1 /*
   2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "interpreter/interpreterRuntime.hpp"
  28 #include "interpreter/templateTable.hpp"
  29 #include "memory/universe.inline.hpp"
  30 #include "oops/methodDataOop.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "prims/methodHandles.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/stubRoutines.hpp"
  36 #include "runtime/synchronizer.hpp"
  37 
  38 #ifndef CC_INTERP
  39 
  40 #define __ _masm->
  41 
  42 // Platform-dependent initialization
  43 
  44 void TemplateTable::pd_initialize() {
  45   // No amd64 specific initialization
  46 }
  47 
  48 // Address computation: local variables
  49 
  50 static inline Address iaddress(int n) {
  51   return Address(r14, Interpreter::local_offset_in_bytes(n));
  52 }
  53 
  54 static inline Address laddress(int n) {
  55   return iaddress(n + 1);
  56 }
  57 
  58 static inline Address faddress(int n) {
  59   return iaddress(n);
  60 }
  61 
  62 static inline Address daddress(int n) {
  63   return laddress(n);
  64 }
  65 
  66 static inline Address aaddress(int n) {
  67   return iaddress(n);
  68 }
  69 
  70 static inline Address iaddress(Register r) {
  71   return Address(r14, r, Address::times_8);
  72 }
  73 
  74 static inline Address laddress(Register r) {
  75   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
  76 }
  77 
  78 static inline Address faddress(Register r) {
  79   return iaddress(r);
  80 }
  81 
  82 static inline Address daddress(Register r) {
  83   return laddress(r);
  84 }
  85 
  86 static inline Address aaddress(Register r) {
  87   return iaddress(r);
  88 }
  89 
  90 static inline Address at_rsp() {
  91   return Address(rsp, 0);
  92 }
  93 
  94 // At top of Java expression stack which may be different than esp().  It
  95 // isn't for category 1 objects.
  96 static inline Address at_tos   () {
  97   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
  98 }
  99 
 100 static inline Address at_tos_p1() {
 101   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
 102 }
 103 
 104 static inline Address at_tos_p2() {
 105   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
 106 }
 107 
 108 static inline Address at_tos_p3() {
 109   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
 110 }
 111 
 112 // Condition conversion
 113 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 114   switch (cc) {
 115   case TemplateTable::equal        : return Assembler::notEqual;
 116   case TemplateTable::not_equal    : return Assembler::equal;
 117   case TemplateTable::less         : return Assembler::greaterEqual;
 118   case TemplateTable::less_equal   : return Assembler::greater;
 119   case TemplateTable::greater      : return Assembler::lessEqual;
 120   case TemplateTable::greater_equal: return Assembler::less;
 121   }
 122   ShouldNotReachHere();
 123   return Assembler::zero;
 124 }
 125 
 126 
 127 // Miscelaneous helper routines
 128 // Store an oop (or NULL) at the address described by obj.
 129 // If val == noreg this means store a NULL
 130 
 131 static void do_oop_store(InterpreterMacroAssembler* _masm,
 132                          Address obj,
 133                          Register val,
 134                          BarrierSet::Name barrier,
 135                          bool precise) {
 136   assert(val == noreg || val == rax, "parameter is just for looks");
 137   switch (barrier) {
 138 #ifndef SERIALGC
 139     case BarrierSet::G1SATBCT:
 140     case BarrierSet::G1SATBCTLogging:
 141       {
 142         // flatten object address if needed
 143         if (obj.index() == noreg && obj.disp() == 0) {
 144           if (obj.base() != rdx) {
 145             __ movq(rdx, obj.base());
 146           }
 147         } else {
 148           __ leaq(rdx, obj);
 149         }
 150         __ g1_write_barrier_pre(rdx /* obj */,
 151                                 rbx /* pre_val */,
 152                                 r15_thread /* thread */,
 153                                 r8  /* tmp */,
 154                                 val != noreg /* tosca_live */,
 155                                 false /* expand_call */);
 156         if (val == noreg) {
 157           __ store_heap_oop_null(Address(rdx, 0));
 158         } else {
 159           __ store_heap_oop(Address(rdx, 0), val);
 160           __ g1_write_barrier_post(rdx /* store_adr */,
 161                                    val /* new_val */,
 162                                    r15_thread /* thread */,
 163                                    r8 /* tmp */,
 164                                    rbx /* tmp2 */);
 165         }
 166 
 167       }
 168       break;
 169 #endif // SERIALGC
 170     case BarrierSet::CardTableModRef:
 171     case BarrierSet::CardTableExtension:
 172       {
 173         if (val == noreg) {
 174           __ store_heap_oop_null(obj);
 175         } else {
 176           __ store_heap_oop(obj, val);
 177           // flatten object address if needed
 178           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
 179             __ store_check(obj.base());
 180           } else {
 181             __ leaq(rdx, obj);
 182             __ store_check(rdx);
 183           }
 184         }
 185       }
 186       break;
 187     case BarrierSet::ModRef:
 188     case BarrierSet::Other:
 189       if (val == noreg) {
 190         __ store_heap_oop_null(obj);
 191       } else {
 192         __ store_heap_oop(obj, val);
 193       }
 194       break;
 195     default      :
 196       ShouldNotReachHere();
 197 
 198   }
 199 }
 200 
 201 Address TemplateTable::at_bcp(int offset) {
 202   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 203   return Address(r13, offset);
 204 }
 205 
 206 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 207                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 208                                    int byte_no) {
 209   if (!RewriteBytecodes)  return;
 210   Label L_patch_done;
 211 
 212   switch (bc) {
 213   case Bytecodes::_fast_aputfield:
 214   case Bytecodes::_fast_bputfield:
 215   case Bytecodes::_fast_cputfield:
 216   case Bytecodes::_fast_dputfield:
 217   case Bytecodes::_fast_fputfield:
 218   case Bytecodes::_fast_iputfield:
 219   case Bytecodes::_fast_lputfield:
 220   case Bytecodes::_fast_sputfield:
 221     {
 222       // We skip bytecode quickening for putfield instructions when
 223       // the put_code written to the constant pool cache is zero.
 224       // This is required so that every execution of this instruction
 225       // calls out to InterpreterRuntime::resolve_get_put to do
 226       // additional, required work.
 227       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 228       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 229       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
 230       __ movl(bc_reg, bc);
 231       __ cmpl(temp_reg, (int) 0);
 232       __ jcc(Assembler::zero, L_patch_done);  // don't patch
 233     }
 234     break;
 235   default:
 236     assert(byte_no == -1, "sanity");
 237     // the pair bytecodes have already done the load.
 238     if (load_bc_into_bc_reg) {
 239       __ movl(bc_reg, bc);
 240     }
 241   }
 242 
 243   if (JvmtiExport::can_post_breakpoint()) {
 244     Label L_fast_patch;
 245     // if a breakpoint is present we can't rewrite the stream directly
 246     __ movzbl(temp_reg, at_bcp(0));
 247     __ cmpl(temp_reg, Bytecodes::_breakpoint);
 248     __ jcc(Assembler::notEqual, L_fast_patch);
 249     __ get_method(temp_reg);
 250     // Let breakpoint table handling rewrite to quicker bytecode
 251     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, r13, bc_reg);
 252 #ifndef ASSERT
 253     __ jmpb(L_patch_done);
 254 #else
 255     __ jmp(L_patch_done);
 256 #endif
 257     __ bind(L_fast_patch);
 258   }
 259 
 260 #ifdef ASSERT
 261   Label L_okay;
 262   __ load_unsigned_byte(temp_reg, at_bcp(0));
 263   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
 264   __ jcc(Assembler::equal, L_okay);
 265   __ cmpl(temp_reg, bc_reg);
 266   __ jcc(Assembler::equal, L_okay);
 267   __ stop("patching the wrong bytecode");
 268   __ bind(L_okay);
 269 #endif
 270 
 271   // patch bytecode
 272   __ movb(at_bcp(0), bc_reg);
 273   __ bind(L_patch_done);
 274 }
 275 
 276 
 277 // Individual instructions
 278 
 279 void TemplateTable::nop() {
 280   transition(vtos, vtos);
 281   // nothing to do
 282 }
 283 
 284 void TemplateTable::shouldnotreachhere() {
 285   transition(vtos, vtos);
 286   __ stop("shouldnotreachhere bytecode");
 287 }
 288 
 289 void TemplateTable::aconst_null() {
 290   transition(vtos, atos);
 291   __ xorl(rax, rax);
 292 }
 293 
 294 void TemplateTable::iconst(int value) {
 295   transition(vtos, itos);
 296   if (value == 0) {
 297     __ xorl(rax, rax);
 298   } else {
 299     __ movl(rax, value);
 300   }
 301 }
 302 
 303 void TemplateTable::lconst(int value) {
 304   transition(vtos, ltos);
 305   if (value == 0) {
 306     __ xorl(rax, rax);
 307   } else {
 308     __ movl(rax, value);
 309   }
 310 }
 311 
 312 void TemplateTable::fconst(int value) {
 313   transition(vtos, ftos);
 314   static float one = 1.0f, two = 2.0f;
 315   switch (value) {
 316   case 0:
 317     __ xorps(xmm0, xmm0);
 318     break;
 319   case 1:
 320     __ movflt(xmm0, ExternalAddress((address) &one));
 321     break;
 322   case 2:
 323     __ movflt(xmm0, ExternalAddress((address) &two));
 324     break;
 325   default:
 326     ShouldNotReachHere();
 327     break;
 328   }
 329 }
 330 
 331 void TemplateTable::dconst(int value) {
 332   transition(vtos, dtos);
 333   static double one = 1.0;
 334   switch (value) {
 335   case 0:
 336     __ xorpd(xmm0, xmm0);
 337     break;
 338   case 1:
 339     __ movdbl(xmm0, ExternalAddress((address) &one));
 340     break;
 341   default:
 342     ShouldNotReachHere();
 343     break;
 344   }
 345 }
 346 
 347 void TemplateTable::bipush() {
 348   transition(vtos, itos);
 349   __ load_signed_byte(rax, at_bcp(1));
 350 }
 351 
 352 void TemplateTable::sipush() {
 353   transition(vtos, itos);
 354   __ load_unsigned_short(rax, at_bcp(1));
 355   __ bswapl(rax);
 356   __ sarl(rax, 16);
 357 }
 358 
 359 void TemplateTable::ldc(bool wide) {
 360   transition(vtos, vtos);
 361   Label call_ldc, notFloat, notClass, Done;
 362 
 363   if (wide) {
 364     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 365   } else {
 366     __ load_unsigned_byte(rbx, at_bcp(1));
 367   }
 368 
 369   __ get_cpool_and_tags(rcx, rax);
 370   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
 371   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
 372 
 373   // get type
 374   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 375 
 376   // unresolved string - get the resolved string
 377   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
 378   __ jccb(Assembler::equal, call_ldc);
 379 
 380   // unresolved class - get the resolved class
 381   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
 382   __ jccb(Assembler::equal, call_ldc);
 383 
 384   // unresolved class in error state - call into runtime to throw the error
 385   // from the first resolution attempt
 386   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
 387   __ jccb(Assembler::equal, call_ldc);
 388 
 389   // resolved class - need to call vm to get java mirror of the class
 390   __ cmpl(rdx, JVM_CONSTANT_Class);
 391   __ jcc(Assembler::notEqual, notClass);
 392 
 393   __ bind(call_ldc);
 394   __ movl(c_rarg1, wide);
 395   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
 396   __ push_ptr(rax);
 397   __ verify_oop(rax);
 398   __ jmp(Done);
 399 
 400   __ bind(notClass);
 401   __ cmpl(rdx, JVM_CONSTANT_Float);
 402   __ jccb(Assembler::notEqual, notFloat);
 403   // ftos
 404   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
 405   __ push_f();
 406   __ jmp(Done);
 407 
 408   __ bind(notFloat);
 409 #ifdef ASSERT
 410   {
 411     Label L;
 412     __ cmpl(rdx, JVM_CONSTANT_Integer);
 413     __ jcc(Assembler::equal, L);
 414     __ cmpl(rdx, JVM_CONSTANT_String);
 415     __ jcc(Assembler::equal, L);
 416     __ cmpl(rdx, JVM_CONSTANT_Object);
 417     __ jcc(Assembler::equal, L);
 418     __ stop("unexpected tag type in ldc");
 419     __ bind(L);
 420   }
 421 #endif
 422   // atos and itos
 423   Label isOop;
 424   __ cmpl(rdx, JVM_CONSTANT_Integer);
 425   __ jcc(Assembler::notEqual, isOop);
 426   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
 427   __ push_i(rax);
 428   __ jmp(Done);
 429 
 430   __ bind(isOop);
 431   __ movptr(rax, Address(rcx, rbx, Address::times_8, base_offset));
 432   __ push_ptr(rax);
 433 
 434   if (VerifyOops) {
 435     __ verify_oop(rax);
 436   }
 437 
 438   __ bind(Done);
 439 }
 440 
 441 // Fast path for caching oop constants.
 442 // %%% We should use this to handle Class and String constants also.
 443 // %%% It will simplify the ldc/primitive path considerably.
 444 void TemplateTable::fast_aldc(bool wide) {
 445   transition(vtos, atos);
 446 
 447   if (!EnableInvokeDynamic) {
 448     // We should not encounter this bytecode if !EnableInvokeDynamic.
 449     // The verifier will stop it.  However, if we get past the verifier,
 450     // this will stop the thread in a reasonable way, without crashing the JVM.
 451     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
 452                      InterpreterRuntime::throw_IncompatibleClassChangeError));
 453     // the call_VM checks for exception, so we should never return here.
 454     __ should_not_reach_here();
 455     return;
 456   }
 457 
 458   const Register cache = rcx;
 459   const Register index = rdx;
 460 
 461   resolve_cache_and_index(f1_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1));
 462   if (VerifyOops) {
 463     __ verify_oop(rax);
 464   }
 465 
 466   Label L_done, L_throw_exception;
 467   const Register con_klass_temp = rcx;  // same as cache
 468   const Register array_klass_temp = rdx;  // same as index
 469   __ load_klass(con_klass_temp, rax);
 470   __ lea(array_klass_temp, ExternalAddress((address)Universe::systemObjArrayKlassObj_addr()));
 471   __ cmpptr(con_klass_temp, Address(array_klass_temp, 0));
 472   __ jcc(Assembler::notEqual, L_done);
 473   __ cmpl(Address(rax, arrayOopDesc::length_offset_in_bytes()), 0);
 474   __ jcc(Assembler::notEqual, L_throw_exception);
 475   __ xorptr(rax, rax);
 476   __ jmp(L_done);
 477 
 478   // Load the exception from the system-array which wraps it:
 479   __ bind(L_throw_exception);
 480   __ load_heap_oop(rax, Address(rax, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 481   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
 482 
 483   __ bind(L_done);
 484 }
 485 
 486 void TemplateTable::ldc2_w() {
 487   transition(vtos, vtos);
 488   Label Long, Done;
 489   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 490 
 491   __ get_cpool_and_tags(rcx, rax);
 492   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
 493   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
 494 
 495   // get type
 496   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
 497           JVM_CONSTANT_Double);
 498   __ jccb(Assembler::notEqual, Long);
 499   // dtos
 500   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
 501   __ push_d();
 502   __ jmpb(Done);
 503 
 504   __ bind(Long);
 505   // ltos
 506   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
 507   __ push_l();
 508 
 509   __ bind(Done);
 510 }
 511 
 512 void TemplateTable::locals_index(Register reg, int offset) {
 513   __ load_unsigned_byte(reg, at_bcp(offset));
 514   __ negptr(reg);
 515 }
 516 
 517 void TemplateTable::iload() {
 518   transition(vtos, itos);
 519   if (RewriteFrequentPairs) {
 520     Label rewrite, done;
 521     const Register bc = c_rarg3;
 522     assert(rbx != bc, "register damaged");
 523 
 524     // get next byte
 525     __ load_unsigned_byte(rbx,
 526                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 527     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 528     // last two iloads in a pair.  Comparing against fast_iload means that
 529     // the next bytecode is neither an iload or a caload, and therefore
 530     // an iload pair.
