1 /*
   2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "interpreter/interpreterRuntime.hpp"
  28 #include "interpreter/templateTable.hpp"
  29 #include "memory/universe.inline.hpp"
  30 #include "oops/methodDataOop.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "prims/methodHandles.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/stubRoutines.hpp"
  36 #include "runtime/synchronizer.hpp"
  37 
  38 #ifndef CC_INTERP
  39 
  40 #define __ _masm->
  41 
  42 // Platform-dependent initialization
  43 
  44 void TemplateTable::pd_initialize() {
  45   // No amd64 specific initialization
  46 }
  47 
  48 // Address computation: local variables
  49 
  50 static inline Address iaddress(int n) {
  51   return Address(r14, Interpreter::local_offset_in_bytes(n));
  52 }
  53 
  54 static inline Address laddress(int n) {
  55   return iaddress(n + 1);
  56 }
  57 
  58 static inline Address faddress(int n) {
  59   return iaddress(n);
  60 }
  61 
  62 static inline Address daddress(int n) {
  63   return laddress(n);
  64 }
  65 
  66 static inline Address aaddress(int n) {
  67   return iaddress(n);
  68 }
  69 
  70 static inline Address iaddress(Register r) {
  71   return Address(r14, r, Address::times_8);
  72 }
  73 
  74 static inline Address laddress(Register r) {
  75   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
  76 }
  77 
  78 static inline Address faddress(Register r) {
  79   return iaddress(r);
  80 }
  81 
  82 static inline Address daddress(Register r) {
  83   return laddress(r);
  84 }
  85 
  86 static inline Address aaddress(Register r) {
  87   return iaddress(r);
  88 }
  89 
  90 static inline Address at_rsp() {
  91   return Address(rsp, 0);
  92 }
  93 
  94 // At top of Java expression stack which may be different than esp().  It
  95 // isn't for category 1 objects.
  96 static inline Address at_tos   () {
  97   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
  98 }
  99 
 100 static inline Address at_tos_p1() {
 101   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
 102 }
 103 
 104 static inline Address at_tos_p2() {
 105   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
 106 }
 107 
 108 static inline Address at_tos_p3() {
 109   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
 110 }
 111 
 112 // Condition conversion
 113 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 114   switch (cc) {
 115   case TemplateTable::equal        : return Assembler::notEqual;
 116   case TemplateTable::not_equal    : return Assembler::equal;
 117   case TemplateTable::less         : return Assembler::greaterEqual;
 118   case TemplateTable::less_equal   : return Assembler::greater;
 119   case TemplateTable::greater      : return Assembler::lessEqual;
 120   case TemplateTable::greater_equal: return Assembler::less;
 121   }
 122   ShouldNotReachHere();
 123   return Assembler::zero;
 124 }
 125 
 126 
 127 // Miscelaneous helper routines
 128 // Store an oop (or NULL) at the address described by obj.
 129 // If val == noreg this means store a NULL
 130 
 131 static void do_oop_store(InterpreterMacroAssembler* _masm,
 132                          Address obj,
 133                          Register val,
 134                          BarrierSet::Name barrier,
 135                          bool precise) {
 136   assert(val == noreg || val == rax, "parameter is just for looks");
 137   switch (barrier) {
 138 #ifndef SERIALGC
 139     case BarrierSet::G1SATBCT:
 140     case BarrierSet::G1SATBCTLogging:
 141       {
 142         // flatten object address if needed
 143         if (obj.index() == noreg && obj.disp() == 0) {
 144           if (obj.base() != rdx) {
 145             __ movq(rdx, obj.base());
 146           }
 147         } else {
 148           __ leaq(rdx, obj);
 149         }
 150         __ g1_write_barrier_pre(rdx /* obj */,
 151                                 rbx /* pre_val */,
 152                                 r15_thread /* thread */,
 153                                 r8  /* tmp */,
 154                                 val != noreg /* tosca_live */,
 155                                 false /* expand_call */);
 156         if (val == noreg) {
 157           __ store_heap_oop_null(Address(rdx, 0));
 158         } else {
 159           __ store_heap_oop(Address(rdx, 0), val);
 160           __ g1_write_barrier_post(rdx /* store_adr */,
 161                                    val /* new_val */,
 162                                    r15_thread /* thread */,
 163                                    r8 /* tmp */,
 164                                    rbx /* tmp2 */);
 165         }
 166 
 167       }
 168       break;
 169 #endif // SERIALGC
 170     case BarrierSet::CardTableModRef:
 171     case BarrierSet::CardTableExtension:
 172       {
 173         if (val == noreg) {
 174           __ store_heap_oop_null(obj);
 175         } else {
 176           __ store_heap_oop(obj, val);
 177           // flatten object address if needed
 178           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
 179             __ store_check(obj.base());
 180           } else {
 181             __ leaq(rdx, obj);
 182             __ store_check(rdx);
 183           }
 184         }
 185       }
 186       break;
 187     case BarrierSet::ModRef:
 188     case BarrierSet::Other:
 189       if (val == noreg) {
 190         __ store_heap_oop_null(obj);
 191       } else {
 192         __ store_heap_oop(obj, val);
 193       }
 194       break;
 195     default      :
 196       ShouldNotReachHere();
 197 
 198   }
 199 }
 200 
 201 Address TemplateTable::at_bcp(int offset) {
 202   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 203   return Address(r13, offset);
 204 }
 205 
 206 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
 207                                    Register scratch,
 208                                    bool load_bc_into_scratch/*=true*/) {
 209   if (!RewriteBytecodes) {
 210     return;
 211   }
 212   // the pair bytecodes have already done the load.
 213   if (load_bc_into_scratch) {
 214     __ movl(bc, bytecode);
 215   }
 216   Label patch_done;
 217   if (JvmtiExport::can_post_breakpoint()) {
 218     Label fast_patch;
 219     // if a breakpoint is present we can't rewrite the stream directly
 220     __ movzbl(scratch, at_bcp(0));
 221     __ cmpl(scratch, Bytecodes::_breakpoint);
 222     __ jcc(Assembler::notEqual, fast_patch);
 223     __ get_method(scratch);
 224     // Let breakpoint table handling rewrite to quicker bytecode
 225     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, r13, bc);
 226 #ifndef ASSERT
 227     __ jmpb(patch_done);
 228 #else
 229     __ jmp(patch_done);
 230 #endif
 231     __ bind(fast_patch);
 232   }
 233 #ifdef ASSERT
 234   Label okay;
 235   __ load_unsigned_byte(scratch, at_bcp(0));
 236   __ cmpl(scratch, (int) Bytecodes::java_code(bytecode));
 237   __ jcc(Assembler::equal, okay);
 238   __ cmpl(scratch, bc);
 239   __ jcc(Assembler::equal, okay);
 240   __ stop("patching the wrong bytecode");
 241   __ bind(okay);
 242 #endif
 243   // patch bytecode
 244   __ movb(at_bcp(0), bc);
 245   __ bind(patch_done);
 246 }
 247 
 248 
 249 // Individual instructions
 250 
 251 void TemplateTable::nop() {
 252   transition(vtos, vtos);
 253   // nothing to do
 254 }
 255 
 256 void TemplateTable::shouldnotreachhere() {
 257   transition(vtos, vtos);
 258   __ stop("shouldnotreachhere bytecode");
 259 }
 260 
 261 void TemplateTable::aconst_null() {
 262   transition(vtos, atos);
 263   __ xorl(rax, rax);
 264 }
 265 
 266 void TemplateTable::iconst(int value) {
 267   transition(vtos, itos);
 268   if (value == 0) {
 269     __ xorl(rax, rax);
 270   } else {
 271     __ movl(rax, value);
 272   }
 273 }
 274 
 275 void TemplateTable::lconst(int value) {
 276   transition(vtos, ltos);
 277   if (value == 0) {
 278     __ xorl(rax, rax);
 279   } else {
 280     __ movl(rax, value);
 281   }
 282 }
 283 
 284 void TemplateTable::fconst(int value) {
 285   transition(vtos, ftos);
 286   static float one = 1.0f, two = 2.0f;
 287   switch (value) {
 288   case 0:
 289     __ xorps(xmm0, xmm0);
 290     break;
 291   case 1:
 292     __ movflt(xmm0, ExternalAddress((address) &one));
 293     break;
 294   case 2:
 295     __ movflt(xmm0, ExternalAddress((address) &two));
 296     break;
 297   default:
 298     ShouldNotReachHere();
 299     break;
 300   }
 301 }
 302 
 303 void TemplateTable::dconst(int value) {
 304   transition(vtos, dtos);
 305   static double one = 1.0;
 306   switch (value) {
 307   case 0:
 308     __ xorpd(xmm0, xmm0);
 309     break;
 310   case 1:
 311     __ movdbl(xmm0, ExternalAddress((address) &one));
 312     break;
 313   default:
 314     ShouldNotReachHere();
 315     break;
 316   }
 317 }
 318 
 319 void TemplateTable::bipush() {
 320   transition(vtos, itos);
 321   __ load_signed_byte(rax, at_bcp(1));
 322 }
 323 
 324 void TemplateTable::sipush() {
 325   transition(vtos, itos);
 326   __ load_unsigned_short(rax, at_bcp(1));
 327   __ bswapl(rax);
 328   __ sarl(rax, 16);
 329 }
 330 
 331 void TemplateTable::ldc(bool wide) {
 332   transition(vtos, vtos);
 333   Label call_ldc, notFloat, notClass, Done;
 334 
 335   if (wide) {
 336     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 337   } else {
 338     __ load_unsigned_byte(rbx, at_bcp(1));
 339   }
 340 
 341   __ get_cpool_and_tags(rcx, rax);
 342   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
 343   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
 344 
 345   // get type
 346   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 347 
 348   // unresolved string - get the resolved string
 349   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
 350   __ jccb(Assembler::equal, call_ldc);
 351 
 352   // unresolved class - get the resolved class
 353   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
 354   __ jccb(Assembler::equal, call_ldc);
 355 
 356   // unresolved class in error state - call into runtime to throw the error
 357   // from the first resolution attempt
 358   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
 359   __ jccb(Assembler::equal, call_ldc);
 360 
 361   // resolved class - need to call vm to get java mirror of the class
 362   __ cmpl(rdx, JVM_CONSTANT_Class);
 363   __ jcc(Assembler::notEqual, notClass);
 364 
 365   __ bind(call_ldc);
 366   __ movl(c_rarg1, wide);
 367   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
 368   __ push_ptr(rax);
 369   __ verify_oop(rax);
 370   __ jmp(Done);
 371 
 372   __ bind(notClass);
 373   __ cmpl(rdx, JVM_CONSTANT_Float);
 374   __ jccb(Assembler::notEqual, notFloat);
 375   // ftos
 376   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
 377   __ push_f();
 378   __ jmp(Done);
 379 
 380   __ bind(notFloat);
 381 #ifdef ASSERT
 382   {
 383     Label L;
 384     __ cmpl(rdx, JVM_CONSTANT_Integer);
 385     __ jcc(Assembler::equal, L);
 386     __ cmpl(rdx, JVM_CONSTANT_String);
 387     __ jcc(Assembler::equal, L);
 388     __ cmpl(rdx, JVM_CONSTANT_Object);
 389     __ jcc(Assembler::equal, L);
 390     __ stop("unexpected tag type in ldc");
 391     __ bind(L);
 392   }
 393 #endif
 394   // atos and itos
 395   Label isOop;
 396   __ cmpl(rdx, JVM_CONSTANT_Integer);
 397   __ jcc(Assembler::notEqual, isOop);
 398   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
 399   __ push_i(rax);
 400   __ jmp(Done);
 401 
 402   __ bind(isOop);
 403   __ movptr(rax, Address(rcx, rbx, Address::times_8, base_offset));
 404   __ push_ptr(rax);
 405 
 406   if (VerifyOops) {
 407     __ verify_oop(rax);
 408   }
 409 
 410   __ bind(Done);
 411 }
 412 
 413 // Fast path for caching oop constants.
 414 // %%% We should use this to handle Class and String constants also.
 415 // %%% It will simplify the ldc/primitive path considerably.
 416 void TemplateTable::fast_aldc(bool wide) {
 417   transition(vtos, atos);
 418 
 419   if (!EnableInvokeDynamic) {
 420     // We should not encounter this bytecode if !EnableInvokeDynamic.
 421     // The verifier will stop it.  However, if we get past the verifier,
 422     // this will stop the thread in a reasonable way, without crashing the JVM.
 423     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
 424                      InterpreterRuntime::throw_IncompatibleClassChangeError));
 425     // the call_VM checks for exception, so we should never return here.
 426     __ should_not_reach_here();
 427     return;
 428   }
 429 
 430   const Register cache = rcx;
 431   const Register index = rdx;
 432 
 433   resolve_cache_and_index(f1_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1));
 434   if (VerifyOops) {
 435     __ verify_oop(rax);
 436   }
 437 
 438   Label L_done, L_throw_exception;
 439   const Register con_klass_temp = rcx;  // same as cache
 440   const Register array_klass_temp = rdx;  // same as index
 441   __ load_klass(con_klass_temp, rax);
 442   __ lea(array_klass_temp, ExternalAddress((address)Universe::systemObjArrayKlassObj_addr()));
 443   __ cmpptr(con_klass_temp, Address(array_klass_temp, 0));
 444   __ jcc(Assembler::notEqual, L_done);
 445   __ cmpl(Address(rax, arrayOopDesc::length_offset_in_bytes()), 0);
 446   __ jcc(Assembler::notEqual, L_throw_exception);
 447   __ xorptr(rax, rax);
 448   __ jmp(L_done);
 449 
 450   // Load the exception from the system-array which wraps it:
 451   __ bind(L_throw_exception);
 452   __ load_heap_oop(rax, Address(rax, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 453   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
 454 
 455   __ bind(L_done);
 456 }
 457 
 458 void TemplateTable::ldc2_w() {
 459   transition(vtos, vtos);
 460   Label Long, Done;
 461   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 462 
 463   __ get_cpool_and_tags(rcx, rax);
 464   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
 465   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
 466 
 467   // get type
 468   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
 469           JVM_CONSTANT_Double);
 470   __ jccb(Assembler::notEqual, Long);
 471   // dtos
 472   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
 473   __ push_d();
 474   __ jmpb(Done);
 475 
 476   __ bind(Long);
 477   // ltos
 478   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
 479   __ push_l();
 480 
 481   __ bind(Done);
 482 }
 483 
 484 void TemplateTable::locals_index(Register reg, int offset) {
 485   __ load_unsigned_byte(reg, at_bcp(offset));
 486   __ negptr(reg);
 487 }
 488 
 489 void TemplateTable::iload() {
 490   transition(vtos, itos);
 491   if (RewriteFrequentPairs) {
 492     Label rewrite, done;
 493     const Register bc = c_rarg3;
 494     assert(rbx != bc, "register damaged");
 495 
 496     // get next byte
 497     __ load_unsigned_byte(rbx,
 498                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 499     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 500     // last two iloads in a pair.  Comparing against fast_iload means that
 501     // the next bytecode is neither an iload or a caload, and therefore
 502     // an iload pair.
