1 /*
   2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_CODE_DEPENDENCIES_HPP
  26 #define SHARE_VM_CODE_DEPENDENCIES_HPP
  27 
  28 #include "ci/ciCallSite.hpp"
  29 #include "ci/ciKlass.hpp"
  30 #include "ci/ciMethodHandle.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "code/compressedStream.hpp"
  33 #include "code/nmethod.hpp"
  34 #include "utilities/growableArray.hpp"
  35 
  36 //** Dependencies represent assertions (approximate invariants) within
  37 // the runtime system, e.g. class hierarchy changes.  An example is an
  38 // assertion that a given method is not overridden; another example is
  39 // that a type has only one concrete subtype.  Compiled code which
  40 // relies on such assertions must be discarded if they are overturned
  41 // by changes in the runtime system.  We can think of these assertions
  42 // as approximate invariants, because we expect them to be overturned
  43 // very infrequently.  We are willing to perform expensive recovery
  44 // operations when they are overturned.  The benefit, of course, is
  45 // performing optimistic optimizations (!) on the object code.
  46 //
  47 // Changes in the class hierarchy due to dynamic linking or
  48 // class evolution can violate dependencies.  There is enough
  49 // indexing between classes and nmethods to make dependency
  50 // checking reasonably efficient.
  51 
  52 class ciEnv;
  53 class nmethod;
  54 class OopRecorder;
  55 class xmlStream;
  56 class CompileLog;
  57 class DepChange;
  58 class   KlassDepChange;
  59 class   CallSiteDepChange;
  60 class No_Safepoint_Verifier;
  61 
  62 class Dependencies: public ResourceObj {
  63  public:
  64   // Note: In the comments on dependency types, most uses of the terms
  65   // subtype and supertype are used in a "non-strict" or "inclusive"
  66   // sense, and are starred to remind the reader of this fact.
  67   // Strict uses of the terms use the word "proper".
  68   //
  69   // Specifically, every class is its own subtype* and supertype*.
  70   // (This trick is easier than continually saying things like "Y is a
  71   // subtype of X or X itself".)
  72   //
  73   // Sometimes we write X > Y to mean X is a proper supertype of Y.
  74   // The notation X > {Y, Z} means X has proper subtypes Y, Z.
  75   // The notation X.m > Y means that Y inherits m from X, while
  76   // X.m > Y.m means Y overrides X.m.  A star denotes abstractness,
  77   // as *I > A, meaning (abstract) interface I is a super type of A,
  78   // or A.*m > B.m, meaning B.m implements abstract method A.m.
  79   //
  80   // In this module, the terms "subtype" and "supertype" refer to
  81   // Java-level reference type conversions, as detected by
  82   // "instanceof" and performed by "checkcast" operations.  The method
  83   // Klass::is_subtype_of tests these relations.  Note that "subtype"
  84   // is richer than "subclass" (as tested by Klass::is_subclass_of),
  85   // since it takes account of relations involving interface and array
  86   // types.
  87   //
  88   // To avoid needless complexity, dependencies involving array types
  89   // are not accepted.  If you need to make an assertion about an
  90   // array type, make the assertion about its corresponding element
  91   // types.  Any assertion that might change about an array type can
  92   // be converted to an assertion about its element type.
  93   //
  94   // Most dependencies are evaluated over a "context type" CX, which
  95   // stands for the set Subtypes(CX) of every Java type that is a subtype*
  96   // of CX.  When the system loads a new class or interface N, it is
  97   // responsible for re-evaluating changed dependencies whose context
  98   // type now includes N, that is, all super types of N.
  99   //
 100   enum DepType {
 101     end_marker = 0,
 102 
 103     // An 'evol' dependency simply notes that the contents of the
 104     // method were used.  If it evolves (is replaced), the nmethod
 105     // must be recompiled.  No other dependencies are implied.
 106     evol_method,
 107     FIRST_TYPE = evol_method,
 108 
 109     // A context type CX is a leaf it if has no proper subtype.
 110     leaf_type,
 111 
 112     // An abstract class CX has exactly one concrete subtype CC.
 113     abstract_with_unique_concrete_subtype,
 114 
 115     // The type CX is purely abstract, with no concrete subtype* at all.
 116     abstract_with_no_concrete_subtype,
 117 
 118     // The concrete CX is free of concrete proper subtypes.
