1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "interpreter/interpreterRuntime.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/universe.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/forte.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "prims/jvmtiRedefineClassesTrace.hpp"
  42 #include "prims/methodHandles.hpp"
  43 #include "prims/nativeLookup.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/handles.inline.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/vframe.hpp"
  53 #include "runtime/vframeArray.hpp"
  54 #include "utilities/copy.hpp"
  55 #include "utilities/dtrace.hpp"
  56 #include "utilities/events.hpp"
  57 #include "utilities/hashtable.inline.hpp"
  58 #include "utilities/xmlstream.hpp"
  59 #ifdef TARGET_ARCH_x86
  60 # include "nativeInst_x86.hpp"
  61 # include "vmreg_x86.inline.hpp"
  62 #endif
  63 #ifdef TARGET_ARCH_sparc
  64 # include "nativeInst_sparc.hpp"
  65 # include "vmreg_sparc.inline.hpp"
  66 #endif
  67 #ifdef TARGET_ARCH_zero
  68 # include "nativeInst_zero.hpp"
  69 # include "vmreg_zero.inline.hpp"
  70 #endif
  71 #ifdef TARGET_ARCH_arm
  72 # include "nativeInst_arm.hpp"
  73 # include "vmreg_arm.inline.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_ppc
  76 # include "nativeInst_ppc.hpp"
  77 # include "vmreg_ppc.inline.hpp"
  78 #endif
  79 #ifdef COMPILER1
  80 #include "c1/c1_Runtime1.hpp"
  81 #endif
  82 
  83 #include <math.h>
  84 
  85 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
  86 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
  87                       char*, int, char*, int, char*, int);
  88 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
  89                       char*, int, char*, int, char*, int);
  90 
  91 // Implementation of SharedRuntime
  92 
  93 #ifndef PRODUCT
  94 // For statistics
  95 int SharedRuntime::_ic_miss_ctr = 0;
  96 int SharedRuntime::_wrong_method_ctr = 0;
  97 int SharedRuntime::_resolve_static_ctr = 0;
  98 int SharedRuntime::_resolve_virtual_ctr = 0;
  99 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 100 int SharedRuntime::_implicit_null_throws = 0;
 101 int SharedRuntime::_implicit_div0_throws = 0;
 102 int SharedRuntime::_throw_null_ctr = 0;
 103 
 104 int SharedRuntime::_nof_normal_calls = 0;
 105 int SharedRuntime::_nof_optimized_calls = 0;
 106 int SharedRuntime::_nof_inlined_calls = 0;
 107 int SharedRuntime::_nof_megamorphic_calls = 0;
 108 int SharedRuntime::_nof_static_calls = 0;
 109 int SharedRuntime::_nof_inlined_static_calls = 0;
 110 int SharedRuntime::_nof_interface_calls = 0;
 111 int SharedRuntime::_nof_optimized_interface_calls = 0;
 112 int SharedRuntime::_nof_inlined_interface_calls = 0;
 113 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 114 int SharedRuntime::_nof_removable_exceptions = 0;
 115 
 116 int SharedRuntime::_new_instance_ctr=0;
 117 int SharedRuntime::_new_array_ctr=0;
 118 int SharedRuntime::_multi1_ctr=0;
 119 int SharedRuntime::_multi2_ctr=0;
 120 int SharedRuntime::_multi3_ctr=0;
 121 int SharedRuntime::_multi4_ctr=0;
 122 int SharedRuntime::_multi5_ctr=0;
 123 int SharedRuntime::_mon_enter_stub_ctr=0;
 124 int SharedRuntime::_mon_exit_stub_ctr=0;
 125 int SharedRuntime::_mon_enter_ctr=0;
 126 int SharedRuntime::_mon_exit_ctr=0;
 127 int SharedRuntime::_partial_subtype_ctr=0;
 128 int SharedRuntime::_jbyte_array_copy_ctr=0;
 129 int SharedRuntime::_jshort_array_copy_ctr=0;
 130 int SharedRuntime::_jint_array_copy_ctr=0;
 131 int SharedRuntime::_jlong_array_copy_ctr=0;
 132 int SharedRuntime::_oop_array_copy_ctr=0;
 133 int SharedRuntime::_checkcast_array_copy_ctr=0;
 134 int SharedRuntime::_unsafe_array_copy_ctr=0;
 135 int SharedRuntime::_generic_array_copy_ctr=0;
 136 int SharedRuntime::_slow_array_copy_ctr=0;
 137 int SharedRuntime::_find_handler_ctr=0;
 138 int SharedRuntime::_rethrow_ctr=0;
 139 
 140 int     SharedRuntime::_ICmiss_index                    = 0;
 141 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 142 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 143 
 144 void SharedRuntime::trace_ic_miss(address at) {
 145   for (int i = 0; i < _ICmiss_index; i++) {
 146     if (_ICmiss_at[i] == at) {
 147       _ICmiss_count[i]++;
 148       return;
 149     }
 150   }
 151   int index = _ICmiss_index++;
 152   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 153   _ICmiss_at[index] = at;
 154   _ICmiss_count[index] = 1;
 155 }
 156 
 157 void SharedRuntime::print_ic_miss_histogram() {
 158   if (ICMissHistogram) {
 159     tty->print_cr ("IC Miss Histogram:");
 160     int tot_misses = 0;
 161     for (int i = 0; i < _ICmiss_index; i++) {
 162       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 163       tot_misses += _ICmiss_count[i];
 164     }
 165     tty->print_cr ("Total IC misses: %7d", tot_misses);
 166   }
 167 }
 168 #endif // PRODUCT
 169 
 170 #ifndef SERIALGC
 171 
 172 // G1 write-barrier pre: executed before a pointer store.
 173 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 174   if (orig == NULL) {
 175     assert(false, "should be optimized out");
 176     return;
 177   }
 178   assert(orig->is_oop(true /* ignore mark word */), "Error");
 179   // store the original value that was in the field reference
 180   thread->satb_mark_queue().enqueue(orig);
 181 JRT_END
 182 
 183 // G1 write-barrier post: executed after a pointer store.
 184 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 185   thread->dirty_card_queue().enqueue(card_addr);
 186 JRT_END
 187 
 188 #endif // !SERIALGC
 189 
 190 
 191 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 192   return x * y;
 193 JRT_END
 194 
 195 
 196 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 197   if (x == min_jlong && y == CONST64(-1)) {
 198     return x;
 199   } else {
 200     return x / y;
 201   }
 202 JRT_END
 203 
 204 
 205 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 206   if (x == min_jlong && y == CONST64(-1)) {
 207     return 0;
 208   } else {
 209     return x % y;
 210   }
 211 JRT_END
 212 
 213 
 214 const juint  float_sign_mask  = 0x7FFFFFFF;
 215 const juint  float_infinity   = 0x7F800000;
 216 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 217 const julong double_infinity  = CONST64(0x7FF0000000000000);
 218 
 219 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 220 #ifdef _WIN64
 221   // 64-bit Windows on amd64 returns the wrong values for
 222   // infinity operands.
 223   union { jfloat f; juint i; } xbits, ybits;
 224   xbits.f = x;
 225   ybits.f = y;
 226   // x Mod Infinity == x unless x is infinity
 227   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 228        ((ybits.i & float_sign_mask) == float_infinity) ) {
 229     return x;
 230   }
 231 #endif
 232   return ((jfloat)fmod((double)x,(double)y));
 233 JRT_END
 234 
 235 
 236 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 237 #ifdef _WIN64
 238   union { jdouble d; julong l; } xbits, ybits;
 239   xbits.d = x;
 240   ybits.d = y;
 241   // x Mod Infinity == x unless x is infinity
 242   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 243        ((ybits.l & double_sign_mask) == double_infinity) ) {
 244     return x;
 245   }
 246 #endif
 247   return ((jdouble)fmod((double)x,(double)y));
 248 JRT_END
 249 
 250 #ifdef __SOFTFP__
 251 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 252   return x + y;
 253 JRT_END
 254 
 255 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 256   return x - y;
 257 JRT_END
 258 
 259 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 260   return x * y;
 261 JRT_END
 262 
 263 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 264   return x / y;
 265 JRT_END
 266 
 267 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 268   return x + y;
 269 JRT_END
 270 
 271 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 272   return x - y;
 273 JRT_END
 274 
 275 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 276   return x * y;
 277 JRT_END
 278 
 279 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 280   return x / y;
 281 JRT_END
 282 
 283 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 284   return (jfloat)x;
 285 JRT_END
 286 
 287 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 288   return (jdouble)x;
 289 JRT_END
 290 
 291 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 292   return (jdouble)x;
 293 JRT_END
 294 
 295 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 296   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 297 JRT_END
 298 
 299 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 300   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 301 JRT_END
 302 
 303 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 304   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 305 JRT_END
 306 
 307 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 308   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 309 JRT_END
 310 
 311 // Functions to return the opposite of the aeabi functions for nan.
 312 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 313   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 314 JRT_END
 315 
 316 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 317   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 318 JRT_END
 319 
 320 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 321   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 322 JRT_END
 323 
 324 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 325   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 326 JRT_END
 327 
 328 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 329   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 330 JRT_END
 331 
 332 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 333   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 334 JRT_END
 335 
 336 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 337   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 338 JRT_END
 339 
 340 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 341   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 342 JRT_END
 343 
 344 // Intrinsics make gcc generate code for these.
 345 float  SharedRuntime::fneg(float f)   {
 346   return -f;
 347 }
 348 
 349 double SharedRuntime::dneg(double f)  {
 350   return -f;
 351 }
 352 
 353 #endif // __SOFTFP__
 354 
 355 #if defined(__SOFTFP__) || defined(E500V2)
 356 // Intrinsics make gcc generate code for these.
 357 double SharedRuntime::dabs(double f)  {
 358   return (f <= (double)0.0) ? (double)0.0 - f : f;
 359 }
 360 
 361 #endif
 362 
 363 #if defined(__SOFTFP__) || defined(PPC)
 364 double SharedRuntime::dsqrt(double f) {
 365   return sqrt(f);
 366 }
 367 #endif
 368 
 369 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 370   if (g_isnan(x))
 371     return 0;
 372   if (x >= (jfloat) max_jint)
 373     return max_jint;
 374   if (x <= (jfloat) min_jint)
 375     return min_jint;
 376   return (jint) x;
 377 JRT_END
 378 
 379 
 380 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 381   if (g_isnan(x))
 382     return 0;
 383   if (x >= (jfloat) max_jlong)
 384     return max_jlong;
 385   if (x <= (jfloat) min_jlong)
 386     return min_jlong;
 387   return (jlong) x;
 388 JRT_END
 389 
 390 
 391 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 392   if (g_isnan(x))
 393     return 0;
 394   if (x >= (jdouble) max_jint)
 395     return max_jint;
 396   if (x <= (jdouble) min_jint)
 397     return min_jint;
 398   return (jint) x;
 399 JRT_END
 400 
 401 
 402 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 403   if (g_isnan(x))
 404     return 0;
 405   if (x >= (jdouble) max_jlong)
 406     return max_jlong;
 407   if (x <= (jdouble) min_jlong)
 408     return min_jlong;
 409   return (jlong) x;
 410 JRT_END
 411 
 412 
 413 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 414   return (jfloat)x;
 415 JRT_END
 416 
 417 
 418 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 419   return (jfloat)x;
 420 JRT_END
 421 
 422 
 423 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 424   return (jdouble)x;
 425 JRT_END
 426 
 427 // Exception handling accross interpreter/compiler boundaries
 428 //
 429 // exception_handler_for_return_address(...) returns the continuation address.
