1 /*
   2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "ci/ciCallSite.hpp"
  28 #include "ci/ciCPCache.hpp"
  29 #include "ci/ciMethodHandle.hpp"
  30 #include "classfile/javaClasses.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/callGenerator.hpp"
  34 #include "opto/callnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/connode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/subnode.hpp"
  41 
  42 CallGenerator::CallGenerator(ciMethod* method) {
  43   _method = method;
  44 }
  45 
  46 // Utility function.
  47 const TypeFunc* CallGenerator::tf() const {
  48   return TypeFunc::make(method());
  49 }
  50 
  51 //-----------------------------ParseGenerator---------------------------------
  52 // Internal class which handles all direct bytecode traversal.
  53 class ParseGenerator : public InlineCallGenerator {
  54 private:
  55   bool  _is_osr;
  56   float _expected_uses;
  57 
  58 public:
  59   ParseGenerator(ciMethod* method, float expected_uses, bool is_osr = false)
  60     : InlineCallGenerator(method)
  61   {
  62     _is_osr        = is_osr;
  63     _expected_uses = expected_uses;
  64     assert(InlineTree::check_can_parse(method) == NULL, "parse must be possible");
  65   }
  66 
  67   virtual bool      is_parse() const           { return true; }
  68   virtual JVMState* generate(JVMState* jvms);
  69   int is_osr() { return _is_osr; }
  70 
  71 };
  72 
  73 JVMState* ParseGenerator::generate(JVMState* jvms) {
  74   Compile* C = Compile::current();
  75 
  76   if (is_osr()) {
  77     // The JVMS for a OSR has a single argument (see its TypeFunc).
  78     assert(jvms->depth() == 1, "no inline OSR");
  79   }
  80 
  81   if (C->failing()) {
  82     return NULL;  // bailing out of the compile; do not try to parse
  83   }
  84 
  85   Parse parser(jvms, method(), _expected_uses);
  86   // Grab signature for matching/allocation
  87 #ifdef ASSERT
  88   if (parser.tf() != (parser.depth() == 1 ? C->tf() : tf())) {
  89     MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
  90     assert(C->env()->system_dictionary_modification_counter_changed(),
  91            "Must invalidate if TypeFuncs differ");
  92   }
  93 #endif
  94 
  95   GraphKit& exits = parser.exits();
  96 
  97   if (C->failing()) {
  98     while (exits.pop_exception_state() != NULL) ;
  99     return NULL;
 100   }
 101 
 102   assert(exits.jvms()->same_calls_as(jvms), "sanity");
 103 
 104   // Simply return the exit state of the parser,
 105   // augmented by any exceptional states.
 106   return exits.transfer_exceptions_into_jvms();
 107 }
 108 
 109 //---------------------------DirectCallGenerator------------------------------
 110 // Internal class which handles all out-of-line calls w/o receiver type checks.
 111 class DirectCallGenerator : public CallGenerator {
 112  private:
 113   CallStaticJavaNode* _call_node;
 114   // Force separate memory and I/O projections for the exceptional
 115   // paths to facilitate late inlinig.
 116   bool                _separate_io_proj;
 117 
 118  public:
 119   DirectCallGenerator(ciMethod* method, bool separate_io_proj)
 120     : CallGenerator(method),
 121       _separate_io_proj(separate_io_proj)
 122   {
 123   }
 124   virtual JVMState* generate(JVMState* jvms);
 125 
 126   CallStaticJavaNode* call_node() const { return _call_node; }
 127 };
 128 
 129 JVMState* DirectCallGenerator::generate(JVMState* jvms) {
 130   GraphKit kit(jvms);
 131   bool is_static = method()->is_static();
 132   address target = is_static ? SharedRuntime::get_resolve_static_call_stub()
 133                              : SharedRuntime::get_resolve_opt_virtual_call_stub();
 134 
 135   if (kit.C->log() != NULL) {
 136     kit.C->log()->elem("direct_call bci='%d'", jvms->bci());
 137   }
 138 
 139   CallStaticJavaNode *call = new (kit.C, tf()->domain()->cnt()) CallStaticJavaNode(tf(), target, method(), kit.bci());
 140   if (!is_static) {
 141     // Make an explicit receiver null_check as part of this call.
 142     // Since we share a map with the caller, his JVMS gets adjusted.
 143     kit.null_check_receiver(method());
 144     if (kit.stopped()) {
 145       // And dump it back to the caller, decorated with any exceptions:
 146       return kit.transfer_exceptions_into_jvms();
 147     }
 148     // Mark the call node as virtual, sort of:
 149     call->set_optimized_virtual(true);
 150     if (method()->is_method_handle_invoke()) {
 151       call->set_method_handle_invoke(true);
 152     }
 153   }
 154   kit.set_arguments_for_java_call(call);
 155   kit.set_edges_for_java_call(call, false, _separate_io_proj);
 156   Node* ret = kit.set_results_for_java_call(call, _separate_io_proj);
 157   kit.push_node(method()->return_type()->basic_type(), ret);
 158   _call_node = call;  // Save the call node in case we need it later
 159   return kit.transfer_exceptions_into_jvms();
 160 }
 161 
 162 //---------------------------DynamicCallGenerator-----------------------------
 163 // Internal class which handles all out-of-line invokedynamic calls.
 164 class DynamicCallGenerator : public CallGenerator {
 165 public:
 166   DynamicCallGenerator(ciMethod* method)
 167     : CallGenerator(method)
 168   {
 169   }
 170   virtual JVMState* generate(JVMState* jvms);
 171 };
 172 
 173 JVMState* DynamicCallGenerator::generate(JVMState* jvms) {
 174   GraphKit kit(jvms);
 175 
 176   if (kit.C->log() != NULL) {
 177     kit.C->log()->elem("dynamic_call bci='%d'", jvms->bci());
 178   }
 179 
 180   // Get the constant pool cache from the caller class.
 181   ciMethod* caller_method = jvms->method();
 182   ciBytecodeStream str(caller_method);
 183   str.force_bci(jvms->bci());  // Set the stream to the invokedynamic bci.
