1 /*
   2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/parse.hpp"
  37 #include "opto/runtime.hpp"
  38 #include "opto/subnode.hpp"
  39 #include "prims/nativeLookup.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 
  42 class LibraryIntrinsic : public InlineCallGenerator {
  43   // Extend the set of intrinsics known to the runtime:
  44  public:
  45  private:
  46   bool             _is_virtual;
  47   vmIntrinsics::ID _intrinsic_id;
  48 
  49  public:
  50   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
  51     : InlineCallGenerator(m),
  52       _is_virtual(is_virtual),
  53       _intrinsic_id(id)
  54   {
  55   }
  56   virtual bool is_intrinsic() const { return true; }
  57   virtual bool is_virtual()   const { return _is_virtual; }
  58   virtual JVMState* generate(JVMState* jvms);
  59   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  60 };
  61 
  62 
  63 // Local helper class for LibraryIntrinsic:
  64 class LibraryCallKit : public GraphKit {
  65  private:
  66   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
  67 
  68   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  69 
  70  public:
  71   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
  72     : GraphKit(caller),
  73       _intrinsic(intrinsic)
  74   {
  75   }
  76 
  77   ciMethod*         caller()    const    { return jvms()->method(); }
  78   int               bci()       const    { return jvms()->bci(); }
  79   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
  80   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
  81   ciMethod*         callee()    const    { return _intrinsic->method(); }
  82   ciSignature*      signature() const    { return callee()->signature(); }
  83   int               arg_size()  const    { return callee()->arg_size(); }
  84 
  85   bool try_to_inline();
  86 
  87   // Helper functions to inline natives
  88   void push_result(RegionNode* region, PhiNode* value);
  89   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
  90   Node* generate_slow_guard(Node* test, RegionNode* region);
  91   Node* generate_fair_guard(Node* test, RegionNode* region);
  92   Node* generate_negative_guard(Node* index, RegionNode* region,
  93                                 // resulting CastII of index:
  94                                 Node* *pos_index = NULL);
  95   Node* generate_nonpositive_guard(Node* index, bool never_negative,
  96                                    // resulting CastII of index:
  97                                    Node* *pos_index = NULL);
  98   Node* generate_limit_guard(Node* offset, Node* subseq_length,
  99                              Node* array_length,
 100                              RegionNode* region);
 101   Node* generate_current_thread(Node* &tls_output);
 102   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 103                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 104   Node* load_mirror_from_klass(Node* klass);
 105   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 106                                       int nargs,
 107                                       RegionNode* region, int null_path,
 108                                       int offset);
 109   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
 110                                RegionNode* region, int null_path) {
 111     int offset = java_lang_Class::klass_offset_in_bytes();
 112     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
 113                                          region, null_path,
 114                                          offset);
 115   }
 116   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 117                                      int nargs,
 118                                      RegionNode* region, int null_path) {
 119     int offset = java_lang_Class::array_klass_offset_in_bytes();
 120     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
 121                                          region, null_path,
 122                                          offset);
 123   }
 124   Node* generate_access_flags_guard(Node* kls,
 125                                     int modifier_mask, int modifier_bits,
 126                                     RegionNode* region);
 127   Node* generate_interface_guard(Node* kls, RegionNode* region);
 128   Node* generate_array_guard(Node* kls, RegionNode* region) {
 129     return generate_array_guard_common(kls, region, false, false);
 130   }
 131   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 132     return generate_array_guard_common(kls, region, false, true);
 133   }
 134   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 135     return generate_array_guard_common(kls, region, true, false);
 136   }
 137   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 138     return generate_array_guard_common(kls, region, true, true);
 139   }
 140   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 141                                     bool obj_array, bool not_array);
 142   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 143   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 144                                      bool is_virtual = false, bool is_static = false);
 145   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 146     return generate_method_call(method_id, false, true);
 147   }
 148   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 149     return generate_method_call(method_id, true, false);
 150   }
 151 
 152   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 153   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 154   bool inline_string_compareTo();
 155   bool inline_string_indexOf();
 156   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 157   bool inline_string_equals();
 158   Node* pop_math_arg();
 159   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 160   bool inline_math_native(vmIntrinsics::ID id);
 161   bool inline_trig(vmIntrinsics::ID id);
 162   bool inline_trans(vmIntrinsics::ID id);
 163   bool inline_abs(vmIntrinsics::ID id);
 164   bool inline_sqrt(vmIntrinsics::ID id);
 165   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 166   bool inline_pow(vmIntrinsics::ID id);
 167   bool inline_exp(vmIntrinsics::ID id);
 168   bool inline_min_max(vmIntrinsics::ID id);
 169   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 170   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 171   int classify_unsafe_addr(Node* &base, Node* &offset);
 172   Node* make_unsafe_address(Node* base, Node* offset);
 173   // Helper for inline_unsafe_access.
 174   // Generates the guards that check whether the result of
 175   // Unsafe.getObject should be recorded in an SATB log buffer.
 176   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, int nargs, bool need_mem_bar);
 177   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 178   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 179   bool inline_unsafe_allocate();
 180   bool inline_unsafe_copyMemory();
 181   bool inline_native_currentThread();
 182 #ifdef TRACE_HAVE_INTRINSICS
 183   bool inline_native_classID();
 184   bool inline_native_threadID();
 185 #endif
 186   bool inline_native_time_funcs(address method, const char* funcName);
 187   bool inline_native_isInterrupted();
 188   bool inline_native_Class_query(vmIntrinsics::ID id);
 189   bool inline_native_subtype_check();
 190 
 191   bool inline_native_newArray();
 192   bool inline_native_getLength();
 193   bool inline_array_copyOf(bool is_copyOfRange);
 194   bool inline_array_equals();
 195   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 196   bool inline_native_clone(bool is_virtual);
 197   bool inline_native_Reflection_getCallerClass();
 198   bool is_method_invoke_or_aux_frame(JVMState* jvms);
 199   // Helper function for inlining native object hash method
 200   bool inline_native_hashcode(bool is_virtual, bool is_static);
 201   bool inline_native_getClass();
 202 
 203   // Helper functions for inlining arraycopy
 204   bool inline_arraycopy();
 205   void generate_arraycopy(const TypePtr* adr_type,
 206                           BasicType basic_elem_type,
 207                           Node* src,  Node* src_offset,
 208                           Node* dest, Node* dest_offset,
 209                           Node* copy_length,
 210                           bool disjoint_bases = false,
 211                           bool length_never_negative = false,
 212                           RegionNode* slow_region = NULL);
 213   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 214                                                 RegionNode* slow_region);
 215   void generate_clear_array(const TypePtr* adr_type,
 216                             Node* dest,
 217                             BasicType basic_elem_type,
 218                             Node* slice_off,
 219                             Node* slice_len,
 220                             Node* slice_end);
 221   bool generate_block_arraycopy(const TypePtr* adr_type,
 222                                 BasicType basic_elem_type,
 223                                 AllocateNode* alloc,
 224                                 Node* src,  Node* src_offset,
 225                                 Node* dest, Node* dest_offset,
 226                                 Node* dest_size, bool dest_uninitialized);
 227   void generate_slow_arraycopy(const TypePtr* adr_type,
 228                                Node* src,  Node* src_offset,
 229                                Node* dest, Node* dest_offset,
 230                                Node* copy_length, bool dest_uninitialized);
 231   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 232                                      Node* dest_elem_klass,
 233                                      Node* src,  Node* src_offset,
 234                                      Node* dest, Node* dest_offset,
 235                                      Node* copy_length, bool dest_uninitialized);
 236   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 237                                    Node* src,  Node* src_offset,
 238                                    Node* dest, Node* dest_offset,
 239                                    Node* copy_length, bool dest_uninitialized);
 240   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 241                                     BasicType basic_elem_type,
 242                                     bool disjoint_bases,
 243                                     Node* src,  Node* src_offset,
 244                                     Node* dest, Node* dest_offset,
 245                                     Node* copy_length, bool dest_uninitialized);
 246   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 247   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 248   bool inline_unsafe_ordered_store(BasicType type);
 249   bool inline_fp_conversions(vmIntrinsics::ID id);
 250   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
 251   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
 252   bool inline_bitCount(vmIntrinsics::ID id);
 253   bool inline_reverseBytes(vmIntrinsics::ID id);
 254 
 255   bool inline_reference_get();
 256 };
 257 
 258 
 259 //---------------------------make_vm_intrinsic----------------------------
 260 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 261   vmIntrinsics::ID id = m->intrinsic_id();
 262   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 263 
 264   if (DisableIntrinsic[0] != '\0'
 265       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 266     // disabled by a user request on the command line:
 267     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 268     return NULL;
 269   }
 270 
 271   if (!m->is_loaded()) {
 272     // do not attempt to inline unloaded methods
 273     return NULL;
 274   }
 275 
 276   // Only a few intrinsics implement a virtual dispatch.
 277   // They are expensive calls which are also frequently overridden.
 278   if (is_virtual) {
 279     switch (id) {
 280     case vmIntrinsics::_hashCode:
 281     case vmIntrinsics::_clone:
 282       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 283       break;
 284     default:
 285       return NULL;
 286     }
 287   }
 288 
 289   // -XX:-InlineNatives disables nearly all intrinsics:
 290   if (!InlineNatives) {
 291     switch (id) {
 292     case vmIntrinsics::_indexOf:
 293     case vmIntrinsics::_compareTo:
 294     case vmIntrinsics::_equals:
 295     case vmIntrinsics::_equalsC:
 296     case vmIntrinsics::_getAndAddInt:
 297     case vmIntrinsics::_getAndAddLong:
 298     case vmIntrinsics::_getAndSetInt:
 299     case vmIntrinsics::_getAndSetLong:
 300     case vmIntrinsics::_getAndSetObject:
 301       break;  // InlineNatives does not control String.compareTo
 302     case vmIntrinsics::_Reference_get:
 303       break;  // InlineNatives does not control Reference.get
 304     default:
 305       return NULL;
 306     }
 307   }
 308 
 309   switch (id) {
 310   case vmIntrinsics::_compareTo:
 311     if (!SpecialStringCompareTo)  return NULL;
 312     break;
 313   case vmIntrinsics::_indexOf:
 314     if (!SpecialStringIndexOf)  return NULL;
 315     break;
 316   case vmIntrinsics::_equals:
 317     if (!SpecialStringEquals)  return NULL;
 318     break;
 319   case vmIntrinsics::_equalsC:
 320     if (!SpecialArraysEquals)  return NULL;
 321     break;
 322   case vmIntrinsics::_arraycopy:
 323     if (!InlineArrayCopy)  return NULL;
 324     break;
 325   case vmIntrinsics::_copyMemory:
 326     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 327     if (!InlineArrayCopy)  return NULL;
 328     break;
 329   case vmIntrinsics::_hashCode:
 330     if (!InlineObjectHash)  return NULL;
 331     break;
 332   case vmIntrinsics::_clone:
 333   case vmIntrinsics::_copyOf:
 334   case vmIntrinsics::_copyOfRange:
 335     if (!InlineObjectCopy)  return NULL;
 336     // These also use the arraycopy intrinsic mechanism:
 337     if (!InlineArrayCopy)  return NULL;
 338     break;
 339   case vmIntrinsics::_checkIndex:
 340     // We do not intrinsify this.  The optimizer does fine with it.
 341     return NULL;
 342 
 343   case vmIntrinsics::_getCallerClass:
 344     if (!UseNewReflection)  return NULL;
 345     if (!InlineReflectionGetCallerClass)  return NULL;
 346     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
 347     break;
 348 
 349   case vmIntrinsics::_bitCount_i:
 350     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 351     break;
 352 
 353   case vmIntrinsics::_bitCount_l:
 354     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 355     break;
 356 
 357   case vmIntrinsics::_numberOfLeadingZeros_i:
 358     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 359     break;
 360 
 361   case vmIntrinsics::_numberOfLeadingZeros_l:
 362     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 363     break;
 364 
 365   case vmIntrinsics::_numberOfTrailingZeros_i:
 366     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 367     break;
 368 
 369   case vmIntrinsics::_numberOfTrailingZeros_l:
 370     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 371     break;
 372 
 373   case vmIntrinsics::_Reference_get:
 374     // Use the intrinsic version of Reference.get() so that the value in
 375     // the referent field can be registered by the G1 pre-barrier code.
 376     // Also add memory barrier to prevent commoning reads from this field
 377     // across safepoint since GC can change it value.
 378     break;
 379 
 380   case vmIntrinsics::_compareAndSwapObject:
 381 #ifdef _LP64
 382     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 383 #endif
 384     break;
 385 
 386   case vmIntrinsics::_compareAndSwapLong:
 387     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 388     break;
 389 
 390   case vmIntrinsics::_getAndAddInt:
 391     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 392     break;
 393 
 394   case vmIntrinsics::_getAndAddLong:
 395     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 396     break;
 397 
 398   case vmIntrinsics::_getAndSetInt:
 399     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 400     break;
 401 
 402   case vmIntrinsics::_getAndSetLong:
 403     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 404     break;
 405 
 406   case vmIntrinsics::_getAndSetObject:
 407 #ifdef _LP64
 408     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 409     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 410     break;
 411 #else
 412     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 413     break;
 414 #endif
 415 
 416  default:
 417     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 418     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 419     break;
 420   }
 421 
 422   // -XX:-InlineClassNatives disables natives from the Class class.
 423   // The flag applies to all reflective calls, notably Array.newArray
 424   // (visible to Java programmers as Array.newInstance).
 425   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 426       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 427     if (!InlineClassNatives)  return NULL;
 428   }
 429 
 430   // -XX:-InlineThreadNatives disables natives from the Thread class.
 431   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 432     if (!InlineThreadNatives)  return NULL;
 433   }
 434 
 435   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 436   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 437       m->holder()->name() == ciSymbol::java_lang_Float() ||
 438       m->holder()->name() == ciSymbol::java_lang_Double()) {
 439     if (!InlineMathNatives)  return NULL;
 440   }
 441 
 442   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 443   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 444     if (!InlineUnsafeOps)  return NULL;
 445   }
 446 
 447   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
 448 }
 449 
 450 //----------------------register_library_intrinsics-----------------------
 451 // Initialize this file's data structures, for each Compile instance.
 452 void Compile::register_library_intrinsics() {
 453   // Nothing to do here.
 454 }
 455 
 456 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 457   LibraryCallKit kit(jvms, this);
 458   Compile* C = kit.C;
 459   int nodes = C->unique();
 460 #ifndef PRODUCT
 461   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 462     char buf[1000];
 463     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 464     tty->print_cr("Intrinsic %s", str);
 465   }
 466 #endif
 467 
 468   if (kit.try_to_inline()) {
 469     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 470       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 471     }
 472     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 473     if (C->log()) {
 474       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 475                      vmIntrinsics::name_at(intrinsic_id()),
 476                      (is_virtual() ? " virtual='1'" : ""),
 477                      C->unique() - nodes);
 478     }
 479     return kit.transfer_exceptions_into_jvms();
 480   }
 481 
 482   // The intrinsic bailed out
 483   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 484     if (jvms->has_method()) {
 485       // Not a root compile.
 486       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 487       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), msg);
 488     } else {
 489       // Root compile
 490       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 491                vmIntrinsics::name_at(intrinsic_id()),
 492                (is_virtual() ? " (virtual)" : ""), kit.bci());
 493     }
 494   }
 495   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 496   return NULL;
 497 }
 498 
 499 bool LibraryCallKit::try_to_inline() {
 500   // Handle symbolic names for otherwise undistinguished boolean switches:
 501   const bool is_store       = true;
 502   const bool is_native_ptr  = true;
 503   const bool is_static      = true;
 504 
 505   if (!jvms()->has_method()) {
 506     // Root JVMState has a null method.
 507     assert(map()->memory()->Opcode() == Op_Parm, "");
 508     // Insert the memory aliasing node
 509     set_all_memory(reset_memory());
 510   }
 511   assert(merged_memory(), "");
 512 
 513   switch (intrinsic_id()) {
 514   case vmIntrinsics::_hashCode:
 515     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 516   case vmIntrinsics::_identityHashCode:
 517     return inline_native_hashcode(/*!virtual*/ false, is_static);
 518   case vmIntrinsics::_getClass:
 519     return inline_native_getClass();
 520 
 521   case vmIntrinsics::_dsin:
 522   case vmIntrinsics::_dcos:
 523   case vmIntrinsics::_dtan:
 524   case vmIntrinsics::_dabs:
 525   case vmIntrinsics::_datan2:
 526   case vmIntrinsics::_dsqrt:
 527   case vmIntrinsics::_dexp:
 528   case vmIntrinsics::_dlog:
 529   case vmIntrinsics::_dlog10:
 530   case vmIntrinsics::_dpow:
 531     return inline_math_native(intrinsic_id());
 532 
 533   case vmIntrinsics::_min:
 534   case vmIntrinsics::_max:
 535     return inline_min_max(intrinsic_id());
 536 
 537   case vmIntrinsics::_arraycopy:
 538     return inline_arraycopy();
 539 
 540   case vmIntrinsics::_compareTo:
 541     return inline_string_compareTo();
 542   case vmIntrinsics::_indexOf:
 543     return inline_string_indexOf();
 544   case vmIntrinsics::_equals:
 545     return inline_string_equals();
 546 
 547   case vmIntrinsics::_getObject:
 548     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
 549   case vmIntrinsics::_getBoolean:
 550     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
 551   case vmIntrinsics::_getByte:
 552     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
 553   case vmIntrinsics::_getShort:
 554     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
 555   case vmIntrinsics::_getChar:
 556     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
 557   case vmIntrinsics::_getInt:
 558     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
 559   case vmIntrinsics::_getLong:
 560     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
 561   case vmIntrinsics::_getFloat:
 562     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
 563   case vmIntrinsics::_getDouble:
 564     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
 565 
 566   case vmIntrinsics::_putObject:
 567     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
 568   case vmIntrinsics::_putBoolean:
 569     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
 570   case vmIntrinsics::_putByte:
 571     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
 572   case vmIntrinsics::_putShort:
 573     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
 574   case vmIntrinsics::_putChar:
 575     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
 576   case vmIntrinsics::_putInt:
 577     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
 578   case vmIntrinsics::_putLong:
 579     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
 580   case vmIntrinsics::_putFloat:
 581     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
 582   case vmIntrinsics::_putDouble:
 583     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
 584 
 585   case vmIntrinsics::_getByte_raw:
 586     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
 587   case vmIntrinsics::_getShort_raw:
 588     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
 589   case vmIntrinsics::_getChar_raw:
 590     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
 591   case vmIntrinsics::_getInt_raw:
 592     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
 593   case vmIntrinsics::_getLong_raw:
 594     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
 595   case vmIntrinsics::_getFloat_raw:
 596     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
 597   case vmIntrinsics::_getDouble_raw:
 598     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
 599   case vmIntrinsics::_getAddress_raw:
 600     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
 601 
 602   case vmIntrinsics::_putByte_raw:
 603     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
 604   case vmIntrinsics::_putShort_raw:
 605     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
 606   case vmIntrinsics::_putChar_raw:
 607     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
 608   case vmIntrinsics::_putInt_raw:
 609     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
 610   case vmIntrinsics::_putLong_raw:
 611     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
 612   case vmIntrinsics::_putFloat_raw:
 613     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
 614   case vmIntrinsics::_putDouble_raw:
 615     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
 616   case vmIntrinsics::_putAddress_raw:
 617     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
 618 
 619   case vmIntrinsics::_getObjectVolatile:
 620     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
 621   case vmIntrinsics::_getBooleanVolatile:
 622     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
 623   case vmIntrinsics::_getByteVolatile:
 624     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
 625   case vmIntrinsics::_getShortVolatile:
 626     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
 627   case vmIntrinsics::_getCharVolatile:
 628     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
 629   case vmIntrinsics::_getIntVolatile:
 630     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
 631   case vmIntrinsics::_getLongVolatile:
 632     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
 633   case vmIntrinsics::_getFloatVolatile:
 634     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
 635   case vmIntrinsics::_getDoubleVolatile:
 636     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
 637 
 638   case vmIntrinsics::_putObjectVolatile:
 639     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
 640   case vmIntrinsics::_putBooleanVolatile:
 641     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
 642   case vmIntrinsics::_putByteVolatile:
 643     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
 644   case vmIntrinsics::_putShortVolatile:
 645     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
 646   case vmIntrinsics::_putCharVolatile:
 647     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
 648   case vmIntrinsics::_putIntVolatile:
 649     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
 650   case vmIntrinsics::_putLongVolatile:
 651     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
 652   case vmIntrinsics::_putFloatVolatile:
 653     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
 654   case vmIntrinsics::_putDoubleVolatile:
 655     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
 656 
 657   case vmIntrinsics::_prefetchRead:
 658     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 659   case vmIntrinsics::_prefetchWrite:
 660     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
 661   case vmIntrinsics::_prefetchReadStatic:
 662     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
 663   case vmIntrinsics::_prefetchWriteStatic:
 664     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
 665 
 666   case vmIntrinsics::_compareAndSwapObject:
 667     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 668   case vmIntrinsics::_compareAndSwapInt:
 669     return inline_unsafe_load_store(T_INT, LS_cmpxchg);
 670   case vmIntrinsics::_compareAndSwapLong:
 671     return inline_unsafe_load_store(T_LONG, LS_cmpxchg);
 672 
 673   case vmIntrinsics::_putOrderedObject:
 674     return inline_unsafe_ordered_store(T_OBJECT);
 675   case vmIntrinsics::_putOrderedInt:
 676     return inline_unsafe_ordered_store(T_INT);
 677   case vmIntrinsics::_putOrderedLong:
 678     return inline_unsafe_ordered_store(T_LONG);
 679 
 680   case vmIntrinsics::_getAndAddInt:
 681     return inline_unsafe_load_store(T_INT, LS_xadd);
 682   case vmIntrinsics::_getAndAddLong:
 683     return inline_unsafe_load_store(T_LONG, LS_xadd);
 684   case vmIntrinsics::_getAndSetInt:
 685     return inline_unsafe_load_store(T_INT, LS_xchg);
 686   case vmIntrinsics::_getAndSetLong:
 687     return inline_unsafe_load_store(T_LONG, LS_xchg);
 688   case vmIntrinsics::_getAndSetObject:
 689     return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 690 
 691   case vmIntrinsics::_currentThread:
 692     return inline_native_currentThread();
 693   case vmIntrinsics::_isInterrupted:
 694     return inline_native_isInterrupted();
 695 
 696 #ifdef TRACE_HAVE_INTRINSICS
 697   case vmIntrinsics::_classID:
 698     return inline_native_classID();
 699   case vmIntrinsics::_threadID:
 700     return inline_native_threadID();
 701   case vmIntrinsics::_counterTime:
 702     return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 703 #endif
 704   case vmIntrinsics::_currentTimeMillis:
 705     return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 706   case vmIntrinsics::_nanoTime:
 707     return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 708   case vmIntrinsics::_allocateInstance:
 709     return inline_unsafe_allocate();
 710   case vmIntrinsics::_copyMemory:
 711     return inline_unsafe_copyMemory();
 712   case vmIntrinsics::_newArray:
 713     return inline_native_newArray();
 714   case vmIntrinsics::_getLength:
 715     return inline_native_getLength();
 716   case vmIntrinsics::_copyOf:
 717     return inline_array_copyOf(false);
 718   case vmIntrinsics::_copyOfRange:
 719     return inline_array_copyOf(true);
 720   case vmIntrinsics::_equalsC:
 721     return inline_array_equals();
 722   case vmIntrinsics::_clone:
 723     return inline_native_clone(intrinsic()->is_virtual());
 724 
 725   case vmIntrinsics::_isAssignableFrom:
 726     return inline_native_subtype_check();
 727 
 728   case vmIntrinsics::_isInstance:
 729   case vmIntrinsics::_getModifiers:
 730   case vmIntrinsics::_isInterface:
 731   case vmIntrinsics::_isArray:
 732   case vmIntrinsics::_isPrimitive:
 733   case vmIntrinsics::_getSuperclass:
 734   case vmIntrinsics::_getComponentType:
 735   case vmIntrinsics::_getClassAccessFlags:
 736     return inline_native_Class_query(intrinsic_id());
 737 
 738   case vmIntrinsics::_floatToRawIntBits:
 739   case vmIntrinsics::_floatToIntBits:
 740   case vmIntrinsics::_intBitsToFloat:
 741   case vmIntrinsics::_doubleToRawLongBits:
 742   case vmIntrinsics::_doubleToLongBits:
 743   case vmIntrinsics::_longBitsToDouble:
 744     return inline_fp_conversions(intrinsic_id());
 745 
 746   case vmIntrinsics::_numberOfLeadingZeros_i:
 747   case vmIntrinsics::_numberOfLeadingZeros_l:
 748     return inline_numberOfLeadingZeros(intrinsic_id());
 749 
 750   case vmIntrinsics::_numberOfTrailingZeros_i:
 751   case vmIntrinsics::_numberOfTrailingZeros_l:
 752     return inline_numberOfTrailingZeros(intrinsic_id());
 753 
 754   case vmIntrinsics::_bitCount_i:
 755   case vmIntrinsics::_bitCount_l:
 756     return inline_bitCount(intrinsic_id());
 757 
 758   case vmIntrinsics::_reverseBytes_i:
 759   case vmIntrinsics::_reverseBytes_l:
 760   case vmIntrinsics::_reverseBytes_s:
 761   case vmIntrinsics::_reverseBytes_c:
 762     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
 763 
 764   case vmIntrinsics::_getCallerClass:
 765     return inline_native_Reflection_getCallerClass();
 766 
 767   case vmIntrinsics::_Reference_get:
 768     return inline_reference_get();
 769 
 770   default:
 771     // If you get here, it may be that someone has added a new intrinsic
 772     // to the list in vmSymbols.hpp without implementing it here.
