1 /*
   2  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_CODE_DEPENDENCIES_HPP
  26 #define SHARE_VM_CODE_DEPENDENCIES_HPP
  27 
  28 #include "ci/ciKlass.hpp"
  29 #include "code/compressedStream.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "utilities/growableArray.hpp"
  32 
  33 //** Dependencies represent assertions (approximate invariants) within
  34 // the class hierarchy.  An example is an assertion that a given
  35 // method is not overridden; another example is that a type has only
  36 // one concrete subtype.  Compiled code which relies on such
  37 // assertions must be discarded if they are overturned by changes in
  38 // the class hierarchy.  We can think of these assertions as
  39 // approximate invariants, because we expect them to be overturned
  40 // very infrequently.  We are willing to perform expensive recovery
  41 // operations when they are overturned.  The benefit, of course, is
  42 // performing optimistic optimizations (!) on the object code.
  43 //
  44 // Changes in the class hierarchy due to dynamic linking or
  45 // class evolution can violate dependencies.  There is enough
  46 // indexing between classes and nmethods to make dependency
  47 // checking reasonably efficient.
  48 
  49 class ciEnv;
  50 class nmethod;
  51 class OopRecorder;
  52 class xmlStream;
  53 class CompileLog;
  54 class DepChange;
  55 class No_Safepoint_Verifier;
  56 
  57 class Dependencies: public ResourceObj {
  58  public:
  59   // Note: In the comments on dependency types, most uses of the terms
  60   // subtype and supertype are used in a "non-strict" or "inclusive"
  61   // sense, and are starred to remind the reader of this fact.
  62   // Strict uses of the terms use the word "proper".
  63   //
  64   // Specifically, every class is its own subtype* and supertype*.
  65   // (This trick is easier than continually saying things like "Y is a
  66   // subtype of X or X itself".)
  67   //
  68   // Sometimes we write X > Y to mean X is a proper supertype of Y.
  69   // The notation X > {Y, Z} means X has proper subtypes Y, Z.
  70   // The notation X.m > Y means that Y inherits m from X, while
  71   // X.m > Y.m means Y overrides X.m.  A star denotes abstractness,
  72   // as *I > A, meaning (abstract) interface I is a super type of A,
  73   // or A.*m > B.m, meaning B.m implements abstract method A.m.
  74   //
  75   // In this module, the terms "subtype" and "supertype" refer to
  76   // Java-level reference type conversions, as detected by
  77   // "instanceof" and performed by "checkcast" operations.  The method
  78   // Klass::is_subtype_of tests these relations.  Note that "subtype"
  79   // is richer than "subclass" (as tested by Klass::is_subclass_of),
  80   // since it takes account of relations involving interface and array
  81   // types.
  82   //
  83   // To avoid needless complexity, dependencies involving array types
  84   // are not accepted.  If you need to make an assertion about an
  85   // array type, make the assertion about its corresponding element
  86   // types.  Any assertion that might change about an array type can
  87   // be converted to an assertion about its element type.
  88   //
  89   // Most dependencies are evaluated over a "context type" CX, which
  90   // stands for the set Subtypes(CX) of every Java type that is a subtype*
  91   // of CX.  When the system loads a new class or interface N, it is
  92   // responsible for re-evaluating changed dependencies whose context
  93   // type now includes N, that is, all super types of N.
  94   //
  95   enum DepType {
  96     end_marker = 0,
  97 
  98     // An 'evol' dependency simply notes that the contents of the
  99     // method were used.  If it evolves (is replaced), the nmethod
 100     // must be recompiled.  No other dependencies are implied.
 101     evol_method,
 102     FIRST_TYPE = evol_method,
 103 
 104     // A context type CX is a leaf it if has no proper subtype.
 105     leaf_type,
 106 
 107     // An abstract class CX has exactly one concrete subtype CC.
 108     abstract_with_unique_concrete_subtype,
 109 
 110     // The type CX is purely abstract, with no concrete subtype* at all.