 531     __ cmpl(rbx, Bytecodes::_iload);
 532     __ jcc(Assembler::equal, done);
 533 
 534     __ cmpl(rbx, Bytecodes::_fast_iload);
 535     __ movl(bc, Bytecodes::_fast_iload2);
 536     __ jccb(Assembler::equal, rewrite);
 537 
 538     // if _caload, rewrite to fast_icaload
 539     __ cmpl(rbx, Bytecodes::_caload);
 540     __ movl(bc, Bytecodes::_fast_icaload);
 541     __ jccb(Assembler::equal, rewrite);
 542 
 543     // rewrite so iload doesn't check again.
 544     __ movl(bc, Bytecodes::_fast_iload);
 545 
 546     // rewrite
 547     // bc: fast bytecode
 548     __ bind(rewrite);
 549     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
 550     __ bind(done);
 551   }
 552 
 553   // Get the local value into tos
 554   locals_index(rbx);
 555   __ movl(rax, iaddress(rbx));
 556 }
 557 
 558 void TemplateTable::fast_iload2() {
 559   transition(vtos, itos);
 560   locals_index(rbx);
 561   __ movl(rax, iaddress(rbx));
 562   __ push(itos);
 563   locals_index(rbx, 3);
 564   __ movl(rax, iaddress(rbx));
 565 }
 566 
 567 void TemplateTable::fast_iload() {
 568   transition(vtos, itos);
 569   locals_index(rbx);
 570   __ movl(rax, iaddress(rbx));
 571 }
 572 
 573 void TemplateTable::lload() {
 574   transition(vtos, ltos);
 575   locals_index(rbx);
 576   __ movq(rax, laddress(rbx));
 577 }
 578 
 579 void TemplateTable::fload() {
 580   transition(vtos, ftos);
 581   locals_index(rbx);
 582   __ movflt(xmm0, faddress(rbx));
 583 }
 584 
 585 void TemplateTable::dload() {
 586   transition(vtos, dtos);
 587   locals_index(rbx);
 588   __ movdbl(xmm0, daddress(rbx));
 589 }
 590 
 591 void TemplateTable::aload() {
 592   transition(vtos, atos);
 593   locals_index(rbx);
 594   __ movptr(rax, aaddress(rbx));
 595 }
 596 
 597 void TemplateTable::locals_index_wide(Register reg) {
 598   __ movl(reg, at_bcp(2));
 599   __ bswapl(reg);
 600   __ shrl(reg, 16);
 601   __ negptr(reg);
 602 }
 603 
 604 void TemplateTable::wide_iload() {
 605   transition(vtos, itos);
 606   locals_index_wide(rbx);
 607   __ movl(rax, iaddress(rbx));
 608 }
 609 
 610 void TemplateTable::wide_lload() {
 611   transition(vtos, ltos);
 612   locals_index_wide(rbx);
 613   __ movq(rax, laddress(rbx));
 614 }
 615 
 616 void TemplateTable::wide_fload() {
 617   transition(vtos, ftos);
 618   locals_index_wide(rbx);
 619   __ movflt(xmm0, faddress(rbx));
 620 }
 621 
 622 void TemplateTable::wide_dload() {
 623   transition(vtos, dtos);
 624   locals_index_wide(rbx);
 625   __ movdbl(xmm0, daddress(rbx));
 626 }
 627 
 628 void TemplateTable::wide_aload() {
 629   transition(vtos, atos);
 630   locals_index_wide(rbx);
 631   __ movptr(rax, aaddress(rbx));
 632 }
 633 
 634 void TemplateTable::index_check(Register array, Register index) {
 635   // destroys rbx
 636   // check array
 637   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
 638   // sign extend index for use by indexed load
 639   __ movl2ptr(index, index);
 640   // check index
 641   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
 642   if (index != rbx) {
 643     // ??? convention: move aberrant index into ebx for exception message
 644     assert(rbx != array, "different registers");
 645     __ movl(rbx, index);
 646   }
 647   __ jump_cc(Assembler::aboveEqual,
 648              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
 649 }
 650 
 651 void TemplateTable::iaload() {
 652   transition(itos, itos);
 653   __ pop_ptr(rdx);
 654   // eax: index
 655   // rdx: array
 656   index_check(rdx, rax); // kills rbx
 657   __ movl(rax, Address(rdx, rax,
 658                        Address::times_4,
 659                        arrayOopDesc::base_offset_in_bytes(T_INT)));
 660 }
 661 
 662 void TemplateTable::laload() {
 663   transition(itos, ltos);
 664   __ pop_ptr(rdx);
 665   // eax: index
 666   // rdx: array
 667   index_check(rdx, rax); // kills rbx
 668   __ movq(rax, Address(rdx, rbx,
 669                        Address::times_8,
 670                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
 671 }
 672 
 673 void TemplateTable::faload() {
 674   transition(itos, ftos);
 675   __ pop_ptr(rdx);
 676   // eax: index
 677   // rdx: array
 678   index_check(rdx, rax); // kills rbx
 679   __ movflt(xmm0, Address(rdx, rax,
 680                          Address::times_4,
 681                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 682 }
 683 
 684 void TemplateTable::daload() {
 685   transition(itos, dtos);
 686   __ pop_ptr(rdx);
 687   // eax: index
 688   // rdx: array
 689   index_check(rdx, rax); // kills rbx
 690   __ movdbl(xmm0, Address(rdx, rax,
 691                           Address::times_8,
 692                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 693 }
 694 
 695 void TemplateTable::aaload() {
 696   transition(itos, atos);
 697   __ pop_ptr(rdx);
 698   // eax: index
 699   // rdx: array
 700   index_check(rdx, rax); // kills rbx
 701   __ load_heap_oop(rax, Address(rdx, rax,
 702                                 UseCompressedOops ? Address::times_4 : Address::times_8,
 703                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 704 }
 705 
 706 void TemplateTable::baload() {
 707   transition(itos, itos);
 708   __ pop_ptr(rdx);
 709   // eax: index
 710   // rdx: array
 711   index_check(rdx, rax); // kills rbx
 712   __ load_signed_byte(rax,
 713                       Address(rdx, rax,
 714                               Address::times_1,
 715                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
 716 }
 717 
 718 void TemplateTable::caload() {
 719   transition(itos, itos);
 720   __ pop_ptr(rdx);
 721   // eax: index
 722   // rdx: array
 723   index_check(rdx, rax); // kills rbx
 724   __ load_unsigned_short(rax,
 725                          Address(rdx, rax,
 726                                  Address::times_2,
 727                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 728 }
 729 
 730 // iload followed by caload frequent pair
 731 void TemplateTable::fast_icaload() {
 732   transition(vtos, itos);
 733   // load index out of locals
 734   locals_index(rbx);
 735   __ movl(rax, iaddress(rbx));
 736 
 737   // eax: index
 738   // rdx: array
 739   __ pop_ptr(rdx);
 740   index_check(rdx, rax); // kills rbx
 741   __ load_unsigned_short(rax,
 742                          Address(rdx, rax,
 743                                  Address::times_2,
 744                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 745 }
 746 
 747 void TemplateTable::saload() {
 748   transition(itos, itos);
 749   __ pop_ptr(rdx);
 750   // eax: index
 751   // rdx: array
 752   index_check(rdx, rax); // kills rbx
 753   __ load_signed_short(rax,
 754                        Address(rdx, rax,
 755                                Address::times_2,
 756                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
 757 }
 758 
 759 void TemplateTable::iload(int n) {
 760   transition(vtos, itos);
 761   __ movl(rax, iaddress(n));
 762 }
 763 
 764 void TemplateTable::lload(int n) {
 765   transition(vtos, ltos);
 766   __ movq(rax, laddress(n));
 767 }
 768 
 769 void TemplateTable::fload(int n) {
 770   transition(vtos, ftos);
 771   __ movflt(xmm0, faddress(n));
 772 }
 773 
 774 void TemplateTable::dload(int n) {
 775   transition(vtos, dtos);
 776   __ movdbl(xmm0, daddress(n));
 777 }
 778 
 779 void TemplateTable::aload(int n) {
 780   transition(vtos, atos);
 781   __ movptr(rax, aaddress(n));
 782 }
 783 
 784 void TemplateTable::aload_0() {
 785   transition(vtos, atos);
 786   // According to bytecode histograms, the pairs:
 787   //
 788   // _aload_0, _fast_igetfield
 789   // _aload_0, _fast_agetfield
 790   // _aload_0, _fast_fgetfield
 791   //
 792   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 793   // _aload_0 bytecode checks if the next bytecode is either
 794   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 795   // rewrites the current bytecode into a pair bytecode; otherwise it
 796   // rewrites the current bytecode into _fast_aload_0 that doesn't do
 797   // the pair check anymore.
 798   //
 799   // Note: If the next bytecode is _getfield, the rewrite must be
 800   //       delayed, otherwise we may miss an opportunity for a pair.
 801   //
 802   // Also rewrite frequent pairs
 803   //   aload_0, aload_1
 804   //   aload_0, iload_1
 805   // These bytecodes with a small amount of code are most profitable
 806   // to rewrite
 807   if (RewriteFrequentPairs) {
 808     Label rewrite, done;
 809     const Register bc = c_rarg3;
 810     assert(rbx != bc, "register damaged");
 811     // get next byte
 812     __ load_unsigned_byte(rbx,
 813                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 814 
 815     // do actual aload_0
 816     aload(0);
 817 
 818     // if _getfield then wait with rewrite
 819     __ cmpl(rbx, Bytecodes::_getfield);
 820     __ jcc(Assembler::equal, done);
 821 
 822     // if _igetfield then reqrite to _fast_iaccess_0
 823     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
 824            Bytecodes::_aload_0,
 825            "fix bytecode definition");
 826     __ cmpl(rbx, Bytecodes::_fast_igetfield);
 827     __ movl(bc, Bytecodes::_fast_iaccess_0);
 828     __ jccb(Assembler::equal, rewrite);
 829 
 830     // if _agetfield then reqrite to _fast_aaccess_0
 831     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
 832            Bytecodes::_aload_0,
 833            "fix bytecode definition");
 834     __ cmpl(rbx, Bytecodes::_fast_agetfield);
 835     __ movl(bc, Bytecodes::_fast_aaccess_0);
 836     __ jccb(Assembler::equal, rewrite);
 837 
 838     // if _fgetfield then reqrite to _fast_faccess_0
 839     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
 840            Bytecodes::_aload_0,
 841            "fix bytecode definition");
 842     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
 843     __ movl(bc, Bytecodes::_fast_faccess_0);
 844     __ jccb(Assembler::equal, rewrite);
 845 
 846     // else rewrite to _fast_aload0
 847     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
 848            Bytecodes::_aload_0,
 849            "fix bytecode definition");
 850     __ movl(bc, Bytecodes::_fast_aload_0);
 851 
 852     // rewrite
 853     // bc: fast bytecode
 854     __ bind(rewrite);
 855     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
 856 
 857     __ bind(done);
 858   } else {
 859     aload(0);
 860   }
 861 }
 862 
 863 void TemplateTable::istore() {
 864   transition(itos, vtos);
 865   locals_index(rbx);
 866   __ movl(iaddress(rbx), rax);
 867 }
 868 
 869 void TemplateTable::lstore() {
 870   transition(ltos, vtos);
 871   locals_index(rbx);
 872   __ movq(laddress(rbx), rax);
 873 }
 874 
 875 void TemplateTable::fstore() {
 876   transition(ftos, vtos);
 877   locals_index(rbx);
 878   __ movflt(faddress(rbx), xmm0);
 879 }
 880 
 881 void TemplateTable::dstore() {
 882   transition(dtos, vtos);
 883   locals_index(rbx);
 884   __ movdbl(daddress(rbx), xmm0);
 885 }
 886 
 887 void TemplateTable::astore() {
 888   transition(vtos, vtos);
 889   __ pop_ptr(rax);
 890   locals_index(rbx);
 891   __ movptr(aaddress(rbx), rax);
 892 }
 893 
 894 void TemplateTable::wide_istore() {
 895   transition(vtos, vtos);
 896   __ pop_i();
 897   locals_index_wide(rbx);
 898   __ movl(iaddress(rbx), rax);
 899 }
 900 
 901 void TemplateTable::wide_lstore() {
 902   transition(vtos, vtos);
 903   __ pop_l();
 904   locals_index_wide(rbx);
 905   __ movq(laddress(rbx), rax);
 906 }
 907 
 908 void TemplateTable::wide_fstore() {
 909   transition(vtos, vtos);
 910   __ pop_f();
 911   locals_index_wide(rbx);
 912   __ movflt(faddress(rbx), xmm0);
 913 }
 914 
 915 void TemplateTable::wide_dstore() {
 916   transition(vtos, vtos);
 917   __ pop_d();
 918   locals_index_wide(rbx);
 919   __ movdbl(daddress(rbx), xmm0);
 920 }
 921 
 922 void TemplateTable::wide_astore() {
 923   transition(vtos, vtos);
 924   __ pop_ptr(rax);
 925   locals_index_wide(rbx);
 926   __ movptr(aaddress(rbx), rax);
 927 }
 928 
 929 void TemplateTable::iastore() {
 930   transition(itos, vtos);
 931   __ pop_i(rbx);
 932   __ pop_ptr(rdx);
 933   // eax: value
 934   // ebx: index
 935   // rdx: array
 936   index_check(rdx, rbx); // prefer index in ebx
 937   __ movl(Address(rdx, rbx,
 938                   Address::times_4,
 939                   arrayOopDesc::base_offset_in_bytes(T_INT)),
 940           rax);
 941 }
 942 
 943 void TemplateTable::lastore() {
 944   transition(ltos, vtos);
 945   __ pop_i(rbx);
 946   __ pop_ptr(rdx);
 947   // rax: value
 948   // ebx: index
 949   // rdx: array
 950   index_check(rdx, rbx); // prefer index in ebx
 951   __ movq(Address(rdx, rbx,
 952                   Address::times_8,
 953                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
 954           rax);
 955 }
 956 
 957 void TemplateTable::fastore() {
 958   transition(ftos, vtos);
 959   __ pop_i(rbx);
 960   __ pop_ptr(rdx);
 961   // xmm0: value
 962   // ebx:  index
 963   // rdx:  array
 964   index_check(rdx, rbx); // prefer index in ebx
 965   __ movflt(Address(rdx, rbx,
 966                    Address::times_4,
 967                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
 968            xmm0);
 969 }
 970 
 971 void TemplateTable::dastore() {
 972   transition(dtos, vtos);
 973   __ pop_i(rbx);
 974   __ pop_ptr(rdx);
 975   // xmm0: value
 976   // ebx:  index
 977   // rdx:  array
 978   index_check(rdx, rbx); // prefer index in ebx
 979   __ movdbl(Address(rdx, rbx,
 980                    Address::times_8,
 981                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
 982            xmm0);
 983 }
 984 
 985 void TemplateTable::aastore() {
 986   Label is_null, ok_is_subtype, done;
 987   transition(vtos, vtos);
 988   // stack: ..., array, index, value
 989   __ movptr(rax, at_tos());    // value
 990   __ movl(rcx, at_tos_p1()); // index
 991   __ movptr(rdx, at_tos_p2()); // array
 992 
 993   Address element_address(rdx, rcx,
 994                           UseCompressedOops? Address::times_4 : Address::times_8,
 995                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 996 
 997   index_check(rdx, rcx);     // kills rbx
 998   // do array store check - check for NULL value first
 999   __ testptr(rax, rax);
1000   __ jcc(Assembler::zero, is_null);
1001 
1002   // Move subklass into rbx
1003   __ load_klass(rbx, rax);
1004   // Move superklass into rax
1005   __ load_klass(rax, rdx);
1006   __ movptr(rax, Address(rax,
1007                          sizeof(oopDesc) +
1008                          objArrayKlass::element_klass_offset_in_bytes()));
1009   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
1010   __ lea(rdx, element_address);
1011 
1012   // Generate subtype check.  Blows rcx, rdi
1013   // Superklass in rax.  Subklass in rbx.