 119     concrete_with_no_concrete_subtype,
 120 
 121     // Given a method M1 and a context class CX, the set MM(CX, M1) of
 122     // "concrete matching methods" in CX of M1 is the set of every
 123     // concrete M2 for which it is possible to create an invokevirtual
 124     // or invokeinterface call site that can reach either M1 or M2.
 125     // That is, M1 and M2 share a name, signature, and vtable index.
 126     // We wish to notice when the set MM(CX, M1) is just {M1}, or
 127     // perhaps a set of two {M1,M2}, and issue dependencies on this.
 128 
 129     // The set MM(CX, M1) can be computed by starting with any matching
 130     // concrete M2 that is inherited into CX, and then walking the
 131     // subtypes* of CX looking for concrete definitions.
 132 
 133     // The parameters to this dependency are the method M1 and the
 134     // context class CX.  M1 must be either inherited in CX or defined
 135     // in a subtype* of CX.  It asserts that MM(CX, M1) is no greater
 136     // than {M1}.
 137     unique_concrete_method,       // one unique concrete method under CX
 138 
 139     // An "exclusive" assertion concerns two methods or subtypes, and
 140     // declares that there are at most two (or perhaps later N>2)
 141     // specific items that jointly satisfy the restriction.
 142     // We list all items explicitly rather than just giving their
 143     // count, for robustness in the face of complex schema changes.
 144 
 145     // A context class CX (which may be either abstract or concrete)
 146     // has two exclusive concrete subtypes* C1, C2 if every concrete
 147     // subtype* of CX is either C1 or C2.  Note that if neither C1 or C2
 148     // are equal to CX, then CX itself must be abstract.  But it is
 149     // also possible (for example) that C1 is CX (a concrete class)
 150     // and C2 is a proper subtype of C1.
 151     abstract_with_exclusive_concrete_subtypes_2,
 152 
 153     // This dependency asserts that MM(CX, M1) is no greater than {M1,M2}.
 154     exclusive_concrete_methods_2,
 155 
 156     // This dependency asserts that no instances of class or it's
 157     // subclasses require finalization registration.
 158     no_finalizable_subclasses,
 159 
 160     // This dependency asserts when the CallSite.target value changed.
 161     call_site_target_value,
 162 
 163     TYPE_LIMIT
 164   };
 165   enum {
 166     LG2_TYPE_LIMIT = 4,  // assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT))
 167 
 168     // handy categorizations of dependency types:
 169     all_types      = ((1<<TYPE_LIMIT)-1) & ((-1)<<FIRST_TYPE),
 170     non_ctxk_types = (1<<evol_method),
 171     ctxk_types     = all_types & ~non_ctxk_types,
 172 
 173     max_arg_count = 3,   // current maximum number of arguments (incl. ctxk)
 174 
 175     // A "context type" is a class or interface that
 176     // provides context for evaluating a dependency.
 177     // When present, it is one of the arguments (dep_context_arg).
 178     //
 179     // If a dependency does not have a context type, there is a
 180     // default context, depending on the type of the dependency.
 181     // This bit signals that a default context has been compressed away.
 182     default_context_type_bit = (1<<LG2_TYPE_LIMIT)
 183   };
 184 
 185   static const char* dep_name(DepType dept);
 186   static int         dep_args(DepType dept);
 187   static int  dep_context_arg(DepType dept) {
 188     return dept_in_mask(dept, ctxk_types)? 0: -1;
 189   }
 190   static void check_valid_dependency_type(DepType dept);
 191 
 192  private:
 193   // State for writing a new set of dependencies:
 194   GrowableArray<int>*       _dep_seen;  // (seen[h->ident] & (1<<dept))
 195   GrowableArray<ciObject*>* _deps[TYPE_LIMIT];
 196 
 197   static const char* _dep_name[TYPE_LIMIT];
 198   static int         _dep_args[TYPE_LIMIT];
 199 
 200   static bool dept_in_mask(DepType dept, int mask) {
 201     return (int)dept >= 0 && dept < TYPE_LIMIT && ((1<<dept) & mask) != 0;
 202   }
 203 
 204   bool note_dep_seen(int dept, ciObject* x) {
 205     assert(dept < BitsPerInt, "oob");
 206     int x_id = x->ident();
 207     assert(_dep_seen != NULL, "deps must be writable");
 208     int seen = _dep_seen->at_grow(x_id, 0);
 209     _dep_seen->at_put(x_id, seen | (1<<dept));
 210     // return true if we've already seen dept/x
 211     return (seen & (1<<dept)) != 0;
 212   }
 213 
 214   bool maybe_merge_ctxk(GrowableArray<ciObject*>* deps,
 215                         int ctxk_i, ciKlass* ctxk);
 216 
 217   void sort_all_deps();
 218   size_t estimate_size_in_bytes();
 219 
 220   // Initialize _deps, etc.
