1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "interpreter/interpreterRuntime.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "prims/methodHandles.hpp"
  30 
  31 #define __ _masm->
  32 
  33 #ifdef PRODUCT
  34 #define BLOCK_COMMENT(str) /* nothing */
  35 #else
  36 #define BLOCK_COMMENT(str) __ block_comment(str)
  37 #endif
  38 
  39 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  40 
  41 // Workaround for C++ overloading nastiness on '0' for RegisterOrConstant.
  42 static RegisterOrConstant constant(int value) {
  43   return RegisterOrConstant(value);
  44 }
  45 
  46 address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
  47                                                 address interpreted_entry) {
  48   // Just before the actual machine code entry point, allocate space
  49   // for a MethodHandleEntry::Data record, so that we can manage everything
  50   // from one base pointer.
  51   __ align(wordSize);
  52   address target = __ pc() + sizeof(Data);
  53   while (__ pc() < target) {
  54     __ nop();
  55     __ align(wordSize);
  56   }
  57 
  58   MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
  59   me->set_end_address(__ pc());         // set a temporary end_address
  60   me->set_from_interpreted_entry(interpreted_entry);
  61   me->set_type_checking_entry(NULL);
  62 
  63   return (address) me;
  64 }
  65 
  66 MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
  67                                                 address start_addr) {
  68   MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
  69   assert(me->end_address() == start_addr, "valid ME");
  70 
  71   // Fill in the real end_address:
  72   __ align(wordSize);
  73   me->set_end_address(__ pc());
  74 
  75   return me;
  76 }
  77 
  78 // stack walking support
  79 
  80 frame MethodHandles::ricochet_frame_sender(const frame& fr, RegisterMap *map) {
  81   RicochetFrame* f = RicochetFrame::from_frame(fr);
  82   if (map->update_map())
  83     frame::update_map_with_saved_link(map, &f->_sender_link);
  84   return frame(f->extended_sender_sp(), f->exact_sender_sp(), f->sender_link(), f->sender_pc());
  85 }
  86 
  87 void MethodHandles::ricochet_frame_oops_do(const frame& fr, OopClosure* blk, const RegisterMap* reg_map) {
  88   RicochetFrame* f = RicochetFrame::from_frame(fr);
  89 
  90   // pick up the argument type descriptor:
  91   Thread* thread = Thread::current();
  92   Handle cookie(thread, f->compute_saved_args_layout(true, true));
  93 
  94   // process fixed part
  95   blk->do_oop((oop*)f->saved_target_addr());
  96   blk->do_oop((oop*)f->saved_args_layout_addr());
  97 
  98   // process variable arguments:
  99   if (cookie.is_null())  return;  // no arguments to describe
 100 
 101   // the cookie is actually the invokeExact method for my target
 102   // his argument signature is what I'm interested in
 103   assert(cookie->is_method(), "");
 104   methodHandle invoker(thread, methodOop(cookie()));
 105   assert(invoker->name() == vmSymbols::invokeExact_name(), "must be this kind of method");
 106   assert(!invoker->is_static(), "must have MH argument");
 107   int slot_count = invoker->size_of_parameters();
 108   assert(slot_count >= 1, "must include 'this'");
 109   intptr_t* base = f->saved_args_base();
 110   intptr_t* retval = NULL;
 111   if (f->has_return_value_slot())
 112     retval = f->return_value_slot_addr();
 113   int slot_num = slot_count;
 114   intptr_t* loc = &base[slot_num -= 1];
 115   //blk->do_oop((oop*) loc);   // original target, which is irrelevant
 116   int arg_num = 0;
 117   for (SignatureStream ss(invoker->signature()); !ss.is_done(); ss.next()) {
 118     if (ss.at_return_type())  continue;
 119     BasicType ptype = ss.type();
 120     if (ptype == T_ARRAY)  ptype = T_OBJECT; // fold all refs to T_OBJECT
 121     assert(ptype >= T_BOOLEAN && ptype <= T_OBJECT, "not array or void");
 122     loc = &base[slot_num -= type2size[ptype]];
 123     bool is_oop = (ptype == T_OBJECT && loc != retval);
 124     if (is_oop)  blk->do_oop((oop*)loc);
 125     arg_num += 1;
 126   }
 127   assert(slot_num == 0, "must have processed all the arguments");
 128 }
 129 
 130 oop MethodHandles::RicochetFrame::compute_saved_args_layout(bool read_cache, bool write_cache) {
 131   oop cookie = NULL;
 132   if (read_cache) {
 133     cookie = saved_args_layout();
 134     if (cookie != NULL)  return cookie;
 135   }
 136   oop target = saved_target();
 137   oop mtype  = java_lang_invoke_MethodHandle::type(target);
 138   oop mtform = java_lang_invoke_MethodType::form(mtype);
 139   cookie = java_lang_invoke_MethodTypeForm::vmlayout(mtform);
 140   if (write_cache)  {
 141     (*saved_args_layout_addr()) = cookie;
 142   }
 143   return cookie;
 144 }
 145 
 146 void MethodHandles::RicochetFrame::generate_ricochet_blob(MacroAssembler* _masm,
 147                                                           // output params:
 148                                                           int* bounce_offset,
 149                                                           int* exception_offset,
 150                                                           int* frame_size_in_words) {
 151   (*frame_size_in_words) = RicochetFrame::frame_size_in_bytes() / wordSize;
 152 
 153   address start = __ pc();
 154 
 155 #ifdef ASSERT
 156   __ hlt(); __ hlt(); __ hlt();
 157   // here's a hint of something special:
 158   __ push(MAGIC_NUMBER_1);
 159   __ push(MAGIC_NUMBER_2);
 160 #endif //ASSERT
 161   __ hlt();  // not reached
 162 
 163   // A return PC has just been popped from the stack.
 164   // Return values are in registers.
 165   // The ebp points into the RicochetFrame, which contains
 166   // a cleanup continuation we must return to.
 167 
 168   (*bounce_offset) = __ pc() - start;
 169   BLOCK_COMMENT("ricochet_blob.bounce");
 170 
 171   if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
 172   trace_method_handle(_masm, "return/ricochet_blob.bounce");
 173 
 174   __ jmp(frame_address(continuation_offset_in_bytes()));
 175   __ hlt();
 176   DEBUG_ONLY(__ push(MAGIC_NUMBER_2));
 177 
 178   (*exception_offset) = __ pc() - start;
 179   BLOCK_COMMENT("ricochet_blob.exception");
 180 
 181   // compare this to Interpreter::rethrow_exception_entry, which is parallel code
 182   // for example, see TemplateInterpreterGenerator::generate_throw_exception
 183   // Live registers in:
 184   //   rax: exception
 185   //   rdx: return address/pc that threw exception (ignored, always equal to bounce addr)
 186   __ verify_oop(rax);
 187 
 188   // no need to empty_FPU_stack or reinit_heapbase, since caller frame will do the same if needed
 189 
 190   // Take down the frame.
 191 
 192   // Cf. InterpreterMacroAssembler::remove_activation.
 193   leave_ricochet_frame(_masm, /*rcx_recv=*/ noreg,
 194                        saved_last_sp_register(),
 195                        /*sender_pc_reg=*/ rdx);
 196 
 197   // In between activations - previous activation type unknown yet
 198   // compute continuation point - the continuation point expects the
 199   // following registers set up:
 200   //
 201   // rax: exception
 202   // rdx: return address/pc that threw exception
 203   // rsp: expression stack of caller
 204   // rbp: ebp of caller
 205   __ push(rax);                                  // save exception
 206   __ push(rdx);                                  // save return address
 207   Register thread_reg = LP64_ONLY(r15_thread) NOT_LP64(rdi);
 208   NOT_LP64(__ get_thread(thread_reg));
 209   __ call_VM_leaf(CAST_FROM_FN_PTR(address,
 210                                    SharedRuntime::exception_handler_for_return_address),
 211                   thread_reg, rdx);
 212   __ mov(rbx, rax);                              // save exception handler
 213   __ pop(rdx);                                   // restore return address
 214   __ pop(rax);                                   // restore exception
 215   __ jmp(rbx);                                   // jump to exception
 216                                                  // handler of caller
 217 }
 218 
 219 void MethodHandles::RicochetFrame::enter_ricochet_frame(MacroAssembler* _masm,
 220                                                         Register rcx_recv,
 221                                                         Register rax_argv,
 222                                                         address return_handler,
 223                                                         Register rbx_temp) {
 224   const Register saved_last_sp = saved_last_sp_register();
 225   Address rcx_mh_vmtarget(    rcx_recv, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes() );
 226   Address rcx_amh_conversion( rcx_recv, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes() );
 227 
 228   // Push the RicochetFrame a word at a time.
 229   // This creates something similar to an interpreter frame.
 230   // Cf. TemplateInterpreterGenerator::generate_fixed_frame.
 231   BLOCK_COMMENT("push RicochetFrame {");
 232   DEBUG_ONLY(int rfo = (int) sizeof(RicochetFrame));
 233   assert((rfo -= wordSize) == RicochetFrame::sender_pc_offset_in_bytes(), "");
 234 #define RF_FIELD(push_value, name)                                      \
 235   { push_value;                                                         \
 236     assert((rfo -= wordSize) == RicochetFrame::name##_offset_in_bytes(), ""); }
 237   RF_FIELD(__ push(rbp),                   sender_link);
 238   RF_FIELD(__ push(saved_last_sp),         exact_sender_sp);  // rsi/r13
 239   RF_FIELD(__ pushptr(rcx_amh_conversion), conversion);
 240   RF_FIELD(__ push(rax_argv),              saved_args_base);   // can be updated if args are shifted
 241   RF_FIELD(__ push((int32_t) NULL_WORD),   saved_args_layout); // cache for GC layout cookie
 242   if (UseCompressedOops) {
 243     __ load_heap_oop(rbx_temp, rcx_mh_vmtarget);
 244     RF_FIELD(__ push(rbx_temp),            saved_target);
 245   } else {
 246     RF_FIELD(__ pushptr(rcx_mh_vmtarget),  saved_target);
 247   }
 248   __ lea(rbx_temp, ExternalAddress(return_handler));
 249   RF_FIELD(__ push(rbx_temp),              continuation);
 250 #undef RF_FIELD
 251   assert(rfo == 0, "fully initialized the RicochetFrame");
 252   // compute new frame pointer:
 253   __ lea(rbp, Address(rsp, RicochetFrame::sender_link_offset_in_bytes()));
 254   // Push guard word #1 in debug mode.
 255   DEBUG_ONLY(__ push((int32_t) RicochetFrame::MAGIC_NUMBER_1));
 256   // For debugging, leave behind an indication of which stub built this frame.
 257   DEBUG_ONLY({ Label L; __ call(L, relocInfo::none); __ bind(L); });
 258   BLOCK_COMMENT("} RicochetFrame");
 259 }
 260 
 261 void MethodHandles::RicochetFrame::leave_ricochet_frame(MacroAssembler* _masm,
 262                                                         Register rcx_recv,
 263                                                         Register new_sp_reg,
 264                                                         Register sender_pc_reg) {
 265   assert_different_registers(rcx_recv, new_sp_reg, sender_pc_reg);
 266   const Register saved_last_sp = saved_last_sp_register();
 267   // Take down the frame.
 268   // Cf. InterpreterMacroAssembler::remove_activation.
 269   BLOCK_COMMENT("end_ricochet_frame {");
 270   // TO DO: If (exact_sender_sp - extended_sender_sp) > THRESH, compact the frame down.
 271   // This will keep stack in bounds even with unlimited tailcalls, each with an adapter.
 272   if (rcx_recv->is_valid())
 273     __ movptr(rcx_recv,    RicochetFrame::frame_address(RicochetFrame::saved_target_offset_in_bytes()));
 274   __ movptr(sender_pc_reg, RicochetFrame::frame_address(RicochetFrame::sender_pc_offset_in_bytes()));
 275   __ movptr(saved_last_sp, RicochetFrame::frame_address(RicochetFrame::exact_sender_sp_offset_in_bytes()));
 276   __ movptr(rbp,           RicochetFrame::frame_address(RicochetFrame::sender_link_offset_in_bytes()));
 277   __ mov(rsp, new_sp_reg);
 278   BLOCK_COMMENT("} end_ricochet_frame");
 279 }
 280 
 281 // Emit code to verify that RBP is pointing at a valid ricochet frame.
 282 #ifndef PRODUCT
 283 enum {
 284   ARG_LIMIT = 255, SLOP = 4,
 285   // use this parameter for checking for garbage stack movements:
 286   UNREASONABLE_STACK_MOVE = (ARG_LIMIT + SLOP)
 287   // the slop defends against false alarms due to fencepost errors
 288 };
 289 #endif
 290 
 291 #ifdef ASSERT
 292 void MethodHandles::RicochetFrame::verify_clean(MacroAssembler* _masm) {
 293   // The stack should look like this:
 294   //    ... keep1 | dest=42 | keep2 | RF | magic | handler | magic | recursive args |
 295   // Check various invariants.
