--- old/src/cpu/sparc/vm/c1_CodeStubs_sparc.cpp 2012-12-12 17:34:29.949833000 -0800 +++ new/src/cpu/sparc/vm/c1_CodeStubs_sparc.cpp 2012-12-12 17:34:29.799330000 -0800 @@ -298,7 +298,7 @@ for (int i = 0; i < _bytes_to_copy; i++) { address ptr = (address)(_pc_start + i); int a_byte = (*ptr) & 0xFF; - __ a_byte (a_byte); + __ emit_int8 (a_byte); } } @@ -340,10 +340,10 @@ int being_initialized_entry_offset = __ offset() - being_initialized_entry + sizeof_patch_record; // Emit the patch record. We need to emit a full word, so emit an extra empty byte - __ a_byte(0); - __ a_byte(being_initialized_entry_offset); - __ a_byte(bytes_to_skip); - __ a_byte(_bytes_to_copy); + __ emit_int8(0); + __ emit_int8(being_initialized_entry_offset); + __ emit_int8(bytes_to_skip); + __ emit_int8(_bytes_to_copy); address patch_info_pc = __ pc(); assert(patch_info_pc - end_of_patch == bytes_to_skip, "incorrect patch info"); --- old/src/cpu/x86/vm/assembler_x86.cpp 2012-12-12 17:34:30.657571000 -0800 +++ new/src/cpu/x86/vm/assembler_x86.cpp 2012-12-12 17:34:30.510773000 -0800 @@ -226,9 +226,9 @@ assert(isByte(op1) && isByte(op2), "wrong opcode"); assert(isByte(imm8), "not a byte"); assert((op1 & 0x01) == 0, "should be 8bit operation"); - emit_byte(op1); - emit_byte(op2 | encode(dst)); - emit_byte(imm8); + emit_int8(op1); + emit_int8(op2 | encode(dst)); + emit_int8(imm8); } @@ -237,12 +237,12 @@ assert((op1 & 0x01) == 1, "should be 32bit operation"); assert((op1 & 0x02) == 0, "sign-extension bit should not be set"); if (is8bit(imm32)) { - emit_byte(op1 | 0x02); // set sign bit - emit_byte(op2 | encode(dst)); - emit_byte(imm32 & 0xFF); + emit_int8(op1 | 0x02); // set sign bit + emit_int8(op2 | encode(dst)); + emit_int8(imm32 & 0xFF); } else { - emit_byte(op1); - emit_byte(op2 | encode(dst)); + emit_int8(op1); + emit_int8(op2 | encode(dst)); emit_long(imm32); } } @@ -252,8 +252,8 @@ assert(isByte(op1) && isByte(op2), "wrong opcode"); assert((op1 & 0x01) == 1, "should be 32bit operation"); assert((op1 & 0x02) == 0, "sign-extension bit should not be set"); - emit_byte(op1); - emit_byte(op2 | encode(dst)); + emit_int8(op1); + emit_int8(op2 | encode(dst)); emit_long(imm32); } @@ -262,11 +262,11 @@ assert((op1 & 0x01) == 1, "should be 32bit operation"); assert((op1 & 0x02) == 0, "sign-extension bit should not be set"); if (is8bit(imm32)) { - emit_byte(op1 | 0x02); // set sign bit + emit_int8(op1 | 0x02); // set sign bit emit_operand(rm, adr, 1); - emit_byte(imm32 & 0xFF); + emit_int8(imm32 & 0xFF); } else { - emit_byte(op1); + emit_int8(op1); emit_operand(rm, adr, 4); emit_long(imm32); } @@ -275,8 +275,8 @@ void Assembler::emit_arith(int op1, int op2, Register dst, Register src) { assert(isByte(op1) && isByte(op2), "wrong opcode"); - emit_byte(op1); - emit_byte(op2 | encode(dst) << 3 | encode(src)); + emit_int8(op1); + emit_int8(op2 | encode(dst) << 3 | encode(src)); } @@ -301,21 +301,21 @@ // [base + index*scale] // [00 reg 100][ss index base] assert(index != rsp, "illegal addressing mode"); - emit_byte(0x04 | regenc); - emit_byte(scale << 6 | indexenc | baseenc); + emit_int8(0x04 | regenc); + emit_int8(scale << 6 | indexenc | baseenc); } else if (is8bit(disp) && rtype == relocInfo::none) { // [base + index*scale + imm8] // [01 reg 100][ss index base] imm8 assert(index != rsp, "illegal addressing mode"); - emit_byte(0x44 | regenc); - emit_byte(scale << 6 | indexenc | baseenc); - emit_byte(disp & 0xFF); + emit_int8(0x44 | regenc); + emit_int8(scale << 6 | indexenc | baseenc); + emit_int8(disp & 0xFF); } else { // [base + index*scale + disp32] // [10 reg 100][ss index base] disp32 assert(index != rsp, "illegal addressing mode"); - emit_byte(0x84 | regenc); - emit_byte(scale << 6 | indexenc | baseenc); + emit_int8(0x84 | regenc); + emit_int8(scale << 6 | indexenc | baseenc); emit_data(disp, rspec, disp32_operand); } } else if (base == rsp LP64_ONLY(|| base == r12)) { @@ -323,19 +323,19 @@ if (disp == 0 && rtype == relocInfo::none) { // [rsp] // [00 reg 100][00 100 100] - emit_byte(0x04 | regenc); - emit_byte(0x24); + emit_int8(0x04 | regenc); + emit_int8(0x24); } else if (is8bit(disp) && rtype == relocInfo::none) { // [rsp + imm8] // [01 reg 100][00 100 100] disp8 - emit_byte(0x44 | regenc); - emit_byte(0x24); - emit_byte(disp & 0xFF); + emit_int8(0x44 | regenc); + emit_int8(0x24); + emit_int8(disp & 0xFF); } else { // [rsp + imm32] // [10 reg 100][00 100 100] disp32 - emit_byte(0x84 | regenc); - emit_byte(0x24); + emit_int8(0x84 | regenc); + emit_int8(0x24); emit_data(disp, rspec, disp32_operand); } } else { @@ -345,16 +345,16 @@ base != rbp LP64_ONLY(&& base != r13)) { // [base] // [00 reg base] - emit_byte(0x00 | regenc | baseenc); + emit_int8(0x00 | regenc | baseenc); } else if (is8bit(disp) && rtype == relocInfo::none) { // [base + disp8] // [01 reg base] disp8 - emit_byte(0x40 | regenc | baseenc); - emit_byte(disp & 0xFF); + emit_int8(0x40 | regenc | baseenc); + emit_int8(disp & 0xFF); } else { // [base + disp32] // [10 reg base] disp32 - emit_byte(0x80 | regenc | baseenc); + emit_int8(0x80 | regenc | baseenc); emit_data(disp, rspec, disp32_operand); } } @@ -364,14 +364,14 @@ // [index*scale + disp] // [00 reg 100][ss index 101] disp32 assert(index != rsp, "illegal addressing mode"); - emit_byte(0x04 | regenc); - emit_byte(scale << 6 | indexenc | 0x05); + emit_int8(0x04 | regenc); + emit_int8(scale << 6 | indexenc | 0x05); emit_data(disp, rspec, disp32_operand); } else if (rtype != relocInfo::none ) { // [disp] (64bit) RIP-RELATIVE (32bit) abs // [00 000 101] disp32 - emit_byte(0x05 | regenc); + emit_int8(0x05 | regenc); // Note that the RIP-rel. correction applies to the generated // disp field, but _not_ to the target address in the rspec. @@ -391,8 +391,8 @@ // 32bit never did this, did everything as the rip-rel/disp code above // [disp] ABSOLUTE // [00 reg 100][00 100 101] disp32 - emit_byte(0x04 | regenc); - emit_byte(0x25); + emit_int8(0x04 | regenc); + emit_int8(0x25); emit_data(disp, rspec, disp32_operand); } } @@ -883,8 +883,8 @@ void Assembler::emit_farith(int b1, int b2, int i) { assert(isByte(b1) && isByte(b2), "wrong opcode"); assert(0 <= i && i < 8, "illegal stack offset"); - emit_byte(b1); - emit_byte(b2 + i); + emit_int8(b1); + emit_int8(b2 + i); } @@ -899,7 +899,7 @@ void Assembler::adcl(Address dst, Register src) { InstructionMark im(this); prefix(dst, src); - emit_byte(0x11); + emit_int8(0x11); emit_operand(src, dst); } @@ -911,7 +911,7 @@ void Assembler::adcl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); - emit_byte(0x13); + emit_int8(0x13); emit_operand(dst, src); } @@ -929,7 +929,7 @@ void Assembler::addl(Address dst, Register src) { InstructionMark im(this); prefix(dst, src); - emit_byte(0x01); + emit_int8(0x01); emit_operand(src, dst); } @@ -941,7 +941,7 @@ void Assembler::addl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); - emit_byte(0x03); + emit_int8(0x03); emit_operand(dst, src); } @@ -953,38 +953,38 @@ void Assembler::addr_nop_4() { assert(UseAddressNop, "no CPU support"); // 4 bytes: NOP DWORD PTR [EAX+0] - emit_byte(0x0F); - emit_byte(0x1F); - emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc); - emit_byte(0); // 8-bits offset (1 byte) + emit_int8(0x0F); + emit_int8(0x1F); + emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc); + emit_int8(0); // 8-bits offset (1 byte) } void Assembler::addr_nop_5() { assert(UseAddressNop, "no CPU support"); // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset - emit_byte(0x0F); - emit_byte(0x1F); - emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4); - emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc); - emit_byte(0); // 8-bits offset (1 byte) + emit_int8(0x0F); + emit_int8(0x1F); + emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4); + emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc); + emit_int8(0); // 8-bits offset (1 byte) } void Assembler::addr_nop_7() { assert(UseAddressNop, "no CPU support"); // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset - emit_byte(0x0F); - emit_byte(0x1F); - emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc); + emit_int8(0x0F); + emit_int8(0x1F); + emit_int8(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc); emit_long(0); // 32-bits offset (4 bytes) } void Assembler::addr_nop_8() { assert(UseAddressNop, "no CPU support"); // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset - emit_byte(0x0F); - emit_byte(0x1F); - emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4); - emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc); + emit_int8(0x0F); + emit_int8(0x1F); + emit_int8(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4); + emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc); emit_long(0); // 32-bits offset (4 bytes) } @@ -1012,67 +1012,67 @@ assert(VM_Version::supports_aes(), ""); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); - emit_byte(0xde); + emit_int8(0xde); emit_operand(dst, src); } void Assembler::aesdec(XMMRegister dst, XMMRegister src) { assert(VM_Version::supports_aes(), ""); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); - emit_byte(0xde); - emit_byte(0xC0 | encode); + emit_int8(0xde); + emit_int8(0xC0 | encode); } void Assembler::aesdeclast(XMMRegister dst, Address src) { assert(VM_Version::supports_aes(), ""); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); - emit_byte(0xdf); + emit_int8(0xdf); emit_operand(dst, src); } void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) { assert(VM_Version::supports_aes(), ""); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); - emit_byte(0xdf); - emit_byte(0xC0 | encode); + emit_int8(0xdf); + emit_int8(0xC0 | encode); } void Assembler::aesenc(XMMRegister dst, Address src) { assert(VM_Version::supports_aes(), ""); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); - emit_byte(0xdc); + emit_int8(0xdc); emit_operand(dst, src); } void Assembler::aesenc(XMMRegister dst, XMMRegister src) { assert(VM_Version::supports_aes(), ""); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); - emit_byte(0xdc); - emit_byte(0xC0 | encode); + emit_int8(0xdc); + emit_int8(0xC0 | encode); } void Assembler::aesenclast(XMMRegister dst, Address src) { assert(VM_Version::supports_aes(), ""); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); - emit_byte(0xdd); + emit_int8(0xdd); emit_operand(dst, src); } void Assembler::aesenclast(XMMRegister dst, XMMRegister src) { assert(VM_Version::supports_aes(), ""); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); - emit_byte(0xdd); - emit_byte(0xC0 | encode); + emit_int8(0xdd); + emit_int8(0xC0 | encode); } void Assembler::andl(Address dst, int32_t imm32) { InstructionMark im(this); prefix(dst); - emit_byte(0x81); + emit_int8(0x81); emit_operand(rsp, dst, 4); emit_long(imm32); } @@ -1085,7 +1085,7 @@ void Assembler::andl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); - emit_byte(0x23); + emit_int8(0x23); emit_operand(dst, src); } @@ -1096,23 +1096,23 @@ void Assembler::bsfl(Register dst, Register src) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x0F); - emit_byte(0xBC); - emit_byte(0xC0 | encode); + emit_int8(0x0F); + emit_int8(0xBC); + emit_int8(0xC0 | encode); } void Assembler::bsrl(Register dst, Register src) { assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT"); int encode = prefix_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x0F); - emit_byte(0xBD); - emit_byte(0xC0 | encode); + emit_int8(0x0F); + emit_int8(0xBD); + emit_int8(0xC0 | encode); } void Assembler::bswapl(Register reg) { // bswap int encode = prefix_and_encode(reg->encoding()); - emit_byte(0x0F); - emit_byte(0xC8 | encode); + emit_int8(0x0F); + emit_int8(0xC8 | encode); } void Assembler::call(Label& L, relocInfo::relocType rtype) { @@ -1125,36 +1125,36 @@ assert(offs <= 0, "assembler error"); InstructionMark im(this); // 1110 1000 #32-bit disp - emit_byte(0xE8); + emit_int8(0xE8); emit_data(offs - long_size, rtype, operand); } else { InstructionMark im(this); // 1110 1000 #32-bit disp L.add_patch_at(code(), locator()); - emit_byte(0xE8); + emit_int8(0xE8); emit_data(int(0), rtype, operand); } } void Assembler::call(Register dst) { int encode = prefix_and_encode(dst->encoding()); - emit_byte(0xFF); - emit_byte(0xD0 | encode); + emit_int8(0xFF); + emit_int8(0xD0 | encode); } void Assembler::call(Address adr) { InstructionMark im(this); prefix(adr); - emit_byte(0xFF); + emit_int8(0xFF); emit_operand(rdx, adr); } void Assembler::call_literal(address entry, RelocationHolder const& rspec) { assert(entry != NULL, "call most probably wrong"); InstructionMark im(this); - emit_byte(0xE8); + emit_int8(0xE8); intptr_t disp = entry - (pc() + sizeof(int32_t)); assert(is_simm32(disp), "must be 32bit offset (call2)"); // Technically, should use call32_operand, but this format is @@ -1165,42 +1165,42 @@ } void Assembler::cdql() { - emit_byte(0x99); + emit_int8(0x99); } void Assembler::cld() { - emit_byte(0xfc); + emit_int8(0xfc); } void Assembler::cmovl(Condition cc, Register dst, Register src) { NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction")); int encode = prefix_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x0F); - emit_byte(0x40 | cc); - emit_byte(0xC0 | encode); + emit_int8(0x0F); + emit_int8(0x40 | cc); + emit_int8(0xC0 | encode); } void Assembler::cmovl(Condition cc, Register dst, Address src) { NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction")); prefix(src, dst); - emit_byte(0x0F); - emit_byte(0x40 | cc); + emit_int8(0x0F); + emit_int8(0x40 | cc); emit_operand(dst, src); } void Assembler::cmpb(Address dst, int imm8) { InstructionMark im(this); prefix(dst); - emit_byte(0x80); + emit_int8(0x80); emit_operand(rdi, dst, 1); - emit_byte(imm8); + emit_int8(imm8); } void Assembler::cmpl(Address dst, int32_t imm32) { InstructionMark im(this); prefix(dst); - emit_byte(0x81); + emit_int8(0x81); emit_operand(rdi, dst, 4); emit_long(imm32); } @@ -1219,15 +1219,15 @@ void Assembler::cmpl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); - emit_byte(0x3B); + emit_int8(0x3B); emit_operand(dst, src); } void Assembler::cmpw(Address dst, int imm16) { InstructionMark im(this); assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers"); - emit_byte(0x66); - emit_byte(0x81); + emit_int8(0x66); + emit_int8(0x81); emit_operand(rdi, dst, 2); emit_word(imm16); } @@ -1238,8 +1238,8 @@ void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg InstructionMark im(this); prefix(adr, reg); - emit_byte(0x0F); - emit_byte(0xB1); + emit_int8(0x0F); + emit_int8(0xB1); emit_operand(reg, adr); } @@ -1266,8 +1266,8 @@ } void Assembler::cpuid() { - emit_byte(0x0F); - emit_byte(0xA2); + emit_int8(0x0F); + emit_int8(0xA2); } void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) { @@ -1293,8 +1293,8 @@ void Assembler::cvtsi2sdl(XMMRegister dst, Register src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2); - emit_byte(0x2A); - emit_byte(0xC0 | encode); + emit_int8(0x2A); + emit_int8(0xC0 | encode); } void Assembler::cvtsi2sdl(XMMRegister dst, Address src) { @@ -1305,8 +1305,8 @@ void Assembler::cvtsi2ssl(XMMRegister dst, Register src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3); - emit_byte(0x2A); - emit_byte(0xC0 | encode); + emit_int8(0x2A); + emit_int8(0xC0 | encode); } void Assembler::cvtsi2ssl(XMMRegister dst, Address src) { @@ -1328,22 +1328,22 @@ void Assembler::cvttsd2sil(Register dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2); - emit_byte(0x2C); - emit_byte(0xC0 | encode); + emit_int8(0x2C); + emit_int8(0xC0 | encode); } void Assembler::cvttss2sil(Register dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3); - emit_byte(0x2C); - emit_byte(0xC0 | encode); + emit_int8(0x2C); + emit_int8(0xC0 | encode); } void Assembler::decl(Address dst) { // Don't use it directly. Use MacroAssembler::decrement() instead. InstructionMark im(this); prefix(dst); - emit_byte(0xFF); + emit_int8(0xFF); emit_operand(rcx, dst); } @@ -1369,43 +1369,43 @@ void Assembler::emms() { NOT_LP64(assert(VM_Version::supports_mmx(), "")); - emit_byte(0x0F); - emit_byte(0x77); + emit_int8(0x0F); + emit_int8(0x77); } void Assembler::hlt() { - emit_byte(0xF4); + emit_int8(0xF4); } void Assembler::idivl(Register src) { int encode = prefix_and_encode(src->encoding()); - emit_byte(0xF7); - emit_byte(0xF8 | encode); + emit_int8(0xF7); + emit_int8(0xF8 | encode); } void Assembler::divl(Register src) { // Unsigned int encode = prefix_and_encode(src->encoding()); - emit_byte(0xF7); - emit_byte(0xF0 | encode); + emit_int8(0xF7); + emit_int8(0xF0 | encode); } void Assembler::imull(Register dst, Register src) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x0F); - emit_byte(0xAF); - emit_byte(0xC0 | encode); + emit_int8(0x0F); + emit_int8(0xAF); + emit_int8(0xC0 | encode); } void Assembler::imull(Register dst, Register src, int value) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); if (is8bit(value)) { - emit_byte(0x6B); - emit_byte(0xC0 | encode); - emit_byte(value & 0xFF); + emit_int8(0x6B); + emit_int8(0xC0 | encode); + emit_int8(value & 0xFF); } else { - emit_byte(0x69); - emit_byte(0xC0 | encode); + emit_int8(0x69); + emit_int8(0xC0 | encode); emit_long(value); } } @@ -1414,7 +1414,7 @@ // Don't use it directly. Use MacroAssembler::increment() instead. InstructionMark im(this); prefix(dst); - emit_byte(0xFF); + emit_int8(0xFF); emit_operand(rax, dst); } @@ -1430,14 +1430,14 @@ intptr_t offs = (intptr_t)dst - (intptr_t)pc(); if (maybe_short && is8bit(offs - short_size)) { // 0111 tttn #8-bit disp - emit_byte(0x70 | cc); - emit_byte((offs - short_size) & 0xFF); + emit_int8(0x70 | cc); + emit_int8((offs - short_size) & 0xFF); } else { // 0000 1111 1000 tttn #32-bit disp assert(is_simm32(offs - long_size), "must be 32bit offset (call4)"); - emit_byte(0x0F); - emit_byte(0x80 | cc); + emit_int8(0x0F); + emit_int8(0x80 | cc); emit_long(offs - long_size); } } else { @@ -1446,8 +1446,8 @@ // Note: use jccb() if label to be bound is very close to get // an 8-bit displacement L.add_patch_at(code(), locator()); - emit_byte(0x0F); - emit_byte(0x80 | cc); + emit_int8(0x0F); + emit_int8(0x80 | cc); emit_long(0); } } @@ -1466,20 +1466,20 @@ #endif intptr_t offs = (intptr_t)entry - (intptr_t)pc(); // 0111 tttn #8-bit disp - emit_byte(0x70 | cc); - emit_byte((offs - short_size) & 0xFF); + emit_int8(0x70 | cc); + emit_int8((offs - short_size) & 0xFF); } else { InstructionMark im(this); L.add_patch_at(code(), locator()); - emit_byte(0x70 | cc); - emit_byte(0); + emit_int8(0x70 | cc); + emit_int8(0); } } void Assembler::jmp(Address adr) { InstructionMark im(this); prefix(adr); - emit_byte(0xFF); + emit_int8(0xFF); emit_operand(rsp, adr); } @@ -1492,10 +1492,10 @@ const int long_size = 5; intptr_t offs = entry - pc(); if (maybe_short && is8bit(offs - short_size)) { - emit_byte(0xEB); - emit_byte((offs - short_size) & 0xFF); + emit_int8(0xEB); + emit_int8((offs - short_size) & 0xFF); } else { - emit_byte(0xE9); + emit_int8(0xE9); emit_long(offs - long_size); } } else { @@ -1505,20 +1505,20 @@ // force an 8-bit displacement. InstructionMark im(this); L.add_patch_at(code(), locator()); - emit_byte(0xE9); + emit_int8(0xE9); emit_long(0); } } void Assembler::jmp(Register entry) { int encode = prefix_and_encode(entry->encoding()); - emit_byte(0xFF); - emit_byte(0xE0 | encode); + emit_int8(0xFF); + emit_int8(0xE0 | encode); } void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) { InstructionMark im(this); - emit_byte(0xE9); + emit_int8(0xE9); assert(dest != NULL, "must have a target"); intptr_t disp = dest - (pc() + sizeof(int32_t)); assert(is_simm32(disp), "must be 32bit offset (jmp)"); @@ -1539,13 +1539,13 @@ assert(is8bit(dist), "Dispacement too large for a short jmp"); #endif intptr_t offs = entry - pc(); - emit_byte(0xEB); - emit_byte((offs - short_size) & 0xFF); + emit_int8(0xEB); + emit_int8((offs - short_size) & 0xFF); } else { InstructionMark im(this); L.add_patch_at(code(), locator()); - emit_byte(0xEB); - emit_byte(0); + emit_int8(0xEB); + emit_int8(0); } } @@ -1553,46 +1553,46 @@ NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); prefix(src); - emit_byte(0x0F); - emit_byte(0xAE); + emit_int8(0x0F); + emit_int8(0xAE); emit_operand(as_Register(2), src); } void Assembler::leal(Register dst, Address src) { InstructionMark im(this); #ifdef _LP64 - emit_byte(0x67); // addr32 + emit_int8(0x67); // addr32 prefix(src, dst); #endif // LP64 - emit_byte(0x8D); + emit_int8(0x8D); emit_operand(dst, src); } void Assembler::lfence() { - emit_byte(0x0F); - emit_byte(0xAE); - emit_byte(0xE8); + emit_int8(0x0F); + emit_int8(0xAE); + emit_int8(0xE8); } void Assembler::lock() { - emit_byte(0xF0); + emit_int8(0xF0); } void Assembler::lzcntl(Register dst, Register src) { assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR"); - emit_byte(0xF3); + emit_int8(0xF3); int encode = prefix_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x0F); - emit_byte(0xBD); - emit_byte(0xC0 | encode); + emit_int8(0x0F); + emit_int8(0xBD); + emit_int8(0xC0 | encode); } // Emit mfence instruction void Assembler::mfence() { NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");) - emit_byte( 0x0F ); - emit_byte( 0xAE ); - emit_byte( 0xF0 ); + emit_int8( 0x0F ); + emit_int8( 0xAE ); + emit_int8( 0xF0 ); } void Assembler::mov(Register dst, Register src) { @@ -1612,15 +1612,15 @@ void Assembler::movlhps(XMMRegister dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE); - emit_byte(0x16); - emit_byte(0xC0 | encode); + emit_int8(0x16); + emit_int8(0xC0 | encode); } void Assembler::movb(Register dst, Address src) { NOT_LP64(assert(dst->has_byte_register(), "must have byte register")); InstructionMark im(this); prefix(src, dst, true); - emit_byte(0x8A); + emit_int8(0x8A); emit_operand(dst, src); } @@ -1628,9 +1628,9 @@ void Assembler::movb(Address dst, int imm8) { InstructionMark im(this); prefix(dst); - emit_byte(0xC6); + emit_int8(0xC6); emit_operand(rax, dst, 1); - emit_byte(imm8); + emit_int8(imm8); } @@ -1638,30 +1638,30 @@ assert(src->has_byte_register(), "must have byte register"); InstructionMark im(this); prefix(dst, src, true); - emit_byte(0x88); + emit_int8(0x88); emit_operand(src, dst); } void Assembler::movdl(XMMRegister dst, Register src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66); - emit_byte(0x6E); - emit_byte(0xC0 | encode); + emit_int8(0x6E); + emit_int8(0xC0 | encode); } void Assembler::movdl(Register dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); // swap src/dst to get correct prefix int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66); - emit_byte(0x7E); - emit_byte(0xC0 | encode); + emit_int8(0x7E); + emit_int8(0xC0 | encode); } void Assembler::movdl(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_66); - emit_byte(0x6E); + emit_int8(0x6E); emit_operand(dst, src); } @@ -1669,7 +1669,7 @@ NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_66); - emit_byte(0x7E); + emit_int8(0x7E); emit_operand(src, dst); } @@ -1692,7 +1692,7 @@ NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_F3); - emit_byte(0x7F); + emit_int8(0x7F); emit_operand(src, dst); } @@ -1701,8 +1701,8 @@ assert(UseAVX, ""); bool vector256 = true; int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256); - emit_byte(0x6F); - emit_byte(0xC0 | encode); + emit_int8(0x6F); + emit_int8(0xC0 | encode); } void Assembler::vmovdqu(XMMRegister dst, Address src) { @@ -1710,7 +1710,7 @@ InstructionMark im(this); bool vector256 = true; vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256); - emit_byte(0x6F); + emit_int8(0x6F); emit_operand(dst, src); } @@ -1721,7 +1721,7 @@ // swap src<->dst for encoding assert(src != xnoreg, "sanity"); vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256); - emit_byte(0x7F); + emit_int8(0x7F); emit_operand(src, dst); } @@ -1729,27 +1729,27 @@ void Assembler::movl(Register dst, int32_t imm32) { int encode = prefix_and_encode(dst->encoding()); - emit_byte(0xB8 | encode); + emit_int8(0xB8 | encode); emit_long(imm32); } void Assembler::movl(Register dst, Register src) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x8B); - emit_byte(0xC0 | encode); + emit_int8(0x8B); + emit_int8(0xC0 | encode); } void Assembler::movl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); - emit_byte(0x8B); + emit_int8(0x8B); emit_operand(dst, src); } void Assembler::movl(Address dst, int32_t imm32) { InstructionMark im(this); prefix(dst); - emit_byte(0xC7); + emit_int8(0xC7); emit_operand(rax, dst, 4); emit_long(imm32); } @@ -1757,7 +1757,7 @@ void Assembler::movl(Address dst, Register src) { InstructionMark im(this); prefix(dst, src); - emit_byte(0x89); + emit_int8(0x89); emit_operand(src, dst); } @@ -1771,15 +1771,15 @@ void Assembler::movq( MMXRegister dst, Address src ) { assert( VM_Version::supports_mmx(), "" ); - emit_byte(0x0F); - emit_byte(0x6F); + emit_int8(0x0F); + emit_int8(0x6F); emit_operand(dst, src); } void Assembler::movq( Address dst, MMXRegister src ) { assert( VM_Version::supports_mmx(), "" ); - emit_byte(0x0F); - emit_byte(0x7F); + emit_int8(0x0F); + emit_int8(0x7F); // workaround gcc (3.2.1-7a) bug // In that version of gcc with only an emit_operand(MMX, Address) // gcc will tail jump and try and reverse the parameters completely @@ -1793,7 +1793,7 @@ NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_F3); - emit_byte(0x7E); + emit_int8(0x7E); emit_operand(dst, src); } @@ -1801,24 +1801,24 @@ NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_66); - emit_byte(0xD6); + emit_int8(0xD6); emit_operand(src, dst); } void Assembler::movsbl(Register dst, Address src) { // movsxb InstructionMark im(this); prefix(src, dst); - emit_byte(0x0F); - emit_byte(0xBE); + emit_int8(0x0F); + emit_int8(0xBE); emit_operand(dst, src); } void Assembler::movsbl(Register dst, Register src) { // movsxb NOT_LP64(assert(src->has_byte_register(), "must have byte register")); int encode = prefix_and_encode(dst->encoding(), src->encoding(), true); - emit_byte(0x0F); - emit_byte(0xBE); - emit_byte(0xC0 | encode); + emit_int8(0x0F); + emit_int8(0xBE); + emit_int8(0xC0 | encode); } void Assembler::movsd(XMMRegister dst, XMMRegister src) { @@ -1835,7 +1835,7 @@ NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_F2); - emit_byte(0x11); + emit_int8(0x11); emit_operand(src, dst); } @@ -1853,93 +1853,93 @@ NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_F3); - emit_byte(0x11); + emit_int8(0x11); emit_operand(src, dst); } void Assembler::movswl(Register dst, Address src) { // movsxw InstructionMark im(this); prefix(src, dst); - emit_byte(0x0F); - emit_byte(0xBF); + emit_int8(0x0F); + emit_int8(0xBF); emit_operand(dst, src); } void Assembler::movswl(Register dst, Register src) { // movsxw int encode = prefix_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x0F); - emit_byte(0xBF); - emit_byte(0xC0 | encode); + emit_int8(0x0F); + emit_int8(0xBF); + emit_int8(0xC0 | encode); } void Assembler::movw(Address dst, int imm16) { InstructionMark im(this); - emit_byte(0x66); // switch to 16-bit mode + emit_int8(0x66); // switch to 16-bit mode prefix(dst); - emit_byte(0xC7); + emit_int8(0xC7); emit_operand(rax, dst, 2); emit_word(imm16); } void Assembler::movw(Register dst, Address src) { InstructionMark im(this); - emit_byte(0x66); + emit_int8(0x66); prefix(src, dst); - emit_byte(0x8B); + emit_int8(0x8B); emit_operand(dst, src); } void Assembler::movw(Address dst, Register src) { InstructionMark im(this); - emit_byte(0x66); + emit_int8(0x66); prefix(dst, src); - emit_byte(0x89); + emit_int8(0x89); emit_operand(src, dst); } void Assembler::movzbl(Register dst, Address src) { // movzxb InstructionMark im(this); prefix(src, dst); - emit_byte(0x0F); - emit_byte(0xB6); + emit_int8(0x0F); + emit_int8(0xB6); emit_operand(dst, src); } void Assembler::movzbl(Register dst, Register src) { // movzxb NOT_LP64(assert(src->has_byte_register(), "must have byte register")); int encode = prefix_and_encode(dst->encoding(), src->encoding(), true); - emit_byte(0x0F); - emit_byte(0xB6); - emit_byte(0xC0 | encode); + emit_int8(0x0F); + emit_int8(0xB6); + emit_int8(0xC0 | encode); } void Assembler::movzwl(Register dst, Address src) { // movzxw InstructionMark im(this); prefix(src, dst); - emit_byte(0x0F); - emit_byte(0xB7); + emit_int8(0x0F); + emit_int8(0xB7); emit_operand(dst, src); } void Assembler::movzwl(Register dst, Register src) { // movzxw int encode = prefix_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x0F); - emit_byte(0xB7); - emit_byte(0xC0 | encode); + emit_int8(0x0F); + emit_int8(0xB7); + emit_int8(0xC0 | encode); } void Assembler::mull(Address src) { InstructionMark im(this); prefix(src); - emit_byte(0xF7); + emit_int8(0xF7); emit_operand(rsp, src); } void Assembler::mull(Register src) { int encode = prefix_and_encode(src->encoding()); - emit_byte(0xF7); - emit_byte(0xE0 | encode); + emit_int8(0xF7); + emit_int8(0xE0 | encode); } void Assembler::mulsd(XMMRegister dst, Address src) { @@ -1964,8 +1964,8 @@ void Assembler::negl(Register dst) { int encode = prefix_and_encode(dst->encoding()); - emit_byte(0xF7); - emit_byte(0xD8 | encode); + emit_int8(0xF7); + emit_int8(0xD8 | encode); } void Assembler::nop(int i) { @@ -1976,7 +1976,7 @@ // speed is not an issue so simply use the single byte traditional nop // to do alignment. - for (; i > 0 ; i--) emit_byte(0x90); + for (; i > 0 ; i--) emit_int8(0x90); return; #endif // ASSERT @@ -2006,33 +2006,33 @@ while(i >= 15) { // For Intel don't generate consecutive addess nops (mix with regular nops) i -= 15; - emit_byte(0x66); // size prefix - emit_byte(0x66); // size prefix - emit_byte(0x66); // size prefix + emit_int8(0x66); // size prefix + emit_int8(0x66); // size prefix + emit_int8(0x66); // size prefix addr_nop_8(); - emit_byte(0x66); // size prefix - emit_byte(0x66); // size prefix - emit_byte(0x66); // size prefix - emit_byte(0x90); // nop + emit_int8(0x66); // size prefix + emit_int8(0x66); // size prefix + emit_int8(0x66); // size prefix + emit_int8(0x90); // nop } switch (i) { case 14: - emit_byte(0x66); // size prefix + emit_int8(0x66); // size prefix case 13: - emit_byte(0x66); // size prefix + emit_int8(0x66); // size prefix case 12: addr_nop_8(); - emit_byte(0x66); // size prefix - emit_byte(0x66); // size prefix - emit_byte(0x66); // size prefix - emit_byte(0x90); // nop + emit_int8(0x66); // size prefix + emit_int8(0x66); // size prefix + emit_int8(0x66); // size prefix + emit_int8(0x90); // nop break; case 11: - emit_byte(0x66); // size prefix + emit_int8(0x66); // size prefix case 10: - emit_byte(0x66); // size prefix + emit_int8(0x66); // size prefix case 9: - emit_byte(0x66); // size prefix + emit_int8(0x66); // size prefix case 8: addr_nop_8(); break; @@ -2040,7 +2040,7 @@ addr_nop_7(); break; case 6: - emit_byte(0x66); // size prefix + emit_int8(0x66); // size prefix case 5: addr_nop_5(); break; @@ -2049,11 +2049,11 @@ break; case 3: // Don't use "0x0F 0x1F 0x00" - need patching safe padding - emit_byte(0x66); // size prefix + emit_int8(0x66); // size prefix case 2: - emit_byte(0x66); // size prefix + emit_int8(0x66); // size prefix case 1: - emit_byte(0x90); // nop + emit_int8(0x90); // nop break; default: assert(i == 0, " "); @@ -2086,24 +2086,24 @@ while(i >= 22) { i -= 11; - emit_byte(0x66); // size prefix - emit_byte(0x66); // size prefix - emit_byte(0x66); // size prefix + emit_int8(0x66); // size prefix + emit_int8(0x66); // size prefix + emit_int8(0x66); // size prefix addr_nop_8(); } // Generate first nop for size between 21-12 switch (i) { case 21: i -= 1; - emit_byte(0x66); // size prefix + emit_int8(0x66); // size prefix case 20: case 19: i -= 1; - emit_byte(0x66); // size prefix + emit_int8(0x66); // size prefix case 18: case 17: i -= 1; - emit_byte(0x66); // size prefix + emit_int8(0x66); // size prefix case 16: case 15: i -= 8; @@ -2116,7 +2116,7 @@ break; case 12: i -= 6; - emit_byte(0x66); // size prefix + emit_int8(0x66); // size prefix addr_nop_5(); break; default: @@ -2126,11 +2126,11 @@ // Generate second nop for size between 11-1 switch (i) { case 11: - emit_byte(0x66); // size prefix + emit_int8(0x66); // size prefix case 10: - emit_byte(0x66); // size prefix + emit_int8(0x66); // size prefix case 9: - emit_byte(0x66); // size prefix + emit_int8(0x66); // size prefix case 8: addr_nop_8(); break; @@ -2138,7 +2138,7 @@ addr_nop_7(); break; case 6: - emit_byte(0x66); // size prefix + emit_int8(0x66); // size prefix case 5: addr_nop_5(); break; @@ -2147,11 +2147,11 @@ break; case 3: // Don't use "0x0F 0x1F 0x00" - need patching safe padding - emit_byte(0x66); // size prefix + emit_int8(0x66); // size prefix case 2: - emit_byte(0x66); // size prefix + emit_int8(0x66); // size prefix case 1: - emit_byte(0x90); // nop + emit_int8(0x90); // nop break; default: assert(i == 0, " "); @@ -2174,42 +2174,42 @@ // while(i > 12) { i -= 4; - emit_byte(0x66); // size prefix - emit_byte(0x66); - emit_byte(0x66); - emit_byte(0x90); // nop + emit_int8(0x66); // size prefix + emit_int8(0x66); + emit_int8(0x66); + emit_int8(0x90); // nop } // 1 - 12 nops if(i > 8) { if(i > 9) { i -= 1; - emit_byte(0x66); + emit_int8(0x66); } i -= 3; - emit_byte(0x66); - emit_byte(0x66); - emit_byte(0x90); + emit_int8(0x66); + emit_int8(0x66); + emit_int8(0x90); } // 1 - 8 nops if(i > 4) { if(i > 6) { i -= 1; - emit_byte(0x66); + emit_int8(0x66); } i -= 3; - emit_byte(0x66); - emit_byte(0x66); - emit_byte(0x90); + emit_int8(0x66); + emit_int8(0x66); + emit_int8(0x90); } switch (i) { case 4: - emit_byte(0x66); + emit_int8(0x66); case 3: - emit_byte(0x66); + emit_int8(0x66); case 2: - emit_byte(0x66); + emit_int8(0x66); case 1: - emit_byte(0x90); + emit_int8(0x90); break; default: assert(i == 0, " "); @@ -2218,8 +2218,8 @@ void Assembler::notl(Register dst) { int encode = prefix_and_encode(dst->encoding()); - emit_byte(0xF7); - emit_byte(0xD0 | encode ); + emit_int8(0xF7); + emit_int8(0xD0 | encode ); } void Assembler::orl(Address dst, int32_t imm32) { @@ -2236,7 +2236,7 @@ void Assembler::orl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); - emit_byte(0x0B); + emit_int8(0x0B); emit_operand(dst, src); } @@ -2260,61 +2260,61 @@ assert(VM_Version::supports_sse4_2(), ""); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A); - emit_byte(0x61); + emit_int8(0x61); emit_operand(dst, src); - emit_byte(imm8); + emit_int8(imm8); } void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) { assert(VM_Version::supports_sse4_2(), ""); int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A); - emit_byte(0x61); - emit_byte(0xC0 | encode); - emit_byte(imm8); + emit_int8(0x61); + emit_int8(0xC0 | encode); + emit_int8(imm8); } void Assembler::pmovzxbw(XMMRegister dst, Address src) { assert(VM_Version::supports_sse4_1(), ""); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); - emit_byte(0x30); + emit_int8(0x30); emit_operand(dst, src); } void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) { assert(VM_Version::supports_sse4_1(), ""); int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38); - emit_byte(0x30); - emit_byte(0xC0 | encode); + emit_int8(0x30); + emit_int8(0xC0 | encode); } // generic void Assembler::pop(Register dst) { int encode = prefix_and_encode(dst->encoding()); - emit_byte(0x58 | encode); + emit_int8(0x58 | encode); } void Assembler::popcntl(Register dst, Address src) { assert(VM_Version::supports_popcnt(), "must support"); InstructionMark im(this); - emit_byte(0xF3); + emit_int8(0xF3); prefix(src, dst); - emit_byte(0x0F); - emit_byte(0xB8); + emit_int8(0x0F); + emit_int8(0xB8); emit_operand(dst, src); } void Assembler::popcntl(Register dst, Register src) { assert(VM_Version::supports_popcnt(), "must support"); - emit_byte(0xF3); + emit_int8(0xF3); int encode = prefix_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x0F); - emit_byte(0xB8); - emit_byte(0xC0 | encode); + emit_int8(0x0F); + emit_int8(0xB8); + emit_int8(0xC0 | encode); } void Assembler::popf() { - emit_byte(0x9D); + emit_int8(0x9D); } #ifndef _LP64 // no 32bit push/pop on amd64 @@ -2322,21 +2322,21 @@ // NOTE: this will adjust stack by 8byte on 64bits InstructionMark im(this); prefix(dst); - emit_byte(0x8F); + emit_int8(0x8F); emit_operand(rax, dst); } #endif void Assembler::prefetch_prefix(Address src) { prefix(src); - emit_byte(0x0F); + emit_int8(0x0F); } void Assembler::prefetchnta(Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "must support")); InstructionMark im(this); prefetch_prefix(src); - emit_byte(0x18); + emit_int8(0x18); emit_operand(rax, src); // 0, src } @@ -2344,7 +2344,7 @@ assert(VM_Version::supports_3dnow_prefetch(), "must support"); InstructionMark im(this); prefetch_prefix(src); - emit_byte(0x0D); + emit_int8(0x0D); emit_operand(rax, src); // 0, src } @@ -2352,7 +2352,7 @@ NOT_LP64(assert(VM_Version::supports_sse(), "must support")); InstructionMark im(this); prefetch_prefix(src); - emit_byte(0x18); + emit_int8(0x18); emit_operand(rcx, src); // 1, src } @@ -2360,7 +2360,7 @@ NOT_LP64(assert(VM_Version::supports_sse(), "must support")); InstructionMark im(this); prefetch_prefix(src); - emit_byte(0x18); + emit_int8(0x18); emit_operand(rdx, src); // 2, src } @@ -2368,7 +2368,7 @@ NOT_LP64(assert(VM_Version::supports_sse(), "must support")); InstructionMark im(this); prefetch_prefix(src); - emit_byte(0x18); + emit_int8(0x18); emit_operand(rbx, src); // 3, src } @@ -2376,19 +2376,19 @@ assert(VM_Version::supports_3dnow_prefetch(), "must support"); InstructionMark im(this); prefetch_prefix(src); - emit_byte(0x0D); + emit_int8(0x0D); emit_operand(rcx, src); // 1, src } void Assembler::prefix(Prefix p) { - a_byte(p); + emit_int8(p); } void Assembler::pshufb(XMMRegister dst, XMMRegister src) { assert(VM_Version::supports_ssse3(), ""); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); - emit_byte(0x00); - emit_byte(0xC0 | encode); + emit_int8(0x00); + emit_int8(0xC0 | encode); } void Assembler::pshufb(XMMRegister dst, Address src) { @@ -2396,7 +2396,7 @@ assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes"); InstructionMark im(this); simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); - emit_byte(0x00); + emit_int8(0x00); emit_operand(dst, src); } @@ -2404,7 +2404,7 @@ assert(isByte(mode), "invalid value"); NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66); - emit_byte(mode & 0xFF); + emit_int8(mode & 0xFF); } @@ -2414,16 +2414,16 @@ assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes"); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_66); - emit_byte(0x70); + emit_int8(0x70); emit_operand(dst, src); - emit_byte(mode & 0xFF); + emit_int8(mode & 0xFF); } void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) { assert(isByte(mode), "invalid value"); NOT_LP64(assert(VM_Version::supports_sse2(), "")); emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2); - emit_byte(mode & 0xFF); + emit_int8(mode & 0xFF); } void Assembler::pshuflw(XMMRegister dst, Address src, int mode) { @@ -2432,18 +2432,18 @@ assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes"); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_F2); - emit_byte(0x70); + emit_int8(0x70); emit_operand(dst, src); - emit_byte(mode & 0xFF); + emit_int8(mode & 0xFF); } void Assembler::psrldq(XMMRegister dst, int shift) { // Shift 128 bit value in xmm register by number of bytes. NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66); - emit_byte(0x73); - emit_byte(0xC0 | encode); - emit_byte(shift); + emit_int8(0x73); + emit_int8(0xC0 | encode); + emit_int8(shift); } void Assembler::ptest(XMMRegister dst, Address src) { @@ -2451,15 +2451,15 @@ assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes"); InstructionMark im(this); simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); - emit_byte(0x17); + emit_int8(0x17); emit_operand(dst, src); } void Assembler::ptest(XMMRegister dst, XMMRegister src) { assert(VM_Version::supports_sse4_1(), ""); int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38); - emit_byte(0x17); - emit_byte(0xC0 | encode); + emit_int8(0x17); + emit_int8(0xC0 | encode); } void Assembler::punpcklbw(XMMRegister dst, Address src) { @@ -2492,18 +2492,18 @@ void Assembler::push(int32_t imm32) { // in 64bits we push 64bits onto the stack but only // take a 32bit immediate - emit_byte(0x68); + emit_int8(0x68); emit_long(imm32); } void Assembler::push(Register src) { int encode = prefix_and_encode(src->encoding()); - emit_byte(0x50 | encode); + emit_int8(0x50 | encode); } void Assembler::pushf() { - emit_byte(0x9C); + emit_int8(0x9C); } #ifndef _LP64 // no 32bit push/pop on amd64 @@ -2511,7 +2511,7 @@ // Note this will push 64bit on 64bit InstructionMark im(this); prefix(src); - emit_byte(0xFF); + emit_int8(0xFF); emit_operand(rsi, src); } #endif @@ -2520,57 +2520,57 @@ assert(isShiftCount(imm8), "illegal shift count"); int encode = prefix_and_encode(dst->encoding()); if (imm8 == 1) { - emit_byte(0xD1); - emit_byte(0xD0 | encode); + emit_int8(0xD1); + emit_int8(0xD0 | encode); } else { - emit_byte(0xC1); - emit_byte(0xD0 | encode); - emit_byte(imm8); + emit_int8(0xC1); + emit_int8(0xD0 | encode); + emit_int8(imm8); } } // copies data from [esi] to [edi] using rcx pointer sized words // generic void Assembler::rep_mov() { - emit_byte(0xF3); + emit_int8(0xF3); // MOVSQ LP64_ONLY(prefix(REX_W)); - emit_byte(0xA5); + emit_int8(0xA5); } // sets rcx pointer sized words with rax, value at [edi] // generic void Assembler::rep_set() { // rep_set - emit_byte(0xF3); + emit_int8(0xF3); // STOSQ LP64_ONLY(prefix(REX_W)); - emit_byte(0xAB); + emit_int8(0xAB); } // scans rcx pointer sized words at [edi] for occurance of rax, // generic void Assembler::repne_scan() { // repne_scan - emit_byte(0xF2); + emit_int8(0xF2); // SCASQ LP64_ONLY(prefix(REX_W)); - emit_byte(0xAF); + emit_int8(0xAF); } #ifdef _LP64 // scans rcx 4 byte words at [edi] for occurance of rax, // generic void Assembler::repne_scanl() { // repne_scan - emit_byte(0xF2); + emit_int8(0xF2); // SCASL - emit_byte(0xAF); + emit_int8(0xAF); } #endif void Assembler::ret(int imm16) { if (imm16 == 0) { - emit_byte(0xC3); + emit_int8(0xC3); } else { - emit_byte(0xC2); + emit_int8(0xC2); emit_word(imm16); } } @@ -2580,26 +2580,26 @@ // Not supported in 64bit mode ShouldNotReachHere(); #endif - emit_byte(0x9E); + emit_int8(0x9E); } void Assembler::sarl(Register dst, int imm8) { int encode = prefix_and_encode(dst->encoding()); assert(isShiftCount(imm8), "illegal shift count"); if (imm8 == 1) { - emit_byte(0xD1); - emit_byte(0xF8 | encode); + emit_int8(0xD1); + emit_int8(0xF8 | encode); } else { - emit_byte(0xC1); - emit_byte(0xF8 | encode); - emit_byte(imm8); + emit_int8(0xC1); + emit_int8(0xF8 | encode); + emit_int8(imm8); } } void Assembler::sarl(Register dst) { int encode = prefix_and_encode(dst->encoding()); - emit_byte(0xD3); - emit_byte(0xF8 | encode); + emit_int8(0xD3); + emit_int8(0xF8 | encode); } void Assembler::sbbl(Address dst, int32_t imm32) { @@ -2617,7 +2617,7 @@ void Assembler::sbbl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); - emit_byte(0x1B); + emit_int8(0x1B); emit_operand(dst, src); } @@ -2629,47 +2629,47 @@ void Assembler::setb(Condition cc, Register dst) { assert(0 <= cc && cc < 16, "illegal cc"); int encode = prefix_and_encode(dst->encoding(), true); - emit_byte(0x0F); - emit_byte(0x90 | cc); - emit_byte(0xC0 | encode); + emit_int8(0x0F); + emit_int8(0x90 | cc); + emit_int8(0xC0 | encode); } void Assembler::shll(Register dst, int imm8) { assert(isShiftCount(imm8), "illegal shift count"); int encode = prefix_and_encode(dst->encoding()); if (imm8 == 1 ) { - emit_byte(0xD1); - emit_byte(0xE0 | encode); + emit_int8(0xD1); + emit_int8(0xE0 | encode); } else { - emit_byte(0xC1); - emit_byte(0xE0 | encode); - emit_byte(imm8); + emit_int8(0xC1); + emit_int8(0xE0 | encode); + emit_int8(imm8); } } void Assembler::shll(Register dst) { int encode = prefix_and_encode(dst->encoding()); - emit_byte(0xD3); - emit_byte(0xE0 | encode); + emit_int8(0xD3); + emit_int8(0xE0 | encode); } void Assembler::shrl(Register dst, int imm8) { assert(isShiftCount(imm8), "illegal shift count"); int encode = prefix_and_encode(dst->encoding()); - emit_byte(0xC1); - emit_byte(0xE8 | encode); - emit_byte(imm8); + emit_int8(0xC1); + emit_int8(0xE8 | encode); + emit_int8(imm8); } void Assembler::shrl(Register dst) { int encode = prefix_and_encode(dst->encoding()); - emit_byte(0xD3); - emit_byte(0xE8 | encode); + emit_int8(0xD3); + emit_int8(0xE8 | encode); } // copies a single word from [esi] to [edi] void Assembler::smovl() { - emit_byte(0xA5); + emit_int8(0xA5); } void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) { @@ -2688,7 +2688,7 @@ } void Assembler::std() { - emit_byte(0xfd); + emit_int8(0xfd); } void Assembler::sqrtss(XMMRegister dst, Address src) { @@ -2700,8 +2700,8 @@ NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); prefix(dst); - emit_byte(0x0F); - emit_byte(0xAE); + emit_int8(0x0F); + emit_int8(0xAE); emit_operand(as_Register(3), dst); } @@ -2714,7 +2714,7 @@ void Assembler::subl(Address dst, Register src) { InstructionMark im(this); prefix(dst, src); - emit_byte(0x29); + emit_int8(0x29); emit_operand(src, dst); } @@ -2732,7 +2732,7 @@ void Assembler::subl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); - emit_byte(0x2B); + emit_int8(0x2B); emit_operand(dst, src); } @@ -2773,11 +2773,11 @@ // 8bit operands int encode = dst->encoding(); if (encode == 0) { - emit_byte(0xA9); + emit_int8(0xA9); } else { encode = prefix_and_encode(encode); - emit_byte(0xF7); - emit_byte(0xC0 | encode); + emit_int8(0xF7); + emit_int8(0xC0 | encode); } emit_long(imm32); } @@ -2790,7 +2790,7 @@ void Assembler::testl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); - emit_byte(0x85); + emit_int8(0x85); emit_operand(dst, src); } @@ -2818,28 +2818,28 @@ void Assembler::xaddl(Address dst, Register src) { InstructionMark im(this); prefix(dst, src); - emit_byte(0x0F); - emit_byte(0xC1); + emit_int8(0x0F); + emit_int8(0xC1); emit_operand(src, dst); } void Assembler::xchgl(Register dst, Address src) { // xchg InstructionMark im(this); prefix(src, dst); - emit_byte(0x87); + emit_int8(0x87); emit_operand(dst, src); } void Assembler::xchgl(Register dst, Register src) { int encode = prefix_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x87); - emit_byte(0xc0 | encode); + emit_int8(0x87); + emit_int8(0xc0 | encode); } void Assembler::xgetbv() { - emit_byte(0x0F); - emit_byte(0x01); - emit_byte(0xD0); + emit_int8(0x0F); + emit_int8(0x01); + emit_int8(0xD0); } void Assembler::xorl(Register dst, int32_t imm32) { @@ -2850,7 +2850,7 @@ void Assembler::xorl(Register dst, Address src) { InstructionMark im(this); prefix(src, dst); - emit_byte(0x33); + emit_int8(0x33); emit_operand(dst, src); } @@ -3276,8 +3276,8 @@ void Assembler::pmulld(XMMRegister dst, XMMRegister src) { assert(VM_Version::supports_sse4_1(), ""); int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38); - emit_byte(0x40); - emit_byte(0xC0 | encode); + emit_int8(0x40); + emit_int8(0xC0 | encode); } void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { @@ -3288,8 +3288,8 @@ void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38); - emit_byte(0x40); - emit_byte(0xC0 | encode); + emit_int8(0x40); + emit_int8(0xC0 | encode); } void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { @@ -3303,7 +3303,7 @@ int dst_enc = dst->encoding(); int nds_enc = nds->is_valid() ? nds->encoding() : 0; vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256); - emit_byte(0x40); + emit_int8(0x40); emit_operand(dst, src); } @@ -3312,27 +3312,27 @@ NOT_LP64(assert(VM_Version::supports_sse2(), "")); // XMM6 is for /6 encoding: 66 0F 71 /6 ib int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66); - emit_byte(0x71); - emit_byte(0xC0 | encode); - emit_byte(shift & 0xFF); + emit_int8(0x71); + emit_int8(0xC0 | encode); + emit_int8(shift & 0xFF); } void Assembler::pslld(XMMRegister dst, int shift) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); // XMM6 is for /6 encoding: 66 0F 72 /6 ib int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66); - emit_byte(0x72); - emit_byte(0xC0 | encode); - emit_byte(shift & 0xFF); + emit_int8(0x72); + emit_int8(0xC0 | encode); + emit_int8(shift & 0xFF); } void Assembler::psllq(XMMRegister dst, int shift) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); // XMM6 is for /6 encoding: 66 0F 73 /6 ib int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66); - emit_byte(0x73); - emit_byte(0xC0 | encode); - emit_byte(shift & 0xFF); + emit_int8(0x73); + emit_int8(0xC0 | encode); + emit_int8(shift & 0xFF); } void Assembler::psllw(XMMRegister dst, XMMRegister shift) { @@ -3354,21 +3354,21 @@ assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); // XMM6 is for /6 encoding: 66 0F 71 /6 ib emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256); - emit_byte(shift & 0xFF); + emit_int8(shift & 0xFF); } void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); // XMM6 is for /6 encoding: 66 0F 72 /6 ib emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256); - emit_byte(shift & 0xFF); + emit_int8(shift & 0xFF); } void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); // XMM6 is for /6 encoding: 66 0F 73 /6 ib emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256); - emit_byte(shift & 0xFF); + emit_int8(shift & 0xFF); } void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) { @@ -3391,18 +3391,18 @@ NOT_LP64(assert(VM_Version::supports_sse2(), "")); // XMM2 is for /2 encoding: 66 0F 71 /2 ib int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66); - emit_byte(0x71); - emit_byte(0xC0 | encode); - emit_byte(shift & 0xFF); + emit_int8(0x71); + emit_int8(0xC0 | encode); + emit_int8(shift & 0xFF); } void Assembler::psrld(XMMRegister dst, int shift) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); // XMM2 is for /2 encoding: 66 0F 72 /2 ib int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66); - emit_byte(0x72); - emit_byte(0xC0 | encode); - emit_byte(shift & 0xFF); + emit_int8(0x72); + emit_int8(0xC0 | encode); + emit_int8(shift & 0xFF); } void Assembler::psrlq(XMMRegister dst, int shift) { @@ -3411,9 +3411,9 @@ NOT_LP64(assert(VM_Version::supports_sse2(), "")); // XMM2 is for /2 encoding: 66 0F 73 /2 ib int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66); - emit_byte(0x73); - emit_byte(0xC0 | encode); - emit_byte(shift & 0xFF); + emit_int8(0x73); + emit_int8(0xC0 | encode); + emit_int8(shift & 0xFF); } void Assembler::psrlw(XMMRegister dst, XMMRegister shift) { @@ -3435,21 +3435,21 @@ assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); // XMM2 is for /2 encoding: 66 0F 73 /2 ib emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256); - emit_byte(shift & 0xFF); + emit_int8(shift & 0xFF); } void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); // XMM2 is for /2 encoding: 66 0F 73 /2 ib emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256); - emit_byte(shift & 0xFF); + emit_int8(shift & 0xFF); } void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); // XMM2 is for /2 encoding: 66 0F 73 /2 ib emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256); - emit_byte(shift & 0xFF); + emit_int8(shift & 0xFF); } void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) { @@ -3472,18 +3472,18 @@ NOT_LP64(assert(VM_Version::supports_sse2(), "")); // XMM4 is for /4 encoding: 66 0F 71 /4 ib int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66); - emit_byte(0x71); - emit_byte(0xC0 | encode); - emit_byte(shift & 0xFF); + emit_int8(0x71); + emit_int8(0xC0 | encode); + emit_int8(shift & 0xFF); } void Assembler::psrad(XMMRegister dst, int shift) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); // XMM4 is for /4 encoding: 66 0F 72 /4 ib int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66); - emit_byte(0x72); - emit_byte(0xC0 | encode); - emit_byte(shift & 0xFF); + emit_int8(0x72); + emit_int8(0xC0 | encode); + emit_int8(shift & 0xFF); } void Assembler::psraw(XMMRegister dst, XMMRegister shift) { @@ -3500,14 +3500,14 @@ assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); // XMM4 is for /4 encoding: 66 0F 71 /4 ib emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256); - emit_byte(shift & 0xFF); + emit_int8(shift & 0xFF); } void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) { assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2"); // XMM4 is for /4 encoding: 66 0F 71 /4 ib emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256); - emit_byte(shift & 0xFF); + emit_int8(shift & 0xFF); } void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) { @@ -3572,11 +3572,11 @@ assert(VM_Version::supports_avx(), ""); bool vector256 = true; int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A); - emit_byte(0x18); - emit_byte(0xC0 | encode); + emit_int8(0x18); + emit_int8(0xC0 | encode); // 0x00 - insert into lower 128 bits // 0x01 - insert into upper 128 bits - emit_byte(0x01); + emit_int8(0x01); } void Assembler::vinsertf128h(XMMRegister dst, Address src) { @@ -3587,10 +3587,10 @@ int dst_enc = dst->encoding(); // swap src<->dst for encoding vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256); - emit_byte(0x18); + emit_int8(0x18); emit_operand(dst, src); // 0x01 - insert into upper 128 bits - emit_byte(0x01); + emit_int8(0x01); } void Assembler::vextractf128h(Address dst, XMMRegister src) { @@ -3600,21 +3600,21 @@ assert(src != xnoreg, "sanity"); int src_enc = src->encoding(); vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256); - emit_byte(0x19); + emit_int8(0x19); emit_operand(src, dst); // 0x01 - extract from upper 128 bits - emit_byte(0x01); + emit_int8(0x01); } void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) { assert(VM_Version::supports_avx2(), ""); bool vector256 = true; int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A); - emit_byte(0x38); - emit_byte(0xC0 | encode); + emit_int8(0x38); + emit_int8(0xC0 | encode); // 0x00 - insert into lower 128 bits // 0x01 - insert into upper 128 bits - emit_byte(0x01); + emit_int8(0x01); } void Assembler::vinserti128h(XMMRegister dst, Address src) { @@ -3625,10 +3625,10 @@ int dst_enc = dst->encoding(); // swap src<->dst for encoding vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256); - emit_byte(0x38); + emit_int8(0x38); emit_operand(dst, src); // 0x01 - insert into upper 128 bits - emit_byte(0x01); + emit_int8(0x01); } void Assembler::vextracti128h(Address dst, XMMRegister src) { @@ -3638,16 +3638,16 @@ assert(src != xnoreg, "sanity"); int src_enc = src->encoding(); vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256); - emit_byte(0x39); + emit_int8(0x39); emit_operand(src, dst); // 0x01 - extract from upper 128 bits - emit_byte(0x01); + emit_int8(0x01); } void Assembler::vzeroupper() { assert(VM_Version::supports_avx(), ""); (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE); - emit_byte(0x77); + emit_int8(0x77); } @@ -3657,15 +3657,15 @@ void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) { // NO PREFIX AS NEVER 64BIT InstructionMark im(this); - emit_byte(0x81); - emit_byte(0xF8 | src1->encoding()); + emit_int8(0x81); + emit_int8(0xF8 | src1->encoding()); emit_data(imm32, rspec, 0); } void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) { // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs InstructionMark im(this); - emit_byte(0x81); + emit_int8(0x81); emit_operand(rdi, src1); emit_data(imm32, rspec, 0); } @@ -3675,14 +3675,14 @@ // into rdx:rax. The ZF is set if the compared values were equal, and cleared otherwise. void Assembler::cmpxchg8(Address adr) { InstructionMark im(this); - emit_byte(0x0F); - emit_byte(0xc7); + emit_int8(0x0F); + emit_int8(0xc7); emit_operand(rcx, adr); } void Assembler::decl(Register