 221   void initialize(ciEnv* env);
 222 
 223   // State for making a new set of dependencies:
 224   OopRecorder* _oop_recorder;
 225 
 226   // Logging support
 227   CompileLog* _log;
 228 
 229   address  _content_bytes;  // everything but the oop references, encoded
 230   size_t   _size_in_bytes;
 231 
 232  public:
 233   // Make a new empty dependencies set.
 234   Dependencies(ciEnv* env) {
 235     initialize(env);
 236   }
 237 
 238  private:
 239   // Check for a valid context type.
 240   // Enforce the restriction against array types.
 241   static void check_ctxk(ciKlass* ctxk) {
 242     assert(ctxk->is_instance_klass(), "java types only");
 243   }
 244   static void check_ctxk_concrete(ciKlass* ctxk) {
 245     assert(is_concrete_klass(ctxk->as_instance_klass()), "must be concrete");
 246   }
 247   static void check_ctxk_abstract(ciKlass* ctxk) {
 248     check_ctxk(ctxk);
 249     assert(!is_concrete_klass(ctxk->as_instance_klass()), "must be abstract");
 250   }
 251 
 252   void assert_common_1(DepType dept, ciObject* x);
 253   void assert_common_2(DepType dept, ciKlass* ctxk, ciObject* x);
 254   void assert_common_3(DepType dept, ciKlass* ctxk, ciObject* x, ciObject* x2);
 255 
 256  public:
 257   // Adding assertions to a new dependency set at compile time:
 258   void assert_evol_method(ciMethod* m);
 259   void assert_leaf_type(ciKlass* ctxk);
 260   void assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck);
 261   void assert_abstract_with_no_concrete_subtype(ciKlass* ctxk);
 262   void assert_concrete_with_no_concrete_subtype(ciKlass* ctxk);
 263   void assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm);
 264   void assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2);
 265   void assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2);
 266   void assert_has_no_finalizable_subclasses(ciKlass* ctxk);
 267   void assert_call_site_target_value(ciKlass* ctxk, ciCallSite* call_site, ciMethodHandle* method_handle);
 268 
 269   // Define whether a given method or type is concrete.
 270   // These methods define the term "concrete" as used in this module.
 271   // For this module, an "abstract" class is one which is non-concrete.
 272   //
 273   // Future optimizations may allow some classes to remain
 274   // non-concrete until their first instantiation, and allow some
 275   // methods to remain non-concrete until their first invocation.
 276   // In that case, there would be a middle ground between concrete
 277   // and abstract (as defined by the Java language and VM).
 278   static bool is_concrete_klass(klassOop k);    // k is instantiable
 279   static bool is_concrete_method(methodOop m);  // m is invocable
 280   static Klass* find_finalizable_subclass(Klass* k);
 281 
 282   // These versions of the concreteness queries work through the CI.
 283   // The CI versions are allowed to skew sometimes from the VM
 284   // (oop-based) versions.  The cost of such a difference is a
 285   // (safely) aborted compilation, or a deoptimization, or a missed
 286   // optimization opportunity.
 287   //
 288   // In order to prevent spurious assertions, query results must
 289   // remain stable within any single ciEnv instance.  (I.e., they must
 290   // not go back into the VM to get their value; they must cache the
 291   // bit in the CI, either eagerly or lazily.)