 430 // The continuation address is the entry point of the exception handler of the
 431 // previous frame depending on the return address.
 432 
 433 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 434   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 435 
 436   // Reset method handle flag.
 437   thread->set_is_method_handle_return(false);
 438 
 439   // The fastest case first
 440   CodeBlob* blob = CodeCache::find_blob(return_address);
 441   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 442   if (nm != NULL) {
 443     // Set flag if return address is a method handle call site.
 444     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 445     // native nmethods don't have exception handlers
 446     assert(!nm->is_native_method(), "no exception handler");
 447     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 448     if (nm->is_deopt_pc(return_address)) {
 449       return SharedRuntime::deopt_blob()->unpack_with_exception();
 450     } else {
 451       return nm->exception_begin();
 452     }
 453   }
 454 
 455   // Entry code
 456   if (StubRoutines::returns_to_call_stub(return_address)) {
 457     return StubRoutines::catch_exception_entry();
 458   }
 459   // Interpreted code
 460   if (Interpreter::contains(return_address)) {
 461     return Interpreter::rethrow_exception_entry();
 462   }
 463 
 464   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 465   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 466 
 467 #ifndef PRODUCT
 468   { ResourceMark rm;
 469     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 470     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 471     tty->print_cr("b) other problem");
 472   }
 473 #endif // PRODUCT
 474 
 475   ShouldNotReachHere();
 476   return NULL;
 477 }
 478 
 479 
 480 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 481   return raw_exception_handler_for_return_address(thread, return_address);
 482 JRT_END
 483 
 484 
 485 address SharedRuntime::get_poll_stub(address pc) {
 486   address stub;
 487   // Look up the code blob
 488   CodeBlob *cb = CodeCache::find_blob(pc);
 489 
 490   // Should be an nmethod
 491   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 492 
 493   // Look up the relocation information
 494   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 495     "safepoint polling: type must be poll" );
 496 
 497   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 498     "Only polling locations are used for safepoint");
 499 
 500   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 501   if (at_poll_return) {
 502     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 503            "polling page return stub not created yet");
 504     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 505   } else {
 506     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 507            "polling page safepoint stub not created yet");
 508     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 509   }
 510 #ifndef PRODUCT
 511   if( TraceSafepoint ) {
 512     char buf[256];
 513     jio_snprintf(buf, sizeof(buf),
 514                  "... found polling page %s exception at pc = "
 515                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 516                  at_poll_return ? "return" : "loop",
 517                  (intptr_t)pc, (intptr_t)stub);
 518     tty->print_raw_cr(buf);
 519   }
 520 #endif // PRODUCT
 521   return stub;
 522 }
 523 
 524 
 525 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 526   assert(caller.is_interpreted_frame(), "");
 527   int args_size = ArgumentSizeComputer(sig).size() + 1;
 528   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 529   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
 530   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 531   return result;
 532 }
 533 
 534 
 535 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 536   if (JvmtiExport::can_post_on_exceptions()) {
 537     vframeStream vfst(thread, true);
 538     methodHandle method = methodHandle(thread, vfst.method());
 539     address bcp = method()->bcp_from(vfst.bci());
 540     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 541   }
 542   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 543 }
 544 
 545 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 546   Handle h_exception = Exceptions::new_exception(thread, name, message);
 547   throw_and_post_jvmti_exception(thread, h_exception);
 548 }
 549 
 550 // The interpreter code to call this tracing function is only
 551 // called/generated when TraceRedefineClasses has the right bits
 552 // set. Since obsolete methods are never compiled, we don't have
 553 // to modify the compilers to generate calls to this function.
 554 //
 555 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 556     JavaThread* thread, methodOopDesc* method))
 557   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 558 
 559   if (method->is_obsolete()) {
 560     // We are calling an obsolete method, but this is not necessarily
 561     // an error. Our method could have been redefined just after we
 562     // fetched the methodOop from the constant pool.
 563 
 564     // RC_TRACE macro has an embedded ResourceMark
 565     RC_TRACE_WITH_THREAD(0x00001000, thread,
 566                          ("calling obsolete method '%s'",
 567                           method->name_and_sig_as_C_string()));
 568     if (RC_TRACE_ENABLED(0x00002000)) {
 569       // this option is provided to debug calls to obsolete methods
 570       guarantee(false, "faulting at call to an obsolete method.");
 571     }
 572   }
 573   return 0;
 574 JRT_END
 575 
 576 // ret_pc points into caller; we are returning caller's exception handler
 577 // for given exception
 578 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 579                                                     bool force_unwind, bool top_frame_only) {
 580   assert(nm != NULL, "must exist");
 581   ResourceMark rm;
 582 
 583   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 584   // determine handler bci, if any
 585   EXCEPTION_MARK;
 586 
 587   int handler_bci = -1;
 588   int scope_depth = 0;
 589   if (!force_unwind) {
 590     int bci = sd->bci();
 591     do {
 592       bool skip_scope_increment = false;
 593       // exception handler lookup
 594       KlassHandle ek (THREAD, exception->klass());
 595       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
 596       if (HAS_PENDING_EXCEPTION) {
 597         // We threw an exception while trying to find the exception handler.
 598         // Transfer the new exception to the exception handle which will
 599         // be set into thread local storage, and do another lookup for an
 600         // exception handler for this exception, this time starting at the
 601         // BCI of the exception handler which caused the exception to be
 602         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 603         // argument to ensure that the correct exception is thrown (4870175).
 604         exception = Handle(THREAD, PENDING_EXCEPTION);
 605         CLEAR_PENDING_EXCEPTION;
 606         if (handler_bci >= 0) {
 607           bci = handler_bci;
 608           handler_bci = -1;
 609           skip_scope_increment = true;
 610         }
 611       }
 612       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 613         sd = sd->sender();
 614         if (sd != NULL) {
 615           bci = sd->bci();
 616         }
 617         ++scope_depth;
 618       }
 619     } while (!top_frame_only && handler_bci < 0 && sd != NULL);
 620   }
 621 
 622   // found handling method => lookup exception handler
 623   int catch_pco = ret_pc - nm->code_begin();
 624 
 625   ExceptionHandlerTable table(nm);
 626   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 627   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 628     // Allow abbreviated catch tables.  The idea is to allow a method
 629     // to materialize its exceptions without committing to the exact
 630     // routing of exceptions.  In particular this is needed for adding
 631     // a synthethic handler to unlock monitors when inlining
 632     // synchonized methods since the unlock path isn't represented in
 633     // the bytecodes.
 634     t = table.entry_for(catch_pco, -1, 0);
 635   }
 636 
 637 #ifdef COMPILER1
 638   if (t == NULL && nm->is_compiled_by_c1()) {
 639     assert(nm->unwind_handler_begin() != NULL, "");
 640     return nm->unwind_handler_begin();
 641   }
 642 #endif
 643 
 644   if (t == NULL) {
 645     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 646     tty->print_cr("   Exception:");
 647     exception->print();
 648     tty->cr();
 649     tty->print_cr(" Compiled exception table :");
 650     table.print();
 651     nm->print_code();
 652     guarantee(false, "missing exception handler");
 653     return NULL;
 654   }
 655 
 656   return nm->code_begin() + t->pco();
 657 }
 658 
 659 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 660   // These errors occur only at call sites
 661   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 662 JRT_END
 663 
 664 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 665   // These errors occur only at call sites
 666   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 667 JRT_END
 668 
 669 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 670   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 671 JRT_END
 672 
 673 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 674   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 675 JRT_END
 676 
 677 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 678   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 679   // cache sites (when the callee activation is not yet set up) so we are at a call site
 680   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 681 JRT_END
 682 
 683 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 684   // We avoid using the normal exception construction in this case because
 685   // it performs an upcall to Java, and we're already out of stack space.
 686   klassOop k = SystemDictionary::StackOverflowError_klass();
 687   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
 688   Handle exception (thread, exception_oop);
 689   if (StackTraceInThrowable) {
 690     java_lang_Throwable::fill_in_stack_trace(exception);
 691   }
 692   throw_and_post_jvmti_exception(thread, exception);
 693 JRT_END
 694 
 695 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 696                                                            address pc,
 697                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 698 {
 699   address target_pc = NULL;
 700 
 701   if (Interpreter::contains(pc)) {
 702 #ifdef CC_INTERP
 703     // C++ interpreter doesn't throw implicit exceptions
 704     ShouldNotReachHere();
 705 #else
 706     switch (exception_kind) {
 707       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 708       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 709       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 710       default:                      ShouldNotReachHere();
 711     }
 712 #endif // !CC_INTERP
 713   } else {
 714     switch (exception_kind) {
 715       case STACK_OVERFLOW: {
 716         // Stack overflow only occurs upon frame setup; the callee is
 717         // going to be unwound. Dispatch to a shared runtime stub
 718         // which will cause the StackOverflowError to be fabricated
 719         // and processed.
 720         // For stack overflow in deoptimization blob, cleanup thread.
 721         if (thread->deopt_mark() != NULL) {
 722           Deoptimization::cleanup_deopt_info(thread, NULL);
 723         }
 724         return StubRoutines::throw_StackOverflowError_entry();
 725       }
 726 
 727       case IMPLICIT_NULL: {
 728         if (VtableStubs::contains(pc)) {
 729           // We haven't yet entered the callee frame. Fabricate an
 730           // exception and begin dispatching it in the caller. Since
 731           // the caller was at a call site, it's safe to destroy all
 732           // caller-saved registers, as these entry points do.
 733           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 734 
 735           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 736           if (vt_stub == NULL) return NULL;
 737 
 738           if (vt_stub->is_abstract_method_error(pc)) {
 739             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 740             return StubRoutines::throw_AbstractMethodError_entry();
 741           } else {
 742             return StubRoutines::throw_NullPointerException_at_call_entry();
 743           }
 744         } else {
 745           CodeBlob* cb = CodeCache::find_blob(pc);
 746 
 747           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 748           if (cb == NULL) return NULL;
 749 
 750           // Exception happened in CodeCache. Must be either:
 751           // 1. Inline-cache check in C2I handler blob,
 752           // 2. Inline-cache check in nmethod, or
 753           // 3. Implict null exception in nmethod
 754 
 755           if (!cb->is_nmethod()) {
 756             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
 757                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
 758             // There is no handler here, so we will simply unwind.