 773 #ifndef PRODUCT
 774     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 775       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 776                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 777     }
 778 #endif
 779     return false;
 780   }
 781 }
 782 
 783 //------------------------------push_result------------------------------
 784 // Helper function for finishing intrinsics.
 785 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
 786   record_for_igvn(region);
 787   set_control(_gvn.transform(region));
 788   BasicType value_type = value->type()->basic_type();
 789   push_node(value_type, _gvn.transform(value));
 790 }
 791 
 792 //------------------------------generate_guard---------------------------
 793 // Helper function for generating guarded fast-slow graph structures.
 794 // The given 'test', if true, guards a slow path.  If the test fails
 795 // then a fast path can be taken.  (We generally hope it fails.)
 796 // In all cases, GraphKit::control() is updated to the fast path.
 797 // The returned value represents the control for the slow path.
 798 // The return value is never 'top'; it is either a valid control
 799 // or NULL if it is obvious that the slow path can never be taken.
 800 // Also, if region and the slow control are not NULL, the slow edge
 801 // is appended to the region.
 802 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 803   if (stopped()) {
 804     // Already short circuited.
 805     return NULL;
 806   }
 807 
 808   // Build an if node and its projections.
 809   // If test is true we take the slow path, which we assume is uncommon.
 810   if (_gvn.type(test) == TypeInt::ZERO) {
 811     // The slow branch is never taken.  No need to build this guard.
 812     return NULL;
 813   }
 814 
 815   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 816 
 817   Node* if_slow = _gvn.transform( new (C) IfTrueNode(iff) );
 818   if (if_slow == top()) {
 819     // The slow branch is never taken.  No need to build this guard.
 820     return NULL;
 821   }
 822 
 823   if (region != NULL)
 824     region->add_req(if_slow);
 825 
 826   Node* if_fast = _gvn.transform( new (C) IfFalseNode(iff) );
 827   set_control(if_fast);
 828 
 829   return if_slow;
 830 }
 831 
 832 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 833   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 834 }
 835 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 836   return generate_guard(test, region, PROB_FAIR);
 837 }
 838 
 839 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 840                                                      Node* *pos_index) {
 841   if (stopped())
 842     return NULL;                // already stopped
 843   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 844     return NULL;                // index is already adequately typed
 845   Node* cmp_lt = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
 846   Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
 847   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 848   if (is_neg != NULL && pos_index != NULL) {
 849     // Emulate effect of Parse::adjust_map_after_if.
 850     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
 851     ccast->set_req(0, control());
 852     (*pos_index) = _gvn.transform(ccast);
 853   }
 854   return is_neg;
 855 }
 856 
 857 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
 858                                                         Node* *pos_index) {
 859   if (stopped())
 860     return NULL;                // already stopped
 861   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 862     return NULL;                // index is already adequately typed
 863   Node* cmp_le = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
 864   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 865   Node* bol_le = _gvn.transform( new (C) BoolNode(cmp_le, le_or_eq) );
 866   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
 867   if (is_notp != NULL && pos_index != NULL) {
 868     // Emulate effect of Parse::adjust_map_after_if.
 869     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
 870     ccast->set_req(0, control());
 871     (*pos_index) = _gvn.transform(ccast);
 872   }
 873   return is_notp;
 874 }
 875 
 876 // Make sure that 'position' is a valid limit index, in [0..length].
 877 // There are two equivalent plans for checking this:
 878 //   A. (offset + copyLength)  unsigned<=  arrayLength
 879 //   B. offset  <=  (arrayLength - copyLength)
 880 // We require that all of the values above, except for the sum and
 881 // difference, are already known to be non-negative.
 882 // Plan A is robust in the face of overflow, if offset and copyLength
 883 // are both hugely positive.
 884 //
 885 // Plan B is less direct and intuitive, but it does not overflow at
 886 // all, since the difference of two non-negatives is always
 887 // representable.  Whenever Java methods must perform the equivalent
 888 // check they generally use Plan B instead of Plan A.
 889 // For the moment we use Plan A.
 890 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 891                                                   Node* subseq_length,
 892                                                   Node* array_length,
 893                                                   RegionNode* region) {
 894   if (stopped())
 895     return NULL;                // already stopped
 896   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 897   if (zero_offset && subseq_length->eqv_uncast(array_length))
 898     return NULL;                // common case of whole-array copy
 899   Node* last = subseq_length;
 900   if (!zero_offset)             // last += offset
 901     last = _gvn.transform( new (C) AddINode(last, offset));
 902   Node* cmp_lt = _gvn.transform( new (C) CmpUNode(array_length, last) );
 903   Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
 904   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 905   return is_over;
 906 }
 907 
 908 
 909 //--------------------------generate_current_thread--------------------
 910 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 911   ciKlass*    thread_klass = env()->Thread_klass();
 912   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 913   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
 914   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
 915   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
 916   tls_output = thread;
 917   return threadObj;
 918 }
 919 
 920 
 921 //------------------------------make_string_method_node------------------------
 922 // Helper method for String intrinsic functions. This version is called
 923 // with str1 and str2 pointing to String object nodes.
 924 //
 925 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
 926   Node* no_ctrl = NULL;
 927 
 928   // Get start addr of string
 929   Node* str1_value   = load_String_value(no_ctrl, str1);
 930   Node* str1_offset  = load_String_offset(no_ctrl, str1);
 931   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
 932 
 933   // Get length of string 1
 934   Node* str1_len  = load_String_length(no_ctrl, str1);
 935 
 936   Node* str2_value   = load_String_value(no_ctrl, str2);
 937   Node* str2_offset  = load_String_offset(no_ctrl, str2);
 938   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
 939 
 940   Node* str2_len = NULL;
 941   Node* result = NULL;
 942 
 943   switch (opcode) {
 944   case Op_StrIndexOf:
 945     // Get length of string 2
 946     str2_len = load_String_length(no_ctrl, str2);
 947 
 948     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
 949                                  str1_start, str1_len, str2_start, str2_len);
 950     break;
 951   case Op_StrComp:
 952     // Get length of string 2
 953     str2_len = load_String_length(no_ctrl, str2);
 954 
 955     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
 956                                  str1_start, str1_len, str2_start, str2_len);
 957     break;
 958   case Op_StrEquals:
 959     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
 960                                str1_start, str2_start, str1_len);
 961     break;
 962   default:
 963     ShouldNotReachHere();
 964     return NULL;
 965   }
 966 
 967   // All these intrinsics have checks.
 968   C->set_has_split_ifs(true); // Has chance for split-if optimization
 969 
 970   return _gvn.transform(result);
 971 }
 972 
 973 // Helper method for String intrinsic functions. This version is called
 974 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
 975 // to Int nodes containing the lenghts of str1 and str2.
 976 //
 977 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
 978 
 979   Node* result = NULL;
 980   switch (opcode) {
 981   case Op_StrIndexOf:
 982     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
 983                                  str1_start, cnt1, str2_start, cnt2);
 984     break;
 985   case Op_StrComp:
 986     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
 987                                  str1_start, cnt1, str2_start, cnt2);
 988     break;
 989   case Op_StrEquals:
 990     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
 991                                  str1_start, str2_start, cnt1);
 992     break;
 993   default:
 994     ShouldNotReachHere();
 995     return NULL;
 996   }
 997 
 998   // All these intrinsics have checks.
 999   C->set_has_split_ifs(true); // Has chance for split-if optimization
1000 
1001   return _gvn.transform(result);
1002 }
1003 
1004 //------------------------------inline_string_compareTo------------------------
1005 bool LibraryCallKit::inline_string_compareTo() {
1006 
1007   if (!Matcher::has_match_rule(Op_StrComp)) return false;
1008 
1009   _sp += 2;
1010   Node *argument = pop();  // pop non-receiver first:  it was pushed second
1011   Node *receiver = pop();
1012 
1013   // Null check on self without removing any arguments.  The argument
1014   // null check technically happens in the wrong place, which can lead to
1015   // invalid stack traces when string compare is inlined into a method
1016   // which handles NullPointerExceptions.
1017   _sp += 2;
1018   receiver = do_null_check(receiver, T_OBJECT);
1019   argument = do_null_check(argument, T_OBJECT);
1020   _sp -= 2;
1021   if (stopped()) {
1022     return true;
1023   }
1024 
1025   Node* compare = make_string_method_node(Op_StrComp, receiver, argument);
1026   push(compare);
1027   return true;
1028 }
1029 
1030 //------------------------------inline_string_equals------------------------
1031 bool LibraryCallKit::inline_string_equals() {
1032 
1033   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
1034 
1035   int nargs = 2;
1036   _sp += nargs;
1037   Node* argument = pop();  // pop non-receiver first:  it was pushed second
1038   Node* receiver = pop();
1039 
1040   // Null check on self without removing any arguments.  The argument
1041   // null check technically happens in the wrong place, which can lead to
1042   // invalid stack traces when string compare is inlined into a method
1043   // which handles NullPointerExceptions.
1044   _sp += nargs;
1045   receiver = do_null_check(receiver, T_OBJECT);
1046   //should not do null check for argument for String.equals(), because spec
1047   //allows to specify NULL as argument.
1048   _sp -= nargs;
1049 
1050   if (stopped()) {
1051     return true;
1052   }
1053 
1054   // paths (plus control) merge
1055   RegionNode* region = new (C) RegionNode(5);
1056   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1057 
1058   // does source == target string?
1059   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1060   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1061 
1062   Node* if_eq = generate_slow_guard(bol, NULL);
1063   if (if_eq != NULL) {
1064     // receiver == argument
1065     phi->init_req(2, intcon(1));
1066     region->init_req(2, if_eq);
1067   }
1068 
1069   // get String klass for instanceOf
1070   ciInstanceKlass* klass = env()->String_klass();
1071 
1072   if (!stopped()) {
1073     _sp += nargs;          // gen_instanceof might do an uncommon trap
1074     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1075     _sp -= nargs;
1076     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1077     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1078 
1079     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1080     //instanceOf == true, fallthrough
1081 
1082     if (inst_false != NULL) {
1083       phi->init_req(3, intcon(0));
1084       region->init_req(3, inst_false);
1085     }
1086   }
1087 
1088   if (!stopped()) {
1089     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1090 
1091     // Properly cast the argument to String
1092     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1093     // This path is taken only when argument's type is String:NotNull.
1094     argument = cast_not_null(argument, false);
1095 
1096     Node* no_ctrl = NULL;
1097 
1098     // Get start addr of receiver
1099     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1100     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1101     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1102 
1103     // Get length of receiver
1104     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1105 
1106     // Get start addr of argument
1107     Node* argument_val   = load_String_value(no_ctrl, argument);
1108     Node* argument_offset = load_String_offset(no_ctrl, argument);
1109     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1110 
1111     // Get length of argument
1112     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1113 
1114     // Check for receiver count != argument count
1115     Node* cmp = _gvn.transform( new(C) CmpINode(receiver_cnt, argument_cnt) );
1116     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::ne) );
1117     Node* if_ne = generate_slow_guard(bol, NULL);
1118     if (if_ne != NULL) {
1119       phi->init_req(4, intcon(0));
1120       region->init_req(4, if_ne);
1121     }
1122 
1123     // Check for count == 0 is done by assembler code for StrEquals.
1124 
1125     if (!stopped()) {
1126       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1127       phi->init_req(1, equals);
1128       region->init_req(1, control());
1129     }
1130   }
1131 
1132   // post merge
1133   set_control(_gvn.transform(region));
1134   record_for_igvn(region);
1135 
1136   push(_gvn.transform(phi));
1137 
1138   return true;
1139 }
1140 
1141 //------------------------------inline_array_equals----------------------------
1142 bool LibraryCallKit::inline_array_equals() {
1143 
1144   if (!Matcher::has_match_rule(Op_AryEq)) return false;
1145 
1146   _sp += 2;
1147   Node *argument2 = pop();
1148   Node *argument1 = pop();
1149 
1150   Node* equals =
1151     _gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS),
1152                                         argument1, argument2) );
1153   push(equals);
1154   return true;
1155 }
1156 
1157 // Java version of String.indexOf(constant string)
1158 // class StringDecl {
1159 //   StringDecl(char[] ca) {
1160 //     offset = 0;
1161 //     count = ca.length;
1162 //     value = ca;
1163 //   }
1164 //   int offset;
1165 //   int count;
1166 //   char[] value;
1167 // }
1168 //
1169 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1170 //                             int targetOffset, int cache_i, int md2) {
1171 //   int cache = cache_i;
1172 //   int sourceOffset = string_object.offset;
1173 //   int sourceCount = string_object.count;
1174 //   int targetCount = target_object.length;
1175 //
1176 //   int targetCountLess1 = targetCount - 1;
1177 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1178 //
1179 //   char[] source = string_object.value;
1180 //   char[] target = target_object;
1181 //   int lastChar = target[targetCountLess1];
1182 //
1183 //  outer_loop:
1184 //   for (int i = sourceOffset; i < sourceEnd; ) {
1185 //     int src = source[i + targetCountLess1];
1186 //     if (src == lastChar) {
1187 //       // With random strings and a 4-character alphabet,
1188 //       // reverse matching at this point sets up 0.8% fewer
1189 //       // frames, but (paradoxically) makes 0.3% more probes.
1190 //       // Since those probes are nearer the lastChar probe,
1191 //       // there is may be a net D$ win with reverse matching.
1192 //       // But, reversing loop inhibits unroll of inner loop
1193 //       // for unknown reason.  So, does running outer loop from
1194 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1195 //       for (int j = 0; j < targetCountLess1; j++) {
1196 //         if (target[targetOffset + j] != source[i+j]) {
1197 //           if ((cache & (1 << source[i+j])) == 0) {
1198 //             if (md2 < j+1) {
1199 //               i += j+1;
1200 //               continue outer_loop;
1201 //             }
1202 //           }
1203 //           i += md2;
1204 //           continue outer_loop;
1205 //         }
1206 //       }
1207 //       return i - sourceOffset;
1208 //     }
1209 //     if ((cache & (1 << src)) == 0) {
1210 //       i += targetCountLess1;
1211 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1212 //     i++;
1213 //   }
1214 //   return -1;
1215 // }
1216 
1217 //------------------------------string_indexOf------------------------
1218 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1219                                      jint cache_i, jint md2_i) {
1220 
1221   Node* no_ctrl  = NULL;
1222   float likely   = PROB_LIKELY(0.9);
1223   float unlikely = PROB_UNLIKELY(0.9);
1224 
1225   const int nargs = 2; // number of arguments to push back for uncommon trap in predicate
1226 
1227   Node* source        = load_String_value(no_ctrl, string_object);
1228   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1229   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1230 
1231   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
1232   jint target_length = target_array->length();
1233   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1234   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1235 
1236   IdealKit kit(this, false, true);
1237 #define __ kit.
1238   Node* zero             = __ ConI(0);
1239   Node* one              = __ ConI(1);
1240   Node* cache            = __ ConI(cache_i);
1241   Node* md2              = __ ConI(md2_i);
1242   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1243   Node* targetCount      = __ ConI(target_length);
1244   Node* targetCountLess1 = __ ConI(target_length - 1);
1245   Node* targetOffset     = __ ConI(targetOffset_i);
1246   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1247 
1248   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1249   Node* outer_loop = __ make_label(2 /* goto */);
1250   Node* return_    = __ make_label(1);
1251 
1252   __ set(rtn,__ ConI(-1));
1253   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1254        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1255        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1256        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1257        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1258          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1259               Node* tpj = __ AddI(targetOffset, __ value(j));
1260               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1261               Node* ipj  = __ AddI(__ value(i), __ value(j));
1262               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1263               __ if_then(targ, BoolTest::ne, src2); {
1264                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1265                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1266                     __ increment(i, __ AddI(__ value(j), one));
1267                     __ goto_(outer_loop);
1268                   } __ end_if(); __ dead(j);
1269                 }__ end_if(); __ dead(j);
1270                 __ increment(i, md2);
1271                 __ goto_(outer_loop);
1272               }__ end_if();
1273               __ increment(j, one);
1274          }__ end_loop(); __ dead(j);
1275          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1276          __ goto_(return_);
1277        }__ end_if();
1278        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1279          __ increment(i, targetCountLess1);
1280        }__ end_if();
1281        __ increment(i, one);
1282        __ bind(outer_loop);
1283   }__ end_loop(); __ dead(i);
1284   __ bind(return_);
1285 
1286   // Final sync IdealKit and GraphKit.
1287   final_sync(kit);
1288   Node* result = __ value(rtn);
1289 #undef __
1290   C->set_has_loops(true);
1291   return result;
1292 }
1293 
1294 //------------------------------inline_string_indexOf------------------------
1295 bool LibraryCallKit::inline_string_indexOf() {
1296 
1297   _sp += 2;
1298   Node *argument = pop();  // pop non-receiver first:  it was pushed second
1299   Node *receiver = pop();
1300 
1301   Node* result;
1302   // Disable the use of pcmpestri until it can be guaranteed that
1303   // the load doesn't cross into the uncommited space.
1304   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1305       UseSSE42Intrinsics) {
1306     // Generate SSE4.2 version of indexOf
1307     // We currently only have match rules that use SSE4.2
1308 
1309     // Null check on self without removing any arguments.  The argument
1310     // null check technically happens in the wrong place, which can lead to
1311     // invalid stack traces when string compare is inlined into a method
1312     // which handles NullPointerExceptions.
1313     _sp += 2;
1314     receiver = do_null_check(receiver, T_OBJECT);
1315     argument = do_null_check(argument, T_OBJECT);
1316     _sp -= 2;
1317 
1318     if (stopped()) {
1319       return true;
1320     }
1321 
1322     ciInstanceKlass* str_klass = env()->String_klass();
1323     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1324 
1325     // Make the merge point
1326     RegionNode* result_rgn = new (C) RegionNode(4);
1327     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1328     Node* no_ctrl  = NULL;
1329 
1330     // Get start addr of source string
1331     Node* source = load_String_value(no_ctrl, receiver);
1332     Node* source_offset = load_String_offset(no_ctrl, receiver);
1333     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1334 
1335     // Get length of source string
1336     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1337 
1338     // Get start addr of substring
1339     Node* substr = load_String_value(no_ctrl, argument);
1340     Node* substr_offset = load_String_offset(no_ctrl, argument);
1341     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1342 
1343     // Get length of source string
1344     Node* substr_cnt  = load_String_length(no_ctrl, argument);
1345 
1346     // Check for substr count > string count
1347     Node* cmp = _gvn.transform( new(C) CmpINode(substr_cnt, source_cnt) );
1348     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::gt) );
1349     Node* if_gt = generate_slow_guard(bol, NULL);
1350     if (if_gt != NULL) {
1351       result_phi->init_req(2, intcon(-1));
1352       result_rgn->init_req(2, if_gt);
1353     }
1354 
1355     if (!stopped()) {
1356       // Check for substr count == 0
1357       cmp = _gvn.transform( new(C) CmpINode(substr_cnt, intcon(0)) );
1358       bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
1359       Node* if_zero = generate_slow_guard(bol, NULL);
1360       if (if_zero != NULL) {
1361         result_phi->init_req(3, intcon(0));
1362         result_rgn->init_req(3, if_zero);
1363       }
1364     }
1365 
1366     if (!stopped()) {
1367       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1368       result_phi->init_req(1, result);
1369       result_rgn->init_req(1, control());
1370     }
1371     set_control(_gvn.transform(result_rgn));
1372     record_for_igvn(result_rgn);
1373     result = _gvn.transform(result_phi);
1374 
1375   } else { // Use LibraryCallKit::string_indexOf
1376     // don't intrinsify if argument isn't a constant string.
1377     if (!argument->is_Con()) {
1378      return false;
1379     }
1380     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
1381     if (str_type == NULL) {
1382       return false;
1383     }
1384     ciInstanceKlass* klass = env()->String_klass();
1385     ciObject* str_const = str_type->const_oop();
1386     if (str_const == NULL || str_const->klass() != klass) {
1387       return false;
1388     }
1389     ciInstance* str = str_const->as_instance();
1390     assert(str != NULL, "must be instance");
1391 
1392     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1393     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1394 
1395     int o;
1396     int c;
1397     if (java_lang_String::has_offset_field()) {
1398       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1399       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1400     } else {
1401       o = 0;
1402       c = pat->length();
1403     }
1404 
1405     // constant strings have no offset and count == length which
1406     // simplifies the resulting code somewhat so lets optimize for that.
1407     if (o != 0 || c != pat->length()) {
1408      return false;
1409     }
1410 
1411     // Null check on self without removing any arguments.  The argument
1412     // null check technically happens in the wrong place, which can lead to
1413     // invalid stack traces when string compare is inlined into a method
1414     // which handles NullPointerExceptions.
1415     _sp += 2;
1416     receiver = do_null_check(receiver, T_OBJECT);
1417     // No null check on the argument is needed since it's a constant String oop.
1418     _sp -= 2;
1419     if (stopped()) {
1420       return true;
1421     }
1422 
1423     // The null string as a pattern always returns 0 (match at beginning of string)
1424     if (c == 0) {
1425       push(intcon(0));
1426       return true;
1427     }
1428 
1429     // Generate default indexOf
1430     jchar lastChar = pat->char_at(o + (c - 1));
1431     int cache = 0;
1432     int i;
1433     for (i = 0; i < c - 1; i++) {
1434       assert(i < pat->length(), "out of range");
1435       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1436     }
1437 
1438     int md2 = c;
1439     for (i = 0; i < c - 1; i++) {
1440       assert(i < pat->length(), "out of range");
1441       if (pat->char_at(o + i) == lastChar) {
1442         md2 = (c - 1) - i;
1443       }
1444     }
1445 
1446     result = string_indexOf(receiver, pat, o, cache, md2);
1447   }
1448 
1449   push(result);
1450   return true;
1451 }
1452 
1453 //--------------------------pop_math_arg--------------------------------
1454 // Pop a double argument to a math function from the stack
1455 // rounding it if necessary.
1456 Node * LibraryCallKit::pop_math_arg() {
1457   Node *arg = pop_pair();
1458   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
1459     arg = _gvn.transform( new (C) RoundDoubleNode(0, arg) );
1460   return arg;
1461 }
1462 
1463 //------------------------------inline_trig----------------------------------
1464 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1465 // argument reduction which will turn into a fast/slow diamond.
1466 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1467   _sp += arg_size();            // restore stack pointer
1468   Node* arg = pop_math_arg();
1469   Node* trig = NULL;
1470 
1471   switch (id) {
1472   case vmIntrinsics::_dsin:
1473     trig = _gvn.transform((Node*)new (C) SinDNode(arg));
1474     break;
1475   case vmIntrinsics::_dcos:
1476     trig = _gvn.transform((Node*)new (C) CosDNode(arg));
1477     break;
1478   case vmIntrinsics::_dtan:
1479     trig = _gvn.transform((Node*)new (C) TanDNode(arg));
1480     break;
1481   default:
1482     assert(false, "bad intrinsic was passed in");
1483     return false;
1484   }
1485 
1486   // Rounding required?  Check for argument reduction!