 503     __ cmpl(rbx, Bytecodes::_iload);
 504     __ jcc(Assembler::equal, done);
 505 
 506     __ cmpl(rbx, Bytecodes::_fast_iload);
 507     __ movl(bc, Bytecodes::_fast_iload2);
 508     __ jccb(Assembler::equal, rewrite);
 509 
 510     // if _caload, rewrite to fast_icaload
 511     __ cmpl(rbx, Bytecodes::_caload);
 512     __ movl(bc, Bytecodes::_fast_icaload);
 513     __ jccb(Assembler::equal, rewrite);
 514 
 515     // rewrite so iload doesn't check again.
 516     __ movl(bc, Bytecodes::_fast_iload);
 517 
 518     // rewrite
 519     // bc: fast bytecode
 520     __ bind(rewrite);
 521     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
 522     __ bind(done);
 523   }
 524 
 525   // Get the local value into tos
 526   locals_index(rbx);
 527   __ movl(rax, iaddress(rbx));
 528 }
 529 
 530 void TemplateTable::fast_iload2() {
 531   transition(vtos, itos);
 532   locals_index(rbx);
 533   __ movl(rax, iaddress(rbx));
 534   __ push(itos);
 535   locals_index(rbx, 3);
 536   __ movl(rax, iaddress(rbx));
 537 }
 538 
 539 void TemplateTable::fast_iload() {
 540   transition(vtos, itos);
 541   locals_index(rbx);
 542   __ movl(rax, iaddress(rbx));
 543 }
 544 
 545 void TemplateTable::lload() {
 546   transition(vtos, ltos);
 547   locals_index(rbx);
 548   __ movq(rax, laddress(rbx));
 549 }
 550 
 551 void TemplateTable::fload() {
 552   transition(vtos, ftos);
 553   locals_index(rbx);
 554   __ movflt(xmm0, faddress(rbx));
 555 }
 556 
 557 void TemplateTable::dload() {
 558   transition(vtos, dtos);
 559   locals_index(rbx);
 560   __ movdbl(xmm0, daddress(rbx));
 561 }
 562 
 563 void TemplateTable::aload() {
 564   transition(vtos, atos);
 565   locals_index(rbx);
 566   __ movptr(rax, aaddress(rbx));
 567 }
 568 
 569 void TemplateTable::locals_index_wide(Register reg) {
 570   __ movl(reg, at_bcp(2));
 571   __ bswapl(reg);
 572   __ shrl(reg, 16);
 573   __ negptr(reg);
 574 }
 575 
 576 void TemplateTable::wide_iload() {
 577   transition(vtos, itos);
 578   locals_index_wide(rbx);
 579   __ movl(rax, iaddress(rbx));
 580 }
 581 
 582 void TemplateTable::wide_lload() {
 583   transition(vtos, ltos);
 584   locals_index_wide(rbx);
 585   __ movq(rax, laddress(rbx));
 586 }
 587 
 588 void TemplateTable::wide_fload() {
 589   transition(vtos, ftos);
 590   locals_index_wide(rbx);
 591   __ movflt(xmm0, faddress(rbx));
 592 }
 593 
 594 void TemplateTable::wide_dload() {
 595   transition(vtos, dtos);
 596   locals_index_wide(rbx);
 597   __ movdbl(xmm0, daddress(rbx));
 598 }
 599 
 600 void TemplateTable::wide_aload() {
 601   transition(vtos, atos);
 602   locals_index_wide(rbx);
 603   __ movptr(rax, aaddress(rbx));
 604 }
 605 
 606 void TemplateTable::index_check(Register array, Register index) {
 607   // destroys rbx
 608   // check array
 609   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
 610   // sign extend index for use by indexed load
 611   __ movl2ptr(index, index);
 612   // check index
 613   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
 614   if (index != rbx) {
 615     // ??? convention: move aberrant index into ebx for exception message
 616     assert(rbx != array, "different registers");
 617     __ movl(rbx, index);
 618   }
 619   __ jump_cc(Assembler::aboveEqual,
 620              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
 621 }
 622 
 623 void TemplateTable::iaload() {
 624   transition(itos, itos);
 625   __ pop_ptr(rdx);
 626   // eax: index
 627   // rdx: array
 628   index_check(rdx, rax); // kills rbx
 629   __ movl(rax, Address(rdx, rax,
 630                        Address::times_4,
 631                        arrayOopDesc::base_offset_in_bytes(T_INT)));
 632 }
 633 
 634 void TemplateTable::laload() {
 635   transition(itos, ltos);
 636   __ pop_ptr(rdx);
 637   // eax: index
 638   // rdx: array
 639   index_check(rdx, rax); // kills rbx
 640   __ movq(rax, Address(rdx, rbx,
 641                        Address::times_8,
 642                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
 643 }
 644 
 645 void TemplateTable::faload() {
 646   transition(itos, ftos);
 647   __ pop_ptr(rdx);
 648   // eax: index
 649   // rdx: array
 650   index_check(rdx, rax); // kills rbx
 651   __ movflt(xmm0, Address(rdx, rax,
 652                          Address::times_4,
 653                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 654 }
 655 
 656 void TemplateTable::daload() {
 657   transition(itos, dtos);
 658   __ pop_ptr(rdx);
 659   // eax: index
 660   // rdx: array
 661   index_check(rdx, rax); // kills rbx
 662   __ movdbl(xmm0, Address(rdx, rax,
 663                           Address::times_8,
 664                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 665 }
 666 
 667 void TemplateTable::aaload() {
 668   transition(itos, atos);
 669   __ pop_ptr(rdx);
 670   // eax: index
 671   // rdx: array
 672   index_check(rdx, rax); // kills rbx
 673   __ load_heap_oop(rax, Address(rdx, rax,
 674                                 UseCompressedOops ? Address::times_4 : Address::times_8,
 675                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 676 }
 677 
 678 void TemplateTable::baload() {
 679   transition(itos, itos);
 680   __ pop_ptr(rdx);
 681   // eax: index
 682   // rdx: array
 683   index_check(rdx, rax); // kills rbx
 684   __ load_signed_byte(rax,
 685                       Address(rdx, rax,
 686                               Address::times_1,
 687                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
 688 }
 689 
 690 void TemplateTable::caload() {
 691   transition(itos, itos);
 692   __ pop_ptr(rdx);
 693   // eax: index
 694   // rdx: array
 695   index_check(rdx, rax); // kills rbx
 696   __ load_unsigned_short(rax,
 697                          Address(rdx, rax,
 698                                  Address::times_2,
 699                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 700 }
 701 
 702 // iload followed by caload frequent pair
 703 void TemplateTable::fast_icaload() {
 704   transition(vtos, itos);
 705   // load index out of locals
 706   locals_index(rbx);
 707   __ movl(rax, iaddress(rbx));
 708 
 709   // eax: index
 710   // rdx: array
 711   __ pop_ptr(rdx);
 712   index_check(rdx, rax); // kills rbx
 713   __ load_unsigned_short(rax,
 714                          Address(rdx, rax,
 715                                  Address::times_2,
 716                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 717 }
 718 
 719 void TemplateTable::saload() {
 720   transition(itos, itos);
 721   __ pop_ptr(rdx);
 722   // eax: index
 723   // rdx: array
 724   index_check(rdx, rax); // kills rbx
 725   __ load_signed_short(rax,
 726                        Address(rdx, rax,
 727                                Address::times_2,
 728                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
 729 }
 730 
 731 void TemplateTable::iload(int n) {
 732   transition(vtos, itos);
 733   __ movl(rax, iaddress(n));
 734 }
 735 
 736 void TemplateTable::lload(int n) {
 737   transition(vtos, ltos);
 738   __ movq(rax, laddress(n));
 739 }
 740 
 741 void TemplateTable::fload(int n) {
 742   transition(vtos, ftos);
 743   __ movflt(xmm0, faddress(n));
 744 }
 745 
 746 void TemplateTable::dload(int n) {
 747   transition(vtos, dtos);
 748   __ movdbl(xmm0, daddress(n));
 749 }
 750 
 751 void TemplateTable::aload(int n) {
 752   transition(vtos, atos);
 753   __ movptr(rax, aaddress(n));
 754 }
 755 
 756 void TemplateTable::aload_0() {
 757   transition(vtos, atos);
 758   // According to bytecode histograms, the pairs:
 759   //
 760   // _aload_0, _fast_igetfield
 761   // _aload_0, _fast_agetfield
 762   // _aload_0, _fast_fgetfield
 763   //
 764   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 765   // _aload_0 bytecode checks if the next bytecode is either
 766   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 767   // rewrites the current bytecode into a pair bytecode; otherwise it
 768   // rewrites the current bytecode into _fast_aload_0 that doesn't do
 769   // the pair check anymore.
 770   //
 771   // Note: If the next bytecode is _getfield, the rewrite must be
 772   //       delayed, otherwise we may miss an opportunity for a pair.
 773   //
 774   // Also rewrite frequent pairs
 775   //   aload_0, aload_1
 776   //   aload_0, iload_1
 777   // These bytecodes with a small amount of code are most profitable
 778   // to rewrite
 779   if (RewriteFrequentPairs) {
 780     Label rewrite, done;
 781     const Register bc = c_rarg3;
 782     assert(rbx != bc, "register damaged");
 783     // get next byte
 784     __ load_unsigned_byte(rbx,
 785                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 786 
 787     // do actual aload_0
 788     aload(0);
 789 
 790     // if _getfield then wait with rewrite
 791     __ cmpl(rbx, Bytecodes::_getfield);
 792     __ jcc(Assembler::equal, done);
 793 
 794     // if _igetfield then reqrite to _fast_iaccess_0
 795     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
 796            Bytecodes::_aload_0,
 797            "fix bytecode definition");
 798     __ cmpl(rbx, Bytecodes::_fast_igetfield);
 799     __ movl(bc, Bytecodes::_fast_iaccess_0);
 800     __ jccb(Assembler::equal, rewrite);
 801 
 802     // if _agetfield then reqrite to _fast_aaccess_0
 803     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
 804            Bytecodes::_aload_0,
 805            "fix bytecode definition");
 806     __ cmpl(rbx, Bytecodes::_fast_agetfield);
 807     __ movl(bc, Bytecodes::_fast_aaccess_0);
 808     __ jccb(Assembler::equal, rewrite);
 809 
 810     // if _fgetfield then reqrite to _fast_faccess_0
 811     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
 812            Bytecodes::_aload_0,
 813            "fix bytecode definition");
 814     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
 815     __ movl(bc, Bytecodes::_fast_faccess_0);
 816     __ jccb(Assembler::equal, rewrite);
 817 
 818     // else rewrite to _fast_aload0
 819     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
 820            Bytecodes::_aload_0,
 821            "fix bytecode definition");
 822     __ movl(bc, Bytecodes::_fast_aload_0);
 823 
 824     // rewrite
 825     // bc: fast bytecode
 826     __ bind(rewrite);
 827     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
 828 
 829     __ bind(done);
 830   } else {
 831     aload(0);
 832   }
 833 }
 834 
 835 void TemplateTable::istore() {
 836   transition(itos, vtos);
 837   locals_index(rbx);
 838   __ movl(iaddress(rbx), rax);
 839 }
 840 
 841 void TemplateTable::lstore() {
 842   transition(ltos, vtos);
 843   locals_index(rbx);
 844   __ movq(laddress(rbx), rax);
 845 }
 846 
 847 void TemplateTable::fstore() {
 848   transition(ftos, vtos);
 849   locals_index(rbx);
 850   __ movflt(faddress(rbx), xmm0);
 851 }
 852 
 853 void TemplateTable::dstore() {
 854   transition(dtos, vtos);
 855   locals_index(rbx);
 856   __ movdbl(daddress(rbx), xmm0);
 857 }
 858 
 859 void TemplateTable::astore() {
 860   transition(vtos, vtos);
 861   __ pop_ptr(rax);
 862   locals_index(rbx);
 863   __ movptr(aaddress(rbx), rax);
 864 }
 865 
 866 void TemplateTable::wide_istore() {
 867   transition(vtos, vtos);
 868   __ pop_i();
 869   locals_index_wide(rbx);
 870   __ movl(iaddress(rbx), rax);
 871 }
 872 
 873 void TemplateTable::wide_lstore() {
 874   transition(vtos, vtos);
 875   __ pop_l();
 876   locals_index_wide(rbx);
 877   __ movq(laddress(rbx), rax);
 878 }
 879 
 880 void TemplateTable::wide_fstore() {
 881   transition(vtos, vtos);
 882   __ pop_f();
 883   locals_index_wide(rbx);
 884   __ movflt(faddress(rbx), xmm0);
 885 }
 886 
 887 void TemplateTable::wide_dstore() {
 888   transition(vtos, vtos);
 889   __ pop_d();
 890   locals_index_wide(rbx);
 891   __ movdbl(daddress(rbx), xmm0);
 892 }
 893 
 894 void TemplateTable::wide_astore() {
 895   transition(vtos, vtos);
 896   __ pop_ptr(rax);
 897   locals_index_wide(rbx);
 898   __ movptr(aaddress(rbx), rax);
 899 }
 900 
 901 void TemplateTable::iastore() {
 902   transition(itos, vtos);
 903   __ pop_i(rbx);
 904   __ pop_ptr(rdx);
 905   // eax: value
 906   // ebx: index
 907   // rdx: array
 908   index_check(rdx, rbx); // prefer index in ebx
 909   __ movl(Address(rdx, rbx,
 910                   Address::times_4,
 911                   arrayOopDesc::base_offset_in_bytes(T_INT)),
 912           rax);
 913 }
 914 
 915 void TemplateTable::lastore() {
 916   transition(ltos, vtos);
 917   __ pop_i(rbx);
 918   __ pop_ptr(rdx);
 919   // rax: value
 920   // ebx: index
 921   // rdx: array
 922   index_check(rdx, rbx); // prefer index in ebx
 923   __ movq(Address(rdx, rbx,
 924                   Address::times_8,
 925                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
 926           rax);
 927 }
 928 
 929 void TemplateTable::fastore() {
 930   transition(ftos, vtos);
 931   __ pop_i(rbx);
 932   __ pop_ptr(rdx);
 933   // xmm0: value
 934   // ebx:  index
 935   // rdx:  array
 936   index_check(rdx, rbx); // prefer index in ebx
 937   __ movflt(Address(rdx, rbx,
 938                    Address::times_4,
 939                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
 940            xmm0);
 941 }
 942 
 943 void TemplateTable::dastore() {
 944   transition(dtos, vtos);
 945   __ pop_i(rbx);
 946   __ pop_ptr(rdx);
 947   // xmm0: value
 948   // ebx:  index
 949   // rdx:  array
 950   index_check(rdx, rbx); // prefer index in ebx
 951   __ movdbl(Address(rdx, rbx,
 952                    Address::times_8,
 953                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
 954            xmm0);
 955 }
 956 
 957 void TemplateTable::aastore() {
 958   Label is_null, ok_is_subtype, done;
 959   transition(vtos, vtos);
 960   // stack: ..., array, index, value
 961   __ movptr(rax, at_tos());    // value
 962   __ movl(rcx, at_tos_p1()); // index
 963   __ movptr(rdx, at_tos_p2()); // array
 964 
 965   Address element_address(rdx, rcx,
 966                           UseCompressedOops? Address::times_4 : Address::times_8,
 967                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 968 
 969   index_check(rdx, rcx);     // kills rbx
 970   // do array store check - check for NULL value first
 971   __ testptr(rax, rax);
 972   __ jcc(Assembler::zero, is_null);
 973 
 974   // Move subklass into rbx
 975   __ load_klass(rbx, rax);
 976   // Move superklass into rax
 977   __ load_klass(rax, rdx);
 978   __ movptr(rax, Address(rax,
 979                          sizeof(oopDesc) +
 980                          objArrayKlass::element_klass_offset_in_bytes()));
 981   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
 982   __ lea(rdx, element_address);
 983 
 984   // Generate subtype check.  Blows rcx, rdi
 985   // Superklass in rax.  Subklass in rbx.