 759             return StubRoutines::throw_NullPointerException_at_call_entry();
 760           }
 761 
 762           // Otherwise, it's an nmethod.  Consult its exception handlers.
 763           nmethod* nm = (nmethod*)cb;
 764           if (nm->inlinecache_check_contains(pc)) {
 765             // exception happened inside inline-cache check code
 766             // => the nmethod is not yet active (i.e., the frame
 767             // is not set up yet) => use return address pushed by
 768             // caller => don't push another return address
 769             return StubRoutines::throw_NullPointerException_at_call_entry();
 770           }
 771 
 772 #ifndef PRODUCT
 773           _implicit_null_throws++;
 774 #endif
 775           target_pc = nm->continuation_for_implicit_exception(pc);
 776           // If there's an unexpected fault, target_pc might be NULL,
 777           // in which case we want to fall through into the normal
 778           // error handling code.
 779         }
 780 
 781         break; // fall through
 782       }
 783 
 784 
 785       case IMPLICIT_DIVIDE_BY_ZERO: {
 786         nmethod* nm = CodeCache::find_nmethod(pc);
 787         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 788 #ifndef PRODUCT
 789         _implicit_div0_throws++;
 790 #endif
 791         target_pc = nm->continuation_for_implicit_exception(pc);
 792         // If there's an unexpected fault, target_pc might be NULL,
 793         // in which case we want to fall through into the normal
 794         // error handling code.
 795         break; // fall through
 796       }
 797 
 798       default: ShouldNotReachHere();
 799     }
 800 
 801     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 802 
 803     // for AbortVMOnException flag
 804     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 805     if (exception_kind == IMPLICIT_NULL) {
 806       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 807     } else {
 808       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 809     }
 810     return target_pc;
 811   }
 812 
 813   ShouldNotReachHere();
 814   return NULL;
 815 }
 816 
 817 
 818 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
 819 {
 820   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
 821 }
 822 JNI_END
 823 
 824 
 825 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 826   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 827 }
 828 
 829 
 830 #ifndef PRODUCT
 831 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 832   const frame f = thread->last_frame();
 833   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 834 #ifndef PRODUCT
 835   methodHandle mh(THREAD, f.interpreter_frame_method());
 836   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 837 #endif // !PRODUCT
 838   return preserve_this_value;
 839 JRT_END
 840 #endif // !PRODUCT
 841 
 842 
 843 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 844   os::yield_all(attempts);
 845 JRT_END
 846 
 847 
 848 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 849   assert(obj->is_oop(), "must be a valid oop");
 850   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
 851   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
 852 JRT_END
 853 
 854 
 855 jlong SharedRuntime::get_java_tid(Thread* thread) {
 856   if (thread != NULL) {
 857     if (thread->is_Java_thread()) {
 858       oop obj = ((JavaThread*)thread)->threadObj();
 859       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 860     }
 861   }
 862   return 0;
 863 }
 864 
 865 /**
 866  * This function ought to be a void function, but cannot be because
 867  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 868  * 6254741.  Once that is fixed we can remove the dummy return value.
 869  */
 870 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 871   return dtrace_object_alloc_base(Thread::current(), o);
 872 }
 873 
 874 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 875   assert(DTraceAllocProbes, "wrong call");
 876   Klass* klass = o->blueprint();
 877   int size = o->size();
 878   Symbol* name = klass->name();
 879   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 880                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 881   return 0;
 882 }
 883 
 884 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 885     JavaThread* thread, methodOopDesc* method))
 886   assert(DTraceMethodProbes, "wrong call");
 887   Symbol* kname = method->klass_name();
 888   Symbol* name = method->name();
 889   Symbol* sig = method->signature();
 890   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 891       kname->bytes(), kname->utf8_length(),
 892       name->bytes(), name->utf8_length(),
 893       sig->bytes(), sig->utf8_length());
 894   return 0;
 895 JRT_END
 896 
 897 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 898     JavaThread* thread, methodOopDesc* method))
 899   assert(DTraceMethodProbes, "wrong call");
 900   Symbol* kname = method->klass_name();
 901   Symbol* name = method->name();
 902   Symbol* sig = method->signature();
 903   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
 904       kname->bytes(), kname->utf8_length(),
 905       name->bytes(), name->utf8_length(),
 906       sig->bytes(), sig->utf8_length());
 907   return 0;
 908 JRT_END
 909 
 910 
 911 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
 912 // for a call current in progress, i.e., arguments has been pushed on stack
 913 // put callee has not been invoked yet.  Used by: resolve virtual/static,
 914 // vtable updates, etc.  Caller frame must be compiled.
 915 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
 916   ResourceMark rm(THREAD);
 917 
 918   // last java frame on stack (which includes native call frames)
 919   vframeStream vfst(thread, true);  // Do not skip and javaCalls
 920 
 921   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
 922 }
 923 
 924 
 925 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
 926 // for a call current in progress, i.e., arguments has been pushed on stack
 927 // but callee has not been invoked yet.  Caller frame must be compiled.
 928 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
 929                                               vframeStream& vfst,
 930                                               Bytecodes::Code& bc,
 931                                               CallInfo& callinfo, TRAPS) {
 932   Handle receiver;
 933   Handle nullHandle;  //create a handy null handle for exception returns
 934 
 935   assert(!vfst.at_end(), "Java frame must exist");
 936 
 937   // Find caller and bci from vframe
 938   methodHandle caller (THREAD, vfst.method());
 939   int          bci    = vfst.bci();
 940 
 941   // Find bytecode
 942   Bytecode_invoke bytecode(caller, bci);
 943   bc = bytecode.java_code();
 944   int bytecode_index = bytecode.index();
 945 
 946   // Find receiver for non-static call
 947   if (bc != Bytecodes::_invokestatic) {
 948     // This register map must be update since we need to find the receiver for
 949     // compiled frames. The receiver might be in a register.
 950     RegisterMap reg_map2(thread);
 951     frame stubFrame   = thread->last_frame();
 952     // Caller-frame is a compiled frame
 953     frame callerFrame = stubFrame.sender(&reg_map2);
 954 
 955     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
 956     if (callee.is_null()) {
 957       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
 958     }
 959     // Retrieve from a compiled argument list
 960     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
 961 
 962     if (receiver.is_null()) {
 963       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
 964     }
 965   }
 966 
 967   // Resolve method. This is parameterized by bytecode.
 968   constantPoolHandle constants (THREAD, caller->constants());
 969   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
 970   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
 971 
 972 #ifdef ASSERT
 973   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
 974   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
 975     assert(receiver.not_null(), "should have thrown exception");
 976     KlassHandle receiver_klass (THREAD, receiver->klass());
 977     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
 978                             // klass is already loaded
 979     KlassHandle static_receiver_klass (THREAD, rk);
 980     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
 981     if (receiver_klass->oop_is_instance()) {
 982       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
 983         tty->print_cr("ERROR: Klass not yet initialized!!");
 984         receiver_klass.print();
 985       }
 986       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
 987     }
 988   }
 989 #endif
 990 
 991   return receiver;
 992 }
 993 
 994 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
 995   ResourceMark rm(THREAD);
 996   // We need first to check if any Java activations (compiled, interpreted)
 997   // exist on the stack since last JavaCall.  If not, we need
 998   // to get the target method from the JavaCall wrapper.
 999   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1000   methodHandle callee_method;
1001   if (vfst.at_end()) {
1002     // No Java frames were found on stack since we did the JavaCall.
1003     // Hence the stack can only contain an entry_frame.  We need to
1004     // find the target method from the stub frame.
1005     RegisterMap reg_map(thread, false);
1006     frame fr = thread->last_frame();
1007     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1008     fr = fr.sender(&reg_map);
1009     assert(fr.is_entry_frame(), "must be");
1010     // fr is now pointing to the entry frame.
1011     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1012     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1013   } else {
1014     Bytecodes::Code bc;
1015     CallInfo callinfo;
1016     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1017     callee_method = callinfo.selected_method();
1018   }
1019   assert(callee_method()->is_method(), "must be");
1020   return callee_method;
1021 }
1022 
1023 // Resolves a call.
1024 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1025                                            bool is_virtual,
1026                                            bool is_optimized, TRAPS) {
1027   methodHandle callee_method;
1028   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1029   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1030     int retry_count = 0;
1031     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1032            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1033       // If has a pending exception then there is no need to re-try to
1034       // resolve this method.
1035       // If the method has been redefined, we need to try again.
1036       // Hack: we have no way to update the vtables of arrays, so don't
1037       // require that java.lang.Object has been updated.
1038 
1039       // It is very unlikely that method is redefined more than 100 times
1040       // in the middle of resolve. If it is looping here more than 100 times
1041       // means then there could be a bug here.
1042       guarantee((retry_count++ < 100),
1043                 "Could not resolve to latest version of redefined method");
1044       // method is redefined in the middle of resolve so re-try.
1045       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1046     }
1047   }
1048   return callee_method;
1049 }
1050 
1051 // Resolves a call.  The compilers generate code for calls that go here
1052 // and are patched with the real destination of the call.
1053 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1054                                            bool is_virtual,
1055                                            bool is_optimized, TRAPS) {
1056 
1057   ResourceMark rm(thread);
1058   RegisterMap cbl_map(thread, false);
1059   frame caller_frame = thread->last_frame().sender(&cbl_map);
1060 
1061   CodeBlob* caller_cb = caller_frame.cb();
1062   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1063   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1064   // make sure caller is not getting deoptimized
1065   // and removed before we are done with it.
1066   // CLEANUP - with lazy deopt shouldn't need this lock
1067   nmethodLocker caller_lock(caller_nm);
1068 
1069 
1070   // determine call info & receiver
1071   // note: a) receiver is NULL for static calls
1072   //       b) an exception is thrown if receiver is NULL for non-static calls
1073   CallInfo call_info;
1074   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1075   Handle receiver = find_callee_info(thread, invoke_code,
1076                                      call_info, CHECK_(methodHandle()));
1077   methodHandle callee_method = call_info.selected_method();
1078 
1079   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
1080          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
1081 
1082 #ifndef PRODUCT
1083   // tracing/debugging/statistics
1084   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1085                 (is_virtual) ? (&_resolve_virtual_ctr) :
1086                                (&_resolve_static_ctr);
1087   Atomic::inc(addr);
1088 
1089   if (TraceCallFixup) {
1090     ResourceMark rm(thread);
1091     tty->print("resolving %s%s (%s) call to",
1092       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1093       Bytecodes::name(invoke_code));
1094     callee_method->print_short_name(tty);
1095     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1096   }
1097 #endif
1098 
1099   // JSR 292
1100   // If the resolved method is a MethodHandle invoke target the call
1101   // site must be a MethodHandle call site.