1014   __ gen_subtype_check(rbx, ok_is_subtype);
1015 
1016   // Come here on failure
1017   // object is at TOS
1018   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
1019 
1020   // Come here on success
1021   __ bind(ok_is_subtype);
1022 
1023   // Get the value we will store
1024   __ movptr(rax, at_tos());
1025   // Now store using the appropriate barrier
1026   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
1027   __ jmp(done);
1028 
1029   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
1030   __ bind(is_null);
1031   __ profile_null_seen(rbx);
1032 
1033   // Store a NULL
1034   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
1035 
1036   // Pop stack arguments
1037   __ bind(done);
1038   __ addptr(rsp, 3 * Interpreter::stackElementSize);
1039 }
1040 
1041 void TemplateTable::bastore() {
1042   transition(itos, vtos);
1043   __ pop_i(rbx);
1044   __ pop_ptr(rdx);
1045   // eax: value
1046   // ebx: index
1047   // rdx: array
1048   index_check(rdx, rbx); // prefer index in ebx
1049   __ movb(Address(rdx, rbx,
1050                   Address::times_1,
1051                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
1052           rax);
1053 }
1054 
1055 void TemplateTable::castore() {
1056   transition(itos, vtos);
1057   __ pop_i(rbx);
1058   __ pop_ptr(rdx);
1059   // eax: value
1060   // ebx: index
1061   // rdx: array
1062   index_check(rdx, rbx);  // prefer index in ebx
1063   __ movw(Address(rdx, rbx,
1064                   Address::times_2,
1065                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
1066           rax);
1067 }
1068 
1069 void TemplateTable::sastore() {
1070   castore();
1071 }
1072 
1073 void TemplateTable::istore(int n) {
1074   transition(itos, vtos);
1075   __ movl(iaddress(n), rax);
1076 }
1077 
1078 void TemplateTable::lstore(int n) {
1079   transition(ltos, vtos);
1080   __ movq(laddress(n), rax);
1081 }
1082 
1083 void TemplateTable::fstore(int n) {
1084   transition(ftos, vtos);
1085   __ movflt(faddress(n), xmm0);
1086 }
1087 
1088 void TemplateTable::dstore(int n) {
1089   transition(dtos, vtos);
1090   __ movdbl(daddress(n), xmm0);
1091 }
1092 
1093 void TemplateTable::astore(int n) {
1094   transition(vtos, vtos);
1095   __ pop_ptr(rax);
1096   __ movptr(aaddress(n), rax);
1097 }
1098 
1099 void TemplateTable::pop() {
1100   transition(vtos, vtos);
1101   __ addptr(rsp, Interpreter::stackElementSize);
1102 }
1103 
1104 void TemplateTable::pop2() {
1105   transition(vtos, vtos);
1106   __ addptr(rsp, 2 * Interpreter::stackElementSize);
1107 }
1108 
1109 void TemplateTable::dup() {
1110   transition(vtos, vtos);
1111   __ load_ptr(0, rax);
1112   __ push_ptr(rax);
1113   // stack: ..., a, a
1114 }
1115 
1116 void TemplateTable::dup_x1() {
1117   transition(vtos, vtos);
1118   // stack: ..., a, b
1119   __ load_ptr( 0, rax);  // load b
1120   __ load_ptr( 1, rcx);  // load a
1121   __ store_ptr(1, rax);  // store b
1122   __ store_ptr(0, rcx);  // store a
1123   __ push_ptr(rax);      // push b
1124   // stack: ..., b, a, b
1125 }
1126 
1127 void TemplateTable::dup_x2() {
1128   transition(vtos, vtos);
1129   // stack: ..., a, b, c
1130   __ load_ptr( 0, rax);  // load c
1131   __ load_ptr( 2, rcx);  // load a
1132   __ store_ptr(2, rax);  // store c in a
1133   __ push_ptr(rax);      // push c
1134   // stack: ..., c, b, c, c
1135   __ load_ptr( 2, rax);  // load b
1136   __ store_ptr(2, rcx);  // store a in b
1137   // stack: ..., c, a, c, c
1138   __ store_ptr(1, rax);  // store b in c
1139   // stack: ..., c, a, b, c
1140 }
1141 
1142 void TemplateTable::dup2() {
1143   transition(vtos, vtos);
1144   // stack: ..., a, b
1145   __ load_ptr(1, rax);  // load a
1146   __ push_ptr(rax);     // push a
1147   __ load_ptr(1, rax);  // load b
1148   __ push_ptr(rax);     // push b
1149   // stack: ..., a, b, a, b
1150 }
1151 
1152 void TemplateTable::dup2_x1() {
1153   transition(vtos, vtos);
1154   // stack: ..., a, b, c
1155   __ load_ptr( 0, rcx);  // load c
1156   __ load_ptr( 1, rax);  // load b
1157   __ push_ptr(rax);      // push b
1158   __ push_ptr(rcx);      // push c
1159   // stack: ..., a, b, c, b, c
1160   __ store_ptr(3, rcx);  // store c in b
1161   // stack: ..., a, c, c, b, c
1162   __ load_ptr( 4, rcx);  // load a
1163   __ store_ptr(2, rcx);  // store a in 2nd c
1164   // stack: ..., a, c, a, b, c
1165   __ store_ptr(4, rax);  // store b in a
1166   // stack: ..., b, c, a, b, c
1167 }
1168 
1169 void TemplateTable::dup2_x2() {
1170   transition(vtos, vtos);
1171   // stack: ..., a, b, c, d
1172   __ load_ptr( 0, rcx);  // load d
1173   __ load_ptr( 1, rax);  // load c
1174   __ push_ptr(rax);      // push c
1175   __ push_ptr(rcx);      // push d
1176   // stack: ..., a, b, c, d, c, d
1177   __ load_ptr( 4, rax);  // load b
1178   __ store_ptr(2, rax);  // store b in d
1179   __ store_ptr(4, rcx);  // store d in b
1180   // stack: ..., a, d, c, b, c, d
1181   __ load_ptr( 5, rcx);  // load a
1182   __ load_ptr( 3, rax);  // load c
1183   __ store_ptr(3, rcx);  // store a in c
1184   __ store_ptr(5, rax);  // store c in a
1185   // stack: ..., c, d, a, b, c, d
1186 }
1187 
1188 void TemplateTable::swap() {
1189   transition(vtos, vtos);
1190   // stack: ..., a, b
1191   __ load_ptr( 1, rcx);  // load a
1192   __ load_ptr( 0, rax);  // load b
1193   __ store_ptr(0, rcx);  // store a in b
1194   __ store_ptr(1, rax);  // store b in a
1195   // stack: ..., b, a
1196 }
1197 
1198 void TemplateTable::iop2(Operation op) {
1199   transition(itos, itos);
1200   switch (op) {
1201   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
1202   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1203   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
1204   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
1205   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
1206   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
1207   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
1208   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
1209   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
1210   default   : ShouldNotReachHere();
1211   }
1212 }
1213 
1214 void TemplateTable::lop2(Operation op) {
1215   transition(ltos, ltos);
1216   switch (op) {
1217   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
1218   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
1219   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
1220   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
1221   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
1222   default   : ShouldNotReachHere();
1223   }
1224 }
1225 
1226 void TemplateTable::idiv() {
1227   transition(itos, itos);
1228   __ movl(rcx, rax);
1229   __ pop_i(rax);
1230   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
1231   //       they are not equal, one could do a normal division (no correction
1232   //       needed), which may speed up this implementation for the common case.
1233   //       (see also JVM spec., p.243 & p.271)
1234   __ corrected_idivl(rcx);
1235 }
1236 
1237 void TemplateTable::irem() {
1238   transition(itos, itos);
1239   __ movl(rcx, rax);
1240   __ pop_i(rax);
1241   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
1242   //       they are not equal, one could do a normal division (no correction
1243   //       needed), which may speed up this implementation for the common case.
1244   //       (see also JVM spec., p.243 & p.271)
1245   __ corrected_idivl(rcx);
1246   __ movl(rax, rdx);
1247 }
1248 
1249 void TemplateTable::lmul() {
1250   transition(ltos, ltos);
1251   __ pop_l(rdx);
1252   __ imulq(rax, rdx);
1253 }
1254 
1255 void TemplateTable::ldiv() {
1256   transition(ltos, ltos);
1257   __ mov(rcx, rax);
1258   __ pop_l(rax);
1259   // generate explicit div0 check
1260   __ testq(rcx, rcx);
1261   __ jump_cc(Assembler::zero,
1262              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1263   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1264   //       they are not equal, one could do a normal division (no correction
1265   //       needed), which may speed up this implementation for the common case.
1266   //       (see also JVM spec., p.243 & p.271)
1267   __ corrected_idivq(rcx); // kills rbx
1268 }
1269 
1270 void TemplateTable::lrem() {
1271   transition(ltos, ltos);
1272   __ mov(rcx, rax);
1273   __ pop_l(rax);
1274   __ testq(rcx, rcx);
1275   __ jump_cc(Assembler::zero,
1276              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1277   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1278   //       they are not equal, one could do a normal division (no correction
1279   //       needed), which may speed up this implementation for the common case.
1280   //       (see also JVM spec., p.243 & p.271)
1281   __ corrected_idivq(rcx); // kills rbx
1282   __ mov(rax, rdx);
1283 }
1284 
1285 void TemplateTable::lshl() {
1286   transition(itos, ltos);
1287   __ movl(rcx, rax);                             // get shift count
1288   __ pop_l(rax);                                 // get shift value
1289   __ shlq(rax);
1290 }
1291 
1292 void TemplateTable::lshr() {
1293   transition(itos, ltos);
1294   __ movl(rcx, rax);                             // get shift count
1295   __ pop_l(rax);                                 // get shift value
1296   __ sarq(rax);
1297 }
1298 
1299 void TemplateTable::lushr() {
1300   transition(itos, ltos);
1301   __ movl(rcx, rax);                             // get shift count
1302   __ pop_l(rax);                                 // get shift value
1303   __ shrq(rax);
1304 }
1305 
1306 void TemplateTable::fop2(Operation op) {
1307   transition(ftos, ftos);
1308   switch (op) {
1309   case add:
1310     __ addss(xmm0, at_rsp());
1311     __ addptr(rsp, Interpreter::stackElementSize);
1312     break;
1313   case sub:
1314     __ movflt(xmm1, xmm0);
1315     __ pop_f(xmm0);
1316     __ subss(xmm0, xmm1);
1317     break;
1318   case mul:
1319     __ mulss(xmm0, at_rsp());
1320     __ addptr(rsp, Interpreter::stackElementSize);
1321     break;
1322   case div:
1323     __ movflt(xmm1, xmm0);
1324     __ pop_f(xmm0);
1325     __ divss(xmm0, xmm1);
1326     break;
1327   case rem:
1328     __ movflt(xmm1, xmm0);
1329     __ pop_f(xmm0);
1330     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
1331     break;
1332   default:
1333     ShouldNotReachHere();
1334     break;
1335   }
1336 }
1337 
1338 void TemplateTable::dop2(Operation op) {
1339   transition(dtos, dtos);
1340   switch (op) {
1341   case add:
1342     __ addsd(xmm0, at_rsp());
1343     __ addptr(rsp, 2 * Interpreter::stackElementSize);
1344     break;
1345   case sub:
1346     __ movdbl(xmm1, xmm0);
1347     __ pop_d(xmm0);
1348     __ subsd(xmm0, xmm1);
1349     break;
1350   case mul:
1351     __ mulsd(xmm0, at_rsp());
1352     __ addptr(rsp, 2 * Interpreter::stackElementSize);
1353     break;
1354   case div:
1355     __ movdbl(xmm1, xmm0);
1356     __ pop_d(xmm0);
1357     __ divsd(xmm0, xmm1);
1358     break;
1359   case rem:
1360     __ movdbl(xmm1, xmm0);
1361     __ pop_d(xmm0);
1362     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
1363     break;
1364   default:
1365     ShouldNotReachHere();
1366     break;
1367   }
1368 }
1369 
1370 void TemplateTable::ineg() {
1371   transition(itos, itos);
1372   __ negl(rax);
1373 }
1374 
1375 void TemplateTable::lneg() {
1376   transition(ltos, ltos);
1377   __ negq(rax);
1378 }
1379 
1380 // Note: 'double' and 'long long' have 32-bits alignment on x86.
1381 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
1382   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
1383   // of 128-bits operands for SSE instructions.
1384   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
1385   // Store the value to a 128-bits operand.
1386   operand[0] = lo;
1387   operand[1] = hi;
1388   return operand;
1389 }
1390 
1391 // Buffer for 128-bits masks used by SSE instructions.