 296   verify_offsets();
 297 
 298   Register rdi_temp = rdi;
 299   Register rcx_temp = rcx;
 300   { __ push(rdi_temp); __ push(rcx_temp); }
 301 #define UNPUSH_TEMPS \
 302   { __ pop(rcx_temp);  __ pop(rdi_temp); }
 303 
 304   Address magic_number_1_addr  = RicochetFrame::frame_address(RicochetFrame::magic_number_1_offset_in_bytes());
 305   Address magic_number_2_addr  = RicochetFrame::frame_address(RicochetFrame::magic_number_2_offset_in_bytes());
 306   Address continuation_addr    = RicochetFrame::frame_address(RicochetFrame::continuation_offset_in_bytes());
 307   Address conversion_addr      = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
 308   Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
 309 
 310   Label L_bad, L_ok;
 311   BLOCK_COMMENT("verify_clean {");
 312   // Magic numbers must check out:
 313   __ cmpptr(magic_number_1_addr, (int32_t) MAGIC_NUMBER_1);
 314   __ jcc(Assembler::notEqual, L_bad);
 315   __ cmpptr(magic_number_2_addr, (int32_t) MAGIC_NUMBER_2);
 316   __ jcc(Assembler::notEqual, L_bad);
 317 
 318   // Arguments pointer must look reasonable:
 319   __ movptr(rcx_temp, saved_args_base_addr);
 320   __ cmpptr(rcx_temp, rbp);
 321   __ jcc(Assembler::below, L_bad);
 322   __ subptr(rcx_temp, UNREASONABLE_STACK_MOVE * Interpreter::stackElementSize);
 323   __ cmpptr(rcx_temp, rbp);
 324   __ jcc(Assembler::above, L_bad);
 325 
 326   load_conversion_dest_type(_masm, rdi_temp, conversion_addr);
 327   __ cmpl(rdi_temp, T_VOID);
 328   __ jcc(Assembler::equal, L_ok);
 329   __ movptr(rcx_temp, saved_args_base_addr);
 330   load_conversion_vminfo(_masm, rdi_temp, conversion_addr);
 331   __ cmpptr(Address(rcx_temp, rdi_temp, Interpreter::stackElementScale()),
 332             (int32_t) RETURN_VALUE_PLACEHOLDER);
 333   __ jcc(Assembler::equal, L_ok);
 334   __ BIND(L_bad);
 335   UNPUSH_TEMPS;
 336   __ stop("damaged ricochet frame");
 337   __ BIND(L_ok);
 338   UNPUSH_TEMPS;
 339   BLOCK_COMMENT("} verify_clean");
 340 
 341 #undef UNPUSH_TEMPS
 342 
 343 }
 344 #endif //ASSERT
 345 
 346 void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg) {
 347   if (VerifyMethodHandles)
 348     verify_klass(_masm, klass_reg, SystemDictionaryHandles::Class_klass(),
 349                  "AMH argument is a Class");
 350   __ load_heap_oop(klass_reg, Address(klass_reg, java_lang_Class::klass_offset_in_bytes()));
 351 }
 352 
 353 void MethodHandles::load_conversion_vminfo(MacroAssembler* _masm, Register reg, Address conversion_field_addr) {
 354   int bits   = BitsPerByte;
 355   int offset = (CONV_VMINFO_SHIFT / bits);
 356   int shift  = (CONV_VMINFO_SHIFT % bits);
 357   __ load_unsigned_byte(reg, conversion_field_addr.plus_disp(offset));
 358   assert(CONV_VMINFO_MASK == right_n_bits(bits - shift), "else change type of previous load");
 359   assert(shift == 0, "no shift needed");
 360 }
 361 
 362 void MethodHandles::load_conversion_dest_type(MacroAssembler* _masm, Register reg, Address conversion_field_addr) {
 363   int bits   = BitsPerByte;
 364   int offset = (CONV_DEST_TYPE_SHIFT / bits);
 365   int shift  = (CONV_DEST_TYPE_SHIFT % bits);
 366   __ load_unsigned_byte(reg, conversion_field_addr.plus_disp(offset));
 367   assert(CONV_TYPE_MASK == right_n_bits(bits - shift), "else change type of previous load");
 368   __ shrl(reg, shift);
 369   DEBUG_ONLY(int conv_type_bits = (int) exact_log2(CONV_TYPE_MASK+1));
 370   assert((shift + conv_type_bits) == bits, "left justified in byte");
 371 }
 372 
 373 void MethodHandles::load_stack_move(MacroAssembler* _masm,
 374                                     Register rdi_stack_move,
 375                                     Register rcx_amh,
 376                                     bool might_be_negative) {
 377   BLOCK_COMMENT("load_stack_move {");
 378   Address rcx_amh_conversion(rcx_amh, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes());
 379   __ movl(rdi_stack_move, rcx_amh_conversion);
 380   __ sarl(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
 381 #ifdef _LP64
 382   if (might_be_negative) {
 383     // clean high bits of stack motion register (was loaded as an int)
 384     __ movslq(rdi_stack_move, rdi_stack_move);
 385   }
 386 #endif //_LP64
 387 #ifdef ASSERT
 388   if (VerifyMethodHandles) {
 389     Label L_ok, L_bad;
 390     int32_t stack_move_limit = 0x4000;  // extra-large
 391     __ cmpptr(rdi_stack_move, stack_move_limit);
 392     __ jcc(Assembler::greaterEqual, L_bad);
 393     __ cmpptr(rdi_stack_move, -stack_move_limit);
 394     __ jcc(Assembler::greater, L_ok);
 395     __ bind(L_bad);
 396     __ stop("load_stack_move of garbage value");
 397     __ BIND(L_ok);
 398   }
 399 #endif
 400   BLOCK_COMMENT("} load_stack_move");
 401 }
 402 
 403 #ifdef ASSERT
 404 void MethodHandles::RicochetFrame::verify_offsets() {
 405   // Check compatibility of this struct with the more generally used offsets of class frame:
 406   int ebp_off = sender_link_offset_in_bytes();  // offset from struct base to local rbp value
 407   assert(ebp_off + wordSize*frame::interpreter_frame_method_offset      == saved_args_base_offset_in_bytes(), "");
 408   assert(ebp_off + wordSize*frame::interpreter_frame_last_sp_offset     == conversion_offset_in_bytes(), "");
 409   assert(ebp_off + wordSize*frame::interpreter_frame_sender_sp_offset   == exact_sender_sp_offset_in_bytes(), "");
 410   // These last two have to be exact:
 411   assert(ebp_off + wordSize*frame::link_offset                          == sender_link_offset_in_bytes(), "");
 412   assert(ebp_off + wordSize*frame::return_addr_offset                   == sender_pc_offset_in_bytes(), "");
 413 }
 414 
 415 void MethodHandles::RicochetFrame::verify() const {
 416   verify_offsets();
 417   assert(magic_number_1() == MAGIC_NUMBER_1, err_msg(PTR_FORMAT " == " PTR_FORMAT, magic_number_1(), MAGIC_NUMBER_1));
 418   assert(magic_number_2() == MAGIC_NUMBER_2, err_msg(PTR_FORMAT " == " PTR_FORMAT, magic_number_2(), MAGIC_NUMBER_2));
 419   if (!Universe::heap()->is_gc_active()) {
 420     if (saved_args_layout() != NULL) {
 421       assert(saved_args_layout()->is_method(), "must be valid oop");
 422     }
 423     if (saved_target() != NULL) {
 424       assert(java_lang_invoke_MethodHandle::is_instance(saved_target()), "checking frame value");
 425     }
 426   }
 427   int conv_op = adapter_conversion_op(conversion());
 428   assert(conv_op == java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS ||
 429          conv_op == java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS ||
 430          conv_op == java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF,
 431          "must be a sane conversion");
 432   if (has_return_value_slot()) {
 433     assert(*return_value_slot_addr() == RETURN_VALUE_PLACEHOLDER, "");
 434   }
 435 }
 436 #endif //PRODUCT
 437 
 438 #ifdef ASSERT
 439 void MethodHandles::verify_argslot(MacroAssembler* _masm,
 440                                    Register argslot_reg,
 441                                    const char* error_message) {
 442   // Verify that argslot lies within (rsp, rbp].
 443   Label L_ok, L_bad;
 444   BLOCK_COMMENT("verify_argslot {");
 445   __ cmpptr(argslot_reg, rbp);
 446   __ jccb(Assembler::above, L_bad);
 447   __ cmpptr(rsp, argslot_reg);
 448   __ jccb(Assembler::below, L_ok);
 449   __ bind(L_bad);
 450   __ stop(error_message);
 451   __ BIND(L_ok);
 452   BLOCK_COMMENT("} verify_argslot");
 453 }
 454 
 455 void MethodHandles::verify_argslots(MacroAssembler* _masm,
 456                                     RegisterOrConstant arg_slots,
 457                                     Register arg_slot_base_reg,
 458                                     bool negate_argslots,
 459                                     const char* error_message) {
 460   // Verify that [argslot..argslot+size) lies within (rsp, rbp).
 461   Label L_ok, L_bad;
 462   Register rdi_temp = rdi;
 463   BLOCK_COMMENT("verify_argslots {");
 464   __ push(rdi_temp);
 465   if (negate_argslots) {
 466     if (arg_slots.is_constant()) {
 467       arg_slots = -1 * arg_slots.as_constant();
 468     } else {
 469       __ movptr(rdi_temp, arg_slots);
 470       __ negptr(rdi_temp);
 471       arg_slots = rdi_temp;
 472     }
 473   }
 474   __ lea(rdi_temp, Address(arg_slot_base_reg, arg_slots, Interpreter::stackElementScale()));
 475   __ cmpptr(rdi_temp, rbp);
 476   __ pop(rdi_temp);
 477   __ jcc(Assembler::above, L_bad);
 478   __ cmpptr(rsp, arg_slot_base_reg);
 479   __ jcc(Assembler::below, L_ok);
 480   __ bind(L_bad);
 481   __ stop(error_message);
 482   __ BIND(L_ok);
 483   BLOCK_COMMENT("} verify_argslots");
 484 }
 485 
 486 // Make sure that arg_slots has the same sign as the given direction.
 487 // If (and only if) arg_slots is a assembly-time constant, also allow it to be zero.
 488 void MethodHandles::verify_stack_move(MacroAssembler* _masm,
 489                                       RegisterOrConstant arg_slots, int direction) {
 490   bool allow_zero = arg_slots.is_constant();
 491   if (direction == 0) { direction = +1; allow_zero = true; }
 492   assert(stack_move_unit() == -1, "else add extra checks here");
 493   if (arg_slots.is_register()) {
 494     Label L_ok, L_bad;
 495     BLOCK_COMMENT("verify_stack_move {");
 496     // testl(arg_slots.as_register(), -stack_move_unit() - 1);  // no need
 497     // jcc(Assembler::notZero, L_bad);
 498     __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
 499     if (direction > 0) {
 500       __ jcc(allow_zero ? Assembler::less : Assembler::lessEqual, L_bad);
 501       __ cmpptr(arg_slots.as_register(), (int32_t) UNREASONABLE_STACK_MOVE);
 502       __ jcc(Assembler::less, L_ok);
 503     } else {
 504       __ jcc(allow_zero ? Assembler::greater : Assembler::greaterEqual, L_bad);
 505       __ cmpptr(arg_slots.as_register(), (int32_t) -UNREASONABLE_STACK_MOVE);
 506       __ jcc(Assembler::greater, L_ok);
 507     }
 508     __ bind(L_bad);
 509     if (direction > 0)
 510       __ stop("assert arg_slots > 0");
 511     else
 512       __ stop("assert arg_slots < 0");
 513     __ BIND(L_ok);
 514     BLOCK_COMMENT("} verify_stack_move");
 515   } else {
 516     intptr_t size = arg_slots.as_constant();
 517     if (direction < 0)  size = -size;
 518     assert(size >= 0, "correct direction of constant move");
 519     assert(size < UNREASONABLE_STACK_MOVE, "reasonable size of constant move");
 520   }
 521 }
 522 
 523 void MethodHandles::verify_klass(MacroAssembler* _masm,
 524                                  Register obj, KlassHandle klass,
 525                                  const char* error_message) {
 526   oop* klass_addr = klass.raw_value();
 527   assert(klass_addr >= SystemDictionaryHandles::Object_klass().raw_value() &&
 528          klass_addr <= SystemDictionaryHandles::Long_klass().raw_value(),
 529          "must be one of the SystemDictionaryHandles");
 530   Register temp = rdi;
 531   Label L_ok, L_bad;
 532   BLOCK_COMMENT("verify_klass {");
 533   __ verify_oop(obj);
 534   __ testptr(obj, obj);
 535   __ jcc(Assembler::zero, L_bad);
 536   __ push(temp);
 537   __ load_klass(temp, obj);
 538   __ cmpptr(temp, ExternalAddress((address) klass_addr));
 539   __ jcc(Assembler::equal, L_ok);
 540   intptr_t super_check_offset = klass->super_check_offset();
 541   __ movptr(temp, Address(temp, super_check_offset));
 542   __ cmpptr(temp, ExternalAddress((address) klass_addr));
 543   __ jcc(Assembler::equal, L_ok);
 544   __ pop(temp);
 545   __ bind(L_bad);
 546   __ stop(error_message);
 547   __ BIND(L_ok);
 548   __ pop(temp);
 549   BLOCK_COMMENT("} verify_klass");
 550 }
 551 #endif //ASSERT
 552 
 553 void MethodHandles::jump_from_method_handle(MacroAssembler* _masm, Register method, Register temp) {
 554   if (JvmtiExport::can_post_interpreter_events()) {
 555     Label run_compiled_code;
 556     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 557     // compiled code in threads for which the event is enabled.  Check here for
 558     // interp_only_mode if these events CAN be enabled.
 559 #ifdef _LP64
 560     Register rthread = r15_thread;
 561 #else
 562     Register rthread = temp;
 563     __ get_thread(rthread);
 564 #endif
 565     // interp_only is an int, on little endian it is sufficient to test the byte only
 566     // Is a cmpl faster?
 567     __ cmpb(Address(rthread, JavaThread::interp_only_mode_offset()), 0);
 568     __ jccb(Assembler::zero, run_compiled_code);
 569     __ jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
 570     __ bind(run_compiled_code);
 571   }
 572   __ jmp(Address(method, methodOopDesc::from_interpreted_offset()));
 573 }
 574 
 575 // Code generation
 576 address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
 577   // rbx: methodOop
 578   // rcx: receiver method handle (must load from sp[MethodTypeForm.vmslots])
 579   // rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
 580   // rdx, rdi: garbage temp, blown away
 581 
 582   Register rbx_method = rbx;
 583   Register rcx_recv   = rcx;
 584   Register rax_mtype  = rax;
 585   Register rdx_temp   = rdx;
 586   Register rdi_temp   = rdi;
 587 
 588   // emit WrongMethodType path first, to enable jccb back-branch from main path
 589   Label wrong_method_type;
 590   __ bind(wrong_method_type);
 591   Label invoke_generic_slow_path, invoke_exact_error_path;
 592   assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");;
 593   __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeExact);
 594   __ jcc(Assembler::notEqual, invoke_generic_slow_path);
 595   __ jmp(invoke_exact_error_path);
 596 
 597   // here's where control starts out:
 598   __ align(CodeEntryAlignment);
 599   address entry_point = __ pc();
 600 
 601   // fetch the MethodType from the method handle into rax (the 'check' register)
 602   // FIXME: Interpreter should transmit pre-popped stack pointer, to locate base of arg list.
 603   // This would simplify several touchy bits of code.
 604   // See 6984712: JSR 292 method handle calls need a clean argument base pointer
 605   {
 606     Register tem = rbx_method;
 607     for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
 608       __ movptr(rax_mtype, Address(tem, *pchase));
 609       tem = rax_mtype;          // in case there is another indirection
 610     }
 611   }
 612 
 613   // given the MethodType, find out where the MH argument is buried
 614   __ load_heap_oop(rdx_temp, Address(rax_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, rdi_temp)));
 615   Register rdx_vmslots = rdx_temp;
 616   __ movl(rdx_vmslots, Address(rdx_temp, __ delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, rdi_temp)));
 617   Address mh_receiver_slot_addr = __ argument_address(rdx_vmslots);
 618   __ movptr(rcx_recv, mh_receiver_slot_addr);
 619 
 620   trace_method_handle(_masm, "invokeExact");
 621 
 622   __ check_method_handle_type(rax_mtype, rcx_recv, rdi_temp, wrong_method_type);
 623 
 624   // Nobody uses the MH receiver slot after this.  Make sure.