1102   if (callee_method->is_method_handle_invoke()) {
1103     assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1104   }
1105 
1106   // Compute entry points. This might require generation of C2I converter
1107   // frames, so we cannot be holding any locks here. Furthermore, the
1108   // computation of the entry points is independent of patching the call.  We
1109   // always return the entry-point, but we only patch the stub if the call has
1110   // not been deoptimized.  Return values: For a virtual call this is an
1111   // (cached_oop, destination address) pair. For a static call/optimized
1112   // virtual this is just a destination address.
1113 
1114   StaticCallInfo static_call_info;
1115   CompiledICInfo virtual_call_info;
1116 
1117   // Make sure the callee nmethod does not get deoptimized and removed before
1118   // we are done patching the code.
1119   nmethod* callee_nm = callee_method->code();
1120   nmethodLocker nl_callee(callee_nm);
1121 #ifdef ASSERT
1122   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1123 #endif
1124 
1125   if (is_virtual) {
1126     assert(receiver.not_null(), "sanity check");
1127     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1128     KlassHandle h_klass(THREAD, receiver->klass());
1129     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1130                      is_optimized, static_bound, virtual_call_info,
1131                      CHECK_(methodHandle()));
1132   } else {
1133     // static call
1134     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1135   }
1136 
1137   // grab lock, check for deoptimization and potentially patch caller
1138   {
1139     MutexLocker ml_patch(CompiledIC_lock);
1140 
1141     // Now that we are ready to patch if the methodOop was redefined then
1142     // don't update call site and let the caller retry.
1143 
1144     if (!callee_method->is_old()) {
1145 #ifdef ASSERT
1146       // We must not try to patch to jump to an already unloaded method.
1147       if (dest_entry_point != 0) {
1148         assert(CodeCache::find_blob(dest_entry_point) != NULL,
1149                "should not unload nmethod while locked");
1150       }
1151 #endif
1152       if (is_virtual) {
1153         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1154         if (inline_cache->is_clean()) {
1155           inline_cache->set_to_monomorphic(virtual_call_info);
1156         }
1157       } else {
1158         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1159         if (ssc->is_clean()) ssc->set(static_call_info);
1160       }
1161     }
1162 
1163   } // unlock CompiledIC_lock
1164 
1165   return callee_method;
1166 }
1167 
1168 
1169 // Inline caches exist only in compiled code
1170 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1171 #ifdef ASSERT
1172   RegisterMap reg_map(thread, false);
1173   frame stub_frame = thread->last_frame();
1174   assert(stub_frame.is_runtime_frame(), "sanity check");
1175   frame caller_frame = stub_frame.sender(&reg_map);
1176   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1177 #endif /* ASSERT */
1178 
1179   methodHandle callee_method;
1180   JRT_BLOCK
1181     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1182     // Return methodOop through TLS
1183     thread->set_vm_result(callee_method());
1184   JRT_BLOCK_END
1185   // return compiled code entry point after potential safepoints
1186   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1187   return callee_method->verified_code_entry();
1188 JRT_END
1189 
1190 
1191 // Handle call site that has been made non-entrant
1192 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1193   // 6243940 We might end up in here if the callee is deoptimized
1194   // as we race to call it.  We don't want to take a safepoint if
1195   // the caller was interpreted because the caller frame will look
1196   // interpreted to the stack walkers and arguments are now
1197   // "compiled" so it is much better to make this transition
1198   // invisible to the stack walking code. The i2c path will
1199   // place the callee method in the callee_target. It is stashed
1200   // there because if we try and find the callee by normal means a
1201   // safepoint is possible and have trouble gc'ing the compiled args.
1202   RegisterMap reg_map(thread, false);
1203   frame stub_frame = thread->last_frame();
1204   assert(stub_frame.is_runtime_frame(), "sanity check");
1205   frame caller_frame = stub_frame.sender(&reg_map);
1206 
1207   // MethodHandle invokes don't have a CompiledIC and should always
1208   // simply redispatch to the callee_target.
1209   address   sender_pc = caller_frame.pc();
1210   CodeBlob* sender_cb = caller_frame.cb();
1211   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
1212   bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
1213   if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
1214     // If the callee_target is set, then we have come here via an i2c
1215     // adapter.
1216     methodOop callee = thread->callee_target();
1217     if (callee != NULL) {
1218       assert(callee->is_method(), "sanity");
1219       is_mh_invoke_via_adapter = true;
1220     }
1221   }
1222 
1223   if (caller_frame.is_interpreted_frame() ||
1224       caller_frame.is_entry_frame()       ||
1225       is_mh_invoke_via_adapter) {
1226     methodOop callee = thread->callee_target();
1227     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1228     thread->set_vm_result(callee);
1229     thread->set_callee_target(NULL);
1230     return callee->get_c2i_entry();
1231   }
1232 
1233   // Must be compiled to compiled path which is safe to stackwalk
1234   methodHandle callee_method;
1235   JRT_BLOCK
1236     // Force resolving of caller (if we called from compiled frame)
1237     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1238     thread->set_vm_result(callee_method());
1239   JRT_BLOCK_END
1240   // return compiled code entry point after potential safepoints
1241   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1242   return callee_method->verified_code_entry();
1243 JRT_END
1244 
1245 
1246 // resolve a static call and patch code
1247 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1248   methodHandle callee_method;
1249   JRT_BLOCK
1250     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1251     thread->set_vm_result(callee_method());
1252   JRT_BLOCK_END
1253   // return compiled code entry point after potential safepoints
1254   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1255   return callee_method->verified_code_entry();
1256 JRT_END
1257 
1258 
1259 // resolve virtual call and update inline cache to monomorphic
1260 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1261   methodHandle callee_method;
1262   JRT_BLOCK
1263     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1264     thread->set_vm_result(callee_method());
1265   JRT_BLOCK_END
1266   // return compiled code entry point after potential safepoints
1267   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1268   return callee_method->verified_code_entry();
1269 JRT_END
1270 
1271 
1272 // Resolve a virtual call that can be statically bound (e.g., always
1273 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1274 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1275   methodHandle callee_method;
1276   JRT_BLOCK
1277     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1278     thread->set_vm_result(callee_method());
1279   JRT_BLOCK_END
1280   // return compiled code entry point after potential safepoints
1281   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1282   return callee_method->verified_code_entry();
1283 JRT_END
1284 
1285 
1286 
1287 
1288 
1289 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1290   ResourceMark rm(thread);
1291   CallInfo call_info;
1292   Bytecodes::Code bc;
1293 
1294   // receiver is NULL for static calls. An exception is thrown for NULL
1295   // receivers for non-static calls
1296   Handle receiver = find_callee_info(thread, bc, call_info,
1297                                      CHECK_(methodHandle()));
1298   // Compiler1 can produce virtual call sites that can actually be statically bound
1299   // If we fell thru to below we would think that the site was going megamorphic
1300   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1301   // we'd try and do a vtable dispatch however methods that can be statically bound
1302   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1303   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1304   // plain ic_miss) and the site will be converted to an optimized virtual call site
1305   // never to miss again. I don't believe C2 will produce code like this but if it
1306   // did this would still be the correct thing to do for it too, hence no ifdef.
1307   //
1308   if (call_info.resolved_method()->can_be_statically_bound()) {
1309     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1310     if (TraceCallFixup) {
1311       RegisterMap reg_map(thread, false);
1312       frame caller_frame = thread->last_frame().sender(&reg_map);
1313       ResourceMark rm(thread);
1314       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1315       callee_method->print_short_name(tty);
1316       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1317       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1318     }
1319     return callee_method;
1320   }
1321 
1322   methodHandle callee_method = call_info.selected_method();
1323 
1324   bool should_be_mono = false;
1325 
1326 #ifndef PRODUCT
1327   Atomic::inc(&_ic_miss_ctr);
1328 
1329   // Statistics & Tracing
1330   if (TraceCallFixup) {
1331     ResourceMark rm(thread);
1332     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1333     callee_method->print_short_name(tty);
1334     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1335   }
1336 
1337   if (ICMissHistogram) {
1338     MutexLocker m(VMStatistic_lock);
1339     RegisterMap reg_map(thread, false);
1340     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1341     // produce statistics under the lock
1342     trace_ic_miss(f.pc());
1343   }
1344 #endif
1345 
1346   // install an event collector so that when a vtable stub is created the
1347   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1348   // event can't be posted when the stub is created as locks are held
1349   // - instead the event will be deferred until the event collector goes
1350   // out of scope.
1351   JvmtiDynamicCodeEventCollector event_collector;
1352 
1353   // Update inline cache to megamorphic. Skip update if caller has been
1354   // made non-entrant or we are called from interpreted.
1355   { MutexLocker ml_patch (CompiledIC_lock);
1356     RegisterMap reg_map(thread, false);
1357     frame caller_frame = thread->last_frame().sender(&reg_map);
1358     CodeBlob* cb = caller_frame.cb();
1359     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1360       // Not a non-entrant nmethod, so find inline_cache
1361       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1362       bool should_be_mono = false;
1363       if (inline_cache->is_optimized()) {
1364         if (TraceCallFixup) {
1365           ResourceMark rm(thread);
1366           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1367           callee_method->print_short_name(tty);
1368           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1369         }
1370         should_be_mono = true;
1371       } else {
1372         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
1373         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
1374 
1375           if (receiver()->klass() == ic_oop->holder_klass()) {
1376             // This isn't a real miss. We must have seen that compiled code
1377             // is now available and we want the call site converted to a
1378             // monomorphic compiled call site.
1379             // We can't assert for callee_method->code() != NULL because it
1380             // could have been deoptimized in the meantime
1381             if (TraceCallFixup) {
1382               ResourceMark rm(thread);
1383               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1384               callee_method->print_short_name(tty);
1385               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1386             }
1387             should_be_mono = true;
1388           }
1389         }
1390       }
1391 
1392       if (should_be_mono) {
1393 
1394         // We have a path that was monomorphic but was going interpreted
1395         // and now we have (or had) a compiled entry. We correct the IC
1396         // by using a new icBuffer.
1397         CompiledICInfo info;
1398         KlassHandle receiver_klass(THREAD, receiver()->klass());
1399         inline_cache->compute_monomorphic_entry(callee_method,
1400                                                 receiver_klass,
1401                                                 inline_cache->is_optimized(),
1402                                                 false,
1403                                                 info, CHECK_(methodHandle()));
1404         inline_cache->set_to_monomorphic(info);
1405       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1406         // Change to megamorphic
1407         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1408       } else {
1409         // Either clean or megamorphic
1410       }
1411     }
1412   } // Release CompiledIC_lock
1413 
1414   return callee_method;
1415 }
1416 
1417 //
1418 // Resets a call-site in compiled code so it will get resolved again.
