch1);
1307   __ jcc(Assembler::equal, ok);
1308 
1309   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1310 
1311   __ bind(ok);
1312 
1313   // Verified entry point must be aligned
1314   __ align(8);
1315 
1316   int vep_offset = ((intptr_t)__ pc()) - start;
1317 
1318   // The instruction at the verified entry point must be 5 bytes or longer
1319   // because it can be patched on the fly by make_non_entrant. The stack bang
1320   // instruction fits that requirement.
1321 
1322   // Generate stack overflow check
1323 
1324   if (UseStackBanging) {
1325     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
1326   } else {
1327     // need a 5 byte instruction to allow MT safe patching to non-entrant
1328     __ fat_nop();
1329   }
1330 
1331   // Generate a new frame for the wrapper.
1332   __ enter();
1333   // -2 because return address is already present and so is saved rbp
1334   __ subptr(rsp, stack_size - 2*wordSize);
1335 
1336     // Frame is now completed as far as size and linkage.
1337 
1338     int frame_complete = ((intptr_t)__ pc()) - start;
1339 
1340 #ifdef ASSERT
1341     {
1342       Label L;
1343       __ mov(rax, rsp);
1344       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
1345       __ cmpptr(rax, rsp);
1346       __ jcc(Assembler::equal, L);
1347       __ stop("improperly aligned stack");
1348       __ bind(L);
1349     }
1350 #endif /* ASSERT */
1351 
1352 
1353   // We use r14 as the oop handle for the receiver/klass
1354   // It is callee save so it survives the call to native
1355 
1356   const Register oop_handle_reg = r14;
1357 
1358 
1359 
1360   //
1361   // We immediately shuffle the arguments so that any vm call we have to
1362   // make from here on out (sync slow path, jvmti, etc.) we will have
1363   // captured the oops from our caller and have a valid oopMap for
1364   // them.
1365 
1366   // -----------------
1367   // The Grand Shuffle
1368 
1369   // The Java calling convention is either equal (linux) or denser (win64) than the
1370   // c calling convention. However the because of the jni_env argument the c calling
1371   // convention always has at least one more (and two for static) arguments than Java.
1372   // Therefore if we move the args from java -> c backwards then we will never have
1373   // a register->register conflict and we don't have to build a dependency graph
1374   // and figure out how to break any cycles.
1375   //
1376 
1377   // Record esp-based slot for receiver on stack for non-static methods
1378   int receiver_offset = -1;
1379 
1380   // This is a trick. We double the stack slots so we can claim
1381   // the oops in the caller's frame. Since we are sure to have
1382   // more args than the caller doubling is enough to make
1383   // sure we can capture all the incoming oop args from the
1384   // caller.
1385   //
1386   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1387 
1388   // Mark location of rbp (someday)
1389   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
1390 
1391   // Use eax, ebx as temporaries during any memory-memory moves we have to do
1392   // All inbound args are referenced based on rbp and all outbound args via rsp.
1393 
1394 
1395 #ifdef ASSERT
1396   bool reg_destroyed[RegisterImpl::number_of_registers];
1397   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
1398   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
1399     reg_destroyed[r] = false;
1400   }
1401   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
1402     freg_destroyed[f] = false;
1403   }
1404 
1405 #endif /* ASSERT */
1406 
1407 
1408   int c_arg = total_c_args - 1;
1409   for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
1410 #ifdef ASSERT
1411     if (in_regs[i].first()->is_Register()) {
1412       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
1413     } else if (in_regs[i].first()->is_XMMRegister()) {
1414       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
1415     }
1416     if (out_regs[c_arg].first()->is_Register()) {
1417       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
1418     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
1419       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
1420     }
1421 #endif /* ASSERT */
1422     switch (in_sig_bt[i]) {
1423       case T_ARRAY:
1424       case T_OBJECT:
1425         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1426                     ((i == 0) && (!is_static)),
1427                     &receiver_offset);
1428         break;
1429       case T_VOID:
1430         break;
1431 
1432       case T_FLOAT:
1433         float_move(masm, in_regs[i], out_regs[c_arg]);
1434           break;
1435 
1436       case T_DOUBLE:
1437         assert( i + 1 < total_in_args &&
1438                 in_sig_bt[i + 1] == T_VOID &&
1439                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1440         double_move(masm, in_regs[i], out_regs[c_arg]);
1441         break;
1442 
1443       case T_LONG :
1444         long_move(masm, in_regs[i], out_regs[c_arg]);
1445         break;
1446 
1447       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1448 
1449       default:
1450         move32_64(masm, in_regs[i], out_regs[c_arg]);
1451     }
1452   }
1453 
1454   // point c_arg at the first arg that is already loaded in case we
1455   // need to spill before we call out
1456   c_arg++;
1457 
1458   // Pre-load a static method's oop into r14.  Used both by locking code and
1459   // the normal JNI call code.
1460   if (method->is_static()) {
1461 
1462     //  load oop into a register
1463     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
1464 
1465     // Now handlize the static class mirror it's known not-null.
1466     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1467     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1468 
1469     // Now get the handle
1470     __ lea(oop_handle_reg, Address(rsp, klass_offset));
1471     // store the klass handle as second argument
1472     __ movptr(c_rarg1, oop_handle_reg);
1473     // and protect the arg if we must spill
1474     c_arg--;
1475   }
1476 
1477   // Change state to native (we save the return address in the thread, since it might not
1478   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1479   // points into the right code segment. It does not have to be the correct return pc.
1480   // We use the same pc/oopMap repeatedly when we call out
1481 
1482   intptr_t the_pc = (intptr_t) __ pc();
1483   oop_maps->add_gc_map(the_pc - start, map);
1484 
1485   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
1486 
1487 
1488   // We have all of the arguments setup at this point. We must not touch any register
1489   // argument registers at this point (what if we save/restore them there are no oop?
1490 
1491   {
1492     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
1493     // protect the args we've loaded
1494     save_args(masm, total_c_args, c_arg, out_regs);
1495     __ movoop(c_rarg1, JNIHandles::make_local(method()));
1496     __ call_VM_leaf(
1497       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1498       r15_thread, c_rarg1);
1499     restore_args(masm, total_c_args, c_arg, out_regs);
1500   }
1501 
1502   // RedefineClasses() tracing support for obsolete method entry
1503   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1504     // protect the args we've loaded
1505     save_args(masm, total_c_args, c_arg, out_regs);
1506     __ movoop(c_rarg1, JNIHandles::make_local(method()));
1507     __ call_VM_leaf(
1508       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1509       r15_thread, c_rarg1);
1510     restore_args(masm, total_c_args, c_arg, out_regs);
1511   }
1512 
1513   // Lock a synchronized method
1514 
1515   // Register definitions used by locking and unlocking
1516 
1517   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
1518   const Register obj_reg  = rbx;  // Will contain the oop
1519   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
1520   const Register old_hdr  = r13;  // value of old header at unlock time
1521 
1522   Label slow_path_lock;
1523   Label lock_done;
1524 
1525   if (method->is_synchronized()) {
1526 
1527 
1528     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1529 
1530     // Get the handle (the 2nd argument)
1531     __ mov(oop_handle_reg, c_rarg1);
1532 
1533     // Get address of the box
1534 
1535     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
1536 
1537     // Load the oop from the handle
1538     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1539 
1540     if (UseBiasedLocking) {
1541       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
1542     }
1543 
1544     // Load immediate 1 into swap_reg %rax
1545     __ movl(swap_reg, 1);
1546 
1547     // Load (object->mark() | 1) into swap_reg %rax
1548     __ orptr(swap_reg, Address(obj_reg, 0));
1549 
1550     // Save (object->mark() | 1) into BasicLock's displaced header
1551     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1552 
1553     if (os::is_MP()) {
1554       __ lock();
1555     }
1556 
1557     // src -> dest iff dest == rax else rax <- dest
1558     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
1559     __ jcc(Assembler::equal, lock_done);
1560 
1561     // Hmm should this move to the slow path code area???
1562 
1563     // Test if the oopMark is an obvious stack pointer, i.e.,
1564     //  1) (mark & 3) == 0, and
1565     //  2) rsp <= mark < mark + os::pagesize()
1566     // These 3 tests can be done by evaluating the following
1567     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
1568     // assuming both stack pointer and pagesize have their
1569     // least significant 2 bits clear.