1487   if( Matcher::strict_fp_requires_explicit_rounding ) {
1488 
1489     static const double     pi_4 =  0.7853981633974483;
1490     static const double neg_pi_4 = -0.7853981633974483;
1491     // pi/2 in 80-bit extended precision
1492     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1493     // -pi/2 in 80-bit extended precision
1494     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1495     // Cutoff value for using this argument reduction technique
1496     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1497     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1498 
1499     // Pseudocode for sin:
1500     // if (x <= Math.PI / 4.0) {
1501     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1502     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1503     // } else {
1504     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1505     // }
1506     // return StrictMath.sin(x);
1507 
1508     // Pseudocode for cos:
1509     // if (x <= Math.PI / 4.0) {
1510     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1511     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1512     // } else {
1513     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1514     // }
1515     // return StrictMath.cos(x);
1516 
1517     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1518     // requires a special machine instruction to load it.  Instead we'll try
1519     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1520     // probably do the math inside the SIN encoding.
1521 
1522     // Make the merge point
1523     RegionNode *r = new (C) RegionNode(3);
1524     Node *phi = new (C) PhiNode(r,Type::DOUBLE);
1525 
1526     // Flatten arg so we need only 1 test
1527     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1528     // Node for PI/4 constant
1529     Node *pi4 = makecon(TypeD::make(pi_4));
1530     // Check PI/4 : abs(arg)
1531     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1532     // Check: If PI/4 < abs(arg) then go slow
1533     Node *bol = _gvn.transform( new (C) BoolNode( cmp, BoolTest::lt ) );
1534     // Branch either way
1535     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1536     set_control(opt_iff(r,iff));
1537 
1538     // Set fast path result
1539     phi->init_req(2,trig);
1540 
1541     // Slow path - non-blocking leaf call
1542     Node* call = NULL;
1543     switch (id) {
1544     case vmIntrinsics::_dsin:
1545       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1546                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1547                                "Sin", NULL, arg, top());
1548       break;
1549     case vmIntrinsics::_dcos:
1550       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1551                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1552                                "Cos", NULL, arg, top());
1553       break;
1554     case vmIntrinsics::_dtan:
1555       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1556                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1557                                "Tan", NULL, arg, top());
1558       break;
1559     }
1560     assert(control()->in(0) == call, "");
1561     Node* slow_result = _gvn.transform(new (C) ProjNode(call,TypeFunc::Parms));
1562     r->init_req(1,control());
1563     phi->init_req(1,slow_result);
1564 
1565     // Post-merge
1566     set_control(_gvn.transform(r));
1567     record_for_igvn(r);
1568     trig = _gvn.transform(phi);
1569 
1570     C->set_has_split_ifs(true); // Has chance for split-if optimization
1571   }
1572   // Push result back on JVM stack
1573   push_pair(trig);
1574   return true;
1575 }
1576 
1577 //------------------------------inline_sqrt-------------------------------------
1578 // Inline square root instruction, if possible.
1579 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
1580   assert(id == vmIntrinsics::_dsqrt, "Not square root");
1581   _sp += arg_size();        // restore stack pointer
1582   push_pair(_gvn.transform(new (C) SqrtDNode(0, pop_math_arg())));
1583   return true;
1584 }
1585 
1586 //------------------------------inline_abs-------------------------------------
1587 // Inline absolute value instruction, if possible.
1588 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
1589   assert(id == vmIntrinsics::_dabs, "Not absolute value");
1590   _sp += arg_size();        // restore stack pointer
1591   push_pair(_gvn.transform(new (C) AbsDNode(pop_math_arg())));
1592   return true;
1593 }
1594 
1595 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1596   //-------------------
1597   //result=(result.isNaN())? funcAddr():result;
1598   // Check: If isNaN() by checking result!=result? then either trap
1599   // or go to runtime
1600   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result,result));
1601   // Build the boolean node
1602   Node* bolisnum = _gvn.transform( new (C) BoolNode(cmpisnan, BoolTest::eq) );
1603 
1604   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1605     {
1606       BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1607       // End the current control-flow path
1608       push_pair(x);
1609       if (y != NULL) {
1610         push_pair(y);
1611       }
1612       // The pow or exp intrinsic returned a NaN, which requires a call
1613       // to the runtime.  Recompile with the runtime call.
1614       uncommon_trap(Deoptimization::Reason_intrinsic,
1615                     Deoptimization::Action_make_not_entrant);
1616     }
1617     push_pair(result);
1618   } else {
1619     // If this inlining ever returned NaN in the past, we compile a call
1620     // to the runtime to properly handle corner cases
1621 
1622     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1623     Node* if_slow = _gvn.transform( new (C) IfFalseNode(iff) );
1624     Node* if_fast = _gvn.transform( new (C) IfTrueNode(iff) );
1625 
1626     if (!if_slow->is_top()) {
1627       RegionNode* result_region = new(C) RegionNode(3);
1628       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1629 
1630       result_region->init_req(1, if_fast);
1631       result_val->init_req(1, result);
1632 
1633       set_control(if_slow);
1634 
1635       const TypePtr* no_memory_effects = NULL;
1636       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1637                                    no_memory_effects,
1638                                    x, top(), y, y ? top() : NULL);
1639       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1640 #ifdef ASSERT
1641       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1642       assert(value_top == top(), "second value must be top");
1643 #endif
1644 
1645       result_region->init_req(2, control());
1646       result_val->init_req(2, value);
1647       push_result(result_region, result_val);
1648     } else {
1649       push_pair(result);
1650     }
1651   }
1652 }
1653 
1654 //------------------------------inline_exp-------------------------------------
1655 // Inline exp instructions, if possible.  The Intel hardware only misses
1656 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1657 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
1658   assert(id == vmIntrinsics::_dexp, "Not exp");
1659 
1660   _sp += arg_size();        // restore stack pointer
1661   Node *x = pop_math_arg();
1662   Node *result = _gvn.transform(new (C) ExpDNode(0,x));
1663 
1664   finish_pow_exp(result, x, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1665 
1666   C->set_has_split_ifs(true); // Has chance for split-if optimization
1667 
1668   return true;
1669 }
1670 
1671 //------------------------------inline_pow-------------------------------------
1672 // Inline power instructions, if possible.
1673 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
1674   assert(id == vmIntrinsics::_dpow, "Not pow");
1675 
1676   // Pseudocode for pow
1677   // if (x <= 0.0) {
1678   //   long longy = (long)y;
1679   //   if ((double)longy == y) { // if y is long
1680   //     if (y + 1 == y) longy = 0; // huge number: even
1681   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1682   //   } else {
1683   //     result = NaN;
1684   //   }
1685   // } else {
1686   //   result = DPow(x,y);
1687   // }
1688   // if (result != result)?  {
1689   //   result = uncommon_trap() or runtime_call();
1690   // }
1691   // return result;
1692 
1693   _sp += arg_size();        // restore stack pointer
1694   Node* y = pop_math_arg();
1695   Node* x = pop_math_arg();
1696 
1697   Node* result = NULL;
1698 
1699   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1700     // Short form: skip the fancy tests and just check for NaN result.
1701     result = _gvn.transform( new (C) PowDNode(0, x, y) );
1702   } else {
1703     // If this inlining ever returned NaN in the past, include all
1704     // checks + call to the runtime.
1705 
1706     // Set the merge point for If node with condition of (x <= 0.0)
1707     // There are four possible paths to region node and phi node
1708     RegionNode *r = new (C) RegionNode(4);
1709     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1710 
1711     // Build the first if node: if (x <= 0.0)
1712     // Node for 0 constant
1713     Node *zeronode = makecon(TypeD::ZERO);
1714     // Check x:0
1715     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1716     // Check: If (x<=0) then go complex path
1717     Node *bol1 = _gvn.transform( new (C) BoolNode( cmp, BoolTest::le ) );
1718     // Branch either way
1719     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1720     // Fast path taken; set region slot 3
1721     Node *fast_taken = _gvn.transform( new (C) IfFalseNode(if1) );
1722     r->init_req(3,fast_taken); // Capture fast-control
1723 
1724     // Fast path not-taken, i.e. slow path
1725     Node *complex_path = _gvn.transform( new (C) IfTrueNode(if1) );
1726 
1727     // Set fast path result
1728     Node *fast_result = _gvn.transform( new (C) PowDNode(0, x, y) );
1729     phi->init_req(3, fast_result);
1730 
1731     // Complex path
1732     // Build the second if node (if y is long)
1733     // Node for (long)y
1734     Node *longy = _gvn.transform( new (C) ConvD2LNode(y));
1735     // Node for (double)((long) y)
1736     Node *doublelongy= _gvn.transform( new (C) ConvL2DNode(longy));
1737     // Check (double)((long) y) : y
1738     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1739     // Check if (y isn't long) then go to slow path
1740 
1741     Node *bol2 = _gvn.transform( new (C) BoolNode( cmplongy, BoolTest::ne ) );
1742     // Branch either way
1743     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1744     Node* ylong_path = _gvn.transform( new (C) IfFalseNode(if2));
1745 
1746     Node *slow_path = _gvn.transform( new (C) IfTrueNode(if2) );
1747 
1748     // Calculate DPow(abs(x), y)*(1 & (long)y)
1749     // Node for constant 1
1750     Node *conone = longcon(1);
1751     // 1& (long)y
1752     Node *signnode= _gvn.transform( new (C) AndLNode(conone, longy) );
1753 
1754     // A huge number is always even. Detect a huge number by checking
1755     // if y + 1 == y and set integer to be tested for parity to 0.
1756     // Required for corner case:
1757     // (long)9.223372036854776E18 = max_jlong
1758     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1759     // max_jlong is odd but 9.223372036854776E18 is even
1760     Node* yplus1 = _gvn.transform( new (C) AddDNode(y, makecon(TypeD::make(1))));
1761     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1762     Node *bolyplus1 = _gvn.transform( new (C) BoolNode( cmpyplus1, BoolTest::eq ) );
1763     Node* correctedsign = NULL;
1764     if (ConditionalMoveLimit != 0) {
1765       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1766     } else {
1767       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1768       RegionNode *r = new (C) RegionNode(3);
1769       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1770       r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyplus1)));
1771       r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyplus1)));
1772       phi->init_req(1, signnode);
1773       phi->init_req(2, longcon(0));
1774       correctedsign = _gvn.transform(phi);
1775       ylong_path = _gvn.transform(r);
1776       record_for_igvn(r);
1777     }
1778 
1779     // zero node
1780     Node *conzero = longcon(0);
1781     // Check (1&(long)y)==0?
1782     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1783     // Check if (1&(long)y)!=0?, if so the result is negative
1784     Node *bol3 = _gvn.transform( new (C) BoolNode( cmpeq1, BoolTest::ne ) );
1785     // abs(x)
1786     Node *absx=_gvn.transform( new (C) AbsDNode(x));
1787     // abs(x)^y
1788     Node *absxpowy = _gvn.transform( new (C) PowDNode(0, absx, y) );
1789     // -abs(x)^y
1790     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1791     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1792     Node *signresult = NULL;
1793     if (ConditionalMoveLimit != 0) {
1794       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1795     } else {
1796       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1797       RegionNode *r = new (C) RegionNode(3);
1798       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1799       r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyeven)));
1800       r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyeven)));
1801       phi->init_req(1, absxpowy);
1802       phi->init_req(2, negabsxpowy);
1803       signresult = _gvn.transform(phi);
1804       ylong_path = _gvn.transform(r);
1805       record_for_igvn(r);
1806     }
1807     // Set complex path fast result
1808     r->init_req(2, ylong_path);
1809     phi->init_req(2, signresult);
1810 
1811     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1812     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1813     r->init_req(1,slow_path);
1814     phi->init_req(1,slow_result);
1815 
1816     // Post merge
1817     set_control(_gvn.transform(r));
1818     record_for_igvn(r);
1819     result=_gvn.transform(phi);
1820   }
1821 
1822   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1823 
1824   C->set_has_split_ifs(true); // Has chance for split-if optimization
1825 
1826   return true;
1827 }
1828 
1829 //------------------------------inline_trans-------------------------------------
1830 // Inline transcendental instructions, if possible.  The Intel hardware gets
1831 // these right, no funny corner cases missed.
1832 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
1833   _sp += arg_size();        // restore stack pointer
1834   Node* arg = pop_math_arg();
1835   Node* trans = NULL;
1836 
1837   switch (id) {
1838   case vmIntrinsics::_dlog:
1839     trans = _gvn.transform((Node*)new (C) LogDNode(arg));
1840     break;
1841   case vmIntrinsics::_dlog10:
1842     trans = _gvn.transform((Node*)new (C) Log10DNode(arg));
1843     break;
1844   default:
1845     assert(false, "bad intrinsic was passed in");
1846     return false;
1847   }
1848 
1849   // Push result back on JVM stack
1850   push_pair(trans);
1851   return true;
1852 }
1853 
1854 //------------------------------runtime_math-----------------------------
1855 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1856   Node* a = NULL;
1857   Node* b = NULL;
1858 
1859   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1860          "must be (DD)D or (D)D type");
1861 
1862   // Inputs
1863   _sp += arg_size();        // restore stack pointer
1864   if (call_type == OptoRuntime::Math_DD_D_Type()) {
1865     b = pop_math_arg();
1866   }
1867   a = pop_math_arg();
1868 
1869   const TypePtr* no_memory_effects = NULL;
1870   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1871                                  no_memory_effects,
1872                                  a, top(), b, b ? top() : NULL);
1873   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1874 #ifdef ASSERT
1875   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1876   assert(value_top == top(), "second value must be top");
1877 #endif
1878 
1879   push_pair(value);
1880   return true;
1881 }
1882 
1883 //------------------------------inline_math_native-----------------------------
1884 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1885   switch (id) {
1886     // These intrinsics are not properly supported on all hardware
1887   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
1888     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
1889   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
1890     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
1891   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
1892     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1893 
1894   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
1895     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
1896   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
1897     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1898 
1899     // These intrinsics are supported on all hardware
1900   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
1901   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
1902 
1903   case vmIntrinsics::_dexp:  return
1904     Matcher::has_match_rule(Op_ExpD) ? inline_exp(id) :
1905     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1906   case vmIntrinsics::_dpow:  return
1907     Matcher::has_match_rule(Op_PowD) ? inline_pow(id) :
1908     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1909 
1910    // These intrinsics are not yet correctly implemented
1911   case vmIntrinsics::_datan2:
1912     return false;
1913 
1914   default:
1915     ShouldNotReachHere();
1916     return false;
1917   }
1918 }
1919 
1920 static bool is_simple_name(Node* n) {
1921   return (n->req() == 1         // constant
1922           || (n->is_Type() && n->as_Type()->type()->singleton())
1923           || n->is_Proj()       // parameter or return value
1924           || n->is_Phi()        // local of some sort
1925           );
1926 }
1927 
1928 //----------------------------inline_min_max-----------------------------------
1929 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1930   push(generate_min_max(id, argument(0), argument(1)));
1931 
1932   return true;
1933 }
1934 
1935 Node*
1936 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1937   // These are the candidate return value:
1938   Node* xvalue = x0;
1939   Node* yvalue = y0;
1940 
1941   if (xvalue == yvalue) {
1942     return xvalue;
1943   }
1944 
1945   bool want_max = (id == vmIntrinsics::_max);
1946 
1947   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1948   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1949   if (txvalue == NULL || tyvalue == NULL)  return top();
1950   // This is not really necessary, but it is consistent with a
1951   // hypothetical MaxINode::Value method:
1952   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1953 
1954   // %%% This folding logic should (ideally) be in a different place.
1955   // Some should be inside IfNode, and there to be a more reliable
1956   // transformation of ?: style patterns into cmoves.  We also want
1957   // more powerful optimizations around cmove and min/max.
1958 
1959   // Try to find a dominating comparison of these guys.
1960   // It can simplify the index computation for Arrays.copyOf
1961   // and similar uses of System.arraycopy.
1962   // First, compute the normalized version of CmpI(x, y).
1963   int   cmp_op = Op_CmpI;
1964   Node* xkey = xvalue;
1965   Node* ykey = yvalue;
1966   Node* ideal_cmpxy = _gvn.transform( new(C) CmpINode(xkey, ykey) );
1967   if (ideal_cmpxy->is_Cmp()) {
1968     // E.g., if we have CmpI(length - offset, count),
1969     // it might idealize to CmpI(length, count + offset)
1970     cmp_op = ideal_cmpxy->Opcode();
1971     xkey = ideal_cmpxy->in(1);
1972     ykey = ideal_cmpxy->in(2);
1973   }
1974 
1975   // Start by locating any relevant comparisons.
1976   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1977   Node* cmpxy = NULL;
1978   Node* cmpyx = NULL;
1979   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1980     Node* cmp = start_from->fast_out(k);
1981     if (cmp->outcnt() > 0 &&            // must have prior uses
1982         cmp->in(0) == NULL &&           // must be context-independent
1983         cmp->Opcode() == cmp_op) {      // right kind of compare
1984       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1985       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1986     }
1987   }
1988 
1989   const int NCMPS = 2;
1990   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1991   int cmpn;
1992   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1993     if (cmps[cmpn] != NULL)  break;     // find a result
1994   }
1995   if (cmpn < NCMPS) {
1996     // Look for a dominating test that tells us the min and max.
1997     int depth = 0;                // Limit search depth for speed
1998     Node* dom = control();
1999     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2000       if (++depth >= 100)  break;
2001       Node* ifproj = dom;
2002       if (!ifproj->is_Proj())  continue;
2003       Node* iff = ifproj->in(0);
2004       if (!iff->is_If())  continue;
2005       Node* bol = iff->in(1);
2006       if (!bol->is_Bool())  continue;
2007       Node* cmp = bol->in(1);
2008       if (cmp == NULL)  continue;
2009       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2010         if (cmps[cmpn] == cmp)  break;
2011       if (cmpn == NCMPS)  continue;
2012       BoolTest::mask btest = bol->as_Bool()->_test._test;
2013       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2014       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2015       // At this point, we know that 'x btest y' is true.
2016       switch (btest) {
2017       case BoolTest::eq:
2018         // They are proven equal, so we can collapse the min/max.
2019         // Either value is the answer.  Choose the simpler.
2020         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2021           return yvalue;
2022         return xvalue;
2023       case BoolTest::lt:          // x < y
2024       case BoolTest::le:          // x <= y
2025         return (want_max ? yvalue : xvalue);
2026       case BoolTest::gt:          // x > y
2027       case BoolTest::ge:          // x >= y
2028         return (want_max ? xvalue : yvalue);
2029       }
2030     }
2031   }
2032 
2033   // We failed to find a dominating test.
2034   // Let's pick a test that might GVN with prior tests.
2035   Node*          best_bol   = NULL;
2036   BoolTest::mask best_btest = BoolTest::illegal;
2037   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2038     Node* cmp = cmps[cmpn];
2039     if (cmp == NULL)  continue;
2040     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2041       Node* bol = cmp->fast_out(j);
2042       if (!bol->is_Bool())  continue;
2043       BoolTest::mask btest = bol->as_Bool()->_test._test;
2044       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2045       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2046       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2047         best_bol   = bol->as_Bool();
2048         best_btest = btest;
2049       }
2050     }
2051   }
2052 
2053   Node* answer_if_true  = NULL;
2054   Node* answer_if_false = NULL;
2055   switch (best_btest) {
2056   default:
2057     if (cmpxy == NULL)
2058       cmpxy = ideal_cmpxy;
2059     best_bol = _gvn.transform( new(C) BoolNode(cmpxy, BoolTest::lt) );
2060     // and fall through:
2061   case BoolTest::lt:          // x < y
2062   case BoolTest::le:          // x <= y
2063     answer_if_true  = (want_max ? yvalue : xvalue);
2064     answer_if_false = (want_max ? xvalue : yvalue);
2065     break;
2066   case BoolTest::gt:          // x > y
2067   case BoolTest::ge:          // x >= y
2068     answer_if_true  = (want_max ? xvalue : yvalue);
2069     answer_if_false = (want_max ? yvalue : xvalue);
2070     break;
2071   }
2072 
2073   jint hi, lo;
2074   if (want_max) {
2075     // We can sharpen the minimum.
2076     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2077     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2078   } else {
2079     // We can sharpen the maximum.
2080     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2081     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2082   }
2083 
2084   // Use a flow-free graph structure, to avoid creating excess control edges
2085   // which could hinder other optimizations.
2086   // Since Math.min/max is often used with arraycopy, we want
2087   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2088   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2089                                answer_if_false, answer_if_true,
2090                                TypeInt::make(lo, hi, widen));
2091 
2092   return _gvn.transform(cmov);
2093 
2094   /*
2095   // This is not as desirable as it may seem, since Min and Max
2096   // nodes do not have a full set of optimizations.
2097   // And they would interfere, anyway, with 'if' optimizations
2098   // and with CMoveI canonical forms.
2099   switch (id) {
2100   case vmIntrinsics::_min:
2101     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2102   case vmIntrinsics::_max:
2103     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2104   default:
2105     ShouldNotReachHere();
2106   }
2107   */
2108 }
2109 
2110 inline int
2111 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2112   const TypePtr* base_type = TypePtr::NULL_PTR;
2113   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2114   if (base_type == NULL) {
2115     // Unknown type.
2116     return Type::AnyPtr;
2117   } else if (base_type == TypePtr::NULL_PTR) {
2118     // Since this is a NULL+long form, we have to switch to a rawptr.
2119     base   = _gvn.transform( new (C) CastX2PNode(offset) );
2120     offset = MakeConX(0);
2121     return Type::RawPtr;
2122   } else if (base_type->base() == Type::RawPtr) {
2123     return Type::RawPtr;
2124   } else if (base_type->isa_oopptr()) {
2125     // Base is never null => always a heap address.
2126     if (base_type->ptr() == TypePtr::NotNull) {
2127       return Type::OopPtr;
2128     }
2129     // Offset is small => always a heap address.
2130     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2131     if (offset_type != NULL &&
2132         base_type->offset() == 0 &&     // (should always be?)
2133         offset_type->_lo >= 0 &&
2134         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2135       return Type::OopPtr;
2136     }
2137     // Otherwise, it might either be oop+off or NULL+addr.
2138     return Type::AnyPtr;
2139   } else {
2140     // No information:
2141     return Type::AnyPtr;
2142   }
2143 }
2144 
2145 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2146   int kind = classify_unsafe_addr(base, offset);
2147   if (kind == Type::RawPtr) {
2148     return basic_plus_adr(top(), base, offset);
2149   } else {
2150     return basic_plus_adr(base, offset);
2151   }
2152 }
2153 
2154 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
2155 // inline int Integer.numberOfLeadingZeros(int)
2156 // inline int Long.numberOfLeadingZeros(long)
2157 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
2158   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
2159   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
2160   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
2161   _sp += arg_size();  // restore stack pointer
2162   switch (id) {
2163   case vmIntrinsics::_numberOfLeadingZeros_i:
2164     push(_gvn.transform(new (C) CountLeadingZerosINode(pop())));
2165     break;
2166   case vmIntrinsics::_numberOfLeadingZeros_l:
2167     push(_gvn.transform(new (C) CountLeadingZerosLNode(pop_pair())));
2168     break;
2169   default:
2170     ShouldNotReachHere();
2171   }
2172   return true;
2173 }
2174 
2175 //-------------------inline_numberOfTrailingZeros_int/long----------------------
2176 // inline int Integer.numberOfTrailingZeros(int)
2177 // inline int Long.numberOfTrailingZeros(long)
2178 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
2179   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
2180   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
2181   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
2182   _sp += arg_size();  // restore stack pointer
2183   switch (id) {
2184   case vmIntrinsics::_numberOfTrailingZeros_i:
2185     push(_gvn.transform(new (C) CountTrailingZerosINode(pop())));
2186     break;
2187   case vmIntrinsics::_numberOfTrailingZeros_l:
2188     push(_gvn.transform(new (C) CountTrailingZerosLNode(pop_pair())));
2189     break;
2190   default:
2191     ShouldNotReachHere();
2192   }
2193   return true;
2194 }
2195 
2196 //----------------------------inline_bitCount_int/long-----------------------
2197 // inline int Integer.bitCount(int)
2198 // inline int Long.bitCount(long)
2199 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
2200   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
2201   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
2202   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
2203   _sp += arg_size();  // restore stack pointer
2204   switch (id) {
2205   case vmIntrinsics::_bitCount_i:
2206     push(_gvn.transform(new (C) PopCountINode(pop())));
2207     break;
2208   case vmIntrinsics::_bitCount_l:
2209     push(_gvn.transform(new (C) PopCountLNode(pop_pair())));
2210     break;
2211   default:
2212     ShouldNotReachHere();
2213   }
2214   return true;
2215 }
2216 
2217 //----------------------------inline_reverseBytes_int/long/char/short-------------------
2218 // inline Integer.reverseBytes(int)
2219 // inline Long.reverseBytes(long)
2220 // inline Character.reverseBytes(char)
2221 // inline Short.reverseBytes(short)
2222 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
2223   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
2224          id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
2225          "not reverse Bytes");
2226   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI))  return false;
2227   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL))  return false;
2228   if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
2229   if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS))  return false;
2230   _sp += arg_size();  // restore stack pointer
2231   switch (id) {
2232   case vmIntrinsics::_reverseBytes_i:
2233     push(_gvn.transform(new (C) ReverseBytesINode(0, pop())));
2234     break;
2235   case vmIntrinsics::_reverseBytes_l:
2236     push_pair(_gvn.transform(new (C) ReverseBytesLNode(0, pop_pair())));
2237     break;
2238   case vmIntrinsics::_reverseBytes_c:
2239     push(_gvn.transform(new (C) ReverseBytesUSNode(0, pop())));
2240     break;
2241   case vmIntrinsics::_reverseBytes_s:
2242     push(_gvn.transform(new (C) ReverseBytesSNode(0, pop())));
2243     break;
2244   default:
2245     ;
2246   }
2247   return true;
2248 }
2249 
2250 //----------------------------inline_unsafe_access----------------------------
2251 
2252 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2253 
2254 // Helper that guards and inserts a pre-barrier.