 292   static bool is_concrete_klass(ciInstanceKlass* k); // k appears instantiable
 293   static bool is_concrete_method(ciMethod* m);       // m appears invocable
 294   static bool has_finalizable_subclass(ciInstanceKlass* k);
 295 
 296   // As a general rule, it is OK to compile under the assumption that
 297   // a given type or method is concrete, even if it at some future
 298   // point becomes abstract.  So dependency checking is one-sided, in
 299   // that it permits supposedly concrete classes or methods to turn up
 300   // as really abstract.  (This shouldn't happen, except during class
 301   // evolution, but that's the logic of the checking.)  However, if a
 302   // supposedly abstract class or method suddenly becomes concrete, a
 303   // dependency on it must fail.
 304 
 305   // Checking old assertions at run-time (in the VM only):
 306   static klassOop check_evol_method(methodOop m);
 307   static klassOop check_leaf_type(klassOop ctxk);
 308   static klassOop check_abstract_with_unique_concrete_subtype(klassOop ctxk, klassOop conck,
 309                                                               KlassDepChange* changes = NULL);
 310   static klassOop check_abstract_with_no_concrete_subtype(klassOop ctxk,
 311                                                           KlassDepChange* changes = NULL);
 312   static klassOop check_concrete_with_no_concrete_subtype(klassOop ctxk,
 313                                                           KlassDepChange* changes = NULL);
 314   static klassOop check_unique_concrete_method(klassOop ctxk, methodOop uniqm,
 315                                                KlassDepChange* changes = NULL);
 316   static klassOop check_abstract_with_exclusive_concrete_subtypes(klassOop ctxk, klassOop k1, klassOop k2,
 317                                                                   KlassDepChange* changes = NULL);
 318   static klassOop check_exclusive_concrete_methods(klassOop ctxk, methodOop m1, methodOop m2,
 319                                                    KlassDepChange* changes = NULL);
 320   static klassOop check_has_no_finalizable_subclasses(klassOop ctxk, KlassDepChange* changes = NULL);
 321   static klassOop check_call_site_target_value(klassOop ctxk, oop call_site, oop method_handle, CallSiteDepChange* changes = NULL);
 322   // A returned klassOop is NULL if the dependency assertion is still
 323   // valid.  A non-NULL klassOop is a 'witness' to the assertion
 324   // failure, a point in the class hierarchy where the assertion has
 325   // been proven false.  For example, if check_leaf_type returns
 326   // non-NULL, the value is a subtype of the supposed leaf type.  This
 327   // witness value may be useful for logging the dependency failure.
 328   // Note that, when a dependency fails, there may be several possible
 329   // witnesses to the failure.  The value returned from the check_foo
 330   // method is chosen arbitrarily.
 331 
 332   // The 'changes' value, if non-null, requests a limited spot-check
 333   // near the indicated recent changes in the class hierarchy.
 334   // It is used by DepStream::spot_check_dependency_at.
 335 
 336   // Detecting possible new assertions:
 337   static klassOop  find_unique_concrete_subtype(klassOop ctxk);
 338   static methodOop find_unique_concrete_method(klassOop ctxk, methodOop m);
 339   static int       find_exclusive_concrete_subtypes(klassOop ctxk, int klen, klassOop k[]);
 340   static int       find_exclusive_concrete_methods(klassOop ctxk, int mlen, methodOop m[]);
 341 
 342   // Create the encoding which will be stored in an nmethod.
 343   void encode_content_bytes();
 344 
 345   address content_bytes() {
 346     assert(_content_bytes != NULL, "encode it first");
 347     return _content_bytes;
 348   }
 349   size_t size_in_bytes() {
 350     assert(_content_bytes != NULL, "encode it first");
 351     return _size_in_bytes;
 352   }
 353 
 354   OopRecorder* oop_recorder() { return _oop_recorder; }
 355   CompileLog*  log()          { return _log; }
 356 
 357   void copy_to(nmethod* nm);
 358 
 359   void log_all_dependencies();
 360   void log_dependency(DepType dept, int nargs, ciObject* args[]) {
 361     write_dependency_to(log(), dept, nargs, args);
 362   }
 363   void log_dependency(DepType dept,
 364                       ciObject* x0,
 365                       ciObject* x1 = NULL,
 366                       ciObject* x2 = NULL) {
 367     if (log() == NULL)  return;
 368     ciObject* args[max_arg_count];
 369     args[0] = x0;
 370     args[1] = x1;
 371     args[2] = x2;
 372     assert(2 < max_arg_count, "");
 373     log_dependency(dept, dep_args(dept), args);
 374   }
 375 
 376   static void write_dependency_to(CompileLog* log,
 377                                   DepType dept,
 378                                   int nargs, ciObject* args[],
 379                                   klassOop witness = NULL);
 380   static void write_dependency_to(CompileLog* log,
 381                                   DepType dept,
 382                                   int nargs, oop args[],
 383                                   klassOop witness = NULL);
 384   static void write_dependency_to(xmlStream* xtty,
 385                                   DepType dept,
 386                                   int nargs, oop args[],
 387                                   klassOop witness = NULL);
 388   static void print_dependency(DepType dept,
 389                                int nargs, oop args[],
 390                                klassOop witness = NULL);
 391 
 392  private:
 393   // helper for encoding common context types as zero:
 394   static ciKlass* ctxk_encoded_as_null(DepType dept, ciObject* x);
 395 
 396   static klassOop ctxk_encoded_as_null(DepType dept, oop x);
 397 
 398  public:
 399   // Use this to iterate over an nmethod's dependency set.