 184   assert(str.cur_bc() == Bytecodes::_invokedynamic, "wrong place to issue a dynamic call!");
 185   ciCPCache* cpcache = str.get_cpcache();
 186 
 187   // Get the offset of the CallSite from the constant pool cache
 188   // pointer.
 189   int index = str.get_method_index();
 190   size_t call_site_offset = cpcache->get_f1_offset(index);
 191 
 192   // Load the CallSite object from the constant pool cache.
 193   const TypeOopPtr* cpcache_ptr = TypeOopPtr::make_from_constant(cpcache);
 194   Node* cpcache_adr = kit.makecon(cpcache_ptr);
 195   Node* call_site_adr = kit.basic_plus_adr(cpcache_adr, cpcache_adr, call_site_offset);
 196   Node* call_site = kit.make_load(kit.control(), call_site_adr, TypeInstPtr::BOTTOM, T_OBJECT, Compile::AliasIdxRaw);
 197 
 198   // Load the target MethodHandle from the CallSite object.
 199   Node* target_mh_adr = kit.basic_plus_adr(call_site, call_site, java_lang_invoke_CallSite::target_offset_in_bytes());
 200   Node* target_mh = kit.make_load(kit.control(), target_mh_adr, TypeInstPtr::BOTTOM, T_OBJECT);
 201 
 202   address resolve_stub = SharedRuntime::get_resolve_opt_virtual_call_stub();
 203 
 204   CallStaticJavaNode *call = new (kit.C, tf()->domain()->cnt()) CallStaticJavaNode(tf(), resolve_stub, method(), kit.bci());
 205   // invokedynamic is treated as an optimized invokevirtual.
 206   call->set_optimized_virtual(true);
 207   // Take extra care (in the presence of argument motion) not to trash the SP:
 208   call->set_method_handle_invoke(true);
 209 
 210   // Pass the target MethodHandle as first argument and shift the
 211   // other arguments.
 212   call->init_req(0 + TypeFunc::Parms, target_mh);
 213   uint nargs = call->method()->arg_size();
 214   for (uint i = 1; i < nargs; i++) {
 215     Node* arg = kit.argument(i - 1);
 216     call->init_req(i + TypeFunc::Parms, arg);
 217   }
 218 
 219   kit.set_edges_for_java_call(call);
 220   Node* ret = kit.set_results_for_java_call(call);
 221   kit.push_node(method()->return_type()->basic_type(), ret);
 222   return kit.transfer_exceptions_into_jvms();
 223 }
 224 
 225 //--------------------------VirtualCallGenerator------------------------------
 226 // Internal class which handles all out-of-line calls checking receiver type.
 227 class VirtualCallGenerator : public CallGenerator {
 228 private:
 229   int _vtable_index;
 230 public:
 231   VirtualCallGenerator(ciMethod* method, int vtable_index)
 232     : CallGenerator(method), _vtable_index(vtable_index)
 233   {
 234     assert(vtable_index == methodOopDesc::invalid_vtable_index ||
 235            vtable_index >= 0, "either invalid or usable");
 236   }
 237   virtual bool      is_virtual() const          { return true; }
 238   virtual JVMState* generate(JVMState* jvms);
 239 };
 240 
 241 JVMState* VirtualCallGenerator::generate(JVMState* jvms) {
 242   GraphKit kit(jvms);
 243   Node* receiver = kit.argument(0);
 244 
 245   if (kit.C->log() != NULL) {
 246     kit.C->log()->elem("virtual_call bci='%d'", jvms->bci());
 247   }
 248 
 249   // If the receiver is a constant null, do not torture the system
 250   // by attempting to call through it.  The compile will proceed
 251   // correctly, but may bail out in final_graph_reshaping, because
 252   // the call instruction will have a seemingly deficient out-count.
 253   // (The bailout says something misleading about an "infinite loop".)
 254   if (kit.gvn().type(receiver)->higher_equal(TypePtr::NULL_PTR)) {
 255     kit.inc_sp(method()->arg_size());  // restore arguments
 256     kit.uncommon_trap(Deoptimization::Reason_null_check,
 257                       Deoptimization::Action_none,
 258                       NULL, "null receiver");
 259     return kit.transfer_exceptions_into_jvms();
 260   }
 261 
 262   // Ideally we would unconditionally do a null check here and let it
 263   // be converted to an implicit check based on profile information.
 264   // However currently the conversion to implicit null checks in
 265   // Block::implicit_null_check() only looks for loads and stores, not calls.
 266   ciMethod *caller = kit.method();
 267   ciMethodData *caller_md = (caller == NULL) ? NULL : caller->method_data();
 268   if (!UseInlineCaches || !ImplicitNullChecks ||
 269        ((ImplicitNullCheckThreshold > 0) && caller_md &&
 270        (caller_md->trap_count(Deoptimization::Reason_null_check)
 271        >= (uint)ImplicitNullCheckThreshold))) {
 272     // Make an explicit receiver null_check as part of this call.
 273     // Since we share a map with the caller, his JVMS gets adjusted.
 274     receiver = kit.null_check_receiver(method());
 275     if (kit.stopped()) {
 276       // And dump it back to the caller, decorated with any exceptions:
 277       return kit.transfer_exceptions_into_jvms();
 278     }
 279   }
 280 
 281   assert(!method()->is_static(), "virtual call must not be to static");
 282   assert(!method()->is_final(), "virtual call should not be to final");
 283   assert(!method()->is_private(), "virtual call should not be to private");
 284   assert(_vtable_index == methodOopDesc::invalid_vtable_index || !UseInlineCaches,
 285          "no vtable calls if +UseInlineCaches ");
 286   address target = SharedRuntime::get_resolve_virtual_call_stub();
 287   // Normal inline cache used for call
 288   CallDynamicJavaNode *call = new (kit.C, tf()->domain()->cnt()) CallDynamicJavaNode(tf(), target, method(), _vtable_index, kit.bci());
 289   kit.set_arguments_for_java_call(call);
 290   kit.set_edges_for_java_call(call);
 291   Node* ret = kit.set_results_for_java_call(call);
 292   kit.push_node(method()->return_type()->basic_type(), ret);
 293 
 294   // Represent the effect of an implicit receiver null_check
 295   // as part of this call.  Since we share a map with the caller,
 296   // his JVMS gets adjusted.