2255 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2256                                         Node* pre_val, int nargs, bool need_mem_bar) {
2257   // We could be accessing the referent field of a reference object. If so, when G1
2258   // is enabled, we need to log the value in the referent field in an SATB buffer.
2259   // This routine performs some compile time filters and generates suitable
2260   // runtime filters that guard the pre-barrier code.
2261   // Also add memory barrier for non volatile load from the referent field
2262   // to prevent commoning of loads across safepoint.
2263   if (!UseG1GC && !need_mem_bar)
2264     return;
2265 
2266   // Some compile time checks.
2267 
2268   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2269   const TypeX* otype = offset->find_intptr_t_type();
2270   if (otype != NULL && otype->is_con() &&
2271       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2272     // Constant offset but not the reference_offset so just return
2273     return;
2274   }
2275 
2276   // We only need to generate the runtime guards for instances.
2277   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2278   if (btype != NULL) {
2279     if (btype->isa_aryptr()) {
2280       // Array type so nothing to do
2281       return;
2282     }
2283 
2284     const TypeInstPtr* itype = btype->isa_instptr();
2285     if (itype != NULL) {
2286       // Can the klass of base_oop be statically determined to be
2287       // _not_ a sub-class of Reference and _not_ Object?
2288       ciKlass* klass = itype->klass();
2289       if ( klass->is_loaded() &&
2290           !klass->is_subtype_of(env()->Reference_klass()) &&
2291           !env()->Object_klass()->is_subtype_of(klass)) {
2292         return;
2293       }
2294     }
2295   }
2296 
2297   // The compile time filters did not reject base_oop/offset so
2298   // we need to generate the following runtime filters
2299   //
2300   // if (offset == java_lang_ref_Reference::_reference_offset) {
2301   //   if (instance_of(base, java.lang.ref.Reference)) {
2302   //     pre_barrier(_, pre_val, ...);
2303   //   }
2304   // }
2305 
2306   float likely  = PROB_LIKELY(0.999);
2307   float unlikely  = PROB_UNLIKELY(0.999);
2308 
2309   IdealKit ideal(this);
2310 #define __ ideal.
2311 
2312   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2313 
2314   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2315       // Update graphKit memory and control from IdealKit.
2316       sync_kit(ideal);
2317 
2318       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2319       _sp += nargs;  // gen_instanceof might do an uncommon trap
2320       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2321       _sp -= nargs;
2322 
2323       // Update IdealKit memory and control from graphKit.
2324       __ sync_kit(this);
2325 
2326       Node* one = __ ConI(1);
2327       // is_instof == 0 if base_oop == NULL
2328       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2329 
2330         // Update graphKit from IdeakKit.
2331         sync_kit(ideal);
2332 
2333         // Use the pre-barrier to record the value in the referent field
2334         pre_barrier(false /* do_load */,
2335                     __ ctrl(),
2336                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2337                     pre_val /* pre_val */,
2338                     T_OBJECT);
2339         if (need_mem_bar) {
2340           // Add memory barrier to prevent commoning reads from this field
2341           // across safepoint since GC can change its value.
2342           insert_mem_bar(Op_MemBarCPUOrder);
2343         }
2344         // Update IdealKit from graphKit.
2345         __ sync_kit(this);
2346 
2347       } __ end_if(); // _ref_type != ref_none
2348   } __ end_if(); // offset == referent_offset
2349 
2350   // Final sync IdealKit and GraphKit.
2351   final_sync(ideal);
2352 #undef __
2353 }
2354 
2355 
2356 // Interpret Unsafe.fieldOffset cookies correctly:
2357 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2358 
2359 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2360   // Attempt to infer a sharper value type from the offset and base type.
2361   ciKlass* sharpened_klass = NULL;
2362 
2363   // See if it is an instance field, with an object type.
2364   if (alias_type->field() != NULL) {
2365     assert(!is_native_ptr, "native pointer op cannot use a java address");
2366     if (alias_type->field()->type()->is_klass()) {
2367       sharpened_klass = alias_type->field()->type()->as_klass();
2368     }
2369   }
2370 
2371   // See if it is a narrow oop array.
2372   if (adr_type->isa_aryptr()) {
2373     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2374       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2375       if (elem_type != NULL) {
2376         sharpened_klass = elem_type->klass();
2377       }
2378     }
2379   }
2380 
2381   if (sharpened_klass != NULL) {
2382     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2383 
2384 #ifndef PRODUCT
2385     if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2386       tty->print("  from base type:  ");   adr_type->dump();
2387       tty->print("  sharpened value: ");   tjp->dump();
2388     }
2389 #endif
2390     // Sharpen the value type.
2391     return tjp;
2392   }
2393   return NULL;
2394 }
2395 
2396 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2397   if (callee()->is_static())  return false;  // caller must have the capability!
2398 
2399 #ifndef PRODUCT
2400   {
2401     ResourceMark rm;
2402     // Check the signatures.
2403     ciSignature* sig = signature();
2404 #ifdef ASSERT
2405     if (!is_store) {
2406       // Object getObject(Object base, int/long offset), etc.
2407       BasicType rtype = sig->return_type()->basic_type();
2408       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2409           rtype = T_ADDRESS;  // it is really a C void*
2410       assert(rtype == type, "getter must return the expected value");
2411       if (!is_native_ptr) {
2412         assert(sig->count() == 2, "oop getter has 2 arguments");
2413         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2414         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2415       } else {
2416         assert(sig->count() == 1, "native getter has 1 argument");
2417         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2418       }
2419     } else {
2420       // void putObject(Object base, int/long offset, Object x), etc.
2421       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2422       if (!is_native_ptr) {
2423         assert(sig->count() == 3, "oop putter has 3 arguments");
2424         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2425         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2426       } else {
2427         assert(sig->count() == 2, "native putter has 2 arguments");
2428         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2429       }
2430       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2431       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2432         vtype = T_ADDRESS;  // it is really a C void*
2433       assert(vtype == type, "putter must accept the expected value");
2434     }
2435 #endif // ASSERT
2436  }
2437 #endif //PRODUCT
2438 
2439   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2440 
2441   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
2442 
2443   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
2444   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
2445   assert(callee()->arg_size() == nargs, "must be");
2446 
2447   debug_only(int saved_sp = _sp);
2448   _sp += nargs;
2449 
2450   Node* val;
2451   debug_only(val = (Node*)(uintptr_t)-1);
2452 
2453 
2454   if (is_store) {
2455     // Get the value being stored.  (Pop it first; it was pushed last.)
2456     switch (type) {
2457     case T_DOUBLE:
2458     case T_LONG:
2459     case T_ADDRESS:
2460       val = pop_pair();
2461       break;
2462     default:
2463       val = pop();
2464     }
2465   }
2466 
2467   // Build address expression.  See the code in inline_unsafe_prefetch.
2468   Node *adr;
2469   Node *heap_base_oop = top();
2470   Node* offset = top();
2471 
2472   if (!is_native_ptr) {
2473     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2474     offset = pop_pair();
2475     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2476     Node* base   = pop();
2477     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2478     // to be plain byte offsets, which are also the same as those accepted
2479     // by oopDesc::field_base.
2480     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2481            "fieldOffset must be byte-scaled");
2482     // 32-bit machines ignore the high half!
2483     offset = ConvL2X(offset);
2484     adr = make_unsafe_address(base, offset);
2485     heap_base_oop = base;
2486   } else {
2487     Node* ptr = pop_pair();
2488     // Adjust Java long to machine word:
2489     ptr = ConvL2X(ptr);
2490     adr = make_unsafe_address(NULL, ptr);
2491   }
2492 
2493   // Pop receiver last:  it was pushed first.
2494   Node *receiver = pop();
2495 
2496   assert(saved_sp == _sp, "must have correct argument count");
2497 
2498   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2499 
2500   // First guess at the value type.
2501   const Type *value_type = Type::get_const_basic_type(type);
2502 
2503   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2504   // there was not enough information to nail it down.
2505   Compile::AliasType* alias_type = C->alias_type(adr_type);
2506   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2507 
2508   // We will need memory barriers unless we can determine a unique
2509   // alias category for this reference.  (Note:  If for some reason
2510   // the barriers get omitted and the unsafe reference begins to "pollute"
2511   // the alias analysis of the rest of the graph, either Compile::can_alias
2512   // or Compile::must_alias will throw a diagnostic assert.)
2513   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2514 
2515   // If we are reading the value of the referent field of a Reference
2516   // object (either by using Unsafe directly or through reflection)
2517   // then, if G1 is enabled, we need to record the referent in an
2518   // SATB log buffer using the pre-barrier mechanism.
2519   // Also we need to add memory barrier to prevent commoning reads
2520   // from this field across safepoint since GC can change its value.
2521   bool need_read_barrier = !is_native_ptr && !is_store &&
2522                            offset != top() && heap_base_oop != top();
2523 
2524   if (!is_store && type == T_OBJECT) {
2525     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2526     if (tjp != NULL) {
2527       value_type = tjp;
2528     }
2529   }
2530 
2531   // Null check on self without removing any arguments.  The argument
2532   // null check technically happens in the wrong place, which can lead to
2533   // invalid stack traces when the primitive is inlined into a method
2534   // which handles NullPointerExceptions.
2535   _sp += nargs;
2536   do_null_check(receiver, T_OBJECT);
2537   _sp -= nargs;
2538   if (stopped()) {
2539     return true;
2540   }
2541   // Heap pointers get a null-check from the interpreter,
2542   // as a courtesy.  However, this is not guaranteed by Unsafe,
2543   // and it is not possible to fully distinguish unintended nulls
2544   // from intended ones in this API.
2545 
2546   if (is_volatile) {
2547     // We need to emit leading and trailing CPU membars (see below) in
2548     // addition to memory membars when is_volatile. This is a little
2549     // too strong, but avoids the need to insert per-alias-type
2550     // volatile membars (for stores; compare Parse::do_put_xxx), which
2551     // we cannot do effectively here because we probably only have a
2552     // rough approximation of type.
2553     need_mem_bar = true;
2554     // For Stores, place a memory ordering barrier now.
2555     if (is_store)
2556       insert_mem_bar(Op_MemBarRelease);
2557   }
2558 
2559   // Memory barrier to prevent normal and 'unsafe' accesses from
2560   // bypassing each other.  Happens after null checks, so the
2561   // exception paths do not take memory state from the memory barrier,
2562   // so there's no problems making a strong assert about mixing users
2563   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2564   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2565   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2566 
2567   if (!is_store) {
2568     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2569     // load value and push onto stack
2570     switch (type) {
2571     case T_BOOLEAN:
2572     case T_CHAR:
2573     case T_BYTE:
2574     case T_SHORT:
2575     case T_INT:
2576     case T_FLOAT:
2577       push(p);
2578       break;
2579     case T_OBJECT:
2580       if (need_read_barrier) {
2581         insert_pre_barrier(heap_base_oop, offset, p, nargs, !(is_volatile || need_mem_bar));
2582       }
2583       push(p);
2584       break;
2585     case T_ADDRESS:
2586       // Cast to an int type.
2587       p = _gvn.transform( new (C) CastP2XNode(NULL,p) );
2588       p = ConvX2L(p);
2589       push_pair(p);
2590       break;
2591     case T_DOUBLE:
2592     case T_LONG:
2593       push_pair( p );
2594       break;
2595     default: ShouldNotReachHere();
2596     }
2597   } else {
2598     // place effect of store into memory
2599     switch (type) {
2600     case T_DOUBLE:
2601       val = dstore_rounding(val);
2602       break;
2603     case T_ADDRESS:
2604       // Repackage the long as a pointer.
2605       val = ConvL2X(val);
2606       val = _gvn.transform( new (C) CastX2PNode(val) );
2607       break;
2608     }
2609 
2610     if (type != T_OBJECT ) {
2611       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2612     } else {
2613       // Possibly an oop being stored to Java heap or native memory
2614       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2615         // oop to Java heap.
2616         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2617       } else {
2618         // We can't tell at compile time if we are storing in the Java heap or outside
2619         // of it. So we need to emit code to conditionally do the proper type of
2620         // store.
2621 
2622         IdealKit ideal(this);
2623 #define __ ideal.
2624         // QQQ who knows what probability is here??
2625         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2626           // Sync IdealKit and graphKit.
2627           sync_kit(ideal);
2628           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2629           // Update IdealKit memory.
2630           __ sync_kit(this);
2631         } __ else_(); {
2632           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2633         } __ end_if();
2634         // Final sync IdealKit and GraphKit.
2635         final_sync(ideal);
2636 #undef __
2637       }
2638     }
2639   }
2640 
2641   if (is_volatile) {
2642     if (!is_store)
2643       insert_mem_bar(Op_MemBarAcquire);
2644     else
2645       insert_mem_bar(Op_MemBarVolatile);
2646   }
2647 
2648   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2649 
2650   return true;
2651 }
2652 
2653 //----------------------------inline_unsafe_prefetch----------------------------
2654 
2655 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2656 #ifndef PRODUCT
2657   {
2658     ResourceMark rm;
2659     // Check the signatures.
2660     ciSignature* sig = signature();
2661 #ifdef ASSERT
2662     // Object getObject(Object base, int/long offset), etc.
2663     BasicType rtype = sig->return_type()->basic_type();
2664     if (!is_native_ptr) {
2665       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2666       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2667       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2668     } else {
2669       assert(sig->count() == 1, "native prefetch has 1 argument");
2670       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2671     }
2672 #endif // ASSERT
2673   }
2674 #endif // !PRODUCT
2675 
2676   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2677 
2678   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
2679   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
2680 
2681   debug_only(int saved_sp = _sp);
2682   _sp += nargs;
2683 
2684   // Build address expression.  See the code in inline_unsafe_access.
2685   Node *adr;
2686   if (!is_native_ptr) {
2687     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2688     Node* offset = pop_pair();
2689     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2690     Node* base   = pop();
2691     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2692     // to be plain byte offsets, which are also the same as those accepted
2693     // by oopDesc::field_base.
2694     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2695            "fieldOffset must be byte-scaled");
2696     // 32-bit machines ignore the high half!
2697     offset = ConvL2X(offset);
2698     adr = make_unsafe_address(base, offset);
2699   } else {
2700     Node* ptr = pop_pair();
2701     // Adjust Java long to machine word:
2702     ptr = ConvL2X(ptr);
2703     adr = make_unsafe_address(NULL, ptr);
2704   }
2705 
2706   if (is_static) {
2707     assert(saved_sp == _sp, "must have correct argument count");
2708   } else {
2709     // Pop receiver last:  it was pushed first.
2710     Node *receiver = pop();
2711     assert(saved_sp == _sp, "must have correct argument count");
2712 
2713     // Null check on self without removing any arguments.  The argument
2714     // null check technically happens in the wrong place, which can lead to
2715     // invalid stack traces when the primitive is inlined into a method
2716     // which handles NullPointerExceptions.
2717     _sp += nargs;
2718     do_null_check(receiver, T_OBJECT);
2719     _sp -= nargs;
2720     if (stopped()) {
2721       return true;
2722     }
2723   }
2724 
2725   // Generate the read or write prefetch
2726   Node *prefetch;
2727   if (is_store) {
2728     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2729   } else {
2730     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2731   }
2732   prefetch->init_req(0, control());
2733   set_i_o(_gvn.transform(prefetch));
2734 
2735   return true;
2736 }
2737 
2738 //----------------------------inline_unsafe_load_store----------------------------
2739 
2740 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2741   // This basic scheme here is the same as inline_unsafe_access, but
2742   // differs in enough details that combining them would make the code
2743   // overly confusing.  (This is a true fact! I originally combined
2744   // them, but even I was confused by it!) As much code/comments as
2745   // possible are retained from inline_unsafe_access though to make
2746   // the correspondences clearer. - dl
2747 
2748   if (callee()->is_static())  return false;  // caller must have the capability!
2749 
2750 #ifndef PRODUCT
2751   BasicType rtype;
2752   {
2753     ResourceMark rm;
2754     ciSignature* sig = signature();
2755     rtype = sig->return_type()->basic_type();
2756     if (kind == LS_xadd || kind == LS_xchg) {
2757       // Check the signatures.
2758 #ifdef ASSERT
2759       assert(rtype == type, "get and set must return the expected type");
2760       assert(sig->count() == 3, "get and set has 3 arguments");
2761       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2762       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2763       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2764 #endif // ASSERT
2765     } else if (kind == LS_cmpxchg) {
2766       // Check the signatures.
2767 #ifdef ASSERT
2768       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2769       assert(sig->count() == 4, "CAS has 4 arguments");
2770       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2771       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2772 #endif // ASSERT
2773     } else {
2774       ShouldNotReachHere();
2775     }
2776   }
2777 #endif //PRODUCT
2778 
2779   // number of stack slots per value argument (1 or 2)
2780   int type_words = type2size[type];
2781 
2782   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2783 
2784   // Argument words:  "this" plus oop plus offset (plus oldvalue) plus newvalue/delta;
2785   int nargs = 1 + 1 + 2  + ((kind == LS_cmpxchg) ? type_words : 0) + type_words;
2786 
2787   // pop arguments: newval, offset, base, and receiver
2788   debug_only(int saved_sp = _sp);
2789   _sp += nargs;
2790   Node* newval   = (type_words == 1) ? pop() : pop_pair();
2791   Node* oldval   = (kind == LS_cmpxchg) ? ((type_words == 1) ? pop() : pop_pair()) : NULL;
2792   Node *offset   = pop_pair();
2793   Node *base     = pop();
2794   Node *receiver = pop();
2795   assert(saved_sp == _sp, "must have correct argument count");
2796 
2797   //  Null check receiver.
2798   _sp += nargs;
2799   do_null_check(receiver, T_OBJECT);
2800   _sp -= nargs;
2801   if (stopped()) {
2802     return true;
2803   }
2804 
2805   // Build field offset expression.
2806   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2807   // to be plain byte offsets, which are also the same as those accepted
2808   // by oopDesc::field_base.
2809   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2810   // 32-bit machines ignore the high half of long offsets
2811   offset = ConvL2X(offset);
2812   Node* adr = make_unsafe_address(base, offset);
2813   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2814 
2815   // For CAS, unlike inline_unsafe_access, there seems no point in
2816   // trying to refine types. Just use the coarse types here.
2817   const Type *value_type = Type::get_const_basic_type(type);
2818   Compile::AliasType* alias_type = C->alias_type(adr_type);
2819   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2820 
2821   if (kind == LS_xchg && type == T_OBJECT) {
2822     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2823     if (tjp != NULL) {
2824       value_type = tjp;
2825     }
2826   }
2827 
2828   int alias_idx = C->get_alias_index(adr_type);
2829 
2830   // Memory-model-wise, a LoadStore acts like a little synchronized
2831   // block, so needs barriers on each side.  These don't translate
2832   // into actual barriers on most machines, but we still need rest of
2833   // compiler to respect ordering.
2834 
2835   insert_mem_bar(Op_MemBarRelease);
2836   insert_mem_bar(Op_MemBarCPUOrder);
2837 
2838   // 4984716: MemBars must be inserted before this
2839   //          memory node in order to avoid a false
2840   //          dependency which will confuse the scheduler.
2841   Node *mem = memory(alias_idx);
2842 
2843   // For now, we handle only those cases that actually exist: ints,
2844   // longs, and Object. Adding others should be straightforward.
2845   Node* load_store;
2846   switch(type) {
2847   case T_INT:
2848     if (kind == LS_xadd) {
2849       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2850     } else if (kind == LS_xchg) {
2851       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2852     } else if (kind == LS_cmpxchg) {
2853       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2854     } else {
2855       ShouldNotReachHere();
2856     }
2857     break;
2858   case T_LONG:
2859     if (kind == LS_xadd) {
2860       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2861     } else if (kind == LS_xchg) {
2862       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2863     } else if (kind == LS_cmpxchg) {
2864       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2865     } else {
2866       ShouldNotReachHere();
2867     }
2868     break;
2869   case T_OBJECT:
2870     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2871     // could be delayed during Parse (for example, in adjust_map_after_if()).
2872     // Execute transformation here to avoid barrier generation in such case.
2873     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2874       newval = _gvn.makecon(TypePtr::NULL_PTR);
2875 
2876     // Reference stores need a store barrier.
2877     pre_barrier(true /* do_load*/,
2878                 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2879                 NULL /* pre_val*/,
2880                 T_OBJECT);
2881 #ifdef _LP64
2882     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2883       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2884       if (kind == LS_xchg) {
2885         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
2886                                                               newval_enc, adr_type, value_type->make_narrowoop()));
2887       } else {
2888         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2889         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2890         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
2891                                                                    newval_enc, oldval_enc));
2892       }
2893     } else
2894 #endif
2895     {
2896       if (kind == LS_xchg) {
2897         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2898       } else {
2899         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2900         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2901       }
2902     }
2903     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2904     break;
2905   default:
2906     ShouldNotReachHere();
2907     break;
2908   }
2909 
2910   // SCMemProjNodes represent the memory state of a LoadStore. Their
2911   // main role is to prevent LoadStore nodes from being optimized away
2912   // when their results aren't used.
2913   Node* proj = _gvn.transform( new (C) SCMemProjNode(load_store));
2914   set_memory(proj, alias_idx);
2915 
2916   // Add the trailing membar surrounding the access
2917   insert_mem_bar(Op_MemBarCPUOrder);
2918   insert_mem_bar(Op_MemBarAcquire);
2919 
2920 #ifdef _LP64
2921   if (type == T_OBJECT && adr->bottom_type()->is_ptr_to_narrowoop() && kind == LS_xchg) {
2922     load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->bottom_type()->make_ptr()));
2923   }
2924 #endif
2925 
2926   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2927   push_node(load_store->bottom_type()->basic_type(), load_store);
2928   return true;
2929 }
2930 
2931 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2932   // This is another variant of inline_unsafe_access, differing in
2933   // that it always issues store-store ("release") barrier and ensures
2934   // store-atomicity (which only matters for "long").
2935 
2936   if (callee()->is_static())  return false;  // caller must have the capability!
2937 
2938 #ifndef PRODUCT
2939   {
2940     ResourceMark rm;
2941     // Check the signatures.
2942     ciSignature* sig = signature();
2943 #ifdef ASSERT
2944     BasicType rtype = sig->return_type()->basic_type();
2945     assert(rtype == T_VOID, "must return void");
2946     assert(sig->count() == 3, "has 3 arguments");
2947     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2948     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2949 #endif // ASSERT
2950   }
2951 #endif //PRODUCT
2952 
2953   // number of stack slots per value argument (1 or 2)
2954   int type_words = type2size[type];
2955 
2956   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2957 
2958   // Argument words:  "this" plus oop plus offset plus value;
2959   int nargs = 1 + 1 + 2 + type_words;
2960 
2961   // pop arguments: val, offset, base, and receiver
2962   debug_only(int saved_sp = _sp);
2963   _sp += nargs;
2964   Node* val      = (type_words == 1) ? pop() : pop_pair();
2965   Node *offset   = pop_pair();
2966   Node *base     = pop();
2967   Node *receiver = pop();
2968   assert(saved_sp == _sp, "must have correct argument count");
2969 
2970   //  Null check receiver.