dst) { // Don't use it directly. Use MacroAssembler::decrementl() instead. - emit_byte(0x48 | dst->encoding()); + emit_int8(0x48 | dst->encoding()); } #endif // _LP64 @@ -3690,8 +3690,8 @@ // 64bit typically doesn't use the x87 but needs to for the trig funcs void Assembler::fabs() { - emit_byte(0xD9); - emit_byte(0xE1); + emit_int8(0xD9); + emit_int8(0xE1); } void Assembler::fadd(int i) { @@ -3700,13 +3700,13 @@ void Assembler::fadd_d(Address src) { InstructionMark im(this); - emit_byte(0xDC); + emit_int8(0xDC); emit_operand32(rax, src); } void Assembler::fadd_s(Address src) { InstructionMark im(this); - emit_byte(0xD8); + emit_int8(0xD8); emit_operand32(rax, src); } @@ -3719,8 +3719,8 @@ } void Assembler::fchs() { - emit_byte(0xD9); - emit_byte(0xE0); + emit_int8(0xD9); + emit_int8(0xE0); } void Assembler::fcom(int i) { @@ -3733,29 +3733,29 @@ void Assembler::fcomp_d(Address src) { InstructionMark im(this); - emit_byte(0xDC); + emit_int8(0xDC); emit_operand32(rbx, src); } void Assembler::fcomp_s(Address src) { InstructionMark im(this); - emit_byte(0xD8); + emit_int8(0xD8); emit_operand32(rbx, src); } void Assembler::fcompp() { - emit_byte(0xDE); - emit_byte(0xD9); + emit_int8(0xDE); + emit_int8(0xD9); } void Assembler::fcos() { - emit_byte(0xD9); - emit_byte(0xFF); + emit_int8(0xD9); + emit_int8(0xFF); } void Assembler::fdecstp() { - emit_byte(0xD9); - emit_byte(0xF6); + emit_int8(0xD9); + emit_int8(0xF6); } void Assembler::fdiv(int i) { @@ -3764,13 +3764,13 @@ void Assembler::fdiv_d(Address src) { InstructionMark im(this); - emit_byte(0xDC); + emit_int8(0xDC); emit_operand32(rsi, src); } void Assembler::fdiv_s(Address src) { InstructionMark im(this); - emit_byte(0xD8); + emit_int8(0xD8); emit_operand32(rsi, src); } @@ -3791,13 +3791,13 @@ void Assembler::fdivr_d(Address src) { InstructionMark im(this); - emit_byte(0xDC); + emit_int8(0xDC); emit_operand32(rdi, src); } void Assembler::fdivr_s(Address src) { InstructionMark im(this); - emit_byte(0xD8); + emit_int8(0xD8); emit_operand32(rdi, src); } @@ -3815,59 +3815,59 @@ void Assembler::fild_d(Address adr) { InstructionMark im(this); - emit_byte(0xDF); + emit_int8(0xDF); emit_operand32(rbp, adr); } void Assembler::fild_s(Address adr) { InstructionMark im(this); - emit_byte(0xDB); + emit_int8(0xDB); emit_operand32(rax, adr); } void Assembler::fincstp() { - emit_byte(0xD9); - emit_byte(0xF7); + emit_int8(0xD9); + emit_int8(0xF7); } void Assembler::finit() { - emit_byte(0x9B); - emit_byte(0xDB); - emit_byte(0xE3); + emit_int8(0x9B); + emit_int8(0xDB); + emit_int8(0xE3); } void Assembler::fist_s(Address adr) { InstructionMark im(this); - emit_byte(0xDB); + emit_int8(0xDB); emit_operand32(rdx, adr); } void Assembler::fistp_d(Address adr) { InstructionMark im(this); - emit_byte(0xDF); + emit_int8(0xDF); emit_operand32(rdi, adr); } void Assembler::fistp_s(Address adr) { InstructionMark im(this); - emit_byte(0xDB); + emit_int8(0xDB); emit_operand32(rbx, adr); } void Assembler::fld1() { - emit_byte(0xD9); - emit_byte(0xE8); + emit_int8(0xD9); + emit_int8(0xE8); } void Assembler::fld_d(Address adr) { InstructionMark im(this); - emit_byte(0xDD); + emit_int8(0xDD); emit_operand32(rax, adr); } void Assembler::fld_s(Address adr) { InstructionMark im(this); - emit_byte(0xD9); + emit_int8(0xD9); emit_operand32(rax, adr); } @@ -3878,35 +3878,35 @@ void Assembler::fld_x(Address adr) { InstructionMark im(this); - emit_byte(0xDB); + emit_int8(0xDB); emit_operand32(rbp, adr); } void Assembler::fldcw(Address src) { InstructionMark im(this); - emit_byte(0xd9); + emit_int8(0xd9); emit_operand32(rbp, src); } void Assembler::fldenv(Address src) { InstructionMark im(this); - emit_byte(0xD9); + emit_int8(0xD9); emit_operand32(rsp, src); } void Assembler::fldlg2() { - emit_byte(0xD9); - emit_byte(0xEC); + emit_int8(0xD9); + emit_int8(0xEC); } void Assembler::fldln2() { - emit_byte(0xD9); - emit_byte(0xED); + emit_int8(0xD9); + emit_int8(0xED); } void Assembler::fldz() { - emit_byte(0xD9); - emit_byte(0xEE); + emit_int8(0xD9); + emit_int8(0xEE); } void Assembler::flog() { @@ -3927,13 +3927,13 @@ void Assembler::fmul_d(Address src) { InstructionMark im(this); - emit_byte(0xDC); + emit_int8(0xDC); emit_operand32(rcx, src); } void Assembler::fmul_s(Address src) { InstructionMark im(this); - emit_byte(0xD8); + emit_int8(0xD8); emit_operand32(rcx, src); } @@ -3947,63 +3947,63 @@ void Assembler::fnsave(Address dst) { InstructionMark im(this); - emit_byte(0xDD); + emit_int8(0xDD); emit_operand32(rsi, dst); } void Assembler::fnstcw(Address src) { InstructionMark im(this); - emit_byte(0x9B); - emit_byte(0xD9); + emit_int8(0x9B); + emit_int8(0xD9); emit_operand32(rdi, src); } void Assembler::fnstsw_ax() { - emit_byte(0xdF); - emit_byte(0xE0); + emit_int8(0xdF); + emit_int8(0xE0); } void Assembler::fprem() { - emit_byte(0xD9); - emit_byte(0xF8); + emit_int8(0xD9); + emit_int8(0xF8); } void Assembler::fprem1() { - emit_byte(0xD9); - emit_byte(0xF5); + emit_int8(0xD9); + emit_int8(0xF5); } void Assembler::frstor(Address src) { InstructionMark im(this); - emit_byte(0xDD); + emit_int8(0xDD); emit_operand32(rsp, src); } void Assembler::fsin() { - emit_byte(0xD9); - emit_byte(0xFE); + emit_int8(0xD9); + emit_int8(0xFE); } void Assembler::fsqrt() { - emit_byte(0xD9); - emit_byte(0xFA); + emit_int8(0xD9); + emit_int8(0xFA); } void Assembler::fst_d(Address adr) { InstructionMark im(this); - emit_byte(0xDD); + emit_int8(0xDD); emit_operand32(rdx, adr); } void Assembler::fst_s(Address adr) { InstructionMark im(this); - emit_byte(0xD9); + emit_int8(0xD9); emit_operand32(rdx, adr); } void Assembler::fstp_d(Address adr) { InstructionMark im(this); - emit_byte(0xDD); + emit_int8(0xDD); emit_operand32(rbx, adr); } @@ -4013,13 +4013,13 @@ void Assembler::fstp_s(Address adr) { InstructionMark im(this); - emit_byte(0xD9); + emit_int8(0xD9); emit_operand32(rbx, adr); } void Assembler::fstp_x(Address adr) { InstructionMark im(this); - emit_byte(0xDB); + emit_int8(0xDB); emit_operand32(rdi, adr); } @@ -4029,13 +4029,13 @@ void Assembler::fsub_d(Address src) { InstructionMark im(this); - emit_byte(0xDC); + emit_int8(0xDC); emit_operand32(rsp, src); } void Assembler::fsub_s(Address src) { InstructionMark im(this); - emit_byte(0xD8); + emit_int8(0xD8); emit_operand32(rsp, src); } @@ -4053,13 +4053,13 @@ void Assembler::fsubr_d(Address src) { InstructionMark im(this); - emit_byte(0xDC); + emit_int8(0xDC); emit_operand32(rbp, src); } void Assembler::fsubr_s(Address src) { InstructionMark im(this); - emit_byte(0xD8); + emit_int8(0xD8); emit_operand32(rbp, src); } @@ -4072,15 +4072,15 @@ } void Assembler::ftan() { - emit_byte(0xD9); - emit_byte(0xF2); - emit_byte(0xDD); - emit_byte(0xD8); + emit_int8(0xD9); + emit_int8(0xF2); + emit_int8(0xDD); + emit_int8(0xD8); } void Assembler::ftst() { - emit_byte(0xD9); - emit_byte(0xE4); + emit_int8(0xD9); + emit_int8(0xE4); } void Assembler::fucomi(int i) { @@ -4096,7 +4096,7 @@ } void Assembler::fwait() { - emit_byte(0x9B); + emit_int8(0x9B); } void Assembler::fxch(int i) { @@ -4104,23 +4104,23 @@ } void Assembler::fyl2x() { - emit_byte(0xD9); - emit_byte(0xF1); + emit_int8(0xD9); + emit_int8(0xF1); } void Assembler::frndint() { - emit_byte(0xD9); - emit_byte(0xFC); + emit_int8(0xD9); + emit_int8(0xFC); } void Assembler::f2xm1() { - emit_byte(0xD9); - emit_byte(0xF0); + emit_int8(0xD9); + emit_int8(0xF0); } void Assembler::fldl2e() { - emit_byte(0xD9); - emit_byte(0xEA); + emit_int8(0xD9); + emit_int8(0xEA); } // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding. @@ -4131,7 +4131,7 @@ // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding. void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) { if (pre > 0) { - emit_byte(simd_pre[pre]); + emit_int8(simd_pre[pre]); } if (rex_w) { prefixq(adr, xreg); @@ -4139,25 +4139,25 @@ prefix(adr, xreg); } if (opc > 0) { - emit_byte(0x0F); + emit_int8(0x0F); int opc2 = simd_opc[opc]; if (opc2 > 0) { - emit_byte(opc2); + emit_int8(opc2); } } } int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) { if (pre > 0) { - emit_byte(simd_pre[pre]); + emit_int8(simd_pre[pre]); } int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc); if (opc > 0) { - emit_byte(0x0F); + emit_int8(0x0F); int opc2 = simd_opc[opc]; if (opc2 > 0) { - emit_byte(opc2); + emit_int8(opc2); } } return encode; @@ -4171,11 +4171,11 @@ int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0); byte1 = (~byte1) & 0xE0; byte1 |= opc; - a_byte(byte1); + emit_int8(byte1); int byte2 = ((~nds_enc) & 0xf) << 3; byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre; - emit_byte(byte2); + emit_int8(byte2); } else { prefix(VEX_2bytes); @@ -4183,7 +4183,7 @@ byte1 = (~byte1) & 0x80; byte1 |= ((~nds_enc) & 0xf) << 3; byte1 |= (vector256 ? 4 : 0) | pre; - emit_byte(byte1); + emit_int8(byte1); } } @@ -4229,28 +4229,28 @@ void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) { InstructionMark im(this); simd_prefix(dst, dst, src, pre); - emit_byte(opcode); + emit_int8(opcode); emit_operand(dst, src); } void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) { int encode = simd_prefix_and_encode(dst, dst, src, pre); - emit_byte(opcode); - emit_byte(0xC0 | encode); + emit_int8(opcode); + emit_int8(0xC0 | encode); } // Versions with no second source register (non-destructive source). void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) { InstructionMark im(this); simd_prefix(dst, xnoreg, src, pre); - emit_byte(opcode); + emit_int8(opcode); emit_operand(dst, src); } void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) { int encode = simd_prefix_and_encode(dst, xnoreg, src, pre); - emit_byte(opcode); - emit_byte(0xC0 | encode); + emit_int8(opcode); + emit_int8(0xC0 | encode); } // 3-operands AVX instructions @@ -4258,22 +4258,22 @@ Address src, VexSimdPrefix pre, bool vector256) { InstructionMark im(this); vex_prefix(dst, nds, src, pre, vector256); - emit_byte(opcode); + emit_int8(opcode); emit_operand(dst, src); } void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, bool vector256) { int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256); - emit_byte(opcode); - emit_byte(0xC0 | encode); + emit_int8(opcode); + emit_int8(0xC0 | encode); } #ifndef _LP64 void Assembler::incl(Register dst) { // Don't use it directly. Use MacroAssembler::incrementl() instead. - emit_byte(0x40 | dst->encoding()); + emit_int8(0x40 | dst->encoding()); } void Assembler::lea(Register dst, Address src) { @@ -4282,7 +4282,7 @@ void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) { InstructionMark im(this); - emit_byte(0xC7); + emit_int8(0xC7); emit_operand(rax, dst); emit_data((int)imm32, rspec, 0); } @@ -4290,49 +4290,49 @@ void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) { InstructionMark im(this); int encode = prefix_and_encode(dst->encoding()); - emit_byte(0xB8 | encode); + emit_int8(0xB8 | encode); emit_data((int)imm32, rspec, 0); } void Assembler::popa() { // 32bit - emit_byte(0x61); + emit_int8(0x61); } void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) { InstructionMark im(this); - emit_byte(0x68); + emit_int8(0x68); emit_data(imm32, rspec, 0); } void