 297   kit.cast_not_null(receiver);
 298   return kit.transfer_exceptions_into_jvms();
 299 }
 300 
 301 CallGenerator* CallGenerator::for_inline(ciMethod* m, float expected_uses) {
 302   if (InlineTree::check_can_parse(m) != NULL)  return NULL;
 303   return new ParseGenerator(m, expected_uses);
 304 }
 305 
 306 // As a special case, the JVMS passed to this CallGenerator is
 307 // for the method execution already in progress, not just the JVMS
 308 // of the caller.  Thus, this CallGenerator cannot be mixed with others!
 309 CallGenerator* CallGenerator::for_osr(ciMethod* m, int osr_bci) {
 310   if (InlineTree::check_can_parse(m) != NULL)  return NULL;
 311   float past_uses = m->interpreter_invocation_count();
 312   float expected_uses = past_uses;
 313   return new ParseGenerator(m, expected_uses, true);
 314 }
 315 
 316 CallGenerator* CallGenerator::for_direct_call(ciMethod* m, bool separate_io_proj) {
 317   assert(!m->is_abstract(), "for_direct_call mismatch");
 318   return new DirectCallGenerator(m, separate_io_proj);
 319 }
 320 
 321 CallGenerator* CallGenerator::for_dynamic_call(ciMethod* m) {
 322   assert(m->is_method_handle_invoke() || m->is_method_handle_adapter(), "for_dynamic_call mismatch");
 323   return new DynamicCallGenerator(m);
 324 }
 325 
 326 CallGenerator* CallGenerator::for_virtual_call(ciMethod* m, int vtable_index) {
 327   assert(!m->is_static(), "for_virtual_call mismatch");
 328   assert(!m->is_method_handle_invoke(), "should be a direct call");
 329   return new VirtualCallGenerator(m, vtable_index);
 330 }
 331 
 332 // Allow inlining decisions to be delayed
 333 class LateInlineCallGenerator : public DirectCallGenerator {
 334   CallGenerator* _inline_cg;
 335 
 336  public:
 337   LateInlineCallGenerator(ciMethod* method, CallGenerator* inline_cg) :
 338     DirectCallGenerator(method, true), _inline_cg(inline_cg) {}
 339 
 340   virtual bool      is_late_inline() const { return true; }
 341 
 342   // Convert the CallStaticJava into an inline
 343   virtual void do_late_inline();
 344 
 345   JVMState* generate(JVMState* jvms) {
 346     // Record that this call site should be revisited once the main
 347     // parse is finished.
 348     Compile::current()->add_late_inline(this);
 349 
 350     // Emit the CallStaticJava and request separate projections so
 351     // that the late inlining logic can distinguish between fall
 352     // through and exceptional uses of the memory and io projections
 353     // as is done for allocations and macro expansion.
 354     return DirectCallGenerator::generate(jvms);
 355   }
 356 
 357 };
 358 
 359 
 360 void LateInlineCallGenerator::do_late_inline() {
 361   // Can't inline it
 362   if (call_node() == NULL || call_node()->outcnt() == 0 ||
 363       call_node()->in(0) == NULL || call_node()->in(0)->is_top())
 364     return;
 365 
 366   CallStaticJavaNode* call = call_node();
 367 
 368   // Make a clone of the JVMState that appropriate to use for driving a parse
 369   Compile* C = Compile::current();
 370   JVMState* jvms     = call->jvms()->clone_shallow(C);
 371   uint size = call->req();
 372   SafePointNode* map = new (C, size) SafePointNode(size, jvms);
 373   for (uint i1 = 0; i1 < size; i1++) {
 374     map->init_req(i1, call->in(i1));
 375   }
 376 
 377   // Make sure the state is a MergeMem for parsing.
 378   if (!map->in(TypeFunc::Memory)->is_MergeMem()) {
 379     map->set_req(TypeFunc::Memory, MergeMemNode::make(C, map->in(TypeFunc::Memory)));
 380   }
 381 
 382   // Make enough space for the expression stack and transfer the incoming arguments
 383   int nargs    = method()->arg_size();
 384   jvms->set_map(map);
 385   map->ensure_stack(jvms, jvms->method()->max_stack());
 386   if (nargs > 0) {
 387     for (int i1 = 0; i1 < nargs; i1++) {
 388       map->set_req(i1 + jvms->argoff(), call->in(TypeFunc::Parms + i1));
 389     }
 390   }
 391 
 392   CompileLog* log = C->log();
 393   if (log != NULL) {
 394     log->head("late_inline method='%d'", log->identify(method()));
 395     JVMState* p = jvms;
 396     while (p != NULL) {
 397       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
 398       p = p->caller();
 399     }
 400     log->tail("late_inline");
 401   }
 402 
 403   // Setup default node notes to be picked up by the inlining
 404   Node_Notes* old_nn = C->default_node_notes();
 405   if (old_nn != NULL) {
 406     Node_Notes* entry_nn = old_nn->clone(C);
 407     entry_nn->set_jvms(jvms);
 408     C->set_default_node_notes(entry_nn);
 409   }
 410 
 411   // Now perform the inling using the synthesized JVMState
 412   JVMState* new_jvms = _inline_cg->generate(jvms);
 413   if (new_jvms == NULL)  return;  // no change
 414   if (C->failing())      return;
 415 
 416   // Capture any exceptional control flow
 417   GraphKit kit(new_jvms);
 418 
 419   // Find the result object
 420   Node* result = C->top();
 421   int   result_size = method()->return_type()->size();
 422   if (result_size != 0 && !kit.stopped()) {
 423     result = (result_size == 1) ? kit.pop() : kit.pop_pair();
 424   }
 425 
 426   kit.replace_call(call, result);
 427 }
 428 
 429 
 430 CallGenerator* CallGenerator::for_late_inline(ciMethod* method, CallGenerator* inline_cg) {
 431   return new LateInlineCallGenerator(method, inline_cg);
 432 }
 433 
 434 
 435 //---------------------------WarmCallGenerator--------------------------------
 436 // Internal class which handles initial deferral of inlining decisions.