1570     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
1571 
1572     __ subptr(swap_reg, rsp);
1573     __ andptr(swap_reg, 3 - os::vm_page_size());
1574 
1575     // Save the test result, for recursive case, the result is zero
1576     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1577     __ jcc(Assembler::notEqual, slow_path_lock);
1578 
1579     // Slow path will re-enter here
1580 
1581     __ bind(lock_done);
1582   }
1583 
1584 
1585   // Finally just about ready to make the JNI call
1586 
1587 
1588   // get JNIEnv* which is first argument to native
1589 
1590   __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
1591 
1592   // Now set thread in native
1593   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
1594 
1595   __ call(RuntimeAddress(method->native_function()));
1596 
1597     // Either restore the MXCSR register after returning from the JNI Call
1598     // or verify that it wasn't changed.
1599     if (RestoreMXCSROnJNICalls) {
1600       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
1601 
1602     }
1603     else if (CheckJNICalls ) {
1604       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::verify_mxcsr_entry())));
1605     }
1606 
1607 
1608   // Unpack native results.
1609   switch (ret_type) {
1610   case T_BOOLEAN: __ c2bool(rax);            break;
1611   case T_CHAR   : __ movzwl(rax, rax);      break;
1612   case T_BYTE   : __ sign_extend_byte (rax); break;
1613   case T_SHORT  : __ sign_extend_short(rax); break;
1614   case T_INT    : /* nothing to do */        break;
1615   case T_DOUBLE :
1616   case T_FLOAT  :
1617     // Result is in xmm0 we'll save as needed
1618     break;
1619   case T_ARRAY:                 // Really a handle
1620   case T_OBJECT:                // Really a handle
1621       break; // can't de-handlize until after safepoint check
1622   case T_VOID: break;
1623   case T_LONG: break;
1624   default       : ShouldNotReachHere();
1625   }
1626 
1627   // Switch thread to "native transition" state before reading the synchronization state.
1628   // This additional state is necessary because reading and testing the synchronization
1629   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1630   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1631   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1632   //     Thread A is resumed to finish this native method, but doesn't block here since it
1633   //     didn't see any synchronization is progress, and escapes.
1634   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1635 
1636   if(os::is_MP()) {
1637     if (UseMembar) {
1638       // Force this write out before the read below
1639       __ membar(Assembler::Membar_mask_bits(
1640            Assembler::LoadLoad | Assembler::LoadStore |
1641            Assembler::StoreLoad | Assembler::StoreStore));
1642     } else {
1643       // Write serialization page so VM thread can do a pseudo remote membar.
1644       // We use the current thread pointer to calculate a thread specific
1645       // offset to write to within the page. This minimizes bus traffic
1646       // due to cache line collision.
1647       __ serialize_memory(r15_thread, rcx);
1648     }
1649   }
1650 
1651 
1652   // check for safepoint operation in progress and/or pending suspend requests
1653   {
1654     Label Continue;
1655 
1656     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
1657              SafepointSynchronize::_not_synchronized);
1658 
1659     Label L;
1660     __ jcc(Assembler::notEqual, L);
1661     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
1662     __ jcc(Assembler::equal, Continue);
1663     __ bind(L);
1664 
1665     // Don't use call_VM as it will see a possible pending exception and forward it
1666     // and never return here preventing us from clearing _last_native_pc down below.
1667     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1668     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
1669     // by hand.
1670     //
1671     save_native_result(masm, ret_type, stack_slots);
1672     __ mov(c_rarg0, r15_thread);
1673     __ mov(r12, rsp); // remember sp
1674     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1675     __ andptr(rsp, -16); // align stack as required by ABI
1676     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
1677     __ mov(rsp, r12); // restore sp
1678     __ reinit_heapbase();
1679     // Restore any method result value
1680     restore_native_result(masm, ret_type, stack_slots);
1681     __ bind(Continue);
1682   }
1683 
1684   // change thread state
1685   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
1686 
1687   Label reguard;
1688   Label reguard_done;
1689   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
1690   __ jcc(Assembler::equal, reguard);
1691   __ bind(reguard_done);
1692 
1693   // native result if any is live
1694 
1695   // Unlock
1696   Label unlock_done;
1697   Label slow_path_unlock;
1698   if (method->is_synchronized()) {
1699 
1700     // Get locked oop from the handle we passed to jni
1701     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1702 
1703     Label done;
1704 
1705     if (UseBiasedLocking) {
1706       __ biased_locking_exit(obj_reg, old_hdr, done);
1707     }
1708 
1709     // Simple recursive lock?
1710 
1711     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
1712     __ jcc(Assembler::equal, done);
1713 
1714     // Must save rax if if it is live now because cmpxchg must use it
1715     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1716       save_native_result(masm, ret_type, stack_slots);
1717     }
1718 
1719 
1720     // get address of the stack lock
1721     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
1722     //  get old displaced header
1723     __ movptr(old_hdr, Address(rax, 0));
1724 
1725     // Atomic swap old header if oop still contains the stack lock
1726     if (os::is_MP()) {
1727       __ lock();
1728     }
1729     __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
1730     __ jcc(Assembler::notEqual, slow_path_unlock);
1731 
1732     // slow path re-enters here
1733     __ bind(unlock_done);
1734     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1735       restore_native_result(masm, ret_type, stack_slots);
1736     }
1737 
1738     __ bind(done);
1739 
1740   }
1741   {
1742     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
1743     save_native_result(masm, ret_type, stack_slots);
1744     __ movoop(c_rarg1, JNIHandles::make_local(method()));
1745     __ call_VM_leaf(
1746          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1747          r15_thread, c_rarg1);
1748     restore_native_result(masm, ret_type, stack_slots);
1749   }
1750 
1751   __ reset_last_Java_frame(false, true);
1752 
1753   // Unpack oop result
1754   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
1755       Label L;
1756       __ testptr(rax, rax);
1757       __ jcc(Assembler::zero, L);
1758       __ movptr(rax, Address(rax, 0));
1759       __ bind(L);
1760       __ verify_oop(rax);
1761   }
1762 
1763   // reset handle block
1764   __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
1765   __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
1766 
1767   // pop our frame
1768 
1769   __ leave();
1770 
1771   // Any exception pending?
1772   __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
1773   __ jcc(Assembler::notEqual, exception_pending);
1774 
1775   // Return
1776 
1777   __ ret(0);
1778 
1779   // Unexpected paths are out of line and go here
1780 
1781   // forward the exception
1782   __ bind(exception_pending);
1783 
1784   // and forward the exception
1785   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1786 
1787 
1788   // Slow path locking & unlocking
1789   if (method->is_synchronized()) {
1790 
1791     // BEGIN Slow path lock
1792     __ bind(slow_path_lock);
1793 
1794     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
1795     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1796 
1797     // protect the args we've loaded
1798     save_args(masm, total_c_args, c_arg, out_regs);
1799 
1800     __ mov(c_rarg0, obj_reg);
1801     __ mov(c_rarg1, lock_reg);
1802     __ mov(c_rarg2, r15_thread);
1803 
1804     // Not a leaf but we have last_Java_frame setup as we want
1805     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
1806     restore_args(masm, total_c_args, c_arg, out_regs);
1807 
1808 #ifdef ASSERT
1809     { Label L;
1810     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
1811     __ jcc(Assembler::equal, L);
1812     __ stop("no pending exception allowed on exit from monitorenter");
1813     __ bind(L);
1814     }
1815 #endif
1816     __ jmp(lock_done);
1817 
1818     // END Slow path lock
1819 
1820     // BEGIN Slow path unlock
1821     __ bind(slow_path_unlock);
1822 
1823     // If we haven't already saved the native result we must save it now as xmm registers
1824     // are still exposed.