2971   _sp += nargs;
2972   do_null_check(receiver, T_OBJECT);
2973   _sp -= nargs;
2974   if (stopped()) {
2975     return true;
2976   }
2977 
2978   // Build field offset expression.
2979   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2980   // 32-bit machines ignore the high half of long offsets
2981   offset = ConvL2X(offset);
2982   Node* adr = make_unsafe_address(base, offset);
2983   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2984   const Type *value_type = Type::get_const_basic_type(type);
2985   Compile::AliasType* alias_type = C->alias_type(adr_type);
2986 
2987   insert_mem_bar(Op_MemBarRelease);
2988   insert_mem_bar(Op_MemBarCPUOrder);
2989   // Ensure that the store is atomic for longs:
2990   bool require_atomic_access = true;
2991   Node* store;
2992   if (type == T_OBJECT) // reference stores need a store barrier.
2993     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2994   else {
2995     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2996   }
2997   insert_mem_bar(Op_MemBarCPUOrder);
2998   return true;
2999 }
3000 
3001 bool LibraryCallKit::inline_unsafe_allocate() {
3002   if (callee()->is_static())  return false;  // caller must have the capability!
3003   int nargs = 1 + 1;
3004   assert(signature()->size() == nargs-1, "alloc has 1 argument");
3005   null_check_receiver(callee());  // check then ignore argument(0)
3006   _sp += nargs;  // set original stack for use by uncommon_trap
3007   Node* cls = do_null_check(argument(1), T_OBJECT);
3008   _sp -= nargs;
3009   if (stopped())  return true;
3010 
3011   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
3012   _sp += nargs;  // set original stack for use by uncommon_trap
3013   kls = do_null_check(kls, T_OBJECT);
3014   _sp -= nargs;
3015   if (stopped())  return true;  // argument was like int.class
3016 
3017   // Note:  The argument might still be an illegal value like
3018   // Serializable.class or Object[].class.   The runtime will handle it.
3019   // But we must make an explicit check for initialization.
3020   Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3021   // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3022   // can generate code to load it as unsigned byte.
3023   Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
3024   Node* bits = intcon(InstanceKlass::fully_initialized);
3025   Node* test = _gvn.transform( new (C) SubINode(inst, bits) );
3026   // The 'test' is non-zero if we need to take a slow path.
3027 
3028   Node* obj = new_instance(kls, test);
3029   push(obj);
3030 
3031   return true;
3032 }
3033 
3034 #ifdef TRACE_HAVE_INTRINSICS
3035 /*
3036  * oop -> myklass
3037  * myklass->trace_id |= USED
3038  * return myklass->trace_id & ~0x3
3039  */
3040 bool LibraryCallKit::inline_native_classID() {
3041   int nargs = 1 + 1;
3042   null_check_receiver(callee());  // check then ignore argument(0)
3043   _sp += nargs;
3044   Node* cls = do_null_check(argument(1), T_OBJECT);
3045   _sp -= nargs;
3046   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
3047   _sp += nargs;
3048   kls = do_null_check(kls, T_OBJECT);
3049   _sp -= nargs;
3050   ByteSize offset = TRACE_ID_OFFSET;
3051   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3052   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
3053   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3054   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
3055   Node* clsused = longcon(0x01l); // set the class bit
3056   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
3057 
3058   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3059   store_to_memory(control(), insp, orl, T_LONG, adr_type);
3060   push_pair(andl);
3061   return true;
3062 }
3063 
3064 bool LibraryCallKit::inline_native_threadID() {
3065   Node* tls_ptr = NULL;
3066   Node* cur_thr = generate_current_thread(tls_ptr);
3067   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3068   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
3069   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3070 
3071   Node* threadid = NULL;
3072   size_t thread_id_size = OSThread::thread_id_size();
3073   if (thread_id_size == (size_t) BytesPerLong) {
3074     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
3075     push(threadid);
3076   } else if (thread_id_size == (size_t) BytesPerInt) {
3077     threadid = make_load(control(), p, TypeInt::INT, T_INT);
3078     push(threadid);
3079   } else {
3080     ShouldNotReachHere();
3081   }
3082   return true;
3083 }
3084 #endif
3085 
3086 //------------------------inline_native_time_funcs--------------
3087 // inline code for System.currentTimeMillis() and System.nanoTime()
3088 // these have the same type and signature
3089 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3090   const TypeFunc *tf = OptoRuntime::void_long_Type();
3091   const TypePtr* no_memory_effects = NULL;
3092   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3093   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
3094 #ifdef ASSERT
3095   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms + 1));
3096   assert(value_top == top(), "second value must be top");
3097 #endif
3098   push_pair(value);
3099   return true;
3100 }
3101 
3102 //------------------------inline_native_currentThread------------------
3103 bool LibraryCallKit::inline_native_currentThread() {
3104   Node* junk = NULL;
3105   push(generate_current_thread(junk));
3106   return true;
3107 }
3108 
3109 //------------------------inline_native_isInterrupted------------------
3110 bool LibraryCallKit::inline_native_isInterrupted() {
3111   const int nargs = 1+1;  // receiver + boolean
3112   assert(nargs == arg_size(), "sanity");
3113   // Add a fast path to t.isInterrupted(clear_int):
3114   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
3115   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3116   // So, in the common case that the interrupt bit is false,
3117   // we avoid making a call into the VM.  Even if the interrupt bit
3118   // is true, if the clear_int argument is false, we avoid the VM call.
3119   // However, if the receiver is not currentThread, we must call the VM,
3120   // because there must be some locking done around the operation.
3121 
3122   // We only go to the fast case code if we pass two guards.
3123   // Paths which do not pass are accumulated in the slow_region.
3124   RegionNode* slow_region = new (C) RegionNode(1);
3125   record_for_igvn(slow_region);
3126   RegionNode* result_rgn = new (C) RegionNode(1+3); // fast1, fast2, slow
3127   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3128   enum { no_int_result_path   = 1,
3129          no_clear_result_path = 2,
3130          slow_result_path     = 3
3131   };
3132 
3133   // (a) Receiving thread must be the current thread.
3134   Node* rec_thr = argument(0);
3135   Node* tls_ptr = NULL;
3136   Node* cur_thr = generate_current_thread(tls_ptr);
3137   Node* cmp_thr = _gvn.transform( new (C) CmpPNode(cur_thr, rec_thr) );
3138   Node* bol_thr = _gvn.transform( new (C) BoolNode(cmp_thr, BoolTest::ne) );
3139 
3140   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
3141   if (!known_current_thread)
3142     generate_slow_guard(bol_thr, slow_region);
3143 
3144   // (b) Interrupt bit on TLS must be false.
3145   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3146   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
3147   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3148   // Set the control input on the field _interrupted read to prevent it floating up.
3149   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
3150   Node* cmp_bit = _gvn.transform( new (C) CmpINode(int_bit, intcon(0)) );
3151   Node* bol_bit = _gvn.transform( new (C) BoolNode(cmp_bit, BoolTest::ne) );
3152 
3153   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3154 
3155   // First fast path:  if (!TLS._interrupted) return false;
3156   Node* false_bit = _gvn.transform( new (C) IfFalseNode(iff_bit) );
3157   result_rgn->init_req(no_int_result_path, false_bit);
3158   result_val->init_req(no_int_result_path, intcon(0));
3159 
3160   // drop through to next case
3161   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)) );
3162 
3163   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3164   Node* clr_arg = argument(1);
3165   Node* cmp_arg = _gvn.transform( new (C) CmpINode(clr_arg, intcon(0)) );
3166   Node* bol_arg = _gvn.transform( new (C) BoolNode(cmp_arg, BoolTest::ne) );
3167   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3168 
3169   // Second fast path:  ... else if (!clear_int) return true;
3170   Node* false_arg = _gvn.transform( new (C) IfFalseNode(iff_arg) );
3171   result_rgn->init_req(no_clear_result_path, false_arg);
3172   result_val->init_req(no_clear_result_path, intcon(1));
3173 
3174   // drop through to next case
3175   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)) );
3176 
3177   // (d) Otherwise, go to the slow path.
3178   slow_region->add_req(control());
3179   set_control( _gvn.transform(slow_region) );
3180 
3181   if (stopped()) {
3182     // There is no slow path.
3183     result_rgn->init_req(slow_result_path, top());
3184     result_val->init_req(slow_result_path, top());
3185   } else {
3186     // non-virtual because it is a private non-static
3187     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3188 
3189     Node* slow_val = set_results_for_java_call(slow_call);
3190     // this->control() comes from set_results_for_java_call
3191 
3192     // If we know that the result of the slow call will be true, tell the optimizer!
3193     if (known_current_thread)  slow_val = intcon(1);
3194 
3195     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3196     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3197     // These two phis are pre-filled with copies of of the fast IO and Memory
3198     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3199     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3200 
3201     result_rgn->init_req(slow_result_path, control());
3202     io_phi    ->init_req(slow_result_path, i_o());
3203     mem_phi   ->init_req(slow_result_path, reset_memory());
3204     result_val->init_req(slow_result_path, slow_val);
3205 
3206     set_all_memory( _gvn.transform(mem_phi) );
3207     set_i_o(        _gvn.transform(io_phi) );
3208   }
3209 
3210   push_result(result_rgn, result_val);
3211   C->set_has_split_ifs(true); // Has chance for split-if optimization
3212 
3213   return true;
3214 }
3215 
3216 //---------------------------load_mirror_from_klass----------------------------
3217 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3218 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3219   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3220   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
3221 }
3222 
3223 //-----------------------load_klass_from_mirror_common-------------------------
3224 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3225 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3226 // and branch to the given path on the region.
3227 // If never_see_null, take an uncommon trap on null, so we can optimistically
3228 // compile for the non-null case.
3229 // If the region is NULL, force never_see_null = true.
3230 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3231                                                     bool never_see_null,
3232                                                     int nargs,
3233                                                     RegionNode* region,
3234                                                     int null_path,
3235                                                     int offset) {
3236   if (region == NULL)  never_see_null = true;
3237   Node* p = basic_plus_adr(mirror, offset);
3238   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3239   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
3240   _sp += nargs; // any deopt will start just before call to enclosing method
3241   Node* null_ctl = top();
3242   kls = null_check_oop(kls, &null_ctl, never_see_null);
3243   if (region != NULL) {
3244     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3245     region->init_req(null_path, null_ctl);
3246   } else {
3247     assert(null_ctl == top(), "no loose ends");
3248   }
3249   _sp -= nargs;
3250   return kls;
3251 }
3252 
3253 //--------------------(inline_native_Class_query helpers)---------------------
3254 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3255 // Fall through if (mods & mask) == bits, take the guard otherwise.
3256 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3257   // Branch around if the given klass has the given modifier bit set.
3258   // Like generate_guard, adds a new path onto the region.
3259   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3260   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
3261   Node* mask = intcon(modifier_mask);
3262   Node* bits = intcon(modifier_bits);
3263   Node* mbit = _gvn.transform( new (C) AndINode(mods, mask) );
3264   Node* cmp  = _gvn.transform( new (C) CmpINode(mbit, bits) );
3265   Node* bol  = _gvn.transform( new (C) BoolNode(cmp, BoolTest::ne) );
3266   return generate_fair_guard(bol, region);
3267 }
3268 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3269   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3270 }
3271 
3272 //-------------------------inline_native_Class_query-------------------
3273 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3274   int nargs = 1+0;  // just the Class mirror, in most cases
3275   const Type* return_type = TypeInt::BOOL;
3276   Node* prim_return_value = top();  // what happens if it's a primitive class?
3277   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3278   bool expect_prim = false;     // most of these guys expect to work on refs
3279 
3280   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3281 
3282   switch (id) {
3283   case vmIntrinsics::_isInstance:
3284     nargs = 1+1;  // the Class mirror, plus the object getting queried about
3285     // nothing is an instance of a primitive type
3286     prim_return_value = intcon(0);
3287     break;
3288   case vmIntrinsics::_getModifiers:
3289     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3290     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3291     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3292     break;
3293   case vmIntrinsics::_isInterface:
3294     prim_return_value = intcon(0);
3295     break;
3296   case vmIntrinsics::_isArray:
3297     prim_return_value = intcon(0);
3298     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3299     break;
3300   case vmIntrinsics::_isPrimitive:
3301     prim_return_value = intcon(1);
3302     expect_prim = true;  // obviously
3303     break;
3304   case vmIntrinsics::_getSuperclass:
3305     prim_return_value = null();
3306     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3307     break;
3308   case vmIntrinsics::_getComponentType:
3309     prim_return_value = null();
3310     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3311     break;
3312   case vmIntrinsics::_getClassAccessFlags:
3313     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3314     return_type = TypeInt::INT;  // not bool!  6297094
3315     break;
3316   default:
3317     ShouldNotReachHere();
3318   }
3319 
3320   Node* mirror =                      argument(0);
3321   Node* obj    = (nargs <= 1)? top(): argument(1);
3322 
3323   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3324   if (mirror_con == NULL)  return false;  // cannot happen?
3325 
3326 #ifndef PRODUCT
3327   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
3328     ciType* k = mirror_con->java_mirror_type();
3329     if (k) {
3330       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3331       k->print_name();
3332       tty->cr();
3333     }
3334   }
3335 #endif
3336 
3337   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3338   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3339   record_for_igvn(region);
3340   PhiNode* phi = new (C) PhiNode(region, return_type);
3341 
3342   // The mirror will never be null of Reflection.getClassAccessFlags, however
3343   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3344   // if it is. See bug 4774291.
3345 
3346   // For Reflection.getClassAccessFlags(), the null check occurs in
3347   // the wrong place; see inline_unsafe_access(), above, for a similar
3348   // situation.
3349   _sp += nargs;  // set original stack for use by uncommon_trap
3350   mirror = do_null_check(mirror, T_OBJECT);
3351   _sp -= nargs;
3352   // If mirror or obj is dead, only null-path is taken.
3353   if (stopped())  return true;
3354 
3355   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3356 
3357   // Now load the mirror's klass metaobject, and null-check it.
3358   // Side-effects region with the control path if the klass is null.
3359   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
3360                                      region, _prim_path);
3361   // If kls is null, we have a primitive mirror.
3362   phi->init_req(_prim_path, prim_return_value);
3363   if (stopped()) { push_result(region, phi); return true; }
3364 
3365   Node* p;  // handy temp
3366   Node* null_ctl;
3367 
3368   // Now that we have the non-null klass, we can perform the real query.
3369   // For constant classes, the query will constant-fold in LoadNode::Value.
3370   Node* query_value = top();
3371   switch (id) {
3372   case vmIntrinsics::_isInstance:
3373     // nothing is an instance of a primitive type
3374     _sp += nargs;          // gen_instanceof might do an uncommon trap
3375     query_value = gen_instanceof(obj, kls);
3376     _sp -= nargs;
3377     break;
3378 
3379   case vmIntrinsics::_getModifiers:
3380     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3381     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3382     break;
3383 
3384   case vmIntrinsics::_isInterface:
3385     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3386     if (generate_interface_guard(kls, region) != NULL)
3387       // A guard was added.  If the guard is taken, it was an interface.
3388       phi->add_req(intcon(1));
3389     // If we fall through, it's a plain class.
3390     query_value = intcon(0);
3391     break;
3392 
3393   case vmIntrinsics::_isArray:
3394     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3395     if (generate_array_guard(kls, region) != NULL)
3396       // A guard was added.  If the guard is taken, it was an array.
3397       phi->add_req(intcon(1));
3398     // If we fall through, it's a plain class.
3399     query_value = intcon(0);
3400     break;
3401 
3402   case vmIntrinsics::_isPrimitive:
3403     query_value = intcon(0); // "normal" path produces false
3404     break;
3405 
3406   case vmIntrinsics::_getSuperclass:
3407     // The rules here are somewhat unfortunate, but we can still do better
3408     // with random logic than with a JNI call.
3409     // Interfaces store null or Object as _super, but must report null.
3410     // Arrays store an intermediate super as _super, but must report Object.
3411     // Other types can report the actual _super.
3412     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3413     if (generate_interface_guard(kls, region) != NULL)
3414       // A guard was added.  If the guard is taken, it was an interface.
3415       phi->add_req(null());
3416     if (generate_array_guard(kls, region) != NULL)
3417       // A guard was added.  If the guard is taken, it was an array.
3418       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3419     // If we fall through, it's a plain class.  Get its _super.
3420     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3421     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
3422     null_ctl = top();
3423     kls = null_check_oop(kls, &null_ctl);
3424     if (null_ctl != top()) {
3425       // If the guard is taken, Object.superClass is null (both klass and mirror).
3426       region->add_req(null_ctl);
3427       phi   ->add_req(null());
3428     }
3429     if (!stopped()) {
3430       query_value = load_mirror_from_klass(kls);
3431     }
3432     break;
3433 
3434   case vmIntrinsics::_getComponentType:
3435     if (generate_array_guard(kls, region) != NULL) {
3436       // Be sure to pin the oop load to the guard edge just created:
3437       Node* is_array_ctrl = region->in(region->req()-1);
3438       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()));
3439       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3440       phi->add_req(cmo);
3441     }
3442     query_value = null();  // non-array case is null
3443     break;
3444 
3445   case vmIntrinsics::_getClassAccessFlags:
3446     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3447     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3448     break;
3449 
3450   default:
3451     ShouldNotReachHere();
3452   }
3453 
3454   // Fall-through is the normal case of a query to a real class.
3455   phi->init_req(1, query_value);
3456   region->init_req(1, control());
3457 
3458   push_result(region, phi);
3459   C->set_has_split_ifs(true); // Has chance for split-if optimization
3460 
3461   return true;
3462 }
3463 
3464 //--------------------------inline_native_subtype_check------------------------
3465 // This intrinsic takes the JNI calls out of the heart of
3466 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3467 bool LibraryCallKit::inline_native_subtype_check() {
3468   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
3469 
3470   // Pull both arguments off the stack.
3471   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3472   args[0] = argument(0);
3473   args[1] = argument(1);
3474   Node* klasses[2];             // corresponding Klasses: superk, subk
3475   klasses[0] = klasses[1] = top();
3476 
3477   enum {
3478     // A full decision tree on {superc is prim, subc is prim}:
3479     _prim_0_path = 1,           // {P,N} => false
3480                                 // {P,P} & superc!=subc => false
3481     _prim_same_path,            // {P,P} & superc==subc => true
3482     _prim_1_path,               // {N,P} => false
3483     _ref_subtype_path,          // {N,N} & subtype check wins => true
3484     _both_ref_path,             // {N,N} & subtype check loses => false
3485     PATH_LIMIT
3486   };
3487 
3488   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3489   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3490   record_for_igvn(region);
3491 
3492   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3493   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3494   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3495 
3496   // First null-check both mirrors and load each mirror's klass metaobject.
3497   int which_arg;
3498   for (which_arg = 0; which_arg <= 1; which_arg++) {
3499     Node* arg = args[which_arg];
3500     _sp += nargs;  // set original stack for use by uncommon_trap
3501     arg = do_null_check(arg, T_OBJECT);
3502     _sp -= nargs;
3503     if (stopped())  break;
3504     args[which_arg] = _gvn.transform(arg);
3505 
3506     Node* p = basic_plus_adr(arg, class_klass_offset);
3507     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3508     klasses[which_arg] = _gvn.transform(kls);
3509   }
3510 
3511   // Having loaded both klasses, test each for null.
3512   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3513   for (which_arg = 0; which_arg <= 1; which_arg++) {
3514     Node* kls = klasses[which_arg];
3515     Node* null_ctl = top();
3516     _sp += nargs;  // set original stack for use by uncommon_trap
3517     kls = null_check_oop(kls, &null_ctl, never_see_null);
3518     _sp -= nargs;
3519     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3520     region->init_req(prim_path, null_ctl);
3521     if (stopped())  break;
3522     klasses[which_arg] = kls;
3523   }
3524 
3525   if (!stopped()) {
3526     // now we have two reference types, in klasses[0..1]
3527     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3528     Node* superk = klasses[0];  // the receiver
3529     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3530     // now we have a successful reference subtype check
3531     region->set_req(_ref_subtype_path, control());
3532   }
3533 
3534   // If both operands are primitive (both klasses null), then
3535   // we must return true when they are identical primitives.
3536   // It is convenient to test this after the first null klass check.
3537   set_control(region->in(_prim_0_path)); // go back to first null check
3538   if (!stopped()) {
3539     // Since superc is primitive, make a guard for the superc==subc case.
3540     Node* cmp_eq = _gvn.transform( new (C) CmpPNode(args[0], args[1]) );
3541     Node* bol_eq = _gvn.transform( new (C) BoolNode(cmp_eq, BoolTest::eq) );
3542     generate_guard(bol_eq, region, PROB_FAIR);
3543     if (region->req() == PATH_LIMIT+1) {
3544       // A guard was added.  If the added guard is taken, superc==subc.
3545       region->swap_edges(PATH_LIMIT, _prim_same_path);
3546       region->del_req(PATH_LIMIT);
3547     }
3548     region->set_req(_prim_0_path, control()); // Not equal after all.
3549   }
3550 
3551   // these are the only paths that produce 'true':
3552   phi->set_req(_prim_same_path,   intcon(1));
3553   phi->set_req(_ref_subtype_path, intcon(1));
3554 
3555   // pull together the cases:
3556   assert(region->req() == PATH_LIMIT, "sane region");
3557   for (uint i = 1; i < region->req(); i++) {
3558     Node* ctl = region->in(i);
3559     if (ctl == NULL || ctl == top()) {
3560       region->set_req(i, top());
3561       phi   ->set_req(i, top());
3562     } else if (phi->in(i) == NULL) {
3563       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3564     }
3565   }
3566 
3567   set_control(_gvn.transform(region));
3568   push(_gvn.transform(phi));
3569 
3570   return true;
3571 }
3572 
3573 //---------------------generate_array_guard_common------------------------
3574 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3575                                                   bool obj_array, bool not_array) {
3576   // If obj_array/non_array==false/false:
3577   // Branch around if the given klass is in fact an array (either obj or prim).
3578   // If obj_array/non_array==false/true:
3579   // Branch around if the given klass is not an array klass of any kind.
3580   // If obj_array/non_array==true/true:
3581   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3582   // If obj_array/non_array==true/false:
3583   // Branch around if the kls is an oop array (Object[] or subtype)
3584   //
3585   // Like generate_guard, adds a new path onto the region.
3586   jint  layout_con = 0;
3587   Node* layout_val = get_layout_helper(kls, layout_con);
3588   if (layout_val == NULL) {
3589     bool query = (obj_array
3590                   ? Klass::layout_helper_is_objArray(layout_con)
3591                   : Klass::layout_helper_is_array(layout_con));
3592     if (query == not_array) {
3593       return NULL;                       // never a branch
3594     } else {                             // always a branch
3595       Node* always_branch = control();
3596       if (region != NULL)
3597         region->add_req(always_branch);
3598       set_control(top());
3599       return always_branch;
3600     }
3601   }
3602   // Now test the correct condition.
3603   jint  nval = (obj_array
3604                 ? ((jint)Klass::_lh_array_tag_type_value
3605                    <<    Klass::_lh_array_tag_shift)
3606                 : Klass::_lh_neutral_value);
3607   Node* cmp = _gvn.transform( new(C) CmpINode(layout_val, intcon(nval)) );
3608   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3609   // invert the test if we are looking for a non-array
3610   if (not_array)  btest = BoolTest(btest).negate();
3611   Node* bol = _gvn.transform( new(C) BoolNode(cmp, btest) );
3612   return generate_fair_guard(bol, region);
3613 }
3614 
3615 
3616 //-----------------------inline_native_newArray--------------------------
3617 bool LibraryCallKit::inline_native_newArray() {
3618   int nargs = 2;
3619   Node* mirror    = argument(0);
3620   Node* count_val = argument(1);
3621 
3622   _sp += nargs;  // set original stack for use by uncommon_trap
3623   mirror = do_null_check(mirror, T_OBJECT);
3624   _sp -= nargs;
3625   // If mirror or obj is dead, only null-path is taken.