 625   DEBUG_ONLY(__ movptr(mh_receiver_slot_addr, (int32_t)0x999999));
 626 
 627   __ jump_to_method_handle_entry(rcx_recv, rdi_temp);
 628 
 629   // error path for invokeExact (only)
 630   __ bind(invoke_exact_error_path);
 631   // ensure that the top of stack is properly aligned.
 632   __ mov(rdi, rsp);
 633   __ andptr(rsp, -StackAlignmentInBytes); // Align the stack for the ABI
 634   __ pushptr(Address(rdi, 0));  // Pick up the return address
 635 
 636   // Stub wants expected type in rax and the actual type in rcx
 637   __ jump(ExternalAddress(StubRoutines::throw_WrongMethodTypeException_entry()));
 638 
 639   // for invokeGeneric (only), apply argument and result conversions on the fly
 640   __ bind(invoke_generic_slow_path);
 641 #ifdef ASSERT
 642   if (VerifyMethodHandles) {
 643     Label L;
 644     __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeGeneric);
 645     __ jcc(Assembler::equal, L);
 646     __ stop("bad methodOop::intrinsic_id");
 647     __ bind(L);
 648   }
 649 #endif //ASSERT
 650   Register rbx_temp = rbx_method;  // don't need it now
 651 
 652   // make room on the stack for another pointer:
 653   Register rcx_argslot = rcx_recv;
 654   __ lea(rcx_argslot, __ argument_address(rdx_vmslots, 1));
 655   insert_arg_slots(_masm, 2 * stack_move_unit(),
 656                    rcx_argslot, rbx_temp, rdx_temp);
 657 
 658   // load up an adapter from the calling type (Java weaves this)
 659   Register rdx_adapter = rdx_temp;
 660   __ load_heap_oop(rdx_temp,    Address(rax_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes,               rdi_temp)));
 661   __ load_heap_oop(rdx_adapter, Address(rdx_temp,  __ delayed_value(java_lang_invoke_MethodTypeForm::genericInvoker_offset_in_bytes, rdi_temp)));
 662   __ verify_oop(rdx_adapter);
 663   __ movptr(Address(rcx_argslot, 1 * Interpreter::stackElementSize), rdx_adapter);
 664   // As a trusted first argument, pass the type being called, so the adapter knows
 665   // the actual types of the arguments and return values.
 666   // (Generic invokers are shared among form-families of method-type.)
 667   __ movptr(Address(rcx_argslot, 0 * Interpreter::stackElementSize), rax_mtype);
 668   // FIXME: assert that rdx_adapter is of the right method-type.
 669   __ mov(rcx, rdx_adapter);
 670   trace_method_handle(_masm, "invokeGeneric");
 671   __ jump_to_method_handle_entry(rcx, rdi_temp);
 672 
 673   return entry_point;
 674 }
 675 
 676 // Helper to insert argument slots into the stack.
 677 // arg_slots must be a multiple of stack_move_unit() and < 0
 678 // rax_argslot is decremented to point to the new (shifted) location of the argslot
 679 // But, rdx_temp ends up holding the original value of rax_argslot.
 680 void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
 681                                      RegisterOrConstant arg_slots,
 682                                      Register rax_argslot,
 683                                      Register rbx_temp, Register rdx_temp) {
 684   // allow constant zero
 685   if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
 686     return;
 687   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
 688                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
 689   if (VerifyMethodHandles)
 690     verify_argslot(_masm, rax_argslot, "insertion point must fall within current frame");
 691   if (VerifyMethodHandles)
 692     verify_stack_move(_masm, arg_slots, -1);
 693 
 694   // Make space on the stack for the inserted argument(s).
 695   // Then pull down everything shallower than rax_argslot.
 696   // The stacked return address gets pulled down with everything else.
 697   // That is, copy [rsp, argslot) downward by -size words.  In pseudo-code:
 698   //   rsp -= size;
 699   //   for (rdx = rsp + size; rdx < argslot; rdx++)
 700   //     rdx[-size] = rdx[0]
 701   //   argslot -= size;
 702   BLOCK_COMMENT("insert_arg_slots {");
 703   __ mov(rdx_temp, rsp);                        // source pointer for copy
 704   __ lea(rsp, Address(rsp, arg_slots, Interpreter::stackElementScale()));
 705   {
 706     Label loop;
 707     __ BIND(loop);
 708     // pull one word down each time through the loop
 709     __ movptr(rbx_temp, Address(rdx_temp, 0));
 710     __ movptr(Address(rdx_temp, arg_slots, Interpreter::stackElementScale()), rbx_temp);
 711     __ addptr(rdx_temp, wordSize);
 712     __ cmpptr(rdx_temp, rax_argslot);
 713     __ jcc(Assembler::below, loop);
 714   }
 715 
 716   // Now move the argslot down, to point to the opened-up space.
 717   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Interpreter::stackElementScale()));
 718   BLOCK_COMMENT("} insert_arg_slots");
 719 }
 720 
 721 // Helper to remove argument slots from the stack.
 722 // arg_slots must be a multiple of stack_move_unit() and > 0
 723 void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
 724                                      RegisterOrConstant arg_slots,
 725                                      Register rax_argslot,
 726                                      Register rbx_temp, Register rdx_temp) {
 727   // allow constant zero
 728   if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
 729     return;
 730   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
 731                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
 732   if (VerifyMethodHandles)
 733     verify_argslots(_masm, arg_slots, rax_argslot, false,
 734                     "deleted argument(s) must fall within current frame");
 735   if (VerifyMethodHandles)
 736     verify_stack_move(_masm, arg_slots, +1);
 737 
 738   BLOCK_COMMENT("remove_arg_slots {");
 739   // Pull up everything shallower than rax_argslot.
 740   // Then remove the excess space on the stack.
 741   // The stacked return address gets pulled up with everything else.
 742   // That is, copy [rsp, argslot) upward by size words.  In pseudo-code:
 743   //   for (rdx = argslot-1; rdx >= rsp; --rdx)
 744   //     rdx[size] = rdx[0]
 745   //   argslot += size;
 746   //   rsp += size;
 747   __ lea(rdx_temp, Address(rax_argslot, -wordSize)); // source pointer for copy
 748   {
 749     Label loop;
 750     __ BIND(loop);
 751     // pull one word up each time through the loop
 752     __ movptr(rbx_temp, Address(rdx_temp, 0));
 753     __ movptr(Address(rdx_temp, arg_slots, Interpreter::stackElementScale()), rbx_temp);
 754     __ addptr(rdx_temp, -wordSize);
 755     __ cmpptr(rdx_temp, rsp);
 756     __ jcc(Assembler::aboveEqual, loop);
 757   }
 758 
 759   // Now move the argslot up, to point to the just-copied block.
 760   __ lea(rsp, Address(rsp, arg_slots, Interpreter::stackElementScale()));
 761   // And adjust the argslot address to point at the deletion point.
 762   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Interpreter::stackElementScale()));
 763   BLOCK_COMMENT("} remove_arg_slots");
 764 }
 765 
 766 // Helper to copy argument slots to the top of the stack.
 767 // The sequence starts with rax_argslot and is counted by slot_count
 768 // slot_count must be a multiple of stack_move_unit() and >= 0
 769 // This function blows the temps but does not change rax_argslot.
 770 void MethodHandles::push_arg_slots(MacroAssembler* _masm,
 771                                    Register rax_argslot,
 772                                    RegisterOrConstant slot_count,
 773                                    int skip_words_count,
 774                                    Register rbx_temp, Register rdx_temp) {
 775   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
 776                              (!slot_count.is_register() ? rbp : slot_count.as_register()),
 777                              rsp);
 778   assert(Interpreter::stackElementSize == wordSize, "else change this code");
 779 
 780   if (VerifyMethodHandles)
 781     verify_stack_move(_masm, slot_count, 0);
 782 
 783   // allow constant zero
 784   if (slot_count.is_constant() && slot_count.as_constant() == 0)
 785     return;
 786 
 787   BLOCK_COMMENT("push_arg_slots {");
 788 
 789   Register rbx_top = rbx_temp;
 790 
 791   // There is at most 1 word to carry down with the TOS.
 792   switch (skip_words_count) {
 793   case 1: __ pop(rdx_temp); break;
 794   case 0:                   break;
 795   default: ShouldNotReachHere();
 796   }
 797 
 798   if (slot_count.is_constant()) {
 799     for (int i = slot_count.as_constant() - 1; i >= 0; i--) {
 800       __ pushptr(Address(rax_argslot, i * wordSize));
 801     }
 802   } else {
 803     Label L_plural, L_loop, L_break;
 804     // Emit code to dynamically check for the common cases, zero and one slot.
 805     __ cmpl(slot_count.as_register(), (int32_t) 1);
 806     __ jccb(Assembler::greater, L_plural);
 807     __ jccb(Assembler::less, L_break);
 808     __ pushptr(Address(rax_argslot, 0));
 809     __ jmpb(L_break);
 810     __ BIND(L_plural);
 811 
 812     // Loop for 2 or more:
 813     //   rbx = &rax[slot_count]
 814     //   while (rbx > rax)  *(--rsp) = *(--rbx)
 815     __ lea(rbx_top, Address(rax_argslot, slot_count, Address::times_ptr));
 816     __ BIND(L_loop);
 817     __ subptr(rbx_top, wordSize);
 818     __ pushptr(Address(rbx_top, 0));
 819     __ cmpptr(rbx_top, rax_argslot);
 820     __ jcc(Assembler::above, L_loop);
 821     __ bind(L_break);
 822   }
 823   switch (skip_words_count) {
 824   case 1: __ push(rdx_temp); break;
 825   case 0:                    break;
 826   default: ShouldNotReachHere();
 827   }
 828   BLOCK_COMMENT("} push_arg_slots");
 829 }
 830 
 831 // in-place movement; no change to rsp
 832 // blows rax_temp, rdx_temp
 833 void MethodHandles::move_arg_slots_up(MacroAssembler* _masm,
 834                                       Register rbx_bottom,  // invariant
 835                                       Address  top_addr,     // can use rax_temp
 836                                       RegisterOrConstant positive_distance_in_slots,
 837                                       Register rax_temp, Register rdx_temp) {
 838   BLOCK_COMMENT("move_arg_slots_up {");
 839   assert_different_registers(rbx_bottom,
 840                              rax_temp, rdx_temp,
 841                              positive_distance_in_slots.register_or_noreg());
 842   Label L_loop, L_break;
 843   Register rax_top = rax_temp;
 844   if (!top_addr.is_same_address(Address(rax_top, 0)))
 845     __ lea(rax_top, top_addr);
 846   // Detect empty (or broken) loop:
 847 #ifdef ASSERT
 848   if (VerifyMethodHandles) {
 849     // Verify that &bottom < &top (non-empty interval)
 850     Label L_ok, L_bad;
 851     if (positive_distance_in_slots.is_register()) {
 852       __ cmpptr(positive_distance_in_slots.as_register(), (int32_t) 0);
 853       __ jcc(Assembler::lessEqual, L_bad);
 854     }
 855     __ cmpptr(rbx_bottom, rax_top);
 856     __ jcc(Assembler::below, L_ok);
 857     __ bind(L_bad);
 858     __ stop("valid bounds (copy up)");
 859     __ BIND(L_ok);
 860   }
 861 #endif
 862   __ cmpptr(rbx_bottom, rax_top);
 863   __ jccb(Assembler::aboveEqual, L_break);
 864   // work rax down to rbx, copying contiguous data upwards
 865   // In pseudo-code:
 866   //   [rbx, rax) = &[bottom, top)
 867   //   while (--rax >= rbx) *(rax + distance) = *(rax + 0), rax--;
 868   __ BIND(L_loop);
 869   __ subptr(rax_top, wordSize);
 870   __ movptr(rdx_temp, Address(rax_top, 0));
 871   __ movptr(          Address(rax_top, positive_distance_in_slots, Address::times_ptr), rdx_temp);
 872   __ cmpptr(rax_top, rbx_bottom);
 873   __ jcc(Assembler::above, L_loop);
 874   assert(Interpreter::stackElementSize == wordSize, "else change loop");
 875   __ bind(L_break);
 876   BLOCK_COMMENT("} move_arg_slots_up");
 877 }
 878 
 879 // in-place movement; no change to rsp
 880 // blows rax_temp, rdx_temp
 881 void MethodHandles::move_arg_slots_down(MacroAssembler* _masm,
 882                                         Address  bottom_addr,  // can use rax_temp
 883                                         Register rbx_top,      // invariant
 884                                         RegisterOrConstant negative_distance_in_slots,
 885                                         Register rax_temp, Register rdx_temp) {
 886   BLOCK_COMMENT("move_arg_slots_down {");
 887   assert_different_registers(rbx_top,
 888                              negative_distance_in_slots.register_or_noreg(),
 889                              rax_temp, rdx_temp);
 890   Label L_loop, L_break;
 891   Register rax_bottom = rax_temp;
 892   if (!bottom_addr.is_same_address(Address(rax_bottom, 0)))
 893     __ lea(rax_bottom, bottom_addr);
 894   // Detect empty (or broken) loop:
 895 #ifdef ASSERT
 896   assert(!negative_distance_in_slots.is_constant() || negative_distance_in_slots.as_constant() < 0, "");
 897   if (VerifyMethodHandles) {
 898     // Verify that &bottom < &top (non-empty interval)
 899     Label L_ok, L_bad;
 900     if (negative_distance_in_slots.is_register()) {
 901       __ cmpptr(negative_distance_in_slots.as_register(), (int32_t) 0);
 902       __ jcc(Assembler::greaterEqual, L_bad);
 903     }
 904     __ cmpptr(rax_bottom, rbx_top);
 905     __ jcc(Assembler::below, L_ok);
 906     __ bind(L_bad);
 907     __ stop("valid bounds (copy down)");
 908     __ BIND(L_ok);
 909   }
 910 #endif
 911   __ cmpptr(rax_bottom, rbx_top);
 912   __ jccb(Assembler::aboveEqual, L_break);
 913   // work rax up to rbx, copying contiguous data downwards
 914   // In pseudo-code:
 915   //   [rax, rbx) = &[bottom, top)
 916   //   while (rax < rbx) *(rax - distance) = *(rax + 0), rax++;
 917   __ BIND(L_loop);
 918   __ movptr(rdx_temp, Address(rax_bottom, 0));
 919   __ movptr(          Address(rax_bottom, negative_distance_in_slots, Address::times_ptr), rdx_temp);
 920   __ addptr(rax_bottom, wordSize);
 921   __ cmpptr(rax_bottom, rbx_top);
 922   __ jcc(Assembler::below, L_loop);
 923   assert(Interpreter::stackElementSize == wordSize, "else change loop");
 924   __ bind(L_break);
 925   BLOCK_COMMENT("} move_arg_slots_down");
 926 }
 927 
 928 // Copy from a field or array element to a stacked argument slot.