 437 class WarmCallGenerator : public CallGenerator {
 438   WarmCallInfo*   _call_info;
 439   CallGenerator*  _if_cold;
 440   CallGenerator*  _if_hot;
 441   bool            _is_virtual;   // caches virtuality of if_cold
 442   bool            _is_inline;    // caches inline-ness of if_hot
 443 
 444 public:
 445   WarmCallGenerator(WarmCallInfo* ci,
 446                     CallGenerator* if_cold,
 447                     CallGenerator* if_hot)
 448     : CallGenerator(if_cold->method())
 449   {
 450     assert(method() == if_hot->method(), "consistent choices");
 451     _call_info  = ci;
 452     _if_cold    = if_cold;
 453     _if_hot     = if_hot;
 454     _is_virtual = if_cold->is_virtual();
 455     _is_inline  = if_hot->is_inline();
 456   }
 457 
 458   virtual bool      is_inline() const           { return _is_inline; }
 459   virtual bool      is_virtual() const          { return _is_virtual; }
 460   virtual bool      is_deferred() const         { return true; }
 461 
 462   virtual JVMState* generate(JVMState* jvms);
 463 };
 464 
 465 
 466 CallGenerator* CallGenerator::for_warm_call(WarmCallInfo* ci,
 467                                             CallGenerator* if_cold,
 468                                             CallGenerator* if_hot) {
 469   return new WarmCallGenerator(ci, if_cold, if_hot);
 470 }
 471 
 472 JVMState* WarmCallGenerator::generate(JVMState* jvms) {
 473   Compile* C = Compile::current();
 474   if (C->log() != NULL) {
 475     C->log()->elem("warm_call bci='%d'", jvms->bci());
 476   }
 477   jvms = _if_cold->generate(jvms);
 478   if (jvms != NULL) {
 479     Node* m = jvms->map()->control();
 480     if (m->is_CatchProj()) m = m->in(0);  else m = C->top();
 481     if (m->is_Catch())     m = m->in(0);  else m = C->top();
 482     if (m->is_Proj())      m = m->in(0);  else m = C->top();
 483     if (m->is_CallJava()) {
 484       _call_info->set_call(m->as_Call());
 485       _call_info->set_hot_cg(_if_hot);
 486 #ifndef PRODUCT
 487       if (PrintOpto || PrintOptoInlining) {
 488         tty->print_cr("Queueing for warm inlining at bci %d:", jvms->bci());
 489         tty->print("WCI: ");
 490         _call_info->print();
 491       }
 492 #endif
 493       _call_info->set_heat(_call_info->compute_heat());
 494       C->set_warm_calls(_call_info->insert_into(C->warm_calls()));
 495     }
 496   }
 497   return jvms;
 498 }
 499 
 500 void WarmCallInfo::make_hot() {
 501   Unimplemented();
 502 }
 503 
 504 void WarmCallInfo::make_cold() {
 505   // No action:  Just dequeue.
 506 }
 507 
 508 
 509 //------------------------PredictedCallGenerator------------------------------
 510 // Internal class which handles all out-of-line calls checking receiver type.
 511 class PredictedCallGenerator : public CallGenerator {
 512   ciKlass*       _predicted_receiver;
 513   CallGenerator* _if_missed;
 514   CallGenerator* _if_hit;
 515   float          _hit_prob;
 516 
 517 public:
 518   PredictedCallGenerator(ciKlass* predicted_receiver,
 519                          CallGenerator* if_missed,
 520                          CallGenerator* if_hit, float hit_prob)
 521     : CallGenerator(if_missed->method())
 522   {
 523     // The call profile data may predict the hit_prob as extreme as 0 or 1.
 524     // Remove the extremes values from the range.
 525     if (hit_prob > PROB_MAX)   hit_prob = PROB_MAX;
 526     if (hit_prob < PROB_MIN)   hit_prob = PROB_MIN;
 527 
 528     _predicted_receiver = predicted_receiver;
 529     _if_missed          = if_missed;
 530     _if_hit             = if_hit;
 531     _hit_prob           = hit_prob;
 532   }
 533 
 534   virtual bool      is_virtual()   const    { return true; }
 535   virtual bool      is_inline()    const    { return _if_hit->is_inline(); }
 536   virtual bool      is_deferred()  const    { return _if_hit->is_deferred(); }
 537 
 538   virtual JVMState* generate(JVMState* jvms);
 539 };
 540 
 541 
 542 CallGenerator* CallGenerator::for_predicted_call(ciKlass* predicted_receiver,
 543                                                  CallGenerator* if_missed,
 544                                                  CallGenerator* if_hit,
 545                                                  float hit_prob) {
 546   return new PredictedCallGenerator(predicted_receiver, if_missed, if_hit, hit_prob);
 547 }
 548 
 549 
 550 JVMState* PredictedCallGenerator::generate(JVMState* jvms) {
 551   GraphKit kit(jvms);
 552   PhaseGVN& gvn = kit.gvn();
 553   // We need an explicit receiver null_check before checking its type.
 554   // We share a map with the caller, so his JVMS gets adjusted.
 555   Node* receiver = kit.argument(0);
 556 
 557   CompileLog* log = kit.C->log();
 558   if (log != NULL) {
 559     log->elem("predicted_call bci='%d' klass='%d'",
 560               jvms->bci(), log->identify(_predicted_receiver));
 561   }
 562 
 563   receiver = kit.null_check_receiver(method());
 564   if (kit.stopped()) {
 565     return kit.transfer_exceptions_into_jvms();
 566   }
 567 
 568   Node* exact_receiver = receiver;  // will get updated in place...
 569   Node* slow_ctl = kit.type_check_receiver(receiver,
 570                                            _predicted_receiver, _hit_prob,
 571                                            &exact_receiver);
 572 
 573   SafePointNode* slow_map = NULL;
 574   JVMState* slow_jvms;
 575   { PreserveJVMState pjvms(&kit);
 576     kit.set_control(slow_ctl);
 577     if (!kit.stopped()) {
 578       slow_jvms = _if_missed->generate(kit.sync_jvms());
 579       assert(slow_jvms != NULL, "miss path must not fail to generate");
 580       kit.add_exception_states_from(slow_jvms);
 581       kit.set_map(slow_jvms->map());
 582       if (!kit.stopped())
 583         slow_map = kit.stop();
 584     }
 585   }
 586 
 587   if (kit.stopped()) {
 588     // Instance exactly does not matches the desired type.