1392 static jlong float_signflip_pool[2*2];
1393 static jlong double_signflip_pool[2*2];
1394 
1395 void TemplateTable::fneg() {
1396   transition(ftos, ftos);
1397   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
1398   __ xorps(xmm0, ExternalAddress((address) float_signflip));
1399 }
1400 
1401 void TemplateTable::dneg() {
1402   transition(dtos, dtos);
1403   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
1404   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
1405 }
1406 
1407 void TemplateTable::iinc() {
1408   transition(vtos, vtos);
1409   __ load_signed_byte(rdx, at_bcp(2)); // get constant
1410   locals_index(rbx);
1411   __ addl(iaddress(rbx), rdx);
1412 }
1413 
1414 void TemplateTable::wide_iinc() {
1415   transition(vtos, vtos);
1416   __ movl(rdx, at_bcp(4)); // get constant
1417   locals_index_wide(rbx);
1418   __ bswapl(rdx); // swap bytes & sign-extend constant
1419   __ sarl(rdx, 16);
1420   __ addl(iaddress(rbx), rdx);
1421   // Note: should probably use only one movl to get both
1422   //       the index and the constant -> fix this
1423 }
1424 
1425 void TemplateTable::convert() {
1426   // Checking
1427 #ifdef ASSERT
1428   {
1429     TosState tos_in  = ilgl;
1430     TosState tos_out = ilgl;
1431     switch (bytecode()) {
1432     case Bytecodes::_i2l: // fall through
1433     case Bytecodes::_i2f: // fall through
1434     case Bytecodes::_i2d: // fall through
1435     case Bytecodes::_i2b: // fall through
1436     case Bytecodes::_i2c: // fall through
1437     case Bytecodes::_i2s: tos_in = itos; break;
1438     case Bytecodes::_l2i: // fall through
1439     case Bytecodes::_l2f: // fall through
1440     case Bytecodes::_l2d: tos_in = ltos; break;
1441     case Bytecodes::_f2i: // fall through
1442     case Bytecodes::_f2l: // fall through
1443     case Bytecodes::_f2d: tos_in = ftos; break;
1444     case Bytecodes::_d2i: // fall through
1445     case Bytecodes::_d2l: // fall through
1446     case Bytecodes::_d2f: tos_in = dtos; break;
1447     default             : ShouldNotReachHere();
1448     }
1449     switch (bytecode()) {
1450     case Bytecodes::_l2i: // fall through
1451     case Bytecodes::_f2i: // fall through
1452     case Bytecodes::_d2i: // fall through
1453     case Bytecodes::_i2b: // fall through
1454     case Bytecodes::_i2c: // fall through
1455     case Bytecodes::_i2s: tos_out = itos; break;
1456     case Bytecodes::_i2l: // fall through
1457     case Bytecodes::_f2l: // fall through
1458     case Bytecodes::_d2l: tos_out = ltos; break;
1459     case Bytecodes::_i2f: // fall through
1460     case Bytecodes::_l2f: // fall through
1461     case Bytecodes::_d2f: tos_out = ftos; break;
1462     case Bytecodes::_i2d: // fall through
1463     case Bytecodes::_l2d: // fall through
1464     case Bytecodes::_f2d: tos_out = dtos; break;
1465     default             : ShouldNotReachHere();
1466     }
1467     transition(tos_in, tos_out);
1468   }
1469 #endif // ASSERT
1470 
1471   static const int64_t is_nan = 0x8000000000000000L;
1472 
1473   // Conversion
1474   switch (bytecode()) {
1475   case Bytecodes::_i2l:
1476     __ movslq(rax, rax);
1477     break;
1478   case Bytecodes::_i2f:
1479     __ cvtsi2ssl(xmm0, rax);
1480     break;
1481   case Bytecodes::_i2d:
1482     __ cvtsi2sdl(xmm0, rax);
1483     break;
1484   case Bytecodes::_i2b:
1485     __ movsbl(rax, rax);
1486     break;
1487   case Bytecodes::_i2c:
1488     __ movzwl(rax, rax);
1489     break;
1490   case Bytecodes::_i2s:
1491     __ movswl(rax, rax);
1492     break;
1493   case Bytecodes::_l2i:
1494     __ movl(rax, rax);
1495     break;
1496   case Bytecodes::_l2f:
1497     __ cvtsi2ssq(xmm0, rax);
1498     break;
1499   case Bytecodes::_l2d:
1500     __ cvtsi2sdq(xmm0, rax);
1501     break;
1502   case Bytecodes::_f2i:
1503   {
1504     Label L;
1505     __ cvttss2sil(rax, xmm0);
1506     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1507     __ jcc(Assembler::notEqual, L);
1508     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1509     __ bind(L);
1510   }
1511     break;
1512   case Bytecodes::_f2l:
1513   {
1514     Label L;
1515     __ cvttss2siq(rax, xmm0);
1516     // NaN or overflow/underflow?
1517     __ cmp64(rax, ExternalAddress((address) &is_nan));
1518     __ jcc(Assembler::notEqual, L);
1519     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1520     __ bind(L);
1521   }
1522     break;
1523   case Bytecodes::_f2d:
1524     __ cvtss2sd(xmm0, xmm0);
1525     break;
1526   case Bytecodes::_d2i:
1527   {
1528     Label L;
1529     __ cvttsd2sil(rax, xmm0);
1530     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1531     __ jcc(Assembler::notEqual, L);
1532     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
1533     __ bind(L);
1534   }
1535     break;
1536   case Bytecodes::_d2l:
1537   {
1538     Label L;
1539     __ cvttsd2siq(rax, xmm0);
1540     // NaN or overflow/underflow?
1541     __ cmp64(rax, ExternalAddress((address) &is_nan));
1542     __ jcc(Assembler::notEqual, L);
1543     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
1544     __ bind(L);
1545   }
1546     break;
1547   case Bytecodes::_d2f:
1548     __ cvtsd2ss(xmm0, xmm0);
1549     break;
1550   default:
1551     ShouldNotReachHere();
1552   }
1553 }
1554 
1555 void TemplateTable::lcmp() {
1556   transition(ltos, itos);
1557   Label done;
1558   __ pop_l(rdx);
1559   __ cmpq(rdx, rax);
1560   __ movl(rax, -1);
1561   __ jccb(Assembler::less, done);
1562   __ setb(Assembler::notEqual, rax);
1563   __ movzbl(rax, rax);
1564   __ bind(done);
1565 }
1566 
1567 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1568   Label done;
1569   if (is_float) {
1570     // XXX get rid of pop here, use ... reg, mem32
1571     __ pop_f(xmm1);
1572     __ ucomiss(xmm1, xmm0);
1573   } else {
1574     // XXX get rid of pop here, use ... reg, mem64
1575     __ pop_d(xmm1);
1576     __ ucomisd(xmm1, xmm0);
1577   }
1578   if (unordered_result < 0) {
1579     __ movl(rax, -1);
1580     __ jccb(Assembler::parity, done);
1581     __ jccb(Assembler::below, done);
1582     __ setb(Assembler::notEqual, rdx);
1583     __ movzbl(rax, rdx);
1584   } else {
1585     __ movl(rax, 1);
1586     __ jccb(Assembler::parity, done);
1587     __ jccb(Assembler::above, done);
1588     __ movl(rax, 0);
1589     __ jccb(Assembler::equal, done);
1590     __ decrementl(rax);
1591   }
1592   __ bind(done);
1593 }
1594 
1595 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1596   __ get_method(rcx); // rcx holds method
1597   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
1598                                      // holds bumped taken count
1599 
1600   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() +
1601                              InvocationCounter::counter_offset();
1602   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() +
1603                               InvocationCounter::counter_offset();
1604   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
1605 
1606   // Load up edx with the branch displacement
1607   __ movl(rdx, at_bcp(1));
1608   __ bswapl(rdx);
1609 
1610   if (!is_wide) {
1611     __ sarl(rdx, 16);
1612   }
1613   __ movl2ptr(rdx, rdx);
1614 
1615   // Handle all the JSR stuff here, then exit.
1616   // It's much shorter and cleaner than intermingling with the non-JSR
1617   // normal-branch stuff occurring below.
1618   if (is_jsr) {
1619     // Pre-load the next target bytecode into rbx
1620     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
1621 
1622     // compute return address as bci in rax
1623     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
1624                         in_bytes(constMethodOopDesc::codes_offset())));
1625     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
1626     // Adjust the bcp in r13 by the displacement in rdx
1627     __ addptr(r13, rdx);
1628     // jsr returns atos that is not an oop
1629     __ push_i(rax);
1630     __ dispatch_only(vtos);
1631     return;
1632   }
1633 
1634   // Normal (non-jsr) branch handling
1635 
1636   // Adjust the bcp in r13 by the displacement in rdx
1637   __ addptr(r13, rdx);
1638 
1639   assert(UseLoopCounter || !UseOnStackReplacement,
1640          "on-stack-replacement requires loop counters");
1641   Label backedge_counter_overflow;
1642   Label profile_method;
1643   Label dispatch;
1644   if (UseLoopCounter) {
1645     // increment backedge counter for backward branches
1646     // rax: MDO
1647     // ebx: MDO bumped taken-count
1648     // rcx: method
1649     // rdx: target offset
1650     // r13: target bcp
1651     // r14: locals pointer
1652     __ testl(rdx, rdx);             // check if forward or backward branch
1653     __ jcc(Assembler::positive, dispatch); // count only if backward branch
1654     if (TieredCompilation) {
1655       Label no_mdo;
1656       int increment = InvocationCounter::count_increment;
1657       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1658       if (ProfileInterpreter) {
1659         // Are we profiling?
1660         __ movptr(rbx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
1661         __ testptr(rbx, rbx);
1662         __ jccb(Assembler::zero, no_mdo);
1663         // Increment the MDO backedge counter
1664         const Address mdo_backedge_counter(rbx, in_bytes(methodDataOopDesc::backedge_counter_offset()) +
1665                                            in_bytes(InvocationCounter::counter_offset()));
1666         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1667                                    rax, false, Assembler::zero, &backedge_counter_overflow);
1668         __ jmp(dispatch);
1669       }
1670       __ bind(no_mdo);
1671       // Increment backedge counter in methodOop
1672       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
1673                                  rax, false, Assembler::zero, &backedge_counter_overflow);
1674     } else {
1675       // increment counter
1676       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
1677       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
1678       __ movl(Address(rcx, be_offset), rax);        // store counter
1679 
1680       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
1681       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
1682       __ addl(rax, Address(rcx, be_offset));        // add both counters
1683 
1684       if (ProfileInterpreter) {
1685         // Test to see if we should create a method data oop
1686         __ cmp32(rax,
1687                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
1688         __ jcc(Assembler::less, dispatch);
1689 
1690         // if no method data exists, go to profile method
1691         __ test_method_data_pointer(rax, profile_method);
1692 
1693         if (UseOnStackReplacement) {
1694           // check for overflow against ebx which is the MDO taken count
1695           __ cmp32(rbx,
1696                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1697           __ jcc(Assembler::below, dispatch);
1698 
1699           // When ProfileInterpreter is on, the backedge_count comes
1700           // from the methodDataOop, which value does not get reset on
1701           // the call to frequency_counter_overflow().  To avoid
1702           // excessive calls to the overflow routine while the method is
1703           // being compiled, add a second test to make sure the overflow
1704           // function is called only once every overflow_frequency.
1705           const int overflow_frequency = 1024;
1706           __ andl(rbx, overflow_frequency - 1);
1707           __ jcc(Assembler::zero, backedge_counter_overflow);
1708 
1709         }
1710       } else {
1711         if (UseOnStackReplacement) {
1712           // check for overflow against eax, which is the sum of the
1713           // counters
1714           __ cmp32(rax,
1715                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1716           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
1717 
1718         }
1719       }
1720     }
1721     __ bind(dispatch);
1722   }
1723 
1724   // Pre-load the next target bytecode into rbx
1725   __ load_unsigned_byte(rbx, Address(r13, 0));
1726 
1727   // continue with the bytecode @ target
1728   // eax: return bci for jsr's, unused otherwise
1729   // ebx: target bytecode
1730   // r13: target bcp
1731   __ dispatch_only(vtos);
1732 
1733   if (UseLoopCounter) {
1734     if (ProfileInterpreter) {
1735       // Out-of-line code to allocate method data oop.
1736       __ bind(profile_method);
1737       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1738       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
1739       __ set_method_data_pointer_for_bcp();
1740       __ jmp(dispatch);
1741     }
1742 
1743     if (UseOnStackReplacement) {
1744       // invocation counter overflow
1745       __ bind(backedge_counter_overflow);
1746       __ negptr(rdx);
1747       __ addptr(rdx, r13); // branch bcp
1748       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1749       __ call_VM(noreg,
1750                  CAST_FROM_FN_PTR(address,
1751                                   InterpreterRuntime::frequency_counter_overflow),
1752                  rdx);
1753       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
1754 
1755       // rax: osr nmethod (osr ok) or NULL (osr not possible)
1756       // ebx: target bytecode
1757       // rdx: scratch
1758       // r14: locals pointer
1759       // r13: bcp
1760       __ testptr(rax, rax);                        // test result
1761       __ jcc(Assembler::zero, dispatch);         // no osr if null
1762       // nmethod may have been invalidated (VM may block upon call_VM return)
1763       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
1764       __ cmpl(rcx, InvalidOSREntryBci);
1765       __ jcc(Assembler::equal, dispatch);
1766 
1767       // We have the address of an on stack replacement routine in eax
1768       // We need to prepare to execute the OSR method. First we must
1769       // migrate the locals and monitors off of the stack.
1770 
1771       __ mov(r13, rax);                             // save the nmethod
1772 
1773       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1774 
1775       // eax is OSR buffer, move it to expected parameter location
1776       __ mov(j_rarg0, rax);
1777 
1778       // We use j_rarg definitions here so that registers don't conflict as parameter
1779       // registers change across platforms as we are in the midst of a calling
1780       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
1781 
1782       const Register retaddr = j_rarg2;
1783       const Register sender_sp = j_rarg1;
1784 
1785       // pop the interpreter frame
1786       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1787       __ leave();                                // remove frame anchor
1788       __ pop(retaddr);                           // get return address
1789       __ mov(rsp, sender_sp);                   // set sp to sender sp
1790       // Ensure compiled code always sees stack at proper alignment
1791       __ andptr(rsp, -(StackAlignmentInBytes));
1792 
1793       // unlike x86 we need no specialized return from compiled code
1794       // to the interpreter or the call stub.