Assembler::pusha() { // 32bit - emit_byte(0x60); + emit_int8(0x60); } void Assembler::set_byte_if_not_zero(Register dst) { - emit_byte(0x0F); - emit_byte(0x95); - emit_byte(0xE0 | dst->encoding()); + emit_int8(0x0F); + emit_int8(0x95); + emit_int8(0xE0 | dst->encoding()); } void Assembler::shldl(Register dst, Register src) { - emit_byte(0x0F); - emit_byte(0xA5); - emit_byte(0xC0 | src->encoding() << 3 | dst->encoding()); + emit_int8(0x0F); + emit_int8(0xA5); + emit_int8(0xC0 | src->encoding() << 3 | dst->encoding()); } void Assembler::shrdl(Register dst, Register src) { - emit_byte(0x0F); - emit_byte(0xAD); - emit_byte(0xC0 | src->encoding() << 3 | dst->encoding()); + emit_int8(0x0F); + emit_int8(0xAD); + emit_int8(0xC0 | src->encoding() << 3 | dst->encoding()); } #else // LP64 void Assembler::set_byte_if_not_zero(Register dst) { int enc = prefix_and_encode(dst->encoding(), true); - emit_byte(0x0F); - emit_byte(0x95); - emit_byte(0xE0 | enc); + emit_int8(0x0F); + emit_int8(0x95); + emit_int8(0xE0 | enc); } // 64bit only pieces of the assembler @@ -4670,7 +4670,7 @@ void Assembler::adcq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); - emit_byte(0x13); + emit_int8(0x13); emit_operand(dst, src); } @@ -4688,7 +4688,7 @@ void Assembler::addq(Address dst, Register src) { InstructionMark im(this); prefixq(dst, src); - emit_byte(0x01); + emit_int8(0x01); emit_operand(src, dst); } @@ -4700,7 +4700,7 @@ void Assembler::addq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); - emit_byte(0x03); + emit_int8(0x03); emit_operand(dst, src); } @@ -4712,7 +4712,7 @@ void Assembler::andq(Address dst, int32_t imm32) { InstructionMark im(this); prefixq(dst); - emit_byte(0x81); + emit_int8(0x81); emit_operand(rsp, dst, 4); emit_long(imm32); } @@ -4725,7 +4725,7 @@ void Assembler::andq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); - emit_byte(0x23); + emit_int8(0x23); emit_operand(dst, src); } @@ -4736,56 +4736,56 @@ void Assembler::bsfq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x0F); - emit_byte(0xBC); - emit_byte(0xC0 | encode); + emit_int8(0x0F); + emit_int8(0xBC); + emit_int8(0xC0 | encode); } void Assembler::bsrq(Register dst, Register src) { assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT"); int encode = prefixq_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x0F); - emit_byte(0xBD); - emit_byte(0xC0 | encode); + emit_int8(0x0F); + emit_int8(0xBD); + emit_int8(0xC0 | encode); } void Assembler::bswapq(Register reg) { int encode = prefixq_and_encode(reg->encoding()); - emit_byte(0x0F); - emit_byte(0xC8 | encode); + emit_int8(0x0F); + emit_int8(0xC8 | encode); } void Assembler::cdqq() { prefix(REX_W); - emit_byte(0x99); + emit_int8(0x99); } void Assembler::clflush(Address adr) { prefix(adr); - emit_byte(0x0F); - emit_byte(0xAE); + emit_int8(0x0F); + emit_int8(0xAE); emit_operand(rdi, adr); } void Assembler::cmovq(Condition cc, Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x0F); - emit_byte(0x40 | cc); - emit_byte(0xC0 | encode); + emit_int8(0x0F); + emit_int8(0x40 | cc); + emit_int8(0xC0 | encode); } void Assembler::cmovq(Condition cc, Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); - emit_byte(0x0F); - emit_byte(0x40 | cc); + emit_int8(0x0F); + emit_int8(0x40 | cc); emit_operand(dst, src); } void Assembler::cmpq(Address dst, int32_t imm32) { InstructionMark im(this); prefixq(dst); - emit_byte(0x81); + emit_int8(0x81); emit_operand(rdi, dst, 4); emit_long(imm32); } @@ -4798,7 +4798,7 @@ void Assembler::cmpq(Address dst, Register src) { InstructionMark im(this); prefixq(dst, src); - emit_byte(0x3B); + emit_int8(0x3B); emit_operand(src, dst); } @@ -4810,122 +4810,122 @@ void Assembler::cmpq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); - emit_byte(0x3B); + emit_int8(0x3B); emit_operand(dst, src); } void Assembler::cmpxchgq(Register reg, Address adr) { InstructionMark im(this); prefixq(adr, reg); - emit_byte(0x0F); - emit_byte(0xB1); + emit_int8(0x0F); + emit_int8(0xB1); emit_operand(reg, adr); } void Assembler::cvtsi2sdq(XMMRegister dst, Register src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2); - emit_byte(0x2A); - emit_byte(0xC0 | encode); + emit_int8(0x2A); + emit_int8(0xC0 | encode); } void Assembler::cvtsi2sdq(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); InstructionMark im(this); simd_prefix_q(dst, dst, src, VEX_SIMD_F2); - emit_byte(0x2A); + emit_int8(0x2A); emit_operand(dst, src); } void Assembler::cvtsi2ssq(XMMRegister dst, Register src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3); - emit_byte(0x2A); - emit_byte(0xC0 | encode); + emit_int8(0x2A); + emit_int8(0xC0 | encode); } void Assembler::cvtsi2ssq(XMMRegister dst, Address src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); InstructionMark im(this); simd_prefix_q(dst, dst, src, VEX_SIMD_F3); - emit_byte(0x2A); + emit_int8(0x2A); emit_operand(dst, src); } void Assembler::cvttsd2siq(Register dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2); - emit_byte(0x2C); - emit_byte(0xC0 | encode); + emit_int8(0x2C); + emit_int8(0xC0 | encode); } void Assembler::cvttss2siq(Register dst, XMMRegister src) { NOT_LP64(assert(VM_Version::supports_sse(), "")); int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3); - emit_byte(0x2C); - emit_byte(0xC0 | encode); + emit_int8(0x2C); + emit_int8(0xC0 | encode); } void Assembler::decl(Register dst) { // Don't use it directly. Use MacroAssembler::decrementl() instead. // Use two-byte form (one-byte form is a REX prefix in 64-bit mode) int encode = prefix_and_encode(dst->encoding()); - emit_byte(0xFF); - emit_byte(0xC8 | encode); + emit_int8(0xFF); + emit_int8(0xC8 | encode); } void Assembler::decq(Register dst) { // Don't use it directly. Use MacroAssembler::decrementq() instead. // Use two-byte form (one-byte from is a REX prefix in 64-bit mode) int encode = prefixq_and_encode(dst->encoding()); - emit_byte(0xFF); - emit_byte(0xC8 | encode); + emit_int8(0xFF); + emit_int8(0xC8 | encode); } void Assembler::decq(Address dst) { // Don't use it directly. Use MacroAssembler::decrementq() instead. InstructionMark im(this); prefixq(dst); - emit_byte(0xFF); + emit_int8(0xFF); emit_operand(rcx, dst); } void Assembler::fxrstor(Address src) { prefixq(src); - emit_byte(0x0F); - emit_byte(0xAE); + emit_int8(0x0F); + emit_int8(0xAE); emit_operand(as_Register(1), src); } void Assembler::fxsave(Address dst) { prefixq(dst); - emit_byte(0x0F); - emit_byte(0xAE); + emit_int8(0x0F); + emit_int8(0xAE); emit_operand(as_Register(0), dst); } void Assembler::idivq(Register src) { int encode = prefixq_and_encode(src->encoding()); - emit_byte(0xF7); - emit_byte(0xF8 | encode); + emit_int8(0xF7); + emit_int8(0xF8 | encode); } void Assembler::imulq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x0F); - emit_byte(0xAF); - emit_byte(0xC0 | encode); + emit_int8(0x0F); + emit_int8(0xAF); + emit_int8(0xC0 | encode); } void Assembler::imulq(Register dst, Register src, int value) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); if (is8bit(value)) { - emit_byte(0x6B); - emit_byte(0xC0 | encode); - emit_byte(value & 0xFF); + emit_int8(0x6B); + emit_int8(0xC0 | encode); + emit_int8(value & 0xFF); } else { - emit_byte(0x69); - emit_byte(0xC0 | encode); + emit_int8(0x69); + emit_int8(0xC0 | encode); emit_long(value); } } @@ -4934,23 +4934,23 @@ // Don't use it directly. Use MacroAssembler::incrementl() instead. // Use two-byte form (one-byte from is a REX prefix in 64-bit mode) int encode = prefix_and_encode(dst->encoding()); - emit_byte(0xFF); - emit_byte(0xC0 | encode); + emit_int8(0xFF); + emit_int8(0xC0 | encode); } void Assembler::incq(Register dst) { // Don't use it directly. Use MacroAssembler::incrementq() instead. // Use two-byte form (one-byte from is a REX prefix in 64-bit mode) int encode = prefixq_and_encode(dst->encoding()); - emit_byte(0xFF); - emit_byte(0xC0 | encode); + emit_int8(0xFF); + emit_int8(0xC0 | encode); } void Assembler::incq(Address dst) { // Don't use it directly. Use MacroAssembler::incrementq() instead. InstructionMark im(this); prefixq(dst); - emit_byte(0xFF); + emit_int8(0xFF); emit_operand(rax, dst); } @@ -4961,35 +4961,35 @@ void Assembler::leaq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); - emit_byte(0x8D); + emit_int8(0x8D); emit_operand(dst, src); } void Assembler::mov64(Register dst, int64_t imm64) { InstructionMark im(this); int encode = prefixq_and_encode(dst->encoding()); - emit_byte(0xB8 | encode); + emit_int8(0xB8 | encode); emit_int64(imm64); } void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) { InstructionMark im(this); int encode = prefixq_and_encode(dst->encoding()); - emit_byte(0xB8 | encode); + emit_int8(0xB8 | encode); emit_data64(imm64, rspec); } void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) { InstructionMark im(this); int encode = prefix_and_encode(dst->encoding()); - emit_byte(0xB8 | encode); + emit_int8(0xB8 | encode); emit_data((int)imm32, rspec, narrow_oop_operand); } void Assembler::mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec) { InstructionMark im(this); prefix(dst); - emit_byte(0xC7); + emit_int8(0xC7); emit_operand(rax, dst, 4); emit_data((int)imm32, rspec, narrow_oop_operand); } @@ -4997,34 +4997,34 @@ void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) { InstructionMark im(this); int encode = prefix_and_encode(src1->encoding()); - emit_byte(0x81); - emit_byte(0xF8 | encode); + emit_int8(0x81); + emit_int8(0xF8 | encode); emit_data((int)imm32, rspec, narrow_oop_operand); } void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) { InstructionMark im(this); prefix(src1); - emit_byte(0x81); + emit_int8(0x81); emit_operand(rax, src1, 4); emit_data((int)imm32, rspec, narrow_oop_operand); } void Assembler::lzcntq(Register dst, Register src) { assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR"); - emit_byte(0xF3); + emit_int8(0xF3); int encode = prefixq_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x0F); - emit_byte(0xBD); - emit_byte(0xC0 | encode); + emit_int8(0x0F); + emit_int8(0xBD); + emit_int8(0xC0 | encode); } void Assembler::movdq(XMMRegister dst, Register src) { // table D-1 says MMX/SSE2 NOT_LP64(assert(VM_Version::supports_sse2(), "")); int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66); - emit_byte(0x6E); - emit_byte(0xC0 | encode); + emit_int8(0x6E); + emit_int8(0xC0 | encode); } void Assembler::movdq(Register dst, XMMRegister src) { @@ -5032,43 +5032,43 @@ NOT_LP64(assert(VM_Version::supports_sse2(), "")); // swap src/dst to get correct prefix int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66); - emit_byte(0x7E); - emit_byte(0xC0 | encode); + emit_int8(0x7E); + emit_int8(0xC0 | encode); } void Assembler::movq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x8B); - emit_byte(0xC0 | encode); + emit_int8(0x8B); + emit_int8(0xC0 | encode); } void Assembler::movq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); - emit_byte(0x8B); + emit_int8(0x8B); emit_operand(dst, src); } void Assembler::movq(Address dst, Register src) { InstructionMark im(this); prefixq(dst, src); - emit_byte(0x89); + emit_int8(0x89); emit_operand(src, dst); } void