 929 // is_element (ignored) says whether caller is loading an array element instead of an instance field.
 930 void MethodHandles::move_typed_arg(MacroAssembler* _masm,
 931                                    BasicType type, bool is_element,
 932                                    Address slot_dest, Address value_src,
 933                                    Register rbx_temp, Register rdx_temp) {
 934   BLOCK_COMMENT(!is_element ? "move_typed_arg {" : "move_typed_arg { (array element)");
 935   if (type == T_OBJECT || type == T_ARRAY) {
 936     __ load_heap_oop(rbx_temp, value_src);
 937     __ movptr(slot_dest, rbx_temp);
 938   } else if (type != T_VOID) {
 939     int  arg_size      = type2aelembytes(type);
 940     bool arg_is_signed = is_signed_subword_type(type);
 941     int  slot_size     = (arg_size > wordSize) ? arg_size : wordSize;
 942     __ load_sized_value(  rdx_temp,  value_src, arg_size, arg_is_signed, rbx_temp);
 943     __ store_sized_value( slot_dest, rdx_temp,  slot_size,               rbx_temp);
 944   }
 945   BLOCK_COMMENT("} move_typed_arg");
 946 }
 947 
 948 void MethodHandles::move_return_value(MacroAssembler* _masm, BasicType type,
 949                                       Address return_slot) {
 950   BLOCK_COMMENT("move_return_value {");
 951   // Old versions of the JVM must clean the FPU stack after every return.
 952 #ifndef _LP64
 953 #ifdef COMPILER2
 954   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
 955   if ((type == T_FLOAT && UseSSE < 1) || (type == T_DOUBLE && UseSSE < 2)) {
 956     for (int i = 1; i < 8; i++) {
 957         __ ffree(i);
 958     }
 959   } else if (UseSSE < 2) {
 960     __ empty_FPU_stack();
 961   }
 962 #endif //COMPILER2
 963 #endif //!_LP64
 964 
 965   // Look at the type and pull the value out of the corresponding register.
 966   if (type == T_VOID) {
 967     // nothing to do
 968   } else if (type == T_OBJECT) {
 969     __ movptr(return_slot, rax);
 970   } else if (type == T_INT || is_subword_type(type)) {
 971     // write the whole word, even if only 32 bits is significant
 972     __ movptr(return_slot, rax);
 973   } else if (type == T_LONG) {
 974     // store the value by parts
 975     // Note: We assume longs are continguous (if misaligned) on the interpreter stack.
 976     __ store_sized_value(return_slot, rax, BytesPerLong, rdx);
 977   } else if (NOT_LP64((type == T_FLOAT  && UseSSE < 1) ||
 978                       (type == T_DOUBLE && UseSSE < 2) ||)
 979              false) {
 980     // Use old x86 FPU registers:
 981     if (type == T_FLOAT)
 982       __ fstp_s(return_slot);
 983     else
 984       __ fstp_d(return_slot);
 985   } else if (type == T_FLOAT) {
 986     __ movflt(return_slot, xmm0);
 987   } else if (type == T_DOUBLE) {
 988     __ movdbl(return_slot, xmm0);
 989   } else {
 990     ShouldNotReachHere();
 991   }
 992   BLOCK_COMMENT("} move_return_value");
 993 }
 994 
 995 #ifndef PRODUCT
 996 #define DESCRIBE_RICOCHET_OFFSET(rf, name) \
 997   values.describe(frame_no, (intptr_t *) (((uintptr_t)rf) + MethodHandles::RicochetFrame::name##_offset_in_bytes()), #name)
 998 
 999 void MethodHandles::RicochetFrame::describe(const frame* fr, FrameValues& values, int frame_no)  {
1000     address bp = (address) fr->fp();
1001     RicochetFrame* rf = (RicochetFrame*)(bp - sender_link_offset_in_bytes());
1002 
1003     // ricochet slots
1004     DESCRIBE_RICOCHET_OFFSET(rf, exact_sender_sp);
1005     DESCRIBE_RICOCHET_OFFSET(rf, conversion);
1006     DESCRIBE_RICOCHET_OFFSET(rf, saved_args_base);
1007     DESCRIBE_RICOCHET_OFFSET(rf, saved_args_layout);
1008     DESCRIBE_RICOCHET_OFFSET(rf, saved_target);
1009     DESCRIBE_RICOCHET_OFFSET(rf, continuation);
1010 
1011     // relevant ricochet targets (in caller frame)
1012     values.describe(-1, rf->saved_args_base(),  err_msg("*saved_args_base for #%d", frame_no));
1013 }
1014 #endif // ASSERT
1015 
1016 #ifndef PRODUCT
1017 extern "C" void print_method_handle(oop mh);
1018 void trace_method_handle_stub(const char* adaptername,
1019                               oop mh,
1020                               intptr_t* saved_regs,
1021                               intptr_t* entry_sp,
1022                               intptr_t* saved_sp,
1023                               intptr_t* saved_bp) {
1024   // called as a leaf from native code: do not block the JVM!
1025   bool has_mh = (strstr(adaptername, "return/") == NULL);  // return adapters don't have rcx_mh
1026 
1027   intptr_t* last_sp = (intptr_t*) saved_bp[frame::interpreter_frame_last_sp_offset];
1028   intptr_t* base_sp = last_sp;
1029   typedef MethodHandles::RicochetFrame RicochetFrame;
1030   RicochetFrame* rfp = (RicochetFrame*)((address)saved_bp - RicochetFrame::sender_link_offset_in_bytes());
1031   if (Universe::heap()->is_in((address) rfp->saved_args_base())) {
1032     // Probably an interpreter frame.
1033     base_sp = (intptr_t*) saved_bp[frame::interpreter_frame_monitor_block_top_offset];
1034   }
1035   intptr_t    mh_reg = (intptr_t)mh;
1036   const char* mh_reg_name = "rcx_mh";
1037   if (!has_mh)  mh_reg_name = "rcx";
1038   tty->print_cr("MH %s %s="PTR_FORMAT" sp=("PTR_FORMAT"+"INTX_FORMAT") stack_size="INTX_FORMAT" bp="PTR_FORMAT,
1039                 adaptername, mh_reg_name, mh_reg,
1040                 (intptr_t)entry_sp, (intptr_t)(saved_sp - entry_sp), (intptr_t)(base_sp - last_sp), (intptr_t)saved_bp);
1041   if (Verbose) {
1042     tty->print(" reg dump: ");
1043     int saved_regs_count = (entry_sp-1) - saved_regs;
1044     // 32 bit: rdi rsi rbp rsp; rbx rdx rcx (*) rax
1045     int i;
1046     for (i = 0; i <= saved_regs_count; i++) {
1047       if (i > 0 && i % 4 == 0 && i != saved_regs_count) {
1048         tty->cr();
1049         tty->print("   + dump: ");
1050       }
1051       tty->print(" %d: "PTR_FORMAT, i, saved_regs[i]);
1052     }
1053     tty->cr();
1054     if (last_sp != saved_sp && last_sp != NULL)
1055       tty->print_cr("*** last_sp="PTR_FORMAT, (intptr_t)last_sp);
1056 
1057     {
1058      // dumping last frame with frame::describe
1059 
1060       JavaThread* p = JavaThread::active();
1061 
1062       ResourceMark rm;
1063       PRESERVE_EXCEPTION_MARK; // may not be needed by safer and unexpensive here
1064       FrameValues values;
1065 
1066       // Note: We want to allow trace_method_handle from any call site.
1067       // While trace_method_handle creates a frame, it may be entered
1068       // without a PC on the stack top (e.g. not just after a call).
1069       // Walking that frame could lead to failures due to that invalid PC.
1070       // => carefully detect that frame when doing the stack walking
1071 
1072       // Current C frame
1073       frame cur_frame = os::current_frame();
1074 
1075       // Robust search of trace_calling_frame (independant of inlining).
1076       // Assumes saved_regs comes from a pusha in the trace_calling_frame.
1077       assert(cur_frame.sp() < saved_regs, "registers not saved on stack ?");
1078       frame trace_calling_frame = os::get_sender_for_C_frame(&cur_frame);
1079       while (trace_calling_frame.fp() < saved_regs) {
1080         trace_calling_frame = os::get_sender_for_C_frame(&trace_calling_frame);
1081       }
1082 
1083       // safely create a frame and call frame::describe
1084       intptr_t *dump_sp = trace_calling_frame.sender_sp();
1085       intptr_t *dump_fp = trace_calling_frame.link();
1086 
1087       bool walkable = has_mh; // whether the traced frame shoud be walkable
1088 
1089       if (walkable) {
1090         // The previous definition of walkable may have to be refined
1091         // if new call sites cause the next frame constructor to start
1092         // failing. Alternatively, frame constructors could be
1093         // modified to support the current or future non walkable
1094         // frames (but this is more intrusive and is not considered as
1095         // part of this RFE, which will instead use a simpler output).
1096         frame dump_frame = frame(dump_sp, dump_fp);
1097         dump_frame.describe(values, 1);
1098       } else {
1099         // Stack may not be walkable (invalid PC above FP):
1100         // Add descriptions without building a Java frame to avoid issues
1101         values.describe(-1, dump_fp, "fp for #1 <not parsed, cannot trust pc>");
1102         values.describe(-1, dump_sp, "sp for #1");
1103       }
1104 
1105       // mark saved_sp if seems valid
1106       if (has_mh) {
1107         if ((saved_sp >= dump_sp - UNREASONABLE_STACK_MOVE) && (saved_sp < dump_fp)) {
1108           values.describe(-1, saved_sp, "*saved_sp");
1109         }
1110       }
1111 
1112       tty->print_cr("  stack layout:");
1113       values.print(p);
1114     }
1115     if (has_mh)
1116       print_method_handle(mh);
1117   }
1118 }
1119 
1120 // The stub wraps the arguments in a struct on the stack to avoid
1121 // dealing with the different calling conventions for passing 6
1122 // arguments.
1123 struct MethodHandleStubArguments {
1124   const char* adaptername;
1125   oopDesc* mh;
1126   intptr_t* saved_regs;
1127   intptr_t* entry_sp;
1128   intptr_t* saved_sp;
1129   intptr_t* saved_bp;
1130 };
1131 void trace_method_handle_stub_wrapper(MethodHandleStubArguments* args) {
1132   trace_method_handle_stub(args->adaptername,
1133                            args->mh,
1134                            args->saved_regs,
1135                            args->entry_sp,
1136                            args->saved_sp,
1137                            args->saved_bp);
1138 }
1139 
1140 void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) {
1141   if (!TraceMethodHandles)  return;
1142   BLOCK_COMMENT("trace_method_handle {");
1143   __ enter();
1144   __ andptr(rsp, -16); // align stack if needed for FPU state
1145   __ pusha();
1146   __ mov(rbx, rsp); // for retreiving saved_regs
1147   // Note: saved_regs must be in the entered frame for the
1148   // robust stack walking implemented in trace_method_handle_stub.
1149 
1150   // save FP result, valid at some call sites (adapter_opt_return_float, ...)
1151   __ increment(rsp, -2 * wordSize);
1152   if  (UseSSE >= 2) {
1153     __ movdbl(Address(rsp, 0), xmm0);
1154   } else if (UseSSE == 1) {
1155     __ movflt(Address(rsp, 0), xmm0);
1156   } else {
1157     __ fst_d(Address(rsp, 0));
1158   }
1159 
1160   // incoming state:
1161   // rcx: method handle
1162   // r13 or rsi: saved sp
1163   // To avoid calling convention issues, build a record on the stack and pass the pointer to that instead.
1164   // Note: fix the increment below if pushing more arguments
1165   __ push(rbp);               // saved_bp
1166   __ push(saved_last_sp_register()); // saved_sp
1167   __ push(rbp);               // entry_sp (with extra align space)
1168   __ push(rbx);               // pusha saved_regs
1169   __ push(rcx);               // mh
1170   __ push(rcx);               // slot for adaptername
1171   __ movptr(Address(rsp, 0), (intptr_t) adaptername);
1172   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, trace_method_handle_stub_wrapper), rsp);
1173   __ increment(rsp, 6 * wordSize); // MethodHandleStubArguments
1174 
1175   if  (UseSSE >= 2) {
1176     __ movdbl(xmm0, Address(rsp, 0));
1177   } else if (UseSSE == 1) {
1178     __ movflt(xmm0, Address(rsp, 0));
1179   } else {
1180     __ fld_d(Address(rsp, 0));
1181   }
1182   __ increment(rsp, 2 * wordSize);
1183 
1184   __ popa();
1185   __ leave();
1186   BLOCK_COMMENT("} trace_method_handle");
1187 }
1188 #endif //PRODUCT
1189 
1190 // which conversion op types are implemented here?
1191 int MethodHandles::adapter_conversion_ops_supported_mask() {
1192   return ((1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_ONLY)
1193          |(1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_RAW)
1194          |(1<<java_lang_invoke_AdapterMethodHandle::OP_CHECK_CAST)
1195          |(1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_PRIM)
1196          |(1<<java_lang_invoke_AdapterMethodHandle::OP_REF_TO_PRIM)
1197           //OP_PRIM_TO_REF is below...
1198          |(1<<java_lang_invoke_AdapterMethodHandle::OP_SWAP_ARGS)
1199          |(1<<java_lang_invoke_AdapterMethodHandle::OP_ROT_ARGS)
1200          |(1<<java_lang_invoke_AdapterMethodHandle::OP_DUP_ARGS)
1201          |(1<<java_lang_invoke_AdapterMethodHandle::OP_DROP_ARGS)
1202           //OP_COLLECT_ARGS is below...
1203          |(1<<java_lang_invoke_AdapterMethodHandle::OP_SPREAD_ARGS)
1204          |(
1205            java_lang_invoke_MethodTypeForm::vmlayout_offset_in_bytes() <= 0 ? 0 :
1206            ((1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF)
1207            |(1<<java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS)
1208            |(1<<java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS)
1209             ))
1210          );
1211 }
1212 
1213 //------------------------------------------------------------------------------
1214 // MethodHandles::generate_method_handle_stub
1215 //
1216 // Generate an "entry" field for a method handle.
1217 // This determines how the method handle will respond to calls.