1419 // This routines handles both virtual call sites, optimized virtual call
1420 // sites, and static call sites. Typically used to change a call sites
1421 // destination from compiled to interpreted.
1422 //
1423 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1424   ResourceMark rm(thread);
1425   RegisterMap reg_map(thread, false);
1426   frame stub_frame = thread->last_frame();
1427   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1428   frame caller = stub_frame.sender(&reg_map);
1429 
1430   // Do nothing if the frame isn't a live compiled frame.
1431   // nmethod could be deoptimized by the time we get here
1432   // so no update to the caller is needed.
1433 
1434   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1435 
1436     address pc = caller.pc();
1437     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
1438 
1439     // Default call_addr is the location of the "basic" call.
1440     // Determine the address of the call we a reresolving. With
1441     // Inline Caches we will always find a recognizable call.
1442     // With Inline Caches disabled we may or may not find a
1443     // recognizable call. We will always find a call for static
1444     // calls and for optimized virtual calls. For vanilla virtual
1445     // calls it depends on the state of the UseInlineCaches switch.
1446     //
1447     // With Inline Caches disabled we can get here for a virtual call
1448     // for two reasons:
1449     //   1 - calling an abstract method. The vtable for abstract methods
1450     //       will run us thru handle_wrong_method and we will eventually
1451     //       end up in the interpreter to throw the ame.
1452     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1453     //       call and between the time we fetch the entry address and
1454     //       we jump to it the target gets deoptimized. Similar to 1
1455     //       we will wind up in the interprter (thru a c2i with c2).
1456     //
1457     address call_addr = NULL;
1458     {
1459       // Get call instruction under lock because another thread may be
1460       // busy patching it.
1461       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1462       // Location of call instruction
1463       if (NativeCall::is_call_before(pc)) {
1464         NativeCall *ncall = nativeCall_before(pc);
1465         call_addr = ncall->instruction_address();
1466       }
1467     }
1468 
1469     // Check for static or virtual call
1470     bool is_static_call = false;
1471     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1472     // Make sure nmethod doesn't get deoptimized and removed until
1473     // this is done with it.
1474     // CLEANUP - with lazy deopt shouldn't need this lock
1475     nmethodLocker nmlock(caller_nm);
1476 
1477     if (call_addr != NULL) {
1478       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1479       int ret = iter.next(); // Get item
1480       if (ret) {
1481         assert(iter.addr() == call_addr, "must find call");
1482         if (iter.type() == relocInfo::static_call_type) {
1483           is_static_call = true;
1484         } else {
1485           assert(iter.type() == relocInfo::virtual_call_type ||
1486                  iter.type() == relocInfo::opt_virtual_call_type
1487                 , "unexpected relocInfo. type");
1488         }
1489       } else {
1490         assert(!UseInlineCaches, "relocation info. must exist for this address");
1491       }
1492 
1493       // Cleaning the inline cache will force a new resolve. This is more robust
1494       // than directly setting it to the new destination, since resolving of calls
1495       // is always done through the same code path. (experience shows that it
1496       // leads to very hard to track down bugs, if an inline cache gets updated
1497       // to a wrong method). It should not be performance critical, since the
1498       // resolve is only done once.
1499 
1500       MutexLocker ml(CompiledIC_lock);
1501       //
1502       // We do not patch the call site if the nmethod has been made non-entrant
1503       // as it is a waste of time
1504       //
1505       if (caller_nm->is_in_use()) {
1506         if (is_static_call) {
1507           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1508           ssc->set_to_clean();
1509         } else {
1510           // compiled, dispatched call (which used to call an interpreted method)
1511           CompiledIC* inline_cache = CompiledIC_at(call_addr);
1512           inline_cache->set_to_clean();
1513         }
1514       }
1515     }
1516 
1517   }
1518 
1519   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1520 
1521 
1522 #ifndef PRODUCT
1523   Atomic::inc(&_wrong_method_ctr);
1524 
1525   if (TraceCallFixup) {
1526     ResourceMark rm(thread);
1527     tty->print("handle_wrong_method reresolving call to");
1528     callee_method->print_short_name(tty);
1529     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1530   }
1531 #endif
1532 
1533   return callee_method;
1534 }
1535 
1536 // ---------------------------------------------------------------------------
1537 // We are calling the interpreter via a c2i. Normally this would mean that
1538 // we were called by a compiled method. However we could have lost a race
1539 // where we went int -> i2c -> c2i and so the caller could in fact be
1540 // interpreted. If the caller is compiled we attempt to patch the caller
1541 // so he no longer calls into the interpreter.
1542 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
1543   methodOop moop(method);
1544 
1545   address entry_point = moop->from_compiled_entry();
1546 
1547   // It's possible that deoptimization can occur at a call site which hasn't
1548   // been resolved yet, in which case this function will be called from
1549   // an nmethod that has been patched for deopt and we can ignore the
1550   // request for a fixup.
1551   // Also it is possible that we lost a race in that from_compiled_entry
1552   // is now back to the i2c in that case we don't need to patch and if
1553   // we did we'd leap into space because the callsite needs to use
1554   // "to interpreter" stub in order to load up the methodOop. Don't
1555   // ask me how I know this...
1556 
1557   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1558   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1559     return;
1560   }
1561 
1562   // The check above makes sure this is a nmethod.
1563   nmethod* nm = cb->as_nmethod_or_null();
1564   assert(nm, "must be");
1565 
1566   // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
1567   // to implement MethodHandle actions.
1568   if (nm->is_method_handle_return(caller_pc)) {
1569     return;
1570   }
1571 
1572   // There is a benign race here. We could be attempting to patch to a compiled
1573   // entry point at the same time the callee is being deoptimized. If that is
1574   // the case then entry_point may in fact point to a c2i and we'd patch the
1575   // call site with the same old data. clear_code will set code() to NULL
1576   // at the end of it. If we happen to see that NULL then we can skip trying
1577   // to patch. If we hit the window where the callee has a c2i in the
1578   // from_compiled_entry and the NULL isn't present yet then we lose the race
1579   // and patch the code with the same old data. Asi es la vida.
1580 
1581   if (moop->code() == NULL) return;
1582 
1583   if (nm->is_in_use()) {
1584 
1585     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1586     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1587     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
1588       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
1589       //
1590       // bug 6281185. We might get here after resolving a call site to a vanilla
1591       // virtual call. Because the resolvee uses the verified entry it may then
1592       // see compiled code and attempt to patch the site by calling us. This would
1593       // then incorrectly convert the call site to optimized and its downhill from
1594       // there. If you're lucky you'll get the assert in the bugid, if not you've
1595       // just made a call site that could be megamorphic into a monomorphic site
1596       // for the rest of its life! Just another racing bug in the life of
1597       // fixup_callers_callsite ...
1598       //
1599       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1600       iter.next();
1601       assert(iter.has_current(), "must have a reloc at java call site");
1602       relocInfo::relocType typ = iter.reloc()->type();
1603       if ( typ != relocInfo::static_call_type &&
1604            typ != relocInfo::opt_virtual_call_type &&
1605            typ != relocInfo::static_stub_type) {
1606         return;
1607       }
1608       address destination = call->destination();
1609       if (destination != entry_point) {
1610         CodeBlob* callee = CodeCache::find_blob(destination);
1611         // callee == cb seems weird. It means calling interpreter thru stub.
1612         if (callee == cb || callee->is_adapter_blob()) {
1613           // static call or optimized virtual
1614           if (TraceCallFixup) {
1615             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1616             moop->print_short_name(tty);
1617             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1618           }
1619           call->set_destination_mt_safe(entry_point);
1620         } else {
1621           if (TraceCallFixup) {
1622             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1623             moop->print_short_name(tty);
1624             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1625           }
1626           // assert is too strong could also be resolve destinations.
1627           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1628         }
1629       } else {
1630           if (TraceCallFixup) {
1631             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1632             moop->print_short_name(tty);
1633             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1634           }
1635       }
1636     }
1637   }
1638 
1639 IRT_END
1640 
1641 
1642 // same as JVM_Arraycopy, but called directly from compiled code
1643 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1644                                                 oopDesc* dest, jint dest_pos,
1645                                                 jint length,
1646                                                 JavaThread* thread)) {
1647 #ifndef PRODUCT
1648   _slow_array_copy_ctr++;
1649 #endif
1650   // Check if we have null pointers
1651   if (src == NULL || dest == NULL) {
1652     THROW(vmSymbols::java_lang_NullPointerException());
1653   }
1654   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1655   // even though the copy_array API also performs dynamic checks to ensure
1656   // that src and dest are truly arrays (and are conformable).
1657   // The copy_array mechanism is awkward and could be removed, but
1658   // the compilers don't call this function except as a last resort,
1659   // so it probably doesn't matter.