 986   __ gen_subtype_check(rbx, ok_is_subtype);
 987 
 988   // Come here on failure
 989   // object is at TOS
 990   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
 991 
 992   // Come here on success
 993   __ bind(ok_is_subtype);
 994 
 995   // Get the value we will store
 996   __ movptr(rax, at_tos());
 997   // Now store using the appropriate barrier
 998   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
 999   __ jmp(done);
1000 
1001   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
1002   __ bind(is_null);
1003   __ profile_null_seen(rbx);
1004 
1005   // Store a NULL
1006   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
1007 
1008   // Pop stack arguments
1009   __ bind(done);
1010   __ addptr(rsp, 3 * Interpreter::stackElementSize);
1011 }
1012 
1013 void TemplateTable::bastore() {
1014   transition(itos, vtos);
1015   __ pop_i(rbx);
1016   __ pop_ptr(rdx);
1017   // eax: value
1018   // ebx: index
1019   // rdx: array
1020   index_check(rdx, rbx); // prefer index in ebx
1021   __ movb(Address(rdx, rbx,
1022                   Address::times_1,
1023                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
1024           rax);
1025 }
1026 
1027 void TemplateTable::castore() {
1028   transition(itos, vtos);
1029   __ pop_i(rbx);
1030   __ pop_ptr(rdx);
1031   // eax: value
1032   // ebx: index
1033   // rdx: array
1034   index_check(rdx, rbx);  // prefer index in ebx
1035   __ movw(Address(rdx, rbx,
1036                   Address::times_2,
1037                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
1038           rax);
1039 }
1040 
1041 void TemplateTable::sastore() {
1042   castore();
1043 }
1044 
1045 void TemplateTable::istore(int n) {
1046   transition(itos, vtos);
1047   __ movl(iaddress(n), rax);
1048 }
1049 
1050 void TemplateTable::lstore(int n) {
1051   transition(ltos, vtos);
1052   __ movq(laddress(n), rax);
1053 }
1054 
1055 void TemplateTable::fstore(int n) {
1056   transition(ftos, vtos);
1057   __ movflt(faddress(n), xmm0);
1058 }
1059 
1060 void TemplateTable::dstore(int n) {
1061   transition(dtos, vtos);
1062   __ movdbl(daddress(n), xmm0);
1063 }
1064 
1065 void TemplateTable::astore(int n) {
1066   transition(vtos, vtos);
1067   __ pop_ptr(rax);
1068   __ movptr(aaddress(n), rax);
1069 }
1070 
1071 void TemplateTable::pop() {
1072   transition(vtos, vtos);
1073   __ addptr(rsp, Interpreter::stackElementSize);
1074 }
1075 
1076 void TemplateTable::pop2() {
1077   transition(vtos, vtos);
1078   __ addptr(rsp, 2 * Interpreter::stackElementSize);
1079 }
1080 
1081 void TemplateTable::dup() {
1082   transition(vtos, vtos);
1083   __ load_ptr(0, rax);
1084   __ push_ptr(rax);
1085   // stack: ..., a, a
1086 }
1087 
1088 void TemplateTable::dup_x1() {
1089   transition(vtos, vtos);
1090   // stack: ..., a, b
1091   __ load_ptr( 0, rax);  // load b
1092   __ load_ptr( 1, rcx);  // load a
1093   __ store_ptr(1, rax);  // store b
1094   __ store_ptr(0, rcx);  // store a
1095   __ push_ptr(rax);      // push b
1096   // stack: ..., b, a, b
1097 }
1098 
1099 void TemplateTable::dup_x2() {
1100   transition(vtos, vtos);
1101   // stack: ..., a, b, c
1102   __ load_ptr( 0, rax);  // load c
1103   __ load_ptr( 2, rcx);  // load a
1104   __ store_ptr(2, rax);  // store c in a
1105   __ push_ptr(rax);      // push c
1106   // stack: ..., c, b, c, c
1107   __ load_ptr( 2, rax);  // load b
1108   __ store_ptr(2, rcx);  // store a in b
1109   // stack: ..., c, a, c, c
1110   __ store_ptr(1, rax);  // store b in c
1111   // stack: ..., c, a, b, c
1112 }
1113 
1114 void TemplateTable::dup2() {
1115   transition(vtos, vtos);
1116   // stack: ..., a, b
1117   __ load_ptr(1, rax);  // load a
1118   __ push_ptr(rax);     // push a
1119   __ load_ptr(1, rax);  // load b
1120   __ push_ptr(rax);     // push b
1121   // stack: ..., a, b, a, b
1122 }
1123 
1124 void TemplateTable::dup2_x1() {
1125   transition(vtos, vtos);
1126   // stack: ..., a, b, c
1127   __ load_ptr( 0, rcx);  // load c
1128   __ load_ptr( 1, rax);  // load b
1129   __ push_ptr(rax);      // push b
1130   __ push_ptr(rcx);      // push c
1131   // stack: ..., a, b, c, b, c
1132   __ store_ptr(3, rcx);  // store c in b
1133   // stack: ..., a, c, c, b, c
1134   __ load_ptr( 4, rcx);  // load a
1135   __ store_ptr(2, rcx);  // store a in 2nd c
1136   // stack: ..., a, c, a, b, c
1137   __ store_ptr(4, rax);  // store b in a
1138   // stack: ..., b, c, a, b, c
1139 }
1140 
1141 void TemplateTable::dup2_x2() {
1142   transition(vtos, vtos);
1143   // stack: ..., a, b, c, d
1144   __ load_ptr( 0, rcx);  // load d
1145   __ load_ptr( 1, rax);  // load c
1146   __ push_ptr(rax);      // push c
1147   __ push_ptr(rcx);      // push d
1148   // stack: ..., a, b, c, d, c, d
1149   __ load_ptr( 4, rax);  // load b
1150   __ store_ptr(2, rax);  // store b in d
1151   __ store_ptr(4, rcx);  // store d in b
1152   // stack: ..., a, d, c, b, c, d
1153   __ load_ptr( 5, rcx);  // load a
1154   __ load_ptr( 3, rax);  // load c
1155   __ store_ptr(3, rcx);  // store a in c
1156   __ store_ptr(5, rax);  // store c in a
1157   // stack: ..., c, d, a, b, c, d
1158 }
1159 
1160 void TemplateTable::swap() {
1161   transition(vtos, vtos);
1162   // stack: ..., a, b
1163   __ load_ptr( 1, rcx);  // load a
1164   __ load_ptr( 0, rax);  // load b
1165   __ store_ptr(0, rcx);  // store a in b
1166   __ store_ptr(1, rax);  // store b in a
1167   // stack: ..., b, a
1168 }
1169 
1170 void TemplateTable::iop2(Operation op) {
1171   transition(itos, itos);
1172   switch (op) {
1173   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
1174   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1175   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
1176   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
1177   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
1178   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
1179   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
1180   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
1181   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
1182   default   : ShouldNotReachHere();
1183   }
1184 }
1185 
1186 void TemplateTable::lop2(Operation op) {
1187   transition(ltos, ltos);
1188   switch (op) {
1189   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
1190   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
1191   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
1192   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
1193   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
1194   default   : ShouldNotReachHere();
1195   }
1196 }
1197 
1198 void TemplateTable::idiv() {
1199   transition(itos, itos);
1200   __ movl(rcx, rax);
1201   __ pop_i(rax);
1202   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
1203   //       they are not equal, one could do a normal division (no correction
1204   //       needed), which may speed up this implementation for the common case.
1205   //       (see also JVM spec., p.243 & p.271)
1206   __ corrected_idivl(rcx);
1207 }
1208 
1209 void TemplateTable::irem() {
1210   transition(itos, itos);
1211   __ movl(rcx, rax);
1212   __ pop_i(rax);
1213   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
1214   //       they are not equal, one could do a normal division (no correction
1215   //       needed), which may speed up this implementation for the common case.
1216   //       (see also JVM spec., p.243 & p.271)
1217   __ corrected_idivl(rcx);
1218   __ movl(rax, rdx);
1219 }
1220 
1221 void TemplateTable::lmul() {
1222   transition(ltos, ltos);
1223   __ pop_l(rdx);
1224   __ imulq(rax, rdx);
1225 }
1226 
1227 void TemplateTable::ldiv() {
1228   transition(ltos, ltos);
1229   __ mov(rcx, rax);
1230   __ pop_l(rax);
1231   // generate explicit div0 check
1232   __ testq(rcx, rcx);
1233   __ jump_cc(Assembler::zero,
1234              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1235   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1236   //       they are not equal, one could do a normal division (no correction
1237   //       needed), which may speed up this implementation for the common case.
1238   //       (see also JVM spec., p.243 & p.271)
1239   __ corrected_idivq(rcx); // kills rbx
1240 }
1241 
1242 void TemplateTable::lrem() {
1243   transition(ltos, ltos);
1244   __ mov(rcx, rax);
1245   __ pop_l(rax);
1246   __ testq(rcx, rcx);
1247   __ jump_cc(Assembler::zero,
1248              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1249   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1250   //       they are not equal, one could do a normal division (no correction
1251   //       needed), which may speed up this implementation for the common case.
1252   //       (see also JVM spec., p.243 & p.271)
1253   __ corrected_idivq(rcx); // kills rbx
1254   __ mov(rax, rdx);
1255 }
1256 
1257 void TemplateTable::lshl() {
1258   transition(itos, ltos);
1259   __ movl(rcx, rax);                             // get shift count
1260   __ pop_l(rax);                                 // get shift value
1261   __ shlq(rax);
1262 }
1263 
1264 void TemplateTable::lshr() {
1265   transition(itos, ltos);
1266   __ movl(rcx, rax);                             // get shift count
1267   __ pop_l(rax);                                 // get shift value
1268   __ sarq(rax);
1269 }
1270 
1271 void TemplateTable::lushr() {
1272   transition(itos, ltos);
1273   __ movl(rcx, rax);                             // get shift count
1274   __ pop_l(rax);                                 // get shift value
1275   __ shrq(rax);
1276 }
1277 
1278 void TemplateTable::fop2(Operation op) {
1279   transition(ftos, ftos);
1280   switch (op) {
1281   case add:
1282     __ addss(xmm0, at_rsp());
1283     __ addptr(rsp, Interpreter::stackElementSize);
1284     break;
1285   case sub:
1286     __ movflt(xmm1, xmm0);
1287     __ pop_f(xmm0);
1288     __ subss(xmm0, xmm1);
1289     break;
1290   case mul:
1291     __ mulss(xmm0, at_rsp());
1292     __ addptr(rsp, Interpreter::stackElementSize);
1293     break;
1294   case div:
1295     __ movflt(xmm1, xmm0);
1296     __ pop_f(xmm0);
1297     __ divss(xmm0, xmm1);
1298     break;
1299   case rem:
1300     __ movflt(xmm1, xmm0);
1301     __ pop_f(xmm0);
1302     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
1303     break;
1304   default:
1305     ShouldNotReachHere();
1306     break;
1307   }
1308 }
1309 
1310 void TemplateTable::dop2(Operation op) {
1311   transition(dtos, dtos);
1312   switch (op) {
1313   case add:
1314     __ addsd(xmm0, at_rsp());
1315     __ addptr(rsp, 2 * Interpreter::stackElementSize);
1316     break;
1317   case sub:
1318     __ movdbl(xmm1, xmm0);
1319     __ pop_d(xmm0);
1320     __ subsd(xmm0, xmm1);
1321     break;
1322   case mul:
1323     __ mulsd(xmm0, at_rsp());
1324     __ addptr(rsp, 2 * Interpreter::stackElementSize);
1325     break;
1326   case div:
1327     __ movdbl(xmm1, xmm0);
1328     __ pop_d(xmm0);
1329     __ divsd(xmm0, xmm1);
1330     break;
1331   case rem:
1332     __ movdbl(xmm1, xmm0);
1333     __ pop_d(xmm0);
1334     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
1335     break;
1336   default:
1337     ShouldNotReachHere();
1338     break;
1339   }
1340 }
1341 
1342 void TemplateTable::ineg() {
1343   transition(itos, itos);
1344   __ negl(rax);
1345 }
1346 
1347 void TemplateTable::lneg() {
1348   transition(ltos, ltos);
1349   __ negq(rax);
1350 }
1351 
1352 // Note: 'double' and 'long long' have 32-bits alignment on x86.
1353 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
1354   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
1355   // of 128-bits operands for SSE instructions.
1356   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
1357   // Store the value to a 128-bits operand.
1358   operand[0] = lo;
1359   operand[1] = hi;
1360   return operand;
1361 }
1362 
1363 // Buffer for 128-bits masks used by SSE instructions.