1218 void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
1219   MethodHandles::EntryKind ek_orig = ek_original_kind(ek);
1220 
1221   // Here is the register state during an interpreted call,
1222   // as set up by generate_method_handle_interpreter_entry():
1223   // - rbx: garbage temp (was MethodHandle.invoke methodOop, unused)
1224   // - rcx: receiver method handle
1225   // - rax: method handle type (only used by the check_mtype entry point)
1226   // - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
1227   // - rdx: garbage temp, can blow away
1228 
1229   const Register rcx_recv    = rcx;
1230   const Register rax_argslot = rax;
1231   const Register rbx_temp    = rbx;
1232   const Register rdx_temp    = rdx;
1233   const Register rdi_temp    = rdi;
1234 
1235   // This guy is set up by prepare_to_jump_from_interpreted (from interpreted calls)
1236   // and gen_c2i_adapter (from compiled calls):
1237   const Register saved_last_sp = saved_last_sp_register();
1238 
1239   // Argument registers for _raise_exception.
1240   // 32-bit: Pass first two oop/int args in registers ECX and EDX.
1241   const Register rarg0_code     = LP64_ONLY(j_rarg0) NOT_LP64(rcx);
1242   const Register rarg1_actual   = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
1243   const Register rarg2_required = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
1244   assert_different_registers(rarg0_code, rarg1_actual, rarg2_required, saved_last_sp);
1245 
1246   guarantee(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
1247 
1248   // some handy addresses
1249   Address rcx_mh_vmtarget(    rcx_recv, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes() );
1250   Address rcx_dmh_vmindex(    rcx_recv, java_lang_invoke_DirectMethodHandle::vmindex_offset_in_bytes() );
1251 
1252   Address rcx_bmh_vmargslot(  rcx_recv, java_lang_invoke_BoundMethodHandle::vmargslot_offset_in_bytes() );
1253   Address rcx_bmh_argument(   rcx_recv, java_lang_invoke_BoundMethodHandle::argument_offset_in_bytes() );
1254 
1255   Address rcx_amh_vmargslot(  rcx_recv, java_lang_invoke_AdapterMethodHandle::vmargslot_offset_in_bytes() );
1256   Address rcx_amh_argument(   rcx_recv, java_lang_invoke_AdapterMethodHandle::argument_offset_in_bytes() );
1257   Address rcx_amh_conversion( rcx_recv, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes() );
1258   Address vmarg;                // __ argument_address(vmargslot)
1259 
1260   const int java_mirror_offset = in_bytes(Klass::java_mirror_offset());
1261 
1262   if (have_entry(ek)) {
1263     __ nop();                   // empty stubs make SG sick
1264     return;
1265   }
1266 
1267 #ifdef ASSERT
1268   __ push((int32_t) 0xEEEEEEEE);
1269   __ push((int32_t) (intptr_t) entry_name(ek));
1270   LP64_ONLY(__ push((int32_t) high((intptr_t) entry_name(ek))));
1271   __ push((int32_t) 0x33333333);
1272 #endif //ASSERT
1273 
1274   address interp_entry = __ pc();
1275 
1276   trace_method_handle(_masm, entry_name(ek));
1277 
1278   BLOCK_COMMENT(err_msg("Entry %s {", entry_name(ek)));
1279 
1280   switch ((int) ek) {
1281   case _raise_exception:
1282     {
1283       // Not a real MH entry, but rather shared code for raising an
1284       // exception.  Since we use the compiled entry, arguments are
1285       // expected in compiler argument registers.
1286       assert(raise_exception_method(), "must be set");
1287       assert(raise_exception_method()->from_compiled_entry(), "method must be linked");
1288 
1289       const Register rax_pc = rax;
1290       __ pop(rax_pc);  // caller PC
1291       __ mov(rsp, saved_last_sp);  // cut the stack back to where the caller started
1292 
1293       Register rbx_method = rbx_temp;
1294       __ movptr(rbx_method, ExternalAddress((address) &_raise_exception_method));
1295 
1296       const int jobject_oop_offset = 0;
1297       __ movptr(rbx_method, Address(rbx_method, jobject_oop_offset));  // dereference the jobject
1298 
1299       __ movptr(saved_last_sp, rsp);
1300       __ subptr(rsp, 3 * wordSize);
1301       __ push(rax_pc);         // restore caller PC
1302 
1303       __ movl  (__ argument_address(constant(2)), rarg0_code);
1304       __ movptr(__ argument_address(constant(1)), rarg1_actual);
1305       __ movptr(__ argument_address(constant(0)), rarg2_required);
1306       jump_from_method_handle(_masm, rbx_method, rax);
1307     }
1308     break;
1309 
1310   case _invokestatic_mh:
1311   case _invokespecial_mh:
1312     {
1313       Register rbx_method = rbx_temp;
1314       __ load_heap_oop(rbx_method, rcx_mh_vmtarget); // target is a methodOop
1315       __ verify_oop(rbx_method);
1316       // same as TemplateTable::invokestatic or invokespecial,
1317       // minus the CP setup and profiling:
1318       if (ek == _invokespecial_mh) {
1319         // Must load & check the first argument before entering the target method.
1320         __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
1321         __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
1322         __ null_check(rcx_recv);
1323         __ verify_oop(rcx_recv);
1324       }
1325       jump_from_method_handle(_masm, rbx_method, rax);
1326     }
1327     break;
1328 
1329   case _invokevirtual_mh:
1330     {
1331       // same as TemplateTable::invokevirtual,
1332       // minus the CP setup and profiling:
1333 
1334       // pick out the vtable index and receiver offset from the MH,
1335       // and then we can discard it:
1336       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
1337       Register rbx_index = rbx_temp;
1338       __ movl(rbx_index, rcx_dmh_vmindex);
1339       // Note:  The verifier allows us to ignore rcx_mh_vmtarget.
1340       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
1341       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
1342 
1343       // get receiver klass
1344       Register rax_klass = rax_argslot;
1345       __ load_klass(rax_klass, rcx_recv);
1346       __ verify_oop(rax_klass);
1347 
1348       // get target methodOop & entry point
1349       const int base = instanceKlass::vtable_start_offset() * wordSize;
1350       assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
1351       Address vtable_entry_addr(rax_klass,
1352                                 rbx_index, Address::times_ptr,
1353                                 base + vtableEntry::method_offset_in_bytes());
1354       Register rbx_method = rbx_temp;
1355       __ movptr(rbx_method, vtable_entry_addr);
1356 
1357       __ verify_oop(rbx_method);
1358       jump_from_method_handle(_masm, rbx_method, rax);
1359     }
1360     break;
1361 
1362   case _invokeinterface_mh:
1363     {
1364       // same as TemplateTable::invokeinterface,
1365       // minus the CP setup and profiling:
1366 
1367       // pick out the interface and itable index from the MH.
1368       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
1369       Register rdx_intf  = rdx_temp;
1370       Register rbx_index = rbx_temp;
1371       __ load_heap_oop(rdx_intf, rcx_mh_vmtarget);
1372       __ movl(rbx_index, rcx_dmh_vmindex);
1373       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
1374       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
1375 
1376       // get receiver klass
1377       Register rax_klass = rax_argslot;
1378       __ load_klass(rax_klass, rcx_recv);
1379       __ verify_oop(rax_klass);
1380 
1381       Register rbx_method = rbx_index;
1382 
1383       // get interface klass
1384       Label no_such_interface;
1385       __ verify_oop(rdx_intf);
1386       __ lookup_interface_method(rax_klass, rdx_intf,
1387                                  // note: next two args must be the same:
1388                                  rbx_index, rbx_method,
1389                                  rdi_temp,
1390                                  no_such_interface);
1391 
1392       __ verify_oop(rbx_method);
1393       jump_from_method_handle(_masm, rbx_method, rax);
1394       __ hlt();
1395 
1396       __ bind(no_such_interface);
1397       // Throw an exception.
1398       // For historical reasons, it will be IncompatibleClassChangeError.
1399       __ mov(rbx_temp, rcx_recv);  // rarg2_required might be RCX
1400       assert_different_registers(rarg2_required, rbx_temp);
1401       __ movptr(rarg2_required, Address(rdx_intf, java_mirror_offset));  // required interface
1402       __ mov(   rarg1_actual,   rbx_temp);                               // bad receiver
1403       __ movl(  rarg0_code,     (int) Bytecodes::_invokeinterface);      // who is complaining?
1404       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
1405     }
1406     break;
1407 
1408   case _bound_ref_mh:
1409   case _bound_int_mh:
1410   case _bound_long_mh:
1411   case _bound_ref_direct_mh:
1412   case _bound_int_direct_mh:
1413   case _bound_long_direct_mh:
1414     {
1415       const bool direct_to_method = (ek >= _bound_ref_direct_mh);
1416       BasicType arg_type  = ek_bound_mh_arg_type(ek);
1417       int       arg_slots = type2size[arg_type];
1418 
1419       // make room for the new argument:
1420       __ movl(rax_argslot, rcx_bmh_vmargslot);
1421       __ lea(rax_argslot, __ argument_address(rax_argslot));
1422 
1423       insert_arg_slots(_masm, arg_slots * stack_move_unit(), rax_argslot, rbx_temp, rdx_temp);
1424 
1425       // store bound argument into the new stack slot:
1426       __ load_heap_oop(rbx_temp, rcx_bmh_argument);
1427       if (arg_type == T_OBJECT) {
1428         __ movptr(Address(rax_argslot, 0), rbx_temp);
1429       } else {
1430         Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type));
1431         move_typed_arg(_masm, arg_type, false,
1432                        Address(rax_argslot, 0),
1433                        prim_value_addr,
1434                        rbx_temp, rdx_temp);
1435       }
1436 
1437       if (direct_to_method) {
1438         Register rbx_method = rbx_temp;
1439         __ load_heap_oop(rbx_method, rcx_mh_vmtarget);
1440         __ verify_oop(rbx_method);
1441         jump_from_method_handle(_masm, rbx_method, rax);
1442       } else {
1443         __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1444         __ verify_oop(rcx_recv);
1445         __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
1446       }
1447     }
1448     break;
1449 
1450   case _adapter_opt_profiling:
1451     if (java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes() != 0) {
1452       Address rcx_mh_vmcount(rcx_recv, java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes());
1453       __ incrementl(rcx_mh_vmcount);
1454     }
1455     // fall through
1456 
1457   case _adapter_retype_only:
1458   case _adapter_retype_raw:
1459     // immediately jump to the next MH layer:
1460     __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1461     __ verify_oop(rcx_recv);
1462     __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
1463     // This is OK when all parameter types widen.
1464     // It is also OK when a return type narrows.
1465     break;
1466 
1467   case _adapter_check_cast:
1468     {
1469       // temps:
1470       Register rbx_klass = rbx_temp; // interesting AMH data
1471 
1472       // check a reference argument before jumping to the next layer of MH:
1473       __ movl(rax_argslot, rcx_amh_vmargslot);
1474       vmarg = __ argument_address(rax_argslot);
1475 
1476       // What class are we casting to?
1477       __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
1478       load_klass_from_Class(_masm, rbx_klass);
1479 
1480       Label done;
1481       __ movptr(rdx_temp, vmarg);
1482       __ testptr(rdx_temp, rdx_temp);
1483       __ jcc(Assembler::zero, done);         // no cast if null
1484       __ load_klass(rdx_temp, rdx_temp);
1485 
1486       // live at this point:
1487       // - rbx_klass:  klass required by the target method
1488       // - rdx_temp:   argument klass to test
1489       // - rcx_recv:   adapter method handle
1490       __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done);
1491 
1492       // If we get here, the type check failed!
1493       // Call the wrong_method_type stub, passing the failing argument type in rax.
1494       Register rax_mtype = rax_argslot;
1495       __ movl(rax_argslot, rcx_amh_vmargslot);  // reload argslot field
1496       __ movptr(rdx_temp, vmarg);
1497 
1498       assert_different_registers(rarg2_required, rdx_temp);
1499       __ load_heap_oop(rarg2_required, rcx_amh_argument);             // required class
1500       __ mov(          rarg1_actual,   rdx_temp);                     // bad object
1501       __ movl(         rarg0_code,     (int) Bytecodes::_checkcast);  // who is complaining?
1502       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
1503 
1504       __ bind(done);
1505       // get the new MH:
1506       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1507       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
1508     }
1509     break;
1510 
1511   case _adapter_prim_to_prim:
1512   case _adapter_ref_to_prim:
1513   case _adapter_prim_to_ref:
1514     // handled completely by optimized cases
1515     __ stop("init_AdapterMethodHandle should not issue this");
1516     break;
1517 
1518   case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
1519 //case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
1520   case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
1521   case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
1522     {
1523       // perform an in-place conversion to int or an int subword
1524       __ movl(rax_argslot, rcx_amh_vmargslot);
1525       vmarg = __ argument_address(rax_argslot);
1526 
1527       switch (ek) {
1528       case _adapter_opt_i2i:
1529         __ movl(rdx_temp, vmarg);
1530         break;
1531       case _adapter_opt_l2i:
1532         {
1533           // just delete the extra slot; on a little-endian machine we keep the first
1534           __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
1535           remove_arg_slots(_masm, -stack_move_unit(),
1536                            rax_argslot, rbx_temp, rdx_temp);
1537           vmarg = Address(rax_argslot, -Interpreter::stackElementSize);
1538           __ movl(rdx_temp, vmarg);
1539         }
1540         break;
1541       case _adapter_opt_unboxi:
1542         {
1543           // Load the value up from the heap.
1544           __ movptr(rdx_temp, vmarg);
1545           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
1546 #ifdef ASSERT
1547           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
1548             if (is_subword_type(BasicType(bt)))
1549               assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
1550           }
1551 #endif
1552           __ null_check(rdx_temp, value_offset);
1553           __ movl(rdx_temp, Address(rdx_temp, value_offset));
1554           // We load this as a word.  Because we are little-endian,
1555           // the low bits will be correct, but the high bits may need cleaning.
1556           // The vminfo will guide us to clean those bits.
1557         }
1558         break;
1559       default:
1560         ShouldNotReachHere();
1561       }
1562 
1563       // Do the requested conversion and store the value.
1564       Register rbx_vminfo = rbx_temp;
1565       load_conversion_vminfo(_masm, rbx_vminfo, rcx_amh_conversion);
1566 
1567       // get the new MH:
1568       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1569       // (now we are done with the old MH)
1570 
1571       // original 32-bit vmdata word must be of this form:
1572       //    | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
1573       __ xchgptr(rcx, rbx_vminfo);                // free rcx for shifts
1574       __ shll(rdx_temp /*, rcx*/);
1575       Label zero_extend, done;
1576       __ testl(rcx, CONV_VMINFO_SIGN_FLAG);
1577       __ jccb(Assembler::zero, zero_extend);
1578 
1579       // this path is taken for int->byte, int->short
1580       __ sarl(rdx_temp /*, rcx*/);
1581       __ jmpb(done);
1582 
1583       __ bind(zero_extend);
1584       // this is taken for int->char
1585       __ shrl(rdx_temp /*, rcx*/);
1586 
1587       __ bind(done);
1588       __ movl(vmarg, rdx_temp);  // Store the value.