 589     kit.set_jvms(slow_jvms);
 590     return kit.transfer_exceptions_into_jvms();
 591   }
 592 
 593   // fall through if the instance exactly matches the desired type
 594   kit.replace_in_map(receiver, exact_receiver);
 595 
 596   // Make the hot call:
 597   JVMState* new_jvms = _if_hit->generate(kit.sync_jvms());
 598   if (new_jvms == NULL) {
 599     // Inline failed, so make a direct call.
 600     assert(_if_hit->is_inline(), "must have been a failed inline");
 601     CallGenerator* cg = CallGenerator::for_direct_call(_if_hit->method());
 602     new_jvms = cg->generate(kit.sync_jvms());
 603   }
 604   kit.add_exception_states_from(new_jvms);
 605   kit.set_jvms(new_jvms);
 606 
 607   // Need to merge slow and fast?
 608   if (slow_map == NULL) {
 609     // The fast path is the only path remaining.
 610     return kit.transfer_exceptions_into_jvms();
 611   }
 612 
 613   if (kit.stopped()) {
 614     // Inlined method threw an exception, so it's just the slow path after all.
 615     kit.set_jvms(slow_jvms);
 616     return kit.transfer_exceptions_into_jvms();
 617   }
 618 
 619   // Finish the diamond.
 620   kit.C->set_has_split_ifs(true); // Has chance for split-if optimization
 621   RegionNode* region = new (kit.C, 3) RegionNode(3);
 622   region->init_req(1, kit.control());
 623   region->init_req(2, slow_map->control());
 624   kit.set_control(gvn.transform(region));
 625   Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO);
 626   iophi->set_req(2, slow_map->i_o());
 627   kit.set_i_o(gvn.transform(iophi));
 628   kit.merge_memory(slow_map->merged_memory(), region, 2);
 629   uint tos = kit.jvms()->stkoff() + kit.sp();
 630   uint limit = slow_map->req();
 631   for (uint i = TypeFunc::Parms; i < limit; i++) {
 632     // Skip unused stack slots; fast forward to monoff();
 633     if (i == tos) {
 634       i = kit.jvms()->monoff();
 635       if( i >= limit ) break;
 636     }
 637     Node* m = kit.map()->in(i);
 638     Node* n = slow_map->in(i);
 639     if (m != n) {
 640       const Type* t = gvn.type(m)->meet(gvn.type(n));
 641       Node* phi = PhiNode::make(region, m, t);
 642       phi->set_req(2, n);
 643       kit.map()->set_req(i, gvn.transform(phi));
 644     }
 645   }
 646   return kit.transfer_exceptions_into_jvms();
 647 }
 648 
 649 
 650 //------------------------PredictedDynamicCallGenerator-----------------------
 651 // Internal class which handles all out-of-line calls checking receiver type.
 652 class PredictedDynamicCallGenerator : public CallGenerator {
 653   ciMethodHandle* _predicted_method_handle;
 654   CallGenerator*  _if_missed;
 655   CallGenerator*  _if_hit;
 656   float           _hit_prob;
 657 
 658 public:
 659   PredictedDynamicCallGenerator(ciMethodHandle* predicted_method_handle,
 660                                 CallGenerator* if_missed,
 661                                 CallGenerator* if_hit,
 662                                 float hit_prob)
 663     : CallGenerator(if_missed->method()),
 664       _predicted_method_handle(predicted_method_handle),
 665       _if_missed(if_missed),
 666       _if_hit(if_hit),
 667       _hit_prob(hit_prob)
 668   {}
 669 
 670   virtual bool is_inline()   const { return _if_hit->is_inline(); }
 671   virtual bool is_deferred() const { return _if_hit->is_deferred(); }
 672 
 673   virtual JVMState* generate(JVMState* jvms);
 674 };
 675 
 676 
 677 CallGenerator* CallGenerator::for_predicted_dynamic_call(ciMethodHandle* predicted_method_handle,
 678                                                          CallGenerator* if_missed,
 679                                                          CallGenerator* if_hit,
 680                                                          float hit_prob) {
 681   return new PredictedDynamicCallGenerator(predicted_method_handle, if_missed, if_hit, hit_prob);
 682 }
 683 
 684 
 685 CallGenerator* CallGenerator::for_method_handle_inline(Node* method_handle, JVMState* jvms,
 686                                                        ciMethod* caller, ciMethod* callee, ciCallProfile profile) {
 687   if (method_handle->Opcode() == Op_ConP) {
 688     const TypeOopPtr* oop_ptr = method_handle->bottom_type()->is_oopptr();
 689     ciObject* const_oop = oop_ptr->const_oop();
 690     ciMethodHandle* method_handle = const_oop->as_method_handle();
 691 
 692     // Set the callee to have access to the class and signature in
 693     // the MethodHandleCompiler.
 694     method_handle->set_callee(callee);
 695     method_handle->set_caller(caller);
 696     method_handle->set_call_profile(profile);
 697 
 698     // Get an adapter for the MethodHandle.
 699     ciMethod* target_method = method_handle->get_method_handle_adapter();
 700     if (target_method != NULL) {
 701       CallGenerator* cg = Compile::current()->call_generator(target_method, -1, false, jvms, true, PROB_ALWAYS);
 702       if (cg != NULL && cg->is_inline())
 703         return cg;
 704     }
 705   } else if (method_handle->Opcode() == Op_Phi && method_handle->req() == 3 &&
 706              method_handle->in(1)->Opcode() == Op_ConP && method_handle->in(2)->Opcode() == Op_ConP) {
 707     float prob = PROB_FAIR;
 708     Node* meth_region = method_handle->in(0);
 709     if (meth_region->is_Region() &&
 710         meth_region->in(1)->is_Proj() && meth_region->in(2)->is_Proj() &&
 711         meth_region->in(1)->in(0) == meth_region->in(2)->in(0) &&
 712         meth_region->in(1)->in(0)->is_If()) {
 713       // If diamond, so grab the probability of the test to drive the inlining below
 714       prob = meth_region->in(1)->in(0)->as_If()->_prob;
 715       if (meth_region->in(1)->is_IfTrue()) {
 716         prob = 1 - prob;
 717       }
 718     }
 719 
 720     // selectAlternative idiom merging two constant MethodHandles.