1364 static jlong float_signflip_pool[2*2];
1365 static jlong double_signflip_pool[2*2];
1366 
1367 void TemplateTable::fneg() {
1368   transition(ftos, ftos);
1369   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
1370   __ xorps(xmm0, ExternalAddress((address) float_signflip));
1371 }
1372 
1373 void TemplateTable::dneg() {
1374   transition(dtos, dtos);
1375   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
1376   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
1377 }
1378 
1379 void TemplateTable::iinc() {
1380   transition(vtos, vtos);
1381   __ load_signed_byte(rdx, at_bcp(2)); // get constant
1382   locals_index(rbx);
1383   __ addl(iaddress(rbx), rdx);
1384 }
1385 
1386 void TemplateTable::wide_iinc() {
1387   transition(vtos, vtos);
1388   __ movl(rdx, at_bcp(4)); // get constant
1389   locals_index_wide(rbx);
1390   __ bswapl(rdx); // swap bytes & sign-extend constant
1391   __ sarl(rdx, 16);
1392   __ addl(iaddress(rbx), rdx);
1393   // Note: should probably use only one movl to get both
1394   //       the index and the constant -> fix this
1395 }
1396 
1397 void TemplateTable::convert() {
1398   // Checking
1399 #ifdef ASSERT
1400   {
1401     TosState tos_in  = ilgl;
1402     TosState tos_out = ilgl;
1403     switch (bytecode()) {
1404     case Bytecodes::_i2l: // fall through
1405     case Bytecodes::_i2f: // fall through
1406     case Bytecodes::_i2d: // fall through
1407     case Bytecodes::_i2b: // fall through
1408     case Bytecodes::_i2c: // fall through
1409     case Bytecodes::_i2s: tos_in = itos; break;
1410     case Bytecodes::_l2i: // fall through
1411     case Bytecodes::_l2f: // fall through
1412     case Bytecodes::_l2d: tos_in = ltos; break;
1413     case Bytecodes::_f2i: // fall through
1414     case Bytecodes::_f2l: // fall through
1415     case Bytecodes::_f2d: tos_in = ftos; break;
1416     case Bytecodes::_d2i: // fall through
1417     case Bytecodes::_d2l: // fall through
1418     case Bytecodes::_d2f: tos_in = dtos; break;
1419     default             : ShouldNotReachHere();
1420     }
1421     switch (bytecode()) {
1422     case Bytecodes::_l2i: // fall through
1423     case Bytecodes::_f2i: // fall through
1424     case Bytecodes::_d2i: // fall through
1425     case Bytecodes::_i2b: // fall through
1426     case Bytecodes::_i2c: // fall through
1427     case Bytecodes::_i2s: tos_out = itos; break;
1428     case Bytecodes::_i2l: // fall through
1429     case Bytecodes::_f2l: // fall through
1430     case Bytecodes::_d2l: tos_out = ltos; break;
1431     case Bytecodes::_i2f: // fall through
1432     case Bytecodes::_l2f: // fall through
1433     case Bytecodes::_d2f: tos_out = ftos; break;
1434     case Bytecodes::_i2d: // fall through
1435     case Bytecodes::_l2d: // fall through
1436     case Bytecodes::_f2d: tos_out = dtos; break;
1437     default             : ShouldNotReachHere();
1438     }
1439     transition(tos_in, tos_out);
1440   }
1441 #endif // ASSERT
1442 
1443   static const int64_t is_nan = 0x8000000000000000L;
1444 
1445   // Conversion
1446   switch (bytecode()) {
1447   case Bytecodes::_i2l:
1448     __ movslq(rax, rax);
1449     break;
1450   case Bytecodes::_i2f:
1451     __ cvtsi2ssl(xmm0, rax);
1452     break;
1453   case Bytecodes::_i2d:
1454     __ cvtsi2sdl(xmm0, rax);
1455     break;
1456   case Bytecodes::_i2b:
1457     __ movsbl(rax, rax);
1458     break;
1459   case Bytecodes::_i2c:
1460     __ movzwl(rax, rax);
1461     break;
1462   case Bytecodes::_i2s:
1463     __ movswl(rax, rax);
1464     break;
1465   case Bytecodes::_l2i:
1466     __ movl(rax, rax);
1467     break;
1468   case Bytecodes::_l2f:
1469     __ cvtsi2ssq(xmm0, rax);
1470     break;
1471   case Bytecodes::_l2d:
1472     __ cvtsi2sdq(xmm0, rax);
1473     break;
1474   case Bytecodes::_f2i:
1475   {
1476     Label L;
1477     __ cvttss2sil(rax, xmm0);
1478     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1479     __ jcc(Assembler::notEqual, L);
1480     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1481     __ bind(L);
1482   }
1483     break;
1484   case Bytecodes::_f2l:
1485   {
1486     Label L;
1487     __ cvttss2siq(rax, xmm0);
1488     // NaN or overflow/underflow?
1489     __ cmp64(rax, ExternalAddress((address) &is_nan));
1490     __ jcc(Assembler::notEqual, L);
1491     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1492     __ bind(L);
1493   }
1494     break;
1495   case Bytecodes::_f2d:
1496     __ cvtss2sd(xmm0, xmm0);
1497     break;
1498   case Bytecodes::_d2i:
1499   {
1500     Label L;
1501     __ cvttsd2sil(rax, xmm0);
1502     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1503     __ jcc(Assembler::notEqual, L);
1504     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
1505     __ bind(L);
1506   }
1507     break;
1508   case Bytecodes::_d2l:
1509   {
1510     Label L;
1511     __ cvttsd2siq(rax, xmm0);
1512     // NaN or overflow/underflow?
1513     __ cmp64(rax, ExternalAddress((address) &is_nan));
1514     __ jcc(Assembler::notEqual, L);
1515     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
1516     __ bind(L);
1517   }
1518     break;
1519   case Bytecodes::_d2f:
1520     __ cvtsd2ss(xmm0, xmm0);
1521     break;
1522   default:
1523     ShouldNotReachHere();
1524   }
1525 }
1526 
1527 void TemplateTable::lcmp() {
1528   transition(ltos, itos);
1529   Label done;
1530   __ pop_l(rdx);
1531   __ cmpq(rdx, rax);
1532   __ movl(rax, -1);
1533   __ jccb(Assembler::less, done);
1534   __ setb(Assembler::notEqual, rax);
1535   __ movzbl(rax, rax);
1536   __ bind(done);
1537 }
1538 
1539 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1540   Label done;
1541   if (is_float) {
1542     // XXX get rid of pop here, use ... reg, mem32
1543     __ pop_f(xmm1);
1544     __ ucomiss(xmm1, xmm0);
1545   } else {
1546     // XXX get rid of pop here, use ... reg, mem64
1547     __ pop_d(xmm1);
1548     __ ucomisd(xmm1, xmm0);
1549   }
1550   if (unordered_result < 0) {
1551     __ movl(rax, -1);
1552     __ jccb(Assembler::parity, done);
1553     __ jccb(Assembler::below, done);
1554     __ setb(Assembler::notEqual, rdx);
1555     __ movzbl(rax, rdx);
1556   } else {
1557     __ movl(rax, 1);
1558     __ jccb(Assembler::parity, done);
1559     __ jccb(Assembler::above, done);
1560     __ movl(rax, 0);
1561     __ jccb(Assembler::equal, done);
1562     __ decrementl(rax);
1563   }
1564   __ bind(done);
1565 }
1566 
1567 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1568   __ get_method(rcx); // rcx holds method
1569   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
1570                                      // holds bumped taken count
1571 
1572   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() +
1573                              InvocationCounter::counter_offset();
1574   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() +
1575                               InvocationCounter::counter_offset();
1576   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
1577 
1578   // Load up edx with the branch displacement
1579   __ movl(rdx, at_bcp(1));
1580   __ bswapl(rdx);
1581 
1582   if (!is_wide) {
1583     __ sarl(rdx, 16);
1584   }
1585   __ movl2ptr(rdx, rdx);
1586 
1587   // Handle all the JSR stuff here, then exit.
1588   // It's much shorter and cleaner than intermingling with the non-JSR
1589   // normal-branch stuff occurring below.
1590   if (is_jsr) {
1591     // Pre-load the next target bytecode into rbx
1592     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
1593 
1594     // compute return address as bci in rax
1595     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
1596                         in_bytes(constMethodOopDesc::codes_offset())));
1597     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
1598     // Adjust the bcp in r13 by the displacement in rdx
1599     __ addptr(r13, rdx);
1600     // jsr returns atos that is not an oop
1601     __ push_i(rax);
1602     __ dispatch_only(vtos);
1603     return;
1604   }
1605 
1606   // Normal (non-jsr) branch handling
1607 
1608   // Adjust the bcp in r13 by the displacement in rdx
1609   __ addptr(r13, rdx);
1610 
1611   assert(UseLoopCounter || !UseOnStackReplacement,
1612          "on-stack-replacement requires loop counters");
1613   Label backedge_counter_overflow;
1614   Label profile_method;
1615   Label dispatch;
1616   if (UseLoopCounter) {
1617     // increment backedge counter for backward branches
1618     // rax: MDO
1619     // ebx: MDO bumped taken-count
1620     // rcx: method
1621     // rdx: target offset
1622     // r13: target bcp
1623     // r14: locals pointer
1624     __ testl(rdx, rdx);             // check if forward or backward branch
1625     __ jcc(Assembler::positive, dispatch); // count only if backward branch
1626     if (TieredCompilation) {
1627       Label no_mdo;
1628       int increment = InvocationCounter::count_increment;
1629       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1630       if (ProfileInterpreter) {
1631         // Are we profiling?
1632         __ movptr(rbx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
1633         __ testptr(rbx, rbx);
1634         __ jccb(Assembler::zero, no_mdo);
1635         // Increment the MDO backedge counter
1636         const Address mdo_backedge_counter(rbx, in_bytes(methodDataOopDesc::backedge_counter_offset()) +
1637                                            in_bytes(InvocationCounter::counter_offset()));
1638         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1639                                    rax, false, Assembler::zero, &backedge_counter_overflow);
1640         __ jmp(dispatch);
1641       }
1642       __ bind(no_mdo);
1643       // Increment backedge counter in methodOop
1644       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
1645                                  rax, false, Assembler::zero, &backedge_counter_overflow);
1646     } else {
1647       // increment counter
1648       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
1649       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
1650       __ movl(Address(rcx, be_offset), rax);        // store counter
1651 
1652       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
1653       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
1654       __ addl(rax, Address(rcx, be_offset));        // add both counters
1655 
1656       if (ProfileInterpreter) {
1657         // Test to see if we should create a method data oop
1658         __ cmp32(rax,
1659                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
1660         __ jcc(Assembler::less, dispatch);
1661 
1662         // if no method data exists, go to profile method
1663         __ test_method_data_pointer(rax, profile_method);
1664 
1665         if (UseOnStackReplacement) {
1666           // check for overflow against ebx which is the MDO taken count
1667           __ cmp32(rbx,
1668                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1669           __ jcc(Assembler::below, dispatch);
1670 
1671           // When ProfileInterpreter is on, the backedge_count comes
1672           // from the methodDataOop, which value does not get reset on
1673           // the call to frequency_counter_overflow().  To avoid
1674           // excessive calls to the overflow routine while the method is
1675           // being compiled, add a second test to make sure the overflow
1676           // function is called only once every overflow_frequency.
1677           const int overflow_frequency = 1024;
1678           __ andl(rbx, overflow_frequency - 1);
1679           __ jcc(Assembler::zero, backedge_counter_overflow);
1680 
1681         }
1682       } else {
1683         if (UseOnStackReplacement) {
1684           // check for overflow against eax, which is the sum of the
1685           // counters
1686           __ cmp32(rax,
1687                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1688           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
1689 
1690         }
1691       }
1692     }
1693     __ bind(dispatch);
1694   }
1695 
1696   // Pre-load the next target bytecode into rbx
1697   __ load_unsigned_byte(rbx, Address(r13, 0));
1698 
1699   // continue with the bytecode @ target
1700   // eax: return bci for jsr's, unused otherwise
1701   // ebx: target bytecode
1702   // r13: target bcp
1703   __ dispatch_only(vtos);
1704 
1705   if (UseLoopCounter) {
1706     if (ProfileInterpreter) {
1707       // Out-of-line code to allocate method data oop.
1708       __ bind(profile_method);
1709       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1710       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
1711       __ set_method_data_pointer_for_bcp();
1712       __ jmp(dispatch);
1713     }
1714 
1715     if (UseOnStackReplacement) {
1716       // invocation counter overflow
1717       __ bind(backedge_counter_overflow);
1718       __ negptr(rdx);
1719       __ addptr(rdx, r13); // branch bcp
1720       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1721       __ call_VM(noreg,
1722                  CAST_FROM_FN_PTR(address,
1723                                   InterpreterRuntime::frequency_counter_overflow),
1724                  rdx);
1725       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
1726 
1727       // rax: osr nmethod (osr ok) or NULL (osr not possible)
1728       // ebx: target bytecode
1729       // rdx: scratch
1730       // r14: locals pointer
1731       // r13: bcp
1732       __ testptr(rax, rax);                        // test result
1733       __ jcc(Assembler::zero, dispatch);         // no osr if null
1734       // nmethod may have been invalidated (VM may block upon call_VM return)
1735       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
1736       __ cmpl(rcx, InvalidOSREntryBci);
1737       __ jcc(Assembler::equal, dispatch);
1738 
1739       // We have the address of an on stack replacement routine in eax
1740       // We need to prepare to execute the OSR method. First we must
1741       // migrate the locals and monitors off of the stack.
1742 
1743       __ mov(r13, rax);                             // save the nmethod
1744 
1745       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1746 
1747       // eax is OSR buffer, move it to expected parameter location
1748       __ mov(j_rarg0, rax);
1749 
1750       // We use j_rarg definitions here so that registers don't conflict as parameter
1751       // registers change across platforms as we are in the midst of a calling
1752       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
1753 
1754       const Register retaddr = j_rarg2;
1755       const Register sender_sp = j_rarg1;
1756 
1757       // pop the interpreter frame
1758       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1759       __ leave();                                // remove frame anchor
1760       __ pop(retaddr);                           // get return address
1761       __ mov(rsp, sender_sp);                   // set sp to sender sp
1762       // Ensure compiled code always sees stack at proper alignment
1763       __ andptr(rsp, -(StackAlignmentInBytes));
1764 
1765       // unlike x86 we need no specialized return from compiled code
1766       // to the interpreter or the call stub.