1589       __ xchgptr(rcx, rbx_vminfo);                // restore rcx_recv
1590 
1591       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
1592     }
1593     break;
1594 
1595   case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
1596   case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
1597     {
1598       // perform an in-place int-to-long or ref-to-long conversion
1599       __ movl(rax_argslot, rcx_amh_vmargslot);
1600 
1601       // on a little-endian machine we keep the first slot and add another after
1602       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
1603       insert_arg_slots(_masm, stack_move_unit(),
1604                        rax_argslot, rbx_temp, rdx_temp);
1605       Address vmarg1(rax_argslot, -Interpreter::stackElementSize);
1606       Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize);
1607 
1608       switch (ek) {
1609       case _adapter_opt_i2l:
1610         {
1611 #ifdef _LP64
1612           __ movslq(rdx_temp, vmarg1);  // Load sign-extended
1613           __ movq(vmarg1, rdx_temp);    // Store into first slot
1614 #else
1615           __ movl(rdx_temp, vmarg1);
1616           __ sarl(rdx_temp, BitsPerInt - 1);  // __ extend_sign()
1617           __ movl(vmarg2, rdx_temp); // store second word
1618 #endif
1619         }
1620         break;
1621       case _adapter_opt_unboxl:
1622         {
1623           // Load the value up from the heap.
1624           __ movptr(rdx_temp, vmarg1);
1625           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
1626           assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
1627           __ null_check(rdx_temp, value_offset);
1628 #ifdef _LP64
1629           __ movq(rbx_temp, Address(rdx_temp, value_offset));
1630           __ movq(vmarg1, rbx_temp);
1631 #else
1632           __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt));
1633           __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt));
1634           __ movl(vmarg1, rbx_temp);
1635           __ movl(vmarg2, rdx_temp);
1636 #endif
1637         }
1638         break;
1639       default:
1640         ShouldNotReachHere();
1641       }
1642 
1643       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1644       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
1645     }
1646     break;
1647 
1648   case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
1649   case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
1650     {
1651       // perform an in-place floating primitive conversion
1652       __ movl(rax_argslot, rcx_amh_vmargslot);
1653       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
1654       if (ek == _adapter_opt_f2d) {
1655         insert_arg_slots(_masm, stack_move_unit(),
1656                          rax_argslot, rbx_temp, rdx_temp);
1657       }
1658       Address vmarg(rax_argslot, -Interpreter::stackElementSize);
1659 
1660 #ifdef _LP64
1661       if (ek == _adapter_opt_f2d) {
1662         __ movflt(xmm0, vmarg);
1663         __ cvtss2sd(xmm0, xmm0);
1664         __ movdbl(vmarg, xmm0);
1665       } else {
1666         __ movdbl(xmm0, vmarg);
1667         __ cvtsd2ss(xmm0, xmm0);
1668         __ movflt(vmarg, xmm0);
1669       }
1670 #else //_LP64
1671       if (ek == _adapter_opt_f2d) {
1672         __ fld_s(vmarg);        // load float to ST0
1673         __ fstp_d(vmarg);       // store double
1674       } else {
1675         __ fld_d(vmarg);        // load double to ST0
1676         __ fstp_s(vmarg);       // store single
1677       }
1678 #endif //_LP64
1679 
1680       if (ek == _adapter_opt_d2f) {
1681         remove_arg_slots(_masm, -stack_move_unit(),
1682                          rax_argslot, rbx_temp, rdx_temp);
1683       }
1684 
1685       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1686       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
1687     }
1688     break;
1689 
1690   case _adapter_swap_args:
1691   case _adapter_rot_args:
1692     // handled completely by optimized cases
1693     __ stop("init_AdapterMethodHandle should not issue this");
1694     break;
1695 
1696   case _adapter_opt_swap_1:
1697   case _adapter_opt_swap_2:
1698   case _adapter_opt_rot_1_up:
1699   case _adapter_opt_rot_1_down:
1700   case _adapter_opt_rot_2_up:
1701   case _adapter_opt_rot_2_down:
1702     {
1703       int swap_slots = ek_adapter_opt_swap_slots(ek);
1704       int rotate     = ek_adapter_opt_swap_mode(ek);
1705 
1706       // 'argslot' is the position of the first argument to swap
1707       __ movl(rax_argslot, rcx_amh_vmargslot);
1708       __ lea(rax_argslot, __ argument_address(rax_argslot));
1709 
1710       // 'vminfo' is the second
1711       Register rbx_destslot = rbx_temp;
1712       load_conversion_vminfo(_masm, rbx_destslot, rcx_amh_conversion);
1713       __ lea(rbx_destslot, __ argument_address(rbx_destslot));
1714       if (VerifyMethodHandles)
1715         verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame");
1716 
1717       assert(Interpreter::stackElementSize == wordSize, "else rethink use of wordSize here");
1718       if (!rotate) {
1719         // simple swap
1720         for (int i = 0; i < swap_slots; i++) {
1721           __ movptr(rdi_temp, Address(rax_argslot,  i * wordSize));
1722           __ movptr(rdx_temp, Address(rbx_destslot, i * wordSize));
1723           __ movptr(Address(rax_argslot,  i * wordSize), rdx_temp);
1724           __ movptr(Address(rbx_destslot, i * wordSize), rdi_temp);
1725         }
1726       } else {
1727         // A rotate is actually pair of moves, with an "odd slot" (or pair)
1728         // changing place with a series of other slots.
1729         // First, push the "odd slot", which is going to get overwritten
1730         for (int i = swap_slots - 1; i >= 0; i--) {
1731           // handle one with rdi_temp instead of a push:
1732           if (i == 0)  __ movptr(rdi_temp, Address(rax_argslot, i * wordSize));
1733           else         __ pushptr(         Address(rax_argslot, i * wordSize));
1734         }
1735         if (rotate > 0) {
1736           // Here is rotate > 0:
1737           // (low mem)                                          (high mem)
1738           //     | dest:     more_slots...     | arg: odd_slot :arg+1 |
1739           // =>
1740           //     | dest: odd_slot | dest+1: more_slots...      :arg+1 |
1741           // work argslot down to destslot, copying contiguous data upwards
1742           // pseudo-code:
1743           //   rax = src_addr - swap_bytes
1744           //   rbx = dest_addr
1745           //   while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--;
1746           move_arg_slots_up(_masm,
1747                             rbx_destslot,
1748                             Address(rax_argslot, 0),
1749                             swap_slots,
1750                             rax_argslot, rdx_temp);
1751         } else {
1752           // Here is the other direction, rotate < 0:
1753           // (low mem)                                          (high mem)
1754           //     | arg: odd_slot | arg+1: more_slots...       :dest+1 |
1755           // =>
1756           //     | arg:    more_slots...     | dest: odd_slot :dest+1 |
1757           // work argslot up to destslot, copying contiguous data downwards
1758           // pseudo-code:
1759           //   rax = src_addr + swap_bytes
1760           //   rbx = dest_addr
1761           //   while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++;
1762           // dest_slot denotes an exclusive upper limit
1763           int limit_bias = OP_ROT_ARGS_DOWN_LIMIT_BIAS;
1764           if (limit_bias != 0)
1765             __ addptr(rbx_destslot, - limit_bias * wordSize);
1766           move_arg_slots_down(_masm,
1767                               Address(rax_argslot, swap_slots * wordSize),
1768                               rbx_destslot,
1769                               -swap_slots,
1770                               rax_argslot, rdx_temp);
1771           __ subptr(rbx_destslot, swap_slots * wordSize);
1772         }
1773         // pop the original first chunk into the destination slot, now free
1774         for (int i = 0; i < swap_slots; i++) {
1775           if (i == 0)  __ movptr(Address(rbx_destslot, i * wordSize), rdi_temp);
1776           else         __ popptr(Address(rbx_destslot, i * wordSize));
1777         }
1778       }
1779 
1780       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1781       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
1782     }
1783     break;
1784 
1785   case _adapter_dup_args:
1786     {
1787       // 'argslot' is the position of the first argument to duplicate
1788       __ movl(rax_argslot, rcx_amh_vmargslot);
1789       __ lea(rax_argslot, __ argument_address(rax_argslot));
1790 
1791       // 'stack_move' is negative number of words to duplicate
1792       Register rdi_stack_move = rdi_temp;
1793       load_stack_move(_masm, rdi_stack_move, rcx_recv, true);
1794 
1795       if (VerifyMethodHandles) {
1796         verify_argslots(_masm, rdi_stack_move, rax_argslot, true,
1797                         "copied argument(s) must fall within current frame");
1798       }
1799 
1800       // insert location is always the bottom of the argument list:
1801       Address insert_location = __ argument_address(constant(0));
1802       int pre_arg_words = insert_location.disp() / wordSize;   // return PC is pushed
1803       assert(insert_location.base() == rsp, "");
1804 
1805       __ negl(rdi_stack_move);
1806       push_arg_slots(_masm, rax_argslot, rdi_stack_move,
1807                      pre_arg_words, rbx_temp, rdx_temp);
1808 
1809       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1810       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
1811     }
1812     break;
1813 
1814   case _adapter_drop_args:
1815     {
1816       // 'argslot' is the position of the first argument to nuke
1817       __ movl(rax_argslot, rcx_amh_vmargslot);
1818       __ lea(rax_argslot, __ argument_address(rax_argslot));
1819 
1820       // (must do previous push after argslot address is taken)
1821 
1822       // 'stack_move' is number of words to drop
1823       Register rdi_stack_move = rdi_temp;
1824       load_stack_move(_masm, rdi_stack_move, rcx_recv, false);
1825       remove_arg_slots(_masm, rdi_stack_move,
1826                        rax_argslot, rbx_temp, rdx_temp);
1827 
1828       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1829       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
1830     }
1831     break;
1832 
1833   case _adapter_collect_args:
1834   case _adapter_fold_args:
1835   case _adapter_spread_args:
1836     // handled completely by optimized cases
1837     __ stop("init_AdapterMethodHandle should not issue this");
1838     break;
1839 
1840   case _adapter_opt_collect_ref:
1841   case _adapter_opt_collect_int:
1842   case _adapter_opt_collect_long:
1843   case _adapter_opt_collect_float:
1844   case _adapter_opt_collect_double:
1845   case _adapter_opt_collect_void:
1846   case _adapter_opt_collect_0_ref:
1847   case _adapter_opt_collect_1_ref:
1848   case _adapter_opt_collect_2_ref:
1849   case _adapter_opt_collect_3_ref:
1850   case _adapter_opt_collect_4_ref:
1851   case _adapter_opt_collect_5_ref:
1852   case _adapter_opt_filter_S0_ref:
1853   case _adapter_opt_filter_S1_ref:
1854   case _adapter_opt_filter_S2_ref:
1855   case _adapter_opt_filter_S3_ref:
1856   case _adapter_opt_filter_S4_ref:
1857   case _adapter_opt_filter_S5_ref:
1858   case _adapter_opt_collect_2_S0_ref:
1859   case _adapter_opt_collect_2_S1_ref:
1860   case _adapter_opt_collect_2_S2_ref:
1861   case _adapter_opt_collect_2_S3_ref:
1862   case _adapter_opt_collect_2_S4_ref:
1863   case _adapter_opt_collect_2_S5_ref:
1864   case _adapter_opt_fold_ref:
1865   case _adapter_opt_fold_int:
1866   case _adapter_opt_fold_long:
1867   case _adapter_opt_fold_float:
1868   case _adapter_opt_fold_double:
1869   case _adapter_opt_fold_void:
1870   case _adapter_opt_fold_1_ref:
1871   case _adapter_opt_fold_2_ref:
1872   case _adapter_opt_fold_3_ref:
1873   case _adapter_opt_fold_4_ref:
1874   case _adapter_opt_fold_5_ref:
1875     {
1876       // Given a fresh incoming stack frame, build a new ricochet frame.
1877       // On entry, TOS points at a return PC, and RBP is the callers frame ptr.
1878       // RSI/R13 has the caller's exact stack pointer, which we must also preserve.
1879       // RCX contains an AdapterMethodHandle of the indicated kind.
1880 
1881       // Relevant AMH fields:
1882       // amh.vmargslot:
1883       //   points to the trailing edge of the arguments
1884       //   to filter, collect, or fold.  For a boxing operation,
1885       //   it points just after the single primitive value.
1886       // amh.argument:
1887       //   recursively called MH, on |collect| arguments
1888       // amh.vmtarget:
1889       //   final destination MH, on return value, etc.
1890       // amh.conversion.dest:
1891       //   tells what is the type of the return value
1892       //   (not needed here, since dest is also derived from ek)
1893       // amh.conversion.vminfo:
1894       //   points to the trailing edge of the return value
1895       //   when the vmtarget is to be called; this is
1896       //   equal to vmargslot + (retained ? |collect| : 0)
1897 
1898       // Pass 0 or more argument slots to the recursive target.
1899       int collect_count_constant = ek_adapter_opt_collect_count(ek);
1900 
1901       // The collected arguments are copied from the saved argument list:
1902       int collect_slot_constant = ek_adapter_opt_collect_slot(ek);
1903 
1904       assert(ek_orig == _adapter_collect_args ||
1905              ek_orig == _adapter_fold_args, "");
1906       bool retain_original_args = (ek_orig == _adapter_fold_args);
1907 
1908       // The return value is replaced (or inserted) at the 'vminfo' argslot.
1909       // Sometimes we can compute this statically.
1910       int dest_slot_constant = -1;
1911       if (!retain_original_args)
1912         dest_slot_constant = collect_slot_constant;
1913       else if (collect_slot_constant >= 0 && collect_count_constant >= 0)
1914         // We are preserving all the arguments, and the return value is prepended,
1915         // so the return slot is to the left (above) the |collect| sequence.
1916         dest_slot_constant = collect_slot_constant + collect_count_constant;
1917 
1918       // Replace all those slots by the result of the recursive call.
1919       // The result type can be one of ref, int, long, float, double, void.
1920       // In the case of void, nothing is pushed on the stack after return.
1921       BasicType dest = ek_adapter_opt_collect_type(ek);
1922       assert(dest == type2wfield[dest], "dest is a stack slot type");
1923       int dest_count = type2size[dest];
1924       assert(dest_count == 1 || dest_count == 2 || (dest_count == 0 && dest == T_VOID), "dest has a size");
1925 
1926       // Choose a return continuation.