 721     // Generate a guard so that each can be inlined.  We might want to
 722     // do more inputs at later point but this gets the most common
 723     // case.
 724     CallGenerator* cg1 = for_method_handle_inline(method_handle->in(1), jvms, caller, callee, profile.rescale(1.0 - prob));
 725     CallGenerator* cg2 = for_method_handle_inline(method_handle->in(2), jvms, caller, callee, profile.rescale(prob));
 726     if (cg1 != NULL && cg2 != NULL) {
 727       const TypeOopPtr* oop_ptr = method_handle->in(1)->bottom_type()->is_oopptr();
 728       ciObject* const_oop = oop_ptr->const_oop();
 729       ciMethodHandle* mh = const_oop->as_method_handle();
 730       return new PredictedDynamicCallGenerator(mh, cg2, cg1, prob);
 731     }
 732   }
 733   return NULL;
 734 }
 735 
 736 
 737 CallGenerator* CallGenerator::for_invokedynamic_inline(ciCallSite* call_site, JVMState* jvms,
 738                                                        ciMethod* caller, ciMethod* callee, ciCallProfile profile) {
 739   ciMethodHandle* method_handle = call_site->get_target();
 740 
 741   // Set the callee to have access to the class and signature in the
 742   // MethodHandleCompiler.
 743   method_handle->set_callee(callee);
 744   method_handle->set_caller(caller);
 745   method_handle->set_call_profile(profile);
 746 
 747   // Get an adapter for the MethodHandle.
 748   ciMethod* target_method = method_handle->get_invokedynamic_adapter();
 749   if (target_method != NULL) {
 750     Compile *C = Compile::current();
 751     CallGenerator* cg = C->call_generator(target_method, -1, false, jvms, true, PROB_ALWAYS);
 752     if (cg != NULL && cg->is_inline()) {
 753       // Add a dependence for invalidation of the optimization.
 754       if (!call_site->is_constant_call_site()) {
 755         C->dependencies()->assert_call_site_target_value(call_site, method_handle);
 756       }
 757       return cg;
 758     }
 759   }
 760   return NULL;
 761 }
 762 
 763 
 764 JVMState* PredictedDynamicCallGenerator::generate(JVMState* jvms) {
 765   GraphKit kit(jvms);
 766   PhaseGVN& gvn = kit.gvn();
 767 
 768   CompileLog* log = kit.C->log();
 769   if (log != NULL) {
 770     log->elem("predicted_dynamic_call bci='%d'", jvms->bci());
 771   }
 772 
 773   const TypeOopPtr* predicted_mh_ptr = TypeOopPtr::make_from_constant(_predicted_method_handle, true);
 774   Node* predicted_mh = kit.makecon(predicted_mh_ptr);
 775 
 776   Node* bol = NULL;
 777   int bc = jvms->method()->java_code_at_bci(jvms->bci());
 778   if (bc == Bytecodes::_invokespecial) {
 779     // This is the selectAlternative idiom for guardWithTest
 780     Node* receiver = kit.argument(0);
 781 
 782     // Check if the MethodHandle is the expected one
 783     Node* cmp = gvn.transform(new(kit.C, 3) CmpPNode(receiver, predicted_mh));
 784     bol = gvn.transform(new(kit.C, 2) BoolNode(cmp, BoolTest::eq) );
 785   } else {
 786     assert(bc == Bytecodes::_invokedynamic, "must be");
 787     // Get the constant pool cache from the caller class.
 788     ciMethod* caller_method = jvms->method();
 789     ciBytecodeStream str(caller_method);
 790     str.force_bci(jvms->bci());  // Set the stream to the invokedynamic bci.
 791     ciCPCache* cpcache = str.get_cpcache();
 792 
 793     // Get the offset of the CallSite from the constant pool cache
 794     // pointer.
 795     int index = str.get_method_index();
 796     size_t call_site_offset = cpcache->get_f1_offset(index);
 797 
 798     // Load the CallSite object from the constant pool cache.
 799     const TypeOopPtr* cpcache_ptr = TypeOopPtr::make_from_constant(cpcache);
 800     Node* cpcache_adr   = kit.makecon(cpcache_ptr);
 801     Node* call_site_adr = kit.basic_plus_adr(cpcache_adr, cpcache_adr, call_site_offset);
 802     Node* call_site     = kit.make_load(kit.control(), call_site_adr, TypeInstPtr::BOTTOM, T_OBJECT, Compile::AliasIdxRaw);
 803 
 804     // Load the target MethodHandle from the CallSite object.
 805     Node* target_adr = kit.basic_plus_adr(call_site, call_site, java_lang_invoke_CallSite::target_offset_in_bytes());
 806     Node* target_mh  = kit.make_load(kit.control(), target_adr, TypeInstPtr::BOTTOM, T_OBJECT);
 807 
 808     // Check if the MethodHandle is still the same.
 809     Node* cmp = gvn.transform(new(kit.C, 3) CmpPNode(target_mh, predicted_mh));
 810     bol = gvn.transform(new(kit.C, 2) BoolNode(cmp, BoolTest::eq) );
 811   }
 812   IfNode* iff = kit.create_and_xform_if(kit.control(), bol, _hit_prob, COUNT_UNKNOWN);
 813   kit.set_control( gvn.transform(new(kit.C, 1) IfTrueNode (iff)));
 814   Node* slow_ctl = gvn.transform(new(kit.C, 1) IfFalseNode(iff));
 815 
 816   SafePointNode* slow_map = NULL;
 817   JVMState* slow_jvms;
 818   { PreserveJVMState pjvms(&kit);
 819     kit.set_control(slow_ctl);
 820     if (!kit.stopped()) {
 821       slow_jvms = _if_missed->generate(kit.sync_jvms());
 822       assert(slow_jvms != NULL, "miss path must not fail to generate");
 823       kit.add_exception_states_from(slow_jvms);
 824       kit.set_map(slow_jvms->map());
 825       if (!kit.stopped())
 826         slow_map = kit.stop();
 827     }
 828   }
 829 
 830   if (kit.stopped()) {
 831     // Instance exactly does not matches the desired type.