1767 
1768       // push the return address
1769       __ push(retaddr);
1770 
1771       // and begin the OSR nmethod
1772       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
1773     }
1774   }
1775 }
1776 
1777 
1778 void TemplateTable::if_0cmp(Condition cc) {
1779   transition(itos, vtos);
1780   // assume branch is more often taken than not (loops use backward branches)
1781   Label not_taken;
1782   __ testl(rax, rax);
1783   __ jcc(j_not(cc), not_taken);
1784   branch(false, false);
1785   __ bind(not_taken);
1786   __ profile_not_taken_branch(rax);
1787 }
1788 
1789 void TemplateTable::if_icmp(Condition cc) {
1790   transition(itos, vtos);
1791   // assume branch is more often taken than not (loops use backward branches)
1792   Label not_taken;
1793   __ pop_i(rdx);
1794   __ cmpl(rdx, rax);
1795   __ jcc(j_not(cc), not_taken);
1796   branch(false, false);
1797   __ bind(not_taken);
1798   __ profile_not_taken_branch(rax);
1799 }
1800 
1801 void TemplateTable::if_nullcmp(Condition cc) {
1802   transition(atos, vtos);
1803   // assume branch is more often taken than not (loops use backward branches)
1804   Label not_taken;
1805   __ testptr(rax, rax);
1806   __ jcc(j_not(cc), not_taken);
1807   branch(false, false);
1808   __ bind(not_taken);
1809   __ profile_not_taken_branch(rax);
1810 }
1811 
1812 void TemplateTable::if_acmp(Condition cc) {
1813   transition(atos, vtos);
1814   // assume branch is more often taken than not (loops use backward branches)
1815   Label not_taken;
1816   __ pop_ptr(rdx);
1817   __ cmpptr(rdx, rax);
1818   __ jcc(j_not(cc), not_taken);
1819   branch(false, false);
1820   __ bind(not_taken);
1821   __ profile_not_taken_branch(rax);
1822 }
1823 
1824 void TemplateTable::ret() {
1825   transition(vtos, vtos);
1826   locals_index(rbx);
1827   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
1828   __ profile_ret(rbx, rcx);
1829   __ get_method(rax);
1830   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
1831   __ lea(r13, Address(r13, rbx, Address::times_1,
1832                       constMethodOopDesc::codes_offset()));
1833   __ dispatch_next(vtos);
1834 }
1835 
1836 void TemplateTable::wide_ret() {
1837   transition(vtos, vtos);
1838   locals_index_wide(rbx);
1839   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
1840   __ profile_ret(rbx, rcx);
1841   __ get_method(rax);
1842   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
1843   __ lea(r13, Address(r13, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
1844   __ dispatch_next(vtos);
1845 }
1846 
1847 void TemplateTable::tableswitch() {
1848   Label default_case, continue_execution;
1849   transition(itos, vtos);
1850   // align r13
1851   __ lea(rbx, at_bcp(BytesPerInt));
1852   __ andptr(rbx, -BytesPerInt);
1853   // load lo & hi
1854   __ movl(rcx, Address(rbx, BytesPerInt));
1855   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
1856   __ bswapl(rcx);
1857   __ bswapl(rdx);
1858   // check against lo & hi
1859   __ cmpl(rax, rcx);
1860   __ jcc(Assembler::less, default_case);
1861   __ cmpl(rax, rdx);
1862   __ jcc(Assembler::greater, default_case);
1863   // lookup dispatch offset
1864   __ subl(rax, rcx);
1865   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
1866   __ profile_switch_case(rax, rbx, rcx);
1867   // continue execution
1868   __ bind(continue_execution);
1869   __ bswapl(rdx);
1870   __ movl2ptr(rdx, rdx);
1871   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
1872   __ addptr(r13, rdx);
1873   __ dispatch_only(vtos);
1874   // handle default
1875   __ bind(default_case);
1876   __ profile_switch_default(rax);
1877   __ movl(rdx, Address(rbx, 0));
1878   __ jmp(continue_execution);
1879 }
1880 
1881 void TemplateTable::lookupswitch() {
1882   transition(itos, itos);
1883   __ stop("lookupswitch bytecode should have been rewritten");
1884 }
1885 
1886 void TemplateTable::fast_linearswitch() {
1887   transition(itos, vtos);
1888   Label loop_entry, loop, found, continue_execution;
1889   // bswap rax so we can avoid bswapping the table entries
1890   __ bswapl(rax);
1891   // align r13
1892   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
1893                                     // this instruction (change offsets
1894                                     // below)
1895   __ andptr(rbx, -BytesPerInt);
1896   // set counter
1897   __ movl(rcx, Address(rbx, BytesPerInt));
1898   __ bswapl(rcx);
1899   __ jmpb(loop_entry);
1900   // table search
1901   __ bind(loop);
1902   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
1903   __ jcc(Assembler::equal, found);
1904   __ bind(loop_entry);
1905   __ decrementl(rcx);
1906   __ jcc(Assembler::greaterEqual, loop);
1907   // default case
1908   __ profile_switch_default(rax);
1909   __ movl(rdx, Address(rbx, 0));
1910   __ jmp(continue_execution);
1911   // entry found -> get offset
1912   __ bind(found);
1913   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
1914   __ profile_switch_case(rcx, rax, rbx);
1915   // continue execution
1916   __ bind(continue_execution);
1917   __ bswapl(rdx);
1918   __ movl2ptr(rdx, rdx);
1919   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
1920   __ addptr(r13, rdx);
1921   __ dispatch_only(vtos);
1922 }
1923 
1924 void TemplateTable::fast_binaryswitch() {
1925   transition(itos, vtos);
1926   // Implementation using the following core algorithm:
1927   //
1928   // int binary_search(int key, LookupswitchPair* array, int n) {
1929   //   // Binary search according to "Methodik des Programmierens" by
1930   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1931   //   int i = 0;
1932   //   int j = n;
1933   //   while (i+1 < j) {
1934   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1935   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1936   //     // where a stands for the array and assuming that the (inexisting)
1937   //     // element a[n] is infinitely big.
1938   //     int h = (i + j) >> 1;
1939   //     // i < h < j
1940   //     if (key < array[h].fast_match()) {
1941   //       j = h;
1942   //     } else {
1943   //       i = h;
1944   //     }
1945   //   }
1946   //   // R: a[i] <= key < a[i+1] or Q
1947   //   // (i.e., if key is within array, i is the correct index)
1948   //   return i;
1949   // }
1950 
1951   // Register allocation
1952   const Register key   = rax; // already set (tosca)
1953   const Register array = rbx;
1954   const Register i     = rcx;
1955   const Register j     = rdx;
1956   const Register h     = rdi;
1957   const Register temp  = rsi;
1958 
1959   // Find array start
1960   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
1961                                           // get rid of this
1962                                           // instruction (change
1963                                           // offsets below)
1964   __ andptr(array, -BytesPerInt);
1965 
1966   // Initialize i & j
1967   __ xorl(i, i);                            // i = 0;
1968   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
1969 
1970   // Convert j into native byteordering
1971   __ bswapl(j);
1972 
1973   // And start
1974   Label entry;
1975   __ jmp(entry);
1976 
1977   // binary search loop
1978   {
1979     Label loop;
1980     __ bind(loop);
1981     // int h = (i + j) >> 1;
1982     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
1983     __ sarl(h, 1);                               // h = (i + j) >> 1;
1984     // if (key < array[h].fast_match()) {
1985     //   j = h;
1986     // } else {
1987     //   i = h;
1988     // }
1989     // Convert array[h].match to native byte-ordering before compare
1990     __ movl(temp, Address(array, h, Address::times_8));
1991     __ bswapl(temp);
1992     __ cmpl(key, temp);
1993     // j = h if (key <  array[h].fast_match())
1994     __ cmovl(Assembler::less, j, h);
1995     // i = h if (key >= array[h].fast_match())
1996     __ cmovl(Assembler::greaterEqual, i, h);
1997     // while (i+1 < j)
1998     __ bind(entry);
1999     __ leal(h, Address(i, 1)); // i+1
2000     __ cmpl(h, j);             // i+1 < j
2001     __ jcc(Assembler::less, loop);
2002   }
2003 
2004   // end of binary search, result index is i (must check again!)
2005   Label default_case;
2006   // Convert array[i].match to native byte-ordering before compare
2007   __ movl(temp, Address(array, i, Address::times_8));
2008   __ bswapl(temp);
2009   __ cmpl(key, temp);
2010   __ jcc(Assembler::notEqual, default_case);
2011 
2012   // entry found -> j = offset
2013   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
2014   __ profile_switch_case(i, key, array);
2015   __ bswapl(j);
2016   __ movl2ptr(j, j);
2017   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
2018   __ addptr(r13, j);
2019   __ dispatch_only(vtos);
2020 
2021   // default case -> j = default offset
2022   __ bind(default_case);
2023   __ profile_switch_default(i);
2024   __ movl(j, Address(array, -2 * BytesPerInt));
2025   __ bswapl(j);
2026   __ movl2ptr(j, j);
2027   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
2028   __ addptr(r13, j);
2029   __ dispatch_only(vtos);
2030 }
2031 
2032 
2033 void TemplateTable::_return(TosState state) {
2034   transition(state, state);
2035   assert(_desc->calls_vm(),
2036          "inconsistent calls_vm information"); // call in remove_activation
2037 
2038   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2039     assert(state == vtos, "only valid state");
2040     __ movptr(c_rarg1, aaddress(0));
2041     __ load_klass(rdi, c_rarg1);
2042     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
2043     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2044     Label skip_register_finalizer;
2045     __ jcc(Assembler::zero, skip_register_finalizer);
2046 
2047     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2048 
2049     __ bind(skip_register_finalizer);
2050   }
2051 
2052   __ remove_activation(state, r13);
2053   __ jmp(r13);
2054 }
2055 
2056 // ----------------------------------------------------------------------------
2057 // Volatile variables demand their effects be made known to all CPU's
2058 // in order.  Store buffers on most chips allow reads & writes to
2059 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2060 // without some kind of memory barrier (i.e., it's not sufficient that
2061 // the interpreter does not reorder volatile references, the hardware
2062 // also must not reorder them).
2063 //
2064 // According to the new Java Memory Model (JMM):
2065 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2066 //     writes act as aquire & release, so:
2067 // (2) A read cannot let unrelated NON-volatile memory refs that
2068 //     happen after the read float up to before the read.  It's OK for
2069 //     non-volatile memory refs that happen before the volatile read to
2070 //     float down below it.
2071 // (3) Similar a volatile write cannot let unrelated NON-volatile
2072 //     memory refs that happen BEFORE the write float down to after the
2073 //     write.  It's OK for non-volatile memory refs that happen after the
2074 //     volatile write to float up before it.
2075 //
2076 // We only put in barriers around volatile refs (they are expensive),
2077 // not _between_ memory refs (that would require us to track the
2078 // flavor of the previous memory refs).  Requirements (2) and (3)
2079 // require some barriers before volatile stores and after volatile
2080 // loads.  These nearly cover requirement (1) but miss the
2081 // volatile-store-volatile-load case.  This final case is placed after
2082 // volatile-stores although it could just as well go before
2083 // volatile-loads.
2084 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
2085                                      order_constraint) {
2086   // Helper function to insert a is-volatile test and memory barrier
2087   if (os::is_MP()) { // Not needed on single CPU
2088     __ membar(order_constraint);
2089   }
2090 }
2091 
2092 void TemplateTable::resolve_cache_and_index(int byte_no,
2093                                             Register result,
2094                                             Register Rcache,
2095                                             Register index,
2096                                             size_t index_size) {
2097   const Register temp = rbx;
2098   assert_different_registers(result, Rcache, index, temp);
2099 
2100   Label resolved;
2101   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2102   if (byte_no == f1_oop) {
2103     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2104     // This kind of CP cache entry does not need to match the flags byte, because
2105     // there is a 1-1 relation between bytecode type and CP entry type.
2106     assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD)
2107     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
2108     __ testptr(result, result);
2109     __ jcc(Assembler::notEqual, resolved);
2110   } else {
2111     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2112     assert(result == noreg, "");  //else change code for setting result
2113     const int shift_count = (1 + byte_no) * BitsPerByte;
2114     __ movl(temp, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
2115     __ shrl(temp, shift_count);
2116     // have we resolved this bytecode?
2117     __ andl(temp, 0xFF);
2118     __ cmpl(temp, (int) bytecode());
2119     __ jcc(Assembler::equal, resolved);
2120   }
2121 
2122   // resolve first time through
2123   address entry;
2124   switch (bytecode()) {
2125   case Bytecodes::_getstatic:
2126   case Bytecodes::_putstatic:
2127   case Bytecodes::_getfield:
2128   case Bytecodes::_putfield:
2129     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
2130     break;
2131   case Bytecodes::_invokevirtual:
2132   case Bytecodes::_invokespecial:
2133   case Bytecodes::_invokestatic:
2134   case Bytecodes::_invokeinterface:
2135     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
2136     break;
2137   case Bytecodes::_invokedynamic:
2138     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
2139     break;
2140   case Bytecodes::_fast_aldc:
2141     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
2142     break;
2143   case Bytecodes::_fast_aldc_w:
2144     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
2145     break;
2146   default:
2147     ShouldNotReachHere();
2148     break;
2149   }
2150   __ movl(temp, (int) bytecode());
2151   __ call_VM(noreg, entry, temp);
2152 
2153   // Update registers with resolved info
2154   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2155   if (result != noreg)
2156     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
2157   __ bind(resolved);
2158 }
2159 
2160 // The Rcache and index registers must be set before call
2161 void TemplateTable::load_field_cp_cache_entry(Register obj,
2162                                               Register cache,
2163                                               Register index,
2164                                               Register off,
2165                                               Register flags,
2166                                               bool is_static = false) {
2167   assert_different_registers(cache, index, flags, off);
2168 
2169   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2170   // Field offset
2171   __ movptr(off, Address(cache, index, Address::times_8,
2172                          in_bytes(cp_base_offset +
2173                                   ConstantPoolCacheEntry::f2_offset())));
2174   // Flags
2175   __ movl(flags, Address(cache, index, Address::times_8,
2176                          in_bytes(cp_base_offset +
2177                                   ConstantPoolCacheEntry::flags_offset())));
2178 
2179   // klass overwrite register
2180   if (is_static) {
2181     __ movptr(obj, Address(cache, index, Address::times_8,
2182                            in_bytes(cp_base_offset +
2183                                     ConstantPoolCacheEntry::f1_offset())));
2184   }
2185 }
2186 
2187 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2188                                                Register method,
2189                                                Register itable_index,
2190                                                Register flags,
2191                                                bool is_invokevirtual,
2192                                                bool is_invokevfinal, /*unused*/
2193                                                bool is_invokedynamic) {
2194   // setup registers
2195   const Register cache = rcx;
2196   const Register index = rdx;
2197   assert_different_registers(method, flags);
2198   assert_different_registers(method, cache, index);
2199   assert_different_registers(itable_index, flags);
2200   assert_different_registers(itable_index, cache, index);
2201   // determine constant pool cache field offsets
2202   const int method_offset = in_bytes(
2203     constantPoolCacheOopDesc::base_offset() +
2204       (is_invokevirtual
2205        ? ConstantPoolCacheEntry::f2_offset()
2206        : ConstantPoolCacheEntry::f1_offset()));
2207   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
2208                                     ConstantPoolCacheEntry::flags_offset());
2209   // access constant pool cache fields
2210   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
2211                                     ConstantPoolCacheEntry::f2_offset());
2212 
2213   if (byte_no == f1_oop) {
2214     // Resolved f1_oop goes directly into 'method' register.
2215     assert(is_invokedynamic, "");
2216     resolve_cache_and_index(byte_no, method, cache, index, sizeof(u4));
2217   } else {
2218     resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
2219     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
2220   }
2221   if (itable_index != noreg) {
2222     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2223   }
2224   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
2225 }
2226 
2227 
2228 // The registers cache and index expected to be set before call.
2229 // Correct values of the cache and index registers are preserved.
2230 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2231                                             bool is_static, bool has_tos) {
2232   // do the JVMTI work here to avoid disturbing the register state below
2233   // We use c_rarg registers here because we want to use the register used in
2234   // the call to the VM
2235   if (JvmtiExport::can_post_field_access()) {
2236     // Check to see if a field access watch has been set before we
2237     // take the time to call into the VM.
2238     Label L1;
2239     assert_different_registers(cache, index, rax);
2240     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2241     __ testl(rax, rax);
2242     __ jcc(Assembler::zero, L1);
2243 
2244     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
2245 
2246     // cache entry pointer
2247     __ addptr(c_rarg2, in_bytes(constantPoolCacheOopDesc::base_offset()));
2248     __ shll(c_rarg3, LogBytesPerWord);
2249     __ addptr(c_rarg2, c_rarg3);
2250     if (is_static) {
2251       __ xorl(c_rarg1, c_rarg1); // NULL object reference
2252     } else {
2253       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
2254       __ verify_oop(c_rarg1);
2255     }
2256     // c_rarg1: object pointer or NULL
2257     // c_rarg2: cache entry pointer
2258     // c_rarg3: jvalue object on the stack
2259     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2260                                        InterpreterRuntime::post_field_access),
2261                c_rarg1, c_rarg2, c_rarg3);
2262     __ get_cache_and_index_at_bcp(cache, index, 1);
2263     __ bind(L1);
2264   }
2265 }
2266 
2267 void TemplateTable::pop_and_check_object(Register r) {
2268   __ pop_ptr(r);
2269   __ null_check(r);  // for field access must check obj.