 111     abstract_with_no_concrete_subtype,
 112 
 113     // The concrete CX is free of concrete proper subtypes.
 114     concrete_with_no_concrete_subtype,
 115 
 116     // Given a method M1 and a context class CX, the set MM(CX, M1) of
 117     // "concrete matching methods" in CX of M1 is the set of every
 118     // concrete M2 for which it is possible to create an invokevirtual
 119     // or invokeinterface call site that can reach either M1 or M2.
 120     // That is, M1 and M2 share a name, signature, and vtable index.
 121     // We wish to notice when the set MM(CX, M1) is just {M1}, or
 122     // perhaps a set of two {M1,M2}, and issue dependencies on this.
 123 
 124     // The set MM(CX, M1) can be computed by starting with any matching
 125     // concrete M2 that is inherited into CX, and then walking the
 126     // subtypes* of CX looking for concrete definitions.
 127 
 128     // The parameters to this dependency are the method M1 and the
 129     // context class CX.  M1 must be either inherited in CX or defined
 130     // in a subtype* of CX.  It asserts that MM(CX, M1) is no greater
 131     // than {M1}.
 132     unique_concrete_method,       // one unique concrete method under CX
 133 
 134     // An "exclusive" assertion concerns two methods or subtypes, and
 135     // declares that there are at most two (or perhaps later N>2)
 136     // specific items that jointly satisfy the restriction.
 137     // We list all items explicitly rather than just giving their
 138     // count, for robustness in the face of complex schema changes.
 139 
 140     // A context class CX (which may be either abstract or concrete)
 141     // has two exclusive concrete subtypes* C1, C2 if every concrete
 142     // subtype* of CX is either C1 or C2.  Note that if neither C1 or C2
 143     // are equal to CX, then CX itself must be abstract.  But it is
 144     // also possible (for example) that C1 is CX (a concrete class)
 145     // and C2 is a proper subtype of C1.
 146     abstract_with_exclusive_concrete_subtypes_2,
 147 
 148     // This dependency asserts that MM(CX, M1) is no greater than {M1,M2}.
 149     exclusive_concrete_methods_2,
 150 
 151     // This dependency asserts that no instances of class or it's
 152     // subclasses require finalization registration.
 153     no_finalizable_subclasses,
 154 
 155     TYPE_LIMIT
 156   };
 157   enum {
 158     LG2_TYPE_LIMIT = 4,  // assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT))
 159 
 160     // handy categorizations of dependency types:
 161     all_types      = ((1<<TYPE_LIMIT)-1) & ((-1)<<FIRST_TYPE),
 162     non_ctxk_types = (1<<evol_method),
 163     ctxk_types     = all_types & ~non_ctxk_types,
 164 
 165     max_arg_count = 3,   // current maximum number of arguments (incl. ctxk)
 166 
 167     // A "context type" is a class or interface that
 168     // provides context for evaluating a dependency.
 169     // When present, it is one of the arguments (dep_context_arg).
 170     //
 171     // If a dependency does not have a context type, there is a
 172     // default context, depending on the type of the dependency.
 173     // This bit signals that a default context has been compressed away.