 400   // Works on new and old dependency sets.
 401   // Usage:
 402   //
 403   // ;
 404   // Dependencies::DepType dept;
 405   // for (Dependencies::DepStream deps(nm); deps.next(); ) {
 406   //   ...
 407   // }
 408   //
 409   // The caller must be in the VM, since oops are not wrapped in handles.
 410   class DepStream {
 411   private:
 412     nmethod*              _code;   // null if in a compiler thread
 413     Dependencies*         _deps;   // null if not in a compiler thread
 414     CompressedReadStream  _bytes;
 415 #ifdef ASSERT
 416     size_t                _byte_limit;
 417 #endif
 418 
 419     // iteration variables:
 420     DepType               _type;
 421     int                   _xi[max_arg_count+1];
 422 
 423     void initial_asserts(size_t byte_limit) NOT_DEBUG({});
 424 
 425     inline oop recorded_oop_at(int i);
 426         // => _code? _code->oop_at(i): *_deps->_oop_recorder->handle_at(i)
 427 
 428     klassOop check_klass_dependency(KlassDepChange* changes);
 429     klassOop check_call_site_dependency(CallSiteDepChange* changes);
 430 
 431     void trace_and_log_witness(klassOop witness);
 432 
 433   public:
 434     DepStream(Dependencies* deps)
 435       : _deps(deps),
 436         _code(NULL),
 437         _bytes(deps->content_bytes())
 438     {
 439       initial_asserts(deps->size_in_bytes());
 440     }
 441     DepStream(nmethod* code)
 442       : _deps(NULL),
 443         _code(code),
 444         _bytes(code->dependencies_begin())
 445     {
 446       initial_asserts(code->dependencies_size());
 447     }
 448 
 449     bool next();
 450 
 451     DepType type()               { return _type; }
 452     int argument_count()         { return dep_args(type()); }
 453     int argument_index(int i)    { assert(0 <= i && i < argument_count(), "oob");
 454                                    return _xi[i]; }
 455     oop argument(int i);         // => recorded_oop_at(argument_index(i))
 456     klassOop context_type();
 457 
 458     methodOop method_argument(int i) {
 459       oop x = argument(i);
 460       assert(x->is_method(), "type");
 461       return (methodOop) x;
 462     }
 463     klassOop type_argument(int i) {
 464       oop x = argument(i);
 465       assert(x->is_klass(), "type");
 466       return (klassOop) x;
 467     }
 468 
 469     // The point of the whole exercise:  Is this dep still OK?
 470     klassOop check_dependency() {
 471       klassOop result = check_klass_dependency(NULL);
 472       if (result != NULL)  return result;
 473       return check_call_site_dependency(NULL);
 474     }
 475 
 476     // A lighter version:  Checks only around recent changes in a class
 477     // hierarchy.  (See Universe::flush_dependents_on.)
 478     klassOop spot_check_dependency_at(DepChange& changes);
 479 
 480     // Log the current dependency to xtty or compilation log.
 481     void log_dependency(klassOop witness = NULL);
 482 
 483     // Print the current dependency to tty.
 484     void print_dependency(klassOop witness = NULL, bool verbose = false);
 485   };
 486   friend class Dependencies::DepStream;
 487 
 488   static void print_statistics() PRODUCT_RETURN;
 489 };
 490 
 491 
 492 // Every particular DepChange is a sub-class of this class.