1825 
1826     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1827       save_native_result(masm, ret_type, stack_slots);
1828     }
1829 
1830     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
1831 
1832     __ mov(c_rarg0, obj_reg);
1833     __ mov(r12, rsp); // remember sp
1834     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1835     __ andptr(rsp, -16); // align stack as required by ABI
1836 
1837     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
1838     // NOTE that obj_reg == rbx currently
1839     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
1840     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
1841 
1842     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
1843     __ mov(rsp, r12); // restore sp
1844     __ reinit_heapbase();
1845 #ifdef ASSERT
1846     {
1847       Label L;
1848       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
1849       __ jcc(Assembler::equal, L);
1850       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
1851       __ bind(L);
1852     }
1853 #endif /* ASSERT */
1854 
1855     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
1856 
1857     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1858       restore_native_result(masm, ret_type, stack_slots);
1859     }
1860     __ jmp(unlock_done);
1861 
1862     // END Slow path unlock
1863 
1864   } // synchronized
1865 
1866   // SLOW PATH Reguard the stack if needed
1867 
1868   __ bind(reguard);
1869   save_native_result(masm, ret_type, stack_slots);
1870   __ mov(r12, rsp); // remember sp
1871   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1872   __ andptr(rsp, -16); // align stack as required by ABI
1873   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1874   __ mov(rsp, r12); // restore sp
1875   __ reinit_heapbase();
1876   restore_native_result(masm, ret_type, stack_slots);
1877   // and continue
1878   __ jmp(reguard_done);
1879 
1880 
1881 
1882   __ flush();
1883 
1884   nmethod *nm = nmethod::new_native_nmethod(method,
1885                                             compile_id,
1886                                             masm->code(),
1887                                             vep_offset,
1888                                             frame_complete,
1889                                             stack_slots / VMRegImpl::slots_per_word,
1890                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
1891                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
1892                                             oop_maps);
1893   return nm;
1894 
1895 }
1896 
1897 #ifdef HAVE_DTRACE_H
1898 // ---------------------------------------------------------------------------
1899 // Generate a dtrace nmethod for a given signature.  The method takes arguments
1900 // in the Java compiled code convention, marshals them to the native
1901 // abi and then leaves nops at the position you would expect to call a native
1902 // function. When the probe is enabled the nops are replaced with a trap
1903 // instruction that dtrace inserts and the trace will cause a notification
1904 // to dtrace.
1905 //
1906 // The probes are only able to take primitive types and java/lang/String as
1907 // arguments.  No other java types are allowed. Strings are converted to utf8
1908 // strings so that from dtrace point of view java strings are converted to C
1909 // strings. There is an arbitrary fixed limit on the total space that a method
1910 // can use for converting the strings. (256 chars per string in the signature).
1911 // So any java string larger then this is truncated.
1912 
1913 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
1914 static bool offsets_initialized = false;
1915 
1916 
1917 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
1918                                                 methodHandle method) {
1919 
1920 
1921   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
1922   // be single threaded in this method.
1923   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
1924 
1925   if (!offsets_initialized) {
1926     fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
1927     fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
1928     fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
1929     fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
1930     fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
1931     fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
1932 
1933     fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
1934     fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
1935     fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
1936     fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
1937     fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
1938     fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
1939     fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
1940     fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
1941 
1942     offsets_initialized = true;
1943   }
1944   // Fill in the signature array, for the calling-convention call.
1945   int total_args_passed = method->size_of_parameters();
1946 
1947   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
1948   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
1949 
1950   // The signature we are going to use for the trap that dtrace will see
1951   // java/lang/String is converted. We drop "this" and any other object
1952   // is converted to NULL.  (A one-slot java/lang/Long object reference
1953   // is converted to a two-slot long, which is why we double the allocation).
1954   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
1955   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
1956 
1957   int i=0;
1958   int total_strings = 0;
1959   int first_arg_to_pass = 0;
1960   int total_c_args = 0;
1961 
1962   // Skip the receiver as dtrace doesn't want to see it
1963   if( !method->is_static() ) {
1964     in_sig_bt[i++] = T_OBJECT;
1965     first_arg_to_pass = 1;
1966   }
1967 
1968   // We need to convert the java args to where a native (non-jni) function
1969   // would expect them. To figure out where they go we convert the java
1970   // signature to a C signature.
1971 
1972   SignatureStream ss(method->signature());
1973   for ( ; !ss.at_return_type(); ss.next()) {
1974     BasicType bt = ss.type();
1975     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
1976     out_sig_bt[total_c_args++] = bt;
1977     if( bt == T_OBJECT) {
1978       Symbol* s = ss.as_symbol_or_null();   // symbol is created
1979       if (s == vmSymbols::java_lang_String()) {
1980         total_strings++;
1981         out_sig_bt[total_c_args-1] = T_ADDRESS;
1982       } else if (s == vmSymbols::java_lang_Boolean() ||
1983                  s == vmSymbols::java_lang_Character() ||
1984                  s == vmSymbols::java_lang_Byte() ||
1985                  s == vmSymbols::java_lang_Short() ||
1986                  s == vmSymbols::java_lang_Integer() ||
1987                  s == vmSymbols::java_lang_Float()) {
1988         out_sig_bt[total_c_args-1] = T_INT;
1989       } else if (s == vmSymbols::java_lang_Long() ||
1990                  s == vmSymbols::java_lang_Double()) {
1991         out_sig_bt[total_c_args-1] = T_LONG;
1992         out_sig_bt[total_c_args++] = T_VOID;
1993       }
1994     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
1995       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
1996       // We convert double to long
1997       out_sig_bt[total_c_args-1] = T_LONG;
1998       out_sig_bt[total_c_args++] = T_VOID;
1999     } else if ( bt == T_FLOAT) {
2000       // We convert float to int
2001       out_sig_bt[total_c_args-1] = T_INT;
2002     }
2003   }
2004 
2005   assert(i==total_args_passed, "validly parsed signature");
2006 
2007   // Now get the compiled-Java layout as input arguments
2008   int comp_args_on_stack;
2009   comp_args_on_stack = SharedRuntime::java_calling_convention(
2010       in_sig_bt, in_regs, total_args_passed, false);
2011 
2012   // Now figure out where the args must be stored and how much stack space
2013   // they require (neglecting out_preserve_stack_slots but space for storing
2014   // the 1st six register arguments). It's weird see int_stk_helper.
2015 
2016   int out_arg_slots;
2017   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
2018 
2019   // Calculate the total number of stack slots we will need.
2020 
2021   // First count the abi requirement plus all of the outgoing args
2022   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2023 
2024   // Now space for the string(s) we must convert
2025   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
2026   for (i = 0; i < total_strings ; i++) {
2027     string_locs[i] = stack_slots;
2028     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
2029   }
2030 
2031   // Plus the temps we might need to juggle register args
2032   // regs take two slots each
2033   stack_slots += (Argument::n_int_register_parameters_c +
2034                   Argument::n_float_register_parameters_c) * 2;
2035 
2036 
2037   // + 4 for return address (which we own) and saved rbp,
2038 
2039   stack_slots += 4;
2040 
2041   // Ok The space we have allocated will look like:
2042   //
2043   //
2044   // FP-> |                     |
2045   //      |---------------------|
2046   //      | string[n]           |
2047   //      |---------------------| <- string_locs[n]
2048   //      | string[n-1]         |
2049   //      |---------------------| <- string_locs[n-1]
2050   //      | ...                 |
2051   //      | ...                 |
2052   //      |---------------------| <- string_locs[1]
2053   //      | string[0]           |
2054   //      |---------------------| <- string_locs[0]
2055   //      | outbound memory     |
2056   //      | based arguments     |
2057   //      |                     |
2058   //      |---------------------|
2059   //      |                     |
2060   // SP-> | out_preserved_slots |
2061   //
2062   //
2063 
2064   // Now compute actual number of stack words we need rounding to make
2065   // stack properly aligned.
2066   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
2067 
2068   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2069 
2070   intptr_t start = (intptr_t)__ pc();
2071 
2072   // First thing make an ic check to see if we should even be here
2073 
2074   // We are free to use all registers as temps without saving them and
2075   // restoring them except rbp. rbp, is the only callee save register
2076   // as far as the interpreter and the compiler(s) are concerned.
2077 
2078   const Register ic_reg = rax;
2079   const Register receiver = rcx;
2080   Label hit;
2081   Label exception_pending;
2082 
2083 
2084   __ verify_oop(receiver);
2085   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
2086   __ jcc(Assembler::equal, hit);
2087 
2088   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2089 
2090   // verified entry must be aligned for code patching.
2091   // and the first 5 bytes must be in the same cache line
2092   // if we align at 8 then we will be sure 5 bytes are in the same line
2093   __ align(8);
2094 
2095   __ bind(hit);
2096 
2097   int vep_offset = ((intptr_t)__ pc()) - start;
2098 
2099 
2100   // The instruction at the verified entry point must be 5 bytes or longer
2101   // because it can be patched on the fly by make_non_entrant. The stack bang
2102   // instruction fits that requirement.