 174     default_context_type_bit = (1<<LG2_TYPE_LIMIT)
 175   };
 176 
 177   static const char* dep_name(DepType dept);
 178   static int         dep_args(DepType dept);
 179   static int  dep_context_arg(DepType dept) {
 180     return dept_in_mask(dept, ctxk_types)? 0: -1;
 181   }
 182 
 183  private:
 184   // State for writing a new set of dependencies:
 185   GrowableArray<int>*       _dep_seen;  // (seen[h->ident] & (1<<dept))
 186   GrowableArray<ciObject*>* _deps[TYPE_LIMIT];
 187 
 188   static const char* _dep_name[TYPE_LIMIT];
 189   static int         _dep_args[TYPE_LIMIT];
 190 
 191   static bool dept_in_mask(DepType dept, int mask) {
 192     return (int)dept >= 0 && dept < TYPE_LIMIT && ((1<<dept) & mask) != 0;
 193   }
 194 
 195   bool note_dep_seen(int dept, ciObject* x) {
 196     assert(dept < BitsPerInt, "oob");
 197     int x_id = x->ident();
 198     assert(_dep_seen != NULL, "deps must be writable");
 199     int seen = _dep_seen->at_grow(x_id, 0);
 200     _dep_seen->at_put(x_id, seen | (1<<dept));
 201     // return true if we've already seen dept/x
 202     return (seen & (1<<dept)) != 0;
 203   }
 204 
 205   bool maybe_merge_ctxk(GrowableArray<ciObject*>* deps,
 206                         int ctxk_i, ciKlass* ctxk);
 207 
 208   void sort_all_deps();
 209   size_t estimate_size_in_bytes();
 210 
 211   // Initialize _deps, etc.
 212   void initialize(ciEnv* env);
 213 
 214   // State for making a new set of dependencies:
 215   OopRecorder* _oop_recorder;
 216 
 217   // Logging support
 218   CompileLog* _log;
 219 
 220   address  _content_bytes;  // everything but the oop references, encoded
 221   size_t   _size_in_bytes;
 222 
 223  public:
 224   // Make a new empty dependencies set.
 225   Dependencies(ciEnv* env) {
 226     initialize(env);
 227   }
 228 
 229  private:
 230   // Check for a valid context type.
 231   // Enforce the restriction against array types.
 232   static void check_ctxk(ciKlass* ctxk) {
 233     assert(ctxk->is_instance_klass(), "java types only");
 234   }
 235   static void check_ctxk_concrete(ciKlass* ctxk) {
 236     assert(is_concrete_klass(ctxk->as_instance_klass()), "must be concrete");
 237   }
 238   static void check_ctxk_abstract(ciKlass* ctxk) {
 239     check_ctxk(ctxk);
 240     assert(!is_concrete_klass(ctxk->as_instance_klass()), "must be abstract");
 241   }
 242 
 243   void assert_common_1(DepType dept, ciObject* x);
 244   void assert_common_2(DepType dept, ciKlass* ctxk, ciObject* x);
 245   void assert_common_3(DepType dept, ciKlass* ctxk, ciObject* x, ciObject* x2);
 246 
 247  public:
 248   // Adding assertions to a new dependency set at compile time:
 249   void assert_evol_method(ciMethod* m);
 250   void assert_leaf_type(ciKlass* ctxk);
 251   void assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck);
 252   void assert_abstract_with_no_concrete_subtype(ciKlass* ctxk);
 253   void assert_concrete_with_no_concrete_subtype(ciKlass* ctxk);
 254   void assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm);
 255   void assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2);
 256   void assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2);
 257   void assert_has_no_finalizable_subclasses(ciKlass* ctxk);
 258 
 259   // Define whether a given method or type is concrete.
 260   // These methods define the term "concrete" as used in this module.
 261   // For this module, an "abstract" class is one which is non-concrete.
 262   //
 263   // Future optimizations may allow some classes to remain
 264   // non-concrete until their first instantiation, and allow some
 265   // methods to remain non-concrete until their first invocation.
 266   // In that case, there would be a middle ground between concrete
 267   // and abstract (as defined by the Java language and VM).
 268   static bool is_concrete_klass(klassOop k);    // k is instantiable
 269   static bool is_concrete_method(methodOop m);  // m is invocable
 270   static Klass* find_finalizable_subclass(Klass* k);
 271 
 272   // These versions of the concreteness queries work through the CI.
 273   // The CI versions are allowed to skew sometimes from the VM
 274   // (oop-based) versions.  The cost of such a difference is a
 275   // (safely) aborted compilation, or a deoptimization, or a missed
 276   // optimization opportunity.