3626   if (stopped())  return true;
3627 
3628   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3629   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3630   PhiNode*    result_val = new(C) PhiNode(result_reg,
3631                                           TypeInstPtr::NOTNULL);
3632   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3633   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3634                                           TypePtr::BOTTOM);
3635 
3636   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3637   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3638                                                   nargs,
3639                                                   result_reg, _slow_path);
3640   Node* normal_ctl   = control();
3641   Node* no_array_ctl = result_reg->in(_slow_path);
3642 
3643   // Generate code for the slow case.  We make a call to newArray().
3644   set_control(no_array_ctl);
3645   if (!stopped()) {
3646     // Either the input type is void.class, or else the
3647     // array klass has not yet been cached.  Either the
3648     // ensuing call will throw an exception, or else it
3649     // will cache the array klass for next time.
3650     PreserveJVMState pjvms(this);
3651     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3652     Node* slow_result = set_results_for_java_call(slow_call);
3653     // this->control() comes from set_results_for_java_call
3654     result_reg->set_req(_slow_path, control());
3655     result_val->set_req(_slow_path, slow_result);
3656     result_io ->set_req(_slow_path, i_o());
3657     result_mem->set_req(_slow_path, reset_memory());
3658   }
3659 
3660   set_control(normal_ctl);
3661   if (!stopped()) {
3662     // Normal case:  The array type has been cached in the java.lang.Class.
3663     // The following call works fine even if the array type is polymorphic.
3664     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3665     Node* obj = new_array(klass_node, count_val, nargs);
3666     result_reg->init_req(_normal_path, control());
3667     result_val->init_req(_normal_path, obj);
3668     result_io ->init_req(_normal_path, i_o());
3669     result_mem->init_req(_normal_path, reset_memory());
3670   }
3671 
3672   // Return the combined state.
3673   set_i_o(        _gvn.transform(result_io)  );
3674   set_all_memory( _gvn.transform(result_mem) );
3675   push_result(result_reg, result_val);
3676   C->set_has_split_ifs(true); // Has chance for split-if optimization
3677 
3678   return true;
3679 }
3680 
3681 //----------------------inline_native_getLength--------------------------
3682 bool LibraryCallKit::inline_native_getLength() {
3683   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3684 
3685   int nargs = 1;
3686   Node* array = argument(0);
3687 
3688   _sp += nargs;  // set original stack for use by uncommon_trap
3689   array = do_null_check(array, T_OBJECT);
3690   _sp -= nargs;
3691 
3692   // If array is dead, only null-path is taken.
3693   if (stopped())  return true;
3694 
3695   // Deoptimize if it is a non-array.
3696   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3697 
3698   if (non_array != NULL) {
3699     PreserveJVMState pjvms(this);
3700     set_control(non_array);
3701     _sp += nargs;  // push the arguments back on the stack
3702     uncommon_trap(Deoptimization::Reason_intrinsic,
3703                   Deoptimization::Action_maybe_recompile);
3704   }
3705 
3706   // If control is dead, only non-array-path is taken.
3707   if (stopped())  return true;
3708 
3709   // The works fine even if the array type is polymorphic.
3710   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3711   push( load_array_length(array) );
3712 
3713   C->set_has_split_ifs(true); // Has chance for split-if optimization
3714 
3715   return true;
3716 }
3717 
3718 //------------------------inline_array_copyOf----------------------------
3719 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3720   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3721 
3722   // Restore the stack and pop off the arguments.
3723   int nargs = 3 + (is_copyOfRange? 1: 0);
3724   Node* original          = argument(0);
3725   Node* start             = is_copyOfRange? argument(1): intcon(0);
3726   Node* end               = is_copyOfRange? argument(2): argument(1);
3727   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3728 
3729   Node* newcopy;
3730 
3731   //set the original stack and the reexecute bit for the interpreter to reexecute
3732   //the bytecode that invokes Arrays.copyOf if deoptimization happens
3733   { PreserveReexecuteState preexecs(this);
3734     _sp += nargs;
3735     jvms()->set_should_reexecute(true);
3736 
3737     array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
3738     original          = do_null_check(original, T_OBJECT);
3739 
3740     // Check if a null path was taken unconditionally.
3741     if (stopped())  return true;
3742 
3743     Node* orig_length = load_array_length(original);
3744 
3745     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
3746                                               NULL, 0);
3747     klass_node = do_null_check(klass_node, T_OBJECT);
3748 
3749     RegionNode* bailout = new (C) RegionNode(1);
3750     record_for_igvn(bailout);
3751 
3752     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3753     // Bail out if that is so.
3754     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3755     if (not_objArray != NULL) {
3756       // Improve the klass node's type from the new optimistic assumption:
3757       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3758       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3759       Node* cast = new (C) CastPPNode(klass_node, akls);
3760       cast->init_req(0, control());
3761       klass_node = _gvn.transform(cast);
3762     }
3763 
3764     // Bail out if either start or end is negative.
3765     generate_negative_guard(start, bailout, &start);
3766     generate_negative_guard(end,   bailout, &end);
3767 
3768     Node* length = end;
3769     if (_gvn.type(start) != TypeInt::ZERO) {
3770       length = _gvn.transform( new (C) SubINode(end, start) );
3771     }
3772 
3773     // Bail out if length is negative.
3774     // Without this the new_array would throw
3775     // NegativeArraySizeException but IllegalArgumentException is what
3776     // should be thrown
3777     generate_negative_guard(length, bailout, &length);
3778 
3779     if (bailout->req() > 1) {
3780       PreserveJVMState pjvms(this);
3781       set_control( _gvn.transform(bailout) );
3782       uncommon_trap(Deoptimization::Reason_intrinsic,
3783                     Deoptimization::Action_maybe_recompile);
3784     }
3785 
3786     if (!stopped()) {
3787 
3788       // How many elements will we copy from the original?
3789       // The answer is MinI(orig_length - start, length).
3790       Node* orig_tail = _gvn.transform( new(C) SubINode(orig_length, start) );
3791       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3792 
3793       newcopy = new_array(klass_node, length, 0);
3794 
3795       // Generate a direct call to the right arraycopy function(s).
3796       // We know the copy is disjoint but we might not know if the
3797       // oop stores need checking.
3798       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3799       // This will fail a store-check if x contains any non-nulls.
3800       bool disjoint_bases = true;
3801       // if start > orig_length then the length of the copy may be
3802       // negative.
3803       bool length_never_negative = !is_copyOfRange;
3804       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3805                          original, start, newcopy, intcon(0), moved,
3806                          disjoint_bases, length_never_negative);
3807     }
3808   } //original reexecute and sp are set back here
3809 
3810   if(!stopped()) {
3811     push(newcopy);
3812   }
3813 
3814   C->set_has_split_ifs(true); // Has chance for split-if optimization
3815 
3816   return true;
3817 }
3818 
3819 
3820 //----------------------generate_virtual_guard---------------------------
3821 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3822 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3823                                              RegionNode* slow_region) {
3824   ciMethod* method = callee();
3825   int vtable_index = method->vtable_index();
3826   // Get the Method* out of the appropriate vtable entry.
3827   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3828                      vtable_index*vtableEntry::size()) * wordSize +
3829                      vtableEntry::method_offset_in_bytes();
3830   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3831   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
3832 
3833   // Compare the target method with the expected method (e.g., Object.hashCode).
3834   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3835 
3836   Node* native_call = makecon(native_call_addr);
3837   Node* chk_native  = _gvn.transform( new(C) CmpPNode(target_call, native_call) );
3838   Node* test_native = _gvn.transform( new(C) BoolNode(chk_native, BoolTest::ne) );
3839 
3840   return generate_slow_guard(test_native, slow_region);
3841 }
3842 
3843 //-----------------------generate_method_call----------------------------
3844 // Use generate_method_call to make a slow-call to the real
3845 // method if the fast path fails.  An alternative would be to
3846 // use a stub like OptoRuntime::slow_arraycopy_Java.
3847 // This only works for expanding the current library call,
3848 // not another intrinsic.  (E.g., don't use this for making an
3849 // arraycopy call inside of the copyOf intrinsic.)
3850 CallJavaNode*
3851 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3852   // When compiling the intrinsic method itself, do not use this technique.
3853   guarantee(callee() != C->method(), "cannot make slow-call to self");
3854 
3855   ciMethod* method = callee();
3856   // ensure the JVMS we have will be correct for this call
3857   guarantee(method_id == method->intrinsic_id(), "must match");
3858 
3859   const TypeFunc* tf = TypeFunc::make(method);
3860   CallJavaNode* slow_call;
3861   if (is_static) {
3862     assert(!is_virtual, "");
3863     slow_call = new(C) CallStaticJavaNode(tf,
3864                            SharedRuntime::get_resolve_static_call_stub(),
3865                            method, bci());
3866   } else if (is_virtual) {
3867     null_check_receiver(method);
3868     int vtable_index = Method::invalid_vtable_index;
3869     if (UseInlineCaches) {
3870       // Suppress the vtable call
3871     } else {
3872       // hashCode and clone are not a miranda methods,
3873       // so the vtable index is fixed.
3874       // No need to use the linkResolver to get it.
3875        vtable_index = method->vtable_index();
3876     }
3877     slow_call = new(C) CallDynamicJavaNode(tf,
3878                           SharedRuntime::get_resolve_virtual_call_stub(),
3879                           method, vtable_index, bci());
3880   } else {  // neither virtual nor static:  opt_virtual
3881     null_check_receiver(method);
3882     slow_call = new(C) CallStaticJavaNode(tf,
3883                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3884                                 method, bci());
3885     slow_call->set_optimized_virtual(true);
3886   }
3887   set_arguments_for_java_call(slow_call);
3888   set_edges_for_java_call(slow_call);
3889   return slow_call;
3890 }
3891 
3892 
3893 //------------------------------inline_native_hashcode--------------------
3894 // Build special case code for calls to hashCode on an object.
3895 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3896   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3897   assert(!(is_virtual && is_static), "either virtual, special, or static");
3898 
3899   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3900 
3901   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3902   PhiNode*    result_val = new(C) PhiNode(result_reg,
3903                                           TypeInt::INT);
3904   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3905   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3906                                           TypePtr::BOTTOM);
3907   Node* obj = NULL;
3908   if (!is_static) {
3909     // Check for hashing null object
3910     obj = null_check_receiver(callee());
3911     if (stopped())  return true;        // unconditionally null
3912     result_reg->init_req(_null_path, top());
3913     result_val->init_req(_null_path, top());
3914   } else {
3915     // Do a null check, and return zero if null.
3916     // System.identityHashCode(null) == 0
3917     obj = argument(0);
3918     Node* null_ctl = top();
3919     obj = null_check_oop(obj, &null_ctl);
3920     result_reg->init_req(_null_path, null_ctl);
3921     result_val->init_req(_null_path, _gvn.intcon(0));
3922   }
3923 
3924   // Unconditionally null?  Then return right away.
3925   if (stopped()) {
3926     set_control( result_reg->in(_null_path) );
3927     if (!stopped())
3928       push(      result_val ->in(_null_path) );
3929     return true;
3930   }
3931 
3932   // After null check, get the object's klass.
3933   Node* obj_klass = load_object_klass(obj);
3934 
3935   // This call may be virtual (invokevirtual) or bound (invokespecial).
3936   // For each case we generate slightly different code.
3937 
3938   // We only go to the fast case code if we pass a number of guards.  The
3939   // paths which do not pass are accumulated in the slow_region.
3940   RegionNode* slow_region = new (C) RegionNode(1);
3941   record_for_igvn(slow_region);
3942 
3943   // If this is a virtual call, we generate a funny guard.  We pull out
3944   // the vtable entry corresponding to hashCode() from the target object.
3945   // If the target method which we are calling happens to be the native
3946   // Object hashCode() method, we pass the guard.  We do not need this
3947   // guard for non-virtual calls -- the caller is known to be the native
3948   // Object hashCode().
3949   if (is_virtual) {
3950     generate_virtual_guard(obj_klass, slow_region);
3951   }
3952 
3953   // Get the header out of the object, use LoadMarkNode when available
3954   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3955   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
3956 
3957   // Test the header to see if it is unlocked.
3958   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3959   Node *lmasked_header = _gvn.transform( new (C) AndXNode(header, lock_mask) );
3960   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3961   Node *chk_unlocked   = _gvn.transform( new (C) CmpXNode( lmasked_header, unlocked_val));
3962   Node *test_unlocked  = _gvn.transform( new (C) BoolNode( chk_unlocked, BoolTest::ne) );
3963 
3964   generate_slow_guard(test_unlocked, slow_region);
3965 
3966   // Get the hash value and check to see that it has been properly assigned.
3967   // We depend on hash_mask being at most 32 bits and avoid the use of
3968   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3969   // vm: see markOop.hpp.
3970   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3971   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3972   Node *hshifted_header= _gvn.transform( new (C) URShiftXNode(header, hash_shift) );
3973   // This hack lets the hash bits live anywhere in the mark object now, as long
3974   // as the shift drops the relevant bits into the low 32 bits.  Note that
3975   // Java spec says that HashCode is an int so there's no point in capturing
3976   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3977   hshifted_header      = ConvX2I(hshifted_header);
3978   Node *hash_val       = _gvn.transform( new (C) AndINode(hshifted_header, hash_mask) );
3979 
3980   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3981   Node *chk_assigned   = _gvn.transform( new (C) CmpINode( hash_val, no_hash_val));
3982   Node *test_assigned  = _gvn.transform( new (C) BoolNode( chk_assigned, BoolTest::eq) );
3983 
3984   generate_slow_guard(test_assigned, slow_region);
3985 
3986   Node* init_mem = reset_memory();
3987   // fill in the rest of the null path:
3988   result_io ->init_req(_null_path, i_o());
3989   result_mem->init_req(_null_path, init_mem);
3990 
3991   result_val->init_req(_fast_path, hash_val);
3992   result_reg->init_req(_fast_path, control());
3993   result_io ->init_req(_fast_path, i_o());
3994   result_mem->init_req(_fast_path, init_mem);
3995 
3996   // Generate code for the slow case.  We make a call to hashCode().
3997   set_control(_gvn.transform(slow_region));
3998   if (!stopped()) {
3999     // No need for PreserveJVMState, because we're using up the present state.
4000     set_all_memory(init_mem);
4001     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
4002     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
4003     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4004     Node* slow_result = set_results_for_java_call(slow_call);
4005     // this->control() comes from set_results_for_java_call
4006     result_reg->init_req(_slow_path, control());
4007     result_val->init_req(_slow_path, slow_result);
4008     result_io  ->set_req(_slow_path, i_o());
4009     result_mem ->set_req(_slow_path, reset_memory());
4010   }
4011 
4012   // Return the combined state.
4013   set_i_o(        _gvn.transform(result_io)  );
4014   set_all_memory( _gvn.transform(result_mem) );
4015   push_result(result_reg, result_val);
4016 
4017   return true;
4018 }
4019 
4020 //---------------------------inline_native_getClass----------------------------
4021 // Build special case code for calls to getClass on an object.
4022 bool LibraryCallKit::inline_native_getClass() {
4023   Node* obj = null_check_receiver(callee());
4024   if (stopped())  return true;
4025   push( load_mirror_from_klass(load_object_klass(obj)) );
4026   return true;
4027 }
4028 
4029 //-----------------inline_native_Reflection_getCallerClass---------------------
4030 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4031 //
4032 // NOTE that this code must perform the same logic as
4033 // vframeStream::security_get_caller_frame in that it must skip
4034 // Method.invoke() and auxiliary frames.
4035 
4036 
4037 
4038 
4039 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4040   ciMethod*       method = callee();
4041 
4042 #ifndef PRODUCT
4043   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
4044     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4045   }
4046 #endif
4047 
4048   debug_only(int saved_sp = _sp);
4049 
4050   // Argument words:  (int depth)
4051   int nargs = 1;
4052 
4053   _sp += nargs;
4054   Node* caller_depth_node = pop();
4055 
4056   assert(saved_sp == _sp, "must have correct argument count");
4057 
4058   // The depth value must be a constant in order for the runtime call
4059   // to be eliminated.
4060   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
4061   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
4062 #ifndef PRODUCT
4063     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
4064       tty->print_cr("  Bailing out because caller depth was not a constant");
4065     }
4066 #endif
4067     return false;
4068   }
4069   // Note that the JVM state at this point does not include the
4070   // getCallerClass() frame which we are trying to inline. The
4071   // semantics of getCallerClass(), however, are that the "first"
4072   // frame is the getCallerClass() frame, so we subtract one from the
4073   // requested depth before continuing. We don't inline requests of
4074   // getCallerClass(0).
4075   int caller_depth = caller_depth_type->get_con() - 1;
4076   if (caller_depth < 0) {
4077 #ifndef PRODUCT
4078     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
4079       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
4080     }
4081 #endif
4082     return false;
4083   }
4084 
4085   if (!jvms()->has_method()) {
4086 #ifndef PRODUCT
4087     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
4088       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4089     }
4090 #endif
4091     return false;
4092   }
4093   int _depth = jvms()->depth();  // cache call chain depth
4094 
4095   // Walk back up the JVM state to find the caller at the required
4096   // depth. NOTE that this code must perform the same logic as
4097   // vframeStream::security_get_caller_frame in that it must skip
4098   // Method.invoke() and auxiliary frames. Note also that depth is
4099   // 1-based (1 is the bottom of the inlining).
4100   int inlining_depth = _depth;
4101   JVMState* caller_jvms = NULL;
4102 
4103   if (inlining_depth > 0) {
4104     caller_jvms = jvms();
4105     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
4106     do {
4107       // The following if-tests should be performed in this order
4108       if (is_method_invoke_or_aux_frame(caller_jvms)) {
4109         // Skip a Method.invoke() or auxiliary frame
4110       } else if (caller_depth > 0) {
4111         // Skip real frame
4112         --caller_depth;
4113       } else {
4114         // We're done: reached desired caller after skipping.
4115         break;
4116       }
4117       caller_jvms = caller_jvms->caller();
4118       --inlining_depth;
4119     } while (inlining_depth > 0);
4120   }
4121 
4122   if (inlining_depth == 0) {
4123 #ifndef PRODUCT
4124     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
4125       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
4126       tty->print_cr("  JVM state at this point:");
4127       for (int i = _depth; i >= 1; i--) {
4128         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
4129       }
4130     }
4131 #endif
4132     return false; // Reached end of inlining
4133   }
4134 
4135   // Acquire method holder as java.lang.Class
4136   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
4137   ciInstance*      caller_mirror = caller_klass->java_mirror();
4138   // Push this as a constant
4139   push(makecon(TypeInstPtr::make(caller_mirror)));
4140 #ifndef PRODUCT
4141   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
4142     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
4143     tty->print_cr("  JVM state at this point:");
4144     for (int i = _depth; i >= 1; i--) {
4145       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
4146     }
4147   }
4148 #endif
4149   return true;
4150 }
4151 
4152 // Helper routine for above
4153 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
4154   ciMethod* method = jvms->method();
4155 
4156   // Is this the Method.invoke method itself?
4157   if (method->intrinsic_id() == vmIntrinsics::_invoke)
4158     return true;
4159 
4160   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
4161   ciKlass* k = method->holder();
4162   if (k->is_instance_klass()) {
4163     ciInstanceKlass* ik = k->as_instance_klass();
4164     for (; ik != NULL; ik = ik->super()) {
4165       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
4166           ik == env()->find_system_klass(ik->name())) {
4167         return true;
4168       }
4169     }
4170   }
4171   else if (method->is_method_handle_intrinsic() ||
4172            method->is_compiled_lambda_form()) {
4173     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
4174     return true;
4175   }
4176 
4177   return false;
4178 }
4179 
4180 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4181   // restore the arguments
4182   _sp += arg_size();
4183 
4184   switch (id) {
4185   case vmIntrinsics::_floatToRawIntBits:
4186     push(_gvn.transform( new (C) MoveF2INode(pop())));
4187     break;
4188 
4189   case vmIntrinsics::_intBitsToFloat:
4190     push(_gvn.transform( new (C) MoveI2FNode(pop())));
4191     break;
4192 
4193   case vmIntrinsics::_doubleToRawLongBits:
4194     push_pair(_gvn.transform( new (C) MoveD2LNode(pop_pair())));
4195     break;
4196 
4197   case vmIntrinsics::_longBitsToDouble:
4198     push_pair(_gvn.transform( new (C) MoveL2DNode(pop_pair())));
4199     break;
4200 
4201   case vmIntrinsics::_doubleToLongBits: {
4202     Node* value = pop_pair();
4203 
4204     // two paths (plus control) merge in a wood
4205     RegionNode *r = new (C) RegionNode(3);
4206     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4207 
4208     Node *cmpisnan = _gvn.transform( new (C) CmpDNode(value, value));
4209     // Build the boolean node
4210     Node *bolisnan = _gvn.transform( new (C) BoolNode( cmpisnan, BoolTest::ne ) );
4211 
4212     // Branch either way.
4213     // NaN case is less traveled, which makes all the difference.
4214     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4215     Node *opt_isnan = _gvn.transform(ifisnan);
4216     assert( opt_isnan->is_If(), "Expect an IfNode");
4217     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4218     Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
4219 
4220     set_control(iftrue);
4221 
4222     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4223     Node *slow_result = longcon(nan_bits); // return NaN
4224     phi->init_req(1, _gvn.transform( slow_result ));
4225     r->init_req(1, iftrue);
4226 
4227     // Else fall through
4228     Node *iffalse = _gvn.transform( new (C) IfFalseNode(opt_ifisnan) );
4229     set_control(iffalse);
4230 
4231     phi->init_req(2, _gvn.transform( new (C) MoveD2LNode(value)));
4232     r->init_req(2, iffalse);
4233 
4234     // Post merge
4235     set_control(_gvn.transform(r));
4236     record_for_igvn(r);
4237 
4238     Node* result = _gvn.transform(phi);
4239     assert(result->bottom_type()->isa_long(), "must be");
4240     push_pair(result);
4241 
4242     C->set_has_split_ifs(true); // Has chance for split-if optimization
4243 
4244     break;
4245   }
4246 
4247   case vmIntrinsics::_floatToIntBits: {
4248     Node* value = pop();
4249 
4250     // two paths (plus control) merge in a wood
4251     RegionNode *r = new (C) RegionNode(3);
4252     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4253 
4254     Node *cmpisnan = _gvn.transform( new (C) CmpFNode(value, value));
4255     // Build the boolean node
4256     Node *bolisnan = _gvn.transform( new (C) BoolNode( cmpisnan, BoolTest::ne ) );
4257 
4258     // Branch either way.
4259     // NaN case is less traveled, which makes all the difference.
4260     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4261     Node *opt_isnan = _gvn.transform(ifisnan);
4262     assert( opt_isnan->is_If(), "Expect an IfNode");
4263     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4264     Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
4265 
4266     set_control(iftrue);
4267 
4268     static const jint nan_bits = 0x7fc00000;
4269     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4270     phi->init_req(1, _gvn.transform( slow_result ));
4271     r->init_req(1, iftrue);
4272 
4273     // Else fall through
4274     Node *iffalse = _gvn.transform( new (C) IfFalseNode(opt_ifisnan) );
4275     set_control(iffalse);
4276 
4277     phi->init_req(2, _gvn.transform( new (C) MoveF2INode(value)));
4278     r->init_req(2, iffalse);
4279 
4280     // Post merge
4281     set_control(_gvn.transform(r));
4282     record_for_igvn(r);
4283 
4284     Node* result = _gvn.transform(phi);
4285     assert(result->bottom_type()->isa_int(), "must be");
4286     push(result);
4287 
4288     C->set_has_split_ifs(true); // Has chance for split-if optimization
4289 
4290     break;
4291   }
4292 
4293   default:
4294     ShouldNotReachHere();
4295   }
4296 
4297   return true;
4298 }
4299 
4300 #ifdef _LP64
4301 #define XTOP ,top() /*additional argument*/
4302 #else  //_LP64
4303 #define XTOP        /*no additional argument*/
4304 #endif //_LP64
4305 
4306 //----------------------inline_unsafe_copyMemory-------------------------
4307 bool LibraryCallKit::inline_unsafe_copyMemory() {
4308   if (callee()->is_static())  return false;  // caller must have the capability!