2270   __ verify_oop(r);
2271 }
2272 
2273 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2274   transition(vtos, vtos);
2275 
2276   const Register cache = rcx;
2277   const Register index = rdx;
2278   const Register obj   = c_rarg3;
2279   const Register off   = rbx;
2280   const Register flags = rax;
2281   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
2282 
2283   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
2284   jvmti_post_field_access(cache, index, is_static, false);
2285   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2286 
2287   if (!is_static) {
2288     // obj is on the stack
2289     pop_and_check_object(obj);
2290   }
2291 
2292   const Address field(obj, off, Address::times_1);
2293 
2294   Label Done, notByte, notInt, notShort, notChar,
2295               notLong, notFloat, notObj, notDouble;
2296 
2297   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2298   assert(btos == 0, "change code, btos != 0");
2299 
2300   __ andl(flags, 0x0F);
2301   __ jcc(Assembler::notZero, notByte);
2302   // btos
2303   __ load_signed_byte(rax, field);
2304   __ push(btos);
2305   // Rewrite bytecode to be faster
2306   if (!is_static) {
2307     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2308   }
2309   __ jmp(Done);
2310 
2311   __ bind(notByte);
2312   __ cmpl(flags, atos);
2313   __ jcc(Assembler::notEqual, notObj);
2314   // atos
2315   __ load_heap_oop(rax, field);
2316   __ push(atos);
2317   if (!is_static) {
2318     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2319   }
2320   __ jmp(Done);
2321 
2322   __ bind(notObj);
2323   __ cmpl(flags, itos);
2324   __ jcc(Assembler::notEqual, notInt);
2325   // itos
2326   __ movl(rax, field);
2327   __ push(itos);
2328   // Rewrite bytecode to be faster
2329   if (!is_static) {
2330     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
2331   }
2332   __ jmp(Done);
2333 
2334   __ bind(notInt);
2335   __ cmpl(flags, ctos);
2336   __ jcc(Assembler::notEqual, notChar);
2337   // ctos
2338   __ load_unsigned_short(rax, field);
2339   __ push(ctos);
2340   // Rewrite bytecode to be faster
2341   if (!is_static) {
2342     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
2343   }
2344   __ jmp(Done);
2345 
2346   __ bind(notChar);
2347   __ cmpl(flags, stos);
2348   __ jcc(Assembler::notEqual, notShort);
2349   // stos
2350   __ load_signed_short(rax, field);
2351   __ push(stos);
2352   // Rewrite bytecode to be faster
2353   if (!is_static) {
2354     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
2355   }
2356   __ jmp(Done);
2357 
2358   __ bind(notShort);
2359   __ cmpl(flags, ltos);
2360   __ jcc(Assembler::notEqual, notLong);
2361   // ltos
2362   __ movq(rax, field);
2363   __ push(ltos);
2364   // Rewrite bytecode to be faster
2365   if (!is_static) {
2366     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
2367   }
2368   __ jmp(Done);
2369 
2370   __ bind(notLong);
2371   __ cmpl(flags, ftos);
2372   __ jcc(Assembler::notEqual, notFloat);
2373   // ftos
2374   __ movflt(xmm0, field);
2375   __ push(ftos);
2376   // Rewrite bytecode to be faster
2377   if (!is_static) {
2378     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
2379   }
2380   __ jmp(Done);
2381 
2382   __ bind(notFloat);
2383 #ifdef ASSERT
2384   __ cmpl(flags, dtos);
2385   __ jcc(Assembler::notEqual, notDouble);
2386 #endif
2387   // dtos
2388   __ movdbl(xmm0, field);
2389   __ push(dtos);
2390   // Rewrite bytecode to be faster
2391   if (!is_static) {
2392     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
2393   }
2394 #ifdef ASSERT
2395   __ jmp(Done);
2396 
2397   __ bind(notDouble);
2398   __ stop("Bad state");
2399 #endif
2400 
2401   __ bind(Done);
2402   // [jk] not needed currently
2403   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
2404   //                                              Assembler::LoadStore));
2405 }
2406 
2407 
2408 void TemplateTable::getfield(int byte_no) {
2409   getfield_or_static(byte_no, false);
2410 }
2411 
2412 void TemplateTable::getstatic(int byte_no) {
2413   getfield_or_static(byte_no, true);
2414 }
2415 
2416 // The registers cache and index expected to be set before call.
2417 // The function may destroy various registers, just not the cache and index registers.
2418 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2419   transition(vtos, vtos);
2420 
2421   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2422 
2423   if (JvmtiExport::can_post_field_modification()) {
2424     // Check to see if a field modification watch has been set before
2425     // we take the time to call into the VM.
2426     Label L1;
2427     assert_different_registers(cache, index, rax);
2428     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2429     __ testl(rax, rax);
2430     __ jcc(Assembler::zero, L1);
2431 
2432     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
2433 
2434     if (is_static) {
2435       // Life is simple.  Null out the object pointer.
2436       __ xorl(c_rarg1, c_rarg1);
2437     } else {
2438       // Life is harder. The stack holds the value on top, followed by
2439       // the object.  We don't know the size of the value, though; it
2440       // could be one or two words depending on its type. As a result,
2441       // we must find the type to determine where the object is.
2442       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
2443                            Address::times_8,
2444                            in_bytes(cp_base_offset +
2445                                      ConstantPoolCacheEntry::flags_offset())));
2446       __ shrl(c_rarg3, ConstantPoolCacheEntry::tosBits);
2447       // Make sure we don't need to mask rcx for tosBits after the
2448       // above shift
2449       ConstantPoolCacheEntry::verify_tosBits();
2450       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
2451       __ cmpl(c_rarg3, ltos);
2452       __ cmovptr(Assembler::equal,
2453                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
2454       __ cmpl(c_rarg3, dtos);
2455       __ cmovptr(Assembler::equal,
2456                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
2457     }
2458     // cache entry pointer
2459     __ addptr(c_rarg2, in_bytes(cp_base_offset));
2460     __ shll(rscratch1, LogBytesPerWord);
2461     __ addptr(c_rarg2, rscratch1);
2462     // object (tos)
2463     __ mov(c_rarg3, rsp);
2464     // c_rarg1: object pointer set up above (NULL if static)
2465     // c_rarg2: cache entry pointer
2466     // c_rarg3: jvalue object on the stack
2467     __ call_VM(noreg,
2468                CAST_FROM_FN_PTR(address,
2469                                 InterpreterRuntime::post_field_modification),
2470                c_rarg1, c_rarg2, c_rarg3);
2471     __ get_cache_and_index_at_bcp(cache, index, 1);
2472     __ bind(L1);
2473   }
2474 }
2475 
2476 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2477   transition(vtos, vtos);
2478 
2479   const Register cache = rcx;
2480   const Register index = rdx;
2481   const Register obj   = rcx;
2482   const Register off   = rbx;
2483   const Register flags = rax;
2484   const Register bc    = c_rarg3;
2485 
2486   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
2487   jvmti_post_field_mod(cache, index, is_static);
2488   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2489 
2490   // [jk] not needed currently
2491   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2492   //                                              Assembler::StoreStore));
2493 
2494   Label notVolatile, Done;
2495   __ movl(rdx, flags);
2496   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2497   __ andl(rdx, 0x1);
2498 
2499   // field address
2500   const Address field(obj, off, Address::times_1);
2501 
2502   Label notByte, notInt, notShort, notChar,
2503         notLong, notFloat, notObj, notDouble;
2504 
2505   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2506 
2507   assert(btos == 0, "change code, btos != 0");
2508   __ andl(flags, 0x0f);
2509   __ jcc(Assembler::notZero, notByte);
2510   // btos
2511   __ pop(btos);
2512   if (!is_static) pop_and_check_object(obj);
2513   __ movb(field, rax);
2514   if (!is_static) {
2515     patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx);
2516   }
2517   __ jmp(Done);
2518 
2519   __ bind(notByte);
2520   __ cmpl(flags, atos);
2521   __ jcc(Assembler::notEqual, notObj);
2522   // atos
2523   __ pop(atos);
2524   if (!is_static) pop_and_check_object(obj);
2525 
2526   // Store into the field
2527   do_oop_store(_masm, field, rax, _bs->kind(), false);
2528 
2529   if (!is_static) {
2530     patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx);
2531   }
2532   __ jmp(Done);
2533 
2534   __ bind(notObj);
2535   __ cmpl(flags, itos);
2536   __ jcc(Assembler::notEqual, notInt);
2537   // itos
2538   __ pop(itos);
2539   if (!is_static) pop_and_check_object(obj);
2540   __ movl(field, rax);
2541   if (!is_static) {
2542     patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx);
2543   }
2544   __ jmp(Done);
2545 
2546   __ bind(notInt);
2547   __ cmpl(flags, ctos);
2548   __ jcc(Assembler::notEqual, notChar);
2549   // ctos
2550   __ pop(ctos);
2551   if (!is_static) pop_and_check_object(obj);
2552   __ movw(field, rax);
2553   if (!is_static) {
2554     patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx);
2555   }
2556   __ jmp(Done);
2557 
2558   __ bind(notChar);
2559   __ cmpl(flags, stos);
2560   __ jcc(Assembler::notEqual, notShort);
2561   // stos
2562   __ pop(stos);
2563   if (!is_static) pop_and_check_object(obj);
2564   __ movw(field, rax);
2565   if (!is_static) {
2566     patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx);
2567   }
2568   __ jmp(Done);
2569 
2570   __ bind(notShort);
2571   __ cmpl(flags, ltos);
2572   __ jcc(Assembler::notEqual, notLong);
2573   // ltos
2574   __ pop(ltos);
2575   if (!is_static) pop_and_check_object(obj);
2576   __ movq(field, rax);
2577   if (!is_static) {
2578     patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx);
2579   }
2580   __ jmp(Done);
2581 
2582   __ bind(notLong);
2583   __ cmpl(flags, ftos);
2584   __ jcc(Assembler::notEqual, notFloat);
2585   // ftos
2586   __ pop(ftos);
2587   if (!is_static) pop_and_check_object(obj);
2588   __ movflt(field, xmm0);
2589   if (!is_static) {
2590     patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx);
2591   }
2592   __ jmp(Done);
2593 
2594   __ bind(notFloat);
2595 #ifdef ASSERT
2596   __ cmpl(flags, dtos);
2597   __ jcc(Assembler::notEqual, notDouble);
2598 #endif
2599   // dtos
2600   __ pop(dtos);
2601   if (!is_static) pop_and_check_object(obj);
2602   __ movdbl(field, xmm0);
2603   if (!is_static) {
2604     patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx);
2605   }
2606 
2607 #ifdef ASSERT
2608   __ jmp(Done);
2609 
2610   __ bind(notDouble);
2611   __ stop("Bad state");
2612 #endif
2613 
2614   __ bind(Done);
2615   // Check for volatile store
2616   __ testl(rdx, rdx);
2617   __ jcc(Assembler::zero, notVolatile);
2618   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2619                                                Assembler::StoreStore));
2620 
2621   __ bind(notVolatile);
2622 }
2623 
2624 void TemplateTable::putfield(int byte_no) {
2625   putfield_or_static(byte_no, false);
2626 }
2627 
2628 void TemplateTable::putstatic(int byte_no) {
2629   putfield_or_static(byte_no, true);
2630 }
2631 
2632 void TemplateTable::jvmti_post_fast_field_mod() {
2633   if (JvmtiExport::can_post_field_modification()) {
2634     // Check to see if a field modification watch has been set before
2635     // we take the time to call into the VM.
2636     Label L2;
2637     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2638     __ testl(c_rarg3, c_rarg3);
2639     __ jcc(Assembler::zero, L2);
2640     __ pop_ptr(rbx);                  // copy the object pointer from tos
2641     __ verify_oop(rbx);
2642     __ push_ptr(rbx);                 // put the object pointer back on tos
2643     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
2644     __ mov(c_rarg3, rsp);
2645     const Address field(c_rarg3, 0);
2646 
2647     switch (bytecode()) {          // load values into the jvalue object
2648     case Bytecodes::_fast_aputfield: __ movq(field, rax); break;
2649     case Bytecodes::_fast_lputfield: __ movq(field, rax); break;
2650     case Bytecodes::_fast_iputfield: __ movl(field, rax); break;
2651     case Bytecodes::_fast_bputfield: __ movb(field, rax); break;
2652     case Bytecodes::_fast_sputfield: // fall through
2653     case Bytecodes::_fast_cputfield: __ movw(field, rax); break;
2654     case Bytecodes::_fast_fputfield: __ movflt(field, xmm0); break;
2655     case Bytecodes::_fast_dputfield: __ movdbl(field, xmm0); break;
2656     default:
2657       ShouldNotReachHere();
2658     }
2659 
2660     // Save rax because call_VM() will clobber it, then use it for
2661     // JVMTI purposes
2662     __ push(rax);
2663     // access constant pool cache entry
2664     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
2665     __ verify_oop(rbx);
2666     // rbx: object pointer copied above
2667     // c_rarg2: cache entry pointer
2668     // c_rarg3: jvalue object on the stack
2669     __ call_VM(noreg,
2670                CAST_FROM_FN_PTR(address,
2671                                 InterpreterRuntime::post_field_modification),
2672                rbx, c_rarg2, c_rarg3);
2673     __ pop(rax);     // restore lower value
2674     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
2675     __ bind(L2);
2676   }
2677 }
2678 
2679 void TemplateTable::fast_storefield(TosState state) {
2680   transition(state, vtos);
2681 
2682   ByteSize base = constantPoolCacheOopDesc::base_offset();
2683 
2684   jvmti_post_fast_field_mod();
2685 
2686   // access constant pool cache
2687   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2688 
2689   // test for volatile with rdx
2690   __ movl(rdx, Address(rcx, rbx, Address::times_8,
2691                        in_bytes(base +
2692                                 ConstantPoolCacheEntry::flags_offset())));
2693 
2694   // replace index with field offset from cache entry
2695   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
2696                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
2697 
2698   // [jk] not needed currently
2699   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2700   //                                              Assembler::StoreStore));
2701 
2702   Label notVolatile;
2703   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2704   __ andl(rdx, 0x1);
2705 
2706   // Get object from stack
2707   pop_and_check_object(rcx);
2708 
2709   // field address
2710   const Address field(rcx, rbx, Address::times_1);
2711 
2712   // access field
2713   switch (bytecode()) {
2714   case Bytecodes::_fast_aputfield:
2715     do_oop_store(_masm, field, rax, _bs->kind(), false);
2716     break;
2717   case Bytecodes::_fast_lputfield:
2718     __ movq(field, rax);
2719     break;
2720   case Bytecodes::_fast_iputfield:
2721     __ movl(field, rax);
2722     break;
2723   case Bytecodes::_fast_bputfield:
2724     __ movb(field, rax);
2725     break;
2726   case Bytecodes::_fast_sputfield:
2727     // fall through
2728   case Bytecodes::_fast_cputfield:
2729     __ movw(field, rax);
2730     break;
2731   case Bytecodes::_fast_fputfield:
2732     __ movflt(field, xmm0);
2733     break;
2734   case Bytecodes::_fast_dputfield:
2735     __ movdbl(field, xmm0);
2736     break;
2737   default:
2738     ShouldNotReachHere();
2739   }
2740 
2741   // Check for volatile store
2742   __ testl(rdx, rdx);
2743   __ jcc(Assembler::zero, notVolatile);
2744   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2745                                                Assembler::StoreStore));
2746   __ bind(notVolatile);
2747 }
2748 
2749 
2750 void TemplateTable::fast_accessfield(TosState state) {
2751   transition(atos, state);
2752 
2753   // Do the JVMTI work here to avoid disturbing the register state below
2754   if (JvmtiExport::can_post_field_access()) {
2755     // Check to see if a field access watch has been set before we
2756     // take the time to call into the VM.