 277   //
 278   // In order to prevent spurious assertions, query results must
 279   // remain stable within any single ciEnv instance.  (I.e., they must
 280   // not go back into the VM to get their value; they must cache the
 281   // bit in the CI, either eagerly or lazily.)
 282   static bool is_concrete_klass(ciInstanceKlass* k); // k appears instantiable
 283   static bool is_concrete_method(ciMethod* m);       // m appears invocable
 284   static bool has_finalizable_subclass(ciInstanceKlass* k);
 285 
 286   // As a general rule, it is OK to compile under the assumption that
 287   // a given type or method is concrete, even if it at some future
 288   // point becomes abstract.  So dependency checking is one-sided, in
 289   // that it permits supposedly concrete classes or methods to turn up
 290   // as really abstract.  (This shouldn't happen, except during class
 291   // evolution, but that's the logic of the checking.)  However, if a
 292   // supposedly abstract class or method suddenly becomes concrete, a
 293   // dependency on it must fail.
 294 
 295   // Checking old assertions at run-time (in the VM only):
 296   static klassOop check_evol_method(methodOop m);
 297   static klassOop check_leaf_type(klassOop ctxk);
 298   static klassOop check_abstract_with_unique_concrete_subtype(klassOop ctxk, klassOop conck,
 299                                                               DepChange* changes = NULL);
 300   static klassOop check_abstract_with_no_concrete_subtype(klassOop ctxk,
 301                                                           DepChange* changes = NULL);
 302   static klassOop check_concrete_with_no_concrete_subtype(klassOop ctxk,
 303                                                           DepChange* changes = NULL);
 304   static klassOop check_unique_concrete_method(klassOop ctxk, methodOop uniqm,
 305                                                DepChange* changes = NULL);
 306   static klassOop check_abstract_with_exclusive_concrete_subtypes(klassOop ctxk, klassOop k1, klassOop k2,
 307                                                                   DepChange* changes = NULL);
 308   static klassOop check_exclusive_concrete_methods(klassOop ctxk, methodOop m1, methodOop m2,
 309                                                    DepChange* changes = NULL);
 310   static klassOop check_has_no_finalizable_subclasses(klassOop ctxk,
 311                                                       DepChange* changes = NULL);
 312   // A returned klassOop is NULL if the dependency assertion is still
 313   // valid.  A non-NULL klassOop is a 'witness' to the assertion
 314   // failure, a point in the class hierarchy where the assertion has
 315   // been proven false.  For example, if check_leaf_type returns
 316   // non-NULL, the value is a subtype of the supposed leaf type.  This
 317   // witness value may be useful for logging the dependency failure.
 318   // Note that, when a dependency fails, there may be several possible
 319   // witnesses to the failure.  The value returned from the check_foo
 320   // method is chosen arbitrarily.
 321 
 322   // The 'changes' value, if non-null, requests a limited spot-check
 323   // near the indicated recent changes in the class hierarchy.
 324   // It is used by DepStream::spot_check_dependency_at.
 325 
 326   // Detecting possible new assertions:
 327   static klassOop  find_unique_concrete_subtype(klassOop ctxk);
 328   static methodOop find_unique_concrete_method(klassOop ctxk, methodOop m);
 329   static int       find_exclusive_concrete_subtypes(klassOop ctxk, int klen, klassOop k[]);
 330   static int       find_exclusive_concrete_methods(klassOop ctxk, int mlen, methodOop m[]);
 331 
 332   // Create the encoding which will be stored in an nmethod.