2103 
2104   // Generate stack overflow check
2105 
2106   if (UseStackBanging) {
2107     if (stack_size <= StackShadowPages*os::vm_page_size()) {
2108       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2109     } else {
2110       __ movl(rax, stack_size);
2111       __ bang_stack_size(rax, rbx);
2112     }
2113   } else {
2114     // need a 5 byte instruction to allow MT safe patching to non-entrant
2115     __ fat_nop();
2116   }
2117 
2118   assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
2119          "valid size for make_non_entrant");
2120 
2121   // Generate a new frame for the wrapper.
2122   __ enter();
2123 
2124   // -4 because return address is already present and so is saved rbp,
2125   if (stack_size - 2*wordSize != 0) {
2126     __ subq(rsp, stack_size - 2*wordSize);
2127   }
2128 
2129   // Frame is now completed as far a size and linkage.
2130 
2131   int frame_complete = ((intptr_t)__ pc()) - start;
2132 
2133   int c_arg, j_arg;
2134 
2135   // State of input register args
2136 
2137   bool  live[ConcreteRegisterImpl::number_of_registers];
2138 
2139   live[j_rarg0->as_VMReg()->value()] = false;
2140   live[j_rarg1->as_VMReg()->value()] = false;
2141   live[j_rarg2->as_VMReg()->value()] = false;
2142   live[j_rarg3->as_VMReg()->value()] = false;
2143   live[j_rarg4->as_VMReg()->value()] = false;
2144   live[j_rarg5->as_VMReg()->value()] = false;
2145 
2146   live[j_farg0->as_VMReg()->value()] = false;
2147   live[j_farg1->as_VMReg()->value()] = false;
2148   live[j_farg2->as_VMReg()->value()] = false;
2149   live[j_farg3->as_VMReg()->value()] = false;
2150   live[j_farg4->as_VMReg()->value()] = false;
2151   live[j_farg5->as_VMReg()->value()] = false;
2152   live[j_farg6->as_VMReg()->value()] = false;
2153   live[j_farg7->as_VMReg()->value()] = false;
2154 
2155 
2156   bool rax_is_zero = false;
2157 
2158   // All args (except strings) destined for the stack are moved first
2159   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2160        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2161     VMRegPair src = in_regs[j_arg];
2162     VMRegPair dst = out_regs[c_arg];
2163 
2164     // Get the real reg value or a dummy (rsp)
2165 
2166     int src_reg = src.first()->is_reg() ?
2167                   src.first()->value() :
2168                   rsp->as_VMReg()->value();
2169 
2170     bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2171                     (in_sig_bt[j_arg] == T_OBJECT &&
2172                      out_sig_bt[c_arg] != T_INT &&
2173                      out_sig_bt[c_arg] != T_ADDRESS &&
2174                      out_sig_bt[c_arg] != T_LONG);
2175 
2176     live[src_reg] = !useless;
2177 
2178     if (dst.first()->is_stack()) {
2179 
2180       // Even though a string arg in a register is still live after this loop
2181       // after the string conversion loop (next) it will be dead so we take
2182       // advantage of that now for simpler code to manage live.
2183 
2184       live[src_reg] = false;
2185       switch (in_sig_bt[j_arg]) {
2186 
2187         case T_ARRAY:
2188         case T_OBJECT:
2189           {
2190             Address stack_dst(rsp, reg2offset_out(dst.first()));
2191 
2192             if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2193               // need to unbox a one-word value
2194               Register in_reg = rax;
2195               if ( src.first()->is_reg() ) {
2196                 in_reg = src.first()->as_Register();
2197               } else {
2198                 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
2199                 rax_is_zero = false;
2200               }
2201               Label skipUnbox;
2202               __ movptr(Address(rsp, reg2offset_out(dst.first())),
2203                         (int32_t)NULL_WORD);
2204               __ testq(in_reg, in_reg);
2205               __ jcc(Assembler::zero, skipUnbox);
2206 
2207               BasicType bt = out_sig_bt[c_arg];
2208               int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2209               Address src1(in_reg, box_offset);
2210               if ( bt == T_LONG ) {
2211                 __ movq(in_reg,  src1);
2212                 __ movq(stack_dst, in_reg);
2213                 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2214                 ++c_arg; // skip over T_VOID to keep the loop indices in sync
2215               } else {
2216                 __ movl(in_reg,  src1);
2217                 __ movl(stack_dst, in_reg);
2218               }
2219 
2220               __ bind(skipUnbox);
2221             } else if (out_sig_bt[c_arg] != T_ADDRESS) {
2222               // Convert the arg to NULL
2223               if (!rax_is_zero) {
2224                 __ xorq(rax, rax);
2225                 rax_is_zero = true;
2226               }
2227               __ movq(stack_dst, rax);
2228             }
2229           }
2230           break;
2231 
2232         case T_VOID:
2233           break;
2234 
2235         case T_FLOAT:
2236           // This does the right thing since we know it is destined for the
2237           // stack
2238           float_move(masm, src, dst);
2239           break;
2240 
2241         case T_DOUBLE:
2242           // This does the right thing since we know it is destined for the
2243           // stack
2244           double_move(masm, src, dst);
2245           break;
2246 
2247         case T_LONG :
2248           long_move(masm, src, dst);
2249           break;
2250 
2251         case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2252 
2253         default:
2254           move32_64(masm, src, dst);
2255       }
2256     }
2257 
2258   }
2259 
2260   // If we have any strings we must store any register based arg to the stack
2261   // This includes any still live xmm registers too.
2262 
2263   int sid = 0;
2264 
2265   if (total_strings > 0 ) {
2266     for (j_arg = first_arg_to_pass, c_arg = 0 ;
2267          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2268       VMRegPair src = in_regs[j_arg];
2269       VMRegPair dst = out_regs[c_arg];
2270 
2271       if (src.first()->is_reg()) {
2272         Address src_tmp(rbp, fp_offset[src.first()->value()]);
2273 
2274         // string oops were left untouched by the previous loop even if the
2275         // eventual (converted) arg is destined for the stack so park them
2276         // away now (except for first)
2277 
2278         if (out_sig_bt[c_arg] == T_ADDRESS) {
2279           Address utf8_addr = Address(
2280               rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
2281           if (sid != 1) {
2282             // The first string arg won't be killed until after the utf8
2283             // conversion
2284             __ movq(utf8_addr, src.first()->as_Register());
2285           }
2286         } else if (dst.first()->is_reg()) {
2287           if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
2288 
2289             // Convert the xmm register to an int and store it in the reserved
2290             // location for the eventual c register arg
2291             XMMRegister f = src.first()->as_XMMRegister();
2292             if (in_sig_bt[j_arg] == T_FLOAT) {
2293               __ movflt(src_tmp, f);
2294             } else {
2295               __ movdbl(src_tmp, f);
2296             }
2297           } else {
2298             // If the arg is an oop type we don't support don't bother to store
2299             // it remember string was handled above.
2300             bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2301                             (in_sig_bt[j_arg] == T_OBJECT &&
2302                              out_sig_bt[c_arg] != T_INT &&
2303                              out_sig_bt[c_arg] != T_LONG);
2304 
2305             if (!useless) {
2306               __ movq(src_tmp, src.first()->as_Register());
2307             }
2308           }
2309         }
2310       }
2311       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2312         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2313         ++c_arg; // skip over T_VOID to keep the loop indices in sync
2314       }
2315     }
2316 
2317     // Now that the volatile registers are safe, convert all the strings
2318     sid = 0;
2319 
2320     for (j_arg = first_arg_to_pass, c_arg = 0 ;
2321          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2322       if (out_sig_bt[c_arg] == T_ADDRESS) {
2323         // It's a string
2324         Address utf8_addr = Address(
2325             rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
2326         // The first string we find might still be in the original java arg
2327         // register
2328 
2329         VMReg src = in_regs[j_arg].first();
2330 
2331         // We will need to eventually save the final argument to the trap
2332         // in the von-volatile location dedicated to src. This is the offset
2333         // from fp we will use.
2334         int src_off = src->is_reg() ?