Assembler::movsbq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); - emit_byte(0x0F); - emit_byte(0xBE); + emit_int8(0x0F); + emit_int8(0xBE); emit_operand(dst, src); } void Assembler::movsbq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x0F); - emit_byte(0xBE); - emit_byte(0xC0 | encode); + emit_int8(0x0F); + emit_int8(0xBE); + emit_int8(0xC0 | encode); } void Assembler::movslq(Register dst, int32_t imm32) { @@ -5078,7 +5078,7 @@ ShouldNotReachHere(); InstructionMark im(this); int encode = prefixq_and_encode(dst->encoding()); - emit_byte(0xC7 | encode); + emit_int8(0xC7 | encode); emit_long(imm32); } @@ -5086,7 +5086,7 @@ assert(is_simm32(imm32), "lost bits"); InstructionMark im(this); prefixq(dst); - emit_byte(0xC7); + emit_int8(0xC7); emit_operand(rax, dst, 4); emit_long(imm32); } @@ -5094,77 +5094,77 @@ void Assembler::movslq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); - emit_byte(0x63); + emit_int8(0x63); emit_operand(dst, src); } void Assembler::movslq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x63); - emit_byte(0xC0 | encode); + emit_int8(0x63); + emit_int8(0xC0 | encode); } void Assembler::movswq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); - emit_byte(0x0F); - emit_byte(0xBF); + emit_int8(0x0F); + emit_int8(0xBF); emit_operand(dst, src); } void Assembler::movswq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x0F); - emit_byte(0xBF); - emit_byte(0xC0 | encode); + emit_int8(0x0F); + emit_int8(0xBF); + emit_int8(0xC0 | encode); } void Assembler::movzbq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); - emit_byte(0x0F); - emit_byte(0xB6); + emit_int8(0x0F); + emit_int8(0xB6); emit_operand(dst, src); } void Assembler::movzbq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x0F); - emit_byte(0xB6); - emit_byte(0xC0 | encode); + emit_int8(0x0F); + emit_int8(0xB6); + emit_int8(0xC0 | encode); } void Assembler::movzwq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); - emit_byte(0x0F); - emit_byte(0xB7); + emit_int8(0x0F); + emit_int8(0xB7); emit_operand(dst, src); } void Assembler::movzwq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x0F); - emit_byte(0xB7); - emit_byte(0xC0 | encode); + emit_int8(0x0F); + emit_int8(0xB7); + emit_int8(0xC0 | encode); } void Assembler::negq(Register dst) { int encode = prefixq_and_encode(dst->encoding()); - emit_byte(0xF7); - emit_byte(0xD8 | encode); + emit_int8(0xF7); + emit_int8(0xD8 | encode); } void Assembler::notq(Register dst) { int encode = prefixq_and_encode(dst->encoding()); - emit_byte(0xF7); - emit_byte(0xD0 | encode); + emit_int8(0xF7); + emit_int8(0xD0 | encode); } void Assembler::orq(Address dst, int32_t imm32) { InstructionMark im(this); prefixq(dst); - emit_byte(0x81); + emit_int8(0x81); emit_operand(rcx, dst, 4); emit_long(imm32); } @@ -5177,7 +5177,7 @@ void Assembler::orq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); - emit_byte(0x0B); + emit_int8(0x0B); emit_operand(dst, src); } @@ -5210,26 +5210,26 @@ void Assembler::popcntq(Register dst, Address src) { assert(VM_Version::supports_popcnt(), "must support"); InstructionMark im(this); - emit_byte(0xF3); + emit_int8(0xF3); prefixq(src, dst); - emit_byte(0x0F); - emit_byte(0xB8); + emit_int8(0x0F); + emit_int8(0xB8); emit_operand(dst, src); } void Assembler::popcntq(Register dst, Register src) { assert(VM_Version::supports_popcnt(), "must support"); - emit_byte(0xF3); + emit_int8(0xF3); int encode = prefixq_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x0F); - emit_byte(0xB8); - emit_byte(0xC0 | encode); + emit_int8(0x0F); + emit_int8(0xB8); + emit_int8(0xC0 | encode); } void Assembler::popq(Address dst) { InstructionMark im(this); prefixq(dst); - emit_byte(0x8F); + emit_int8(0x8F); emit_operand(rax, dst); } @@ -5261,7 +5261,7 @@ void Assembler::pushq(Address src) { InstructionMark im(this); prefixq(src); - emit_byte(0xFF); + emit_int8(0xFF); emit_operand(rsi, src); } @@ -5269,31 +5269,31 @@ assert(isShiftCount(imm8 >> 1), "illegal shift count"); int encode = prefixq_and_encode(dst->encoding()); if (imm8 == 1) { - emit_byte(0xD1); - emit_byte(0xD0 | encode); + emit_int8(0xD1); + emit_int8(0xD0 | encode); } else { - emit_byte(0xC1); - emit_byte(0xD0 | encode); - emit_byte(imm8); + emit_int8(0xC1); + emit_int8(0xD0 | encode); + emit_int8(imm8); } } void Assembler::sarq(Register dst, int imm8) { assert(isShiftCount(imm8 >> 1), "illegal shift count"); int encode = prefixq_and_encode(dst->encoding()); if (imm8 == 1) { - emit_byte(0xD1); - emit_byte(0xF8 | encode); + emit_int8(0xD1); + emit_int8(0xF8 | encode); } else { - emit_byte(0xC1); - emit_byte(0xF8 | encode); - emit_byte(imm8); + emit_int8(0xC1); + emit_int8(0xF8 | encode); + emit_int8(imm8); } } void Assembler::sarq(Register dst) { int encode = prefixq_and_encode(dst->encoding()); - emit_byte(0xD3); - emit_byte(0xF8 | encode); + emit_int8(0xD3); + emit_int8(0xF8 | encode); } void Assembler::sbbq(Address dst, int32_t imm32) { @@ -5310,7 +5310,7 @@ void Assembler::sbbq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); - emit_byte(0x1B); + emit_int8(0x1B); emit_operand(dst, src); } @@ -5323,33 +5323,33 @@ assert(isShiftCount(imm8 >> 1), "illegal shift count"); int encode = prefixq_and_encode(dst->encoding()); if (imm8 == 1) { - emit_byte(0xD1); - emit_byte(0xE0 | encode); + emit_int8(0xD1); + emit_int8(0xE0 | encode); } else { - emit_byte(0xC1); - emit_byte(0xE0 | encode); - emit_byte(imm8); + emit_int8(0xC1); + emit_int8(0xE0 | encode); + emit_int8(imm8); } } void Assembler::shlq(Register dst) { int encode = prefixq_and_encode(dst->encoding()); - emit_byte(0xD3); - emit_byte(0xE0 | encode); + emit_int8(0xD3); + emit_int8(0xE0 | encode); } void Assembler::shrq(Register dst, int imm8) { assert(isShiftCount(imm8 >> 1), "illegal shift count"); int encode = prefixq_and_encode(dst->encoding()); - emit_byte(0xC1); - emit_byte(0xE8 | encode); - emit_byte(imm8); + emit_int8(0xC1); + emit_int8(0xE8 | encode); + emit_int8(imm8); } void Assembler::shrq(Register dst) { int encode = prefixq_and_encode(dst->encoding()); - emit_byte(0xD3); - emit_byte(0xE8 | encode); + emit_int8(0xD3); + emit_int8(0xE8 | encode); } void Assembler::subq(Address dst, int32_t imm32) { @@ -5361,7 +5361,7 @@ void Assembler::subq(Address dst, Register src) { InstructionMark im(this); prefixq(dst, src); - emit_byte(0x29); + emit_int8(0x29); emit_operand(src, dst); } @@ -5379,7 +5379,7 @@ void Assembler::subq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); - emit_byte(0x2B); + emit_int8(0x2B); emit_operand(dst, src); } @@ -5395,11 +5395,11 @@ int encode = dst->encoding(); if (encode == 0) { prefix(REX_W); - emit_byte(0xA9); + emit_int8(0xA9); } else { encode = prefixq_and_encode(encode); - emit_byte(0xF7); - emit_byte(0xC0 | encode); + emit_int8(0xF7); + emit_int8(0xC0 | encode); } emit_long(imm32); } @@ -5412,22 +5412,22 @@ void Assembler::xaddq(Address dst, Register src) { InstructionMark im(this); prefixq(dst, src); - emit_byte(0x0F); - emit_byte(0xC1); + emit_int8(0x0F); + emit_int8(0xC1); emit_operand(src, dst); } void Assembler::xchgq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); - emit_byte(0x87); + emit_int8(0x87); emit_operand(dst, src); } void Assembler::xchgq(Register dst, Register src) { int encode = prefixq_and_encode(dst->encoding(), src->encoding()); - emit_byte(0x87); - emit_byte(0xc0 | encode); + emit_int8(0x87); + emit_int8(0xc0 | encode); } void Assembler::xorq(Register dst, Register src) { @@ -5438,7 +5438,7 @@ void Assembler::xorq(Register dst, Address src) { InstructionMark im(this); prefixq(src, dst); - emit_byte(0x33); + emit_int8(0x33); emit_operand(dst, src); } --- old/src/cpu/x86/vm/c1_CodeStubs_x86.cpp 2012-12-12 17:34:31.789090000 -0800 +++ new/src/cpu/x86/vm/c1_CodeStubs_x86.cpp 2012-12-12 17:34:31.659730000 -0800 @@ -313,10 +313,10 @@ #endif } else { // make a copy the code which is going to be patched. - for ( int i = 0; i < _bytes_to_copy; i++) { + for (int i = 0; i < _bytes_to_copy; i++) { address ptr = (address)(_pc_start + i); int a_byte = (*ptr) & 0xFF; - __ a_byte (a_byte); + __ emit_int8(a_byte); *ptr = 0x90; // make the site look like a nop } } @@ -363,11 +363,11 @@ // emit the offsets needed to find the code to patch int being_initialized_entry_offset = __ pc() - being_initialized_entry + sizeof_patch_record; - __ a_byte(0xB8); - __ a_byte(0); - __ a_byte(being_initialized_entry_offset); - __ a_byte(bytes_to_skip); - __ a_byte(_bytes_to_copy); + __ emit_int8((unsigned char)0xB8); + __ emit_int8(0); + __ emit_int8(being_initialized_entry_offset); + __ emit_int8(bytes_to_skip); + __ emit_int8(_bytes_to_copy); address patch_info_pc = __ pc(); assert(patch_info_pc - end_of_patch == bytes_to_skip, "incorrect patch info"); --- old/src/share/vm/asm/assembler.cpp 2012-12-12 17:34:32.397583000 -0800 +++ new/src/share/vm/asm/assembler.cpp 2012-12-12 17:34:32.268898000 -0800 @@ -110,15 +110,6 @@ } -void AbstractAssembler::a_byte(int x) { - emit_byte(x); -} - - -void AbstractAssembler::a_long(jint x) { - emit_long(x); -} - // Labels refer to positions in the (to be) generated code. There are bound // and unbound // --- old/src/share/vm/asm/assembler.hpp 2012-12-12 17:34:32.997444000 -0800 +++ new/src/share/vm/asm/assembler.hpp 2012-12-12 17:34:32.864246000 -0800 @@ -216,16 +216,6 @@ bool isByte(int x) const { return 0 <= x && x < 0x100; } bool isShiftCount(int x) const { return 0 <= x && x < 32; } - void emit_int8( int8_t x) { code_section()->emit_int8( x); } - void emit_int16( int16_t x) { code_section()->emit_int16( x); } - void emit_int32( int32_t x) { code_section()->emit_int32( x); } - void emit_int64( int64_t x) { code_section()->emit_int64( x); } - - void emit_float( jfloat x) { code_section()->emit_float( x); } - void emit_double( jdouble x) { code_section()->emit_double( x); } - void emit_address(address x) { code_section()->emit_address(x); } - - void emit_byte(int x) { emit_int8 (x); } // deprecated void emit_word(int x) { emit_int16(x); } // deprecated void emit_long(jint x) { emit_int32(x); } // deprecated @@ -288,6 +278,15 @@ // ensure buf contains all code (call this before using/copying the code) void flush(); + void emit_int8( int8_t x) { code_section()->emit_int8( x); } + void emit_int16( int16_t x) { code_section()->emit_int16( x); } + void emit_int32( int32_t x) { code_section()->emit_int32( x); } + void emit_int64( int64_t x) { code_section()->emit_int64( x); } + + void emit_float( jfloat x) { code_section()->emit_float( x); } + void emit_double( jdouble x) { code_section()->emit_double( x); } + void emit_address(address x) { code_section()->emit_address(x); } + // min and max values for signed immediate ranges static int min_simm(int nbits) { return -(intptr_t(1) << (nbits - 1)) ; } static int max_simm(int nbits) { return (intptr_t(1) << (nbits - 1)) - 1; } @@ -327,8 +326,6 @@ void clear_inst_mark() { code_section()->clear_mark(); } // Constants in code - void a_byte(int x); - void a_long(jint x); void relocate(RelocationHolder const& rspec, int format = 0) { assert(!pd_check_instruction_mark() || inst_mark() == NULL || inst_mark() == code_section()->end(),