1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_ASM_ASSEMBLER_HPP
  26 #define SHARE_VM_ASM_ASSEMBLER_HPP
  27 
  28 #include "asm/codeBuffer.hpp"
  29 #include "code/oopRecorder.hpp"
  30 #include "code/relocInfo.hpp"
  31 #include "memory/allocation.hpp"
  32 #include "utilities/debug.hpp"
  33 #include "utilities/growableArray.hpp"
  34 #include "utilities/top.hpp"
  35 
  36 #ifdef TARGET_ARCH_x86
  37 # include "register_x86.hpp"
  38 # include "vm_version_x86.hpp"
  39 #endif
  40 #ifdef TARGET_ARCH_sparc
  41 # include "register_sparc.hpp"
  42 # include "vm_version_sparc.hpp"
  43 #endif
  44 #ifdef TARGET_ARCH_zero
  45 # include "register_zero.hpp"
  46 # include "vm_version_zero.hpp"
  47 #endif
  48 #ifdef TARGET_ARCH_arm
  49 # include "register_arm.hpp"
  50 # include "vm_version_arm.hpp"
  51 #endif
  52 #ifdef TARGET_ARCH_ppc
  53 # include "register_ppc.hpp"
  54 # include "vm_version_ppc.hpp"
  55 #endif
  56 
  57 // This file contains platform-independent assembler declarations.
  58 
  59 class MacroAssembler;
  60 class AbstractAssembler;
  61 class Label;
  62 
  63 /**
  64  * Labels represent destinations for control transfer instructions.  Such
  65  * instructions can accept a Label as their target argument.  A Label is
  66  * bound to the current location in the code stream by calling the
  67  * MacroAssembler's 'bind' method, which in turn calls the Label's 'bind'
  68  * method.  A Label may be referenced by an instruction before it's bound
  69  * (i.e., 'forward referenced').  'bind' stores the current code offset
  70  * in the Label object.
  71  *
  72  * If an instruction references a bound Label, the offset field(s) within
  73  * the instruction are immediately filled in based on the Label's code
  74  * offset.  If an instruction references an unbound label, that
  75  * instruction is put on a list of instructions that must be patched
  76  * (i.e., 'resolved') when the Label is bound.
  77  *
  78  * 'bind' will call the platform-specific 'patch_instruction' method to
  79  * fill in the offset field(s) for each unresolved instruction (if there
  80  * are any).  'patch_instruction' lives in one of the
  81  * cpu/<arch>/vm/assembler_<arch>* files.
  82  *
  83  * Instead of using a linked list of unresolved instructions, a Label has
  84  * an array of unresolved instruction code offsets.  _patch_index
  85  * contains the total number of forward references.  If the Label's array
  86  * overflows (i.e., _patch_index grows larger than the array size), a
  87  * GrowableArray is allocated to hold the remaining offsets.  (The cache
  88  * size is 4 for now, which handles over 99.5% of the cases)
  89  *
  90  * Labels may only be used within a single CodeSection.  If you need
  91  * to create references between code sections, use explicit relocations.
  92  */
  93 class Label VALUE_OBJ_CLASS_SPEC {
  94  private:
  95   enum { PatchCacheSize = 4 };
  96 
  97   // _loc encodes both the binding state (via its sign)
  98   // and the binding locator (via its value) of a label.
  99   //
 100   // _loc >= 0   bound label, loc() encodes the target (jump) position
 101   // _loc == -1  unbound label
 102   int _loc;
 103 
 104   // References to instructions that jump to this unresolved label.
 105   // These instructions need to be patched when the label is bound
 106   // using the platform-specific patchInstruction() method.
 107   //
 108   // To avoid having to allocate from the C-heap each time, we provide
 109   // a local cache and use the overflow only if we exceed the local cache
 110   int _patches[PatchCacheSize];
 111   int _patch_index;
 112   GrowableArray<int>* _patch_overflow;
 113 
 114   Label(const Label&) { ShouldNotReachHere(); }
 115 
 116  public:
 117 
 118   /**
 119    * After binding, be sure 'patch_instructions' is called later to link
 120    */
 121   void bind_loc(int loc) {
 122     assert(loc >= 0, "illegal locator");
 123     assert(_loc == -1, "already bound");
 124     _loc = loc;
 125   }
 126   void bind_loc(int pos, int sect) { bind_loc(CodeBuffer::locator(pos, sect)); }
 127 
 128 #ifndef PRODUCT
 129   // Iterates over all unresolved instructions for printing
 130   void print_instructions(MacroAssembler* masm) const;
 131 #endif // PRODUCT
 132 
 133   /**
 134    * Returns the position of the the Label in the code buffer
 135    * The position is a 'locator', which encodes both offset and section.