2335             fp_offset[src->value()] : reg2offset_in(src);
2336 
2337         // This is where the argument will eventually reside
2338         VMRegPair dst = out_regs[c_arg];
2339 
2340         if (src->is_reg()) {
2341           if (sid == 1) {
2342             __ movq(c_rarg0, src->as_Register());
2343           } else {
2344             __ movq(c_rarg0, utf8_addr);
2345           }
2346         } else {
2347           // arg is still in the original location
2348           __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
2349         }
2350         Label done, convert;
2351 
2352         // see if the oop is NULL
2353         __ testq(c_rarg0, c_rarg0);
2354         __ jcc(Assembler::notEqual, convert);
2355 
2356         if (dst.first()->is_reg()) {
2357           // Save the ptr to utf string in the origina src loc or the tmp
2358           // dedicated to it
2359           __ movq(Address(rbp, src_off), c_rarg0);
2360         } else {
2361           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
2362         }
2363         __ jmp(done);
2364 
2365         __ bind(convert);
2366 
2367         __ lea(c_rarg1, utf8_addr);
2368         if (dst.first()->is_reg()) {
2369           __ movq(Address(rbp, src_off), c_rarg1);
2370         } else {
2371           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
2372         }
2373         // And do the conversion
2374         __ call(RuntimeAddress(
2375                 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
2376 
2377         __ bind(done);
2378       }
2379       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2380         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2381         ++c_arg; // skip over T_VOID to keep the loop indices in sync
2382       }
2383     }
2384     // The get_utf call killed all the c_arg registers
2385     live[c_rarg0->as_VMReg()->value()] = false;
2386     live[c_rarg1->as_VMReg()->value()] = false;
2387     live[c_rarg2->as_VMReg()->value()] = false;
2388     live[c_rarg3->as_VMReg()->value()] = false;
2389     live[c_rarg4->as_VMReg()->value()] = false;
2390     live[c_rarg5->as_VMReg()->value()] = false;
2391 
2392     live[c_farg0->as_VMReg()->value()] = false;
2393     live[c_farg1->as_VMReg()->value()] = false;
2394     live[c_farg2->as_VMReg()->value()] = false;
2395     live[c_farg3->as_VMReg()->value()] = false;
2396     live[c_farg4->as_VMReg()->value()] = false;
2397     live[c_farg5->as_VMReg()->value()] = false;
2398     live[c_farg6->as_VMReg()->value()] = false;
2399     live[c_farg7->as_VMReg()->value()] = false;
2400   }
2401 
2402   // Now we can finally move the register args to their desired locations
2403 
2404   rax_is_zero = false;
2405 
2406   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2407        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2408 
2409     VMRegPair src = in_regs[j_arg];
2410     VMRegPair dst = out_regs[c_arg];
2411 
2412     // Only need to look for args destined for the interger registers (since we
2413     // convert float/double args to look like int/long outbound)
2414     if (dst.first()->is_reg()) {
2415       Register r =  dst.first()->as_Register();
2416 
2417       // Check if the java arg is unsupported and thereofre useless
2418       bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2419                       (in_sig_bt[j_arg] == T_OBJECT &&
2420                        out_sig_bt[c_arg] != T_INT &&
2421                        out_sig_bt[c_arg] != T_ADDRESS &&
2422                        out_sig_bt[c_arg] != T_LONG);
2423 
2424 
2425       // If we're going to kill an existing arg save it first
2426       if (live[dst.first()->value()]) {
2427         // you can't kill yourself
2428         if (src.first() != dst.first()) {
2429           __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
2430         }
2431       }
2432       if (src.first()->is_reg()) {
2433         if (live[src.first()->value()] ) {
2434           if (in_sig_bt[j_arg] == T_FLOAT) {
2435             __ movdl(r, src.first()->as_XMMRegister());
2436           } else if (in_sig_bt[j_arg] == T_DOUBLE) {
2437             __ movdq(r, src.first()->as_XMMRegister());
2438           } else if (r != src.first()->as_Register()) {
2439             if (!useless) {
2440               __ movq(r, src.first()->as_Register());
2441             }
2442           }
2443         } else {
2444           // If the arg is an oop type we don't support don't bother to store
2445           // it
2446           if (!useless) {
2447             if (in_sig_bt[j_arg] == T_DOUBLE ||
2448                 in_sig_bt[j_arg] == T_LONG  ||
2449                 in_sig_bt[j_arg] == T_OBJECT ) {
2450               __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
2451             } else {
2452               __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
2453             }
2454           }
2455         }
2456         live[src.first()->value()] = false;
2457       } else if (!useless) {
2458         // full sized move even for int should be ok
2459         __ movq(r, Address(rbp, reg2offset_in(src.first())));
2460       }
2461 
2462       // At this point r has the original java arg in the final location
2463       // (assuming it wasn't useless). If the java arg was an oop
2464       // we have a bit more to do
2465 
2466       if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
2467         if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2468           // need to unbox a one-word value
2469           Label skip;
2470           __ testq(r, r);
2471           __ jcc(Assembler::equal, skip);
2472           BasicType bt = out_sig_bt[c_arg];
2473           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2474           Address src1(r, box_offset);
2475           if ( bt == T_LONG ) {
2476             __ movq(r, src1);
2477           } else {
2478             __ movl(r, src1);
2479           }
2480           __ bind(skip);
2481 
2482         } else if (out_sig_bt[c_arg] != T_ADDRESS) {
2483           // Convert the arg to NULL
2484           __ xorq(r, r);
2485         }
2486       }
2487 
2488       // dst can longer be holding an input value
2489       live[dst.first()->value()] = false;
2490     }
2491     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2492       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2493       ++c_arg; // skip over T_VOID to keep the loop indices in sync
2494     }
2495   }
2496 
2497 
2498   // Ok now we are done. Need to place the nop that dtrace wants in order to
2499   // patch in the trap
2500   int patch_offset = ((intptr_t)__ pc()) - start;
2501 
2502   __ nop();
2503 
2504 
2505   // Return
2506 
2507   __ leave();
2508   __ ret(0);
2509 
2510   __ flush();
2511 
2512   nmethod *nm = nmethod::new_dtrace_nmethod(
2513       method, masm->code(), vep_offset, patch_offset, frame_complete,
2514       stack_slots / VMRegImpl::slots_per_word);
2515   return nm;
2516 
2517 }
2518 
2519 #endif // HAVE_DTRACE_H
2520 
2521 // this function returns the adjust size (in number of words) to a c2i adapter
2522 // activation for use during deoptimization
2523 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2524   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2525 }
2526 
2527 
2528 uint SharedRuntime::out_preserve_stack_slots() {
2529   return 0;
2530 }
2531 
2532 
2533 //------------------------------generate_deopt_blob----------------------------
2534 void SharedRuntime::generate_deopt_blob() {
2535   // Allocate space for the code
2536   ResourceMark rm;
2537   // Setup code generation tools
2538   CodeBuffer buffer("deopt_blob", 2048, 1024);
2539   MacroAssembler* masm = new MacroAssembler(&buffer);
2540   int frame_size_in_words;
2541   OopMap* map = NULL;
2542   OopMapSet *oop_maps = new OopMapSet();
2543 
2544   // -------------
2545   // This code enters when returning to a de-optimized nmethod.  A return
2546   // address has been pushed on the the stack, and return values are in
2547   // registers.
2548   // If we are doing a normal deopt then we were called from the patched
2549   // nmethod from the point we returned to the nmethod. So the return
2550   // address on the stack is wrong by NativeCall::instruction_size
2551   // We will adjust the value so it looks like we have the original return
2552   // address on the stack (like when we eagerly deoptimized).
2553   // In the case of an exception pending when deoptimizing, we enter
2554   // with a return address on the stack that points after the call we patched
2555   // into the exception handler. We have the following register state from,
2556   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2557   //    rax: exception oop
2558   //    rbx: exception handler
2559   //    rdx: throwing pc
2560   // So in this case we simply jam rdx into the useless return address and
2561   // the stack looks just like we want.
2562   //
2563   // At this point we need to de-opt.  We save the argument return
2564   // registers.  We call the first C routine, fetch_unroll_info().  This
2565   // routine captures the return values and returns a structure which
2566   // describes the current frame size and the sizes of all replacement frames.