2757     Label L1;
2758     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2759     __ testl(rcx, rcx);
2760     __ jcc(Assembler::zero, L1);
2761     // access constant pool cache entry
2762     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
2763     __ verify_oop(rax);
2764     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
2765     __ mov(c_rarg1, rax);
2766     // c_rarg1: object pointer copied above
2767     // c_rarg2: cache entry pointer
2768     __ call_VM(noreg,
2769                CAST_FROM_FN_PTR(address,
2770                                 InterpreterRuntime::post_field_access),
2771                c_rarg1, c_rarg2);
2772     __ pop_ptr(rax); // restore object pointer
2773     __ bind(L1);
2774   }
2775 
2776   // access constant pool cache
2777   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2778   // replace index with field offset from cache entry
2779   // [jk] not needed currently
2780   // if (os::is_MP()) {
2781   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
2782   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
2783   //                                 ConstantPoolCacheEntry::flags_offset())));
2784   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2785   //   __ andl(rdx, 0x1);
2786   // }
2787   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
2788                          in_bytes(constantPoolCacheOopDesc::base_offset() +
2789                                   ConstantPoolCacheEntry::f2_offset())));
2790 
2791   // rax: object
2792   __ verify_oop(rax);
2793   __ null_check(rax);
2794   Address field(rax, rbx, Address::times_1);
2795 
2796   // access field
2797   switch (bytecode()) {
2798   case Bytecodes::_fast_agetfield:
2799     __ load_heap_oop(rax, field);
2800     __ verify_oop(rax);
2801     break;
2802   case Bytecodes::_fast_lgetfield:
2803     __ movq(rax, field);
2804     break;
2805   case Bytecodes::_fast_igetfield:
2806     __ movl(rax, field);
2807     break;
2808   case Bytecodes::_fast_bgetfield:
2809     __ movsbl(rax, field);
2810     break;
2811   case Bytecodes::_fast_sgetfield:
2812     __ load_signed_short(rax, field);
2813     break;
2814   case Bytecodes::_fast_cgetfield:
2815     __ load_unsigned_short(rax, field);
2816     break;
2817   case Bytecodes::_fast_fgetfield:
2818     __ movflt(xmm0, field);
2819     break;
2820   case Bytecodes::_fast_dgetfield:
2821     __ movdbl(xmm0, field);
2822     break;
2823   default:
2824     ShouldNotReachHere();
2825   }
2826   // [jk] not needed currently
2827   // if (os::is_MP()) {
2828   //   Label notVolatile;
2829   //   __ testl(rdx, rdx);
2830   //   __ jcc(Assembler::zero, notVolatile);
2831   //   __ membar(Assembler::LoadLoad);
2832   //   __ bind(notVolatile);
2833   //};
2834 }
2835 
2836 void TemplateTable::fast_xaccess(TosState state) {
2837   transition(vtos, state);
2838 
2839   // get receiver
2840   __ movptr(rax, aaddress(0));
2841   // access constant pool cache
2842   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
2843   __ movptr(rbx,
2844             Address(rcx, rdx, Address::times_8,
2845                     in_bytes(constantPoolCacheOopDesc::base_offset() +
2846                              ConstantPoolCacheEntry::f2_offset())));
2847   // make sure exception is reported in correct bcp range (getfield is
2848   // next instruction)
2849   __ increment(r13);
2850   __ null_check(rax);
2851   switch (state) {
2852   case itos:
2853     __ movl(rax, Address(rax, rbx, Address::times_1));
2854     break;
2855   case atos:
2856     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
2857     __ verify_oop(rax);
2858     break;
2859   case ftos:
2860     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
2861     break;
2862   default:
2863     ShouldNotReachHere();
2864   }
2865 
2866   // [jk] not needed currently
2867   // if (os::is_MP()) {
2868   //   Label notVolatile;
2869   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
2870   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
2871   //                                 ConstantPoolCacheEntry::flags_offset())));
2872   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2873   //   __ testl(rdx, 0x1);
2874   //   __ jcc(Assembler::zero, notVolatile);
2875   //   __ membar(Assembler::LoadLoad);
2876   //   __ bind(notVolatile);
2877   // }
2878 
2879   __ decrement(r13);
2880 }
2881 
2882 
2883 
2884 //-----------------------------------------------------------------------------
2885 // Calls
2886 
2887 void TemplateTable::count_calls(Register method, Register temp) {
2888   // implemented elsewhere
2889   ShouldNotReachHere();
2890 }
2891 
2892 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) {
2893   // determine flags
2894   Bytecodes::Code code = bytecode();
2895   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2896   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2897   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2898   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2899   const bool load_receiver      = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic);
2900   const bool receiver_null_check = is_invokespecial;
2901   const bool save_flags = is_invokeinterface || is_invokevirtual;
2902   // setup registers & access constant pool cache
2903   const Register recv   = rcx;
2904   const Register flags  = rdx;
2905   assert_different_registers(method, index, recv, flags);
2906 
2907   // save 'interpreter return address'
2908   __ save_bcp();
2909 
2910   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
2911 
2912   // load receiver if needed (note: no return address pushed yet)
2913   if (load_receiver) {
2914     assert(!is_invokedynamic, "");
2915     __ movl(recv, flags);
2916     __ andl(recv, 0xFF);
2917     Address recv_addr(rsp, recv, Address::times_8, -Interpreter::expr_offset_in_bytes(1));
2918     __ movptr(recv, recv_addr);
2919     __ verify_oop(recv);
2920   }
2921 
2922   // do null check if needed
2923   if (receiver_null_check) {
2924     __ null_check(recv);
2925   }
2926 
2927   if (save_flags) {
2928     __ movl(r13, flags);
2929   }
2930 
2931   // compute return type
2932   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2933   // Make sure we don't need to mask flags for tosBits after the above shift
2934   ConstantPoolCacheEntry::verify_tosBits();
2935   // load return address
2936   {
2937     address table_addr;
2938     if (is_invokeinterface || is_invokedynamic)
2939       table_addr = (address)Interpreter::return_5_addrs_by_index_table();
2940     else
2941       table_addr = (address)Interpreter::return_3_addrs_by_index_table();
2942     ExternalAddress table(table_addr);
2943     __ lea(rscratch1, table);
2944     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
2945   }
2946 
2947   // push return address
2948   __ push(flags);
2949 
2950   // Restore flag field from the constant pool cache, and restore esi
2951   // for later null checks.  r13 is the bytecode pointer
2952   if (save_flags) {
2953     __ movl(flags, r13);
2954     __ restore_bcp();
2955   }
2956 }
2957 
2958 
2959 void TemplateTable::invokevirtual_helper(Register index,
2960                                          Register recv,
2961                                          Register flags) {
2962   // Uses temporary registers rax, rdx
2963   assert_different_registers(index, recv, rax, rdx);
2964 
2965   // Test for an invoke of a final method
2966   Label notFinal;
2967   __ movl(rax, flags);
2968   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
2969   __ jcc(Assembler::zero, notFinal);
2970 
2971   const Register method = index;  // method must be rbx
2972   assert(method == rbx,
2973          "methodOop must be rbx for interpreter calling convention");
2974 
2975   // do the call - the index is actually the method to call
2976   __ verify_oop(method);
2977 
2978   // It's final, need a null check here!
2979   __ null_check(recv);
2980 
2981   // profile this call
2982   __ profile_final_call(rax);
2983 
2984   __ jump_from_interpreted(method, rax);
2985 
2986   __ bind(notFinal);
2987 
2988   // get receiver klass
2989   __ null_check(recv, oopDesc::klass_offset_in_bytes());
2990   __ load_klass(rax, recv);
2991 
2992   __ verify_oop(rax);
2993 
2994   // profile this call
2995   __ profile_virtual_call(rax, r14, rdx);
2996 
2997   // get target methodOop & entry point
2998   const int base = instanceKlass::vtable_start_offset() * wordSize;
2999   assert(vtableEntry::size() * wordSize == 8,
3000          "adjust the scaling in the code below");
3001   __ movptr(method, Address(rax, index,
3002                                  Address::times_8,
3003                                  base + vtableEntry::method_offset_in_bytes()));
3004   __ movptr(rdx, Address(method, methodOopDesc::interpreter_entry_offset()));
3005   __ jump_from_interpreted(method, rdx);
3006 }
3007 
3008 
3009 void TemplateTable::invokevirtual(int byte_no) {
3010   transition(vtos, vtos);
3011   assert(byte_no == f2_byte, "use this argument");
3012   prepare_invoke(rbx, noreg, byte_no);
3013 
3014   // rbx: index
3015   // rcx: receiver
3016   // rdx: flags
3017 
3018   invokevirtual_helper(rbx, rcx, rdx);
3019 }
3020 
3021 
3022 void TemplateTable::invokespecial(int byte_no) {
3023   transition(vtos, vtos);
3024   assert(byte_no == f1_byte, "use this argument");
3025   prepare_invoke(rbx, noreg, byte_no);
3026   // do the call
3027   __ verify_oop(rbx);
3028   __ profile_call(rax);
3029   __ jump_from_interpreted(rbx, rax);
3030 }
3031 
3032 
3033 void TemplateTable::invokestatic(int byte_no) {
3034   transition(vtos, vtos);
3035   assert(byte_no == f1_byte, "use this argument");
3036   prepare_invoke(rbx, noreg, byte_no);
3037   // do the call
3038   __ verify_oop(rbx);
3039   __ profile_call(rax);
3040   __ jump_from_interpreted(rbx, rax);
3041 }
3042 
3043 void TemplateTable::fast_invokevfinal(int byte_no) {
3044   transition(vtos, vtos);
3045   assert(byte_no == f2_byte, "use this argument");
3046   __ stop("fast_invokevfinal not used on amd64");
3047 }
3048 
3049 void TemplateTable::invokeinterface(int byte_no) {
3050   transition(vtos, vtos);
3051   assert(byte_no == f1_byte, "use this argument");
3052   prepare_invoke(rax, rbx, byte_no);
3053 
3054   // rax: Interface
3055   // rbx: index
3056   // rcx: receiver
3057   // rdx: flags
3058 
3059   // Special case of invokeinterface called for virtual method of
3060   // java.lang.Object.  See cpCacheOop.cpp for details.
3061   // This code isn't produced by javac, but could be produced by
3062   // another compliant java compiler.
3063   Label notMethod;
3064   __ movl(r14, rdx);
3065   __ andl(r14, (1 << ConstantPoolCacheEntry::methodInterface));
3066   __ jcc(Assembler::zero, notMethod);
3067 
3068   invokevirtual_helper(rbx, rcx, rdx);
3069   __ bind(notMethod);
3070 
3071   // Get receiver klass into rdx - also a null check
3072   __ restore_locals(); // restore r14
3073   __ load_klass(rdx, rcx);
3074   __ verify_oop(rdx);
3075 
3076   // profile this call
3077   __ profile_virtual_call(rdx, r13, r14);
3078 
3079   Label no_such_interface, no_such_method;
3080 
3081   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3082                              rdx, rax, rbx,
3083                              // outputs: method, scan temp. reg
3084                              rbx, r13,
3085                              no_such_interface);
3086 
3087   // rbx,: methodOop to call
3088   // rcx: receiver
3089   // Check for abstract method error
3090   // Note: This should be done more efficiently via a throw_abstract_method_error
3091   //       interpreter entry point and a conditional jump to it in case of a null
3092   //       method.
3093   __ testptr(rbx, rbx);
3094   __ jcc(Assembler::zero, no_such_method);
3095 
3096   // do the call
3097   // rcx: receiver
3098   // rbx,: methodOop
3099   __ jump_from_interpreted(rbx, rdx);
3100   __ should_not_reach_here();
3101 
3102   // exception handling code follows...
3103   // note: must restore interpreter registers to canonical
3104   //       state for exception handling to work correctly!
3105 
3106   __ bind(no_such_method);
3107   // throw exception
3108   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3109   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
3110   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3111   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3112   // the call_VM checks for exception, so we should never return here.
3113   __ should_not_reach_here();
3114 
3115   __ bind(no_such_interface);
3116   // throw exception
3117   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3118   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
3119   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3120   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3121                    InterpreterRuntime::throw_IncompatibleClassChangeError));
3122   // the call_VM checks for exception, so we should never return here.
3123   __ should_not_reach_here();
3124   return;
3125 }
3126 
3127 void TemplateTable::invokedynamic(int byte_no) {
3128   transition(vtos, vtos);
3129   assert(byte_no == f1_oop, "use this argument");
3130 
3131   if (!EnableInvokeDynamic) {
3132     // We should not encounter this bytecode if !EnableInvokeDynamic.
3133     // The verifier will stop it.  However, if we get past the verifier,
3134     // this will stop the thread in a reasonable way, without crashing the JVM.
3135     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3136                      InterpreterRuntime::throw_IncompatibleClassChangeError));
3137     // the call_VM checks for exception, so we should never return here.
3138     __ should_not_reach_here();
3139     return;
3140   }
3141 
3142   prepare_invoke(rax, rbx, byte_no);
3143 
3144   // rax: CallSite object (f1)
3145   // rbx: unused (f2)
3146   // rcx: receiver address
3147   // rdx: flags (unused)
3148 
3149   Register rax_callsite      = rax;
3150   Register rcx_method_handle = rcx;
3151 
3152   // %%% should make a type profile for any invokedynamic that takes a ref argument
3153   // profile this call
3154   __ profile_call(r13);
3155 
3156   __ verify_oop(rax_callsite);
3157   __ load_heap_oop(rcx_method_handle, Address(rax_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, rdx)));
3158   __ null_check(rcx_method_handle);
3159   __ verify_oop(rcx_method_handle);
3160   __ prepare_to_jump_from_interpreted();
3161   __ jump_to_method_handle_entry(rcx_method_handle, rdx);
3162 }
3163 
3164 
3165 //-----------------------------------------------------------------------------
3166 // Allocation
3167 
3168 void TemplateTable::_new() {
3169   transition(vtos, atos);
3170   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3171   Label slow_case;
3172   Label done;
3173   Label initialize_header;
3174   Label initialize_object; // including clearing the fields
3175   Label allocate_shared;
3176 
3177   __ get_cpool_and_tags(rsi, rax);
3178   // Make sure the class we're about to instantiate has been resolved.