 136    */
 137   int loc() const {
 138     assert(_loc >= 0, "unbound label");
 139     return _loc;
 140   }
 141   int loc_pos()  const { return CodeBuffer::locator_pos(loc()); }
 142   int loc_sect() const { return CodeBuffer::locator_sect(loc()); }
 143 
 144   bool is_bound() const    { return _loc >=  0; }
 145   bool is_unbound() const  { return _loc == -1 && _patch_index > 0; }
 146   bool is_unused() const   { return _loc == -1 && _patch_index == 0; }
 147 
 148   /**
 149    * Adds a reference to an unresolved displacement instruction to
 150    * this unbound label
 151    *
 152    * @param cb         the code buffer being patched
 153    * @param branch_loc the locator of the branch instruction in the code buffer
 154    */
 155   void add_patch_at(CodeBuffer* cb, int branch_loc);
 156 
 157   /**
 158    * Iterate over the list of patches, resolving the instructions
 159    * Call patch_instruction on each 'branch_loc' value
 160    */
 161   void patch_instructions(MacroAssembler* masm);
 162 
 163   void init() {
 164     _loc = -1;
 165     _patch_index = 0;
 166     _patch_overflow = NULL;
 167   }
 168 
 169   Label() {
 170     init();
 171   }
 172 };
 173 
 174 // A union type for code which has to assemble both constant and
 175 // non-constant operands, when the distinction cannot be made
 176 // statically.
 177 class RegisterOrConstant VALUE_OBJ_CLASS_SPEC {
 178  private:
 179   Register _r;
 180   intptr_t _c;
 181 
 182  public:
 183   RegisterOrConstant(): _r(noreg), _c(0) {}
 184   RegisterOrConstant(Register r): _r(r), _c(0) {}
 185   RegisterOrConstant(intptr_t c): _r(noreg), _c(c) {}
 186 
 187   Register as_register() const { assert(is_register(),""); return _r; }
 188   intptr_t as_constant() const { assert(is_constant(),""); return _c; }
 189 
 190   Register register_or_noreg() const { return _r; }
 191   intptr_t constant_or_zero() const  { return _c; }
 192 
 193   bool is_register() const { return _r != noreg; }
 194   bool is_constant() const { return _r == noreg; }
 195 };
 196 
 197 // The Abstract Assembler: Pure assembler doing NO optimizations on the
 198 // instruction level; i.e., what you write is what you get.
 199 // The Assembler is generating code into a CodeBuffer.
 200 class AbstractAssembler : public ResourceObj  {
 201   friend class Label;
 202 
 203  protected:
 204   CodeSection* _code_section;          // section within the code buffer
 205   OopRecorder* _oop_recorder;          // support for relocInfo::oop_type
 206 
 207   // Code emission & accessing
 208   address addr_at(int pos) const { return code_section()->start() + pos; }
 209 
 210 
 211   // This routine is called with a label is used for an address.
 212   // Labels and displacements truck in offsets, but target must return a PC.
 213   address target(Label& L)             { return code_section()->target(L, pc()); }
 214 
 215   bool is8bit(int x) const             { return -0x80 <= x && x < 0x80; }
 216   bool isByte(int x) const             { return 0 <= x && x < 0x100; }
 217   bool isShiftCount(int x) const       { return 0 <= x && x < 32; }
 218 
 219   void emit_word(int x)  { emit_int16(x); }  // deprecated
 220   void emit_long(jint x) { emit_int32(x); }  // deprecated
 221 
 222   // Instruction boundaries (required when emitting relocatable values).
 223   class InstructionMark: public StackObj {
 224    private:
 225     AbstractAssembler* _assm;
 226 
 227    public:
 228     InstructionMark(AbstractAssembler* assm) : _assm(assm) {
 229       assert(assm->inst_mark() == NULL, "overlapping instructions");
 230       _assm->set_inst_mark();
 231     }
 232     ~InstructionMark() {
 233       _assm->clear_inst_mark();
 234     }
 235   };
 236   friend class InstructionMark;
 237 #ifdef ASSERT
 238   // Make it return true on platforms which need to verify
 239   // instruction boundaries for some operations.
 240   static bool pd_check_instruction_mark();
 241 
 242   // Add delta to short branch distance to verify that it still fit into imm8.
 243   int _short_branch_delta;
 244 
 245   int  short_branch_delta() const { return _short_branch_delta; }
 246   void set_short_branch_delta()   { _short_branch_delta = 32; }
 247   void clear_short_branch_delta() { _short_branch_delta = 0; }
 248 
 249   class ShortBranchVerifier: public StackObj {
 250    private:
 251     AbstractAssembler* _assm;
 252 
 253    public:
 254     ShortBranchVerifier(AbstractAssembler* assm) : _assm(assm) {
 255       assert(assm->short_branch_delta() == 0, "overlapping instructions");
 256       _assm->set_short_branch_delta();
 257     }
 258     ~ShortBranchVerifier() {
 259       _assm->clear_short_branch_delta();
 260     }
 261   };
 262 #else
 263   // Dummy in product.