1795 
1796       // push the return address
1797       __ push(retaddr);
1798 
1799       // and begin the OSR nmethod
1800       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
1801     }
1802   }
1803 }
1804 
1805 
1806 void TemplateTable::if_0cmp(Condition cc) {
1807   transition(itos, vtos);
1808   // assume branch is more often taken than not (loops use backward branches)
1809   Label not_taken;
1810   __ testl(rax, rax);
1811   __ jcc(j_not(cc), not_taken);
1812   branch(false, false);
1813   __ bind(not_taken);
1814   __ profile_not_taken_branch(rax);
1815 }
1816 
1817 void TemplateTable::if_icmp(Condition cc) {
1818   transition(itos, vtos);
1819   // assume branch is more often taken than not (loops use backward branches)
1820   Label not_taken;
1821   __ pop_i(rdx);
1822   __ cmpl(rdx, rax);
1823   __ jcc(j_not(cc), not_taken);
1824   branch(false, false);
1825   __ bind(not_taken);
1826   __ profile_not_taken_branch(rax);
1827 }
1828 
1829 void TemplateTable::if_nullcmp(Condition cc) {
1830   transition(atos, vtos);
1831   // assume branch is more often taken than not (loops use backward branches)
1832   Label not_taken;
1833   __ testptr(rax, rax);
1834   __ jcc(j_not(cc), not_taken);
1835   branch(false, false);
1836   __ bind(not_taken);
1837   __ profile_not_taken_branch(rax);
1838 }
1839 
1840 void TemplateTable::if_acmp(Condition cc) {
1841   transition(atos, vtos);
1842   // assume branch is more often taken than not (loops use backward branches)
1843   Label not_taken;
1844   __ pop_ptr(rdx);
1845   __ cmpptr(rdx, rax);
1846   __ jcc(j_not(cc), not_taken);
1847   branch(false, false);
1848   __ bind(not_taken);
1849   __ profile_not_taken_branch(rax);
1850 }
1851 
1852 void TemplateTable::ret() {
1853   transition(vtos, vtos);
1854   locals_index(rbx);
1855   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
1856   __ profile_ret(rbx, rcx);
1857   __ get_method(rax);
1858   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
1859   __ lea(r13, Address(r13, rbx, Address::times_1,
1860                       constMethodOopDesc::codes_offset()));
1861   __ dispatch_next(vtos);
1862 }
1863 
1864 void TemplateTable::wide_ret() {
1865   transition(vtos, vtos);
1866   locals_index_wide(rbx);
1867   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
1868   __ profile_ret(rbx, rcx);
1869   __ get_method(rax);
1870   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
1871   __ lea(r13, Address(r13, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
1872   __ dispatch_next(vtos);
1873 }
1874 
1875 void TemplateTable::tableswitch() {
1876   Label default_case, continue_execution;
1877   transition(itos, vtos);
1878   // align r13
1879   __ lea(rbx, at_bcp(BytesPerInt));
1880   __ andptr(rbx, -BytesPerInt);
1881   // load lo & hi
1882   __ movl(rcx, Address(rbx, BytesPerInt));
1883   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
1884   __ bswapl(rcx);
1885   __ bswapl(rdx);
1886   // check against lo & hi
1887   __ cmpl(rax, rcx);
1888   __ jcc(Assembler::less, default_case);
1889   __ cmpl(rax, rdx);
1890   __ jcc(Assembler::greater, default_case);
1891   // lookup dispatch offset
1892   __ subl(rax, rcx);
1893   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
1894   __ profile_switch_case(rax, rbx, rcx);
1895   // continue execution
1896   __ bind(continue_execution);
1897   __ bswapl(rdx);
1898   __ movl2ptr(rdx, rdx);
1899   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
1900   __ addptr(r13, rdx);
1901   __ dispatch_only(vtos);
1902   // handle default
1903   __ bind(default_case);
1904   __ profile_switch_default(rax);
1905   __ movl(rdx, Address(rbx, 0));
1906   __ jmp(continue_execution);
1907 }
1908 
1909 void TemplateTable::lookupswitch() {
1910   transition(itos, itos);
1911   __ stop("lookupswitch bytecode should have been rewritten");
1912 }
1913 
1914 void TemplateTable::fast_linearswitch() {
1915   transition(itos, vtos);
1916   Label loop_entry, loop, found, continue_execution;
1917   // bswap rax so we can avoid bswapping the table entries
1918   __ bswapl(rax);
1919   // align r13
1920   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
1921                                     // this instruction (change offsets
1922                                     // below)
1923   __ andptr(rbx, -BytesPerInt);
1924   // set counter
1925   __ movl(rcx, Address(rbx, BytesPerInt));
1926   __ bswapl(rcx);
1927   __ jmpb(loop_entry);
1928   // table search
1929   __ bind(loop);
1930   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
1931   __ jcc(Assembler::equal, found);
1932   __ bind(loop_entry);
1933   __ decrementl(rcx);
1934   __ jcc(Assembler::greaterEqual, loop);
1935   // default case
1936   __ profile_switch_default(rax);
1937   __ movl(rdx, Address(rbx, 0));
1938   __ jmp(continue_execution);
1939   // entry found -> get offset
1940   __ bind(found);
1941   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
1942   __ profile_switch_case(rcx, rax, rbx);
1943   // continue execution
1944   __ bind(continue_execution);
1945   __ bswapl(rdx);
1946   __ movl2ptr(rdx, rdx);
1947   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
1948   __ addptr(r13, rdx);
1949   __ dispatch_only(vtos);
1950 }
1951 
1952 void TemplateTable::fast_binaryswitch() {
1953   transition(itos, vtos);
1954   // Implementation using the following core algorithm:
1955   //
1956   // int binary_search(int key, LookupswitchPair* array, int n) {
1957   //   // Binary search according to "Methodik des Programmierens" by
1958   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1959   //   int i = 0;
1960   //   int j = n;
1961   //   while (i+1 < j) {
1962   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1963   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1964   //     // where a stands for the array and assuming that the (inexisting)
1965   //     // element a[n] is infinitely big.
1966   //     int h = (i + j) >> 1;
1967   //     // i < h < j
1968   //     if (key < array[h].fast_match()) {
1969   //       j = h;
1970   //     } else {
1971   //       i = h;
1972   //     }
1973   //   }
1974   //   // R: a[i] <= key < a[i+1] or Q
1975   //   // (i.e., if key is within array, i is the correct index)
1976   //   return i;
1977   // }
1978 
1979   // Register allocation
1980   const Register key   = rax; // already set (tosca)
1981   const Register array = rbx;
1982   const Register i     = rcx;
1983   const Register j     = rdx;
1984   const Register h     = rdi;
1985   const Register temp  = rsi;
1986 
1987   // Find array start
1988   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
1989                                           // get rid of this
1990                                           // instruction (change
1991                                           // offsets below)
1992   __ andptr(array, -BytesPerInt);
1993 
1994   // Initialize i & j
1995   __ xorl(i, i);                            // i = 0;
1996   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
1997 
1998   // Convert j into native byteordering
1999   __ bswapl(j);
2000 
2001   // And start
2002   Label entry;
2003   __ jmp(entry);
2004 
2005   // binary search loop
2006   {
2007     Label loop;
2008     __ bind(loop);
2009     // int h = (i + j) >> 1;
2010     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
2011     __ sarl(h, 1);                               // h = (i + j) >> 1;
2012     // if (key < array[h].fast_match()) {
2013     //   j = h;
2014     // } else {
2015     //   i = h;
2016     // }
2017     // Convert array[h].match to native byte-ordering before compare
2018     __ movl(temp, Address(array, h, Address::times_8));
2019     __ bswapl(temp);
2020     __ cmpl(key, temp);
2021     // j = h if (key <  array[h].fast_match())
2022     __ cmovl(Assembler::less, j, h);
2023     // i = h if (key >= array[h].fast_match())
2024     __ cmovl(Assembler::greaterEqual, i, h);
2025     // while (i+1 < j)
2026     __ bind(entry);
2027     __ leal(h, Address(i, 1)); // i+1
2028     __ cmpl(h, j);             // i+1 < j
2029     __ jcc(Assembler::less, loop);
2030   }
2031 
2032   // end of binary search, result index is i (must check again!)
2033   Label default_case;
2034   // Convert array[i].match to native byte-ordering before compare
2035   __ movl(temp, Address(array, i, Address::times_8));
2036   __ bswapl(temp);
2037   __ cmpl(key, temp);
2038   __ jcc(Assembler::notEqual, default_case);
2039 
2040   // entry found -> j = offset
2041   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
2042   __ profile_switch_case(i, key, array);
2043   __ bswapl(j);
2044   __ movl2ptr(j, j);
2045   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
2046   __ addptr(r13, j);
2047   __ dispatch_only(vtos);
2048 
2049   // default case -> j = default offset
2050   __ bind(default_case);
2051   __ profile_switch_default(i);
2052   __ movl(j, Address(array, -2 * BytesPerInt));
2053   __ bswapl(j);
2054   __ movl2ptr(j, j);
2055   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
2056   __ addptr(r13, j);
2057   __ dispatch_only(vtos);
2058 }
2059 
2060 
2061 void TemplateTable::_return(TosState state) {
2062   transition(state, state);
2063   assert(_desc->calls_vm(),
2064          "inconsistent calls_vm information"); // call in remove_activation
2065 
2066   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2067     assert(state == vtos, "only valid state");
2068     __ movptr(c_rarg1, aaddress(0));
2069     __ load_klass(rdi, c_rarg1);
2070     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
2071     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2072     Label skip_register_finalizer;
2073     __ jcc(Assembler::zero, skip_register_finalizer);
2074 
2075     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2076 
2077     __ bind(skip_register_finalizer);
2078   }
2079 
2080   __ remove_activation(state, r13);
2081   __ jmp(r13);
2082 }
2083 
2084 // ----------------------------------------------------------------------------
2085 // Volatile variables demand their effects be made known to all CPU's
2086 // in order.  Store buffers on most chips allow reads & writes to
2087 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2088 // without some kind of memory barrier (i.e., it's not sufficient that
2089 // the interpreter does not reorder volatile references, the hardware
2090 // also must not reorder them).
2091 //
2092 // According to the new Java Memory Model (JMM):
2093 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2094 //     writes act as aquire & release, so:
2095 // (2) A read cannot let unrelated NON-volatile memory refs that
2096 //     happen after the read float up to before the read.  It's OK for
2097 //     non-volatile memory refs that happen before the volatile read to
2098 //     float down below it.
2099 // (3) Similar a volatile write cannot let unrelated NON-volatile
2100 //     memory refs that happen BEFORE the write float down to after the
2101 //     write.  It's OK for non-volatile memory refs that happen after the
2102 //     volatile write to float up before it.
2103 //
2104 // We only put in barriers around volatile refs (they are expensive),
2105 // not _between_ memory refs (that would require us to track the
2106 // flavor of the previous memory refs).  Requirements (2) and (3)
2107 // require some barriers before volatile stores and after volatile
2108 // loads.  These nearly cover requirement (1) but miss the
2109 // volatile-store-volatile-load case.  This final case is placed after
2110 // volatile-stores although it could just as well go before
2111 // volatile-loads.
2112 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
2113                                      order_constraint) {
2114   // Helper function to insert a is-volatile test and memory barrier
2115   if (os::is_MP()) { // Not needed on single CPU
2116     __ membar(order_constraint);
2117   }
2118 }
2119 
2120 void TemplateTable::resolve_cache_and_index(int byte_no,
2121                                             Register result,
2122                                             Register Rcache,
2123                                             Register index,
2124                                             size_t index_size) {
2125   const Register temp = rbx;
2126   assert_different_registers(result, Rcache, index, temp);
2127 
2128   Label resolved;
2129   if (byte_no == f1_oop) {
2130     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2131     // This kind of CP cache entry does not need to match the flags byte, because
2132     // there is a 1-1 relation between bytecode type and CP entry type.
2133     assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD)
2134     __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2135     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
2136     __ testptr(result, result);
2137     __ jcc(Assembler::notEqual, resolved);
2138   } else {
2139     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2140     assert(result == noreg, "");  //else change code for setting result
2141     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
2142     __ cmpl(temp, (int) bytecode());  // have we resolved this bytecode?
2143     __ jcc(Assembler::equal, resolved);
2144   }
2145 
2146   // resolve first time through
2147   address entry;
2148   switch (bytecode()) {
2149   case Bytecodes::_getstatic:
2150   case Bytecodes::_putstatic:
2151   case Bytecodes::_getfield:
2152   case Bytecodes::_putfield:
2153     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
2154     break;
2155   case Bytecodes::_invokevirtual:
2156   case Bytecodes::_invokespecial:
2157   case Bytecodes::_invokestatic:
2158   case Bytecodes::_invokeinterface:
2159     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
2160     break;
2161   case Bytecodes::_invokedynamic:
2162     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
2163     break;
2164   case Bytecodes::_fast_aldc:
2165     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
2166     break;
2167   case Bytecodes::_fast_aldc_w:
2168     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
2169     break;
2170   default:
2171     ShouldNotReachHere();
2172     break;
2173   }
2174   __ movl(temp, (int) bytecode());
2175   __ call_VM(noreg, entry, temp);
2176 
2177   // Update registers with resolved info
2178   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2179   if (result != noreg)
2180     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
2181   __ bind(resolved);
2182 }
2183 
2184 // The Rcache and index registers must be set before call
2185 void TemplateTable::load_field_cp_cache_entry(Register obj,
2186                                               Register cache,
2187                                               Register index,
2188                                               Register off,
2189                                               Register flags,
2190                                               bool is_static = false) {
2191   assert_different_registers(cache, index, flags, off);
2192 
2193   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2194   // Field offset
2195   __ movptr(off, Address(cache, index, Address::times_8,
2196                          in_bytes(cp_base_offset +
2197                                   ConstantPoolCacheEntry::f2_offset())));
2198   // Flags
2199   __ movl(flags, Address(cache, index, Address::times_8,
2200                          in_bytes(cp_base_offset +
2201                                   ConstantPoolCacheEntry::flags_offset())));
2202 
2203   // klass overwrite register
2204   if (is_static) {
2205     __ movptr(obj, Address(cache, index, Address::times_8,
2206                            in_bytes(cp_base_offset +
2207                                     ConstantPoolCacheEntry::f1_offset())));
2208   }
2209 }
2210 
2211 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2212                                                Register method,
2213                                                Register itable_index,
2214                                                Register flags,
2215                                                bool is_invokevirtual,
2216                                                bool is_invokevfinal, /*unused*/
2217                                                bool is_invokedynamic) {
2218   // setup registers
2219   const Register cache = rcx;
2220   const Register index = rdx;
2221   assert_different_registers(method, flags);
2222   assert_different_registers(method, cache, index);
2223   assert_different_registers(itable_index, flags);
2224   assert_different_registers(itable_index, cache, index);
2225   // determine constant pool cache field offsets
2226   const int method_offset = in_bytes(
2227     constantPoolCacheOopDesc::base_offset() +
2228       (is_invokevirtual
2229        ? ConstantPoolCacheEntry::f2_offset()
2230        : ConstantPoolCacheEntry::f1_offset()));
2231   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
2232                                     ConstantPoolCacheEntry::flags_offset());
2233   // access constant pool cache fields
2234   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
2235                                     ConstantPoolCacheEntry::f2_offset());
2236 
2237   if (byte_no == f1_oop) {
2238     // Resolved f1_oop goes directly into 'method' register.
2239     assert(is_invokedynamic, "");
2240     resolve_cache_and_index(byte_no, method, cache, index, sizeof(u4));
2241   } else {
2242     resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
2243     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
2244   }
2245   if (itable_index != noreg) {
2246     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2247   }
2248   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
2249 }
2250 
2251 
2252 // The registers cache and index expected to be set before call.
2253 // Correct values of the cache and index registers are preserved.
2254 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2255                                             bool is_static, bool has_tos) {
2256   // do the JVMTI work here to avoid disturbing the register state below
2257   // We use c_rarg registers here because we want to use the register used in
2258   // the call to the VM
2259   if (JvmtiExport::can_post_field_access()) {
2260     // Check to see if a field access watch has been set before we
2261     // take the time to call into the VM.
2262     Label L1;
2263     assert_different_registers(cache, index, rax);
2264     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2265     __ testl(rax, rax);
2266     __ jcc(Assembler::zero, L1);
2267 
2268     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
2269 
2270     // cache entry pointer
2271     __ addptr(c_rarg2, in_bytes(constantPoolCacheOopDesc::base_offset()));
2272     __ shll(c_rarg3, LogBytesPerWord);
2273     __ addptr(c_rarg2, c_rarg3);
2274     if (is_static) {
2275       __ xorl(c_rarg1, c_rarg1); // NULL object reference
2276     } else {
2277       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
2278       __ verify_oop(c_rarg1);
2279     }
2280     // c_rarg1: object pointer or NULL
2281     // c_rarg2: cache entry pointer
2282     // c_rarg3: jvalue object on the stack
2283     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2284                                        InterpreterRuntime::post_field_access),
2285                c_rarg1, c_rarg2, c_rarg3);
2286     __ get_cache_and_index_at_bcp(cache, index, 1);
2287     __ bind(L1);
2288   }
2289 }
2290 
2291 void TemplateTable::pop_and_check_object(Register r) {
2292   __ pop_ptr(r);
2293   __ null_check(r);  // for field access must check obj.