2567   // The current frame is compiled code and may contain many inlined
2568   // functions, each with their own JVM state.  We pop the current frame, then
2569   // push all the new frames.  Then we call the C routine unpack_frames() to
2570   // populate these frames.  Finally unpack_frames() returns us the new target
2571   // address.  Notice that callee-save registers are BLOWN here; they have
2572   // already been captured in the vframeArray at the time the return PC was
2573   // patched.
2574   address start = __ pc();
2575   Label cont;
2576 
2577   // Prolog for non exception case!
2578 
2579   // Save everything in sight.
2580   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2581 
2582   // Normal deoptimization.  Save exec mode for unpack_frames.
2583   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
2584   __ jmp(cont);
2585 
2586   int reexecute_offset = __ pc() - start;
2587 
2588   // Reexecute case
2589   // return address is the pc describes what bci to do re-execute at
2590 
2591   // No need to update map as each call to save_live_registers will produce identical oopmap
2592   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2593 
2594   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
2595   __ jmp(cont);
2596 
2597   int exception_offset = __ pc() - start;
2598 
2599   // Prolog for exception case
2600 
2601   // all registers are dead at this entry point, except for rax, and
2602   // rdx which contain the exception oop and exception pc
2603   // respectively.  Set them in TLS and fall thru to the
2604   // unpack_with_exception_in_tls entry point.
2605 
2606   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
2607   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
2608 
2609   int exception_in_tls_offset = __ pc() - start;
2610 
2611   // new implementation because exception oop is now passed in JavaThread
2612 
2613   // Prolog for exception case
2614   // All registers must be preserved because they might be used by LinearScan
2615   // Exceptiop oop and throwing PC are passed in JavaThread
2616   // tos: stack at point of call to method that threw the exception (i.e. only
2617   // args are on the stack, no return address)
2618 
2619   // make room on stack for the return address
2620   // It will be patched later with the throwing pc. The correct value is not
2621   // available now because loading it from memory would destroy registers.
2622   __ push(0);
2623 
2624   // Save everything in sight.
2625   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2626 
2627   // Now it is safe to overwrite any register
2628 
2629   // Deopt during an exception.  Save exec mode for unpack_frames.
2630   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
2631 
2632   // load throwing pc from JavaThread and patch it as the return address
2633   // of the current frame. Then clear the field in JavaThread
2634 
2635   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2636   __ movptr(Address(rbp, wordSize), rdx);
2637   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
2638 
2639 #ifdef ASSERT
2640   // verify that there is really an exception oop in JavaThread
2641   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2642   __ verify_oop(rax);
2643 
2644   // verify that there is no pending exception
2645   Label no_pending_exception;
2646   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
2647   __ testptr(rax, rax);
2648   __ jcc(Assembler::zero, no_pending_exception);
2649   __ stop("must not have pending exception here");
2650   __ bind(no_pending_exception);
2651 #endif
2652 
2653   __ bind(cont);
2654 
2655   // Call C code.  Need thread and this frame, but NOT official VM entry
2656   // crud.  We cannot block on this call, no GC can happen.
2657   //
2658   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
2659 
2660   // fetch_unroll_info needs to call last_java_frame().
2661 
2662   __ set_last_Java_frame(noreg, noreg, NULL);
2663 #ifdef ASSERT
2664   { Label L;
2665     __ cmpptr(Address(r15_thread,
2666                     JavaThread::last_Java_fp_offset()),
2667             (int32_t)0);
2668     __ jcc(Assembler::equal, L);
2669     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2670     __ bind(L);
2671   }
2672 #endif // ASSERT
2673   __ mov(c_rarg0, r15_thread);
2674   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2675 
2676   // Need to have an oopmap that tells fetch_unroll_info where to
2677   // find any register it might need.
2678   oop_maps->add_gc_map(__ pc() - start, map);
2679 
2680   __ reset_last_Java_frame(false, false);
2681 
2682   // Load UnrollBlock* into rdi
2683   __ mov(rdi, rax);
2684 
2685    Label noException;
2686   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
2687   __ jcc(Assembler::notEqual, noException);
2688   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2689   // QQQ this is useless it was NULL above
2690   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2691   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
2692   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
2693 
2694   __ verify_oop(rax);
2695 
2696   // Overwrite the result registers with the exception results.
2697   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
2698   // I think this is useless
2699   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
2700 
2701   __ bind(noException);
2702 
2703   // Only register save data is on the stack.
2704   // Now restore the result registers.  Everything else is either dead
2705   // or captured in the vframeArray.
2706   RegisterSaver::restore_result_registers(masm);
2707 
2708   // All of the register save area has been popped of the stack. Only the
2709   // return address remains.
2710 
2711   // Pop all the frames we must move/replace.
2712   //
2713   // Frame picture (youngest to oldest)
2714   // 1: self-frame (no frame link)
2715   // 2: deopting frame  (no frame link)
2716   // 3: caller of deopting frame (could be compiled/interpreted).
2717   //
2718   // Note: by leaving the return address of self-frame on the stack
2719   // and using the size of frame 2 to adjust the stack
2720   // when we are done the return to frame 3 will still be on the stack.
2721 
2722   // Pop deoptimized frame
2723   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2724   __ addptr(rsp, rcx);
2725 
2726   // rsp should be pointing at the return address to the caller (3)
2727 
2728   // Stack bang to make sure there's enough room for these interpreter frames.
2729   if (UseStackBanging) {
2730     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2731     __ bang_stack_size(rbx, rcx);
2732   }
2733 
2734   // Load address of array of frame pcs into rcx
2735   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2736 
2737   // Trash the old pc
2738   __ addptr(rsp, wordSize);
2739 
2740   // Load address of array of frame sizes into rsi
2741   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2742 
2743   // Load counter into rdx
2744   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2745 
2746   // Pick up the initial fp we should save
2747   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
2748 
2749   // Now adjust the caller's stack to make up for the extra locals
2750   // but record the original sp so that we can save it in the skeletal interpreter
2751   // frame and the stack walking of interpreter_sender will get the unextended sp
2752   // value and not the "real" sp value.
2753 
2754   const Register sender_sp = r8;
2755 
2756   __ mov(sender_sp, rsp);
2757   __ movl(rbx, Address(rdi,
2758                        Deoptimization::UnrollBlock::
2759                        caller_adjustment_offset_in_bytes()));
2760   __ subptr(rsp, rbx);
2761 
2762   // Push interpreter frames in a loop
2763   Label loop;
2764   __ bind(loop);
2765   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2766 #ifdef CC_INTERP
2767   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
2768 #ifdef ASSERT
2769   __ push(0xDEADDEAD);                  // Make a recognizable pattern
2770   __ push(0xDEADDEAD);
2771 #else /* ASSERT */
2772   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
2773 #endif /* ASSERT */
2774 #else
2775   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
2776 #endif // CC_INTERP
2777   __ pushptr(Address(rcx, 0));          // Save return address
2778   __ enter();                           // Save old & set new ebp
2779   __ subptr(rsp, rbx);                  // Prolog
2780 #ifdef CC_INTERP
2781   __ movptr(Address(rbp,
2782                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
2783             sender_sp); // Make it walkable
2784 #else /* CC_INTERP */
2785   // This value is corrected by layout_activation_impl
2786   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
2787   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
2788 #endif /* CC_INTERP */
2789   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
2790   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2791   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2792   __ decrementl(rdx);                   // Decrement counter
2793   __ jcc(Assembler::notZero, loop);
2794   __ pushptr(Address(rcx, 0));          // Save final return address
2795 
2796   // Re-push self-frame
2797   __ enter();                           // Save old & set new ebp
2798 
2799   // Allocate a full sized register save area.
2800   // Return address and rbp are in place, so we allocate two less words.
2801   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
2802 
2803   // Restore frame locals after moving the frame
2804   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
2805   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
2806 
2807   // Call C code.  Need thread but NOT official VM entry
2808   // crud.  We cannot block on this call, no GC can happen.  Call should
2809   // restore return values to their stack-slots with the new SP.
2810   //
2811   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
2812 
2813   // Use rbp because the frames look interpreted now
2814   __ set_last_Java_frame(noreg, rbp, NULL);
2815 
2816   __ mov(c_rarg0, r15_thread);
2817   __ movl(c_rarg1, r14); // second arg: exec_mode
2818   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2819 
2820   // Set an oopmap for the call site
2821   oop_maps->add_gc_map(__ pc() - start,
2822                        new OopMap( frame_size_in_words, 0 ));
2823 
2824   __ reset_last_Java_frame(true, false);
2825 
2826   // Collect return values
2827   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
2828   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
2829   // I think this is useless (throwing pc?)