 264   class ShortBranchVerifier: public StackObj {
 265    public:
 266     ShortBranchVerifier(AbstractAssembler* assm) {}
 267   };
 268 #endif
 269 
 270   // Label functions
 271   void print(Label& L);
 272 
 273  public:
 274 
 275   // Creation
 276   AbstractAssembler(CodeBuffer* code);
 277 
 278   // ensure buf contains all code (call this before using/copying the code)
 279   void flush();
 280 
 281   void emit_int8(   int8_t  x) { code_section()->emit_int8(   x); }
 282   void emit_int16(  int16_t x) { code_section()->emit_int16(  x); }
 283   void emit_int32(  int32_t x) { code_section()->emit_int32(  x); }
 284   void emit_int64(  int64_t x) { code_section()->emit_int64(  x); }
 285 
 286   void emit_float(  jfloat  x) { code_section()->emit_float(  x); }
 287   void emit_double( jdouble x) { code_section()->emit_double( x); }
 288   void emit_address(address x) { code_section()->emit_address(x); }
 289 
 290   // min and max values for signed immediate ranges
 291   static int min_simm(int nbits) { return -(intptr_t(1) << (nbits - 1))    ; }
 292   static int max_simm(int nbits) { return  (intptr_t(1) << (nbits - 1)) - 1; }
 293 
 294   // Define some:
 295   static int min_simm10() { return min_simm(10); }
 296   static int min_simm13() { return min_simm(13); }
 297   static int min_simm16() { return min_simm(16); }
 298 
 299   // Test if x is within signed immediate range for nbits
 300   static bool is_simm(intptr_t x, int nbits) { return min_simm(nbits) <= x && x <= max_simm(nbits); }
 301 
 302   // Define some:
 303   static bool is_simm5( intptr_t x) { return is_simm(x, 5 ); }
 304   static bool is_simm8( intptr_t x) { return is_simm(x, 8 ); }
 305   static bool is_simm10(intptr_t x) { return is_simm(x, 10); }
 306   static bool is_simm11(intptr_t x) { return is_simm(x, 11); }
 307   static bool is_simm12(intptr_t x) { return is_simm(x, 12); }
 308   static bool is_simm13(intptr_t x) { return is_simm(x, 13); }
 309   static bool is_simm16(intptr_t x) { return is_simm(x, 16); }
 310   static bool is_simm26(intptr_t x) { return is_simm(x, 26); }
 311   static bool is_simm32(intptr_t x) { return is_simm(x, 32); }
 312 
 313   // Accessors
 314   CodeSection*  code_section() const   { return _code_section; }
 315   CodeBuffer*   code()         const   { return code_section()->outer(); }
 316   int           sect()         const   { return code_section()->index(); }
 317   address       pc()           const   { return code_section()->end();   }
 318   int           offset()       const   { return code_section()->size();  }
 319   int           locator()      const   { return CodeBuffer::locator(offset(), sect()); }
 320 
 321   OopRecorder*  oop_recorder() const   { return _oop_recorder; }
 322   void      set_oop_recorder(OopRecorder* r) { _oop_recorder = r; }
 323 
 324   address       inst_mark() const { return code_section()->mark();       }
 325   void      set_inst_mark()       {        code_section()->set_mark();   }
 326   void    clear_inst_mark()       {        code_section()->clear_mark(); }
 327 
 328   // Constants in code
 329   void relocate(RelocationHolder const& rspec, int format = 0) {
 330     assert(!pd_check_instruction_mark()
 331         || inst_mark() == NULL || inst_mark() == code_section()->end(),
 332         "call relocate() between instructions");
 333     code_section()->relocate(code_section()->end(), rspec, format);
 334   }
 335   void relocate(   relocInfo::relocType rtype, int format = 0) {
 336     code_section()->relocate(code_section()->end(), rtype, format);
 337   }
 338 
 339   static int code_fill_byte();         // used to pad out odd-sized code buffers
 340 
 341   // Associate a comment with the current offset.  It will be printed
 342   // along with the disassembly when printing nmethods.  Currently
 343   // only supported in the instruction section of the code buffer.
 344   void block_comment(const char* comment);
 345 
 346   // Label functions
 347   void bind(Label& L); // binds an unbound label L to the current code position
 348 
 349   // Move to a different section in the same code buffer.