 333   void encode_content_bytes();
 334 
 335   address content_bytes() {
 336     assert(_content_bytes != NULL, "encode it first");
 337     return _content_bytes;
 338   }
 339   size_t size_in_bytes() {
 340     assert(_content_bytes != NULL, "encode it first");
 341     return _size_in_bytes;
 342   }
 343 
 344   OopRecorder* oop_recorder() { return _oop_recorder; }
 345   CompileLog*  log()          { return _log; }
 346 
 347   void copy_to(nmethod* nm);
 348 
 349   void log_all_dependencies();
 350   void log_dependency(DepType dept, int nargs, ciObject* args[]) {
 351     write_dependency_to(log(), dept, nargs, args);
 352   }
 353   void log_dependency(DepType dept,
 354                       ciObject* x0,
 355                       ciObject* x1 = NULL,
 356                       ciObject* x2 = NULL) {
 357     if (log() == NULL)  return;
 358     ciObject* args[max_arg_count];
 359     args[0] = x0;
 360     args[1] = x1;
 361     args[2] = x2;
 362     assert(2 < max_arg_count, "");
 363     log_dependency(dept, dep_args(dept), args);
 364   }
 365 
 366   static void write_dependency_to(CompileLog* log,
 367                                   DepType dept,
 368                                   int nargs, ciObject* args[],
 369                                   klassOop witness = NULL);
 370   static void write_dependency_to(CompileLog* log,
 371                                   DepType dept,
 372                                   int nargs, oop args[],
 373                                   klassOop witness = NULL);
 374   static void write_dependency_to(xmlStream* xtty,
 375                                   DepType dept,
 376                                   int nargs, oop args[],
 377                                   klassOop witness = NULL);
 378   static void print_dependency(DepType dept,
 379                                int nargs, oop args[],
 380                                klassOop witness = NULL);
 381 
 382  private:
 383   // helper for encoding common context types as zero:
 384   static ciKlass* ctxk_encoded_as_null(DepType dept, ciObject* x);
 385 
 386   static klassOop ctxk_encoded_as_null(DepType dept, oop x);
 387 
 388  public:
 389   // Use this to iterate over an nmethod's dependency set.
 390   // Works on new and old dependency sets.
 391   // Usage:
 392   //
 393   // ;
 394   // Dependencies::DepType dept;
 395   // for (Dependencies::DepStream deps(nm); deps.next(); ) {
 396   //   ...
 397   // }
 398   //
 399   // The caller must be in the VM, since oops are not wrapped in handles.
 400   class DepStream {
 401   private:
 402     nmethod*              _code;   // null if in a compiler thread
 403     Dependencies*         _deps;   // null if not in a compiler thread
 404     CompressedReadStream  _bytes;
 405 #ifdef ASSERT
 406     size_t                _byte_limit;
 407 #endif
 408 
 409     // iteration variables:
 410     DepType               _type;
 411     int                   _xi[max_arg_count+1];
 412 
 413     void initial_asserts(size_t byte_limit) NOT_DEBUG({});
 414 
 415     inline oop recorded_oop_at(int i);
 416         // => _code? _code->oop_at(i): *_deps->_oop_recorder->handle_at(i)
 417 
 418     klassOop check_dependency_impl(DepChange* changes);
 419 
 420   public:
 421     DepStream(Dependencies* deps)
 422       : _deps(deps),
 423         _code(NULL),
 424         _bytes(deps->content_bytes())
 425     {
 426       initial_asserts(deps->size_in_bytes());
 427     }
 428     DepStream(nmethod* code)
 429       : _deps(NULL),
 430         _code(code),
 431         _bytes(code->dependencies_begin())
 432     {
 433       initial_asserts(code->dependencies_size());
 434     }
 435 
 436     bool next();
 437 
 438     DepType type()               { return _type; }
 439     int argument_count()         { return dep_args(type()); }
 440     int argument_index(int i)    { assert(0 <= i && i < argument_count(), "oob");
 441                                    return _xi[i]; }
 442     oop argument(int i);         // => recorded_oop_at(argument_index(i))
 443     klassOop context_type();
 444 
 445     methodOop method_argument(int i) {
 446       oop x = argument(i);
 447       assert(x->is_method(), "type");
 448       return (methodOop) x;
 449     }
 450     klassOop type_argument(int i) {
 451       oop x = argument(i);
 452       assert(x->is_klass(), "type");
 453       return (klassOop) x;
 454     }
 455 
 456     // The point of the whole exercise:  Is this dep is still OK?