3179   // This is done before loading instanceKlass to be consistent with the order
3180   // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
3181   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
3182   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
3183           JVM_CONSTANT_Class);
3184   __ jcc(Assembler::notEqual, slow_case);
3185 
3186   // get instanceKlass
3187   __ movptr(rsi, Address(rsi, rdx,
3188             Address::times_8, sizeof(constantPoolOopDesc)));
3189 
3190   // make sure klass is initialized & doesn't have finalizer
3191   // make sure klass is fully initialized
3192   __ cmpl(Address(rsi,
3193                   instanceKlass::init_state_offset_in_bytes() +
3194                   sizeof(oopDesc)),
3195           instanceKlass::fully_initialized);
3196   __ jcc(Assembler::notEqual, slow_case);
3197 
3198   // get instance_size in instanceKlass (scaled to a count of bytes)
3199   __ movl(rdx,
3200           Address(rsi,
3201                   Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
3202   // test to see if it has a finalizer or is malformed in some way
3203   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
3204   __ jcc(Assembler::notZero, slow_case);
3205 
3206   // Allocate the instance
3207   // 1) Try to allocate in the TLAB
3208   // 2) if fail and the object is large allocate in the shared Eden
3209   // 3) if the above fails (or is not applicable), go to a slow case
3210   // (creates a new TLAB, etc.)
3211 
3212   const bool allow_shared_alloc =
3213     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3214 
3215   if (UseTLAB) {
3216     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
3217     __ lea(rbx, Address(rax, rdx, Address::times_1));
3218     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
3219     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
3220     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
3221     if (ZeroTLAB) {
3222       // the fields have been already cleared
3223       __ jmp(initialize_header);
3224     } else {
3225       // initialize both the header and fields
3226       __ jmp(initialize_object);
3227     }
3228   }
3229 
3230   // Allocation in the shared Eden, if allowed.
3231   //
3232   // rdx: instance size in bytes
3233   if (allow_shared_alloc) {
3234     __ bind(allocate_shared);
3235 
3236     ExternalAddress top((address)Universe::heap()->top_addr());
3237     ExternalAddress end((address)Universe::heap()->end_addr());
3238 
3239     const Register RtopAddr = rscratch1;
3240     const Register RendAddr = rscratch2;
3241 
3242     __ lea(RtopAddr, top);
3243     __ lea(RendAddr, end);
3244     __ movptr(rax, Address(RtopAddr, 0));
3245 
3246     // For retries rax gets set by cmpxchgq
3247     Label retry;
3248     __ bind(retry);
3249     __ lea(rbx, Address(rax, rdx, Address::times_1));
3250     __ cmpptr(rbx, Address(RendAddr, 0));
3251     __ jcc(Assembler::above, slow_case);
3252 
3253     // Compare rax with the top addr, and if still equal, store the new
3254     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
3255     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
3256     //
3257     // rax: object begin
3258     // rbx: object end
3259     // rdx: instance size in bytes
3260     if (os::is_MP()) {
3261       __ lock();
3262     }
3263     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
3264 
3265     // if someone beat us on the allocation, try again, otherwise continue
3266     __ jcc(Assembler::notEqual, retry);
3267 
3268     __ incr_allocated_bytes(r15_thread, rdx, 0);
3269   }
3270 
3271   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3272     // The object is initialized before the header.  If the object size is
3273     // zero, go directly to the header initialization.
3274     __ bind(initialize_object);
3275     __ decrementl(rdx, sizeof(oopDesc));
3276     __ jcc(Assembler::zero, initialize_header);
3277 
3278     // Initialize object fields
3279     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3280     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
3281     {
3282       Label loop;
3283       __ bind(loop);
3284       __ movq(Address(rax, rdx, Address::times_8,
3285                       sizeof(oopDesc) - oopSize),
3286               rcx);
3287       __ decrementl(rdx);
3288       __ jcc(Assembler::notZero, loop);
3289     }
3290 
3291     // initialize object header only.
3292     __ bind(initialize_header);
3293     if (UseBiasedLocking) {
3294       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
3295       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
3296     } else {
3297       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
3298                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
3299     }
3300     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3301     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
3302     __ store_klass(rax, rsi);      // store klass last
3303 
3304     {
3305       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
3306       // Trigger dtrace event for fastpath
3307       __ push(atos); // save the return value
3308       __ call_VM_leaf(
3309            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
3310       __ pop(atos); // restore the return value
3311 
3312     }
3313     __ jmp(done);
3314   }
3315 
3316 
3317   // slow case
3318   __ bind(slow_case);
3319   __ get_constant_pool(c_rarg1);
3320   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3321   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3322   __ verify_oop(rax);
3323 
3324   // continue
3325   __ bind(done);
3326 }
3327 
3328 void TemplateTable::newarray() {
3329   transition(itos, atos);
3330   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3331   __ movl(c_rarg2, rax);
3332   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3333           c_rarg1, c_rarg2);
3334 }
3335 
3336 void TemplateTable::anewarray() {
3337   transition(itos, atos);
3338   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3339   __ get_constant_pool(c_rarg1);
3340   __ movl(c_rarg3, rax);
3341   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3342           c_rarg1, c_rarg2, c_rarg3);
3343 }
3344 
3345 void TemplateTable::arraylength() {
3346   transition(atos, itos);
3347   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
3348   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
3349 }
3350 
3351 void TemplateTable::checkcast() {
3352   transition(atos, atos);
3353   Label done, is_null, ok_is_subtype, quicked, resolved;
3354   __ testptr(rax, rax); // object is in rax
3355   __ jcc(Assembler::zero, is_null);
3356 
3357   // Get cpool & tags index
3358   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3359   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3360   // See if bytecode has already been quicked
3361   __ cmpb(Address(rdx, rbx,
3362                   Address::times_1,
3363                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
3364           JVM_CONSTANT_Class);
3365   __ jcc(Assembler::equal, quicked);
3366   __ push(atos); // save receiver for result, and for GC
3367   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3368   __ pop_ptr(rdx); // restore receiver
3369   __ jmpb(resolved);
3370 
3371   // Get superklass in rax and subklass in rbx
3372   __ bind(quicked);
3373   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
3374   __ movptr(rax, Address(rcx, rbx,
3375                        Address::times_8, sizeof(constantPoolOopDesc)));
3376 
3377   __ bind(resolved);
3378   __ load_klass(rbx, rdx);
3379 
3380   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
3381   // Superklass in rax.  Subklass in rbx.
3382   __ gen_subtype_check(rbx, ok_is_subtype);
3383 
3384   // Come here on failure
3385   __ push_ptr(rdx);
3386   // object is at TOS
3387   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
3388 
3389   // Come here on success
3390   __ bind(ok_is_subtype);
3391   __ mov(rax, rdx); // Restore object in rdx
3392 
3393   // Collect counts on whether this check-cast sees NULLs a lot or not.
3394   if (ProfileInterpreter) {
3395     __ jmp(done);
3396     __ bind(is_null);
3397     __ profile_null_seen(rcx);
3398   } else {
3399     __ bind(is_null);   // same as 'done'
3400   }
3401   __ bind(done);
3402 }
3403 
3404 void TemplateTable::instanceof() {
3405   transition(atos, itos);
3406   Label done, is_null, ok_is_subtype, quicked, resolved;
3407   __ testptr(rax, rax);
3408   __ jcc(Assembler::zero, is_null);
3409 
3410   // Get cpool & tags index
3411   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3412   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3413   // See if bytecode has already been quicked
3414   __ cmpb(Address(rdx, rbx,
3415                   Address::times_1,
3416                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
3417           JVM_CONSTANT_Class);
3418   __ jcc(Assembler::equal, quicked);
3419 
3420   __ push(atos); // save receiver for result, and for GC
3421   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3422   __ pop_ptr(rdx); // restore receiver
3423   __ verify_oop(rdx);
3424   __ load_klass(rdx, rdx);
3425   __ jmpb(resolved);
3426 
3427   // Get superklass in rax and subklass in rdx
3428   __ bind(quicked);
3429   __ load_klass(rdx, rax);
3430   __ movptr(rax, Address(rcx, rbx,
3431                          Address::times_8, sizeof(constantPoolOopDesc)));
3432 
3433   __ bind(resolved);
3434 
3435   // Generate subtype check.  Blows rcx, rdi
3436   // Superklass in rax.  Subklass in rdx.
3437   __ gen_subtype_check(rdx, ok_is_subtype);
3438 
3439   // Come here on failure
3440   __ xorl(rax, rax);
3441   __ jmpb(done);
3442   // Come here on success
3443   __ bind(ok_is_subtype);
3444   __ movl(rax, 1);
3445 
3446   // Collect counts on whether this test sees NULLs a lot or not.
3447   if (ProfileInterpreter) {
3448     __ jmp(done);
3449     __ bind(is_null);
3450     __ profile_null_seen(rcx);
3451   } else {
3452     __ bind(is_null);   // same as 'done'
3453   }
3454   __ bind(done);
3455   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
3456   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
3457 }
3458 
3459 //-----------------------------------------------------------------------------
3460 // Breakpoints
3461 void TemplateTable::_breakpoint() {
3462   // Note: We get here even if we are single stepping..
3463   // jbug inists on setting breakpoints at every bytecode
3464   // even if we are in single step mode.
3465 
3466   transition(vtos, vtos);
3467 
3468   // get the unpatched byte code
3469   __ get_method(c_rarg1);
3470   __ call_VM(noreg,
3471              CAST_FROM_FN_PTR(address,
3472                               InterpreterRuntime::get_original_bytecode_at),
3473              c_rarg1, r13);
3474   __ mov(rbx, rax);
3475 
3476   // post the breakpoint event
3477   __ get_method(c_rarg1);
3478   __ call_VM(noreg,
3479              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
3480              c_rarg1, r13);
3481 
3482   // complete the execution of original bytecode
3483   __ dispatch_only_normal(vtos);
3484 }
3485 
3486 //-----------------------------------------------------------------------------
3487 // Exceptions
3488 
3489 void TemplateTable::athrow() {
3490   transition(atos, vtos);
3491   __ null_check(rax);
3492   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
3493 }
3494 
3495 //-----------------------------------------------------------------------------
3496 // Synchronization
3497 //
3498 // Note: monitorenter & exit are symmetric routines; which is reflected
3499 //       in the assembly code structure as well
3500 //
3501 // Stack layout:
3502 //
3503 // [expressions  ] <--- rsp               = expression stack top
3504 // ..
3505 // [expressions  ]
3506 // [monitor entry] <--- monitor block top = expression stack bot
3507 // ..
3508 // [monitor entry]
3509 // [frame data   ] <--- monitor block bot
3510 // ...
3511 // [saved rbp    ] <--- rbp
3512 void TemplateTable::monitorenter() {
3513   transition(atos, vtos);
3514 
3515   // check for NULL object
3516   __ null_check(rax);
3517 
3518   const Address monitor_block_top(
3519         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3520   const Address monitor_block_bot(
3521         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3522   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3523 
3524   Label allocated;
3525 
3526   // initialize entry pointer
3527   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
3528 
3529   // find a free slot in the monitor block (result in c_rarg1)
3530   {
3531     Label entry, loop, exit;
3532     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
3533                                      // starting with top-most entry
3534     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3535                                      // of monitor block
3536     __ jmpb(entry);
3537 
3538     __ bind(loop);
3539     // check if current entry is used
3540     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
3541     // if not used then remember entry in c_rarg1
3542     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
3543     // check if current entry is for same object
3544     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
3545     // if same object then stop searching
3546     __ jccb(Assembler::equal, exit);
3547     // otherwise advance to next entry
3548     __ addptr(c_rarg3, entry_size);
3549     __ bind(entry);
3550     // check if bottom reached
3551     __ cmpptr(c_rarg3, c_rarg2);
3552     // if not at bottom then check this entry
3553     __ jcc(Assembler::notEqual, loop);
3554     __ bind(exit);
3555   }
3556 
3557   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
3558   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
3559 
3560   // allocate one if there's no free slot
3561   {
3562     Label entry, loop;
3563     // 1. compute new pointers             // rsp: old expression stack top
3564     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
3565     __ subptr(rsp, entry_size);            // move expression stack top
3566     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
3567     __ mov(c_rarg3, rsp);                  // set start value for copy loop
3568     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
3569     __ jmp(entry);
3570     // 2. move expression stack contents
3571     __ bind(loop);
3572     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
3573                                                       // word from old location
3574     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
3575     __ addptr(c_rarg3, wordSize);                     // advance to next word
3576     __ bind(entry);
3577     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
3578     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
3579                                             // copy next word
3580   }
3581 
3582   // call run-time routine
3583   // c_rarg1: points to monitor entry
3584   __ bind(allocated);
3585 
3586   // Increment bcp to point to the next bytecode, so exception
3587   // handling for async. exceptions work correctly.
3588   // The object has already been poped from the stack, so the
3589   // expression stack looks correct.
3590   __ increment(r13);
3591 
3592   // store object
3593   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
3594   __ lock_object(c_rarg1);
3595 
3596   // check to make sure this monitor doesn't cause stack overflow after locking
3597   __ save_bcp();  // in case of exception
3598   __ generate_stack_overflow_check(0);
3599 
3600   // The bcp has already been incremented. Just need to dispatch to
3601   // next instruction.
3602   __ dispatch_next(vtos);
3603 }
3604 
3605 
3606 void TemplateTable::monitorexit() {
3607   transition(atos, vtos);
3608 
3609   // check for NULL object
3610   __ null_check(rax);
3611 
3612   const Address monitor_block_top(
3613         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3614   const Address monitor_block_bot(
3615         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3616   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3617 
3618   Label found;
3619 
3620   // find matching slot
3621   {
3622     Label entry, loop;
3623     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
3624                                      // starting with top-most entry
3625     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3626                                      // of monitor block
3627     __ jmpb(entry);
3628 
3629     __ bind(loop);
3630     // check if current entry is for same object
3631     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
3632     // if same object then stop searching
3633     __ jcc(Assembler::equal, found);
3634     // otherwise advance to next entry
3635     __ addptr(c_rarg1, entry_size);
3636     __ bind(entry);
3637     // check if bottom reached
3638     __ cmpptr(c_rarg1, c_rarg2);
3639     // if not at bottom then check this entry
3640     __ jcc(Assembler::notEqual, loop);
3641   }
3642 
3643   // error handling. Unlocking was not block-structured
3644   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3645                    InterpreterRuntime::throw_illegal_monitor_state_exception));
3646   __ should_not_reach_here();
3647 
3648   // call run-time routine
3649   // rsi: points to monitor entry
3650   __ bind(found);
3651   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
3652   __ unlock_object(c_rarg1);
3653   __ pop_ptr(rax); // discard object
3654 }
3655 
3656 
3657 // Wide instructions
3658 void TemplateTable::wide() {
3659   transition(vtos, vtos);
3660   __ load_unsigned_byte(rbx, at_bcp(1));
3661   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
3662   __ jmp(Address(rscratch1, rbx, Address::times_8));
3663   // Note: the r13 increment step is part of the individual wide
3664   // bytecode implementations
3665 }
3666 
3667 
3668 // Multi arrays
3669 void TemplateTable::multianewarray() {
3670   transition(vtos, atos);
3671   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
3672   // last dim is on top of stack; we want address of first one:
3673   // first_addr = last_addr + (ndims - 1) * wordSize
3674   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
3675   call_VM(rax,
3676           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
3677           c_rarg1);
3678   __ load_unsigned_byte(rbx, at_bcp(3));
3679   __ lea(rsp, Address(rsp, rbx, Address::times_8));
3680 }
3681 #endif // !CC_INTERP