2830   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
2831 
2832   // Pop self-frame.
2833   __ leave();                           // Epilog
2834 
2835   // Jump to interpreter
2836   __ ret(0);
2837 
2838   // Make sure all code is generated
2839   masm->flush();
2840 
2841   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2842   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2843 }
2844 
2845 #ifdef COMPILER2
2846 //------------------------------generate_uncommon_trap_blob--------------------
2847 void SharedRuntime::generate_uncommon_trap_blob() {
2848   // Allocate space for the code
2849   ResourceMark rm;
2850   // Setup code generation tools
2851   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
2852   MacroAssembler* masm = new MacroAssembler(&buffer);
2853 
2854   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
2855 
2856   address start = __ pc();
2857 
2858   // Push self-frame.  We get here with a return address on the
2859   // stack, so rsp is 8-byte aligned until we allocate our frame.
2860   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
2861 
2862   // No callee saved registers. rbp is assumed implicitly saved
2863   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
2864 
2865   // compiler left unloaded_class_index in j_rarg0 move to where the
2866   // runtime expects it.
2867   __ movl(c_rarg1, j_rarg0);
2868 
2869   __ set_last_Java_frame(noreg, noreg, NULL);
2870 
2871   // Call C code.  Need thread but NOT official VM entry
2872   // crud.  We cannot block on this call, no GC can happen.  Call should
2873   // capture callee-saved registers as well as return values.
2874   // Thread is in rdi already.
2875   //
2876   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
2877 
2878   __ mov(c_rarg0, r15_thread);
2879   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2880 
2881   // Set an oopmap for the call site
2882   OopMapSet* oop_maps = new OopMapSet();
2883   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
2884 
2885   // location of rbp is known implicitly by the frame sender code
2886 
2887   oop_maps->add_gc_map(__ pc() - start, map);
2888 
2889   __ reset_last_Java_frame(false, false);
2890 
2891   // Load UnrollBlock* into rdi
2892   __ mov(rdi, rax);
2893 
2894   // Pop all the frames we must move/replace.
2895   //
2896   // Frame picture (youngest to oldest)
2897   // 1: self-frame (no frame link)
2898   // 2: deopting frame  (no frame link)
2899   // 3: caller of deopting frame (could be compiled/interpreted).
2900 
2901   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
2902   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
2903 
2904   // Pop deoptimized frame (int)
2905   __ movl(rcx, Address(rdi,
2906                        Deoptimization::UnrollBlock::
2907                        size_of_deoptimized_frame_offset_in_bytes()));
2908   __ addptr(rsp, rcx);
2909 
2910   // rsp should be pointing at the return address to the caller (3)
2911 
2912   // Stack bang to make sure there's enough room for these interpreter frames.
2913   if (UseStackBanging) {
2914     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2915     __ bang_stack_size(rbx, rcx);
2916   }
2917 
2918   // Load address of array of frame pcs into rcx (address*)
2919   __ movptr(rcx,
2920             Address(rdi,
2921                     Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2922 
2923   // Trash the return pc
2924   __ addptr(rsp, wordSize);
2925 
2926   // Load address of array of frame sizes into rsi (intptr_t*)
2927   __ movptr(rsi, Address(rdi,
2928                          Deoptimization::UnrollBlock::
2929                          frame_sizes_offset_in_bytes()));
2930 
2931   // Counter
2932   __ movl(rdx, Address(rdi,
2933                        Deoptimization::UnrollBlock::
2934                        number_of_frames_offset_in_bytes())); // (int)
2935 
2936   // Pick up the initial fp we should save
2937   __ movptr(rbp,
2938             Address(rdi,
2939                     Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
2940 
2941   // Now adjust the caller's stack to make up for the extra locals but
2942   // record the original sp so that we can save it in the skeletal
2943   // interpreter frame and the stack walking of interpreter_sender
2944   // will get the unextended sp value and not the "real" sp value.
2945 
2946   const Register sender_sp = r8;
2947 
2948   __ mov(sender_sp, rsp);
2949   __ movl(rbx, Address(rdi,
2950                        Deoptimization::UnrollBlock::
2951                        caller_adjustment_offset_in_bytes())); // (int)
2952   __ subptr(rsp, rbx);
2953 
2954   // Push interpreter frames in a loop
2955   Label loop;
2956   __ bind(loop);
2957   __ movptr(rbx, Address(rsi, 0)); // Load frame size
2958   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
2959   __ pushptr(Address(rcx, 0));     // Save return address
2960   __ enter();                      // Save old & set new rbp
2961   __ subptr(rsp, rbx);             // Prolog
2962 #ifdef CC_INTERP
2963   __ movptr(Address(rbp,
2964                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
2965             sender_sp); // Make it walkable
2966 #else // CC_INTERP
2967   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
2968             sender_sp);            // Make it walkable
2969   // This value is corrected by layout_activation_impl
2970   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
2971 #endif // CC_INTERP
2972   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
2973   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
2974   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
2975   __ decrementl(rdx);              // Decrement counter
2976   __ jcc(Assembler::notZero, loop);
2977   __ pushptr(Address(rcx, 0));     // Save final return address
2978 
2979   // Re-push self-frame
2980   __ enter();                 // Save old & set new rbp
2981   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
2982                               // Prolog
2983 
2984   // Use rbp because the frames look interpreted now
2985   __ set_last_Java_frame(noreg, rbp, NULL);
2986 
2987   // Call C code.  Need thread but NOT official VM entry
2988   // crud.  We cannot block on this call, no GC can happen.  Call should
2989   // restore return values to their stack-slots with the new SP.
2990   // Thread is in rdi already.
2991   //
2992   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
2993 
2994   __ mov(c_rarg0, r15_thread);
2995   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
2996   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2997 
2998   // Set an oopmap for the call site
2999   oop_maps->add_gc_map(__ pc() - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3000 
3001   __ reset_last_Java_frame(true, false);
3002 
3003   // Pop self-frame.
3004   __ leave();                 // Epilog
3005 
3006   // Jump to interpreter
3007   __ ret(0);
3008 
3009   // Make sure all code is generated
3010   masm->flush();
3011 
3012   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3013                                                  SimpleRuntimeFrame::framesize >> 1);
3014 }
3015 #endif // COMPILER2
3016 
3017 
3018 //------------------------------generate_handler_blob------
3019 //
3020 // Generate a special Compile2Runtime blob that saves all registers,
3021 // and setup oopmap.
3022 //
3023 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
3024   assert(StubRoutines::forward_exception_entry() != NULL,
3025          "must be generated before");
3026 
3027   ResourceMark rm;
3028   OopMapSet *oop_maps = new OopMapSet();
3029   OopMap* map;
3030 
3031   // Allocate space for the code.  Setup code generation tools.
3032   CodeBuffer buffer("handler_blob", 2048, 1024);
3033   MacroAssembler* masm = new MacroAssembler(&buffer);
3034 
3035   address start   = __ pc();
3036   address call_pc = NULL;
3037   int frame_size_in_words;
3038 
3039   // Make room for return address (or push it again)
3040   if (!cause_return) {
3041     __ push(rbx);
3042   }
3043 
3044   // Save registers, fpu state, and flags
3045   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3046 
3047   // The following is basically a call_VM.  However, we need the precise
3048   // address of the call in order to generate an oopmap. Hence, we do all the
3049   // work outselves.
3050 
3051   __ set_last_Java_frame(noreg, noreg, NULL);
3052 
3053   // The return address must always be correct so that frame constructor never
3054   // sees an invalid pc.
3055 
3056   if (!cause_return) {
3057     // overwrite the dummy value we pushed on entry
3058     __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3059     __ movptr(Address(rbp, wordSize), c_rarg0);
3060   }
3061 
3062   // Do the call
3063   __ mov(c_rarg0, r15_thread);
3064   __ call(RuntimeAddress(call_ptr));
3065 
3066   // Set an oopmap for the call site.  This oopmap will map all
3067   // oop-registers and debug-info registers as callee-saved.  This
3068   // will allow deoptimization at this safepoint to find all possible
3069   // debug-info recordings, as well as let GC find all oops.