4309   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
4310   assert(signature()->size() == nargs-1, "copy has 5 arguments");
4311   null_check_receiver(callee());  // check then ignore argument(0)
4312   if (stopped())  return true;
4313 
4314   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4315 
4316   Node* src_ptr = argument(1);
4317   Node* src_off = ConvL2X(argument(2));
4318   assert(argument(3)->is_top(), "2nd half of long");
4319   Node* dst_ptr = argument(4);
4320   Node* dst_off = ConvL2X(argument(5));
4321   assert(argument(6)->is_top(), "2nd half of long");
4322   Node* size    = ConvL2X(argument(7));
4323   assert(argument(8)->is_top(), "2nd half of long");
4324 
4325   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4326          "fieldOffset must be byte-scaled");
4327 
4328   Node* src = make_unsafe_address(src_ptr, src_off);
4329   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4330 
4331   // Conservatively insert a memory barrier on all memory slices.
4332   // Do not let writes of the copy source or destination float below the copy.
4333   insert_mem_bar(Op_MemBarCPUOrder);
4334 
4335   // Call it.  Note that the length argument is not scaled.
4336   make_runtime_call(RC_LEAF|RC_NO_FP,
4337                     OptoRuntime::fast_arraycopy_Type(),
4338                     StubRoutines::unsafe_arraycopy(),
4339                     "unsafe_arraycopy",
4340                     TypeRawPtr::BOTTOM,
4341                     src, dst, size XTOP);
4342 
4343   // Do not let reads of the copy destination float above the copy.
4344   insert_mem_bar(Op_MemBarCPUOrder);
4345 
4346   return true;
4347 }
4348 
4349 //------------------------clone_coping-----------------------------------
4350 // Helper function for inline_native_clone.
4351 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4352   assert(obj_size != NULL, "");
4353   Node* raw_obj = alloc_obj->in(1);
4354   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4355 
4356   AllocateNode* alloc = NULL;
4357   if (ReduceBulkZeroing) {
4358     // We will be completely responsible for initializing this object -
4359     // mark Initialize node as complete.
4360     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4361     // The object was just allocated - there should be no any stores!
4362     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4363     // Mark as complete_with_arraycopy so that on AllocateNode
4364     // expansion, we know this AllocateNode is initialized by an array
4365     // copy and a StoreStore barrier exists after the array copy.
4366     alloc->initialization()->set_complete_with_arraycopy();
4367   }
4368 
4369   // Copy the fastest available way.
4370   // TODO: generate fields copies for small objects instead.
4371   Node* src  = obj;
4372   Node* dest = alloc_obj;
4373   Node* size = _gvn.transform(obj_size);
4374 
4375   // Exclude the header but include array length to copy by 8 bytes words.
4376   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4377   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4378                             instanceOopDesc::base_offset_in_bytes();
4379   // base_off:
4380   // 8  - 32-bit VM
4381   // 12 - 64-bit VM, compressed klass
4382   // 16 - 64-bit VM, normal klass
4383   if (base_off % BytesPerLong != 0) {
4384     assert(UseCompressedOops, "");
4385     if (is_array) {
4386       // Exclude length to copy by 8 bytes words.
4387       base_off += sizeof(int);
4388     } else {
4389       // Include klass to copy by 8 bytes words.
4390       base_off = instanceOopDesc::klass_offset_in_bytes();
4391     }
4392     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4393   }
4394   src  = basic_plus_adr(src,  base_off);
4395   dest = basic_plus_adr(dest, base_off);
4396 
4397   // Compute the length also, if needed:
4398   Node* countx = size;
4399   countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(base_off)) );
4400   countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4401 
4402   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4403   bool disjoint_bases = true;
4404   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4405                                src, NULL, dest, NULL, countx,
4406                                /*dest_uninitialized*/true);
4407 
4408   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4409   if (card_mark) {
4410     assert(!is_array, "");
4411     // Put in store barrier for any and all oops we are sticking
4412     // into this object.  (We could avoid this if we could prove
4413     // that the object type contains no oop fields at all.)
4414     Node* no_particular_value = NULL;
4415     Node* no_particular_field = NULL;
4416     int raw_adr_idx = Compile::AliasIdxRaw;
4417     post_barrier(control(),
4418                  memory(raw_adr_type),
4419                  alloc_obj,
4420                  no_particular_field,
4421                  raw_adr_idx,
4422                  no_particular_value,
4423                  T_OBJECT,
4424                  false);
4425   }
4426 
4427   // Do not let reads from the cloned object float above the arraycopy.
4428   if (alloc != NULL) {
4429     // Do not let stores that initialize this object be reordered with
4430     // a subsequent store that would make this object accessible by
4431     // other threads.
4432     // Record what AllocateNode this StoreStore protects so that
4433     // escape analysis can go from the MemBarStoreStoreNode to the
4434     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4435     // based on the escape status of the AllocateNode.
4436     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4437   } else {
4438     insert_mem_bar(Op_MemBarCPUOrder);
4439   }
4440 }
4441 
4442 //------------------------inline_native_clone----------------------------
4443 // Here are the simple edge cases:
4444 //  null receiver => normal trap
4445 //  virtual and clone was overridden => slow path to out-of-line clone
4446 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4447 //
4448 // The general case has two steps, allocation and copying.
4449 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4450 //
4451 // Copying also has two cases, oop arrays and everything else.
4452 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4453 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4454 //
4455 // These steps fold up nicely if and when the cloned object's klass
4456 // can be sharply typed as an object array, a type array, or an instance.
4457 //
4458 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4459   int nargs = 1;
4460   PhiNode* result_val;
4461 
4462   //set the original stack and the reexecute bit for the interpreter to reexecute
4463   //the bytecode that invokes Object.clone if deoptimization happens
4464   { PreserveReexecuteState preexecs(this);
4465     jvms()->set_should_reexecute(true);
4466 
4467     //null_check_receiver will adjust _sp (push and pop)
4468     Node* obj = null_check_receiver(callee());
4469     if (stopped())  return true;
4470 
4471     _sp += nargs;
4472 
4473     Node* obj_klass = load_object_klass(obj);
4474     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4475     const TypeOopPtr*   toop   = ((tklass != NULL)
4476                                 ? tklass->as_instance_type()
4477                                 : TypeInstPtr::NOTNULL);
4478 
4479     // Conservatively insert a memory barrier on all memory slices.
4480     // Do not let writes into the original float below the clone.
4481     insert_mem_bar(Op_MemBarCPUOrder);
4482 
4483     // paths into result_reg:
4484     enum {
4485       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4486       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4487       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4488       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4489       PATH_LIMIT
4490     };
4491     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4492     result_val             = new(C) PhiNode(result_reg,
4493                                             TypeInstPtr::NOTNULL);
4494     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4495     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4496                                             TypePtr::BOTTOM);
4497     record_for_igvn(result_reg);
4498 
4499     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4500     int raw_adr_idx = Compile::AliasIdxRaw;
4501 
4502     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4503     if (array_ctl != NULL) {
4504       // It's an array.
4505       PreserveJVMState pjvms(this);
4506       set_control(array_ctl);
4507       Node* obj_length = load_array_length(obj);
4508       Node* obj_size  = NULL;
4509       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);
4510 
4511       if (!use_ReduceInitialCardMarks()) {
4512         // If it is an oop array, it requires very special treatment,
4513         // because card marking is required on each card of the array.
4514         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4515         if (is_obja != NULL) {
4516           PreserveJVMState pjvms2(this);
4517           set_control(is_obja);
4518           // Generate a direct call to the right arraycopy function(s).
4519           bool disjoint_bases = true;
4520           bool length_never_negative = true;
4521           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4522                              obj, intcon(0), alloc_obj, intcon(0),
4523                              obj_length,
4524                              disjoint_bases, length_never_negative);
4525           result_reg->init_req(_objArray_path, control());
4526           result_val->init_req(_objArray_path, alloc_obj);
4527           result_i_o ->set_req(_objArray_path, i_o());
4528           result_mem ->set_req(_objArray_path, reset_memory());
4529         }
4530       }
4531       // Otherwise, there are no card marks to worry about.
4532       // (We can dispense with card marks if we know the allocation
4533       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4534       //  causes the non-eden paths to take compensating steps to
4535       //  simulate a fresh allocation, so that no further
4536       //  card marks are required in compiled code to initialize
4537       //  the object.)
4538 
4539       if (!stopped()) {
4540         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4541 
4542         // Present the results of the copy.
4543         result_reg->init_req(_array_path, control());
4544         result_val->init_req(_array_path, alloc_obj);
4545         result_i_o ->set_req(_array_path, i_o());
4546         result_mem ->set_req(_array_path, reset_memory());
4547       }
4548     }
4549 
4550     // We only go to the instance fast case code if we pass a number of guards.
4551     // The paths which do not pass are accumulated in the slow_region.
4552     RegionNode* slow_region = new (C) RegionNode(1);
4553     record_for_igvn(slow_region);
4554     if (!stopped()) {
4555       // It's an instance (we did array above).  Make the slow-path tests.
4556       // If this is a virtual call, we generate a funny guard.  We grab
4557       // the vtable entry corresponding to clone() from the target object.
4558       // If the target method which we are calling happens to be the
4559       // Object clone() method, we pass the guard.  We do not need this
4560       // guard for non-virtual calls; the caller is known to be the native
4561       // Object clone().
4562       if (is_virtual) {
4563         generate_virtual_guard(obj_klass, slow_region);
4564       }
4565 
4566       // The object must be cloneable and must not have a finalizer.
4567       // Both of these conditions may be checked in a single test.
4568       // We could optimize the cloneable test further, but we don't care.
4569       generate_access_flags_guard(obj_klass,
4570                                   // Test both conditions:
4571                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4572                                   // Must be cloneable but not finalizer:
4573                                   JVM_ACC_IS_CLONEABLE,
4574                                   slow_region);
4575     }
4576 
4577     if (!stopped()) {
4578       // It's an instance, and it passed the slow-path tests.
4579       PreserveJVMState pjvms(this);
4580       Node* obj_size  = NULL;
4581       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4582 
4583       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4584 
4585       // Present the results of the slow call.
4586       result_reg->init_req(_instance_path, control());
4587       result_val->init_req(_instance_path, alloc_obj);
4588       result_i_o ->set_req(_instance_path, i_o());
4589       result_mem ->set_req(_instance_path, reset_memory());
4590     }
4591 
4592     // Generate code for the slow case.  We make a call to clone().
4593     set_control(_gvn.transform(slow_region));
4594     if (!stopped()) {
4595       PreserveJVMState pjvms(this);
4596       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4597       Node* slow_result = set_results_for_java_call(slow_call);
4598       // this->control() comes from set_results_for_java_call
4599       result_reg->init_req(_slow_path, control());
4600       result_val->init_req(_slow_path, slow_result);
4601       result_i_o ->set_req(_slow_path, i_o());
4602       result_mem ->set_req(_slow_path, reset_memory());
4603     }
4604 
4605     // Return the combined state.
4606     set_control(    _gvn.transform(result_reg) );
4607     set_i_o(        _gvn.transform(result_i_o) );
4608     set_all_memory( _gvn.transform(result_mem) );
4609   } //original reexecute and sp are set back here
4610 
4611   push(_gvn.transform(result_val));
4612 
4613   return true;
4614 }
4615 
4616 //------------------------------basictype2arraycopy----------------------------
4617 address LibraryCallKit::basictype2arraycopy(BasicType t,
4618                                             Node* src_offset,
4619                                             Node* dest_offset,
4620                                             bool disjoint_bases,
4621                                             const char* &name,
4622                                             bool dest_uninitialized) {
4623   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4624   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4625 
4626   bool aligned = false;
4627   bool disjoint = disjoint_bases;
4628 
4629   // if the offsets are the same, we can treat the memory regions as
4630   // disjoint, because either the memory regions are in different arrays,
4631   // or they are identical (which we can treat as disjoint.)  We can also
4632   // treat a copy with a destination index  less that the source index
4633   // as disjoint since a low->high copy will work correctly in this case.
4634   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4635       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4636     // both indices are constants
4637     int s_offs = src_offset_inttype->get_con();
4638     int d_offs = dest_offset_inttype->get_con();
4639     int element_size = type2aelembytes(t);
4640     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4641               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4642     if (s_offs >= d_offs)  disjoint = true;
4643   } else if (src_offset == dest_offset && src_offset != NULL) {
4644     // This can occur if the offsets are identical non-constants.
4645     disjoint = true;
4646   }
4647 
4648   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4649 }
4650 
4651 
4652 //------------------------------inline_arraycopy-----------------------
4653 bool LibraryCallKit::inline_arraycopy() {
4654   // Restore the stack and pop off the arguments.
4655   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
4656   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
4657 
4658   Node *src         = argument(0);
4659   Node *src_offset  = argument(1);
4660   Node *dest        = argument(2);
4661   Node *dest_offset = argument(3);
4662   Node *length      = argument(4);
4663 
4664   // Compile time checks.  If any of these checks cannot be verified at compile time,
4665   // we do not make a fast path for this call.  Instead, we let the call remain as it
4666   // is.  The checks we choose to mandate at compile time are:
4667   //
4668   // (1) src and dest are arrays.
4669   const Type* src_type = src->Value(&_gvn);
4670   const Type* dest_type = dest->Value(&_gvn);
4671   const TypeAryPtr* top_src = src_type->isa_aryptr();
4672   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4673   if (top_src  == NULL || top_src->klass()  == NULL ||
4674       top_dest == NULL || top_dest->klass() == NULL) {
4675     // Conservatively insert a memory barrier on all memory slices.
4676     // Do not let writes into the source float below the arraycopy.
4677     insert_mem_bar(Op_MemBarCPUOrder);
4678 
4679     // Call StubRoutines::generic_arraycopy stub.
4680     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4681                        src, src_offset, dest, dest_offset, length);
4682 
4683     // Do not let reads from the destination float above the arraycopy.
4684     // Since we cannot type the arrays, we don't know which slices
4685     // might be affected.  We could restrict this barrier only to those
4686     // memory slices which pertain to array elements--but don't bother.
4687     if (!InsertMemBarAfterArraycopy)
4688       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4689       insert_mem_bar(Op_MemBarCPUOrder);
4690     return true;
4691   }
4692 
4693   // (2) src and dest arrays must have elements of the same BasicType
4694   // Figure out the size and type of the elements we will be copying.
4695   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4696   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4697   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4698   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4699 
4700   if (src_elem != dest_elem || dest_elem == T_VOID) {
4701     // The component types are not the same or are not recognized.  Punt.
4702     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4703     generate_slow_arraycopy(TypePtr::BOTTOM,
4704                             src, src_offset, dest, dest_offset, length,
4705                             /*dest_uninitialized*/false);
4706     return true;
4707   }
4708 
4709   //---------------------------------------------------------------------------
4710   // We will make a fast path for this call to arraycopy.
4711 
4712   // We have the following tests left to perform:
4713   //
4714   // (3) src and dest must not be null.
4715   // (4) src_offset must not be negative.
4716   // (5) dest_offset must not be negative.
4717   // (6) length must not be negative.
4718   // (7) src_offset + length must not exceed length of src.
4719   // (8) dest_offset + length must not exceed length of dest.
4720   // (9) each element of an oop array must be assignable
4721 
4722   RegionNode* slow_region = new (C) RegionNode(1);
4723   record_for_igvn(slow_region);
4724 
4725   // (3) operands must not be null
4726   // We currently perform our null checks with the do_null_check routine.
4727   // This means that the null exceptions will be reported in the caller
4728   // rather than (correctly) reported inside of the native arraycopy call.
4729   // This should be corrected, given time.  We do our null check with the
4730   // stack pointer restored.
4731   _sp += nargs;
4732   src  = do_null_check(src,  T_ARRAY);
4733   dest = do_null_check(dest, T_ARRAY);
4734   _sp -= nargs;
4735 
4736   // (4) src_offset must not be negative.
4737   generate_negative_guard(src_offset, slow_region);
4738 
4739   // (5) dest_offset must not be negative.
4740   generate_negative_guard(dest_offset, slow_region);
4741 
4742   // (6) length must not be negative (moved to generate_arraycopy()).
4743   // generate_negative_guard(length, slow_region);
4744 
4745   // (7) src_offset + length must not exceed length of src.
4746   generate_limit_guard(src_offset, length,
4747                        load_array_length(src),
4748                        slow_region);
4749 
4750   // (8) dest_offset + length must not exceed length of dest.
4751   generate_limit_guard(dest_offset, length,
4752                        load_array_length(dest),
4753                        slow_region);
4754 
4755   // (9) each element of an oop array must be assignable
4756   // The generate_arraycopy subroutine checks this.
4757 
4758   // This is where the memory effects are placed:
4759   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4760   generate_arraycopy(adr_type, dest_elem,
4761                      src, src_offset, dest, dest_offset, length,
4762                      false, false, slow_region);
4763 
4764   return true;
4765 }
4766 
4767 //-----------------------------generate_arraycopy----------------------
4768 // Generate an optimized call to arraycopy.
4769 // Caller must guard against non-arrays.
4770 // Caller must determine a common array basic-type for both arrays.
4771 // Caller must validate offsets against array bounds.
4772 // The slow_region has already collected guard failure paths
4773 // (such as out of bounds length or non-conformable array types).
4774 // The generated code has this shape, in general:
4775 //
4776 //     if (length == 0)  return   // via zero_path
4777 //     slowval = -1
4778 //     if (types unknown) {
4779 //       slowval = call generic copy loop
4780 //       if (slowval == 0)  return  // via checked_path
4781 //     } else if (indexes in bounds) {
4782 //       if ((is object array) && !(array type check)) {
4783 //         slowval = call checked copy loop
4784 //         if (slowval == 0)  return  // via checked_path
4785 //       } else {
4786 //         call bulk copy loop
4787 //         return  // via fast_path
4788 //       }
4789 //     }
4790 //     // adjust params for remaining work:
4791 //     if (slowval != -1) {
4792 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4793 //     }
4794 //   slow_region:
4795 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4796 //     return  // via slow_call_path
4797 //
4798 // This routine is used from several intrinsics:  System.arraycopy,
4799 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4800 //
4801 void
4802 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4803                                    BasicType basic_elem_type,
4804                                    Node* src,  Node* src_offset,
4805                                    Node* dest, Node* dest_offset,
4806                                    Node* copy_length,
4807                                    bool disjoint_bases,
4808                                    bool length_never_negative,
4809                                    RegionNode* slow_region) {
4810 
4811   if (slow_region == NULL) {
4812     slow_region = new(C) RegionNode(1);
4813     record_for_igvn(slow_region);
4814   }
4815 
4816   Node* original_dest      = dest;
4817   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4818   bool  dest_uninitialized = false;
4819 
4820   // See if this is the initialization of a newly-allocated array.
4821   // If so, we will take responsibility here for initializing it to zero.
4822   // (Note:  Because tightly_coupled_allocation performs checks on the
4823   // out-edges of the dest, we need to avoid making derived pointers
4824   // from it until we have checked its uses.)
4825   if (ReduceBulkZeroing
4826       && !ZeroTLAB              // pointless if already zeroed
4827       && basic_elem_type != T_CONFLICT // avoid corner case
4828       && !src->eqv_uncast(dest)
4829       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4830           != NULL)
4831       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4832       && alloc->maybe_set_complete(&_gvn)) {
4833     // "You break it, you buy it."
4834     InitializeNode* init = alloc->initialization();
4835     assert(init->is_complete(), "we just did this");
4836     init->set_complete_with_arraycopy();
4837     assert(dest->is_CheckCastPP(), "sanity");
4838     assert(dest->in(0)->in(0) == init, "dest pinned");
4839     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4840     // From this point on, every exit path is responsible for
4841     // initializing any non-copied parts of the object to zero.
4842     // Also, if this flag is set we make sure that arraycopy interacts properly
4843     // with G1, eliding pre-barriers. See CR 6627983.
4844     dest_uninitialized = true;
4845   } else {
4846     // No zeroing elimination here.
4847     alloc             = NULL;
4848     //original_dest   = dest;
4849     //dest_uninitialized = false;
4850   }
4851 
4852   // Results are placed here:
4853   enum { fast_path        = 1,  // normal void-returning assembly stub
4854          checked_path     = 2,  // special assembly stub with cleanup
4855          slow_call_path   = 3,  // something went wrong; call the VM
4856          zero_path        = 4,  // bypass when length of copy is zero
4857          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4858          PATH_LIMIT       = 6
4859   };
4860   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4861   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
4862   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
4863   record_for_igvn(result_region);
4864   _gvn.set_type_bottom(result_i_o);
4865   _gvn.set_type_bottom(result_memory);
4866   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4867 
4868   // The slow_control path:
4869   Node* slow_control;
4870   Node* slow_i_o = i_o();
4871   Node* slow_mem = memory(adr_type);
4872   debug_only(slow_control = (Node*) badAddress);
4873 
4874   // Checked control path:
4875   Node* checked_control = top();
4876   Node* checked_mem     = NULL;
4877   Node* checked_i_o     = NULL;
4878   Node* checked_value   = NULL;
4879 
4880   if (basic_elem_type == T_CONFLICT) {
4881     assert(!dest_uninitialized, "");
4882     Node* cv = generate_generic_arraycopy(adr_type,
4883                                           src, src_offset, dest, dest_offset,
4884                                           copy_length, dest_uninitialized);
4885     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4886     checked_control = control();
4887     checked_i_o     = i_o();
4888     checked_mem     = memory(adr_type);
4889     checked_value   = cv;
4890     set_control(top());         // no fast path
4891   }
4892 
4893   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4894   if (not_pos != NULL) {
4895     PreserveJVMState pjvms(this);
4896     set_control(not_pos);
4897 
4898     // (6) length must not be negative.
4899     if (!length_never_negative) {
4900       generate_negative_guard(copy_length, slow_region);
4901     }
4902 
4903     // copy_length is 0.
4904     if (!stopped() && dest_uninitialized) {
4905       Node* dest_length = alloc->in(AllocateNode::ALength);
4906       if (copy_length->eqv_uncast(dest_length)
4907           || _gvn.find_int_con(dest_length, 1) <= 0) {
4908         // There is no zeroing to do. No need for a secondary raw memory barrier.
4909       } else {
4910         // Clear the whole thing since there are no source elements to copy.
4911         generate_clear_array(adr_type, dest, basic_elem_type,
4912                              intcon(0), NULL,
4913                              alloc->in(AllocateNode::AllocSize));
4914         // Use a secondary InitializeNode as raw memory barrier.
4915         // Currently it is needed only on this path since other
4916         // paths have stub or runtime calls as raw memory barriers.
4917         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4918                                                        Compile::AliasIdxRaw,
4919                                                        top())->as_Initialize();
4920         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4921       }
4922     }
4923 
4924     // Present the results of the fast call.
4925     result_region->init_req(zero_path, control());
4926     result_i_o   ->init_req(zero_path, i_o());
4927     result_memory->init_req(zero_path, memory(adr_type));
4928   }
4929 
4930   if (!stopped() && dest_uninitialized) {
4931     // We have to initialize the *uncopied* part of the array to zero.
4932     // The copy destination is the slice dest[off..off+len].  The other slices
4933     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4934     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4935     Node* dest_length = alloc->in(AllocateNode::ALength);
4936     Node* dest_tail   = _gvn.transform( new(C) AddINode(dest_offset,
4937                                                           copy_length) );
4938 
4939     // If there is a head section that needs zeroing, do it now.
4940     if (find_int_con(dest_offset, -1) != 0) {
4941       generate_clear_array(adr_type, dest, basic_elem_type,
4942                            intcon(0), dest_offset,
4943                            NULL);
4944     }
4945 
4946     // Next, perform a dynamic check on the tail length.
4947     // It is often zero, and we can win big if we prove this.
4948     // There are two wins:  Avoid generating the ClearArray
4949     // with its attendant messy index arithmetic, and upgrade
4950     // the copy to a more hardware-friendly word size of 64 bits.
4951     Node* tail_ctl = NULL;
4952     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
4953       Node* cmp_lt   = _gvn.transform( new(C) CmpINode(dest_tail, dest_length) );
4954       Node* bol_lt   = _gvn.transform( new(C) BoolNode(cmp_lt, BoolTest::lt) );
4955       tail_ctl = generate_slow_guard(bol_lt, NULL);
4956       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4957     }
4958 
4959     // At this point, let's assume there is no tail.
4960     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4961       // There is no tail.  Try an upgrade to a 64-bit copy.