 457     klassOop check_dependency() {
 458       return check_dependency_impl(NULL);
 459     }
 460     // A lighter version:  Checks only around recent changes in a class
 461     // hierarchy.  (See Universe::flush_dependents_on.)
 462     klassOop spot_check_dependency_at(DepChange& changes);
 463 
 464     // Log the current dependency to xtty or compilation log.
 465     void log_dependency(klassOop witness = NULL);
 466 
 467     // Print the current dependency to tty.
 468     void print_dependency(klassOop witness = NULL, bool verbose = false);
 469   };
 470   friend class Dependencies::DepStream;
 471 
 472   static void print_statistics() PRODUCT_RETURN;
 473 };
 474 
 475 // A class hierarchy change coming through the VM (under the Compile_lock).
 476 // The change is structured as a single new type with any number of supers
 477 // and implemented interface types.  Other than the new type, any of the
 478 // super types can be context types for a relevant dependency, which the
 479 // new type could invalidate.
 480 class DepChange : public StackObj {
 481  public:
 482   enum ChangeType {
 483     NO_CHANGE = 0,              // an uninvolved klass
 484     Change_new_type,            // a newly loaded type
 485     Change_new_sub,             // a super with a new subtype
 486     Change_new_impl,            // an interface with a new implementation
 487     CHANGE_LIMIT,
 488     Start_Klass = CHANGE_LIMIT  // internal indicator for ContextStream
 489   };
 490 
 491  private:
 492   // each change set is rooted in exactly one new type (at present):
 493   KlassHandle _new_type;
 494 
 495   void initialize();
 496 
 497  public:
 498   // notes the new type, marks it and all its super-types
 499   DepChange(KlassHandle new_type)
 500     : _new_type(new_type)
 501   {
 502     initialize();
 503   }
 504 
 505   // cleans up the marks
 506   ~DepChange();
 507 
 508   klassOop new_type()                   { return _new_type(); }
 509 
 510   // involves_context(k) is true if k is new_type or any of the super types
 511   bool involves_context(klassOop k);
 512 
 513   // Usage:
 514   // for (DepChange::ContextStream str(changes); str.next(); ) {
 515   //   klassOop k = str.klass();
 516   //   switch (str.change_type()) {
 517   //     ...
 518   //   }
 519   // }
 520   class ContextStream : public StackObj {
 521    private:
 522     DepChange&  _changes;
 523     friend class DepChange;
 524 
 525     // iteration variables:
 526     ChangeType  _change_type;
 527     klassOop    _klass;
 528     objArrayOop _ti_base;    // i.e., transitive_interfaces
 529     int         _ti_index;
 530     int         _ti_limit;
 531 
 532     // start at the beginning:
 533     void start() {
 534       klassOop new_type = _changes.new_type();
 535       _change_type = (new_type == NULL ? NO_CHANGE: Start_Klass);
 536       _klass = new_type;
 537       _ti_base = NULL;
 538       _ti_index = 0;
 539       _ti_limit = 0;
 540     }
 541 
 542    public:
 543     ContextStream(DepChange& changes)
 544       : _changes(changes)
 545     { start(); }
 546 
 547     ContextStream(DepChange& changes, No_Safepoint_Verifier& nsv)
 548       : _changes(changes)
 549       // the nsv argument makes it safe to hold oops like _klass
 550     { start(); }
 551 
 552     bool next();
 553 
 554     ChangeType change_type()     { return _change_type; }
 555     klassOop   klass()           { return _klass; }
 556   };
 557   friend class DepChange::ContextStream;
 558 
 559   void print();
 560 };
 561 
 562 #endif // SHARE_VM_CODE_DEPENDENCIES_HPP