 493 class DepChange : public StackObj {
 494  public:
 495   // What kind of DepChange is this?
 496   virtual bool is_klass_change()     const { return false; }
 497   virtual bool is_call_site_change() const { return false; }
 498 
 499   // Subclass casting with assertions.
 500   KlassDepChange*    as_klass_change() {
 501     assert(is_klass_change(), "bad cast");
 502     return (KlassDepChange*) this;
 503   }
 504   CallSiteDepChange* as_call_site_change() {
 505     assert(is_call_site_change(), "bad cast");
 506     return (CallSiteDepChange*) this;
 507   }
 508 
 509   void print();
 510 
 511  public:
 512   enum ChangeType {
 513     NO_CHANGE = 0,              // an uninvolved klass
 514     Change_new_type,            // a newly loaded type
 515     Change_new_sub,             // a super with a new subtype
 516     Change_new_impl,            // an interface with a new implementation
 517     CHANGE_LIMIT,
 518     Start_Klass = CHANGE_LIMIT  // internal indicator for ContextStream
 519   };
 520 
 521   // Usage:
 522   // for (DepChange::ContextStream str(changes); str.next(); ) {
 523   //   klassOop k = str.klass();
 524   //   switch (str.change_type()) {
 525   //     ...
 526   //   }
 527   // }
 528   class ContextStream : public StackObj {
 529    private:
 530     DepChange&  _changes;
 531     friend class DepChange;
 532 
 533     // iteration variables:
 534     ChangeType  _change_type;
 535     klassOop    _klass;
 536     objArrayOop _ti_base;    // i.e., transitive_interfaces
 537     int         _ti_index;
 538     int         _ti_limit;
 539 
 540     // start at the beginning:
 541     void start();
 542 
 543    public:
 544     ContextStream(DepChange& changes)
 545       : _changes(changes)
 546     { start(); }
 547 
 548     ContextStream(DepChange& changes, No_Safepoint_Verifier& nsv)
 549       : _changes(changes)
 550       // the nsv argument makes it safe to hold oops like _klass
 551     { start(); }
 552 
 553     bool next();
 554 
 555     ChangeType change_type()     { return _change_type; }
 556     klassOop   klass()           { return _klass; }
 557   };
 558   friend class DepChange::ContextStream;
 559 };
 560 
 561 
 562 // A class hierarchy change coming through the VM (under the Compile_lock).
 563 // The change is structured as a single new type with any number of supers
 564 // and implemented interface types.  Other than the new type, any of the
 565 // super types can be context types for a relevant dependency, which the
 566 // new type could invalidate.
 567 class KlassDepChange : public DepChange {
 568  private:
 569   // each change set is rooted in exactly one new type (at present):
 570   KlassHandle _new_type;
 571 
 572   void initialize();
 573 
 574  public:
 575   // notes the new type, marks it and all its super-types
 576   KlassDepChange(KlassHandle new_type)
 577     : _new_type(new_type)
 578   {
 579     initialize();
 580   }
 581 
 582   // cleans up the marks
 583   ~KlassDepChange();
 584 
 585   // What kind of DepChange is this?
 586   virtual bool is_klass_change() const { return true; }
 587 
 588   klassOop new_type() { return _new_type(); }
 589 
 590   // involves_context(k) is true if k is new_type or any of the super types
 591   bool involves_context(klassOop k);
 592 };
 593 
 594 
 595 // A CallSite has changed its target.
 596 class CallSiteDepChange : public DepChange {
 597  private:
 598   Handle _call_site;
 599   Handle _method_handle;
 600 
 601  public:
 602   CallSiteDepChange(Handle call_site, Handle method_handle)
 603     : _call_site(call_site),
 604       _method_handle(method_handle)
 605   {
 606     assert(_call_site()    ->is_a(SystemDictionary::CallSite_klass()),     "must be");
 607     assert(_method_handle()->is_a(SystemDictionary::MethodHandle_klass()), "must be");
 608   }
 609 
 610   // What kind of DepChange is this?
 611   virtual bool is_call_site_change() const { return true; }
 612 
 613   oop call_site()     const { return _call_site();     }
 614   oop method_handle() const { return _method_handle(); }
 615 };
 616 
 617 #endif // SHARE_VM_CODE_DEPENDENCIES_HPP