3070 
3071   oop_maps->add_gc_map( __ pc() - start, map);
3072 
3073   Label noException;
3074 
3075   __ reset_last_Java_frame(false, false);
3076 
3077   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3078   __ jcc(Assembler::equal, noException);
3079 
3080   // Exception pending
3081 
3082   RegisterSaver::restore_live_registers(masm);
3083 
3084   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3085 
3086   // No exception case
3087   __ bind(noException);
3088 
3089   // Normal exit, restore registers and exit.
3090   RegisterSaver::restore_live_registers(masm);
3091 
3092   __ ret(0);
3093 
3094   // Make sure all code is generated
3095   masm->flush();
3096 
3097   // Fill-out other meta info
3098   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3099 }
3100 
3101 //
3102 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3103 //
3104 // Generate a stub that calls into vm to find out the proper destination
3105 // of a java call. All the argument registers are live at this point
3106 // but since this is generic code we don't know what they are and the caller
3107 // must do any gc of the args.
3108 //
3109 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
3110   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3111 
3112   // allocate space for the code
3113   ResourceMark rm;
3114 
3115   CodeBuffer buffer(name, 1000, 512);
3116   MacroAssembler* masm                = new MacroAssembler(&buffer);
3117 
3118   int frame_size_in_words;
3119 
3120   OopMapSet *oop_maps = new OopMapSet();
3121   OopMap* map = NULL;
3122 
3123   int start = __ offset();
3124 
3125   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3126 
3127   int frame_complete = __ offset();
3128 
3129   __ set_last_Java_frame(noreg, noreg, NULL);
3130 
3131   __ mov(c_rarg0, r15_thread);
3132 
3133   __ call(RuntimeAddress(destination));
3134 
3135 
3136   // Set an oopmap for the call site.
3137   // We need this not only for callee-saved registers, but also for volatile
3138   // registers that the compiler might be keeping live across a safepoint.
3139 
3140   oop_maps->add_gc_map( __ offset() - start, map);
3141 
3142   // rax contains the address we are going to jump to assuming no exception got installed
3143 
3144   // clear last_Java_sp
3145   __ reset_last_Java_frame(false, false);
3146   // check for pending exceptions
3147   Label pending;
3148   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3149   __ jcc(Assembler::notEqual, pending);
3150 
3151   // get the returned methodOop
3152   __ movptr(rbx, Address(r15_thread, JavaThread::vm_result_offset()));
3153   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3154 
3155   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3156 
3157   RegisterSaver::restore_live_registers(masm);
3158 
3159   // We are back the the original state on entry and ready to go.
3160 
3161   __ jmp(rax);
3162 
3163   // Pending exception after the safepoint
3164 
3165   __ bind(pending);
3166 
3167   RegisterSaver::restore_live_registers(masm);
3168 
3169   // exception pending => remove activation and forward to exception handler
3170 
3171   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
3172 
3173   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3174   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3175 
3176   // -------------
3177   // make sure all code is generated
3178   masm->flush();
3179 
3180   // return the  blob
3181   // frame_size_words or bytes??
3182   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3183 }
3184 
3185 
3186 void SharedRuntime::generate_stubs() {
3187 
3188   _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
3189                                         "wrong_method_stub");
3190   _ic_miss_blob =      generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
3191                                         "ic_miss_stub");
3192   _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
3193                                         "resolve_opt_virtual_call");
3194 
3195   _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
3196                                         "resolve_virtual_call");
3197 
3198   _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
3199                                         "resolve_static_call");
3200   _polling_page_safepoint_handler_blob =
3201     generate_handler_blob(CAST_FROM_FN_PTR(address,
3202                    SafepointSynchronize::handle_polling_page_exception), false);
3203 
3204   _polling_page_return_handler_blob =
3205     generate_handler_blob(CAST_FROM_FN_PTR(address,
3206                    SafepointSynchronize::handle_polling_page_exception), true);
3207 
3208   generate_deopt_blob();
3209 
3210 #ifdef COMPILER2
3211   generate_uncommon_trap_blob();
3212 #endif // COMPILER2
3213 }
3214 
3215 
3216 #ifdef COMPILER2
3217 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
3218 //
3219 //------------------------------generate_exception_blob---------------------------
3220 // creates exception blob at the end
3221 // Using exception blob, this code is jumped from a compiled method.
3222 // (see emit_exception_handler in x86_64.ad file)
3223 //
3224 // Given an exception pc at a call we call into the runtime for the
3225 // handler in this method. This handler might merely restore state
3226 // (i.e. callee save registers) unwind the frame and jump to the
3227 // exception handler for the nmethod if there is no Java level handler
3228 // for the nmethod.
3229 //
3230 // This code is entered with a jmp.
3231 //
3232 // Arguments:
3233 //   rax: exception oop
3234 //   rdx: exception pc
3235 //
3236 // Results:
3237 //   rax: exception oop
3238 //   rdx: exception pc in caller or ???
3239 //   destination: exception handler of caller
3240 //
3241 // Note: the exception pc MUST be at a call (precise debug information)
3242 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
3243 //
3244 
3245 void OptoRuntime::generate_exception_blob() {
3246   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
3247   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
3248   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
3249 
3250   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3251 
3252   // Allocate space for the code
3253   ResourceMark rm;
3254   // Setup code generation tools
3255   CodeBuffer buffer("exception_blob", 2048, 1024);
3256   MacroAssembler* masm = new MacroAssembler(&buffer);
3257 
3258 
3259   address start = __ pc();
3260 
3261   // Exception pc is 'return address' for stack walker
3262   __ push(rdx);
3263   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
3264 
3265   // Save callee-saved registers.  See x86_64.ad.
3266 
3267   // rbp is an implicitly saved callee saved register (i.e. the calling
3268   // convention will save restore it in prolog/epilog) Other than that
3269   // there are no callee save registers now that adapter frames are gone.
3270 
3271   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3272 
3273   // Store exception in Thread object. We cannot pass any arguments to the
3274   // handle_exception call, since we do not want to make any assumption
3275   // about the size of the frame where the exception happened in.
3276   // c_rarg0 is either rdi (Linux) or rcx (Windows).
3277   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
3278   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3279 
3280   // This call does all the hard work.  It checks if an exception handler
3281   // exists in the method.
3282   // If so, it returns the handler address.
3283   // If not, it prepares for stack-unwinding, restoring the callee-save
3284   // registers of the frame being removed.
3285   //
3286   // address OptoRuntime::handle_exception_C(JavaThread* thread)
3287 
3288   __ set_last_Java_frame(noreg, noreg, NULL);
3289   __ mov(c_rarg0, r15_thread);
3290   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
3291 
3292   // Set an oopmap for the call site.  This oopmap will only be used if we
3293   // are unwinding the stack.  Hence, all locations will be dead.
3294   // Callee-saved registers will be the same as the frame above (i.e.,
3295   // handle_exception_stub), since they were restored when we got the
3296   // exception.
3297 
3298   OopMapSet* oop_maps = new OopMapSet();
3299 
3300   oop_maps->add_gc_map( __ pc()-start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3301 
3302   __ reset_last_Java_frame(false, false);
3303 
3304   // Restore callee-saved registers
3305 
3306   // rbp is an implicitly saved callee saved register (i.e. the calling
3307   // convention will save restore it in prolog/epilog) Other than that
3308   // there are no callee save registers no that adapter frames are gone.
3309 
3310   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
3311 
3312   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
3313   __ pop(rdx);                  // No need for exception pc anymore
3314 
3315   // rax: exception handler
3316 
3317   // Restore SP from BP if the exception PC is a MethodHandle call site.
3318   __ cmpl(Address(r15_thread, JavaThread::is_method_handle_return_offset()), 0);
3319   __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
3320 
3321   // We have a handler in rax (could be deopt blob).
3322   __ mov(r8, rax);
3323 
3324   // Get the exception oop
3325   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3326   // Get the exception pc in case we are deoptimized
3327   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3328 #ifdef ASSERT
3329   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
3330   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
3331 #endif
3332   // Clear the exception oop so GC no longer processes it as a root.
3333   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
3334 
3335   // rax: exception oop
3336   // r8:  exception handler
3337   // rdx: exception pc
3338   // Jump to handler
3339 
3340   __ jmp(r8);
3341 
3342   // Make sure all code is generated
3343   masm->flush();
3344 
3345   // Set exception blob
3346   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
3347 }
3348 #endif // COMPILER2