2294   __ verify_oop(r);
2295 }
2296 
2297 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2298   transition(vtos, vtos);
2299 
2300   const Register cache = rcx;
2301   const Register index = rdx;
2302   const Register obj   = c_rarg3;
2303   const Register off   = rbx;
2304   const Register flags = rax;
2305   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
2306 
2307   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
2308   jvmti_post_field_access(cache, index, is_static, false);
2309   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2310 
2311   if (!is_static) {
2312     // obj is on the stack
2313     pop_and_check_object(obj);
2314   }
2315 
2316   const Address field(obj, off, Address::times_1);
2317 
2318   Label Done, notByte, notInt, notShort, notChar,
2319               notLong, notFloat, notObj, notDouble;
2320 
2321   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2322   assert(btos == 0, "change code, btos != 0");
2323 
2324   __ andl(flags, 0x0F);
2325   __ jcc(Assembler::notZero, notByte);
2326   // btos
2327   __ load_signed_byte(rax, field);
2328   __ push(btos);
2329   // Rewrite bytecode to be faster
2330   if (!is_static) {
2331     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2332   }
2333   __ jmp(Done);
2334 
2335   __ bind(notByte);
2336   __ cmpl(flags, atos);
2337   __ jcc(Assembler::notEqual, notObj);
2338   // atos
2339   __ load_heap_oop(rax, field);
2340   __ push(atos);
2341   if (!is_static) {
2342     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2343   }
2344   __ jmp(Done);
2345 
2346   __ bind(notObj);
2347   __ cmpl(flags, itos);
2348   __ jcc(Assembler::notEqual, notInt);
2349   // itos
2350   __ movl(rax, field);
2351   __ push(itos);
2352   // Rewrite bytecode to be faster
2353   if (!is_static) {
2354     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
2355   }
2356   __ jmp(Done);
2357 
2358   __ bind(notInt);
2359   __ cmpl(flags, ctos);
2360   __ jcc(Assembler::notEqual, notChar);
2361   // ctos
2362   __ load_unsigned_short(rax, field);
2363   __ push(ctos);
2364   // Rewrite bytecode to be faster
2365   if (!is_static) {
2366     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
2367   }
2368   __ jmp(Done);
2369 
2370   __ bind(notChar);
2371   __ cmpl(flags, stos);
2372   __ jcc(Assembler::notEqual, notShort);
2373   // stos
2374   __ load_signed_short(rax, field);
2375   __ push(stos);
2376   // Rewrite bytecode to be faster
2377   if (!is_static) {
2378     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
2379   }
2380   __ jmp(Done);
2381 
2382   __ bind(notShort);
2383   __ cmpl(flags, ltos);
2384   __ jcc(Assembler::notEqual, notLong);
2385   // ltos
2386   __ movq(rax, field);
2387   __ push(ltos);
2388   // Rewrite bytecode to be faster
2389   if (!is_static) {
2390     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
2391   }
2392   __ jmp(Done);
2393 
2394   __ bind(notLong);
2395   __ cmpl(flags, ftos);
2396   __ jcc(Assembler::notEqual, notFloat);
2397   // ftos
2398   __ movflt(xmm0, field);
2399   __ push(ftos);
2400   // Rewrite bytecode to be faster
2401   if (!is_static) {
2402     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
2403   }
2404   __ jmp(Done);
2405 
2406   __ bind(notFloat);
2407 #ifdef ASSERT
2408   __ cmpl(flags, dtos);
2409   __ jcc(Assembler::notEqual, notDouble);
2410 #endif
2411   // dtos
2412   __ movdbl(xmm0, field);
2413   __ push(dtos);
2414   // Rewrite bytecode to be faster
2415   if (!is_static) {
2416     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
2417   }
2418 #ifdef ASSERT
2419   __ jmp(Done);
2420 
2421   __ bind(notDouble);
2422   __ stop("Bad state");
2423 #endif
2424 
2425   __ bind(Done);
2426   // [jk] not needed currently
2427   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
2428   //                                              Assembler::LoadStore));
2429 }
2430 
2431 
2432 void TemplateTable::getfield(int byte_no) {
2433   getfield_or_static(byte_no, false);
2434 }
2435 
2436 void TemplateTable::getstatic(int byte_no) {
2437   getfield_or_static(byte_no, true);
2438 }
2439 
2440 // The registers cache and index expected to be set before call.
2441 // The function may destroy various registers, just not the cache and index registers.
2442 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2443   transition(vtos, vtos);
2444 
2445   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2446 
2447   if (JvmtiExport::can_post_field_modification()) {
2448     // Check to see if a field modification watch has been set before
2449     // we take the time to call into the VM.
2450     Label L1;
2451     assert_different_registers(cache, index, rax);
2452     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2453     __ testl(rax, rax);
2454     __ jcc(Assembler::zero, L1);
2455 
2456     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
2457 
2458     if (is_static) {
2459       // Life is simple.  Null out the object pointer.
2460       __ xorl(c_rarg1, c_rarg1);
2461     } else {
2462       // Life is harder. The stack holds the value on top, followed by
2463       // the object.  We don't know the size of the value, though; it
2464       // could be one or two words depending on its type. As a result,
2465       // we must find the type to determine where the object is.
2466       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
2467                            Address::times_8,
2468                            in_bytes(cp_base_offset +
2469                                      ConstantPoolCacheEntry::flags_offset())));
2470       __ shrl(c_rarg3, ConstantPoolCacheEntry::tosBits);
2471       // Make sure we don't need to mask rcx for tosBits after the
2472       // above shift
2473       ConstantPoolCacheEntry::verify_tosBits();
2474       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
2475       __ cmpl(c_rarg3, ltos);
2476       __ cmovptr(Assembler::equal,
2477                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
2478       __ cmpl(c_rarg3, dtos);
2479       __ cmovptr(Assembler::equal,
2480                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
2481     }
2482     // cache entry pointer
2483     __ addptr(c_rarg2, in_bytes(cp_base_offset));
2484     __ shll(rscratch1, LogBytesPerWord);
2485     __ addptr(c_rarg2, rscratch1);
2486     // object (tos)
2487     __ mov(c_rarg3, rsp);
2488     // c_rarg1: object pointer set up above (NULL if static)
2489     // c_rarg2: cache entry pointer
2490     // c_rarg3: jvalue object on the stack
2491     __ call_VM(noreg,
2492                CAST_FROM_FN_PTR(address,
2493                                 InterpreterRuntime::post_field_modification),
2494                c_rarg1, c_rarg2, c_rarg3);
2495     __ get_cache_and_index_at_bcp(cache, index, 1);
2496     __ bind(L1);
2497   }
2498 }
2499 
2500 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2501   transition(vtos, vtos);
2502 
2503   const Register cache = rcx;
2504   const Register index = rdx;
2505   const Register obj   = rcx;
2506   const Register off   = rbx;
2507   const Register flags = rax;
2508   const Register bc    = c_rarg3;
2509 
2510   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
2511   jvmti_post_field_mod(cache, index, is_static);
2512   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2513 
2514   // [jk] not needed currently
2515   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2516   //                                              Assembler::StoreStore));
2517 
2518   Label notVolatile, Done;
2519   __ movl(rdx, flags);
2520   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2521   __ andl(rdx, 0x1);
2522 
2523   // field address
2524   const Address field(obj, off, Address::times_1);
2525 
2526   Label notByte, notInt, notShort, notChar,
2527         notLong, notFloat, notObj, notDouble;
2528 
2529   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2530 
2531   assert(btos == 0, "change code, btos != 0");
2532   __ andl(flags, 0x0f);
2533   __ jcc(Assembler::notZero, notByte);
2534 
2535   // btos
2536   {
2537     __ pop(btos);
2538     if (!is_static) pop_and_check_object(obj);
2539     __ movb(field, rax);
2540     if (!is_static) {
2541       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
2542     }
2543     __ jmp(Done);
2544   }
2545 
2546   __ bind(notByte);
2547   __ cmpl(flags, atos);
2548   __ jcc(Assembler::notEqual, notObj);
2549 
2550   // atos
2551   {
2552     __ pop(atos);
2553     if (!is_static) pop_and_check_object(obj);
2554     // Store into the field
2555     do_oop_store(_masm, field, rax, _bs->kind(), false);
2556     if (!is_static) {
2557       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
2558     }
2559     __ jmp(Done);
2560   }
2561 
2562   __ bind(notObj);
2563   __ cmpl(flags, itos);
2564   __ jcc(Assembler::notEqual, notInt);
2565 
2566   // itos
2567   {
2568     __ pop(itos);
2569     if (!is_static) pop_and_check_object(obj);
2570     __ movl(field, rax);
2571     if (!is_static) {
2572       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
2573     }
2574     __ jmp(Done);
2575   }
2576 
2577   __ bind(notInt);
2578   __ cmpl(flags, ctos);
2579   __ jcc(Assembler::notEqual, notChar);
2580 
2581   // ctos
2582   {
2583     __ pop(ctos);
2584     if (!is_static) pop_and_check_object(obj);
2585     __ movw(field, rax);
2586     if (!is_static) {
2587       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
2588     }
2589     __ jmp(Done);
2590   }
2591 
2592   __ bind(notChar);
2593   __ cmpl(flags, stos);
2594   __ jcc(Assembler::notEqual, notShort);
2595 
2596   // stos
2597   {
2598     __ pop(stos);
2599     if (!is_static) pop_and_check_object(obj);
2600     __ movw(field, rax);
2601     if (!is_static) {
2602       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
2603     }
2604     __ jmp(Done);
2605   }
2606 
2607   __ bind(notShort);
2608   __ cmpl(flags, ltos);
2609   __ jcc(Assembler::notEqual, notLong);
2610 
2611   // ltos
2612   {
2613     __ pop(ltos);
2614     if (!is_static) pop_and_check_object(obj);
2615     __ movq(field, rax);
2616     if (!is_static) {
2617       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
2618     }
2619     __ jmp(Done);
2620   }
2621 
2622   __ bind(notLong);
2623   __ cmpl(flags, ftos);
2624   __ jcc(Assembler::notEqual, notFloat);
2625 
2626   // ftos
2627   {
2628     __ pop(ftos);
2629     if (!is_static) pop_and_check_object(obj);
2630     __ movflt(field, xmm0);
2631     if (!is_static) {
2632       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
2633     }
2634     __ jmp(Done);
2635   }
2636 
2637   __ bind(notFloat);
2638 #ifdef ASSERT
2639   __ cmpl(flags, dtos);
2640   __ jcc(Assembler::notEqual, notDouble);
2641 #endif
2642 
2643   // dtos
2644   {
2645     __ pop(dtos);
2646     if (!is_static) pop_and_check_object(obj);
2647     __ movdbl(field, xmm0);
2648     if (!is_static) {
2649       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
2650     }
2651   }
2652 
2653 #ifdef ASSERT
2654   __ jmp(Done);
2655 
2656   __ bind(notDouble);
2657   __ stop("Bad state");
2658 #endif
2659 
2660   __ bind(Done);
2661 
2662   // Check for volatile store
2663   __ testl(rdx, rdx);
2664   __ jcc(Assembler::zero, notVolatile);
2665   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2666                                                Assembler::StoreStore));
2667   __ bind(notVolatile);
2668 }
2669 
2670 void TemplateTable::putfield(int byte_no) {
2671   putfield_or_static(byte_no, false);
2672 }
2673 
2674 void TemplateTable::putstatic(int byte_no) {
2675   putfield_or_static(byte_no, true);
2676 }
2677 
2678 void TemplateTable::jvmti_post_fast_field_mod() {
2679   if (JvmtiExport::can_post_field_modification()) {
2680     // Check to see if a field modification watch has been set before
2681     // we take the time to call into the VM.
2682     Label L2;
2683     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2684     __ testl(c_rarg3, c_rarg3);
2685     __ jcc(Assembler::zero, L2);
2686     __ pop_ptr(rbx);                  // copy the object pointer from tos
2687     __ verify_oop(rbx);
2688     __ push_ptr(rbx);                 // put the object pointer back on tos
2689     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
2690     __ mov(c_rarg3, rsp);
2691     const Address field(c_rarg3, 0);
2692 
2693     switch (bytecode()) {          // load values into the jvalue object
2694     case Bytecodes::_fast_aputfield: __ movq(field, rax); break;
2695     case Bytecodes::_fast_lputfield: __ movq(field, rax); break;
2696     case Bytecodes::_fast_iputfield: __ movl(field, rax); break;
2697     case Bytecodes::_fast_bputfield: __ movb(field, rax); break;
2698     case Bytecodes::_fast_sputfield: // fall through
2699     case Bytecodes::_fast_cputfield: __ movw(field, rax); break;
2700     case Bytecodes::_fast_fputfield: __ movflt(field, xmm0); break;
2701     case Bytecodes::_fast_dputfield: __ movdbl(field, xmm0); break;
2702     default:
2703       ShouldNotReachHere();
2704     }
2705 
2706     // Save rax because call_VM() will clobber it, then use it for
2707     // JVMTI purposes
2708     __ push(rax);
2709     // access constant pool cache entry
2710     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
2711     __ verify_oop(rbx);
2712     // rbx: object pointer copied above
2713     // c_rarg2: cache entry pointer
2714     // c_rarg3: jvalue object on the stack
2715     __ call_VM(noreg,
2716                CAST_FROM_FN_PTR(address,
2717                                 InterpreterRuntime::post_field_modification),
2718                rbx, c_rarg2, c_rarg3);
2719     __ pop(rax);     // restore lower value
2720     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
2721     __ bind(L2);
2722   }
2723 }
2724 
2725 void TemplateTable::fast_storefield(TosState state) {
2726   transition(state, vtos);
2727 
2728   ByteSize base = constantPoolCacheOopDesc::base_offset();
2729 
2730   jvmti_post_fast_field_mod();
2731 
2732   // access constant pool cache
2733   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2734 
2735   // test for volatile with rdx
2736   __ movl(rdx, Address(rcx, rbx, Address::times_8,
2737                        in_bytes(base +
2738                                 ConstantPoolCacheEntry::flags_offset())));
2739 
2740   // replace index with field offset from cache entry
2741   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
2742                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
2743 
2744   // [jk] not needed currently
2745   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2746   //                                              Assembler::StoreStore));
2747 
2748   Label notVolatile;
2749   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2750   __ andl(rdx, 0x1);
2751 
2752   // Get object from stack
2753   pop_and_check_object(rcx);
2754 
2755   // field address
2756   const Address field(rcx, rbx, Address::times_1);
2757 
2758   // access field
2759   switch (bytecode()) {
2760   case Bytecodes::_fast_aputfield:
2761     do_oop_store(_masm, field, rax, _bs->kind(), false);
2762     break;
2763   case Bytecodes::_fast_lputfield:
2764     __ movq(field, rax);
2765     break;
2766   case Bytecodes::_fast_iputfield:
2767     __ movl(field, rax);
2768     break;
2769   case Bytecodes::_fast_bputfield:
2770     __ movb(field, rax);
2771     break;
2772   case Bytecodes::_fast_sputfield:
2773     // fall through
2774   case Bytecodes::_fast_cputfield:
2775     __ movw(field, rax);
2776     break;
2777   case Bytecodes::_fast_fputfield:
2778     __ movflt(field, xmm0);
2779     break;
2780   case Bytecodes::_fast_dputfield:
2781     __ movdbl(field, xmm0);
2782     break;
2783   default:
2784     ShouldNotReachHere();
2785   }
2786 
2787   // Check for volatile store
2788   __ testl(rdx, rdx);
2789   __ jcc(Assembler::zero, notVolatile);
2790   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2791                                                Assembler::StoreStore));
2792   __ bind(notVolatile);
2793 }
2794 
2795 
2796 void TemplateTable::fast_accessfield(TosState state) {
2797   transition(atos, state);
2798 
2799   // Do the JVMTI work here to avoid disturbing the register state below
2800   if (JvmtiExport::can_post_field_access()) {
2801     // Check to see if a field access watch has been set before we
2802     // take the time to call into the VM.