1660   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
1661                                         (arrayOopDesc*)dest, dest_pos,
1662                                         length, thread);
1663 }
1664 JRT_END
1665 
1666 char* SharedRuntime::generate_class_cast_message(
1667     JavaThread* thread, const char* objName) {
1668 
1669   // Get target class name from the checkcast instruction
1670   vframeStream vfst(thread, true);
1671   assert(!vfst.at_end(), "Java frame must exist");
1672   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1673   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
1674     cc.index(), thread));
1675   return generate_class_cast_message(objName, targetKlass->external_name());
1676 }
1677 
1678 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
1679                                                         oopDesc* required,
1680                                                         oopDesc* actual) {
1681   if (TraceMethodHandles) {
1682     tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
1683                   thread, required, actual);
1684   }
1685   assert(EnableMethodHandles, "");
1686   oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
1687   char* message = NULL;
1688   if (singleKlass != NULL) {
1689     const char* objName = "argument or return value";
1690     if (actual != NULL) {
1691       // be flexible about the junk passed in:
1692       klassOop ak = (actual->is_klass()
1693                      ? (klassOop)actual
1694                      : actual->klass());
1695       objName = Klass::cast(ak)->external_name();
1696     }
1697     Klass* targetKlass = Klass::cast(required->is_klass()
1698                                      ? (klassOop)required
1699                                      : java_lang_Class::as_klassOop(required));
1700     message = generate_class_cast_message(objName, targetKlass->external_name());
1701   } else {
1702     // %%% need to get the MethodType string, without messing around too much
1703     // Get a signature from the invoke instruction
1704     const char* mhName = "method handle";
1705     const char* targetType = "the required signature";
1706     vframeStream vfst(thread, true);
1707     if (!vfst.at_end()) {
1708       Bytecode_invoke call(vfst.method(), vfst.bci());
1709       methodHandle target;
1710       {
1711         EXCEPTION_MARK;
1712         target = call.static_target(THREAD);
1713         if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
1714       }
1715       if (target.not_null()
1716           && target->is_method_handle_invoke()
1717           && required == target->method_handle_type()) {
1718         targetType = target->signature()->as_C_string();
1719       }
1720     }
1721     klassOop kignore; int fignore;
1722     methodOop actual_method = MethodHandles::decode_method(actual,
1723                                                           kignore, fignore);
1724     if (actual_method != NULL) {
1725       if (methodOopDesc::is_method_handle_invoke_name(actual_method->name()))
1726         mhName = "$";
1727       else
1728         mhName = actual_method->signature()->as_C_string();
1729       if (mhName[0] == '$')
1730         mhName = actual_method->signature()->as_C_string();
1731     }
1732     message = generate_class_cast_message(mhName, targetType,
1733                                           " cannot be called as ");
1734   }
1735   if (TraceMethodHandles) {
1736     tty->print_cr("WrongMethodType => message=%s", message);
1737   }
1738   return message;
1739 }
1740 
1741 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
1742                                                             oopDesc* required) {
1743   if (required == NULL)  return NULL;
1744   if (required->klass() == SystemDictionary::Class_klass())
1745     return required;
1746   if (required->is_klass())
1747     return Klass::cast(klassOop(required))->java_mirror();
1748   return NULL;
1749 }
1750 
1751 
1752 char* SharedRuntime::generate_class_cast_message(
1753     const char* objName, const char* targetKlassName, const char* desc) {
1754   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1755 
1756   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1757   if (NULL == message) {
1758     // Shouldn't happen, but don't cause even more problems if it does
1759     message = const_cast<char*>(objName);
1760   } else {
1761     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1762   }
1763   return message;
1764 }
1765 
1766 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1767   (void) JavaThread::current()->reguard_stack();
1768 JRT_END
1769 
1770 
1771 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1772 #ifndef PRODUCT
1773 int SharedRuntime::_monitor_enter_ctr=0;
1774 #endif
1775 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1776   oop obj(_obj);
1777 #ifndef PRODUCT
1778   _monitor_enter_ctr++;             // monitor enter slow
1779 #endif
1780   if (PrintBiasedLockingStatistics) {
1781     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1782   }
1783   Handle h_obj(THREAD, obj);
1784   if (UseBiasedLocking) {
1785     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1786     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1787   } else {
1788     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1789   }
1790   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1791 JRT_END
1792 
1793 #ifndef PRODUCT
1794 int SharedRuntime::_monitor_exit_ctr=0;
1795 #endif
1796 // Handles the uncommon cases of monitor unlocking in compiled code
1797 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1798    oop obj(_obj);
1799 #ifndef PRODUCT
1800   _monitor_exit_ctr++;              // monitor exit slow
1801 #endif
1802   Thread* THREAD = JavaThread::current();
1803   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1804   // testing was unable to ever fire the assert that guarded it so I have removed it.
1805   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1806 #undef MIGHT_HAVE_PENDING
1807 #ifdef MIGHT_HAVE_PENDING
1808   // Save and restore any pending_exception around the exception mark.
1809   // While the slow_exit must not throw an exception, we could come into
1810   // this routine with one set.
1811   oop pending_excep = NULL;
1812   const char* pending_file;
1813   int pending_line;
1814   if (HAS_PENDING_EXCEPTION) {
1815     pending_excep = PENDING_EXCEPTION;
1816     pending_file  = THREAD->exception_file();
1817     pending_line  = THREAD->exception_line();
1818     CLEAR_PENDING_EXCEPTION;
1819   }
1820 #endif /* MIGHT_HAVE_PENDING */
1821 
1822   {
1823     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1824     EXCEPTION_MARK;
1825     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1826   }
1827 
1828 #ifdef MIGHT_HAVE_PENDING
1829   if (pending_excep != NULL) {
1830     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1831   }
1832 #endif /* MIGHT_HAVE_PENDING */
1833 JRT_END
1834 
1835 #ifndef PRODUCT
1836 
1837 void SharedRuntime::print_statistics() {
1838   ttyLocker ttyl;
1839   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1840 
1841   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1842   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1843   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1844 
1845   SharedRuntime::print_ic_miss_histogram();
1846 
1847   if (CountRemovableExceptions) {
1848     if (_nof_removable_exceptions > 0) {
1849       Unimplemented(); // this counter is not yet incremented
1850       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1851     }
1852   }
1853 
1854   // Dump the JRT_ENTRY counters
1855   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1856   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1857   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1858   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1859   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1860   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1861   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1862 
1863   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1864   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1865   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1866   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1867   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1868 
1869   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1870   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1871   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1872   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1873   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1874   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1875   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1876   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1877   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1878   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1879   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1880   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1881   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1882   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1883   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1884   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1885 
1886   AdapterHandlerLibrary::print_statistics();
1887 
1888   if (xtty != NULL)  xtty->tail("statistics");
1889 }
1890 
1891 inline double percent(int x, int y) {
1892   return 100.0 * x / MAX2(y, 1);
1893 }
1894 
1895 class MethodArityHistogram {
1896  public:
1897   enum { MAX_ARITY = 256 };
1898  private:
1899   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1900   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1901   static int _max_arity;                      // max. arity seen
1902   static int _max_size;                       // max. arg size seen
1903 
1904   static void add_method_to_histogram(nmethod* nm) {
1905     methodOop m = nm->method();
1906     ArgumentCount args(m->signature());
1907     int arity   = args.size() + (m->is_static() ? 0 : 1);
1908     int argsize = m->size_of_parameters();
1909     arity   = MIN2(arity, MAX_ARITY-1);
1910     argsize = MIN2(argsize, MAX_ARITY-1);
1911     int count = nm->method()->compiled_invocation_count();
1912     _arity_histogram[arity]  += count;
1913     _size_histogram[argsize] += count;
1914     _max_arity = MAX2(_max_arity, arity);
1915     _max_size  = MAX2(_max_size, argsize);
1916   }
1917 
1918   void print_histogram_helper(int n, int* histo, const char* name) {
1919     const int N = MIN2(5, n);
1920     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1921     double sum = 0;
1922     double weighted_sum = 0;
1923     int i;
1924     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1925     double rest = sum;
1926     double percent = sum / 100;
1927     for (i = 0; i <= N; i++) {
1928       rest -= histo[i];
1929       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1930     }
1931     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1932     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1933   }
1934 
1935   void print_histogram() {
1936     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1937     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1938     tty->print_cr("\nSame for parameter size (in words):");
1939     print_histogram_helper(_max_size, _size_histogram, "size");
1940     tty->cr();
1941   }
1942 
1943  public:
1944   MethodArityHistogram() {
1945     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1946     _max_arity = _max_size = 0;
1947     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
1948     CodeCache::nmethods_do(add_method_to_histogram);
1949     print_histogram();
1950   }
1951 };
1952 
1953 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
1954 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
1955 int MethodArityHistogram::_max_arity;
1956 int MethodArityHistogram::_max_size;
1957 
1958 void SharedRuntime::print_call_statistics(int comp_total) {
1959   tty->print_cr("Calls from compiled code:");
1960   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
1961   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
1962   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
1963   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
1964   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
1965   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
1966   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
1967   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
1968   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
1969   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
1970   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
1971   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
1972   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
1973   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
1974   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
1975   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
1976   tty->cr();
1977   tty->print_cr("Note 1: counter updates are not MT-safe.");
1978   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
1979   tty->print_cr("        %% in nested categories are relative to their category");
1980   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
1981   tty->cr();
1982 
1983   MethodArityHistogram h;
1984 }
1985 #endif
1986 
1987 
1988 // A simple wrapper class around the calling convention information
1989 // that allows sharing of adapters for the same calling convention.
1990 class AdapterFingerPrint : public CHeapObj {
1991  private:
1992   union {
1993     int  _compact[3];
1994     int* _fingerprint;
1995   } _value;
1996   int _length; // A negative length indicates the fingerprint is in the compact form,
1997                // Otherwise _value._fingerprint is the array.
1998 
1999   // Remap BasicTypes that are handled equivalently by the adapters.
2000   // These are correct for the current system but someday it might be
2001   // necessary to make this mapping platform dependent.
2002   static BasicType adapter_encoding(BasicType in) {
2003     assert((~0xf & in) == 0, "must fit in 4 bits");
2004     switch(in) {
2005       case T_BOOLEAN:
2006       case T_BYTE:
2007       case T_SHORT:
2008       case T_CHAR:
2009         // There are all promoted to T_INT in the calling convention
2010         return T_INT;
2011 
2012       case T_OBJECT:
2013       case T_ARRAY:
2014 #ifdef _LP64
2015         return T_LONG;
2016 #else
2017         return T_INT;
2018 #endif
2019 
2020       case T_INT:
2021       case T_LONG:
2022       case T_FLOAT:
2023       case T_DOUBLE:
2024       case T_VOID:
2025         return in;
2026 
2027       default:
2028         ShouldNotReachHere();
2029         return T_CONFLICT;
2030     }
2031   }
2032 
2033  public:
2034   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2035     // The fingerprint is based on the BasicType signature encoded
2036     // into an array of ints with four entries per int.
2037     int* ptr;
2038     int len = (total_args_passed + 3) >> 2;
2039     if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
2040       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2041       // Storing the signature encoded as signed chars hits about 98%
2042       // of the time.