1927       EntryKind ek_ret = _adapter_opt_return_any;
1928       if (dest != T_CONFLICT && OptimizeMethodHandles) {
1929         switch (dest) {
1930         case T_INT    : ek_ret = _adapter_opt_return_int;     break;
1931         case T_LONG   : ek_ret = _adapter_opt_return_long;    break;
1932         case T_FLOAT  : ek_ret = _adapter_opt_return_float;   break;
1933         case T_DOUBLE : ek_ret = _adapter_opt_return_double;  break;
1934         case T_OBJECT : ek_ret = _adapter_opt_return_ref;     break;
1935         case T_VOID   : ek_ret = _adapter_opt_return_void;    break;
1936         default       : ShouldNotReachHere();
1937         }
1938         if (dest == T_OBJECT && dest_slot_constant >= 0) {
1939           EntryKind ek_try = EntryKind(_adapter_opt_return_S0_ref + dest_slot_constant);
1940           if (ek_try <= _adapter_opt_return_LAST &&
1941               ek_adapter_opt_return_slot(ek_try) == dest_slot_constant) {
1942             ek_ret = ek_try;
1943           }
1944         }
1945         assert(ek_adapter_opt_return_type(ek_ret) == dest, "");
1946       }
1947 
1948       // Already pushed:  ... keep1 | collect | keep2 | sender_pc |
1949       // push(sender_pc);
1950 
1951       // Compute argument base:
1952       Register rax_argv = rax_argslot;
1953       __ lea(rax_argv, __ argument_address(constant(0)));
1954 
1955       // Push a few extra argument words, if we need them to store the return value.
1956       {
1957         int extra_slots = 0;
1958         if (retain_original_args) {
1959           extra_slots = dest_count;
1960         } else if (collect_count_constant == -1) {
1961           extra_slots = dest_count;  // collect_count might be zero; be generous
1962         } else if (dest_count > collect_count_constant) {
1963           extra_slots = (dest_count - collect_count_constant);
1964         } else {
1965           // else we know we have enough dead space in |collect| to repurpose for return values
1966         }
1967         DEBUG_ONLY(extra_slots += 1);
1968         if (extra_slots > 0) {
1969           __ pop(rbx_temp);   // return value
1970           __ subptr(rsp, (extra_slots * Interpreter::stackElementSize));
1971           // Push guard word #2 in debug mode.
1972           DEBUG_ONLY(__ movptr(Address(rsp, 0), (int32_t) RicochetFrame::MAGIC_NUMBER_2));
1973           __ push(rbx_temp);
1974         }
1975       }
1976 
1977       RicochetFrame::enter_ricochet_frame(_masm, rcx_recv, rax_argv,
1978                                           entry(ek_ret)->from_interpreted_entry(), rbx_temp);
1979 
1980       // Now pushed:  ... keep1 | collect | keep2 | RF |
1981       // some handy frame slots:
1982       Address exact_sender_sp_addr = RicochetFrame::frame_address(RicochetFrame::exact_sender_sp_offset_in_bytes());
1983       Address conversion_addr      = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
1984       Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
1985 
1986 #ifdef ASSERT
1987       if (VerifyMethodHandles && dest != T_CONFLICT) {
1988         BLOCK_COMMENT("verify AMH.conv.dest");
1989         load_conversion_dest_type(_masm, rbx_temp, conversion_addr);
1990         Label L_dest_ok;
1991         __ cmpl(rbx_temp, (int) dest);
1992         __ jcc(Assembler::equal, L_dest_ok);
1993         if (dest == T_INT) {
1994           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
1995             if (is_subword_type(BasicType(bt))) {
1996               __ cmpl(rbx_temp, (int) bt);
1997               __ jcc(Assembler::equal, L_dest_ok);
1998             }
1999           }
2000         }
2001         __ stop("bad dest in AMH.conv");
2002         __ BIND(L_dest_ok);
2003       }
2004 #endif //ASSERT
2005 
2006       // Find out where the original copy of the recursive argument sequence begins.
2007       Register rax_coll = rax_argv;
2008       {
2009         RegisterOrConstant collect_slot = collect_slot_constant;
2010         if (collect_slot_constant == -1) {
2011           __ movl(rdi_temp, rcx_amh_vmargslot);
2012           collect_slot = rdi_temp;
2013         }
2014         if (collect_slot_constant != 0)
2015           __ lea(rax_coll, Address(rax_argv, collect_slot, Interpreter::stackElementScale()));
2016         // rax_coll now points at the trailing edge of |collect| and leading edge of |keep2|
2017       }
2018 
2019       // Replace the old AMH with the recursive MH.  (No going back now.)
2020       // In the case of a boxing call, the recursive call is to a 'boxer' method,
2021       // such as Integer.valueOf or Long.valueOf.  In the case of a filter
2022       // or collect call, it will take one or more arguments, transform them,
2023       // and return some result, to store back into argument_base[vminfo].
2024       __ load_heap_oop(rcx_recv, rcx_amh_argument);
2025       if (VerifyMethodHandles)  verify_method_handle(_masm, rcx_recv);
2026 
2027       // Push a space for the recursively called MH first:
2028       __ push((int32_t)NULL_WORD);
2029 
2030       // Calculate |collect|, the number of arguments we are collecting.
2031       Register rdi_collect_count = rdi_temp;
2032       RegisterOrConstant collect_count;
2033       if (collect_count_constant >= 0) {
2034         collect_count = collect_count_constant;
2035       } else {
2036         __ load_method_handle_vmslots(rdi_collect_count, rcx_recv, rdx_temp);
2037         collect_count = rdi_collect_count;
2038       }
2039 #ifdef ASSERT
2040       if (VerifyMethodHandles && collect_count_constant >= 0) {
2041         __ load_method_handle_vmslots(rbx_temp, rcx_recv, rdx_temp);
2042         Label L_count_ok;
2043         __ cmpl(rbx_temp, collect_count_constant);
2044         __ jcc(Assembler::equal, L_count_ok);
2045         __ stop("bad vminfo in AMH.conv");
2046         __ BIND(L_count_ok);
2047       }
2048 #endif //ASSERT
2049 
2050       // copy |collect| slots directly to TOS:
2051       push_arg_slots(_masm, rax_coll, collect_count, 0, rbx_temp, rdx_temp);
2052       // Now pushed:  ... keep1 | collect | keep2 | RF... | collect |
2053       // rax_coll still points at the trailing edge of |collect| and leading edge of |keep2|
2054 
2055       // If necessary, adjust the saved arguments to make room for the eventual return value.
2056       // Normal adjustment:  ... keep1 | +dest+ | -collect- | keep2 | RF... | collect |
2057       // If retaining args:  ... keep1 | +dest+ |  collect  | keep2 | RF... | collect |
2058       // In the non-retaining case, this might move keep2 either up or down.
2059       // We don't have to copy the whole | RF... collect | complex,
2060       // but we must adjust RF.saved_args_base.
2061       // Also, from now on, we will forget about the original copy of |collect|.
2062       // If we are retaining it, we will treat it as part of |keep2|.
2063       // For clarity we will define |keep3| = |collect|keep2| or |keep2|.
2064 
2065       BLOCK_COMMENT("adjust trailing arguments {");
2066       // Compare the sizes of |+dest+| and |-collect-|, which are opposed opening and closing movements.
2067       int                open_count  = dest_count;
2068       RegisterOrConstant close_count = collect_count_constant;
2069       Register rdi_close_count = rdi_collect_count;
2070       if (retain_original_args) {
2071         close_count = constant(0);
2072       } else if (collect_count_constant == -1) {
2073         close_count = rdi_collect_count;
2074       }
2075 
2076       // How many slots need moving?  This is simply dest_slot (0 => no |keep3|).
2077       RegisterOrConstant keep3_count;
2078       Register rsi_keep3_count = rsi;  // can repair from RF.exact_sender_sp
2079       if (dest_slot_constant >= 0) {
2080         keep3_count = dest_slot_constant;
2081       } else  {
2082         load_conversion_vminfo(_masm, rsi_keep3_count, conversion_addr);
2083         keep3_count = rsi_keep3_count;
2084       }
2085 #ifdef ASSERT
2086       if (VerifyMethodHandles && dest_slot_constant >= 0) {
2087         load_conversion_vminfo(_masm, rbx_temp, conversion_addr);
2088         Label L_vminfo_ok;
2089         __ cmpl(rbx_temp, dest_slot_constant);
2090         __ jcc(Assembler::equal, L_vminfo_ok);
2091         __ stop("bad vminfo in AMH.conv");
2092         __ BIND(L_vminfo_ok);
2093       }
2094 #endif //ASSERT
2095 
2096       // tasks remaining:
2097       bool move_keep3 = (!keep3_count.is_constant() || keep3_count.as_constant() != 0);
2098       bool stomp_dest = (NOT_DEBUG(dest == T_OBJECT) DEBUG_ONLY(dest_count != 0));
2099       bool fix_arg_base = (!close_count.is_constant() || open_count != close_count.as_constant());
2100 
2101       if (stomp_dest | fix_arg_base) {
2102         // we will probably need an updated rax_argv value
2103         if (collect_slot_constant >= 0) {
2104           // rax_coll already holds the leading edge of |keep2|, so tweak it
2105           assert(rax_coll == rax_argv, "elided a move");
2106           if (collect_slot_constant != 0)
2107             __ subptr(rax_argv, collect_slot_constant * Interpreter::stackElementSize);
2108         } else {
2109           // Just reload from RF.saved_args_base.
2110           __ movptr(rax_argv, saved_args_base_addr);
2111         }
2112       }
2113 
2114       // Old and new argument locations (based at slot 0).
2115       // Net shift (&new_argv - &old_argv) is (close_count - open_count).
2116       bool zero_open_count = (open_count == 0);  // remember this bit of info
2117       if (move_keep3 && fix_arg_base) {
2118         // It will be easier to have everything in one register:
2119         if (close_count.is_register()) {
2120           // Deduct open_count from close_count register to get a clean +/- value.
2121           __ subptr(close_count.as_register(), open_count);
2122         } else {
2123           close_count = close_count.as_constant() - open_count;
2124         }
2125         open_count = 0;
2126       }
2127       Address old_argv(rax_argv, 0);
2128       Address new_argv(rax_argv, close_count,  Interpreter::stackElementScale(),
2129                                 - open_count * Interpreter::stackElementSize);
2130 
2131       // First decide if any actual data are to be moved.
2132       // We can skip if (a) |keep3| is empty, or (b) the argument list size didn't change.
2133       // (As it happens, all movements involve an argument list size change.)
2134 
2135       // If there are variable parameters, use dynamic checks to skip around the whole mess.
2136       Label L_done;
2137       if (!keep3_count.is_constant()) {
2138         __ testl(keep3_count.as_register(), keep3_count.as_register());
2139         __ jcc(Assembler::zero, L_done);
2140       }
2141       if (!close_count.is_constant()) {
2142         __ cmpl(close_count.as_register(), open_count);
2143         __ jcc(Assembler::equal, L_done);
2144       }
2145 
2146       if (move_keep3 && fix_arg_base) {
2147         bool emit_move_down = false, emit_move_up = false, emit_guard = false;
2148         if (!close_count.is_constant()) {
2149           emit_move_down = emit_guard = !zero_open_count;
2150           emit_move_up   = true;
2151         } else if (open_count != close_count.as_constant()) {
2152           emit_move_down = (open_count > close_count.as_constant());
2153           emit_move_up   = !emit_move_down;
2154         }
2155         Label L_move_up;
2156         if (emit_guard) {
2157           __ cmpl(close_count.as_register(), open_count);
2158           __ jcc(Assembler::greater, L_move_up);
2159         }
2160 
2161         if (emit_move_down) {
2162           // Move arguments down if |+dest+| > |-collect-|
2163           // (This is rare, except when arguments are retained.)
2164           // This opens space for the return value.
2165           if (keep3_count.is_constant()) {
2166             for (int i = 0; i < keep3_count.as_constant(); i++) {
2167               __ movptr(rdx_temp, old_argv.plus_disp(i * Interpreter::stackElementSize));
2168               __ movptr(          new_argv.plus_disp(i * Interpreter::stackElementSize), rdx_temp);
2169             }
2170           } else {
2171             Register rbx_argv_top = rbx_temp;
2172             __ lea(rbx_argv_top, old_argv.plus_disp(keep3_count, Interpreter::stackElementScale()));
2173             move_arg_slots_down(_masm,
2174                                 old_argv,     // beginning of old argv
2175                                 rbx_argv_top, // end of old argv
2176                                 close_count,  // distance to move down (must be negative)
2177                                 rax_argv, rdx_temp);
2178             // Used argv as an iteration variable; reload from RF.saved_args_base.
2179             __ movptr(rax_argv, saved_args_base_addr);
2180           }
2181         }
2182 
2183         if (emit_guard) {
2184           __ jmp(L_done);  // assumes emit_move_up is true also
2185           __ BIND(L_move_up);
2186         }
2187 
2188         if (emit_move_up) {
2189 
2190           // Move arguments up if |+dest+| < |-collect-|
2191           // (This is usual, except when |keep3| is empty.)
2192           // This closes up the space occupied by the now-deleted collect values.
2193           if (keep3_count.is_constant()) {
2194             for (int i = keep3_count.as_constant() - 1; i >= 0; i--) {
2195               __ movptr(rdx_temp, old_argv.plus_disp(i * Interpreter::stackElementSize));
2196               __ movptr(          new_argv.plus_disp(i * Interpreter::stackElementSize), rdx_temp);
2197             }
2198           } else {
2199             Address argv_top = old_argv.plus_disp(keep3_count, Interpreter::stackElementScale());
2200             move_arg_slots_up(_masm,
2201                               rax_argv,     // beginning of old argv
2202                               argv_top,     // end of old argv
2203                               close_count,  // distance to move up (must be positive)
2204                               rbx_temp, rdx_temp);
2205           }
2206         }
2207       }
2208       __ BIND(L_done);
2209 
2210       if (fix_arg_base) {
2211         // adjust RF.saved_args_base by adding (close_count - open_count)
2212         if (!new_argv.is_same_address(Address(rax_argv, 0)))
2213           __ lea(rax_argv, new_argv);
2214         __ movptr(saved_args_base_addr, rax_argv);
2215       }
2216 
2217       if (stomp_dest) {
2218         // Stomp the return slot, so it doesn't hold garbage.
2219         // This isn't strictly necessary, but it may help detect bugs.
2220         int forty_two = RicochetFrame::RETURN_VALUE_PLACEHOLDER;
2221         __ movptr(Address(rax_argv, keep3_count, Address::times_ptr),
2222                   (int32_t) forty_two);
2223         // uses rsi_keep3_count
2224       }
2225       BLOCK_COMMENT("} adjust trailing arguments");
2226 
2227       BLOCK_COMMENT("do_recursive_call");
2228       __ mov(saved_last_sp, rsp);    // set rsi/r13 for callee
2229       __ pushptr(ExternalAddress(SharedRuntime::ricochet_blob()->bounce_addr()).addr());
2230       // The globally unique bounce address has two purposes:
2231       // 1. It helps the JVM recognize this frame (frame::is_ricochet_frame).