 832     kit.set_jvms(slow_jvms);
 833     return kit.transfer_exceptions_into_jvms();
 834   }
 835 
 836   // Make the hot call:
 837   JVMState* new_jvms = _if_hit->generate(kit.sync_jvms());
 838   if (new_jvms == NULL) {
 839     // Inline failed, so make a direct call.
 840     assert(_if_hit->is_inline(), "must have been a failed inline");
 841     CallGenerator* cg = CallGenerator::for_direct_call(_if_hit->method());
 842     new_jvms = cg->generate(kit.sync_jvms());
 843   }
 844   kit.add_exception_states_from(new_jvms);
 845   kit.set_jvms(new_jvms);
 846 
 847   // Need to merge slow and fast?
 848   if (slow_map == NULL) {
 849     // The fast path is the only path remaining.
 850     return kit.transfer_exceptions_into_jvms();
 851   }
 852 
 853   if (kit.stopped()) {
 854     // Inlined method threw an exception, so it's just the slow path after all.
 855     kit.set_jvms(slow_jvms);
 856     return kit.transfer_exceptions_into_jvms();
 857   }
 858 
 859   // Finish the diamond.
 860   kit.C->set_has_split_ifs(true); // Has chance for split-if optimization
 861   RegionNode* region = new (kit.C, 3) RegionNode(3);
 862   region->init_req(1, kit.control());
 863   region->init_req(2, slow_map->control());
 864   kit.set_control(gvn.transform(region));
 865   Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO);
 866   iophi->set_req(2, slow_map->i_o());
 867   kit.set_i_o(gvn.transform(iophi));
 868   kit.merge_memory(slow_map->merged_memory(), region, 2);
 869   uint tos = kit.jvms()->stkoff() + kit.sp();
 870   uint limit = slow_map->req();
 871   for (uint i = TypeFunc::Parms; i < limit; i++) {
 872     // Skip unused stack slots; fast forward to monoff();
 873     if (i == tos) {
 874       i = kit.jvms()->monoff();
 875       if( i >= limit ) break;
 876     }
 877     Node* m = kit.map()->in(i);
 878     Node* n = slow_map->in(i);
 879     if (m != n) {
 880       const Type* t = gvn.type(m)->meet(gvn.type(n));
 881       Node* phi = PhiNode::make(region, m, t);
 882       phi->set_req(2, n);
 883       kit.map()->set_req(i, gvn.transform(phi));
 884     }
 885   }
 886   return kit.transfer_exceptions_into_jvms();
 887 }
 888 
 889 
 890 //-------------------------UncommonTrapCallGenerator-----------------------------
 891 // Internal class which handles all out-of-line calls checking receiver type.
 892 class UncommonTrapCallGenerator : public CallGenerator {
 893   Deoptimization::DeoptReason _reason;
 894   Deoptimization::DeoptAction _action;
 895 
 896 public:
 897   UncommonTrapCallGenerator(ciMethod* m,
 898                             Deoptimization::DeoptReason reason,
 899                             Deoptimization::DeoptAction action)
 900     : CallGenerator(m)
 901   {
 902     _reason = reason;
 903     _action = action;
 904   }
 905 
 906   virtual bool      is_virtual() const          { ShouldNotReachHere(); return false; }
 907   virtual bool      is_trap() const             { return true; }
 908 
 909   virtual JVMState* generate(JVMState* jvms);
 910 };
 911 
 912 
 913 CallGenerator*
 914 CallGenerator::for_uncommon_trap(ciMethod* m,
 915                                  Deoptimization::DeoptReason reason,
 916                                  Deoptimization::DeoptAction action) {
 917   return new UncommonTrapCallGenerator(m, reason, action);
 918 }
 919 
 920 
 921 JVMState* UncommonTrapCallGenerator::generate(JVMState* jvms) {
 922   GraphKit kit(jvms);
 923   // Take the trap with arguments pushed on the stack.  (Cf. null_check_receiver).
 924   int nargs = method()->arg_size();
 925   kit.inc_sp(nargs);
 926   assert(nargs <= kit.sp() && kit.sp() <= jvms->stk_size(), "sane sp w/ args pushed");
 927   if (_reason == Deoptimization::Reason_class_check &&
 928       _action == Deoptimization::Action_maybe_recompile) {
 929     // Temp fix for 6529811
 930     // Don't allow uncommon_trap to override our decision to recompile in the event
 931     // of a class cast failure for a monomorphic call as it will never let us convert
 932     // the call to either bi-morphic or megamorphic and can lead to unc-trap loops
 933     bool keep_exact_action = true;
 934     kit.uncommon_trap(_reason, _action, NULL, "monomorphic vcall checkcast", false, keep_exact_action);
 935   } else {
 936     kit.uncommon_trap(_reason, _action);
 937   }
 938   return kit.transfer_exceptions_into_jvms();
 939 }
 940 
 941 // (Note:  Moved hook_up_call to GraphKit::set_edges_for_java_call.)
 942 
 943 // (Node:  Merged hook_up_exits into ParseGenerator::generate.)
 944 
 945 #define NODES_OVERHEAD_PER_METHOD (30.0)
 946 #define NODES_PER_BYTECODE (9.5)
 947 
 948 void WarmCallInfo::init(JVMState* call_site, ciMethod* call_method, ciCallProfile& profile, float prof_factor) {
 949   int call_count = profile.count();
 950   int code_size = call_method->code_size();
 951 
 952   // Expected execution count is based on the historical count:
 953   _count = call_count < 0 ? 1 : call_site->method()->scale_count(call_count, prof_factor);
 954 
 955   // Expected profit from inlining, in units of simple call-overheads.
 956   _profit = 1.0;
 957 
 958   // Expected work performed by the call in units of call-overheads.
 959   // %%% need an empirical curve fit for "work" (time in call)
 960   float bytecodes_per_call = 3;
 961   _work = 1.0 + code_size / bytecodes_per_call;
 962 
 963   // Expected size of compilation graph:
 964   // -XX:+PrintParseStatistics once reported:
 965   //  Methods seen: 9184  Methods parsed: 9184  Nodes created: 1582391
 966   //  Histogram of 144298 parsed bytecodes:
 967   // %%% Need an better predictor for graph size.