2043       _length = -len;
2044       ptr = _value._compact;
2045     } else {
2046       _length = len;
2047       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
2048       ptr = _value._fingerprint;
2049     }
2050 
2051     // Now pack the BasicTypes with 4 per int
2052     int sig_index = 0;
2053     for (int index = 0; index < len; index++) {
2054       int value = 0;
2055       for (int byte = 0; byte < 4; byte++) {
2056         if (sig_index < total_args_passed) {
2057           value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
2058         }
2059       }
2060       ptr[index] = value;
2061     }
2062   }
2063 
2064   ~AdapterFingerPrint() {
2065     if (_length > 0) {
2066       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2067     }
2068   }
2069 
2070   int value(int index) {
2071     if (_length < 0) {
2072       return _value._compact[index];
2073     }
2074     return _value._fingerprint[index];
2075   }
2076   int length() {
2077     if (_length < 0) return -_length;
2078     return _length;
2079   }
2080 
2081   bool is_compact() {
2082     return _length <= 0;
2083   }
2084 
2085   unsigned int compute_hash() {
2086     int hash = 0;
2087     for (int i = 0; i < length(); i++) {
2088       int v = value(i);
2089       hash = (hash << 8) ^ v ^ (hash >> 5);
2090     }
2091     return (unsigned int)hash;
2092   }
2093 
2094   const char* as_string() {
2095     stringStream st;
2096     for (int i = 0; i < length(); i++) {
2097       st.print(PTR_FORMAT, value(i));
2098     }
2099     return st.as_string();
2100   }
2101 
2102   bool equals(AdapterFingerPrint* other) {
2103     if (other->_length != _length) {
2104       return false;
2105     }
2106     if (_length < 0) {
2107       return _value._compact[0] == other->_value._compact[0] &&
2108              _value._compact[1] == other->_value._compact[1] &&
2109              _value._compact[2] == other->_value._compact[2];
2110     } else {
2111       for (int i = 0; i < _length; i++) {
2112         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2113           return false;
2114         }
2115       }
2116     }
2117     return true;
2118   }
2119 };
2120 
2121 
2122 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2123 class AdapterHandlerTable : public BasicHashtable {
2124   friend class AdapterHandlerTableIterator;
2125 
2126  private:
2127 
2128 #ifndef PRODUCT
2129   static int _lookups; // number of calls to lookup
2130   static int _buckets; // number of buckets checked
2131   static int _equals;  // number of buckets checked with matching hash
2132   static int _hits;    // number of successful lookups
2133   static int _compact; // number of equals calls with compact signature
2134 #endif
2135 
2136   AdapterHandlerEntry* bucket(int i) {
2137     return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
2138   }
2139 
2140  public:
2141   AdapterHandlerTable()
2142     : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
2143 
2144   // Create a new entry suitable for insertion in the table
2145   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2146     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
2147     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2148     return entry;
2149   }
2150 
2151   // Insert an entry into the table
2152   void add(AdapterHandlerEntry* entry) {
2153     int index = hash_to_index(entry->hash());
2154     add_entry(index, entry);
2155   }
2156 
2157   void free_entry(AdapterHandlerEntry* entry) {
2158     entry->deallocate();
2159     BasicHashtable::free_entry(entry);
2160   }
2161 
2162   // Find a entry with the same fingerprint if it exists
2163   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2164     NOT_PRODUCT(_lookups++);
2165     AdapterFingerPrint fp(total_args_passed, sig_bt);
2166     unsigned int hash = fp.compute_hash();
2167     int index = hash_to_index(hash);
2168     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2169       NOT_PRODUCT(_buckets++);
2170       if (e->hash() == hash) {
2171         NOT_PRODUCT(_equals++);
2172         if (fp.equals(e->fingerprint())) {
2173 #ifndef PRODUCT
2174           if (fp.is_compact()) _compact++;
2175           _hits++;
2176 #endif
2177           return e;
2178         }
2179       }
2180     }
2181     return NULL;
2182   }
2183 
2184 #ifndef PRODUCT
2185   void print_statistics() {
2186     ResourceMark rm;
2187     int longest = 0;
2188     int empty = 0;
2189     int total = 0;
2190     int nonempty = 0;
2191     for (int index = 0; index < table_size(); index++) {
2192       int count = 0;
2193       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2194         count++;
2195       }
2196       if (count != 0) nonempty++;
2197       if (count == 0) empty++;
2198       if (count > longest) longest = count;
2199       total += count;
2200     }
2201     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2202                   empty, longest, total, total / (double)nonempty);
2203     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2204                   _lookups, _buckets, _equals, _hits, _compact);
2205   }
2206 #endif
2207 };
2208 
2209 
2210 #ifndef PRODUCT
2211 
2212 int AdapterHandlerTable::_lookups;
2213 int AdapterHandlerTable::_buckets;
2214 int AdapterHandlerTable::_equals;
2215 int AdapterHandlerTable::_hits;
2216 int AdapterHandlerTable::_compact;
2217 
2218 #endif
2219 
2220 class AdapterHandlerTableIterator : public StackObj {
2221  private:
2222   AdapterHandlerTable* _table;
2223   int _index;
2224   AdapterHandlerEntry* _current;
2225 
2226   void scan() {
2227     while (_index < _table->table_size()) {
2228       AdapterHandlerEntry* a = _table->bucket(_index);
2229       _index++;
2230       if (a != NULL) {
2231         _current = a;
2232         return;
2233       }
2234     }
2235   }
2236 
2237  public:
2238   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2239     scan();
2240   }
2241   bool has_next() {
2242     return _current != NULL;
2243   }
2244   AdapterHandlerEntry* next() {
2245     if (_current != NULL) {
2246       AdapterHandlerEntry* result = _current;
2247       _current = _current->next();
2248       if (_current == NULL) scan();
2249       return result;
2250     } else {
2251       return NULL;
2252     }
2253   }
2254 };
2255 
2256 
2257 // ---------------------------------------------------------------------------
2258 // Implementation of AdapterHandlerLibrary
2259 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2260 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2261 const int AdapterHandlerLibrary_size = 16*K;
2262 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2263 
2264 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2265   // Should be called only when AdapterHandlerLibrary_lock is active.
2266   if (_buffer == NULL) // Initialize lazily
2267       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2268   return _buffer;
2269 }
2270 
2271 void AdapterHandlerLibrary::initialize() {
2272   if (_adapters != NULL) return;
2273   _adapters = new AdapterHandlerTable();
2274 
2275   // Create a special handler for abstract methods.  Abstract methods
2276   // are never compiled so an i2c entry is somewhat meaningless, but
2277   // fill it in with something appropriate just in case.  Pass handle
2278   // wrong method for the c2i transitions.
2279   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2280   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2281                                                               StubRoutines::throw_AbstractMethodError_entry(),
2282                                                               wrong_method, wrong_method);
2283 }
2284 
2285 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2286                                                       address i2c_entry,
2287                                                       address c2i_entry,
2288                                                       address c2i_unverified_entry) {
2289   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2290 }
2291 
2292 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2293   // Use customized signature handler.  Need to lock around updates to
2294   // the AdapterHandlerTable (it is not safe for concurrent readers
2295   // and a single writer: this could be fixed if it becomes a
2296   // problem).
2297 
2298   // Get the address of the ic_miss handlers before we grab the
2299   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2300   // was caused by the initialization of the stubs happening
2301   // while we held the lock and then notifying jvmti while
2302   // holding it. This just forces the initialization to be a little
2303   // earlier.
2304   address ic_miss = SharedRuntime::get_ic_miss_stub();
2305   assert(ic_miss != NULL, "must have handler");
2306 
2307   ResourceMark rm;
2308 
2309   NOT_PRODUCT(int insts_size);
2310   AdapterBlob* B = NULL;
2311   AdapterHandlerEntry* entry = NULL;
2312   AdapterFingerPrint* fingerprint = NULL;
2313   {
2314     MutexLocker mu(AdapterHandlerLibrary_lock);
2315     // make sure data structure is initialized
2316     initialize();
2317 
2318     if (method->is_abstract()) {
2319       return _abstract_method_handler;
2320     }
2321 
2322     // Fill in the signature array, for the calling-convention call.
2323     int total_args_passed = method->size_of_parameters(); // All args on stack
2324 
2325     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2326     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2327     int i = 0;
2328     if (!method->is_static())  // Pass in receiver first
2329       sig_bt[i++] = T_OBJECT;
2330     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2331       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2332       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2333         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2334     }
2335     assert(i == total_args_passed, "");
2336 
2337     // Lookup method signature's fingerprint
2338     entry = _adapters->lookup(total_args_passed, sig_bt);
2339 
2340 #ifdef ASSERT
2341     AdapterHandlerEntry* shared_entry = NULL;
2342     if (VerifyAdapterSharing && entry != NULL) {
2343       shared_entry = entry;
2344       entry = NULL;
2345     }
2346 #endif
2347 
2348     if (entry != NULL) {
2349       return entry;
2350     }
2351 
2352     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2353     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2354 
2355     // Make a C heap allocated version of the fingerprint to store in the adapter
2356     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2357 
2358     // Create I2C & C2I handlers
2359 
2360     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2361     if (buf != NULL) {
2362       CodeBuffer buffer(buf);
2363       short buffer_locs[20];
2364       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2365                                              sizeof(buffer_locs)/sizeof(relocInfo));
2366       MacroAssembler _masm(&buffer);
2367 
2368       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2369                                                      total_args_passed,
2370                                                      comp_args_on_stack,
2371                                                      sig_bt,
2372                                                      regs,
2373                                                      fingerprint);
2374 
2375 #ifdef ASSERT
2376       if (VerifyAdapterSharing) {
2377         if (shared_entry != NULL) {
2378           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
2379                  "code must match");
2380           // Release the one just created and return the original
2381           _adapters->free_entry(entry);
2382           return shared_entry;
2383         } else  {
2384           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
2385         }
2386       }
2387 #endif
2388 
2389       B = AdapterBlob::create(&buffer);
2390       NOT_PRODUCT(insts_size = buffer.insts_size());
2391     }
2392     if (B == NULL) {
2393       // CodeCache is full, disable compilation
2394       // Ought to log this but compile log is only per compile thread
2395       // and we're some non descript Java thread.
2396       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2397       CompileBroker::handle_full_code_cache();
2398       return NULL; // Out of CodeCache space
2399     }
2400     entry->relocate(B->content_begin());
2401 #ifndef PRODUCT
2402     // debugging suppport
2403     if (PrintAdapterHandlers) {
2404       tty->cr();
2405       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
2406                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2407                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
2408       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2409       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
2410     }
2411 #endif
2412 
2413     _adapters->add(entry);
2414   }
2415   // Outside of the lock
2416   if (B != NULL) {
2417     char blob_id[256];
2418     jio_snprintf(blob_id,
2419                  sizeof(blob_id),
2420                  "%s(%s)@" PTR_FORMAT,
2421                  B->name(),
2422                  fingerprint->as_string(),
2423                  B->content_begin());
2424     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
2425 
2426     if (JvmtiExport::should_post_dynamic_code_generated()) {
2427       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
2428     }
2429   }
2430   return entry;
2431 }
2432 
2433 void AdapterHandlerEntry::relocate(address new_base) {
2434     ptrdiff_t delta = new_base - _i2c_entry;
2435     _i2c_entry += delta;
2436     _c2i_entry += delta;
2437     _c2i_unverified_entry += delta;
2438 }
2439 
2440 
2441 void AdapterHandlerEntry::deallocate() {
2442   delete _fingerprint;
2443 #ifdef ASSERT
2444   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2445   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
2446 #endif
2447 }
2448 
2449 
2450 #ifdef ASSERT
2451 // Capture the code before relocation so that it can be compared
2452 // against other versions.  If the code is captured after relocation
2453 // then relative instructions won't be equivalent.
2454 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2455   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
2456   _code_length = length;
2457   memcpy(_saved_code, buffer, length);
2458   _total_args_passed = total_args_passed;
2459   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
2460   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2461 }
2462 
2463 
2464 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2465   if (length != _code_length) {
2466     return false;
2467   }
2468   for (int i = 0; i < length; i++) {
2469     if (buffer[i] != _saved_code[i]) {
2470       return false;
2471     }
2472   }
2473   return true;
2474 }
2475 #endif
2476 
2477 
2478 // Create a native wrapper for this native method.  The wrapper converts the
2479 // java compiled calling convention to the native convention, handlizes
2480 // arguments, and transitions to native.  On return from the native we transition
2481 // back to java blocking if a safepoint is in progress.