2232       // 2. When returned to, it cuts back the stack and redirects control flow
2233       //    to the return handler.
2234       // The return handler will further cut back the stack when it takes
2235       // down the RF.  Perhaps there is a way to streamline this further.
2236 
2237       // State during recursive call:
2238       // ... keep1 | dest | dest=42 | keep3 | RF... | collect | bounce_pc |
2239       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
2240 
2241       break;
2242     }
2243 
2244   case _adapter_opt_return_ref:
2245   case _adapter_opt_return_int:
2246   case _adapter_opt_return_long:
2247   case _adapter_opt_return_float:
2248   case _adapter_opt_return_double:
2249   case _adapter_opt_return_void:
2250   case _adapter_opt_return_S0_ref:
2251   case _adapter_opt_return_S1_ref:
2252   case _adapter_opt_return_S2_ref:
2253   case _adapter_opt_return_S3_ref:
2254   case _adapter_opt_return_S4_ref:
2255   case _adapter_opt_return_S5_ref:
2256     {
2257       BasicType dest_type_constant = ek_adapter_opt_return_type(ek);
2258       int       dest_slot_constant = ek_adapter_opt_return_slot(ek);
2259 
2260       if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
2261 
2262       if (dest_slot_constant == -1) {
2263         // The current stub is a general handler for this dest_type.
2264         // It can be called from _adapter_opt_return_any below.
2265         // Stash the address in a little table.
2266         assert((dest_type_constant & CONV_TYPE_MASK) == dest_type_constant, "oob");
2267         address return_handler = __ pc();
2268         _adapter_return_handlers[dest_type_constant] = return_handler;
2269         if (dest_type_constant == T_INT) {
2270           // do the subword types too
2271           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
2272             if (is_subword_type(BasicType(bt)) &&
2273                 _adapter_return_handlers[bt] == NULL) {
2274               _adapter_return_handlers[bt] = return_handler;
2275             }
2276           }
2277         }
2278       }
2279 
2280       Register rbx_arg_base = rbx_temp;
2281       assert_different_registers(rax, rdx,  // possibly live return value registers
2282                                  rdi_temp, rbx_arg_base);
2283 
2284       Address conversion_addr      = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
2285       Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
2286 
2287       __ movptr(rbx_arg_base, saved_args_base_addr);
2288       RegisterOrConstant dest_slot = dest_slot_constant;
2289       if (dest_slot_constant == -1) {
2290         load_conversion_vminfo(_masm, rdi_temp, conversion_addr);
2291         dest_slot = rdi_temp;
2292       }
2293       // Store the result back into the argslot.
2294       // This code uses the interpreter calling sequence, in which the return value
2295       // is usually left in the TOS register, as defined by InterpreterMacroAssembler::pop.
2296       // There are certain irregularities with floating point values, which can be seen
2297       // in TemplateInterpreterGenerator::generate_return_entry_for.
2298       move_return_value(_masm, dest_type_constant, Address(rbx_arg_base, dest_slot, Interpreter::stackElementScale()));
2299 
2300       RicochetFrame::leave_ricochet_frame(_masm, rcx_recv, rbx_arg_base, rdx_temp);
2301       __ push(rdx_temp);  // repush the return PC
2302 
2303       // Load the final target and go.
2304       if (VerifyMethodHandles)  verify_method_handle(_masm, rcx_recv);
2305       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
2306       __ hlt(); // --------------------
2307       break;
2308     }
2309 
2310   case _adapter_opt_return_any:
2311     {
2312       if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
2313       Register rdi_conv = rdi_temp;
2314       assert_different_registers(rax, rdx,  // possibly live return value registers
2315                                  rdi_conv, rbx_temp);
2316 
2317       Address conversion_addr = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
2318       load_conversion_dest_type(_masm, rdi_conv, conversion_addr);
2319       __ lea(rbx_temp, ExternalAddress((address) &_adapter_return_handlers[0]));
2320       __ movptr(rbx_temp, Address(rbx_temp, rdi_conv, Address::times_ptr));
2321 
2322 #ifdef ASSERT
2323       { Label L_badconv;
2324         __ testptr(rbx_temp, rbx_temp);
2325         __ jccb(Assembler::zero, L_badconv);
2326         __ jmp(rbx_temp);
2327         __ bind(L_badconv);
2328         __ stop("bad method handle return");
2329       }
2330 #else //ASSERT
2331       __ jmp(rbx_temp);
2332 #endif //ASSERT
2333       break;
2334     }
2335 
2336   case _adapter_opt_spread_0:
2337   case _adapter_opt_spread_1_ref:
2338   case _adapter_opt_spread_2_ref:
2339   case _adapter_opt_spread_3_ref:
2340   case _adapter_opt_spread_4_ref:
2341   case _adapter_opt_spread_5_ref:
2342   case _adapter_opt_spread_ref:
2343   case _adapter_opt_spread_byte:
2344   case _adapter_opt_spread_char:
2345   case _adapter_opt_spread_short:
2346   case _adapter_opt_spread_int:
2347   case _adapter_opt_spread_long:
2348   case _adapter_opt_spread_float:
2349   case _adapter_opt_spread_double:
2350     {
2351       // spread an array out into a group of arguments
2352       int length_constant = ek_adapter_opt_spread_count(ek);
2353       bool length_can_be_zero = (length_constant == 0);
2354       if (length_constant < 0) {
2355         // some adapters with variable length must handle the zero case
2356         if (!OptimizeMethodHandles ||
2357             ek_adapter_opt_spread_type(ek) != T_OBJECT)
2358           length_can_be_zero = true;
2359       }
2360 
2361       // find the address of the array argument
2362       __ movl(rax_argslot, rcx_amh_vmargslot);
2363       __ lea(rax_argslot, __ argument_address(rax_argslot));
2364 
2365       // grab another temp
2366       Register rsi_temp = rsi;
2367 
2368       // arx_argslot points both to the array and to the first output arg
2369       vmarg = Address(rax_argslot, 0);
2370 
2371       // Get the array value.
2372       Register  rdi_array       = rdi_temp;
2373       Register  rdx_array_klass = rdx_temp;
2374       BasicType elem_type = ek_adapter_opt_spread_type(ek);
2375       int       elem_slots = type2size[elem_type];  // 1 or 2
2376       int       array_slots = 1;  // array is always a T_OBJECT
2377       int       length_offset   = arrayOopDesc::length_offset_in_bytes();
2378       int       elem0_offset    = arrayOopDesc::base_offset_in_bytes(elem_type);
2379       __ movptr(rdi_array, vmarg);
2380 
2381       Label L_array_is_empty, L_insert_arg_space, L_copy_args, L_args_done;
2382       if (length_can_be_zero) {
2383         // handle the null pointer case, if zero is allowed
2384         Label L_skip;
2385         if (length_constant < 0) {
2386           load_conversion_vminfo(_masm, rbx_temp, rcx_amh_conversion);
2387           __ testl(rbx_temp, rbx_temp);
2388           __ jcc(Assembler::notZero, L_skip);
2389         }
2390         __ testptr(rdi_array, rdi_array);
2391         __ jcc(Assembler::notZero, L_skip);
2392 
2393         // If 'rsi' contains the 'saved_last_sp' (this is only the
2394         // case in a 32-bit version of the VM) we have to save 'rsi'
2395         // on the stack because later on (at 'L_array_is_empty') 'rsi'
2396         // will be overwritten.
2397         { if (rsi_temp == saved_last_sp)  __ push(saved_last_sp); }
2398         // Also prepare a handy macro which restores 'rsi' if required.
2399 #define UNPUSH_RSI                                                      \
2400         { if (rsi_temp == saved_last_sp)  __ pop(saved_last_sp); }
2401 
2402         __ jmp(L_array_is_empty);
2403         __ bind(L_skip);
2404       }
2405       __ null_check(rdi_array, oopDesc::klass_offset_in_bytes());
2406       __ load_klass(rdx_array_klass, rdi_array);
2407 
2408       // Save 'rsi' if required (see comment above).  Do this only
2409       // after the null check such that the exception handler which is
2410       // called in the case of a null pointer exception will not be
2411       // confused by the extra value on the stack (it expects the
2412       // return pointer on top of the stack)
2413       { if (rsi_temp == saved_last_sp)  __ push(saved_last_sp); }
2414 
2415       // Check the array type.
2416       Register rbx_klass = rbx_temp;
2417       __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
2418       load_klass_from_Class(_masm, rbx_klass);
2419 
2420       Label ok_array_klass, bad_array_klass, bad_array_length;
2421       __ check_klass_subtype(rdx_array_klass, rbx_klass, rsi_temp, ok_array_klass);
2422       // If we get here, the type check failed!
2423       __ jmp(bad_array_klass);
2424       __ BIND(ok_array_klass);
2425 
2426       // Check length.
2427       if (length_constant >= 0) {
2428         __ cmpl(Address(rdi_array, length_offset), length_constant);
2429       } else {
2430         Register rbx_vminfo = rbx_temp;
2431         load_conversion_vminfo(_masm, rbx_vminfo, rcx_amh_conversion);
2432         __ cmpl(rbx_vminfo, Address(rdi_array, length_offset));
2433       }
2434       __ jcc(Assembler::notEqual, bad_array_length);
2435 
2436       Register rdx_argslot_limit = rdx_temp;
2437 
2438       // Array length checks out.  Now insert any required stack slots.
2439       if (length_constant == -1) {
2440         // Form a pointer to the end of the affected region.
2441         __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize));
2442         // 'stack_move' is negative number of words to insert
2443         // This number already accounts for elem_slots.
2444         Register rsi_stack_move = rsi_temp;
2445         load_stack_move(_masm, rsi_stack_move, rcx_recv, true);
2446         __ cmpptr(rsi_stack_move, 0);
2447         assert(stack_move_unit() < 0, "else change this comparison");
2448         __ jcc(Assembler::less, L_insert_arg_space);
2449         __ jcc(Assembler::equal, L_copy_args);
2450         // single argument case, with no array movement
2451         __ BIND(L_array_is_empty);
2452         remove_arg_slots(_masm, -stack_move_unit() * array_slots,
2453                          rax_argslot, rbx_temp, rdx_temp);
2454         __ jmp(L_args_done);  // no spreading to do
2455         __ BIND(L_insert_arg_space);
2456         // come here in the usual case, stack_move < 0 (2 or more spread arguments)
2457         Register rdi_temp = rdi_array;  // spill this
2458         insert_arg_slots(_masm, rsi_stack_move,
2459                          rax_argslot, rbx_temp, rdi_temp);
2460         // reload the array since rsi was killed
2461         // reload from rdx_argslot_limit since rax_argslot is now decremented
2462         __ movptr(rdi_array, Address(rdx_argslot_limit, -Interpreter::stackElementSize));
2463       } else if (length_constant >= 1) {
2464         int new_slots = (length_constant * elem_slots) - array_slots;
2465         insert_arg_slots(_masm, new_slots * stack_move_unit(),
2466                          rax_argslot, rbx_temp, rdx_temp);
2467       } else if (length_constant == 0) {
2468         __ BIND(L_array_is_empty);
2469         remove_arg_slots(_masm, -stack_move_unit() * array_slots,
2470                          rax_argslot, rbx_temp, rdx_temp);
2471       } else {
2472         ShouldNotReachHere();
2473       }
2474 
2475       // Copy from the array to the new slots.
2476       // Note: Stack change code preserves integrity of rax_argslot pointer.
2477       // So even after slot insertions, rax_argslot still points to first argument.
2478       // Beware:  Arguments that are shallow on the stack are deep in the array,
2479       // and vice versa.  So a downward-growing stack (the usual) has to be copied
2480       // elementwise in reverse order from the source array.
2481       __ BIND(L_copy_args);
2482       if (length_constant == -1) {
2483         // [rax_argslot, rdx_argslot_limit) is the area we are inserting into.
2484         // Array element [0] goes at rdx_argslot_limit[-wordSize].
2485         Register rdi_source = rdi_array;
2486         __ lea(rdi_source, Address(rdi_array, elem0_offset));
2487         Register rdx_fill_ptr = rdx_argslot_limit;
2488         Label loop;
2489         __ BIND(loop);
2490         __ addptr(rdx_fill_ptr, -Interpreter::stackElementSize * elem_slots);
2491         move_typed_arg(_masm, elem_type, true,
2492                        Address(rdx_fill_ptr, 0), Address(rdi_source, 0),
2493                        rbx_temp, rsi_temp);
2494         __ addptr(rdi_source, type2aelembytes(elem_type));
2495         __ cmpptr(rdx_fill_ptr, rax_argslot);
2496         __ jcc(Assembler::above, loop);
2497       } else if (length_constant == 0) {
2498         // nothing to copy
2499       } else {
2500         int elem_offset = elem0_offset;
2501         int slot_offset = length_constant * Interpreter::stackElementSize;
2502         for (int index = 0; index < length_constant; index++) {
2503           slot_offset -= Interpreter::stackElementSize * elem_slots;  // fill backward
2504           move_typed_arg(_masm, elem_type, true,
2505                          Address(rax_argslot, slot_offset), Address(rdi_array, elem_offset),
2506                          rbx_temp, rsi_temp);
2507           elem_offset += type2aelembytes(elem_type);
2508         }
2509       }
2510       __ BIND(L_args_done);
2511 
2512       // Arguments are spread.  Move to next method handle.
2513       UNPUSH_RSI;
2514       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
2515       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
2516 
2517       __ bind(bad_array_klass);
2518       UNPUSH_RSI;
2519       assert(!vmarg.uses(rarg2_required), "must be different registers");
2520       __ load_heap_oop( rarg2_required, Address(rdx_array_klass, java_mirror_offset));  // required type
2521       __ movptr(        rarg1_actual,   vmarg);                                         // bad array
2522       __ movl(          rarg0_code,     (int) Bytecodes::_aaload);                      // who is complaining?
2523       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
2524 
2525       __ bind(bad_array_length);
2526       UNPUSH_RSI;
2527       assert(!vmarg.uses(rarg2_required), "must be different registers");
2528       __ mov(    rarg2_required, rcx_recv);                       // AMH requiring a certain length
2529       __ movptr( rarg1_actual,   vmarg);                          // bad array
2530       __ movl(   rarg0_code,     (int) Bytecodes::_arraylength);  // who is complaining?
2531       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
2532 #undef UNPUSH_RSI
2533 
2534       break;
2535     }
2536 
2537   default:
2538     // do not require all platforms to recognize all adapter types
2539     __ nop();
2540     return;
2541   }
2542   BLOCK_COMMENT(err_msg("} Entry %s", entry_name(ek)));
2543   __ hlt();
2544 
2545   address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
2546   __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
2547 
2548   init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));
2549 }