 350   void set_code_section(CodeSection* cs);
 351 
 352   // Inform assembler when generating stub code and relocation info
 353   address    start_a_stub(int required_space);
 354   void       end_a_stub();
 355   // Ditto for constants.
 356   address    start_a_const(int required_space, int required_align = sizeof(double));
 357   void       end_a_const(CodeSection* cs);  // Pass the codesection to continue in (insts or stubs?).
 358 
 359   // constants support
 360   //
 361   // We must remember the code section (insts or stubs) in c1
 362   // so we can reset to the proper section in end_a_const().
 363   address long_constant(jlong c) {
 364     CodeSection* c1 = _code_section;
 365     address ptr = start_a_const(sizeof(c), sizeof(c));
 366     if (ptr != NULL) {
 367       emit_int64(c);
 368       end_a_const(c1);
 369     }
 370     return ptr;
 371   }
 372   address double_constant(jdouble c) {
 373     CodeSection* c1 = _code_section;
 374     address ptr = start_a_const(sizeof(c), sizeof(c));
 375     if (ptr != NULL) {
 376       emit_double(c);
 377       end_a_const(c1);
 378     }
 379     return ptr;
 380   }
 381   address float_constant(jfloat c) {
 382     CodeSection* c1 = _code_section;
 383     address ptr = start_a_const(sizeof(c), sizeof(c));
 384     if (ptr != NULL) {
 385       emit_float(c);
 386       end_a_const(c1);
 387     }
 388     return ptr;
 389   }
 390   address address_constant(address c) {
 391     CodeSection* c1 = _code_section;
 392     address ptr = start_a_const(sizeof(c), sizeof(c));
 393     if (ptr != NULL) {
 394       emit_address(c);
 395       end_a_const(c1);
 396     }
 397     return ptr;
 398   }
 399   address address_constant(address c, RelocationHolder const& rspec) {
 400     CodeSection* c1 = _code_section;
 401     address ptr = start_a_const(sizeof(c), sizeof(c));
 402     if (ptr != NULL) {
 403       relocate(rspec);
 404       emit_address(c);
 405       end_a_const(c1);
 406     }
 407     return ptr;
 408   }
 409 
 410   // Bootstrapping aid to cope with delayed determination of constants.
 411   // Returns a static address which will eventually contain the constant.
 412   // The value zero (NULL) stands instead of a constant which is still uncomputed.
 413   // Thus, the eventual value of the constant must not be zero.
 414   // This is fine, since this is designed for embedding object field
 415   // offsets in code which must be generated before the object class is loaded.
 416   // Field offsets are never zero, since an object's header (mark word)
 417   // is located at offset zero.
 418   RegisterOrConstant delayed_value(int(*value_fn)(), Register tmp, int offset = 0);
 419   RegisterOrConstant delayed_value(address(*value_fn)(), Register tmp, int offset = 0);
 420   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset) = 0;
 421   // Last overloading is platform-dependent; look in assembler_<arch>.cpp.
 422   static intptr_t* delayed_value_addr(int(*constant_fn)());
 423   static intptr_t* delayed_value_addr(address(*constant_fn)());
 424   static void update_delayed_values();
 425 
 426   // Bang stack to trigger StackOverflowError at a safe location
 427   // implementation delegates to machine-specific bang_stack_with_offset
 428   void generate_stack_overflow_check( int frame_size_in_bytes );
 429   virtual void bang_stack_with_offset(int offset) = 0;
 430 
 431 
 432   /**
 433    * A platform-dependent method to patch a jump instruction that refers
 434    * to this label.
 435    *
 436    * @param branch the location of the instruction to patch
 437    * @param masm the assembler which generated the branch
 438    */
 439   void pd_patch_instruction(address branch, address target);
 440 
 441 #ifndef PRODUCT
 442   /**
 443    * Platform-dependent method of printing an instruction that needs to be
 444    * patched.
 445    *
 446    * @param branch the instruction to be patched in the buffer.
 447    */
 448   static void pd_print_patched_instruction(address branch);
 449 #endif // PRODUCT
 450 };
 451 
 452 #ifdef TARGET_ARCH_x86
 453 # include "assembler_x86.hpp"
 454 #endif
 455 #ifdef TARGET_ARCH_sparc
 456 # include "assembler_sparc.hpp"
 457 #endif
 458 #ifdef TARGET_ARCH_zero
 459 # include "assembler_zero.hpp"
 460 #endif
 461 #ifdef TARGET_ARCH_arm
 462 # include "assembler_arm.hpp"
 463 #endif
 464 #ifdef TARGET_ARCH_ppc
 465 # include "assembler_ppc.hpp"
 466 #endif
 467 
 468 
 469 #endif // SHARE_VM_ASM_ASSEMBLER_HPP