2482 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
2483   ResourceMark rm;
2484   nmethod* nm = NULL;
2485 
2486   assert(method->has_native_function(), "must have something valid to call!");
2487 
2488   {
2489     // perform the work while holding the lock, but perform any printing outside the lock
2490     MutexLocker mu(AdapterHandlerLibrary_lock);
2491     // See if somebody beat us to it
2492     nm = method->code();
2493     if (nm) {
2494       return nm;
2495     }
2496 
2497     ResourceMark rm;
2498 
2499     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2500     if (buf != NULL) {
2501       CodeBuffer buffer(buf);
2502       double locs_buf[20];
2503       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2504       MacroAssembler _masm(&buffer);
2505 
2506       // Fill in the signature array, for the calling-convention call.
2507       int total_args_passed = method->size_of_parameters();
2508 
2509       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
2510       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
2511       int i=0;
2512       if( !method->is_static() )  // Pass in receiver first
2513         sig_bt[i++] = T_OBJECT;
2514       SignatureStream ss(method->signature());
2515       for( ; !ss.at_return_type(); ss.next()) {
2516         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2517         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2518           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2519       }
2520       assert( i==total_args_passed, "" );
2521       BasicType ret_type = ss.type();
2522 
2523       // Now get the compiled-Java layout as input arguments
2524       int comp_args_on_stack;
2525       comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2526 
2527       // Generate the compiled-to-native wrapper code
2528       nm = SharedRuntime::generate_native_wrapper(&_masm,
2529                                                   method,
2530                                                   compile_id,
2531                                                   total_args_passed,
2532                                                   comp_args_on_stack,
2533                                                   sig_bt,regs,
2534                                                   ret_type);
2535     }
2536   }
2537 
2538   // Must unlock before calling set_code
2539 
2540   // Install the generated code.
2541   if (nm != NULL) {
2542     if (PrintCompilation) {
2543       ttyLocker ttyl;
2544       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2545     }
2546     method->set_code(method, nm);
2547     nm->post_compiled_method_load_event();
2548   } else {
2549     // CodeCache is full, disable compilation
2550     CompileBroker::handle_full_code_cache();
2551   }
2552   return nm;
2553 }
2554 
2555 #ifdef HAVE_DTRACE_H
2556 // Create a dtrace nmethod for this method.  The wrapper converts the
2557 // java compiled calling convention to the native convention, makes a dummy call
2558 // (actually nops for the size of the call instruction, which become a trap if
2559 // probe is enabled). The returns to the caller. Since this all looks like a
2560 // leaf no thread transition is needed.
2561 
2562 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2563   ResourceMark rm;
2564   nmethod* nm = NULL;
2565 
2566   if (PrintCompilation) {
2567     ttyLocker ttyl;
2568     tty->print("---   n%s  ");
2569     method->print_short_name(tty);
2570     if (method->is_static()) {
2571       tty->print(" (static)");
2572     }
2573     tty->cr();
2574   }
2575 
2576   {
2577     // perform the work while holding the lock, but perform any printing
2578     // outside the lock
2579     MutexLocker mu(AdapterHandlerLibrary_lock);
2580     // See if somebody beat us to it
2581     nm = method->code();
2582     if (nm) {
2583       return nm;
2584     }
2585 
2586     ResourceMark rm;
2587 
2588     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2589     if (buf != NULL) {
2590       CodeBuffer buffer(buf);
2591       // Need a few relocation entries
2592       double locs_buf[20];
2593       buffer.insts()->initialize_shared_locs(
2594         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2595       MacroAssembler _masm(&buffer);
2596 
2597       // Generate the compiled-to-native wrapper code
2598       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2599     }
2600   }
2601   return nm;
2602 }
2603 
2604 // the dtrace method needs to convert java lang string to utf8 string.
2605 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2606   typeArrayOop jlsValue  = java_lang_String::value(src);
2607   int          jlsOffset = java_lang_String::offset(src);
2608   int          jlsLen    = java_lang_String::length(src);
2609   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2610                                            jlsValue->char_at_addr(jlsOffset);
2611   assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2612   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2613 }
2614 #endif // ndef HAVE_DTRACE_H
2615 
2616 // -------------------------------------------------------------------------
2617 // Java-Java calling convention
2618 // (what you use when Java calls Java)
2619 
2620 //------------------------------name_for_receiver----------------------------------
2621 // For a given signature, return the VMReg for parameter 0.
2622 VMReg SharedRuntime::name_for_receiver() {
2623   VMRegPair regs;
2624   BasicType sig_bt = T_OBJECT;
2625   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2626   // Return argument 0 register.  In the LP64 build pointers
2627   // take 2 registers, but the VM wants only the 'main' name.
2628   return regs.first();
2629 }
2630 
2631 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
2632   // This method is returning a data structure allocating as a
2633   // ResourceObject, so do not put any ResourceMarks in here.
2634   char *s = sig->as_C_string();
2635   int len = (int)strlen(s);
2636   *s++; len--;                  // Skip opening paren
2637   char *t = s+len;
2638   while( *(--t) != ')' ) ;      // Find close paren
2639 
2640   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2641   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2642   int cnt = 0;
2643   if (has_receiver) {
2644     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2645   }
2646 
2647   while( s < t ) {
2648     switch( *s++ ) {            // Switch on signature character
2649     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2650     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2651     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2652     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2653     case 'I': sig_bt[cnt++] = T_INT;     break;
2654     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2655     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2656     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2657     case 'V': sig_bt[cnt++] = T_VOID;    break;
2658     case 'L':                   // Oop
2659       while( *s++ != ';'  ) ;   // Skip signature
2660       sig_bt[cnt++] = T_OBJECT;
2661       break;
2662     case '[': {                 // Array
2663       do {                      // Skip optional size
2664         while( *s >= '0' && *s <= '9' ) s++;
2665       } while( *s++ == '[' );   // Nested arrays?
2666       // Skip element type
2667       if( s[-1] == 'L' )
2668         while( *s++ != ';'  ) ; // Skip signature
2669       sig_bt[cnt++] = T_ARRAY;
2670       break;
2671     }
2672     default : ShouldNotReachHere();
2673     }
2674   }
2675   assert( cnt < 256, "grow table size" );
2676 
2677   int comp_args_on_stack;
2678   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2679 
2680   // the calling convention doesn't count out_preserve_stack_slots so
2681   // we must add that in to get "true" stack offsets.
2682 
2683   if (comp_args_on_stack) {
2684     for (int i = 0; i < cnt; i++) {
2685       VMReg reg1 = regs[i].first();
2686       if( reg1->is_stack()) {
2687         // Yuck
2688         reg1 = reg1->bias(out_preserve_stack_slots());
2689       }
2690       VMReg reg2 = regs[i].second();
2691       if( reg2->is_stack()) {
2692         // Yuck
2693         reg2 = reg2->bias(out_preserve_stack_slots());
2694       }
2695       regs[i].set_pair(reg2, reg1);
2696     }
2697   }
2698 
2699   // results
2700   *arg_size = cnt;
2701   return regs;
2702 }
2703 
2704 // OSR Migration Code
2705 //
2706 // This code is used convert interpreter frames into compiled frames.  It is
2707 // called from very start of a compiled OSR nmethod.  A temp array is
2708 // allocated to hold the interesting bits of the interpreter frame.  All
2709 // active locks are inflated to allow them to move.  The displaced headers and
2710 // active interpeter locals are copied into the temp buffer.  Then we return
2711 // back to the compiled code.  The compiled code then pops the current
2712 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2713 // copies the interpreter locals and displaced headers where it wants.
2714 // Finally it calls back to free the temp buffer.
2715 //
2716 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2717 
2718 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2719 
2720 #ifdef IA64
2721   ShouldNotReachHere(); // NYI
2722 #endif /* IA64 */
2723 
2724   //
2725   // This code is dependent on the memory layout of the interpreter local
2726   // array and the monitors. On all of our platforms the layout is identical
2727   // so this code is shared. If some platform lays the their arrays out
2728   // differently then this code could move to platform specific code or
2729   // the code here could be modified to copy items one at a time using
2730   // frame accessor methods and be platform independent.
2731 
2732   frame fr = thread->last_frame();
2733   assert( fr.is_interpreted_frame(), "" );
2734   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2735 
2736   // Figure out how many monitors are active.
2737   int active_monitor_count = 0;
2738   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2739        kptr < fr.interpreter_frame_monitor_begin();
2740        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2741     if( kptr->obj() != NULL ) active_monitor_count++;
2742   }
2743 
2744   // QQQ we could place number of active monitors in the array so that compiled code
2745   // could double check it.
2746 
2747   methodOop moop = fr.interpreter_frame_method();
2748   int max_locals = moop->max_locals();
2749   // Allocate temp buffer, 1 word per local & 2 per active monitor
2750   int buf_size_words = max_locals + active_monitor_count*2;
2751   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
2752 
2753   // Copy the locals.  Order is preserved so that loading of longs works.
2754   // Since there's no GC I can copy the oops blindly.
2755   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2756   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2757                        (HeapWord*)&buf[0],
2758                        max_locals);
2759 
2760   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2761   int i = max_locals;
2762   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2763        kptr2 < fr.interpreter_frame_monitor_begin();
2764        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2765     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2766       BasicLock *lock = kptr2->lock();
2767       // Inflate so the displaced header becomes position-independent
2768       if (lock->displaced_header()->is_unlocked())
2769         ObjectSynchronizer::inflate_helper(kptr2->obj());
2770       // Now the displaced header is free to move
2771       buf[i++] = (intptr_t)lock->displaced_header();
2772       buf[i++] = (intptr_t)kptr2->obj();
2773     }
2774   }
2775   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2776 
2777   return buf;
2778 JRT_END
2779 
2780 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2781   FREE_C_HEAP_ARRAY(intptr_t,buf);
2782 JRT_END
2783 
2784 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2785   AdapterHandlerTableIterator iter(_adapters);
2786   while (iter.has_next()) {
2787     AdapterHandlerEntry* a = iter.next();
2788     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2789   }
2790   return false;
2791 }
2792 
2793 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2794   AdapterHandlerTableIterator iter(_adapters);
2795   while (iter.has_next()) {
2796     AdapterHandlerEntry* a = iter.next();
2797     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
2798       st->print("Adapter for signature: ");
2799       st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2800                    a->fingerprint()->as_string(),
2801                    a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
2802 
2803       return;
2804     }
2805   }
2806   assert(false, "Should have found handler");
2807 }
2808 
2809 #ifndef PRODUCT
2810 
2811 void AdapterHandlerLibrary::print_statistics() {
2812   _adapters->print_statistics();
2813 }
2814 
2815 #endif /* PRODUCT */