4962       bool didit = false;
4963       { PreserveJVMState pjvms(this);
4964         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4965                                          src, src_offset, dest, dest_offset,
4966                                          dest_size, dest_uninitialized);
4967         if (didit) {
4968           // Present the results of the block-copying fast call.
4969           result_region->init_req(bcopy_path, control());
4970           result_i_o   ->init_req(bcopy_path, i_o());
4971           result_memory->init_req(bcopy_path, memory(adr_type));
4972         }
4973       }
4974       if (didit)
4975         set_control(top());     // no regular fast path
4976     }
4977 
4978     // Clear the tail, if any.
4979     if (tail_ctl != NULL) {
4980       Node* notail_ctl = stopped() ? NULL : control();
4981       set_control(tail_ctl);
4982       if (notail_ctl == NULL) {
4983         generate_clear_array(adr_type, dest, basic_elem_type,
4984                              dest_tail, NULL,
4985                              dest_size);
4986       } else {
4987         // Make a local merge.
4988         Node* done_ctl = new(C) RegionNode(3);
4989         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
4990         done_ctl->init_req(1, notail_ctl);
4991         done_mem->init_req(1, memory(adr_type));
4992         generate_clear_array(adr_type, dest, basic_elem_type,
4993                              dest_tail, NULL,
4994                              dest_size);
4995         done_ctl->init_req(2, control());
4996         done_mem->init_req(2, memory(adr_type));
4997         set_control( _gvn.transform(done_ctl) );
4998         set_memory(  _gvn.transform(done_mem), adr_type );
4999       }
5000     }
5001   }
5002 
5003   BasicType copy_type = basic_elem_type;
5004   assert(basic_elem_type != T_ARRAY, "caller must fix this");
5005   if (!stopped() && copy_type == T_OBJECT) {
5006     // If src and dest have compatible element types, we can copy bits.
5007     // Types S[] and D[] are compatible if D is a supertype of S.
5008     //
5009     // If they are not, we will use checked_oop_disjoint_arraycopy,
5010     // which performs a fast optimistic per-oop check, and backs off
5011     // further to JVM_ArrayCopy on the first per-oop check that fails.
5012     // (Actually, we don't move raw bits only; the GC requires card marks.)
5013 
5014     // Get the Klass* for both src and dest
5015     Node* src_klass  = load_object_klass(src);
5016     Node* dest_klass = load_object_klass(dest);
5017 
5018     // Generate the subtype check.
5019     // This might fold up statically, or then again it might not.
5020     //
5021     // Non-static example:  Copying List<String>.elements to a new String[].
5022     // The backing store for a List<String> is always an Object[],
5023     // but its elements are always type String, if the generic types
5024     // are correct at the source level.
5025     //
5026     // Test S[] against D[], not S against D, because (probably)
5027     // the secondary supertype cache is less busy for S[] than S.
5028     // This usually only matters when D is an interface.
5029     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5030     // Plug failing path into checked_oop_disjoint_arraycopy
5031     if (not_subtype_ctrl != top()) {
5032       PreserveJVMState pjvms(this);
5033       set_control(not_subtype_ctrl);
5034       // (At this point we can assume disjoint_bases, since types differ.)
5035       int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
5036       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
5037       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
5038       Node* dest_elem_klass = _gvn.transform(n1);
5039       Node* cv = generate_checkcast_arraycopy(adr_type,
5040                                               dest_elem_klass,
5041                                               src, src_offset, dest, dest_offset,
5042                                               ConvI2X(copy_length), dest_uninitialized);
5043       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5044       checked_control = control();
5045       checked_i_o     = i_o();
5046       checked_mem     = memory(adr_type);
5047       checked_value   = cv;
5048     }
5049     // At this point we know we do not need type checks on oop stores.
5050 
5051     // Let's see if we need card marks:
5052     if (alloc != NULL && use_ReduceInitialCardMarks()) {
5053       // If we do not need card marks, copy using the jint or jlong stub.
5054       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
5055       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
5056              "sizes agree");
5057     }
5058   }
5059 
5060   if (!stopped()) {
5061     // Generate the fast path, if possible.
5062     PreserveJVMState pjvms(this);
5063     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
5064                                  src, src_offset, dest, dest_offset,
5065                                  ConvI2X(copy_length), dest_uninitialized);
5066 
5067     // Present the results of the fast call.
5068     result_region->init_req(fast_path, control());
5069     result_i_o   ->init_req(fast_path, i_o());
5070     result_memory->init_req(fast_path, memory(adr_type));
5071   }
5072 
5073   // Here are all the slow paths up to this point, in one bundle:
5074   slow_control = top();
5075   if (slow_region != NULL)
5076     slow_control = _gvn.transform(slow_region);
5077   debug_only(slow_region = (RegionNode*)badAddress);
5078 
5079   set_control(checked_control);
5080   if (!stopped()) {
5081     // Clean up after the checked call.
5082     // The returned value is either 0 or -1^K,
5083     // where K = number of partially transferred array elements.
5084     Node* cmp = _gvn.transform( new(C) CmpINode(checked_value, intcon(0)) );
5085     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
5086     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
5087 
5088     // If it is 0, we are done, so transfer to the end.
5089     Node* checks_done = _gvn.transform( new(C) IfTrueNode(iff) );
5090     result_region->init_req(checked_path, checks_done);
5091     result_i_o   ->init_req(checked_path, checked_i_o);
5092     result_memory->init_req(checked_path, checked_mem);
5093 
5094     // If it is not zero, merge into the slow call.
5095     set_control( _gvn.transform( new(C) IfFalseNode(iff) ));
5096     RegionNode* slow_reg2 = new(C) RegionNode(3);
5097     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
5098     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
5099     record_for_igvn(slow_reg2);
5100     slow_reg2  ->init_req(1, slow_control);
5101     slow_i_o2  ->init_req(1, slow_i_o);
5102     slow_mem2  ->init_req(1, slow_mem);
5103     slow_reg2  ->init_req(2, control());
5104     slow_i_o2  ->init_req(2, checked_i_o);
5105     slow_mem2  ->init_req(2, checked_mem);
5106 
5107     slow_control = _gvn.transform(slow_reg2);
5108     slow_i_o     = _gvn.transform(slow_i_o2);
5109     slow_mem     = _gvn.transform(slow_mem2);
5110 
5111     if (alloc != NULL) {
5112       // We'll restart from the very beginning, after zeroing the whole thing.
5113       // This can cause double writes, but that's OK since dest is brand new.
5114       // So we ignore the low 31 bits of the value returned from the stub.
5115     } else {
5116       // We must continue the copy exactly where it failed, or else
5117       // another thread might see the wrong number of writes to dest.
5118       Node* checked_offset = _gvn.transform( new(C) XorINode(checked_value, intcon(-1)) );
5119       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
5120       slow_offset->init_req(1, intcon(0));
5121       slow_offset->init_req(2, checked_offset);
5122       slow_offset  = _gvn.transform(slow_offset);
5123 
5124       // Adjust the arguments by the conditionally incoming offset.
5125       Node* src_off_plus  = _gvn.transform( new(C) AddINode(src_offset,  slow_offset) );
5126       Node* dest_off_plus = _gvn.transform( new(C) AddINode(dest_offset, slow_offset) );
5127       Node* length_minus  = _gvn.transform( new(C) SubINode(copy_length, slow_offset) );
5128 
5129       // Tweak the node variables to adjust the code produced below:
5130       src_offset  = src_off_plus;
5131       dest_offset = dest_off_plus;
5132       copy_length = length_minus;
5133     }
5134   }
5135 
5136   set_control(slow_control);
5137   if (!stopped()) {
5138     // Generate the slow path, if needed.
5139     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
5140 
5141     set_memory(slow_mem, adr_type);
5142     set_i_o(slow_i_o);
5143 
5144     if (dest_uninitialized) {
5145       generate_clear_array(adr_type, dest, basic_elem_type,
5146                            intcon(0), NULL,
5147                            alloc->in(AllocateNode::AllocSize));
5148     }
5149 
5150     generate_slow_arraycopy(adr_type,
5151                             src, src_offset, dest, dest_offset,
5152                             copy_length, /*dest_uninitialized*/false);
5153 
5154     result_region->init_req(slow_call_path, control());
5155     result_i_o   ->init_req(slow_call_path, i_o());
5156     result_memory->init_req(slow_call_path, memory(adr_type));
5157   }
5158 
5159   // Remove unused edges.
5160   for (uint i = 1; i < result_region->req(); i++) {
5161     if (result_region->in(i) == NULL)
5162       result_region->init_req(i, top());
5163   }
5164 
5165   // Finished; return the combined state.
5166   set_control( _gvn.transform(result_region) );
5167   set_i_o(     _gvn.transform(result_i_o)    );
5168   set_memory(  _gvn.transform(result_memory), adr_type );
5169 
5170   // The memory edges above are precise in order to model effects around
5171   // array copies accurately to allow value numbering of field loads around
5172   // arraycopy.  Such field loads, both before and after, are common in Java
5173   // collections and similar classes involving header/array data structures.
5174   //
5175   // But with low number of register or when some registers are used or killed
5176   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5177   // The next memory barrier is added to avoid it. If the arraycopy can be
5178   // optimized away (which it can, sometimes) then we can manually remove
5179   // the membar also.
5180   //
5181   // Do not let reads from the cloned object float above the arraycopy.
5182   if (alloc != NULL) {
5183     // Do not let stores that initialize this object be reordered with
5184     // a subsequent store that would make this object accessible by
5185     // other threads.
5186     // Record what AllocateNode this StoreStore protects so that
5187     // escape analysis can go from the MemBarStoreStoreNode to the
5188     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5189     // based on the escape status of the AllocateNode.
5190     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5191   } else if (InsertMemBarAfterArraycopy)
5192     insert_mem_bar(Op_MemBarCPUOrder);
5193 }
5194 
5195 
5196 // Helper function which determines if an arraycopy immediately follows
5197 // an allocation, with no intervening tests or other escapes for the object.
5198 AllocateArrayNode*
5199 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5200                                            RegionNode* slow_region) {
5201   if (stopped())             return NULL;  // no fast path
5202   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5203 
5204   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5205   if (alloc == NULL)  return NULL;
5206 
5207   Node* rawmem = memory(Compile::AliasIdxRaw);
5208   // Is the allocation's memory state untouched?
5209   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5210     // Bail out if there have been raw-memory effects since the allocation.
5211     // (Example:  There might have been a call or safepoint.)
5212     return NULL;
5213   }
5214   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5215   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5216     return NULL;
5217   }
5218 
5219   // There must be no unexpected observers of this allocation.
5220   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5221     Node* obs = ptr->fast_out(i);
5222     if (obs != this->map()) {
5223       return NULL;
5224     }
5225   }
5226 
5227   // This arraycopy must unconditionally follow the allocation of the ptr.
5228   Node* alloc_ctl = ptr->in(0);
5229   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5230 
5231   Node* ctl = control();
5232   while (ctl != alloc_ctl) {
5233     // There may be guards which feed into the slow_region.
5234     // Any other control flow means that we might not get a chance
5235     // to finish initializing the allocated object.
5236     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5237       IfNode* iff = ctl->in(0)->as_If();
5238       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5239       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5240       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5241         ctl = iff->in(0);       // This test feeds the known slow_region.
5242         continue;
5243       }
5244       // One more try:  Various low-level checks bottom out in
5245       // uncommon traps.  If the debug-info of the trap omits
5246       // any reference to the allocation, as we've already
5247       // observed, then there can be no objection to the trap.
5248       bool found_trap = false;
5249       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5250         Node* obs = not_ctl->fast_out(j);
5251         if (obs->in(0) == not_ctl && obs->is_Call() &&
5252             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5253           found_trap = true; break;
5254         }
5255       }
5256       if (found_trap) {
5257         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5258         continue;
5259       }
5260     }
5261     return NULL;
5262   }
5263 
5264   // If we get this far, we have an allocation which immediately
5265   // precedes the arraycopy, and we can take over zeroing the new object.
5266   // The arraycopy will finish the initialization, and provide
5267   // a new control state to which we will anchor the destination pointer.
5268 
5269   return alloc;
5270 }
5271 
5272 // Helper for initialization of arrays, creating a ClearArray.
5273 // It writes zero bits in [start..end), within the body of an array object.
5274 // The memory effects are all chained onto the 'adr_type' alias category.
5275 //
5276 // Since the object is otherwise uninitialized, we are free
5277 // to put a little "slop" around the edges of the cleared area,
5278 // as long as it does not go back into the array's header,
5279 // or beyond the array end within the heap.
5280 //
5281 // The lower edge can be rounded down to the nearest jint and the
5282 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5283 //
5284 // Arguments:
5285 //   adr_type           memory slice where writes are generated
5286 //   dest               oop of the destination array
5287 //   basic_elem_type    element type of the destination
5288 //   slice_idx          array index of first element to store
5289 //   slice_len          number of elements to store (or NULL)
5290 //   dest_size          total size in bytes of the array object
5291 //
5292 // Exactly one of slice_len or dest_size must be non-NULL.
5293 // If dest_size is non-NULL, zeroing extends to the end of the object.
5294 // If slice_len is non-NULL, the slice_idx value must be a constant.
5295 void
5296 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5297                                      Node* dest,
5298                                      BasicType basic_elem_type,
5299                                      Node* slice_idx,
5300                                      Node* slice_len,
5301                                      Node* dest_size) {
5302   // one or the other but not both of slice_len and dest_size:
5303   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5304   if (slice_len == NULL)  slice_len = top();
5305   if (dest_size == NULL)  dest_size = top();
5306 
5307   // operate on this memory slice:
5308   Node* mem = memory(adr_type); // memory slice to operate on
5309 
5310   // scaling and rounding of indexes:
5311   int scale = exact_log2(type2aelembytes(basic_elem_type));
5312   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5313   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5314   int bump_bit  = (-1 << scale) & BytesPerInt;
5315 
5316   // determine constant starts and ends
5317   const intptr_t BIG_NEG = -128;
5318   assert(BIG_NEG + 2*abase < 0, "neg enough");
5319   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5320   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5321   if (slice_len_con == 0) {
5322     return;                     // nothing to do here
5323   }
5324   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5325   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5326   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5327     assert(end_con < 0, "not two cons");
5328     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5329                        BytesPerLong);
5330   }
5331 
5332   if (start_con >= 0 && end_con >= 0) {
5333     // Constant start and end.  Simple.
5334     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5335                                        start_con, end_con, &_gvn);
5336   } else if (start_con >= 0 && dest_size != top()) {
5337     // Constant start, pre-rounded end after the tail of the array.
5338     Node* end = dest_size;
5339     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5340                                        start_con, end, &_gvn);
5341   } else if (start_con >= 0 && slice_len != top()) {
5342     // Constant start, non-constant end.  End needs rounding up.
5343     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5344     intptr_t end_base  = abase + (slice_idx_con << scale);
5345     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5346     Node*    end       = ConvI2X(slice_len);
5347     if (scale != 0)
5348       end = _gvn.transform( new(C) LShiftXNode(end, intcon(scale) ));
5349     end_base += end_round;
5350     end = _gvn.transform( new(C) AddXNode(end, MakeConX(end_base)) );
5351     end = _gvn.transform( new(C) AndXNode(end, MakeConX(~end_round)) );
5352     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5353                                        start_con, end, &_gvn);
5354   } else if (start_con < 0 && dest_size != top()) {
5355     // Non-constant start, pre-rounded end after the tail of the array.
5356     // This is almost certainly a "round-to-end" operation.
5357     Node* start = slice_idx;
5358     start = ConvI2X(start);
5359     if (scale != 0)
5360       start = _gvn.transform( new(C) LShiftXNode( start, intcon(scale) ));
5361     start = _gvn.transform( new(C) AddXNode(start, MakeConX(abase)) );
5362     if ((bump_bit | clear_low) != 0) {
5363       int to_clear = (bump_bit | clear_low);
5364       // Align up mod 8, then store a jint zero unconditionally
5365       // just before the mod-8 boundary.
5366       if (((abase + bump_bit) & ~to_clear) - bump_bit
5367           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5368         bump_bit = 0;
5369         assert((abase & to_clear) == 0, "array base must be long-aligned");
5370       } else {
5371         // Bump 'start' up to (or past) the next jint boundary:
5372         start = _gvn.transform( new(C) AddXNode(start, MakeConX(bump_bit)) );
5373         assert((abase & clear_low) == 0, "array base must be int-aligned");
5374       }
5375       // Round bumped 'start' down to jlong boundary in body of array.
5376       start = _gvn.transform( new(C) AndXNode(start, MakeConX(~to_clear)) );
5377       if (bump_bit != 0) {
5378         // Store a zero to the immediately preceding jint:
5379         Node* x1 = _gvn.transform( new(C) AddXNode(start, MakeConX(-bump_bit)) );
5380         Node* p1 = basic_plus_adr(dest, x1);
5381         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5382         mem = _gvn.transform(mem);
5383       }
5384     }
5385     Node* end = dest_size; // pre-rounded
5386     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5387                                        start, end, &_gvn);
5388   } else {
5389     // Non-constant start, unrounded non-constant end.
5390     // (Nobody zeroes a random midsection of an array using this routine.)
5391     ShouldNotReachHere();       // fix caller
5392   }
5393 
5394   // Done.
5395   set_memory(mem, adr_type);
5396 }
5397 
5398 
5399 bool
5400 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5401                                          BasicType basic_elem_type,
5402                                          AllocateNode* alloc,
5403                                          Node* src,  Node* src_offset,
5404                                          Node* dest, Node* dest_offset,
5405                                          Node* dest_size, bool dest_uninitialized) {
5406   // See if there is an advantage from block transfer.
5407   int scale = exact_log2(type2aelembytes(basic_elem_type));
5408   if (scale >= LogBytesPerLong)
5409     return false;               // it is already a block transfer
5410 
5411   // Look at the alignment of the starting offsets.
5412   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5413 
5414   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5415   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5416   if (src_off_con < 0 || dest_off_con < 0)
5417     // At present, we can only understand constants.
5418     return false;
5419 
5420   intptr_t src_off  = abase + (src_off_con  << scale);
5421   intptr_t dest_off = abase + (dest_off_con << scale);
5422 
5423   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5424     // Non-aligned; too bad.
5425     // One more chance:  Pick off an initial 32-bit word.
5426     // This is a common case, since abase can be odd mod 8.
5427     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5428         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5429       Node* sptr = basic_plus_adr(src,  src_off);
5430       Node* dptr = basic_plus_adr(dest, dest_off);
5431       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5432       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5433       src_off += BytesPerInt;
5434       dest_off += BytesPerInt;
5435     } else {
5436       return false;
5437     }
5438   }
5439   assert(src_off % BytesPerLong == 0, "");
5440   assert(dest_off % BytesPerLong == 0, "");
5441 
5442   // Do this copy by giant steps.
5443   Node* sptr  = basic_plus_adr(src,  src_off);
5444   Node* dptr  = basic_plus_adr(dest, dest_off);
5445   Node* countx = dest_size;
5446   countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(dest_off)) );
5447   countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong)) );
5448 
5449   bool disjoint_bases = true;   // since alloc != NULL
5450   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5451                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5452 
5453   return true;
5454 }
5455 
5456 
5457 // Helper function; generates code for the slow case.
5458 // We make a call to a runtime method which emulates the native method,
5459 // but without the native wrapper overhead.
5460 void
5461 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5462                                         Node* src,  Node* src_offset,
5463                                         Node* dest, Node* dest_offset,
5464                                         Node* copy_length, bool dest_uninitialized) {
5465   assert(!dest_uninitialized, "Invariant");
5466   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5467                                  OptoRuntime::slow_arraycopy_Type(),
5468                                  OptoRuntime::slow_arraycopy_Java(),
5469                                  "slow_arraycopy", adr_type,
5470                                  src, src_offset, dest, dest_offset,
5471                                  copy_length);
5472 
5473   // Handle exceptions thrown by this fellow:
5474   make_slow_call_ex(call, env()->Throwable_klass(), false);
5475 }
5476 
5477 // Helper function; generates code for cases requiring runtime checks.
5478 Node*
5479 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5480                                              Node* dest_elem_klass,
5481                                              Node* src,  Node* src_offset,
5482                                              Node* dest, Node* dest_offset,
5483                                              Node* copy_length, bool dest_uninitialized) {
5484   if (stopped())  return NULL;
5485 
5486   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5487   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5488     return NULL;
5489   }
5490 
5491   // Pick out the parameters required to perform a store-check
5492   // for the target array.  This is an optimistic check.  It will
5493   // look in each non-null element's class, at the desired klass's
5494   // super_check_offset, for the desired klass.
5495   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5496   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5497   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
5498   Node* check_offset = ConvI2X(_gvn.transform(n3));
5499   Node* check_value  = dest_elem_klass;
5500 
5501   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5502   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5503 
5504   // (We know the arrays are never conjoint, because their types differ.)
5505   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5506                                  OptoRuntime::checkcast_arraycopy_Type(),
5507                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5508                                  // five arguments, of which two are
5509                                  // intptr_t (jlong in LP64)
5510                                  src_start, dest_start,
5511                                  copy_length XTOP,
5512                                  check_offset XTOP,
5513                                  check_value);
5514 
5515   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5516 }
5517 
5518 
5519 // Helper function; generates code for cases requiring runtime checks.
5520 Node*
5521 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5522                                            Node* src,  Node* src_offset,
5523                                            Node* dest, Node* dest_offset,
5524                                            Node* copy_length, bool dest_uninitialized) {
5525   assert(!dest_uninitialized, "Invariant");
5526   if (stopped())  return NULL;
5527   address copyfunc_addr = StubRoutines::generic_arraycopy();
5528   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5529     return NULL;
5530   }
5531 
5532   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5533                     OptoRuntime::generic_arraycopy_Type(),
5534                     copyfunc_addr, "generic_arraycopy", adr_type,
5535                     src, src_offset, dest, dest_offset, copy_length);
5536 
5537   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5538 }
5539 
5540 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5541 void
5542 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5543                                              BasicType basic_elem_type,
5544                                              bool disjoint_bases,
5545                                              Node* src,  Node* src_offset,
5546                                              Node* dest, Node* dest_offset,
5547                                              Node* copy_length, bool dest_uninitialized) {
5548   if (stopped())  return;               // nothing to do
5549 
5550   Node* src_start  = src;
5551   Node* dest_start = dest;
5552   if (src_offset != NULL || dest_offset != NULL) {
5553     assert(src_offset != NULL && dest_offset != NULL, "");
5554     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5555     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5556   }
5557 
5558   // Figure out which arraycopy runtime method to call.
5559   const char* copyfunc_name = "arraycopy";
5560   address     copyfunc_addr =
5561       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5562                           disjoint_bases, copyfunc_name, dest_uninitialized);
5563 
5564   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5565   make_runtime_call(RC_LEAF|RC_NO_FP,
5566                     OptoRuntime::fast_arraycopy_Type(),
5567                     copyfunc_addr, copyfunc_name, adr_type,
5568                     src_start, dest_start, copy_length XTOP);
5569 }
5570 
5571 //----------------------------inline_reference_get----------------------------
5572 
5573 bool LibraryCallKit::inline_reference_get() {
5574   const int nargs = 1; // self
5575 
5576   guarantee(java_lang_ref_Reference::referent_offset > 0,
5577             "should have already been set");
5578 
5579   int referent_offset = java_lang_ref_Reference::referent_offset;
5580 
5581   // Restore the stack and pop off the argument
5582   _sp += nargs;
5583   Node *reference_obj = pop();
5584 
5585   // Null check on self without removing any arguments.
5586   _sp += nargs;
5587   reference_obj = do_null_check(reference_obj, T_OBJECT);
5588   _sp -= nargs;;
5589 
5590   if (stopped()) return true;
5591 
5592   Node *adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5593 
5594   ciInstanceKlass* klass = env()->Object_klass();
5595   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5596 
5597   Node* no_ctrl = NULL;
5598   Node *result = make_load(no_ctrl, adr, object_type, T_OBJECT);
5599 
5600   // Use the pre-barrier to record the value in the referent field
5601   pre_barrier(false /* do_load */,
5602               control(),
5603               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5604               result /* pre_val */,
5605               T_OBJECT);
5606 
5607   // Add memory barrier to prevent commoning reads from this field
5608   // across safepoint since GC can change its value.
5609   insert_mem_bar(Op_MemBarCPUOrder);
5610 
5611   push(result);
5612   return true;
5613 }