 968   _size = NODES_OVERHEAD_PER_METHOD + (NODES_PER_BYTECODE * code_size);
 969 }
 970 
 971 // is_cold:  Return true if the node should never be inlined.
 972 // This is true if any of the key metrics are extreme.
 973 bool WarmCallInfo::is_cold() const {
 974   if (count()  <  WarmCallMinCount)        return true;
 975   if (profit() <  WarmCallMinProfit)       return true;
 976   if (work()   >  WarmCallMaxWork)         return true;
 977   if (size()   >  WarmCallMaxSize)         return true;
 978   return false;
 979 }
 980 
 981 // is_hot:  Return true if the node should be inlined immediately.
 982 // This is true if any of the key metrics are extreme.
 983 bool WarmCallInfo::is_hot() const {
 984   assert(!is_cold(), "eliminate is_cold cases before testing is_hot");
 985   if (count()  >= HotCallCountThreshold)   return true;
 986   if (profit() >= HotCallProfitThreshold)  return true;
 987   if (work()   <= HotCallTrivialWork)      return true;
 988   if (size()   <= HotCallTrivialSize)      return true;
 989   return false;
 990 }
 991 
 992 // compute_heat:
 993 float WarmCallInfo::compute_heat() const {
 994   assert(!is_cold(), "compute heat only on warm nodes");
 995   assert(!is_hot(),  "compute heat only on warm nodes");
 996   int min_size = MAX2(0,   (int)HotCallTrivialSize);
 997   int max_size = MIN2(500, (int)WarmCallMaxSize);
 998   float method_size = (size() - min_size) / MAX2(1, max_size - min_size);
 999   float size_factor;
1000   if      (method_size < 0.05)  size_factor = 4;   // 2 sigmas better than avg.
1001   else if (method_size < 0.15)  size_factor = 2;   // 1 sigma better than avg.
1002   else if (method_size < 0.5)   size_factor = 1;   // better than avg.
1003   else                          size_factor = 0.5; // worse than avg.
1004   return (count() * profit() * size_factor);
1005 }
1006 
1007 bool WarmCallInfo::warmer_than(WarmCallInfo* that) {
1008   assert(this != that, "compare only different WCIs");
1009   assert(this->heat() != 0 && that->heat() != 0, "call compute_heat 1st");
1010   if (this->heat() > that->heat())   return true;
1011   if (this->heat() < that->heat())   return false;
1012   assert(this->heat() == that->heat(), "no NaN heat allowed");
1013   // Equal heat.  Break the tie some other way.
1014   if (!this->call() || !that->call())  return (address)this > (address)that;
1015   return this->call()->_idx > that->call()->_idx;
1016 }
1017 
1018 //#define UNINIT_NEXT ((WarmCallInfo*)badAddress)
1019 #define UNINIT_NEXT ((WarmCallInfo*)NULL)
1020 
1021 WarmCallInfo* WarmCallInfo::insert_into(WarmCallInfo* head) {
1022   assert(next() == UNINIT_NEXT, "not yet on any list");
1023   WarmCallInfo* prev_p = NULL;
1024   WarmCallInfo* next_p = head;
1025   while (next_p != NULL && next_p->warmer_than(this)) {
1026     prev_p = next_p;
1027     next_p = prev_p->next();
1028   }
1029   // Install this between prev_p and next_p.
1030   this->set_next(next_p);
1031   if (prev_p == NULL)
1032     head = this;
1033   else
1034     prev_p->set_next(this);
1035   return head;
1036 }
1037 
1038 WarmCallInfo* WarmCallInfo::remove_from(WarmCallInfo* head) {
1039   WarmCallInfo* prev_p = NULL;
1040   WarmCallInfo* next_p = head;
1041   while (next_p != this) {
1042     assert(next_p != NULL, "this must be in the list somewhere");
1043     prev_p = next_p;
1044     next_p = prev_p->next();
1045   }
1046   next_p = this->next();
1047   debug_only(this->set_next(UNINIT_NEXT));
1048   // Remove this from between prev_p and next_p.
1049   if (prev_p == NULL)
1050     head = next_p;
1051   else
1052     prev_p->set_next(next_p);
1053   return head;
1054 }
1055 
1056 WarmCallInfo WarmCallInfo::_always_hot(WarmCallInfo::MAX_VALUE(), WarmCallInfo::MAX_VALUE(),
1057                                        WarmCallInfo::MIN_VALUE(), WarmCallInfo::MIN_VALUE());
1058 WarmCallInfo WarmCallInfo::_always_cold(WarmCallInfo::MIN_VALUE(), WarmCallInfo::MIN_VALUE(),
1059                                         WarmCallInfo::MAX_VALUE(), WarmCallInfo::MAX_VALUE());
1060 
1061 WarmCallInfo* WarmCallInfo::always_hot() {
1062   assert(_always_hot.is_hot(), "must always be hot");
1063   return &_always_hot;
1064 }
1065 
1066 WarmCallInfo* WarmCallInfo::always_cold() {
1067   assert(_always_cold.is_cold(), "must always be cold");
1068   return &_always_cold;
1069 }
1070 
1071 
1072 #ifndef PRODUCT
1073 
1074 void WarmCallInfo::print() const {
1075   tty->print("%s : C=%6.1f P=%6.1f W=%6.1f S=%6.1f H=%6.1f -> %p",
1076              is_cold() ? "cold" : is_hot() ? "hot " : "warm",
1077              count(), profit(), work(), size(), compute_heat(), next());
1078   tty->cr();
1079   if (call() != NULL)  call()->dump();
1080 }
1081 
1082 void print_wci(WarmCallInfo* ci) {
1083   ci->print();
1084 }
1085 
1086 void WarmCallInfo::print_all() const {
1087   for (const WarmCallInfo* p = this; p != NULL; p = p->next())
1088     p->print();
1089 }
1090 
1091 int WarmCallInfo::count_all() const {
1092   int cnt = 0;
1093   for (const WarmCallInfo* p = this; p != NULL; p = p->next())
1094     cnt++;
1095   return cnt;
1096 }
1097 
1098 #endif //PRODUCT