2803     Label L1;
2804     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2805     __ testl(rcx, rcx);
2806     __ jcc(Assembler::zero, L1);
2807     // access constant pool cache entry
2808     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
2809     __ verify_oop(rax);
2810     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
2811     __ mov(c_rarg1, rax);
2812     // c_rarg1: object pointer copied above
2813     // c_rarg2: cache entry pointer
2814     __ call_VM(noreg,
2815                CAST_FROM_FN_PTR(address,
2816                                 InterpreterRuntime::post_field_access),
2817                c_rarg1, c_rarg2);
2818     __ pop_ptr(rax); // restore object pointer
2819     __ bind(L1);
2820   }
2821 
2822   // access constant pool cache
2823   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2824   // replace index with field offset from cache entry
2825   // [jk] not needed currently
2826   // if (os::is_MP()) {
2827   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
2828   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
2829   //                                 ConstantPoolCacheEntry::flags_offset())));
2830   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2831   //   __ andl(rdx, 0x1);
2832   // }
2833   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
2834                          in_bytes(constantPoolCacheOopDesc::base_offset() +
2835                                   ConstantPoolCacheEntry::f2_offset())));
2836 
2837   // rax: object
2838   __ verify_oop(rax);
2839   __ null_check(rax);
2840   Address field(rax, rbx, Address::times_1);
2841 
2842   // access field
2843   switch (bytecode()) {
2844   case Bytecodes::_fast_agetfield:
2845     __ load_heap_oop(rax, field);
2846     __ verify_oop(rax);
2847     break;
2848   case Bytecodes::_fast_lgetfield:
2849     __ movq(rax, field);
2850     break;
2851   case Bytecodes::_fast_igetfield:
2852     __ movl(rax, field);
2853     break;
2854   case Bytecodes::_fast_bgetfield:
2855     __ movsbl(rax, field);
2856     break;
2857   case Bytecodes::_fast_sgetfield:
2858     __ load_signed_short(rax, field);
2859     break;
2860   case Bytecodes::_fast_cgetfield:
2861     __ load_unsigned_short(rax, field);
2862     break;
2863   case Bytecodes::_fast_fgetfield:
2864     __ movflt(xmm0, field);
2865     break;
2866   case Bytecodes::_fast_dgetfield:
2867     __ movdbl(xmm0, field);
2868     break;
2869   default:
2870     ShouldNotReachHere();
2871   }
2872   // [jk] not needed currently
2873   // if (os::is_MP()) {
2874   //   Label notVolatile;
2875   //   __ testl(rdx, rdx);
2876   //   __ jcc(Assembler::zero, notVolatile);
2877   //   __ membar(Assembler::LoadLoad);
2878   //   __ bind(notVolatile);
2879   //};
2880 }
2881 
2882 void TemplateTable::fast_xaccess(TosState state) {
2883   transition(vtos, state);
2884 
2885   // get receiver
2886   __ movptr(rax, aaddress(0));
2887   // access constant pool cache
2888   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
2889   __ movptr(rbx,
2890             Address(rcx, rdx, Address::times_8,
2891                     in_bytes(constantPoolCacheOopDesc::base_offset() +
2892                              ConstantPoolCacheEntry::f2_offset())));
2893   // make sure exception is reported in correct bcp range (getfield is
2894   // next instruction)
2895   __ increment(r13);
2896   __ null_check(rax);
2897   switch (state) {
2898   case itos:
2899     __ movl(rax, Address(rax, rbx, Address::times_1));
2900     break;
2901   case atos:
2902     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
2903     __ verify_oop(rax);
2904     break;
2905   case ftos:
2906     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
2907     break;
2908   default:
2909     ShouldNotReachHere();
2910   }
2911 
2912   // [jk] not needed currently
2913   // if (os::is_MP()) {
2914   //   Label notVolatile;
2915   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
2916   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
2917   //                                 ConstantPoolCacheEntry::flags_offset())));
2918   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2919   //   __ testl(rdx, 0x1);
2920   //   __ jcc(Assembler::zero, notVolatile);
2921   //   __ membar(Assembler::LoadLoad);
2922   //   __ bind(notVolatile);
2923   // }
2924 
2925   __ decrement(r13);
2926 }
2927 
2928 
2929 
2930 //-----------------------------------------------------------------------------
2931 // Calls
2932 
2933 void TemplateTable::count_calls(Register method, Register temp) {
2934   // implemented elsewhere
2935   ShouldNotReachHere();
2936 }
2937 
2938 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) {
2939   // determine flags
2940   Bytecodes::Code code = bytecode();
2941   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2942   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2943   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2944   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2945   const bool load_receiver      = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic);
2946   const bool receiver_null_check = is_invokespecial;
2947   const bool save_flags = is_invokeinterface || is_invokevirtual;
2948   // setup registers & access constant pool cache
2949   const Register recv   = rcx;
2950   const Register flags  = rdx;
2951   assert_different_registers(method, index, recv, flags);
2952 
2953   // save 'interpreter return address'
2954   __ save_bcp();
2955 
2956   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
2957 
2958   // load receiver if needed (note: no return address pushed yet)
2959   if (load_receiver) {
2960     assert(!is_invokedynamic, "");
2961     __ movl(recv, flags);
2962     __ andl(recv, 0xFF);
2963     Address recv_addr(rsp, recv, Address::times_8, -Interpreter::expr_offset_in_bytes(1));
2964     __ movptr(recv, recv_addr);
2965     __ verify_oop(recv);
2966   }
2967 
2968   // do null check if needed
2969   if (receiver_null_check) {
2970     __ null_check(recv);
2971   }
2972 
2973   if (save_flags) {
2974     __ movl(r13, flags);
2975   }
2976 
2977   // compute return type
2978   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2979   // Make sure we don't need to mask flags for tosBits after the above shift
2980   ConstantPoolCacheEntry::verify_tosBits();
2981   // load return address
2982   {
2983     address table_addr;
2984     if (is_invokeinterface || is_invokedynamic)
2985       table_addr = (address)Interpreter::return_5_addrs_by_index_table();
2986     else
2987       table_addr = (address)Interpreter::return_3_addrs_by_index_table();
2988     ExternalAddress table(table_addr);
2989     __ lea(rscratch1, table);
2990     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
2991   }
2992 
2993   // push return address
2994   __ push(flags);
2995 
2996   // Restore flag field from the constant pool cache, and restore esi
2997   // for later null checks.  r13 is the bytecode pointer
2998   if (save_flags) {
2999     __ movl(flags, r13);
3000     __ restore_bcp();
3001   }
3002 }
3003 
3004 
3005 void TemplateTable::invokevirtual_helper(Register index,
3006                                          Register recv,
3007                                          Register flags) {
3008   // Uses temporary registers rax, rdx
3009   assert_different_registers(index, recv, rax, rdx);
3010 
3011   // Test for an invoke of a final method
3012   Label notFinal;
3013   __ movl(rax, flags);
3014   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
3015   __ jcc(Assembler::zero, notFinal);
3016 
3017   const Register method = index;  // method must be rbx
3018   assert(method == rbx,
3019          "methodOop must be rbx for interpreter calling convention");
3020 
3021   // do the call - the index is actually the method to call
3022   __ verify_oop(method);
3023 
3024   // It's final, need a null check here!
3025   __ null_check(recv);
3026 
3027   // profile this call
3028   __ profile_final_call(rax);
3029 
3030   __ jump_from_interpreted(method, rax);
3031 
3032   __ bind(notFinal);
3033 
3034   // get receiver klass
3035   __ null_check(recv, oopDesc::klass_offset_in_bytes());
3036   __ load_klass(rax, recv);
3037 
3038   __ verify_oop(rax);
3039 
3040   // profile this call
3041   __ profile_virtual_call(rax, r14, rdx);
3042 
3043   // get target methodOop & entry point
3044   const int base = instanceKlass::vtable_start_offset() * wordSize;
3045   assert(vtableEntry::size() * wordSize == 8,
3046          "adjust the scaling in the code below");
3047   __ movptr(method, Address(rax, index,
3048                                  Address::times_8,
3049                                  base + vtableEntry::method_offset_in_bytes()));
3050   __ movptr(rdx, Address(method, methodOopDesc::interpreter_entry_offset()));
3051   __ jump_from_interpreted(method, rdx);
3052 }
3053 
3054 
3055 void TemplateTable::invokevirtual(int byte_no) {
3056   transition(vtos, vtos);
3057   assert(byte_no == f2_byte, "use this argument");
3058   prepare_invoke(rbx, noreg, byte_no);
3059 
3060   // rbx: index
3061   // rcx: receiver
3062   // rdx: flags
3063 
3064   invokevirtual_helper(rbx, rcx, rdx);
3065 }
3066 
3067 
3068 void TemplateTable::invokespecial(int byte_no) {
3069   transition(vtos, vtos);
3070   assert(byte_no == f1_byte, "use this argument");
3071   prepare_invoke(rbx, noreg, byte_no);
3072   // do the call
3073   __ verify_oop(rbx);
3074   __ profile_call(rax);
3075   __ jump_from_interpreted(rbx, rax);
3076 }
3077 
3078 
3079 void TemplateTable::invokestatic(int byte_no) {
3080   transition(vtos, vtos);
3081   assert(byte_no == f1_byte, "use this argument");
3082   prepare_invoke(rbx, noreg, byte_no);
3083   // do the call
3084   __ verify_oop(rbx);
3085   __ profile_call(rax);
3086   __ jump_from_interpreted(rbx, rax);
3087 }
3088 
3089 void TemplateTable::fast_invokevfinal(int byte_no) {
3090   transition(vtos, vtos);
3091   assert(byte_no == f2_byte, "use this argument");
3092   __ stop("fast_invokevfinal not used on amd64");
3093 }
3094 
3095 void TemplateTable::invokeinterface(int byte_no) {
3096   transition(vtos, vtos);
3097   assert(byte_no == f1_byte, "use this argument");
3098   prepare_invoke(rax, rbx, byte_no);
3099 
3100   // rax: Interface
3101   // rbx: index
3102   // rcx: receiver
3103   // rdx: flags
3104 
3105   // Special case of invokeinterface called for virtual method of
3106   // java.lang.Object.  See cpCacheOop.cpp for details.
3107   // This code isn't produced by javac, but could be produced by
3108   // another compliant java compiler.
3109   Label notMethod;
3110   __ movl(r14, rdx);
3111   __ andl(r14, (1 << ConstantPoolCacheEntry::methodInterface));
3112   __ jcc(Assembler::zero, notMethod);
3113 
3114   invokevirtual_helper(rbx, rcx, rdx);
3115   __ bind(notMethod);
3116 
3117   // Get receiver klass into rdx - also a null check
3118   __ restore_locals(); // restore r14
3119   __ load_klass(rdx, rcx);
3120   __ verify_oop(rdx);
3121 
3122   // profile this call
3123   __ profile_virtual_call(rdx, r13, r14);
3124 
3125   Label no_such_interface, no_such_method;
3126 
3127   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3128                              rdx, rax, rbx,
3129                              // outputs: method, scan temp. reg
3130                              rbx, r13,
3131                              no_such_interface);
3132 
3133   // rbx,: methodOop to call
3134   // rcx: receiver
3135   // Check for abstract method error
3136   // Note: This should be done more efficiently via a throw_abstract_method_error
3137   //       interpreter entry point and a conditional jump to it in case of a null
3138   //       method.
3139   __ testptr(rbx, rbx);
3140   __ jcc(Assembler::zero, no_such_method);
3141 
3142   // do the call
3143   // rcx: receiver
3144   // rbx,: methodOop
3145   __ jump_from_interpreted(rbx, rdx);
3146   __ should_not_reach_here();
3147 
3148   // exception handling code follows...
3149   // note: must restore interpreter registers to canonical
3150   //       state for exception handling to work correctly!
3151 
3152   __ bind(no_such_method);
3153   // throw exception
3154   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3155   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
3156   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3157   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3158   // the call_VM checks for exception, so we should never return here.
3159   __ should_not_reach_here();
3160 
3161   __ bind(no_such_interface);
3162   // throw exception
3163   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3164   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
3165   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3166   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3167                    InterpreterRuntime::throw_IncompatibleClassChangeError));
3168   // the call_VM checks for exception, so we should never return here.
3169   __ should_not_reach_here();
3170   return;
3171 }
3172 
3173 void TemplateTable::invokedynamic(int byte_no) {
3174   transition(vtos, vtos);
3175   assert(byte_no == f1_oop, "use this argument");
3176 
3177   if (!EnableInvokeDynamic) {
3178     // We should not encounter this bytecode if !EnableInvokeDynamic.
3179     // The verifier will stop it.  However, if we get past the verifier,
3180     // this will stop the thread in a reasonable way, without crashing the JVM.
3181     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3182                      InterpreterRuntime::throw_IncompatibleClassChangeError));
3183     // the call_VM checks for exception, so we should never return here.
3184     __ should_not_reach_here();
3185     return;
3186   }
3187 
3188   prepare_invoke(rax, rbx, byte_no);
3189 
3190   // rax: CallSite object (f1)
3191   // rbx: unused (f2)
3192   // rcx: receiver address
3193   // rdx: flags (unused)
3194 
3195   Register rax_callsite      = rax;
3196   Register rcx_method_handle = rcx;
3197 
3198   // %%% should make a type profile for any invokedynamic that takes a ref argument
3199   // profile this call
3200   __ profile_call(r13);
3201 
3202   __ verify_oop(rax_callsite);
3203   __ load_heap_oop(rcx_method_handle, Address(rax_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, rdx)));
3204   __ null_check(rcx_method_handle);
3205   __ verify_oop(rcx_method_handle);
3206   __ prepare_to_jump_from_interpreted();
3207   __ jump_to_method_handle_entry(rcx_method_handle, rdx);
3208 }
3209 
3210 
3211 //-----------------------------------------------------------------------------
3212 // Allocation
3213 
3214 void TemplateTable::_new() {
3215   transition(vtos, atos);
3216   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3217   Label slow_case;
3218   Label done;
3219   Label initialize_header;
3220   Label initialize_object; // including clearing the fields
3221   Label allocate_shared;
3222 
3223   __ get_cpool_and_tags(rsi, rax);
3224   // Make sure the class we're about to instantiate has been resolved.
3225   // This is done before loading instanceKlass to be consistent with the order
3226   // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
3227   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
3228   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
3229           JVM_CONSTANT_Class);
3230   __ jcc(Assembler::notEqual, slow_case);
3231 
3232   // get instanceKlass
3233   __ movptr(rsi, Address(rsi, rdx,
3234             Address::times_8, sizeof(constantPoolOopDesc)));
3235 
3236   // make sure klass is initialized & doesn't have finalizer
3237   // make sure klass is fully initialized
3238   __ cmpl(Address(rsi,
3239                   instanceKlass::init_state_offset_in_bytes() +
3240                   sizeof(oopDesc)),
3241           instanceKlass::fully_initialized);
3242   __ jcc(Assembler::notEqual, slow_case);
3243 
3244   // get instance_size in instanceKlass (scaled to a count of bytes)
3245   __ movl(rdx,
3246           Address(rsi,
3247                   Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
3248   // test to see if it has a finalizer or is malformed in some way
3249   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
3250   __ jcc(Assembler::notZero, slow_case);
3251 
3252   // Allocate the instance
3253   // 1) Try to allocate in the TLAB
3254   // 2) if fail and the object is large allocate in the shared Eden
3255   // 3) if the above fails (or is not applicable), go to a slow case
3256   // (creates a new TLAB, etc.)
3257 
3258   const bool allow_shared_alloc =
3259     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3260 
3261   if (UseTLAB) {
3262     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
3263     __ lea(rbx, Address(rax, rdx, Address::times_1));
3264     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
3265     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
3266     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
3267     if (ZeroTLAB) {
3268       // the fields have been already cleared
3269       __ jmp(initialize_header);
3270     } else {
3271       // initialize both the header and fields
3272       __ jmp(initialize_object);
3273     }
3274   }
3275 
3276   // Allocation in the shared Eden, if allowed.
3277   //
3278   // rdx: instance size in bytes
3279   if (allow_shared_alloc) {
3280     __ bind(allocate_shared);
3281 
3282     ExternalAddress top((address)Universe::heap()->top_addr());
3283     ExternalAddress end((address)Universe::heap()->end_addr());
3284 
3285     const Register RtopAddr = rscratch1;
3286     const Register RendAddr = rscratch2;
3287 
3288     __ lea(RtopAddr, top);
3289     __ lea(RendAddr, end);
3290     __ movptr(rax, Address(RtopAddr, 0));
3291 
3292     // For retries rax gets set by cmpxchgq
3293     Label retry;
3294     __ bind(retry);
3295     __ lea(rbx, Address(rax, rdx, Address::times_1));
3296     __ cmpptr(rbx, Address(RendAddr, 0));
3297     __ jcc(Assembler::above, slow_case);
3298 
3299     // Compare rax with the top addr, and if still equal, store the new
3300     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
3301     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
3302     //
3303     // rax: object begin
3304     // rbx: object end
3305     // rdx: instance size in bytes
3306     if (os::is_MP()) {
3307       __ lock();
3308     }
3309     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
3310 
3311     // if someone beat us on the allocation, try again, otherwise continue
3312     __ jcc(Assembler::notEqual, retry);
3313 
3314     __ incr_allocated_bytes(r15_thread, rdx, 0);
3315   }
3316 
3317   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3318     // The object is initialized before the header.  If the object size is
3319     // zero, go directly to the header initialization.
3320     __ bind(initialize_object);
3321     __ decrementl(rdx, sizeof(oopDesc));
3322     __ jcc(Assembler::zero, initialize_header);
3323 
3324     // Initialize object fields
3325     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3326     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
3327     {
3328       Label loop;
3329       __ bind(loop);
3330       __ movq(Address(rax, rdx, Address::times_8,
3331                       sizeof(oopDesc) - oopSize),
3332               rcx);
3333       __ decrementl(rdx);
3334       __ jcc(Assembler::notZero, loop);
3335     }
3336 
3337     // initialize object header only.
3338     __ bind(initialize_header);
3339     if (UseBiasedLocking) {
3340       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
3341       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
3342     } else {
3343       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
3344                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
3345     }
3346     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3347     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
3348     __ store_klass(rax, rsi);      // store klass last
3349 
3350     {
3351       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
3352       // Trigger dtrace event for fastpath
3353       __ push(atos); // save the return value
3354       __ call_VM_leaf(
3355            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
3356       __ pop(atos); // restore the return value
3357 
3358     }
3359     __ jmp(done);
3360   }
3361 
3362 
3363   // slow case
3364   __ bind(slow_case);
3365   __ get_constant_pool(c_rarg1);
3366   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3367   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3368   __ verify_oop(rax);
3369 
3370   // continue
3371   __ bind(done);
3372 }
3373 
3374 void TemplateTable::newarray() {
3375   transition(itos, atos);
3376   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3377   __ movl(c_rarg2, rax);
3378   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3379           c_rarg1, c_rarg2);
3380 }
3381 
3382 void TemplateTable::anewarray() {
3383   transition(itos, atos);
3384   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3385   __ get_constant_pool(c_rarg1);
3386   __ movl(c_rarg3, rax);
3387   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3388           c_rarg1, c_rarg2, c_rarg3);
3389 }
3390 
3391 void TemplateTable::arraylength() {
3392   transition(atos, itos);
3393   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
3394   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
3395 }
3396 
3397 void TemplateTable::checkcast() {
3398   transition(atos, atos);
3399   Label done, is_null, ok_is_subtype, quicked, resolved;
3400   __ testptr(rax, rax); // object is in rax
3401   __ jcc(Assembler::zero, is_null);
3402 
3403   // Get cpool & tags index
3404   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3405   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3406   // See if bytecode has already been quicked
3407   __ cmpb(Address(rdx, rbx,
3408                   Address::times_1,
3409                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
3410           JVM_CONSTANT_Class);
3411   __ jcc(Assembler::equal, quicked);
3412   __ push(atos); // save receiver for result, and for GC
3413   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3414   __ pop_ptr(rdx); // restore receiver
3415   __ jmpb(resolved);
3416 
3417   // Get superklass in rax and subklass in rbx
3418   __ bind(quicked);
3419   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
3420   __ movptr(rax, Address(rcx, rbx,
3421                        Address::times_8, sizeof(constantPoolOopDesc)));
3422 
3423   __ bind(resolved);
3424   __ load_klass(rbx, rdx);
3425 
3426   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
3427   // Superklass in rax.  Subklass in rbx.
3428   __ gen_subtype_check(rbx, ok_is_subtype);
3429 
3430   // Come here on failure
3431   __ push_ptr(rdx);
3432   // object is at TOS
3433   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
3434 
3435   // Come here on success
3436   __ bind(ok_is_subtype);
3437   __ mov(rax, rdx); // Restore object in rdx
3438 
3439   // Collect counts on whether this check-cast sees NULLs a lot or not.
3440   if (ProfileInterpreter) {
3441     __ jmp(done);
3442     __ bind(is_null);
3443     __ profile_null_seen(rcx);
3444   } else {
3445     __ bind(is_null);   // same as 'done'
3446   }
3447   __ bind(done);
3448 }
3449 
3450 void TemplateTable::instanceof() {
3451   transition(atos, itos);
3452   Label done, is_null, ok_is_subtype, quicked, resolved;
3453   __ testptr(rax, rax);
3454   __ jcc(Assembler::zero, is_null);
3455 
3456   // Get cpool & tags index
3457   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3458   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3459   // See if bytecode has already been quicked
3460   __ cmpb(Address(rdx, rbx,
3461                   Address::times_1,
3462                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
3463           JVM_CONSTANT_Class);
3464   __ jcc(Assembler::equal, quicked);
3465 
3466   __ push(atos); // save receiver for result, and for GC
3467   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3468   __ pop_ptr(rdx); // restore receiver
3469   __ verify_oop(rdx);
3470   __ load_klass(rdx, rdx);
3471   __ jmpb(resolved);
3472 
3473   // Get superklass in rax and subklass in rdx
3474   __ bind(quicked);
3475   __ load_klass(rdx, rax);
3476   __ movptr(rax, Address(rcx, rbx,
3477                          Address::times_8, sizeof(constantPoolOopDesc)));
3478 
3479   __ bind(resolved);
3480 
3481   // Generate subtype check.  Blows rcx, rdi
3482   // Superklass in rax.  Subklass in rdx.
3483   __ gen_subtype_check(rdx, ok_is_subtype);
3484 
3485   // Come here on failure
3486   __ xorl(rax, rax);
3487   __ jmpb(done);
3488   // Come here on success
3489   __ bind(ok_is_subtype);
3490   __ movl(rax, 1);
3491 
3492   // Collect counts on whether this test sees NULLs a lot or not.
3493   if (ProfileInterpreter) {
3494     __ jmp(done);
3495     __ bind(is_null);
3496     __ profile_null_seen(rcx);
3497   } else {
3498     __ bind(is_null);   // same as 'done'
3499   }
3500   __ bind(done);
3501   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
3502   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
3503 }
3504 
3505 //-----------------------------------------------------------------------------
3506 // Breakpoints
3507 void TemplateTable::_breakpoint() {
3508   // Note: We get here even if we are single stepping..
3509   // jbug inists on setting breakpoints at every bytecode
3510   // even if we are in single step mode.
3511 
3512   transition(vtos, vtos);
3513 
3514   // get the unpatched byte code
3515   __ get_method(c_rarg1);
3516   __ call_VM(noreg,
3517              CAST_FROM_FN_PTR(address,
3518                               InterpreterRuntime::get_original_bytecode_at),
3519              c_rarg1, r13);
3520   __ mov(rbx, rax);
3521 
3522   // post the breakpoint event
3523   __ get_method(c_rarg1);
3524   __ call_VM(noreg,
3525              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
3526              c_rarg1, r13);
3527 
3528   // complete the execution of original bytecode
3529   __ dispatch_only_normal(vtos);
3530 }
3531 
3532 //-----------------------------------------------------------------------------
3533 // Exceptions
3534 
3535 void TemplateTable::athrow() {
3536   transition(atos, vtos);
3537   __ null_check(rax);
3538   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
3539 }
3540 
3541 //-----------------------------------------------------------------------------
3542 // Synchronization
3543 //
3544 // Note: monitorenter & exit are symmetric routines; which is reflected
3545 //       in the assembly code structure as well
3546 //
3547 // Stack layout:
3548 //
3549 // [expressions  ] <--- rsp               = expression stack top
3550 // ..
3551 // [expressions  ]
3552 // [monitor entry] <--- monitor block top = expression stack bot
3553 // ..
3554 // [monitor entry]
3555 // [frame data   ] <--- monitor block bot
3556 // ...
3557 // [saved rbp    ] <--- rbp
3558 void TemplateTable::monitorenter() {
3559   transition(atos, vtos);
3560 
3561   // check for NULL object
3562   __ null_check(rax);
3563 
3564   const Address monitor_block_top(
3565         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3566   const Address monitor_block_bot(
3567         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3568   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3569 
3570   Label allocated;
3571 
3572   // initialize entry pointer
3573   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
3574 
3575   // find a free slot in the monitor block (result in c_rarg1)
3576   {
3577     Label entry, loop, exit;
3578     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
3579                                      // starting with top-most entry
3580     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3581                                      // of monitor block
3582     __ jmpb(entry);
3583 
3584     __ bind(loop);
3585     // check if current entry is used
3586     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
3587     // if not used then remember entry in c_rarg1
3588     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
3589     // check if current entry is for same object
3590     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
3591     // if same object then stop searching
3592     __ jccb(Assembler::equal, exit);
3593     // otherwise advance to next entry
3594     __ addptr(c_rarg3, entry_size);
3595     __ bind(entry);
3596     // check if bottom reached
3597     __ cmpptr(c_rarg3, c_rarg2);
3598     // if not at bottom then check this entry
3599     __ jcc(Assembler::notEqual, loop);
3600     __ bind(exit);
3601   }
3602 
3603   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
3604   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
3605 
3606   // allocate one if there's no free slot
3607   {
3608     Label entry, loop;
3609     // 1. compute new pointers             // rsp: old expression stack top
3610     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
3611     __ subptr(rsp, entry_size);            // move expression stack top
3612     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
3613     __ mov(c_rarg3, rsp);                  // set start value for copy loop
3614     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
3615     __ jmp(entry);
3616     // 2. move expression stack contents
3617     __ bind(loop);
3618     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
3619                                                       // word from old location
3620     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
3621     __ addptr(c_rarg3, wordSize);                     // advance to next word
3622     __ bind(entry);
3623     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
3624     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
3625                                             // copy next word
3626   }
3627 
3628   // call run-time routine
3629   // c_rarg1: points to monitor entry
3630   __ bind(allocated);
3631 
3632   // Increment bcp to point to the next bytecode, so exception
3633   // handling for async. exceptions work correctly.
3634   // The object has already been poped from the stack, so the
3635   // expression stack looks correct.
3636   __ increment(r13);
3637 
3638   // store object
3639   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
3640   __ lock_object(c_rarg1);
3641 
3642   // check to make sure this monitor doesn't cause stack overflow after locking
3643   __ save_bcp();  // in case of exception
3644   __ generate_stack_overflow_check(0);
3645 
3646   // The bcp has already been incremented. Just need to dispatch to
3647   // next instruction.
3648   __ dispatch_next(vtos);
3649 }
3650 
3651 
3652 void TemplateTable::monitorexit() {
3653   transition(atos, vtos);
3654 
3655   // check for NULL object
3656   __ null_check(rax);
3657 
3658   const Address monitor_block_top(
3659         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3660   const Address monitor_block_bot(
3661         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3662   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3663 
3664   Label found;
3665 
3666   // find matching slot
3667   {
3668     Label entry, loop;
3669     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
3670                                      // starting with top-most entry
3671     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3672                                      // of monitor block
3673     __ jmpb(entry);
3674 
3675     __ bind(loop);
3676     // check if current entry is for same object
3677     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
3678     // if same object then stop searching
3679     __ jcc(Assembler::equal, found);
3680     // otherwise advance to next entry
3681     __ addptr(c_rarg1, entry_size);
3682     __ bind(entry);
3683     // check if bottom reached
3684     __ cmpptr(c_rarg1, c_rarg2);
3685     // if not at bottom then check this entry
3686     __ jcc(Assembler::notEqual, loop);
3687   }
3688 
3689   // error handling. Unlocking was not block-structured
3690   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3691                    InterpreterRuntime::throw_illegal_monitor_state_exception));
3692   __ should_not_reach_here();
3693 
3694   // call run-time routine
3695   // rsi: points to monitor entry
3696   __ bind(found);
3697   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
3698   __ unlock_object(c_rarg1);
3699   __ pop_ptr(rax); // discard object
3700 }
3701 
3702 
3703 // Wide instructions
3704 void TemplateTable::wide() {
3705   transition(vtos, vtos);
3706   __ load_unsigned_byte(rbx, at_bcp(1));
3707   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
3708   __ jmp(Address(rscratch1, rbx, Address::times_8));
3709   // Note: the r13 increment step is part of the individual wide
3710   // bytecode implementations
3711 }
3712 
3713 
3714 // Multi arrays
3715 void TemplateTable::multianewarray() {
3716   transition(vtos, atos);
3717   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
3718   // last dim is on top of stack; we want address of first one:
3719   // first_addr = last_addr + (ndims - 1) * wordSize
3720   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
3721   call_VM(rax,
3722           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
3723           c_rarg1);
3724   __ load_unsigned_byte(rbx, at_bcp(3));
3725   __ lea(rsp, Address(rsp, rbx, Address::times_8));
3726 }
3727 #endif // !CC_INTERP